
Python 高性能计算库——Numba

摘要：

在计算能力为王的时代，具有高性能计算的库正在被大家应用于深度学习。例如：Numpy，

本文介绍了一个新的 Python 库——Numba， 在计算性能方面，它比 Numpy 表现的更好。

最近我在观看一些SciPy2017会议的视频，偶然发现关于Numba的来历--讲述了那些C++

横行者因为对 Gil Forsyth 和 Lorena Barba 失去信心而编写的一个库。虽然本人觉得

这个想法有些不妥，但我真的很喜欢他们所教授的知识。因为我发现自己正在受益于这

个库，并且从 Python 代码中获得了令人难以置信的表现，所以我觉得应该要写一些关

于 Numba 库的介绍性文章，也可能会在将来添加一系列小的更多类似教程的文章。

1.那么到底什么是 Numba？

Numba 是一个库，可以在运行时将 Python 代码编译为本地机器指令，而不会强制大幅度

的改变普通的 Python 代码（稍后再做说明）。翻译/魔术是使用 LLVM 编译器完成的，

该编译器是相当活跃的开源社区开发的。

Numba 最初是由 Continuum Analytics 内部开发，此公司也开发了著名的 Anaconda，但

现在它是开源的。核心应用领域是 math-heavy（密集数学？重型数学？）和

array-oriented（面向数组）的功能，它们在本地 Python 中相当缓慢。想象一下，在

Python 中编写一个模块，必须一个元素接着一个元素的循环遍历一个非常大的数组来执

行一些计算，而不能使用向量操作来重写。这是很不好的主意，是吧？所以“通常”这

类库函数是用 C / C ++或 Fortran 编写的，编译后，在 Python 中作为外部库使用。Numba

这类函数也可以写在普通的 Python 模块中，而且运行速度的差别正在逐渐缩小。

2.怎么才能 get 到 Numba 呢？

安装 Numba 的推荐方法是使用 conda 包管理

conda install numba

https://twitter.com/gilforsyth
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://en.wikipedia.org/wiki/LLVM
https://www.anaconda.com/

你也可以用 pip来安装 Numba，但是最新版本的发布才一天之久。但是，只要你能够使

用 conda，我会推荐使用它，因为它能够为你安装例如 CUDA 工具包，也许你想让你的

Python 代码 GPU 就绪（当然，这也是有可能的！）。

3.如何使用 Numba 呢？

使用它的要求不多。基本上，你写一个自己的“普通”的 Python 函数，然后给函数定

义添加一个装饰（如果你不是很熟悉装饰器，读一下关于 this 或 that）。你可以使用

不同类型的装饰器，但@jit 可能是刚开始的选择之一。其他装饰器可用于例如创建

numpy 通用功能@vectorize 或编写将在 CUDA GPU 上执行的代码@cuda。我不会在这篇

文章中介绍这些装饰。现在，让我们来看看基本的步骤。他们提供的代码示例是 2d 数

组的求和函数，以下是代码：

from numba import jit

from numpy import arange

jit decorator tells Numba to compile this function.# The argument types will be inferred

by Numba when function is called.

@jit

def sum2d(arr):

M, N = arr.shape

result = 0.0

for i in range(M):

for j in range(N):

result += arr[i,j]

return result

a = arange(9).reshape(3,3)

print(sum2d(a))

正如你所看到的，Numba 装饰器被添加到函数定义中，并且 voilá这个函数将运行得很

快。但是，这里带来了很有趣的注意事项：你只能使用 Numpy 和标准库里的函数来加快

Numba 速度，甚至不需要开了他们所有的特性。他们有一个相当好的文档（参考资料），

http://numba.pydata.org/numba-doc/0.35.0/index.html

列出了所有支持的内容。见 here 是所支持 Python 的功能和 here 是所支持的 Numpy 功

能。现在支持的功能可能还不太多，但我想告诉你，这就够了！请记住，Numba 不是要

加快你的数据库查询或如何强化图像处理功能。他们的目标是加快面向数组的计算，我

们可以使用它们库中提供的函数来解决。

4.示例和速度比较

熟练的 Python 用户永远不会使用上述代码实现 sum 功能，而是调用 numpy.sum。相反，

我将向你介绍另外一个例子，为了更好地理解这个例子，也许刚开始是一个小的背景故

事（如果你对这个例子的背景不感兴趣，你可以直接跳过然后直接去看代码）。

从我所学习的知识来看，我会认为自己是一个水文学家，我做的很多的一件事是模拟降

雨径流过程。简单点来说：通过时间序列数据，例如雨量和空气温度，然后尝试创建模

型来判断一条河流的水流量有多少。这在外行看来是非常复杂。但，对于我们来说，很

简单。我们通常使用的模块迭代输入数组，并且对于每个时间步长，我们会更新一些模

块内部的状态（例如，模拟土壤水分，积雪或拦截水中的树木）。在每个时间段结束时，

计算水流量，这不仅取决于在同一时间步长下的雨，而且也取决于在内部模型状态（或

储存）。在这种情况下，我们就需要考虑以前时间步长的状态和输出。那么你可能会看

到这个问题：我们必须一段时间接一段时间的计算整个流程，而对于解决这种问题

Python 本来就是很慢的！这就是为什么大多数模块都是在 Fortran 或 C/C ++中实现的。

如前所述：Python 在对于这种面向数组的计算来说是慢的。但是 Numba 允许我们在

Python 中做同样的事情，而且没有太多的性能损失。我认为至少对于模型的理解和发展，

这可能会很方便。（所以我最近创建了一个名为“RRMPG ”的项目——降雨径流建模游

乐场）。

Okay，现在我们来看看我们 get 到了什么。我们将使用最简单的模块之一，由 MB Fiering

在1967年出于教育目的开发的ABC模型，并将Python代码的速度与Numba优化后Python

代码和 Fortran 实现进行比较。请注意这个模型不是我们在现实中使用的（正如名称所

示），但是我认为这可能是一个不错的想法来举例。

ABC 模块是一个三个参数模块（a，b，c，习惯性命名），它只接收下雨量为输入，只有

一个存储。土壤水分蒸发蒸腾损失总量（参数 b），另一部分通过土壤渗透到地下水储

https://kratzert.github.io/2017/09/12/introduction-to-the-numba-library.html
http://rrmpg.readthedocs.io/en/latest/index.html
http://rrmpg.readthedocs.io/en/latest/index.html

存（参数 a），最后一个参数 c代表地下水总量，离开地下变成河流。Python 中的代码，

使用 Numpy 数组可能会像如下所示：

import numpy as np

def abc_model_py(a, b, c, rain):

initialize array for the stream discharge of each time step

outflow = np.zeros((rain.size), dtype=np.float64)

placeholder, in which we save the storage content of the previous and

current timestep

state_in = 0

state_out = 0

for i in range(rain.size):

Update the storage

state_out = (1 - c) * state_in + a * rain[i]

Calculate the stream discharge

outflow[i] = (1 - a - b) * rain[i] + c * state_out

state_in = state_out

return outflow

接下来我们使用 Numba 来实现相同的功能。

@jit

def abc_model_numba(a, b, c, rain):

outflow = np.zeros((rain.size), dtype=np.float64)

state_in = 0

state_out = 0

for i in range(rain.size):

state_out = (1 - c) * state_in + a * rain[i]

outflow[i] = (1 - a - b) * rain[i] + c * state_out

state_in = state_out

return outflow

我用随机数字作为输入来运行这些模块，这只是为了比较计算时间，而且也比较了针对

fortran 实现的时间（详见 here）。我们来看看数字：

py_time = %timeit -r 5 -n 10 -o abc_model_py(0.2, 0.6, 0.1, rain)

>> 6.75 s ± 11.6 ms per loop (mean ± std. dev. of 5 runs, 10 loops each)

Measure the execution time of the Numba implementation

numba_time = %timeit -r 5 -n 10 -o abc_model_numba(0.2, 0.6, 0.1, rain)

>> 30.6 ms ± 498 µs per loop (mean ± std. dev. of 5 runs, 10 loops each)

Measure the execution time of the Fortran implementation

fortran_time = %timeit -r 5 -n 10 -o abc_model_fortran(0.2, 0.6, 0.1, rain)

>> 31.9 ms ± 757 µs per loop (mean ± std. dev. of 5 runs, 10 loops each)

Compare the pure Python vs Numba optimized time

py_time.best / numba_time.best

>> 222.1521754580626

Compare the time of the fastes numba and fortran run

numba_time.best / fortran_time.best

>> 0.9627960721576471

通过添加一个装饰器，我们的计算速度比纯 Python 代码快 222 倍，甚至比 Fortran 也

快很多。在计算能力决定未来的时代，Numba 一定会被更多人接受。

以上就是我的介绍，希望有人现在有动力去看看 Numba 库。我想在将来我会编写一系列

小的 Numba 文章/教程，并提供更多的技术信息，让更多的人使用 Numba 库。而本文仅

作为一个开始。

	4.示例和速度比较

