
 2022年上半年 软件设计师 下午试卷 1

全国计算机技术与软件专业技术资格（水平）考试

2022年上半年 软件设计师 下午试卷

（考试时间 14:00～16:30共 150分钟）

请按下述要求正确填写答题卡

1. 在答题纸的指定位置填写你所在的省、自治区、直辖市、计划单列市的

名称。

2. 在答题纸的指定位置填写准考证号、出生年月日和姓名。

3. 答题纸上除填写上述内容外只能写解答。

4. 本试卷共 6道题，试题一至试题四是必答题，试题五至试题六选答 1道。

每题 15分，满分 75分。

5. 解答时字迹务必清楚，字迹不清时，将不评分。

6. 仿照下面的例题，将解答写在答题纸的对应栏内。

例题

2022年上半年全国计算机技术与软件专业技术资格（水平）考试日期是

（1）月（2）日。

因为正确的解答是“5月 28日”，故在答题纸的对应栏内写上“5”和“28”

（参看下表）。

例题 解答栏

（1） 5

（2） 28

2 2022年上半年 软件设计师 下午试卷

试题一（共 15分）

阅读下列说明和数据流图，回答问题 1至问题 4，将解答填入答题纸的对应栏内。

【说明】

某公司欲开发一款外卖订餐系统，集多家外卖平台和商户为一体，为用户提供在线浏览

餐品、订餐和配送等服务。该系统的主要功能是：

（1）入驻管理。用户注册；商户申请入驻，设置按时间段接单数量阅值等。系统存储

商户/用户信息。

（2）餐品管理。商户对餐品的基本信息和优惠信息进行发布、修改、删除。系统存储

相关信息。

（3）订餐。用户浏览商户餐单，选择餐品及数量后提交订餐请求。系统存储订餐订单。

（4）订单处理。收到订餐请求后，向外卖平台请求配送。外卖平台接到请求后发布配

送单，由平台骑手接单，外卖平台根据是否有骑手接单返回接单状态。若外卖平台接单成功，

系统给支付系统发送支付请求，接收支付状态。支付成功，更新订单状态为已接单，向商户

发送订餐请求并由商户打印订单，给用户发送订单状态；若支付失败，更新订单状态为下单

失败，向外卖平台请求取消配送，向用户发送下单失败。若系统接到外卖平台返回接单失败

或超时未返回接单状态，则更新订单状态为下单失败，向用户发送下单失败。

（5）配送。商户备餐后，由骑手取餐配送给用户。送达后由用户扫描骑手出示的订单

上的配送码后确认送达，订单状态更改为已送达，并发送给商户。

（6）订单评价。用户可以对订单餐品、骑手配送服务进行评价，推送给对应的商户、

所在外卖平台，商户和外卖平台对用户的评价进行回复。系统存储评价。

现采用结构化方法对外卖订餐系统进行分析与设计，获得如图 1-1所示的上下文数据

流图和图 1-2所示的 0层数据流图。

 2022年上半年 软件设计师 下午试卷 3

【问题 1】（4分）

使用说明中的词语，给出图 1-1中的实体 E1〜E4的名称。

【问题 2】（4分）

使用说明中的词语，给出图 1-2中的数据存储 D1〜D4的名称。

【问题 3】（4分）

根据说明和图中术语，补充图 1-2中缺失的数据流及其起点和终点。

【问题 4】（3分）

根据说明，采用结构化语言对“订单处理”的加工逻辑进行描述。

收到订餐请求

向外卖平台请求配送。

外卖平台接到请求后发布配送单，由平台骑手接单，

4 2022年上半年 软件设计师 下午试卷

试题二（共 15分）

阅读下列说明，回答问题 1至问题 4，将解答填入答题纸的对应栏内。

【说明】

为了提高接种工作，提高效率，并为了抗击疫情提供疫苗接种数据支撑，需要开发一个

信息系统，下述需求完成该系统的数据库设计。

【需求分析结果】

（1）记录疫苗供应商的信息，包括供应商名称，地址和一个电话。

（2）记录接种医院的信息，包括医院名称、地址和一个电话。

（3）记录接种者个人信息，包括姓名、身份证号和一个电话。

（4）记录接种者疫苗接种信息，包括接种医院信息，被接种者信息，疫苗供应商名称

和接种日期，为了提高免疫力，接种者可能需要进行多次疫苗接种，（每天最多接种一次，

每次都可以在全市任意一家医院进行疫苗接种）。

【概念模型设计】

根据需求阶段收集的信息，设计的实体联系图（不完整）如图 2-1所示。

 2022年上半年 软件设计师 下午试卷 5

【逻辑结构设计】

根据概念模型设计阶段完成的实体联系图，得出如下关系模式（不完整）：

供应商（供应商名称，地址，电话）

医院（医院名称，地址，电话）

供货（供货商名称， （a） ，供货内容）

被接种者（姓名，身份证号，电话）

接种（接种者身份证号， （b） ，医院名称、供应商名称）

【问题 1】（4分）

根据问题描述，补充图 2-1的实体联系图（不增加新的实体）。

【问题 2】（4分）

根据题意，补充逻辑结构设计结果中的（a），（b）两处空缺，并标注主键和外键完整性

约束。

【问题 3】（7分）

若医院还兼有核酸检测的业务，检测时可能需要进行多次核酸检测（每天最多检测一次），

但每次都可以在全市任意一家医院进行检测。

请在图 2-1中增加“被检测者”实体及相应的属性。医院与被检测者之间的“检测”联

系及必要的属性，并给出新增加的关系模式。

“被检测者”实体包括姓名、身份证号、地址和一个电话。

“检测”联系包括检测日期和检测结果等。

6 2022年上半年 软件设计师 下午试卷

试题三（共 15分）

阅读下列说明和 UML图，回答问题 1至问题 3，将解答填入答题纸的对应栏内。

【说明】

某公司的人事部门拥有一个地址簿（AddressBook）管理系统（AddressBookSystem），

用于管理公司所有员工的地址记录（PersonAddress）。员工的地址记录包括：姓名、住址、

城市、省份、邮政编码以及联系电话等信息。

管理员可以完成对地址簿中地址记录的管理操作，包括：

（1）管理地址记录。根据公司的人员变动情况，对地址记录进行添加、修改、删除等

操作。

（2）排序。按照员工姓氏的字典顺序或邮政编码对地址簿中的所有记录进行排序。

（3）打印地址记录。以邮件标签的格式打印一个地址单独的地址簿。

系统会对地址记录进行管理，为便于管理，管理员在系统中为公司的不同部门建立员工

的地址簿的操作，包括：

（1）创建地址簿。新建一个地址簿并保存。

（2）打开地址簿。打开一个已有的地址簿。

（3）修改地址簿。对打开的地址簿进行修改并保存。

系统将提供一个 GUI（图形用户界面）实现对地址簿的各种操作。

现采用面向对象方法分析并设计该地址簿管理系统，得到如图 3-1所示的用例图以及图

3-2所示的类图。

 2022年上半年 软件设计师 下午试卷 7

【问题 1】（6分）

根据说明中的描述，给出图 3-1中 U1〜U6所对应的用例名。

【问题 2】（5分）

根据说明中的描述，给出图 3-2 中类 AddressBook 的主要属性和方法以及类

PersonAddress的主要属性（可以使用说明中的文字）

【问题 3】（4分）

根据说明中的描述以及图 3-1 所示的用例图，请简要说明 include 和 extend 关系的含

义是什么？

8 2022年上半年 软件设计师 下午试卷

试题四（共 15分）

阅读下列说明和 C代码，回答问题 1至问题 3，将解答填入答题纸的对应栏内。

【说明】

某工程计算中要完成多个矩阵相乘（链乘）的计算任务，对矩阵相乘进行以下说明。

（1）两个矩阵相乘要求第一个矩阵的列数等于第二个矩阵的行数，计算量主要由进行

乘法运算的次数决定。假设采用标准的矩阵相乘算法，计算𝐴𝑛∗𝑚 ∗ 𝐵𝑛∗𝑝，需要𝑚 ∗ 𝑛 ∗ 𝑝次

乘法运算，即时间复杂度为𝑂(𝑚 ∗ 𝑛 ∗ 𝑝)

（2）矩阵相乘满足结合律，多个矩阵相乘时不同的计算顺序会产生不同的计算量。以

矩阵𝐴15∗100，𝐴2100∗8，𝐴38∗50三个矩阵相乘为例，若按(𝐴1 ∗ 𝐴2) ∗ 𝐴3计算，则需要进

行5 ∗ 100 ∗ 8 + 5 ∗ 8 ∗ 50 = 6000次乘法运算，若按𝐴1 ∗ (𝐴2 ∗ 𝐴3)计算，则需要进行

100 ∗ 8 ∗ 50 + 5 ∗ 100 ∗ 50 = 65000次乘法运算。

矩阵连乘问题可描述为：给定𝑛个矩阵，对较大的𝑛，可能计算的顺序数量非常庞大，用

蛮力法确定计算顺序是不实际的。经过对问题进行分析，发现矩阵连乘问题具有最优子结构，

即若𝐴1 ∗ 𝐴2 ∗ ⋯∗ 𝐴𝑛的一个最优计算顺序从第𝑘个矩阵处断开，即分为𝐴1 ∗ 𝐴2 ∗ ⋯∗ 𝐴𝑘

和𝐴𝑘 + 1 ∗ 𝐴𝑘 + 2 ∗ ⋯∗ 𝐴𝑛两个子问题，则该最优解应该包含𝐴1 ∗ 𝐴2 ∗ ⋯∗ 𝐴𝑘的一个

最优计算顺序和𝐴𝑘 + 1 ∗ 𝐴𝑘 + 2 ∗ ⋯∗ 𝐴𝑛的一个最优计算顺序。据此构造递归式：

其中，cost[i][j]表示𝐴𝑖 + 1 ∗ 𝐴𝑖 + 2 ∗ ⋯∗ 𝐴𝑗 + 1的最优计算的代价。最终需要

求解 cost[0][n – 1]

【C代码】

算法实现采用自底向上的计算过程。首先计算两个矩阵相乘的计算量，然后依次计算 3

个矩阵、4个矩阵、…、𝑛个矩阵相乘的最小计算量及最优计算顺序。下面是算法的 C语言

实现。

（1）主要变量说明

n：矩阵数、

seq[]：矩阵维数序列

cost[][]：二维数组，长度为𝑛 ∗ 𝑛，其中元素 cost[i][j]表示𝐴𝑖 + 1 ∗ 𝐴𝑖 + 2 ∗ ⋯∗ 𝐴𝑗 +

1的最优计算的计算代价

 2022年上半年 软件设计师 下午试卷 9

trace[][]：二维数组，长度为𝑛 ∗ 𝑛，其中元素 trace[i][j]表示𝐴𝑖 + 1 ∗ 𝐴𝑖 + 2 ∗ ⋯∗

𝐴𝑗 + 1的最优计算对应的划分位置，即𝑘

（2）函数 cmm

#define N 100

int cost[N][N];

int trace[N][N];

int cmm(int n, int seq[]) {

int tempCost;

int tempTrace;

int i, j, k, p;

int temp;

for (i = 0; i < n; i ++) { cost[i][i] = 0; }

for (p = 1; p < n; p ++) {

for (i = 0; i < n - p; i ++) {

 (1) ;

tempCost = -1;

for (k = i; (2) ; k ++) {

temp = (3) ;

if(tempCost == -1 || tempCost > temp) {

tempCost = temp;

tempTrace = k;

}

}

cost[i][j] = tempCost;

 (4) ;

}

}

return cost[0][n - 1];

}

10 2022年上半年 软件设计师 下午试卷

【问题 1】（8分）

根据以上说明和 C代码，填充 C代码中的空（1）〜（4）。

【问题 2】（4分）

根据以上说明和 C代码，该问题采用了 （5） 算法设计策略，时间复杂度为 （6） 。

（用 O符号表示）

【问题 3】（3分）

考虑实例 n = 4，各个矩阵的维数：A1为 15 * 5，A2为 5 * 10，A3为 10 * 20，

A4为 20 * 25，即维数序列为 15, 5, 10, 20, 25。则根据上述 C代码得到的一个最优

计算顺序为 （7） （用加括号方式表示计算顺序），所需要的乘法运算次数为

（8） 。

 2022年上半年 软件设计师 下午试卷 11

试题五（共 15分）

阅读下列说明和 C++代码，将应填入 （n） 处的字句写在答题纸的对应栏内。

【说明】

在软件系统中，通常都会给用户提供取消、不确定或者错误的操作，允许将系统回复到

原先的状态。现使用备忘录（Memento）模式实现该要求，得到如图 5-1所示的类图。

Memento 包含了要被恢复的状态。Originator 创建并在 Memento 中存储状态。

CareTaker负责从Memento中恢复状态。

【C++代码】

#include <iostream>

#include <string>

#include <vector>

using namespace std;

12 2022年上半年 软件设计师 下午试卷

class Memento {

private:

string state;

public:

Memento(string state) { this->state = state; }

string getState() { return state; }

};

class Originator {

private:

string state;

public:

void setState(string state) { this->state = state; }

string getState() { return state; }

Memento saveStateToMemento() { return (1) ; }

void getStateFromMemento(Memento Memento) { state = (2) ; }

};

class CareTaker {

private:

vector<Memento> mementoList;

public:

void (3) { mementoList.push_back(state); }

 (4) { return mementoList[index]; }

};

 2022年上半年 软件设计师 下午试卷 13

int main() {

Originator *originator = new Originator();

CareTaker *careTaker = new CareTaker();

originator->setState("State #1");

originator->setState("State #2");

careTaker->add((5));

originator->setState("State #3");

careTaker->add((6));

originator->setState("State #4");

cout << "Current State：" + originator->getState() << endl;

originator->getStateFromMemento(careTaker->get(0));

cout << "First saved State：" + originator->getState() << endl;

originator->getStateFromMemento(careTaker->get(1));

cout << "Second saved State：" + originator->getState() << endl;

}

14 2022年上半年 软件设计师 下午试卷

试题六（共 15分）

阅读下列说明和 Java代码，将应填入 （n） 处的字句写在答题纸的对应栏内。

【说明】

在软件系统中，通常都会给用户提供取消、不确定或者错误的操作，允许将系统回复到

原先的状态。现使用备忘录（Memento）模式实现该要求，得到如图 6-1所示的类图。

Memento 包含了要被恢复的状态。Originator 创建并在 Memento 中存储状态。

CareTaker负责从Memento中恢复状态。

【Java代码】

import java.util.*;

class Memento {

private String state;

public Memento(String state) {

this.state = state;

}

public String getState() {

return state;

}

}

 2022年上半年 软件设计师 下午试卷 15

class Originator {

private String state;

public void setState(String state) {

this.state = state;

}

public String getState() {

return state;

}

public Memento saveStateToMemento() {

return (1) ;

}

public void getStateFromMemento(Memento Memento) {

state = (2) ;

}

}

class CareTaker {

private List<Memento> mementoList = new ArrayList<Memento>();

public (3) {

mementoList.add(state);

}

public (4) {

return mementoList.get(index);

}

}

16 2022年上半年 软件设计师 下午试卷

class MementoPaneDemos {

public static void main(String[] args) {

Originator originator = new Originator();

CareTaker careTaker = new CareTaker();

originator.setState("State #1");

originator.setState("State #2");

careTaker.add((5));

originator.setState("State #3");

careTaker.add((6));

originator.setState("State #4");

System.out.println("Current State：" + originator.getState());

originator.getStateFromMemento(careTaker.get(0));

System.out.println("First saved State：" + originator.getState());

originator.getStateFromMemento(careTaker.get(1));

System.out.println("Second saved State：" + originator.getState());

}

}

	2022年上半年 软件设计师 下午试卷
	试题一（共15分）
	试题二（共15分）
	试题三（共15分）
	试题四（共15分）
	试题五（共15分）
	试题六（共15分）

