视频P2〜P5：https://www.bilibili.com/video/BV1CS4y187Hk?p=2

回溯算法
要在88的棋盘上摆放8个“皇后”，要求“皇后”之间不能发生冲突，即任何两个“皇后”不能在同一行、同一列和相同的对角线上，则一般采用 （62） 来实现。（2011年上半年）
（62） A. 分治法		B. 动态规划法		C. 贪心法		D. 回溯法

非递归求解N皇后
#include <math.h>
#include <stdio.h>

#define N 10

int q[N + 1]; // 存储皇后的列号

int check(int j) { // 检查第 j 个皇后的位置是否合法
 int i;
 for (i = 1; i < j; i ++) {
 if (q[i] == q[j] || abs(i - j) == abs(q[i] - q[j])) { // 判断是否在同一列和同一斜线上
 return 0;
 }
 }

 return 1;
}

void queen() { // 求解 N 皇后 方案
 int i;
 for (i = 1; i <= N; i ++) {
 q[i] = 0;
 }

 int answer = 0; // 方案数

 int j = 1; // 表示正在摆放第 j 个皇后
 while (j >= 1) {
 q[j] = q[j] + 1; // 让第 j 个皇后向后一列摆放

 while (q[j] <= N && !check(j)) { // 判断第 j 个皇后的位置是否合法
 q[j] = q[j] + 1; // 不合法就往后一个位置摆放
 }

 if (q[j] <= N) { // 表示第 j 个皇后的找到一个合法的摆放位置
 if (j == N) { // 找到了 N 皇后的一组解
 answer = answer + 1;
 printf("方案%d：", answer);

 for (i = 1; i <= N; i ++) {
 printf("%d ", q[i]);
 }
 printf("\n");
 } else {
 j = j + 1; // 继续摆放下一个皇后
 }
 } else { // 表示第 j 个皇后找不到一个合法的摆放位置
 q[j] = 0; // 还原第 j 个皇后的位置
 j = j - 1; // 回溯
 }
 }
}

int main() {
 queen();

 return 0;
}

递归求解N皇后
#include <math.h>
#include <stdio.h>

#define N 10

int answer = 0;
int q[N + 1]; // 存储皇后的列号

int check(int j) { // 检查第 j 个皇后的位置是否合法
 int i;
 for (i = 1; i < j; i ++) {
 if (q[i] == q[j] || abs(i - j) == abs(q[i] - q[j])) { // 判断是否在同一列和同一斜线上
 return 0;
 }
 }

 return 1;
}

void queen(int j) {
 int i;
 for (i = 1; i <= N; i ++) {
 q[j] = i;

 if (check(j)) { // 当摆放的皇后位置为合法时
 if (j == N) { // 找到了 N 皇后的一组解
 answer = answer + 1;
 printf("方案%d：", answer);

 for (i = 1; i <= N; i ++) {
 printf("%d ", q[i]);
 }
 printf("\n");
 } else {
 queen(j + 1); // 递归摆放下一个皇后的位置
 }
 }
 }
}

int main() {
 queen(1);

 return 0;
}
