视频P13〜P17：https://www.bilibili.com/video/BV1CS4y187Hk?p=13

动态规划法的经典问题：0-1背包、矩阵连乘、最长公共序列

0-1背包问题的时间复杂度和空间复杂度均为，
其中n是物品数量，w是背包容量。

矩阵连乘的时间复杂度为，空间复杂度为

两个矩阵 和 相乘的次数为：
相乘之后得到新的矩阵为：

例如： 和 相乘的次数为：
相乘之后得到新的矩阵为：

最长公共序列的时间复杂度为

动态规划法
以下的算法设计方法中， （64） 以获取问题最优解为目标。（2009年上半年）
（64） A. 回溯方法		B. 分治法			C. 动态规划		D. 递推

[bookmark: _Hlk68389635]用动态规划策略求解矩阵连乘问题，其中
和，则最优的计算次序为 （63） 。（2010年下半年）
（63） A. 			B.
C. 			D.

考虑一个背包问题，共有个物品，背包容量为，物品的重量和价值分别为：，求背包问题的最大装包价值。若此为0-1背包问题，分析该问题具有最优子结构，定义递归式为（2016年上半年）
[image:]
其中表示i个物品,容量为j的0-1背包问题的最大装包价值，最终要求解
。
采用自底向上的动态规划方法求解，得到最大装包价值为 （62） ，算法的时间复杂度为 （63） 。
若此为部分背包问题，首先采用归并排序算法，根据物品的单位重量价值从大到小排序，然后依次将物品放入背包直至所有物品放入背包中或者背包再无容量，则得到的最大装包价值为 （64） ，算法的时间复杂度为 （65） 。
（62） A. 11				B. 14			C. 15			D. 16.67
（63） A. 			B. 		C. 		D.
（64） A. 11				B. 14			C. 15			D. 16.67
（65） A. 			B. 		C. 		D.

两个矩阵和相乘，用基本的方法进行，则需要的乘法次数为。多个矩阵相乘满足结合律，不同的乘法顺序所需要的乘法次数不同。考虑采用动态规划方法确定多个矩阵连乘的最优顺序，即所需要的乘法次数最少。最少乘法次数用m[i,j]表示，其递归式定义为：（2016年下半年）

其中i、j和k为矩阵下标，矩阵序列中的维度为采用自底向上的方法实现该算法来确定n个矩阵相乘的顺序，其时间复杂度为 （64） 。若四个矩阵相乘的维度序列为2、6、3、10、3，采用上述算法求解，则乘法次数为 （65） 。
（64） A. 		B. 		C. 		D.
（65） A. 156			B. 144				C. 180			D. 360

[bookmark: _Hlk68449716]某汽车加工工厂有两条装配线L1和L2，每条装配线的工位数均为n，两条装配线对应的工位完成同样的加工工作，但是所需要的时间可能不同。汽车底盘开始到进入两条装配线的时间以及装配后到结束的时间（）也可能不相同。从一个工位加工后流到下一个工位需要迁移时间现在要以最快的时间完成一辆汽车的装配，求最优的装配路线。
分析该问题，发现问题具有最优子结构。以L1为例，除了第一个工位之外，经过第j个工位的最短时间包含了经过L1的第个工位的最短时间或者经过L2的第个工位的最短时间，如式（1）。装配后到结束的最短时间包含离开L1的最短时间或者离开L2的最短时间如式（2）。
[image:]
由于在求解经过L1和L2的第j个工位的最短时间均包含了经过L1的第个工位的最短时间或者经过L2的第个工位的最短时间，该问题具有重复子问题的性质，故采用迭代方法求解。（2017年上半年）
该问题采用的算法设计策略是 （62） ，算法的时间复杂度为 （63）
以下是一个装配调度实例，其最短的装配时间为 （64） ，装配路线为 （65）
[image:]
（62） A. 分治			B. 动态规划			C. 贪心			D. 回溯
（63） A. 		B. 			C. 		D.
（64） A. 21			B. 23				C. 20			D. 26
（65） A. →→						B. →→
C. →→					D. →→

求解两个长度为n的序列X和Y的一个最长公共序列（如序列ABCBDAB和BDCABA的一个最长公共子序列为BCBA）可以采用多种计算方法。如可以采用蛮力法，对X的每一个子序列，判断其是否也是Y的子序列，最后求出最长的即可，该方法的时间复杂度为 （62） 。经分析发现该问题具有最优子结构，可以定义序列长度分别为i和j的两个序列X和Y的最长公共子序列的长度为C[i,j]，如下式所示。（2017年下半年）
[image:]
采用自底向上的方法实现该算法，则时间复杂度为 （63） 。
（62） A. 		B. 		C. 		D.
（63） A. 		B. 		C. 		D.

[bookmark: _Hlk68297609]已知矩阵和相乘的时间复杂度为。矩阵相乘满足结合律，如三个矩阵A、B、C相乘的顺序可以是也可以是。不同的相乘顺序所需进行的乘法次数可能有很大的差别。因此确定个矩阵相乘的最优计算顺序是一个非常重要的问题。已知确定个矩阵相乘的计算顺序具有最优子结构，即的最优计算顺序包含其子问题和的最优计算顺序。可以列出其递归式为：
[image:]
其中，的维度为表示最优计算顺序的相乘次数。
先采用自底向上的方法求个矩阵相乘的最优计算顺序。则求解该问题的算法设计策略为 （62） 。算法的时间复杂度为 （63） ，空间复杂度为 （64） 。
给定一个实例，，最优计算顺序为 （65） 。（2019年上半年）
（62） A. 分治法		B. 动态规划法		C. 贪心法		D. 回溯法
（63） A. 		B. 		C. 		D.
（64） A. 		B. 		C. 		D.
（65） A.
B.
C.
D.

0-1背包问题
#include <stdio.h>

#define N 4 // 物品数量
#define W 5 // 背包容量

int max(int a, int b) {
 return a > b ? a : b;
}

int main() {
 int v[] = {0, 2, 4, 5, 6}; // 物品价值数组
 int w[] = {0, 1, 2, 3, 4}; // 物品重量数组

 int f[N + 1][W + 1] = {}; // 子问题解数组

 int i, j;
 for (i = 1; i <= N; i ++) {
 for (j = 1; j <= W; j ++) {
 f[i][j] = f[i - 1][j]; // 默认不选第 i 个物品

 if (j >= w[i]) { // 选第 i 个物品的前提条件
 // 等于 不选第 i 个物品 和 选第 i 个物品 两者的较大值
 f[i][j] = max(f[i][j], f[i - 1][j - w[i]] + v[i]);
 }

 // 上方是写法 1
 /* == */
 // 下方是写法 2

 /*
 if (j >= w[i]) { // 选第 i 个物品的前提条件
 // 等于 不选第 i 个物品 和 选第 i 个物品 两者的较大值
 f[i][j] = max(f[i - 1][j], f[i - 1][j - w[i]] + v[i]);
 } else { // 不选第 i 个物品
 f[i][j] = f[i - 1][j]; // 等于 从前 i - 1 个物品中选，背包容量为 j 时的最大价值
 }
 */
 }
 }

 printf("%d\n", f[N][W]);

 for (i = 0; i <= N; i ++) {
 for (j = 0; j <= W; j ++) {
 printf("%d ", f[i][j]);
 }
 printf("\n");
 }

 return 0;
}
image4.png
0 #i=08j=0
ofi,jl=1cfi-1j-1]+1 Fi.j>0Hx, =y,
max(c[i—Ljl,cfi,j-1]) At

image5.png
0 i=j
1= {min.gk, T+ LT Dy} 1<

image1.png
0 Fii=0mkj =0
i jl= di-1j] Fiwli]> j
max{c(i—1,j) +c(i—1,j - w@)} Al

image2.png
eV

{eﬁral‘i Fij=1

min(f”.,l +ay thu.,,,fz\H +ay; +tzj,,)§§ﬂl"

B = min(f, +%,,5, +;) (2)

image3.png

