
ClickHouse表结构设计、关联查询优化

云数据库ClickHouse分析业务最佳实践

演讲人

阿里云 OLAP产品部 仁劼

2020/08/20

ClickHouse 表结构设计

• MergeTree 原理

• Update、Delete处理

• 建表优化

ClickHouse 表结构设计
MergeTree 原理

CREATE TABLE order_info
(

`oid` String, --订单ID
`buyer_nick` String, --顾客ID
`seller_nick` String, --售货员ID
`payment` Int16, --订单金额
`order_status` String, --订单状态
....
`gmt_order_create` DateTime, --下单时间
`gmt_order_pay` DateTime, --付款时间
`gmt_update_time` DateTime –记录边更实际

)

ENGINE = ReplacingMergeTree(gmt_update_time)

PARTITION BY toYYYYMM(gmt_order_create) -- 以月为单位分区

ORDER BY (seller_nick, gmt_order_create, oid) --订单主键

PRIMARY KEY (seller_nick, gmt_order_create) --正向索引列
SETTINGS index_granularity = 8192;

订单业务分析 Case：

CREATE TABLE order_info
(

`oid` VARCHAR, --订单ID
`buyer_nick` VARCHAR, --顾客ID
`seller_nick` VARCHAR, --售货员ID
`payment` Integer, --订单金额
`order_status` VARCHAR, --订单状态
....
`gmt_order_create` DateTime, --下单时间
`gmt_order_pay` DateTime, --付款时间
`gmt_update_time` DateTime –记录边更实际

PRIMARY KEY (`oid`)
);

MYSQL 数据源 ClickHouse 数据表

ClickHouse 表结构设计
MergeTree 结构

Level = 0
minBlockId = 0
maxBlockId = 0

2020-07
分区

....

Level = 1
minBlockId = 0
maxBlockId = 4

Level = 0
minBlockId = 4
maxBlockId = 4

Merge

Level = 0
minBlockId =
maxBlockId = 4

....

Level = 1
minBlockId = 5
maxBlockId = 9

Level = 2
minBlockId = 0
maxBlockId = 24

.... Level = 1
minBlockId = 25
maxBlockId = 29

Level = 0
minBlockId = 30
maxBlockId = 30

Level = 0
minBlockId = 31
maxBlockId = 31

....

Data Part

⚫ Data Part：immutable "SSTable" ，数据按列式存储，有序（order by key）

⚫ Full on disk：无 "MemTable" ，数据批量写入

⚫ Merge 策略：对比Size-tiered 、Level-tiered，写放大表现好，主键读放大表现差

⚫ 异步Mutation：Delete，Update异步化，Data Part 按写入顺序组织

ClickHouse 表结构设计
Data Part 列存

seller_nick gmt_order_create oid buyer_nick payment ...

...

jack 2020-08-01 08:30:00 94853 rock 13.3$

jack 2020-08-01 09:01:00 98422 tiny 24.9$

... ...

joy 2020-08-01 17:01:00 68395 ray 45.9$

...

sonny 2020-08-01 08:23:00 89183 jay 95.0$

sonny 2020-08-01 10:13:04 94734 juggle 7.4$

...

zoom 2020-08-01 10:13:04 136295 nick 6.5$

{ jack, 2020-08-01 08:30:00 }

{ joy, 2020-08-01 17:01:00 }

{ zoom, 2020-08-01 10:13:04 }

磁盘列存文件 内存排序索引：正向，粗糙

行号

81920

81921

90112

90592

90593

98304

select count(*) from order_info
where seller_nick = 'pick'
and gmt_order_create > '2020-08-02 00:00:00'
and gmt_order_create < '2020-08-03 00:00:00';

True Negative,
Skip scan

May Positive,
Scan filter

ClickHouse 表结构设计
Update、Delete 处理

ClickHouse Delete + Update能力：

• 异步线程处理

• 写放大严重，引入额外IO

业务中的Mutation场景：

Primary Update 、Delete：主键条件单条记录更新删除，高频

Secondary Update、Delete：非主键条件数据批量订正，低频

--下单
insert into order_info(oid, buyer_nick, seller_nick, payment, order_status, gmt_order_create) values(....);

--付款
update order_info set order_status = '', gmt_order_pay = now() where oid = '';

ClickHouse 表结构设计
MergeTree Family

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 待付款, null}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-08-01 09:12:00}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 待付款, null}
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-08-01 09:12:00}
...

异步Merge
MergeTree()

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 待付款, null, ver = 0}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-08-01 09:12:00,
ver = 1}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-08-01 09:12:00,
ver = 1}
...

ReplacingMergeTree(ver)

ClickHouse 表结构设计
MergeTree Family

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 待付款, null, ver = 0, sign = +1}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 待付款, null, ver = 0, sign = -1}
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-08-01 09:12:00,
ver = 1, sign = +1}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-08-01 09:12:00 ,
ver = 1, sign = +1}
...

异步Merge
VersionedCollapsingMergeTree(sign, ver)

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 待付款, null}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-
08-01 09:12:00}
...

...
{ jack, 2020-08-01 08:30:00, 94853, ..., 已付款, 2020-08-01 09:12:00}
...

AggregatingMergeTree()
`order_status` SimpleAggregateFunction(anyLast, String),
`gmt_order_pay` SimpleAggregateFunction(anyLast, Nullable(DateTime))

minBlock = 2094,
maxBlock = 3242,

minBlock = 1024,
maxBlock = 2093,

ClickHouse 表结构设计
如何保证查询结果一致性

异步Merge不可控：

• 查询结果突然跳变

Merge策略不考虑主键合并问题：

• 查询没有准确结果

解决方案：

T+1 数据执行强制 optimize partition

T+0 数据查询时主键合并

查询时主键合并策略：

final 修饰符 （merge sort aggregation），异步merge逻辑保持一致

占用内存少，效率较低

聚合视图 (hash aggregation) ，group by primary key创建主键去重视图

内存占用大，OOM风险

select argmax(order_status, gmt_update_time), ...
from order_info
where gmt_order_create > '2020-08-01
00:00:00'
group by seller_nick, gmt_order_create, oid;

select * from order_info final
where gmt_order_create > '2020-08-01
00:00:00');

ClickHouse 表结构设计
建表优化

三要素：

• 数据分区粒度

• 排序键 & 主键序列

• 索引粒度（index_granularity）

原则：

• 排序键和分区键减少重合

• 主键序列适配业务场景

• 索引粒度适配主键序列

多维度查询分析：

• 按seller_nick筛选

• 按下单时间筛选

Bad Case：
单个数据分区下的，每个seller记录太少，一个粗糙索
引区间覆盖多个seller，下单时间值域不能确定

解决方案：
1）调小index_granularity，调大数据分区粒度

2）调小数据分区粒度，主键索引去掉下单时间

ClickHouse 查询优化

• MPP计算模型

• 关联查询优化

ClickHouse 查询优化
分布式MPP计算模型

CREATE TABLE customer ON CLUSTER default
(

C_CUSTKEY UInt32,
C_NAME String,
C_ADDRESS String,
C_CITY LowCardinality(String),
C_NATION LowCardinality(String),
C_REGION LowCardinality(String),
C_PHONE String,
C_MKTSEGMENT LowCardinality(String)

)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);

CREATE TABLE customer_dist ON CLUSTER default as customer
ENGINE = Distributed(default, default, customer, C_CUSTKEY);

CREATE TABLE lineorder ON CLUSTER default
(

LO_ORDERKEY UInt32,
LO_LINENUMBER UInt8,
LO_CUSTKEY UInt32,
LO_PARTKEY UInt32,
LO_SUPPKEY UInt32,
LO_ORDERDATE Date,
...

)
ENGINE = MergeTree
PARTITION BY toYear(LO_ORDERDATE)
ORDER BY (LO_ORDERDATE, LO_ORDERKEY);

CREATE TABLE lineorder_dist ON CLUSTER default as lineorder
ENGINE = Distributed(default, default, lineorder, LO_ORDERKEY);

• 存储表：lineorder、customer

• Proxy 表（查询、写入分发）：lineorder_dist、customer_dist

ClickHouse 查询优化
分布式MPP计算模型

lineorder

customer

lineorder_dist

customer_dist

StorageStorage

Proxy

Proxy

Node 1

StorageStorage

Proxy

Proxy

Node 2

select * from lineorder as l join customer as c on l.LO_CUSTKEY = c.C_CUSTKEY;

Hash Join

StorageStorage

Proxy

Proxy

Node 1

StorageStorage

Proxy

Proxy

Node 2

select * from lineorder as l join customer_dist as c on l.LO_CUSTKEY = c.C_CUSTKEY;

Hash Join

select * from customer;

ClickHouse 查询优化
分布式MPP计算模型

lineorder

customer

lineorder_dist

customer_dist

StorageStorage

Proxy

Proxy

Node 1

StorageStorage

Proxy

Proxy

Node 2

原查询 select * from lineorder_dist as l join customer as c on l.LO_CUSTKEY = c.C_CUSTKEY;

子查询 select * from lineorder as l join customer as c on l.LO_CUSTKEY = c.C_CUSTKEY;

Hash Join Hash Join

ClickHouse 查询优化
分布式MPP计算模型

lineorder

customer

lineorder_dist

customer_dist

StorageStorage

Proxy

Proxy

Node 1

StorageStorage

Proxy

Proxy

Node 2

原查询 select * from lineorder_dist as l join customer_dist as c on l.LO_CUSTKEY = c.C_CUSTKEY;

子查询2 select * from customer;

Hash Join Hash Join

子查询1 select * from lineorder as l join customer_dist as c on l.LO_CUSTKEY = c.C_CUSTKEY;

ClickHouse 查询优化
分布式MPP计算模型

lineorder

customer

lineorder_dist

customer_dist

StorageStorage

Proxy

Proxy

Node 1

StorageStorage

Proxy

Proxy

Node 2

原查询 select * from lineorder_dist as l global join customer_dist as c on l.LO_CUSTKEY = c.C_CUSTKEY;

子查询2 select * from customer;

Hash Join

Hash Join

子查询1 select * from lineorder as l join c on l.LO_CUSTKEY = c.C_CUSTKEY;

Mem
Table

ClickHouse 查询优化
分布式Join 优化

Join 执行规则：

• 从最后一个Join递归改写子查询，每个子查询

只处理一个Join

• 左表是Proxy表时才可以分布式执行Join

• Join Order不调整

• Global Join构建内存临时表

Join 优化原则：

• set distributed_product_mode = allow

• 多表Join改写成嵌套子查询

• 分区对齐，使用local Join

• 字典表，取消Join 操作

Q&A

