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LA RsEERs A

Stream API

JavasFiiFisE

\ RORELAG EHRSEE

FAEI EEAAPI

Hith#fiFit

BRI, Java8 FAFMEMI AR

o Lambda FiAT

o HEFEO

o HE5IBEMmERESIA

e Stream API

o EOMFINGEEFETHE
o FTEYIE]HHA AP

o HAthFTHME

Hrh, 5IRESRTZEEMRE Lambda RAXUAD Stream APl
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1.2 Java8 B R?

EEER
| KELD
B AHIStream AP
Javasfii= Lambdaisst
EFHT

EBALAEIZEETREOptional

=& skt Java8 (=2 W FETo

REER

ARBIEL (BGI0T #FHB0EE Lambda &)
SRAHY Stream AP

EFHT

o AR TIEFFE Optional



%% Lambda ®XR < 10

B —Z Lambda F"ixxt 5

2.1 42 Lambda Rix=?

Lambda RIATNE— T EBRE, FTATLUXFIER Lambda FiXT: Lambda @—EAI L%
B BEBMEIBRBGEIE—FH#HITER) . F Lambda RIALEBEHEMES. TE
MRS, #F B, #H Lambda RANEEBEE Java BB S FRIXBEIEF IR

2.2 BERANERE

TENBINEIER Lambda RIAXN 271, HIEREEEZAINL, Fld, HIEREZAIBAE
ELERFRD Integer FEEIBHRERI A/

Comparator<integer> com = new Comparator<integer>() {
@Override
public int compare(Integer o1, Integer 02) {

return Integer.compare(ol, 02);

£ LERAEH, HIVERERNERESEI T IR Integer ZERIBIRERIA/,
BT, HAIAI L ERERNERRGIEANSE, FBEIEMITERT, WA

TreeSet<Integer> treeSet = new TreeSet<>(com);

RN TR,
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@Test
public void test1(){
Comparator<integer> com = new Comparator<integer>() {
@Override
public int compare(Integer ol, Integer 02) {

return Integer.compare(ol, 02);

I8

TreeSet<Integer> treeSet = new TreeSet<>(com);

AT B, EEIMERAEES, LiF EEERRE FE—1THHE.

return Integer.compare(ol, 02);

HpPARARR EERE TR . BENTBE LEN—1TRE, HMNEIEERZRANEE
hPREEZHIH.

2.3 Lambda XX

NRMFEA Lambda RIXAXTERAIA D Integer FHEBIERILLES, FANZWAISLILIE?

Comparator<integer> com = (x, y) -> Integer.compare(x, y);

E2%, A Lambda ®AL, FHMNRAFEEB—ITREREEBESEIM D Integer LBEHER
EE#

AT T LUE Lambda FRIATE 3B E] TreeSet IS 559, W FFITo

TreeSet<Integer> treeSet = new TreeSet<>((x, y) -> Integer.compare(x, y));

EMRREZsLEER Lambda ZAN—1THRIRLEERE B2 NERE 21T RITIAE.



%% Lambda ®XR < 12

BIEX, AORERR: REAEIRBENSANLRLRA I ERRBENBERNNATESR
W FAEEEF S —METRIE ANE?

HEL, HBWNE: LEBMNRZEBZIZET —D5, #1K BIE - ERER—R
BBIF, KL MERERAREES Lambda FRATHF A N EMEDNE.

2.4 XtbE#M A EF Lambda RixA

a0, MAERXF—IEXR: REEHAFFRIFRAT 30 ¥HRITER.
B, BIFECNE— Employee REFRFERTHE .

@Data

@Builder

@ToString

@NoArgsConstructor

@AllArgsConstructor

public class Employee implements Serializable {
private static final long serialVersionUID = -9079722457749166858L;
private String name;
private Integer age;

private Double salary;

£ Employee &, IAIERFHE T R THER. FRMFHE.

B, BB EEZ PRI Lst &5, WM.

protected List<Employee> employees = Arrays.asList(
new Employee("5K=", 18, 9999.99),
new Employee("Z=PH", 38, 5555.55),
new Employee("+£H", 60, 6666.66),
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new Employee("#X7<", 16, 7T777.77),
new Employee("fH", 18, 3333.33)

1. BHEHRES

HNAEERAENRHESHNAARERNERATFT 30WRITER.

public List<Employee> filterEmployeesByAge(List<Employee> list){
List<Employee> employees = new ArrayList<>();
for(Employee e : list){
if(e.getAge() >= 30){
employees.add(e);

}
}
return employees;
}
ETE, JTWA—T EENAE.
@Test

public void test3(){
List<Employee> employeelist = filterEmployeesByAge(this.employees);
for (Employee e : employeelist){
System.out.println(e);

BT test3 77%, WHESIN AR,

Employee(name=2=P4, age=38, salary=5555.55)
Employee(name=FF, age=60, salary=6666.66)



%% Lambda ®XR < 14

BIERY, ERFRATHEST IONALER, EREMBLHEGHNAIAEEESRT,

a0, FREETEN: RREAQARFRATIIEKRTHESFT 5000 WRITER.

RS, FANA/ABREIBE—MRRIETIEATT %o

public List<Employee> filterEmployeesBySalary(List<Employee> list){
List<Employee> employees = new ArrayList<>();
for(Employee e : list){
if(e.getSalary() >= 5000){

employees.add(e);

}

return employees;

ST L filterEmployeesByAge() 7574 filterEmployeesBySalary 574/, FAT&IM, KIBHHA
EERZAEER, RE for BRI FHEGHIBTRE,

ORIEBIFAVFR—1FR, ERYAATPRFER/NTHESFT 20 IR TES, BRITEL
B—IEIEHET. BEXRERAENSEZERNATSERM!

XE, PAR—DREA: WTFXMERNGERFNLEARAZERE? BEE T NMEFRR: &
NRANTEHMIENR. K, BABNEHEERE—MEAEN, BEFREEHFNA. &Y
BYATVRIE? SRR HERN M| RITRIUAI A1 2= PSRBT S 45 H BV IRIT R AN
R RERAUEE ( ) —SCRFS]
RITRIVE L,

2. ERIITRIVELAED

A EAIGIHRTCR MM LB AR, ARUETTE, WFRIHTRIAFRENEF I


https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41
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BiE ORIV ——REEEERN 23 MGIHREEX) LT ! ) RKES,

BAEE X —MZ8E O MyPredicate, SHEEIRMEIEHITIR, FEMUKE true, F

RFEFMNERE falseo

public interface MyPredicate<T> {

/* *
* XIEBTFHT T TR T T
* FEAEEtrue, T EAINE/O]false
*/

boolean filter(T t);

ETRE, FAIGE MyPredicate #OBISLIZE FilterEmployeeByAge RIS EFM AT HESET
30MRTIEE.

public class FilterEmployeeByAge implements MyPredicate<Employee> {
@Override
public boolean filter(Employee employee) {
return employee.getAge() >= 30;

BIMNEX—TEIERTERNGE, EEENSHAMEBERINERES, ARNEE—1TR
1E XAy OSLAl, ERHRIEGIRBRFETRFMHRREITERRE,

T —
public List<Employee> filterEmployee(List<Employee> list, MyPredicate<Employee> myPredicate)
{
List<Employee> employees = new ArrayList<>();
for(Employee e : list){
if(myPredicate filter(e)){

employees.add(e);


https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41

%% Lambda &KX, < 16

}
}
return employees;
}
BTk, NS a AR a5,
@Test

public void test4(){
List<Employee> employeelList = this.filterEmployee(this.employees, new FilterEmployeeByAg
e());
for (Employee e : employeelist){
System.out.println(e);

1B17 test4() 7%, WHAVERIES W NFR.

Employee(name=2=[1, age=38, salary=5555.55)
Employee(name=FF, age=60, salary=6666.66)

BEIXE, RREBEHE—EAAFRARIRGIE?

=, XIERITRIBE], W FIRIHRIVRRER MM, —EBSR (atElle—
—REBEERAT 23 MR IHRIVEEX)L T ! ) RFE S,

BANSEREEFABFP IAARTHESF T 5000 WRATER, I, RMNRFE2E—
FilterEmployeeBySalary ZES2I MyPredicate #0, 0 NF.

public class FilterEmployeeBySalary implements MyPredicate<Employee>{
@Override
public boolean filter(Employee employee) {
return employee.getSalary() >= 5000;


https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41
https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41
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BEE, stAlERE WA AET, ElitAER4L9E A filterEmployee(List<Employee> li
st, MyPredicate<Employee> myPredicate) /57,

@Test
public void test5(){
List<Employee> employeeList = this.filterEmployee(this.employees, new FilterEmployeeBySal

ary());
for (Employee e : employeelist){
System.out.println(e);

BT testd 5%, MERERE R TR,

Employee(name=3k=, age=18, salary=9999.99

( )
Employee(name=25M, age=38, salary=5555.55)
Employee(name=FEf, age=60, salary=6666.66)

( )

Employee(name=&7, age=16, salary=7777.77

BIUES, AR AEHTRNE, TOTRRATEENERNEENL, KIMNRAFE
872 MyPredicate # OB LIMA R LI A ARENTIRZLE, AREMNRAEFRTEA filterEmployee(Li
st<Employee> list, MyPredicate<Employee> myPredicate) 575 5 TE &I EMMNE NEIE],

XE, PAR—DREA: EEAEABRERNIHEEMIIHRINE? NREM, FEE
AERIIHRIUCRIU I B 2 HIREIE? MBS R BZE — T RIRERMSITRIZFTA? XK
BEnHESR!

ERIRITRIAAABBERFRIHTT . S8REX —IIRRENE R, H(IHBRROIE—

Mgl !



%% Lambda ®XR < 18

3. ERRERE

BEAERANIMLERNZREBMUIRNBERINEE, ETXR, HIERERNEILRKLN
WRIEBTE, ARELRBEHRATRESFT 30NRTER.

@Test
public void test6(){
List<Employee> employeelist = this.filterEmployee(this.employees, new MyPredicate<Emplo
yee>() {
@Override
public boolean filter(Employee employee) {
return employee.getAge() >= 30;

b;
for (Employee e : employeelist){

System.out.println(e);

IB17 test6 737%, HMHIITERER.

Employee(name=2=P4, age=38, salary=5555.55)
Employee(name=EF, age=60, salary=6666.66)

BRINERIAARTHESFT 5000 WRATER, WA

@Test
public void test7(){
List<Employee> employeelist = this.filterEmployee(this.employees, new MyPredicate<Emplo
yee>() {
@Override
public boolean filter(Employee employee) {
return employee.getSalary() >= 5000;
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b;
for (Employee e : employeelist){
System.out.println(e);

BT test? 757%, MBI FERER.

Employee(name=3Kk=, age=18, salary=9999.99)
Employee(name=28M, age=38, salary=5555.55)
Employee(name=EF, age=60, salary=6666.66)
Employee(name=i#X7x, age=16, salary=7777.77)

EZANEREERLEMBLHEGN A EERBE, HEBERIKIHEMARNEN, kel
B—PISRLILLEMMNE R T ERWNERER, BEAEE—FREET

BZ, FREZRNILLEN M AE, HFEARMREWMILIRZ! |
BEHZEEME RN A NIE?
4, E3L3%: Lambda Rix

EfEA Lambda A, BRITEZEVERZ ISR filterEmployee(List<Employee> list, My

Predicate<Employee> myPredicate) /5 7%.
ARE, RERATHEFT I0NRIER.

@Test
public void test8(){
filterEmployee(this.employees, (e) -> e.getAge() >= 30).forEach(System.out::println);
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E3%, A Lambda ®ANRFE TR T R ITE BRI B Ho
IB17 test8 757, LI FRVERER.

Employee(name=28M, age=38, salary=5555.55)
Employee(name=FF, age=60, salary=6666.66)

BREMEA Lambda RATKIAB T A AT HEF T 5000 R TER, WHFAT

@Test
public void test9(){
filterEmployee(this.employees, (e) -> e.getSalary() >= 5000).forEach(System.out::println);

&3, £ Lambda FAL, XE—1TREMBET! !
BT testS 757%, LI FRVERER.

Employee(name=5k=, age=18, salary=9999.99)
Employee(name=28M, age=38, salary=5555.55)
Employee(name=EF, age=60, salary=6666.66)
Employee(name=#X7, age=16, salary=7777.77)

H9h, R Lambda XA, AFBLHBELIENES, HMIREEBLRAMESFIIEE
EMNBYTTER, AaHERER.

5. E3L3%: Stream API

£/ Lambda FRATNEES Stream API, SBALHMBENMES, BRI T EERIE T
EHEHARER.
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Ban, N REBH— employees &£ &, FHiEA Lambda RIAF LKA T HEATFHEEFT 5
000 IR TE R,

@Test
public void test10(){
employees.stream() filter((e) -> e.getSalary() >= 5000).forEach(System.out::println);

=i, RGH—1ES, f£/A Lambda RiATVH Stream API, —{7ASRiaES IR HARER
TEH#HITHEL.

IB17 testl0 757, HWIHIITRILERER,

Employee(name=5k=, age=18, salary=9999.99
Employee(name=Z[H, age=38, salary=5555.55
name=F 7, age=60, salary=6666.66

Employee(name=&X7x, age=16, salary=7777.77

( )
( )
Employee( )
( )

NRFANNEZREETR PR TAVERR? HLBRER, 0.

@Test
public void test11(){
employees.stream() filter((e) -> e.getSalary() >= 5000).limit(2).forEach(System.out::println);

BEILVEE, FA AR TRAIT limit(2) KRG SRR R ITER. 1517 testll 757%, il
THERER

Employee(name=3Kk=, age=18, salary=9999.99)
Employee(name=2=P4, age=38, salary=5555.55)

£ Lambda FETUH Stream APl BRJLIREEENFERE R, BIMIREN LA R TEHEFT 5
000 IR T#E#o
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@Test
public void test12(){
employees.stream() filter((e) -> e.getSalary() >= 5000).map(Employee::getName).forEach(Syste

m.out::println);

}

FILAEER], A map dIEE T TAARTEHEFT 5000 R THHE, &17 testl2 7%, Wil
THERER

K=
2y

(29

EAERESE? &5, AHXPEANKITRN: REBRIN

2.5 ERZEF| Lambda RiXz
B VSR BB ME S LM TRAE Lambda FARIE?
KB, BT LSRR R BRI A M E S R EE ) Lambda FiAR
o ERAMNILLE| Lambda KA
ERES R,

Runnable r = new Runnable(){
@Override
public void run(){
System.out.printIn("Hello Lambda");
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#1479 Lambda AU R0

Runnable r = () > System.out.printin("Hello Lambda");

o ERNHEIENSELEE Lambda RIAEASHETE
ERERNERLIF NS HRU TP,

TreeSet<Integer> ts = new TreeSet<>(new Comparator<integer>(){
@Override
public int compare(Integer ol, Integer 02){

return Integer.compare(ol, 02);

£ Lambda RAIFASEI TP,

TreeSet<Integer> ts = new TreeSet<>(

(01, 02) -> Integer.compare(ol, 02);

MEMLEE, Lambda RAXEZLLEMPNE LR ENZ.

2.6 Lambda RiAXAVIEE

Lambda FRIANTE Java iIBSH5INT  “>7 #BERT, 7 BERHEFFN Lambda RiAT
MIRER S E T LKIRIER, ©F Lambda XA D AFES :

o EMIESI4EET Lambda REXNFENFRESE
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Lambda RIAX AL EEX#EORMEI, Lambda RAXHNSESIRAR EX N EROF G E
GNES S I

o BMIERSHEET Lambda {&, Bl Lambda RiAXNEHRITHITHAEE,

Lambda &7 L2 O 75 AR AL IAITIAE.

FEANTETLUE Lambda RIATANE E 2L W0,

1. BEBR—: &, TR[EOME, Lambda ARE—LKIEG

Runnable r = () -> System.out.println("Hello Lambda");
BB TR
@Test

public void test1(){
Runnable r = () -> System.out.println("Hello Lambda");

new Thread(r).start();

2. IBEBINZ: Lambda REAFE—1MEH, HEHTROIE

Consumer<String> func = (s) -> System.out.println(s);

BB TP

@Test
public void test2(){
Consumer<String> consumer = (x) -> System.out.println(x);

consumer.accept("Hello Lambda");
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3. EEBI=". Lambda RSFE—SHUE, SHEVVESEILIEER

Consumer<String> func = s -> System.out.println(s);

BRBIE0 N FrRe

@Test
public void test3(){
Consumer<String> consumer = x -> System.out.println(x);

consumer.accept("Hello Lambda");

4. EEEBIM: Lambda RER NS, HEBREE

BinaryOperator<integer> bo = (a, b) -> {
System.out.printin("E =z O");

return a + b;

BB TR

@Test
public void test4(){
Comparator<integer> comparator = (x, y) -> {
System.out.printin(" R =",

return Integer.compare(x, y);

5. BZEBILE: & Lambda MRE—FEDN, return FIXIES ] LIEE

BinaryOperator<integer> bo = (a, b) > a + b;
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BRBIE0 N FrRe

@Test
public void test5(){

Comparator<integer> comparator = (x, y) -> Integer.compare(x, y);

—

6. IEAEEI/N: Lambda RIANHISHIIRHIIKIBERBAILUERAT, EH JVM
IRIFERAETSET £ TFOCERTHEIERE, XpE KRBT

BinaryOperator<integer> bo = (Integer a, Integer b) > {
return a + b;

—

ZR/T:

BinaryOperator<integer> bo = (a, b) -> {

return a + b;

& Lambda AN PRSI LB E B RRIF S HERTS LAY Lambda AP ERIEERE,
RFEERARURE, XERN javac RIBEFN LETX, EEa#H 7S8R, Lambda &
ERBYRBERI T LI XIR, SHREIRSHETHR, XEUEFMBRY “REERT

Lambda RANFEZRMIEONZR:, PILL FATELERRIRH ARRRIE D,

SEE—MhRFENEDO, THREIEO,
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FILUEIE Lambda FRIATURAEZIZOMNN SR, (B Lambda RAXME—IZNRE, F
NZFEEBEBMMEORNMR S5 E EHITER) S

FILEEEREZEO HER @Functionalinterface J3#E, XM UK BEEEEE—NRE
NEO, [FRY javadoc W=BE—%AEE, WAXMEOR— 1 EREHENZEL,

HMAI U BE X REEL, HER Lambda RATKSLIMABNAYTHEE,

BN, EAREFEOMN Lambda RIANKINXT FRFEAVIETEE,

B, FTEX—PREIEO MyFunc, #RPI7R.

@Functionallnterface
public interface MyFunc <T> {
public T getValue(T t);

BTIR, HNEX—MEEFRTETGE, HRSHN MyFunc EOLAIFF LRI FRTE.

public String handlerString(MyFunc<String= myFunc, String str){
return myFunc.getValue(str);

B%R, BT BEEXRBIEOFITNE, R IEERREIEOZHN Lambda
KA, AERFHRRUNKRE,

@Test

public void test6(){
String str = handlerString((s) -> s.toUpperCase(), "binghe");
System.out.println(str);
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BT test6 1534, (BEEIAREBM AR,

BINGHE

AR IR F T ENE 8, W TR

@Test

public void test7(){
String str = handlerString((s) -> s.substring(0,4), "binghe");
System.out.println(str);

BT test? J5%, 1BHMERIERI TS,

bing

A LEER], 1A LUEE handlerString(MyFunc<String> myFunc, String str) 5E%E&
Lambda FAT X F T B HITIERIRIE

AR (FASHEE Lambda RiX: AT Lambda RAXIMEASEHEE, UK Lambd
a REAXMNSHERBUNZESZ Lambda REXARBHIRHIZOREE ,

YR Collections.sort()757%, 1B EFIHFF LIRS Employee (FttbiREwe, FiBRIZER
tbER) , fFM Lambda RAIEASEUE R,
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D

m

X8, FAELeZ—" Employee 2K, AT HEFK, FI7E Employee KREX THE. F
UQEFDIJ\—ﬁ\?EX; yD—FFﬁTo

@Data

@Builder

@ToString

@NoArgsConstructor

@AllArgsConstructor

public class Employee implements Serializable {

private static final long serialVersionUID = -9079722457749166858L;
private String name;

private Integer age;

private Double salary;

BTk, HAE Testtambda EFREX—PHREE employees, employees TEE—

&, 7T Employee B9—"1FIFK, WA

protected List<Employee> employees = Arrays.asList(

new Employee("sK=", 18, 9999.99),
new Employee("Z=PY", 38, 5555.55),
FH", 60, 6666.66),
new Employee("#7X", 8, 7T777.77),

new Employee("Ht", 58, 3333.33)

new Employee

(
("
("
("

RIHABYER TIFTE 7, TR, MBI UKIMEFILSZET

N List



%% Lambda ®XR < 30

@Test
public void testl(){
Collections.sort(employees, (el, e2) > {
if(el.getAge() == e2.getAge()){
return el.getName().compareTo(e2.getName());

}
return Integer.compare(el.getAge(), e2.getAge());

b;

employees.stream().forEach(System.out::println);

ERRELLRE S, HMAERRMEIET . 1T17 testl 7%, [HEBERERW TR,

Employee(name=#X7<, age=8, salary=7777.77)
Employee(name=3k=, age=18, salary=9999.99

(
( )
Employee(name=28M, age=38, salary=5555.55)
Employee(name=H+t, age=58, salary=3333.33)

( )

Employee(name=Ff, age=60, salary=6666.66

REE TR IER, REEER return Integer.compare(el.getAge(), e2.getAge());
B K-return Integer.compare(el.getAge(), e2.getAge());BI0], 20 TFFfzo

@Test
public void test1(){
Collections.sort(employees, (el, e2) > {
if(el.getAge() == e2.getAge()){
return el.getName().compareTo(e2.getName());
}
return -Integer.compare(el.getAge(), e2.getAge());

b;

employees.stream().forEach(System.out::println);

BRIETT testl 737%, BHAERIEBMW TR,
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Employee(name=Ff, age=60, salary=6666.66

)
Employee(name=H+, age=58, salary=3333.33)
)
)

(

(

Employee(name=2=1, age=38, salary=5555.55

Employee(name=3Kk=, age=18, salary=9999.99
(

Employee(name=#X7<, age=8, salary=7777.77)

ZRFTERNER,

1.ERRREEO, BOPERIMKR T E public String getValue(String str);

2.F5BAZE TestLambda, EKHREEHEERBEOAEASE, B—PFRBEBRAKRE, HIENH
EBNIRENE,

3ER—IFRIEME 2 MIE 4 MRIMUEFHITEENTFH,

)

B, SIBE—MERET(EO MyFunction, & MyFunction #0_EfI EFf#@Functionalinterfac
e MMREAZ— MR IED. WTHAT.

@Functionallnterface
public interface MyFunction {
public String getValue(String str);

7E TestLambda FEAFEA stringHandler 757%, S8 O3 AFFMIENZF RSB MR ZEONE
B, FHEFIZEMEEBARMNEONS ERVIEBFRFR, WTFT.
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public String stringHandler(String str, MyFunction myFunction){
return myFunction.getValue(str);

BETR, BNEME—DFRBIRMARNGRIEE, T TR

@Test

public void test2(){
String value = stringHandler("binghe", (s) -> s.toUpperCase());
System.out.println(value);

JE1T test2 7k, 1SRRI S,

BINGHE

FABERKLINF TR BENBVRIE, 0 FFRe

@Test

public void test3(){
String value = stringHandler("binghe", (s) -> s.substring(1, 3));
System.out.println(value);

AR FRPZRIREE 2 MIE 41N FSIUEHITEEF R, FRBITIREM 0 FFI&8Y, Fr
LUX BE BN F fT R ERAME substring(1, 3), AR substring(2, 4), XtBERZ/IMAFES
ICEYEEIR,

F=5h, A LR Lambda RERFR , IR FAHENESTLRE, HiROIMEEHHFR S,

BT test3 7%, ARWNFIR.
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LAEBR—IMERMNZERESRIED, ZRERN<T, R>, B, TENSHEE, RIENER
BRYEE,

2EOPEANRAR T %o

3.7f TestLambda ARG E. EAROFASEITERD long Z2EEAEYH,

4. BRIZF long BB HAIFEIR,

)

B, FAHRBERENRHINED MyFunc, 0P,

@Functionallnterface

public interface MyFunc<T, R> {

R getValue(T t1, T t2);

TR, HNE TestLambda EAREIE—MIMEFRA long BEIER A, WTHFIT.

public void operate(Long numl, Long num2, MyFunc<Long, Long> myFunc){

System.out.println(myFunc.getValue(numl, num2));

FATRILMER TE AR long S EHBIH,
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@Test
public void test4(){
operate(100L, 200L, (x, y) > x + y);

1T1T testd &, SRR

300

LA long BLEIRBIFRAR, BIREE,

@Test
public void test5(){
operate(100L, 200L, (x, y) > x ™ vy);

1&1T tests A%, SR TFIT.

20000

BIXE, FEERZIMAFEEX Lambda RANE TERBRNIERE, RBZZES), 5
REBE LTI ESE Lambda FRIAFAIFERE.
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F=-F KE

IO

RO

T

o

XE, HEAFBITZIURERWAT Javad RIZHAYRERIEO,.

3.1 FRIZICEK

B0

a5

B, FBREORZORBRINED, WA,

B iEO F

fERAS

Consumer ;5 %%

B0

RN T I RN BERE, EOENXBIGE!

void accept(T t)

Supplier {457

®O

IREIEAV TR, BHOEXBGE:
T get()

Function<T, R>

RO

SEEEIN T BT RN FAIRIE, 7 R EEADRE]

R, BOENBEAE: R apply(T 1)

Predicate #=
AN

HREREN TN RES BELIRFM, HiR[E]
SRR, BOENXBIGE:

boolean test(T t)

boolean Z£

3.2 HftheRzEkd

R T RIZC

i) REEE
void
T
R
boolean
025

\REUECSN, Java8 IR i T —EEMAYRE IO,
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¥ iEO SEHHER | REOIFEB ERAR
BiFunction(T, U, R) T, U R XFRER T,U OB FBIR(E, 1REIR £
BER, BOEXWAEE:
R apply(T t, U u)
UnaryOperator T T BN THNRHIT— TEE, HR
(Function ¥ M) B TEREW £R, G87H%ER
T apply(T t)
BinaryOperator TT T RN THXNRIETZ TEE, R
(BiFunction F#M) B TEREW £R, G8HER
T apply(T t1, T t2)
BiConsumer<T, U> T, U void WEEAN T, U SHNAE 15, B887%
79 void accept(T t, U u)
TolntFunction T int T8 int [ERYEREL
TolongFunction T long T8 long BRIRER
ToDoubleFunction T double 115 double ERIERER
IntFunction int R ZEOY int KEBYRREL
LongFunction long R S0 long FLERIREL
DoubleFunction double R 2508 double ZEAIRIERIER




37 > BTE mEEORE
3.3 EAXZOEK RO
3.3.1 Consumer &0

1. #OR8A

Consumer EOZHEZEMZEO, LiREME, Java8 #%F Consumer BIE X FFATo

@Functionallnterface

public interface Consumer<T> {
void accept(T t);
default Consumer<T> andThen(Consumer<? super T> after) {

Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };

2. (ERTH

public void handlerConsumer(Integer number, Consumer<integer> consumer){

consumer.accept(number);

@Test
public void testl1(){
this.handlerConsumer(10000, (i) -> System.out.printin(i));
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3.3.2 Supplier &0

1. #&O5EA

Supplier #EORMAREO, HiREE, Java8 H13F Supplier #OBIE X W N0

@Functionallnterface
public interface Supplier<T> {
T get();

2. fERTH

public List<Integer> getNumberList(int num, Supplier<integer> supplier){
List<Integer> list = new ArrayList<>();
for(int i = 0; i < num; i++){

list.add(supplier.get())

}

return list;
}
@Test

public void test2(){
List<Integer> numberList = this.getNumberList(10, () -> new Random().nextInt(100));

numberlList.stream().forEach(System.out::println);

3.3.3 Function 0

1. #&O5EA

Function EO2X#HEZEO, AIR[ENE, Java8 Xt Function ZEOBE X W N
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@Functionallnterface

public interface Function<T, R> {

R apply(T t);

default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));

default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));

static <T> Function<T, T> identity() {

return t > t;

2. R

public String handlerString(String str, Function<String, String> func){
return func.apply(str);

@Test

public void test3(){
String str = this.handlerString("binghe", (s) -> s.toUpperCase());
System.out.println(str);
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3.3.4 Predicate #0O

1. #&O5EA

Predicate #OZM= 8420, REMEZEEN boolean, Java8 Xt Predicate #HEOME XM
FlT7Tco

@Functionallnterface

public interface Predicate<T> {
boolean test(T t);

default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) > test(t) && other.test(t);

default Predicate<T> negate() {
return (t) > ltest(t);

default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);

static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
7 Objects::isNull
. object -> targetRef.equals(object);
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2. fERTH

public List<String> filterString(List<String> list, Predicate<String> predicate){
List<String> strList = new ArrayList<>();
for(String str : list){
if(predicate.test(str)){

strlist.add(str);
}
}
return strList;
}
@Test

public void test4(){
List<String> list = Arrays.asList("Hello", "Lambda", "binghe", "lyz", "World");
List<String> strList = this.filterString(list, (s) -> s.length() >= 5);
strList.stream().forEach(System.out::println);

AR REHNFST Java8 PR ORBNIZONAZL, HREAEORNEMRAEN
fefERT!
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$IMNE Java7 5 Java8 By HashMap———o

o JDK7 HashMap oA+t ®R (RETHMIEN, RHTRAMINEIHERK)

o JDK8 HashMap M NEAB+HER+IEN (RETRMEN, SRKHTRANEERKE,
8 HashMap R BEATFT 64, HEEMHERNKXNNKRTEFT 8, BRI IVLEN
CEE: dEMEZXMI—H) )

4.1 JDK8 HashMap EHtF

NRMIERT HashMap PAEMHNEN TRSBTRERFN, FHEEHEGFEHFNTRN

HashCode 3, REBR HFITEMEl (HashMap 2KE+HE17TEE HashMap VU E) HAIE
BlH],
4.2 w5k

o filter—##U Lambda , MARHFHIFRREL TR,
o limit—&lTR, EETEFTBILTELRE,
. skip(n) — BbdnER, RE—METHE n DIRERER. BERFTEAE n 1, NERE

— T 5 limit(n) B4k

o distinct——7ikt, WBIMPTAER TR hashCode() A equals() EFREETER

4.3

a1

. map——]%tlﬂl Lambda , RTRFEMAEMEATIRRES . BR—TPRBIEASE, %

SRNBEIS N TEL, FRERNE— TR,
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o flatMap——EW—PREBIENSE, BRFPNES MEERRE S — MR, AEIEREREER
— R

o sorted()—— BAHRE

e sorted(Comparator com)——EHIH=

o allMatch— 0B RSB ILEFAETR

e anyMatch— KB ZSE/PIEE—PTE
e noneMatch—10&E BT & B LENTE
o findFirst—REIE—NTE

e findAny——REIHEIRFANERTE

o count—IREIRFITTREIZ ML

e max—REIRAZRAE

o Min—IREIRF&R/IME

o reduce(T identity, BinaryOperator) / reduce(BinaryOperator) — AL RFTERE
HEEER, —MEo,

o collect——B ML N EHAMA N FW— Collector B ORI, T4 Stream FITEM
CRMFE

AR RHITTRIREG, FEEBRER
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ATREBRTHHEE

e Optional.of(T t) : 8JE— Optional 32|

o Optional.empty() : BIE—"N=H Optional 324

o Optional.ofNullable(T t):#& t &2 null,gE Optional S2fI, TN EEZSLHA)

e isPresent() : MRS EEE

e OrElse(T t) : WRIFBNREEE, R[EINZE, SNR[E]t

o orElseGet(Supplier s) MRBFBWREEE, REZE, TUHRE s KEEIE

e map(Function f): WRBEBEXNHAIE, HREIEFA Optional, EN&REl Optional.emp

ty()
e flatMap(Function mapper):5 map M, EFRRE{EXLTE Optional
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FRE HASIASWIERE51A

5.1 F&5|B

HEL®4 Lambda (RRVIRME, BEBERIUNTTET, IUERFESIR! XEFEZIENRE:
SKIMR 772K, NS ESIRAENS SR FE—E

AT ARFESIBR? HASIAMBIRIER 7 BHERMNNRIALENE TR R,
BN TF=FERIER:

o WR:SLHIHE

o EKiFESHE

o ETfIAE

X8, TSI NG

Bign:

(x) -> System.out.println(x);

ZBTF.

System.out::println
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e :

BinaryOperator<Double> bo = (x, y) -> Math.pow(x, y);

ZBTF:

BinaryOperator<Double> bo = Math::pow;

a0

compare((x, y) -> x.equals(y), "binghe", "binghe")

ZBTF.

compare(String::equals, "binghe", "binghe")

AR UEESIRFENE—IESHRZRARNR, HEE - SREEESIRAENE-_18
(LS. ClassName::methodName .

VU0 TP

ClassName::new

SRHAEOMBES, BNSRBINEOTHERS. FJUBWE:ss| BIRELE X G,
SNSRI RBESEOTHMR A ENS IR —H!

e :
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Function<Integer, MyClass> fun = (n) -> new MyClass(n);
FRET:
Function<Integer, MyClass> fun = MyClass:new;
5.3 #X4A5|A
IV TFRo

type[]::new

Bign:

Function<Integer, Integer[]> fun = (n) -> new Integer[n];

ZBTF:

Function<Integer, Integer[]> fun = Integer[]::new;
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FE/5E Java8 Y Stream 5

6.1 +4 2 Stream?

Java8 HFERMARNEENNRT, £F—P2F Lambda RE; ZIP—1NIE Stream API(

java.util.stream.”)o

Stream 2 Java8 HFAMBEESNXBHRET, TROILIEEMBENESHITHIRIE, TR
TIEEERMEN. IR HBIBEFRIE, B Stream APl SESEIRHITIRIE, MEMTE
A SQL SATHEUIRES M, WA LIER Stream APl RHATIITIRIE. BMa2Z, Stream AP
RET —MEME S T EANAIEEENS R

MEMIERE, BTRFUIER (&6, M4EF) FEANTHERFY. “SEHNEME, &
HOZEHE! 7

FE: O Stream BOASEZMETE, @ Stream A2 TRENR, HR, M11SRE—NF
BLERMF Streams @ Stream BRIERILRHITH., XEWKREMISEFIEELERWEHES T,

6.2 Stream R{ERN=1NFE

e B Stream
—MNIER (0. &5 Bl , KB,

o IERIE
— D rREiR iR, NEIERREIEHRITAE,
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o ZRHIRIF(RIRIEIF)

— DRI, ITHIEIR(ERE, ArEER.

Java8 ##y Collection #ZOY B, H TR MNREURB A A

1. 3XEY Stream

e default Stream stream() : R[E—MFER

o default Stream parallelStream() : &[E—"NHITR

2. HERLABIE Stream

Java8 FHY Arrays RVERAS TS stream() BILURENERAAT:

o static Stream stream(T[] array): RE—"NR

BHTRN, BAIENNEARLRAEAE:

e public static IntStream stream(int[] array)

e public static LongStream stream(long[] array)

e public static DoubleStream stream(double[] array)

3. HESIER

FILUEAFHSTT A Stream.of(), BEERMESIE—1R. ERUERERERHRENSE,
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e public static Stream of(T--- values) : REI—7

4. HERHBIER

FRERER B2 P] A B2 PR Ao

B LUEARES A Stream.iterate() 1 Stream.generate(), SIEBIIRETR.

o AR

public static Stream iterate(final T seed, final UnaryOperator f)

o ERk

public static Stream generate(Supplier s)

Z N RIEHRIER] USRI — DK e, BRIEMKEL LR R R IEIR(E, BN FEIRIFR=
PATIERBORLIR! MER IHRIEN—RIE 2R, ¥y “tBlIEkE”

1. SR
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BiE 3
filter(Predicate p) EUW Lambda FiXT, MEIRRPHIRELTE
distinct() v, WmATAERRY hashCode()#l equals() AFREE M TR
limit(long maxSize) BUTR, CHITRTBIATEHE
skip(long n) Bhd TR, RE—MIETHE n MITENR. ERFITEAEN D,
NEREI—NET. 5 limit()A7EEAM

2. B

HiE

DU

map(Function f)

ER—T R

TERZH, ZRBESWNAEIS TR

£, FREBRF—ETRITER

mapToDouble(ToDoubleFunction f)

ER—T R

TERZH, ZREBESWNAEIS I TER

£, PE—"10F DoubleStream
mapTolnt(TolntFunction f) BR—TMRBIERNSE, ZRBSEKNARIS TR

L, FE—10MF IntStream

mapToLong(ToLongFunction f)

B — M ERER
£,

TERNZE, ZREB=HNABREG TR
=4 —"M0vF LongStream

flatMap(Function f)

B — R
ik

TERZE, BRPNEe MERIRES —
AEIEFTE MR — TR
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FRE Java8 HH9 Stream 52
3. #HF
Bk iR
sorted() FE—NTR, ETRERAINEHF
sorted(Comparator comp) FE—NEOR, HiztbiRs s HRE
6.5 Stream BRI IHIE(E
ZIFIRIER MTITKEAERE R, HERJUREMARAME, F: List.  Integer,

BEZEZE void o

1. E#xSLE
HiE 1230
allMatch(Predicate p) KwEEEILEFTA TR
anyMatch(Predicate p) wERLREPILE—ERE
noneMatch(Predicate p) RERT S BLEMBTR
findFirst() REIE—NTTE
findAny/() KRB EHFIRFANFIBTTR
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2. &it
BiE 3
count() R[ERAITTEN S
max(Comparator ¢) RENRPEAE
min(Comparator c) RENRAR/IVE
forEach(Consumer ¢ MERER (A Collection IZBOFERF AMHuER, FRAIMBER.
#HR, Stream APIERAERER——TBBEFHEMRIMRER)

5k DU

reduce(T iden, BinaryOperator b) AR RPTERELSSER, FE—NME, RET

reduce(BinaryOperator b) LR R TERELSSER, F8—1ME, KD
Optional
4. Wk
BiE ra

collect(Collector c) | ¥R ANEMA. FU— Collector #FHOAMSKIN, BT 4 Stream
R RBIC 2B A,

Collector #OFRFENTRILAE 7 ANEINIRHFITURERIRE(GNUREEE! List. Set. Map). B2
Collectors SEAEFIRM TIRZFEH A, AILUHEMEIEENUNERLG, BAAFEUNTE
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5iE RESEE §3::
toList List ERATTEWES List
toSet Set RPN TR EE! Set
toCollection Collection ERANTREWERIIENES
counting Long ERATENDE
summingint Integer XA RV E SR KA
averaginglint Double HERHBITE Integer BERFIYE

summarizingint

IntSummaryStatistics

WEE R Integer BIERVSEITHE. HIEITFIYE,

joining String EERTPE TS

maxBy Optional RIS AR EAE

minBy Optional RIELL IR s R &/ IME
reducing IR It == Vit M—NMERRMEENRIBEF S, FIA

BinaryOperator S nEZENES, ML
PRERME

collectingAndThen

B MR B 2

BRZ PGS, HRREERYE

groupingBy

Map<K, List>

RIEEBIEEXROAE, BENK, ERAV

partitioningBy

Map<Boolean, List>

1R3E true 8 false HTHKX

FESTREII T,

e tolist

List<User> users = list.stream().collect(Collectors.toList());
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o toSet

Set<User> users = list.stream().collect(Collectors.toSet());

e toCollection

Collection<User> users = list.stream().collect(Collectors.toCollection(ArrayList::new));

e counting

long count = list.stream().collect(Collectors.counting());

e summingint

int total = list.stream().collect(Collectors.summingInt(User::getAge));

e averagingint

double avg = list.stream().collect(Collectors.averagingInt(User::getAge));

e summarizinglint

IntSummaryStatistics iss = list.stream().collect(Collectors.summarizingInt(User::getAge));

e joining

String str = list.stream().map(User::getName).collect(Collectors.joining());

e maxBy

Optional<U> max = list.stream().collect(Collectors.maxBy(comparingInt(User::getAge)));

e MinBy

Optional<U> min = list.stream().collect(Collectors.minBy(comparingInt(User::getAge)));

e reducing

int total = list.stream().collect(Collectors.reducing(0, User:getAge, Integer:sum));

e collectingAndThen

int i = list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));
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e groupingBy
Map<U.Status, List<U>> map = list.stream().collect(Collectors.groupingBy(User::getStatus));

e partitioningBy

Map<Boolean, List<U>> map = list.stream().collect(Collectors.partitioningBy(User:getManage));

FITRAMBIE—TRNBE DS M EIER, HRTRNEIED 5L IES NIRRT,

Java 8 R FHITHIT T ML, BNTLUIRR SN EIRHITHITIRIE, Stream API BILIE
BAMEHIIED parallel() 5 sequential() TEFHITARSINE R 8 THIHR

1. EREA

Fork/Join 1E2R: BEBEXENERT, B—PKRES, #1770 fork) liETMNIMES (HrE
FEIHIRE) , BR—MBNMESEENSGRHEHT join LR, FE Hadoop ##Y MapReduce

HEZE,

2. Fork/Join fERSE4G&ZHHIXS!

XA “THEHE KRIU (work-stealing) : SRITHESHERILUSERD DR E/NEIE
SHIT, FRIMESIBIZAZNGIR, AEBMN—THELER YR — B ERE B 2RI

Heh,

R T —RRBILAZ ML I fork/join FERPIMBAIMENE P B ENESHLEL N L E—K
AR MR — MR EEPITIESH T RERRTERRIET BBAREIESA TFHERE.
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m7E fork/join MEZR LI INRE D F il B FFiFHIN—DFIOI RN TR M IS AR LI 1T A AL
BZF RN AE 2 T IEMBERTITRF R BRHRIT XM A TURLD T EENFFRELIRS
T |‘£E BEo

3. Fork/Join {EZ2 3251

THET Fordoin IBZRVRIEZ f5, FAIRLRFhE — MR Fork/Join 1EZR LI & A YR 51
ERF, DUEEBNREBIIFRIEME Fork/Join 1E28, WY, AEIET, B, KKEY FEHRELT
WHASF Fork/Join 1EZRBY58 K,

package io.binghe.concurrency.example.ags;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.Future;
import java.util.concurrent.RecursiveTask;
@SIf4]
public class ForkJoinTaskExample extends RecursiveTask<Integer> {
public static final int threshold = 2;
private int start;
private int end;
public ForkJoinTaskExample(int start, int end) {
this.start = start;
this.end = end;
}
@Override
protected Integer compute() {
int sum = 0;
SR IES EB) Bt B S
boolean canCompute = (end - start) <= threshold;
if (canCompute) {
for (int i = start; i <= end; i++) {

sum += i
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} else {
/) WIRAESAFEIE, BT REHTFESITE
int middle = (start + end) / 2;
ForkJoinTaskExample leftTask = new ForkJoinTaskExample(start, middle);
ForkJoinTaskExample rightTask = new ForkJoinTaskExample(middle + 1, end);

) RITFES
leftTask.fork();
rightTask.fork();

/) FEFESHITARSHAELGR
int leftResult = leftTask.join();
int rightResult = rightTask.join();

/) EHFES
sum = leftResult + rightResult;

}

return sum,;

}
public static void main(String[] args) {

ForkJoinPool forkjoinPool = new ForkJoinPool();

JEE—TITEFS, 8 1+2+3+4
ForkJoinTaskExample task = new ForkJoinTaskExample(1, 100);

AT — TS

Future<integer> result = forkjoinPool.submit(task);

try {
log.info("result:{}", result.get());
} catch (Exception e) {

log.error("exception", e);
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Java8 HFEMARNEEMNNT, £—12 Lambda RXI; BI—"NIE Stream API(

java.util.stream.”)o

Stream Z Java8 FREESHXBHEMS, BRI LUIESEMRBENEGHITAVRIE, BJLUK

TIFBEZRNE. DB HIESIRME, £/ Stream API ESHIBHITIRME, BMEMTE

FA SQL $HITHVEIEESE, tHelLUfEA Stream APl EFHAITHITIRMF, BME2, Stream AP

R T —MsME 5 T ERNAELERN TS .

fa] 9 Stream?

i (Stream) FURZMHANE?

B AR ARIERE, ATRFWER (&85, A% FERBTERF.
BRRREE, MANRITE! 7

HE:

MStream BoA=FETE,

@Stream F2RTRENR, Bk, MilsRE—MFEERAHFT Streams

GStream RIERIEERITH, XBHREMIZFIFTELERHNINES 1T,

Stream IR{EL B

1. 8l Stream

—MER (W0 &5, B4H) , R



2. FRiaElg(E

— PDEREHRIERE, XHUERBVEIEHTTOE,

3. IHRF(XIRIECE)

—DERIRME, ITRIERIEE, HEEER .

A=

B7NE Java8 iy Stream < 60

#9EE [ > Fiter [

map

E—T T

SR

L

6.9 WNEIEIE Stream 7it?

s

PIEER{E

XE, QIEMAZE TestStreamAPIL, FrERIR{EESZETE TestStreamAPI1 K 5EALAY,

(1) & Collection RFIE SR stream () iAE#H parallelStream() &R 32 Stream,

£ Java8 #1, Collection #EOWY B, HE TR MNREUARBEIAFGE, WP

default Stream<E> stream() {

return StreamSupport.stream(spliterator(), false);

}

default Stream<E> parallelStream() {

return StreamSupport.stream(spliterator(), true);

Hrh, stream() 55 RE—DIRFER, parallelStream()755%:&([E1—N 1T

FATRILAE RIS RS 75 Uk e IR R H AT e
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List<String> list = new ArrayList<>();
list.stream();

list.parallelStream();

(2) @i Arrays FREVERE TS 74 stream () FRENELAR 7R

Java8 HHY Arrays KBVERS A stream() BILUREVERAR , W0 TFIR.

public static <T> Stream<T> stream(T[] array) {
return stream(array, O, array.length);

ERCEEBIBIERN: fAN—NZEEA, REXMZER] Stream i

BRILZ 9N, TE Arrays KARIRIRMH T stream () 5/ ARVE0 FEEHFE o

public static <T> Stream<T> stream(T[] array) {

return stream(array, 0, array.length);

public static <T> Stream<T> stream(T[] array, int startinclusive, int endExclusive) {

return StreamSupport.stream(spliterator(array, startinclusive, endExclusive), false);

public static IntStream stream(int[] array) {

return stream(array, 0, array.length);

public static IntStream stream(int[] array, int startinclusive, int endExclusive) {

return StreamSupport.intStream(spliterator(array, startinclusive, endExclusive), false);

public static LongStream stream(long[] array) {

return stream(array, O, array.length);
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public static LongStream stream(long[] array, int startinclusive, int endExclusive) {

return StreamSupport.longStream(spliterator(array, startinclusive, endExclusive), false);

public static DoubleStream stream(double[] array) {
return stream(array, O, array.length);

public static DoubleStream stream(double[] array, int startinclusive, int endExclusive) {

62

return StreamSupport.doubleStream(spliterator(array, startinclusive, endExclusive), false);

BR LRES R B AR E LB RVIRAA R KL Stream FAVIRTE,

AT OB FE ISR FISRIER Arrays 2£89 stream() /574K A Stream 7o

Integer[] nums = new Integer(]{1,2,3,4,5,6,7,8,9};

Stream<Integer> numStream = Arrays.stream(nums);

(3) @id Stream EHIEEE T 7% of () FRENERAA TR

BILMEREST A Stream.of(), B EREGE—NR. ER]MERNEEHENSL.

AR EE Stream B9 of ) 57%, W NFITo

public static<T> Stream<T> of(T t) {
return StreamSupport.stream(new Streams.StreamBuilderimpl<>(t), false);
}
@SafeVarargs
@SuppressWarnings("varargs")
public static<T> Stream<T> of(T... values) {
return Arrays.stream(values);
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BILAEER, 7£ Stream £, BETEHED of ) 5%, —PRFEEN—NZESH, —IFEF

AN—DRIZEZESE,

AT LR TEBAREREIRER of B7AEIE—" Stream o

Stream<String> strStream = Stream.of("a", "b", "c");

(4) BIBERR

B LUEARES A Stream.iterate() 1 Stream.generate(), SIEBIIRETR.

JeREFE Stream K iterate() 57570 generate() 57ABRES, W NN

public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
Objects.requireNonNull(f);
final Iterator<T> iterator = new lterator<T>() {
@SuppressWarnings("unchecked")
Tt = (T) Streams.NONE;

@Override
public boolean hasNext() {

return true;

@Override
public T next() {
return t = (t == Streams.NONE) ? seed : f.apply(t);

L

return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
iterator,
Spliterator.ORDERED | Spliterator.IMMUTABLE), false);
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public static<T> Stream<T> generate(Supplier<T> s) {
Objects.requireNonNull(s);
return StreamSupport.stream(

new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long. MAX_VALUE, s), false);

BREAI LB, iterate()B7AEERFER S BANEMTLIREM, M generate() A5+
EREA “EN B9ANERLREM. FA10ILUER TEAIERGIRERXM N A EERR Stream

=y
/)lbo

o A
Stream<Integer> intStream = Stream.iterate(0, (x) -> x + 2);
intStream.forEach(System.out::println);

BT LR, SAKE—ERLER, XMREZ—BRFE T A, URBMNIFERD 10 T
B, ZANEHRIEIE? HLWRE R, A Stream IR limit ZA7EHITREITLAIL T, ST

Stream<Integer> intStream = Stream.iterate(0, (x) -> x + 2);

intStream.limit(10).forEach(System.out::println);

o ERk

Stream.generate(() -> Math.random()).forEach(System.out::println);

ERREEFZ—ERERENS, NRFBNIF24EE 5 MEVE, WREEEA limit()757xE
HITERBIRIA,

Stream.generate(() -> Math.random()).limit(5).forEach(System.out::println);

(5) RIB=R

7E Stream FHIRME T — empty() 5%, W TFFFT
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public static<T> Stream<T> empty() {
return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);

AT LUERA Stream ZEHY empty()57EKBIE—= Stream 7, 90 FFizo

Stream<String> empty = Stream.empty();

6.10 Stream B9HR|a)IR(E

Z A REIEER] DUEBRGE R — KL, BRIFRKE EMALRIERME, SNFERIESR
PATIEARINIR! MR IIRIERN—RMEEEAIE, ¥ “BMRE" o Stream BHEHRIERT
=B R AEREIER LAY,

Stream BYFRENRIEERME LRI LD N THESTIA. BRES. HiFp. BTK, s 5IxdxXLE
BRI T R RV PR

6.11 TmxS5tlA

X8, FTRSMEMTA B XAVIREEERI F &K

BiE 3
filter(Predicate p) U Lambda RA, MRAAHRFEL TR
distinct() v, WmATAERMTTEM hashCode() 1 equals() & BEETE
limit(long maxSize) BUOR, BEHIOIERTBIATEHE
skip(long n) BRI TR, RE—METEI n DNITEIR. &attEi A n
MRE—P=5. 5 limit(n) B4b
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B, 7RI NERRE), LUEINRER.

AT EFNEER, HIEMET —PWREKA, W

protected List<Employee> list = Arrays.asList(
new Employee("5K=", 18, 9999.99),
new Employee("Z=PH", 38, 5555.55),
new Employee("EH", 60, 6666.66),
new Employee("#&X7X", 8, T777.77),
new Employee("H+", 58, 3333.33)

Hrh, Employee ZE89E X N FRo

@Data

@Builder

@ToString

@NoArgsConstructor

@AllArgsConstructor

public class Employee implements Serializable {
private static final long serialVersionUID = -9079722457749166858L;
private String name;
private Integer age;

private Double salary;

Employee SERYE X LLIREE, XEB, HHMAERT, ZERIRAEIF, K{TE=ZEEMB Employ
ee WRIEGHITIRIF. 77, WITTFBEMFBVIRIERL,

1. filter() 5%

filter() A2 ER A THEW Lambda X, MAFHRELETTER, HIE Stream EOHRYRE
ORFRo
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Stream<T> filter(Predicate<? super T> predicate);

BILIER, T£ filter() F57AH, BE(LIE Predicate I OMX R, Predicate IHOX 2 M ARIE?
RHEE TR,

@Functionallnterface

public interface Predicate<T> {

boolean test(T t);

default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) > test(t) && other.test(t);

default Predicate<T> negate() {
return (t) > ltest(t);

default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);

static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
. object -> targetRef.equals(object);

BILAIEER], Predicate 2 —PREIUEO, EPEOTEXNEEFEN test() 7%, test()H7E

W2 EIN R t, R[E— boolean KA HIEIE,
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EIXE, BEAKBAT: filter() 5 22EHE Predicate OB test() AR B14E R It iR
IR, WR test()HIERNREIZER N true, TSN ; R test()H7ARREBILER A false, MIARF

BN,

X8, FATRILUER TERIRAISREISRAYNER filter() 75 7ARIER T

JRIEBE: FEUT FEFR BRI, H Stream apl #1751
S/ FIEJRIE: T =TT
Stream=<Person> stream = list.stream() filter((e) > {
System.out.println("Stream API HHa}igfE");
return e.getAge() > 30;

b;

), ERITRIBEAZE, —ImER, —IOFTED, mENFEEEER LLEES, EXX2E
RERIER, B Stream APl 2o

TEBHRNRBBINBEN, BREHNIANFTER,.

J/IEBE

kerator<Person> it = list.iterator();

while (it.hasNext()) {
System.out.println(it.next());

2. limit()A&

TEFAN: 8TR, EETETNBIAESRE.

FeRE limit 7TEBIENX, W0 T

Stream<T> limit(long maxSize);
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limit()75757E Stream E#OPRIENX LR ER, RFJEEN—" long KRB FEIF,

FATRT LR BR U0 N PR BI AR SRAER limit()757%,

ST EZ B 2 TNME

list.stream().filter((e) -> e.getAge() >30 ).limit(2).forEach(System.out :: println);

X8, HNVPIECE B MSReRlE, HEMOR, TR UESEN MUStR. MEE
FEES, RBLZNE 2FNEFHRTER, WASREETERSE, AJLUIRSHE,

3. skip()A3&

BhdcE, RE—MMETE] n N TENR. &EAFTE A2 n D, MRE-PER. 5
limit(n) E4bo

RS E SN PR To

Stream<T> skip(long n);

RREX R EER, FAFRIFZ2EAN— long RRRHFEIF, HEXEHT n M.

& R BI TPRo

/KT BT 2 TME

list.stream().skip(2).forEach(System.out :: println);

4. distinct() 5%

N

=

Hik, BIRATEMITER hashCode() #1 equals() & BREETES
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IRBBTE X0 FFfrRe

Stream<T> distinct();

EEXRAPRITRHITEE,

FATRI LN R ERY 7 TUKAEA disinct() 7575,

list.stream().distinct().forEach(System.out :: println);

XBEE—MEEFERMT: distinct EEXLEKHETS hashCode () # equals () FEA
AT LAfER.

KT R RAY AN N &P,

753k R
map(Function Bl — N RYSENBY, ZRYERNAE T

=L, HEMSM— BT ER,

mapToDouble(ToDoubleFunction f) BI— 1M RBIERSE, ZRESWNARISN T
=Lk, =E—"PHHE DoubleStream,

mapTolnt(TolntFunction f) BEWR— P REBIENSE, ZRBSENBEIE T

=L, FE—"1HM IntStreamso

mapTolLong(ToLongFunction f) BWR—TMREBIFNSH, ZRBSHNBRSNT

=L, FE—NHB LongStream
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HiE DU
flatMap(Function f) BE—DREENSEH, BRPRE MEE RS

— N, AR EREER— TR

1. map()55i&

BIR—MREBENSE, ] SRNAEIS N T 2L, HFRERNE—DMBITR,

Je3RE Java8 B Stream EOXS T map()/7AB9ERR, W NFIRo

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

FATRT LRI T 75 TUE A map()757%.

ST — TN T Z ARSI R map HIREH, ST TENITIXTEREL, AaRO]
L|st<Strmg> list = Arrays.asList("aaa", "bbb", " , "ddd");
list.stream().map((e) -> e.toUpperCase()).forEach(System.out::printf);

J/RER Person I — TN 725 F name, HR[E]—1%EE

List<String> names = this.list.stream().map(Person :: getName).collect(Collectors.toList());

2. flatMap()

B — P RBENSE, BRPHS MEERS — DR, ARERERERER— M.

JeRE Java8 H1 Stream EOXT T flatMap() S5 EBIERE, 30 N

<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
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AT LUER I T A IER flatMap() 7374, ATET AR, X2, Frihhd 7E flatMa
p() 73 ERIPE U,

e
“flatMap —— U —TERETENZE, PRI TMEEE— T e = —1
Vi)
7
@Test

public void testFlatMap () {
StreamAPI_Test s = new StreamAPI|_Test();
List<String> list = Arrays.asList("aaa", "bbb", "ccc", "ddd");
list.stream().flatMap((e) -> s.filterCharacter(e)).forEach(System.out::println);

J/UTREH map NEESIEE
list.stream().map((e) -> s.filterCharacter(e)).forEach((e) -> {

e forEach(System.out::println);

CJF—TNF GBI
7
public Stream<Character> filterCharacter(String str){
List<Character> list = new ArrayList<>();
for (Character ch : str.toCharArray()) {
list.add(ch);
}

return list.stream();

HSL map A/ERAEETF Collaction BY add 57%, 3R add IR M EERIEM ST M 4 #AE,
mi flatMap B9IERLAEZ T Collaction 89 addAll 757%, BHUREEGEIE, RER 2 M&E&a6H,
MA R _4E54H,
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6.13 HiFF

KT HIFAR XA AU T &RFRo

BiE R
sorted() PE— R, EPRBAIRFHE
sorted(Comparator comp) FEE—NR, HpZtbRSEIFHF

M ERRIEFILEY: sorted BEMMAZE, —MEREEASE, WBAHRFE, TE—MWRE
& Comparator #MO2%, MUBESIHF.

Se3kE Java8 M Stream EOXT T sorted() /559 BR, W Ao

Stream<T> sorted();

Stream<T> sorted(Comparator<? super T> comparator);
sorted() I ARVEX LEIRE R, FMABIERT -
BT LUZRA T A REA Stream B89 sorted () %o

V=t i

List<Employee> persons = list.stream().sorted().collect(Collectors.toList());

S E AT
List<Employee> personsl = list.stream().sorted((el, e2) > {
if (el.getAge() == e2.getAge()) {
return O;
} else if (el.getAge() > e2.getAge()) {
return 1;

} else {
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return -1;

}
}).collect(Collectors.toList());

6.14 Stream B9 1Li2{E

LIGIRTERMRMBIMKEENER. HEARTUREAA2RNE, F: List.  Integer.
Double. String &%, EZEZ void .

£ Java8 H, Stream BYRIERIERILID AN B SILE. MLAOMUE, Z TR, HiImo5E
BB X R HE(F,

6.15 Ef}5SLEAC

Stream APl 1B X B SILERI A0 R &R

PRt R
allMatch(Predicate p) wERGLEAETER
anyMatch(Predicate p) KwEELELPLE—NtEHE
noneMatch(Predicate p) RERTEXELEMBTR

findFirst() R[EIE—NTE
findAny() REIHAIRPNERTTE
count() [ERFATTE R
max(Comparator ¢) RERFRAE
min(Comparator c) RENRFRIVE
forEach(Consumer c¢) RERER(ER Collection #EOFEZRHF AMUELT, FA5h
k. M/, Stream APl ERANERENR)
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BEFRY, HIMNENEENFEHITEENTONAE, X8, ®ITELEIL— Employee £,
Employee ZERITE X 30 P70

@Data
@Builder
@ToString
@NoArgsConstructor
@AllArgsConstructor
public class Employee implements Serializable {
private static final long serialVersionUID = -9079722457749166858L;
private String name;
private Integer age;
private Double salary;
private Stauts stauts;
public enum Stauts{
WORKING,
SLEEPING,
VOCATION

B, BNEMHEPEX =BT MIRABIES employees, W0 FF7Ro

protected List<Employee> employees = Arrays.asList(
new Employee("sk=", 18, 9999.99, Employee.Stauts.SLEEPING),
new Employee("Z=P0", 38, 5555.55, Employee.Stauts. WORKING),
new Employee("£H", 60, 6666.66, Employee.Stauts. WORKING),
new Employee("#X7x", 8, 7777.77, Employee.Stauts.SLEEPING),
new Employee("H+", 58, 3333.33, Employee.Stauts.VOCATION)

TT, EELIFEMET . &K, HwAEME Stream BN IET %,

1. allMatch()
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allMatch() F/ax T OERS LA B TR, HTE Stream EOFBIE X FFITo

boolean allMatch(Predicate<? super T> predicate);

HA TR LOBE SN RISk EEA allMatch()757%,

boolean match = employees.stream().allMatch((e) -> Employee.Stauts.SLEEPING.equals(e.getStau
ts()));

System.out.println(match);

R £ allMatch() A58, REMEMNTERLTARRZE, allMatch() 53574 SiR[E true,

2. anyMatch()53%

anyMatch 2R BEES E/VLEE—N TR, HIE Stream FORBE XU TP

boolean anyMatch(Predicate<? super T> predicate);

TR OB RN TR BISRER anyMatch() 57,

boolean match = employees.stream().anyMatch((e) -> Employee.Stauts.SLEEPING.equals(e.getSta
uts()));

System.out.println(match);

8 £/ anyMatch() AR, RESEE—IMREFAELMY, anyMatch() A EREIRE

true.

3. noneMatch()5%

noneMatch() A/ExR OB RE X B ILEFTB TR, HTE Stream ZOFBIE XN TR0
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boolean noneMatch(Predicate<? super T> predicate);

BATRT OB 25080 TR I3 noneMatch() 5%

boolean match = employees.stream().noneMatch((e) -> Employee.Stauts.SLEEPING.equals(e.getSt

auts());
System.out.println(match);

SEE: £/ noneMatch() /53K, REMBEMNTEHBRAFTAEMLER, noneMatch() A EA &R

8] true,

4. findFirst()755%

findFirst() 57AFRTREIE—1TTE. HIT Stream ZHOFE X W IR

Optional<T> findFirst();

AR LUBI S0 SR BIRE A findFirst() 757%,

Optional<Employee> op = employees.stream().sorted((el, e€2) -> Double.compare(el.getSalary(),
e2.getSalary())).findFirst();
System.out.println(op.get());

5. findAny() A%

findAny() &R R BISRTNRTRIER TR, HAE Stream EOFRIE XU N AR,

Optional<T> findAny();

AR OB SN TR BISREER findAny() 5%
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Optional<Employee> op = employees.stream().filter((e) -> Employee.Stauts. WORKING.equals(e.ge
tStauts())).findFirst();
System.out.println(op.get());

6. count()Ai%

count() 5 ARMREIRAP TR Z . H1E Stream O HBYE XA TR

long count();

FATRI LU S TR BIRAERA count() 757%.

long count = employees.stream().count();

System.out.println(count);

7. max() A&

max() AR R EIRARAE. HiE Stream O FRIE XU FFAR.

Optional<T> max(Comparator<? super T> comparator);

FATRI LU SN TR AR EEA max() 73 7%.

Optional<Employee> op = employees.stream().max((el, e2) -> Double.compare(el.getSalary(), e
2.getSalary()));
System.out.println(op.get());

8. min() A&

min() A 7ERTREIRAPER/IVE. HIE Stream ZOFIE XU TR



79 > SB/NE Java8 My Stream
Optional<T> min(Comparator<? super T> comparator);

FATRT LU SE M TR BIREEA min()757%,

Optional<Double> op = employees.stream().map(Employee::getSalary).min(Double::compare);
System.out.println(op.get());

9. forEach()/&%

forEach() 7 ERRAERIENR(ER Collection HOFEARF EMUIEN, AILIER, K,
Stream APl EERNERER), EHFE Stream EOAZBRIE XU TR

void forEach(Consumer<? super T> action);
AT E] LOE K90 R BIsRAER forEach() 75 7%,

employees.stream().forEach(System.out::println);

6.16 LY

Stream API B XA 5 A TR,

HiE &R
reduce(T iden, BinaryOperator b) AR ITERESEGRRE, BE—ME, RE T
reduce(BinaryOperator b) AR RPTERELSSER, FE—ME, X[
Optional

reduce() 7 E1E Stream #ZOHBIE XU FFATRo
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T reduce(T identity, BinaryOperator<T> accumulator);
Optional<T> reduce(BinaryOperator<T> accumulator);
<U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combi

ner);

AR LUBI 20 N BIRER reduce F57%.

List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);

Integer sum = list.stream().reduce(0, (x, y) > x +y);

System.out.println(sum);

System.out.println("------------------—-ee - ");

Optional<Double> op = employees.stream().map(Employee::getSalary).reduce(Double::sum);

System.out.println(op.get());

FATB A LUIER employees FIFkAP “5K” HIMAREL,

Optional<integer> sum = employees.stream()
.map(Employee::getName)
flatMap(TestStreamAPI1:filterCharacter)
.map((ch) -> {
if(ch.equals('75"))

return 1;

else

return 0;
}).reduce(Integer::sum);

System.out.println(sum.get());

AR ERFIFERTEREBNARNRREMENREE, KRELFIFEFBRLAE,
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6.17 W&

5k R

collect(Collector ¢) | KmsEimAEMAZ. FW—1 Collector #FZOBISEI, BT 44 Stream g
EMOC RS E

collect()57A7E Stream EOFBITE XU PR

<R> R collect(Supplier<R> supplier,
BiConsumer<R, ? super T> accumulator,
BiConsumer<R, R> combiner);

<R, A> R collect(Collector<? super T, A, R> collector);

FATRT LU S TR BISRAE A collect 757%o

Optional<Double> max = employees.stream()
.map(Employee::getSalary)
.collect(Collectors.maxBy(Double::compare));
System.out.printin(max.get());
Optional<Employee> op = employees.stream()
.collect(Collectors.minBy((el, e2) -> Double.compare(el.getSalary(), e2.getSalary())));
System.out.println(op.get());
Double sum = employees.stream().collect(Collectors.summingDouble(Employee::getSalary));
System.out.println(sum);
Double avg = employees.stream().collect(Collectors.averagingDouble(Employee::getSalary));
System.out.println(avg);
Long count = employees.stream().collect(Collectors.counting());
System.out.println(count);

System.out.println(" ");

DoubleSummaryStatistics dss = employees.stream()
.collect(Collectors.summarizingDouble(Employee::getSalary));

System.out.println(dss.getMax());




$ENE Java8 FIHJ Stream < 82

6.18 NfAYeEE Stream 7i?

Collector O M 77/ARYSKILRE T AEIXTRHAITURERIR(E (ROUEE R List. Set. Map)o
Collectors SLRZSRM TRZFS 7%, FJUS B2 E IWESELA, BAEHDESEAIMTR:

BiE RESEE §3::
toList List HRATEWEE List
toSet Set R TTRWEES) Set
toCollection Collection ERATEWERICIENES
counting Long HERPTERRTE
summingint Integer SRR ESE KA
averaginglint Double HERPITE Integer BT &

summarizingInt | IntSummaryStatistics | WE&ERF Integer BENFITHE, W FHE

joining String ERORPE DTSR
maxBy Optional RIEL R SR IR R A (E
minBy Optional RIELL R e R R/ ME
reducing JE PR Faa = D E- i M—MERAZMBHFAE F45, FIA BinaryO
perator 5 MATRZENES, MM LIHED
(=]
collectingAndThen | FRiRRFLREIRIFEEY BRF—MUNESE, WHE REHRKE
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Hi& RE SR 3z
groupingBy Map<K, List> RIERBEEENRDA, B MK ERAV
partitioningBy Map<Boolean, List> RHE true X false HITHKX

B TFEN NAYE AR A0 N R

BiE fERTBGI
toList List employees=list.stream().collect(Collectors.tolist());
toSet Set employees=list.stream().collect(Collectors.toSet());
toCollection Collection employees=list.stream().collect(Collectors.toCollection(Arra
yList::new));
counting long count = list.stream().collect(Collectors.counting());
summingint int total=list.stream().collect(Collectors.summingInt(Employee::getSal

ary));

averagingint

double avg= list.stream().collect(Collectors.averagingint(Employee::ge

tSalary))

summarizingint

IntSummaryStatistics iss= list.stream().collect(Collectors.summarizing

Int(Employee::getSalary));

Collectors String str=list.stream().map(Employee::getName).collect(Collectors.jo
ining());
maxBy Optionalmax=list.stream().collect(Collectors.maxBy(comparingInt(Em

ployee::getSalary)));
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BiE fERRHG
minBy Optional min = list.stream().collect(Collectors.minBy(comparingInt(E
mployee::getSalary)));
reducing int total=list.stream().collect(Collectors.reducing(0, Employee::getSala

r, Integer:sum));

collectingAndThen

int how=list.stream().collect(Collectors.collectingAndThen(Collectors.

toList(), List:size));

groupingBy

Map<Emp.Status, List> map=list.stream() .collect(Collectors.groupin

gBy(Employee::getStatus));

partitioningBy

Map<Boolean,List>vd=list.stream().collect(Collectors.partitioningBy(E

mployee::getManage));

public void test4(){

Optional<Double> max = emps.stream()

.map(Employee::getSalary)

.collect(Collectors.maxBy(Double::compare));

System.out.println(max.get());

Optional<Employee> op = emps.stream()

.collect(Collectors.minBy((el, e2) -> Double.compare(el.getSalary(), e2.getSalary())));

System.out.println(op.get());

Double sum = emps.stream()

.collect(Collectors.summingDouble(Employee::getSalary));

System.out.println(sum);

Double avg = emps.stream()

.collect(Collecors.averagingDouble(Employee::getSalary));
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System.out.println(avg);
Long count = emps.stream()

.collect(Collectors.counting());

DoubleSummaryStatistics dss = emps.stream()
.collect(Collectors.summarizingDouble(Employee::getSalary));
System.out.println(dss.getMax());

BERY, ATRARRE—TNABTDRE N IER, FRNERLED 5B N ERIVM.

Java 8 BEHTHITT ML, FNTUREZ G EIRHTHITIRIE. Stream APl BILIE
BEMEEIT parallel() 5 sequential() EHITASINERZEHITUIE o

Java8 FRHITHR LA

Java8 WHITRHIT T REMNMNMA, HEEFR EERANELTIEFZRNIEE, K1IRFH
2EARMA TRIAHIRLRI LU Java8 FBIFH TR IERA I8 ETE,

LongStream.rangeClosed(0, 10000000L).parallel().reduce(0, Long:sum);

£ Java8 FUNAIRIERIIHRHIT R BITRIE?

Stream API BILIFEBAMEMIET parallel() 5 sequential() EHITRS RITRZEIHITII
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¥+HZE Optional 3£ o

7.1 +42 Optional 3£?

Optional Z(java.util.Optional) 2—1&2E, KEXR—MEFEENFE, BXRA null XR
—MERTFE, WAE Optional AIUBIHFMRAXMER. HEAILUBRTIEHEE,

Optional £ERBA&A:

Optional.of(T t) : g&— Optional £fl,

Optional.empty() : BIFE—M=#Y Optional 3,

Optional.ofNullable(T t):& t & null, 8l Optional SEf),EN6IEZSLA,

e isPresent() : ¥ITRELEEE,

e OrElse(T t) : WMRIBEBNREEE, RENZE, BRG] t

o orElseGet(Supplier s) MRBEANREEE, REZE, SURE s FREEIE,

e map(Function f): INRBEXNHEHLIE, FR[EILNEFRY Optional, &NLR[El Optional.emp
ty()o

o flatMap(Function mapper):5 map L, EFR[E{EXIUZE Optionals

7.2 Optional 2|
1. % Optional 3£

(1) R empty()/7EBIER—NZ=H Optional WK :

Optional<String> empty = Optional.empty();
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(2) &£/ of() /5 %8I Optional XY%R:

String name = "binghe";
Optional<String> opt = Optional.of(name);
assertEquals("Optional[binghe]", opt.toString());

fedin of |EFRILINET, BNEME=IEHRES. §Iil, TENEFRSMHTIETRE,

String name = null;

Optional<String> opt = Optional.of(name);

MRFTNFBELR—ETE, BRI LUER FEBRAIFTT.

String name = null;

Optional<String> opt = Optional.ofNullable(name);

£/ ofNullable() 5%, MHEFHEBFHE—NTEN, FMERES, MRBRE—D=H Optio
nal W&, WEFKAIE Optional.empty() 75—,

2. isPresent

AT LUERX A isPresent() A 5E— Optional WRAEREHE, REEIFT ARG true,

Optional<String> opt = Optional.of("binghe");

assertTrue(opt.isPresent());

opt = Optional.ofNullable(null);

assertFalse(opt.isPresent());

£ Java8 Z i, I —MEAATHAKILEZE,
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if(name = null){

System.out.println(name.length);

£ Java8 H7, FA s A LUEARII T AR E=ET

Optional<String> opt = Optional.of("binghe");
opt.ifPresent(name -> System.out.printin(name.length()));

3. orElse # orElseGet

(1) orElse

orElse() 73 A A0R(E] Optional WRAMEIAME, EREANA—D FIASH - TRWRFF
F—ME, MEEE, SMREENE “FRINSEH

String nullName = null;
String name = Optional.ofNullable(nullName).orElse("binghe");
assertEquals("binghe", name);

(2) orElseGet

5 orElse()77EEM, ERXPDEEAZER—D BN , ME—TREED,

String nullName = null;
Strng name = Optional.ofNullable(nullName).orElseGet(() -> "binghe");
assertEquals("binghe", name);

() ZEBHAKH?

ZRERE_ENXR), BRLIMIZ— TS EREEENT A,
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public String getDefaultName() {
System.out.printIn("Getting Default Name");
return "binghe";

TR, #TmNIIREER N ERIRE AKX,

String text;

System.out.println("Using orElseGet:");

String defaultText = Optional.ofNullable(text).orElseGet(this::getDefaultName);
assertEquals("binghe", defaultText);

System.out.printin("Using orElse:");
defaultText = Optional.ofNullable(text).orElse(getDefaultName());
assertEquals("binghe", defaultText);

AEXERAIF, AR Optional WRFEEHEZ—N=ME, ERMNEEEFHRITER

Using orElseGet:
Getting default name...
Using orElse:

Getting default name...

> Optional X RAEBRIFLE value, HILMITEARER,

M4, = Optional WRAFEMRRKEMFTANE? Tl ]—HeKEIE T,

String name = "binghe001";
System.out.println("Using orElseGet:");
String defaultName = Optional.ofNullable(name).orElseGet(this::getDefaultName);

assertEquals("binghe001", defaultName);

System.out.printIn("Using orElse:");
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defaultName = Optional.ofNullable(name).orElse(getDefaultName());

assertEquals("binghe001", defaultName);

IBITERW NFRo

Using orElseGet:
Using orElse:
Getting default name...

BILLER], LM orElseGet()7ART, getDefaultName()AHARH1T, AA Optional f&%5
8, MM orElse BINIRREHNIT. FRUARILAEBE, H{ETFERT, orElse #8LEF orElseGet, %6
T— PR WRCIBENRE, FENERE, BEAADRNFHEMLRKT, XBRRERITER
B— 75,

4. orElseThrow

orElseThrow() 775 HiBE— N AEFEMNENNE, HARE—DEIAME, MEMEEE,

String nullName = null;

String name = Optional.ofNullable(nullName).orElseThrow( IllegalArgumentException::new);

5. get

get()37AFR 2 Optional STRFIREVE,

Optional<String> opt = Optional.of("binghe");
String name = opt.get();

assertEquals("binghe", name);

£ get() A BRI LUREIRBRERNE, BRELNFE. SETFEN, SHH— NoSuc

hElementException & &-
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Optional<String> opt = Optional.ofNullable(null);
String name = opt.get();

6. filter

Bl —r#iEd, S5aE08, MREl—1 Optional W&, &Nk [E—1=H) Optiona
[ MR

String name = "binghe";

Optional<String= nameOptional = Optional.of(name);

boolean isBinghe = nameOptional filter(n -> "binghe".equals(name)).isPresent();
assertTrue(isBinghe);

boolean isBinghe001 = nameOptional filter(n -> "binghe001".equals(name)).isPresent();
assertFalse(isBinghe001);

2 filter( 752 BB T BENTE,
ETR, BIVERE—GIRG, FINEETE— Person 2, MTA.

public class Person{
private int age;
public Person(int age){
this.age = age;

}
J/EHE get set FriA

g0, JMNFBEDREBFLRTE 25 25 35 5 ZAIRIABE, BT Java8 2RI IF 2 E—
SRYEERNE N AR FISEERSE 25 ¥ 5 35 % Z Al
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public boolean filterPerson(Peron person){
boolean isInRange = false;
if(person = null && person.getAge() >= 25 && person.getAge() <= 35){
isilnRange = true;

}

return isinRange;

E LA, AT AR TR T0E TR,

)

assertTrue(filterPerson(new Peron(18))

);
);
)

)
assertFalse(filterPerson(new Peron(29))
assertFalse(filterPerson(new Peron(16))

K

( (
assertFalse(filterPerson(new Peron(34
( (

assertFalse(filterPerson(null));

R EA Optional, MERMOEIE?

public boolean filterPersonByOptional(Peron person){
return Optional.ofNullable(person)
.map(Peron::getAge)
filter(p > p >= 25)
filter(p > p <= 35)
.isPresent();

£ Optional B LAFBRZ T, XE, map(XNEBR—MERBRNSZ—NME, FEXE
R R RFKAYE,

7. map

MRBENELE, FHiREIEFEN Optional, BNRE Optional.empty()o
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List<String> names = Arrays.asList("binghe001", "binghe002", "", "binghe003", "", "binghe004");
Optional<List<String>> listOptional = Optional.of(names);

int size = listOptional
.map(List::size)
.orElse(0);

assertEquals(6, size);

EXMIFHR, FONER— List EEHET —LEFRH, ASEHBEXA List £/ Optional
HEREK, WH map(), KRB List EGHIKE. map(REINAERMHEEEE— Optional SR,
XESENFERRE, HNSFIAEE 0o M THARE—1DFRF ERIKE.

String name = "binghe";
Optional<String>= nameOptional = Optional.of(name);

int len = nameOptional
.map(String:length())
.orElse(0);
assertEquals(6, len);
BB LU map()BES filter() BEaE&1ER, WA,

String password = " password ";
Optional<String> passOpt = Optional.of(password);
boolean correctPassword = passOpt.filter(

pass -> pass.equals("password")).isPresent();

assertFalse(correctPassword);

correctPassword = passOpt
.map(String::trim)
filter(pass -> pass.equals("password"))
.isPresent();

assertTrue(correctPassword);

ERARIHE LR B HITIVE, BEERED NIEERE,
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8. flatMap

5 map F£M, ERRENEXIUE Optionals

BRIZEAVMEBE—1> Person 25,

public class Person {
private String name;
private int age;

private String password;

public Optional<String> getName() {
return Optional.ofNullable(name);

public Optional<integer> getAge() {
return Optional.ofNullable(age);

public Optional<String> getPassword() {
return Optional.ofNullable(password);

}

/RS get set 7%

R, BATAILUE Person 25| Optional #, FH#1TMNR, WTHFIR.

Person person = new Person("binghe", 18);

Optional<Person> personOptional = Optional.of(person);

Optional<Optional<String=> nameOptionalWrapper = personOptional.map(Person::getName);
Optional<String= nameOptional = nameOptionalWrapper.orElseThrow(lllegalArgumentException::
new);

String namel = nameOptional.orElse("");

assertEquals("binghe", namel);
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String name = personOptional
flatMap(Person::getName)
.orElse("");

assertEquals("binghe", name);

AR Ak getName R[EIBZE— Optional &R, WREHE map, HMNEEEHFEA—NX
get()755%, MEM flatMap()FAFEE T,
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BI\E AT E °

8.1 EZOFBIRING &

Java 8 MAWEOMEERBEARAGFKINSG X, AN “BINGE , BRINTEER
default XEFEM -

Bign, AR LAEX —180 MyFunction, B, G188 —1EIATA getName, W0 N,

public interface MyFunction<T>{
T get(Long id);
default String getName(){
return "binghe";

8.2 BAIAFERYIEN
£ Java8 B, BUATSEEE “HA%S SR,

E—TEOREXT —PERINGE, MAII—PREFEOPREX T —PRIBWTTEN, &
BT BYRM,

LiEFRRERNTGH, MB—PRERMT BFNEIH, BAaZOPAEFHEEZR
MBHRIBINT EZS B,

fan, BEB—PEOR MyFunction, F—2E MyClass, 0 FFRo
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e MyFunction

public interface MyFunction{
default String getName(){

return "MyFunction";

o MyClass £

public class MyClass{
public String getName(){
return "MyClass";

bR, Bl SubClass 24k MyClass 2, HSLI MyFunction 20, 0 FFI7R.

public class SubClass extends MyClass implements MyFunction{

K, FAIBIE—" SubClassTest 28, ¥ SubClass Z#4TMt, 0 NFIRo

public class SubClassTest{
@Test
public void testDefaultFunction(){
SubClass subClass = new SubClass();
System.out.println(subClass.getName());

BT AR, RBEHFRH MyClass.
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2.2OMR, NR—NMREORE—IRIANGE, ME—TMEOLERT-TEAE
HERMMSHRIIRNTGZE (FEFERBRRINGE) , BAVTBRIZHTERE

RS,

B0, WEBENEO, 9509 MyFunction # MyInterface, & BEB—BIASGE getName
(), BRI

e MyFunction 01

public interface MyFunction{
default String getName(){

return "function";

o Myinterface £

public interface MylInterface{
default String getName(){

return "interface";

SSINZE MyClass [RIBFSLIR T MyFunction #04 MyInterface £, EF MyFunction #H]
MylInterface O EBTETE getName()ZRINFT3E, FrLL, MyClass B S getName() 75 AR R b
=, WP,

public class MyClass{
@Override
public String getName(){
return MyInterface.super.getName();

ItEBY, MyClass 2EHRBY getName 75 %REIRZ: interface,
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0R MyClass 89 getName() /572 BEHIZE MyFunction #0089 getName() /3%, W FFRo

public class MyClass{
@Override
public String getName(){
return MyFunction.super.getName();

ItbBY, MyClass ZEHRBY getName 7 %R [EIRYZ: function.

8.3 EOFHFEH A

£ Java8 A, BOPARFRINEESHZE, FRAANEOR. HER. F130 MyFunction O E
X T 8% send()o

public interface MyFunction{
default String getName(){
return "binghe";
}
static void send(){
System.out.printIn("Send Message...");

AT EZFERN T AR MyFunction #08 send 535775

MyFunction.send();
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BNE ZcHhB i) F0ET 8] 2 o

FEHE:

e now: FETTE, RIEBHFIRECIENR
o of: BT, RIEEEHH/NERIZENR
e plusDays,plusWeeks,plusMonths,plusYears: [E%#] LocalDate WRAM/LA. JLE. JLD

E\ )_LE
o minusDays,minusWeeks,minusMonths,minusYears: M2 LocalDate XSYZBEILR. J1
B A NEF

e plus,minus: ZIAEEED—> Duration 5% Period

o withDayOfMonth,withDayOfYear,withMonth,withYear: B k#. FHRE#. B, F
IMENIEEMEFIREIFH LocalDate MR

o getDayOfYear: FR1SHNKE(1~366)

o getDayOfWeek: FR1FEHAJL(R[EI— DayOfWeek MZE1(E)

e getMonth: KBAH, RE— Month #ZE

e getMonthValue: X1BH % (1~12)

o getYear: KBEMH

o until: FKEMMBHEIZ(EIH Period MR, SEIEE ChronoUnits BIEF

o isBefore,isAfter: ELEFE LocalDate

e isLeapYear: FrEEEEF

9.1 M LocalDate. LocalTime. LocalDateTime

LocalDate. LocalTime. LocalDateTime ZERLFIBRAILHNNER, DHIFRRFER 1SO-86
01 B AR BER. Bal. HEAFIETE, ©ANRM T EEMH AT E, HAES HEIINEEE B,
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BAEE5RXEXER.

7E: 1S0-8601 HIA A S ZEFFRENARSIE I AR B BB BINRTE

HiE DU
now() S 7%, RIESRITESIENR
of() S T7A, RIEEE BH/BECIZ WR

plusDays, plusWeeks, plusMonth

s, plusYears

=80 LocalDate SW&RAMILKR. JUA. JLTA. JIEF

minusDays, minusWeeks,

minusMonths, minusYears

MZHE] LocalDate W&EE/ LK. JLBE. JINA. JIE

plus, minus

ISR — Duration Bf Period

withDayOfMonth, withDayOfYear,
withMonth, withYear

BREMEE. FHRE. B, FMHEBRAEBE
B B # & [B] # B LocalDate ¥R

getDayOfMonth RIS AMRE(1-31)

getDayOfYear RIS R (1-366)

getDayOfWeek IKISEHRJLEREI—1 DayOfWeek MZE1E)
getMonth RIEA, REI— Month #ZE

getMonthValue

RERM(1-12)

getYear

RISFD

until

RIEM NHERZ BN Period MR, WEETE

ChronoUnits 9%
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FiE iR
isBefore, isAfter EEE# D LocalDate
isLeapYear 2 S EEE
AN IR R TR NN T

VY ETIE - il

LocalDateTime localDateTimel = LocalDateTime.now();
System.out.println(localDateTimel);

/) BITEEE 2019-10-27T13:49:09.483

// 1EE 7708

LocalDateTime localDateTime2 = LocalDateTime.of(2019, 10, 27, 13, 45,10);
System.out.println(localDateTime2);

) B TEEE . 2019-10-27T13:45:10

LocalDateTime localDateTime3 = localDateTimel
V=3
.plusYears(3)
/= TA
.minusMonths(3);
System.out.println(localDateTime3);
/) BmITEEE  2022-07-27T13:49:09.483

System.out.printin(localDateTimel.getYear()); ) BITEEE 2019
System.out.println(localDateTimel.getMonthValue()); // =775 10

System.out.println(localDateTimel.getDayOfMonth()); // iz7725%. 27

(
(
(
(
(
(

System.out.println(localDateTimel.getHour()); /) BT 13
System.out.println(localDateTimel.getMinute()); ) BT 52
System.out.println(localDateTimel.getSecond()); /) BT 6

LocalDateTime localDateTime4 = LocalDateTime.now();
System.out.println(localDateTime4); // 2019-10-27T14:19:56.884
LocalDateTime localDateTime5 = localDateTime4.withDayOfMonth(10);
System.out.println(localDateTime5); // 2019-10-10T14:19:56.884
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9.2 Instant Bja]&%

BT “HEg” fvizE. ©FLU Unix TE(EHMIREN UTC BIX 1970 F 1 B 1 BF®&RN D)
FHaPREHBIEREITEE -

RS0 R R

Instant instantl = Instant.now();  // Z(2AZFEL UTC A7[X
System.out.println(instantl);
/) BTTEEE 2019-10-27T705:59:58.2217

/) WEEEE

OffsetDateTime offsetDateTime = instantl.atOffset(ZoneOffset.ofHours(8));
System.out.println(offsetDateTime);

) E(TEEER . 2019-10-27T13:59:58.221+08:00

J/ EERAT )&
System.out.println(instantl.toEpochMilli());

/) BITEEE 1572156145000

/) L Unix TTENER, HiTHREESE
Instant instant2 = Instant.ofEpochSecond(60);

System.out.println(instant2);
/) BITEEE 1970-01-01T00:01:002

9.3 Duration # Period
Duration:FEFHEFR “Ba" 8.

Period: BFIHE® “HEF” BT o
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Instant instant_1 = Instant.now();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}

Instant instant_2 = Instant.now();

Duration duration = Duration.between(instant_1, instant_2);
System.out.println(duration.toMillis());
) IBEITEEE 1000

LocalTime localTime_1 = LocalTime.now();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

}

LocalTime localTime_2 = LocalTime.now();

System.out.println(Duration.between(localTime_1, localTime_2).toMillis());
/) IBITESE 1000
LocalDate localDate_1 = LocalDate.of(2018,9, 9);

LocalDate localDate_2 = LocalDate.now();

Period period = Period.between(localDate_1, localDate_2);
System.out.println(period.getYears()); ) BT ]

System.out.println(period.getMonths()); S BT ]
System.out.println(period.getDays()); ) EiTEEE 18

9.4 HEARVIR(E

TemporalAdjuster : BYEIR1EZR. BN AIREREREGIN: FEARERE “T1MEHE" %
1215,
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TemporalAdjusters : ZFEBIEHSHEIRE T RKENEA TemporalAdjuster BIEI,

FIRNEREX A B, WRFR:

LocalDate nextSunday = LocalDate.now().with(TemporalAdjusters.next(DayOfWeek.SUNDAY));

SRR IS0 TR

LocalDateTime localDateTimel = LocalDateTime.now();
System.out.println(localDateTimel); // 2019-10-27T14:19:56.884

/) FEOX N E—A A AT
System.out.printin(localDateTimel.with(TemporalAdjusters.firstDayOfMonth()));
9-10-01T714:22:58.574

V3 AN ES =t
System.out.printin(localDateTimel.with(TemporalAdjusters.next(DayOfWeek.SUNDAY)));
019-11-03T714.22:58.574

/S BEX: T—1TI1EH

LocalDateTime localDateTime2 = localDateTimel.with(l > {
LocalDateTime localDateTime = (LocalDateTime) ;
DayOfWeek dayOfWeek = localDateTime.getDayOfWeek();

if (dayOfWeek.equals(DayOfWeek.FRIDAY)) {
return localDateTime.plusDays(3);

} else if (dayOfWeek.equals(DayOfWeek.SATURDAY)) {
return localDateTime.plusDays(2);

} else {
return localDateTime.plusDays(1);

b;
System.out.printin(localDateTime2);
) EITEEE  2019-10-28T14:30:17.400

/201

/2
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9.5 fEthSRIIL

java.time.format.DateTimeFormatter 2£: ZAIRM T =MW A A:

o FIRE XBIFRERET
o EEWRMHEXIBI
o BREXBIEI

RS0 R R

DateTimeFormatter dateTimeFormatterl = DateTimeFormatter.ISO_DATE;
LocalDateTime localDateTime = LocalDateTime.now();

String strDatel = localDateTime.format(dateTimeFormatterl);
System.out.println(strDatel);

/) IETTEER: 2019-10-27

// Date -> String

DateTimeFormatter dateTimeFormatter2 = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:s
52

String strDate2 = dateTimeFormatter2.format(localDateTime);

System.out.println(strDate2);

/) IEITEER: 2019-10-27 14:36:11

s/ String -> Date

LocalDateTime localDateTimel = localDateTime.parse(strDate2, dateTimeFormatter2);
System.out.println(localDateTimel);

) B TEEE . 2019-10-27T14:37:39

9.6 FFXAYLLIE

Java8 AN T XXM, mEXMBEYE N5 ZonedDate. ZonedTime. Zoned

DateTimes
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HApg M IXENINVE 1D, #X D #A  {XE)/(m) 890, Bl @ Asia/Shanghai
%o

e Zoneld: ZEFBETHENHNKXEER
e getAvailableZonelds() : FILUGABNFABBIX X E
o of(id) : BIEEMNXEEIREN Zoneld IR

RS0 R

/) RERBTBEAIETX
Set<String> set = Zoneld.getAvailableZonelds();
System.out.println(set);
// [Asia/Aden, America/Cuiaba, Etc/GMT+9, Etc/GMT+S8, Africa/Nairobi, America/Marigot, Asia/Aqt
au, Pacific/Kwajalein, America/El_Salvador, Asia/Pontianak, Africa/Cairo, Pacific/Pago_Pago, Afri
ca/Mbabane, Asia/Kuching, Pacific/Honolulu, Pacific/Rarotonga, America/Guatemala, Australia/H
obart, Europe/London, America/Belize, America/Panama, Asia/Chungking, America/Managua, A
merica/Indiana/Petersburg, Asia/Yerevan, Europe/Brussels, GMT, Europe/Warsaw, America/Chica
go, Asia/Kashgar, Chile/Continental, Pacific/Yap, CET, Etc/GMT-1, Etc/GMT-0, Europe/Jersey, Am
erica/Tegucigalpa, Etc/GMT-5, Europe/Istanbul, America/Eirunepe, Etc/GMT-4, America/Miguelon,
Etc/GMT-3, Europe/Luxembourg, Etc/GMT-2, Etc/GMT-9, America/Argentina/Catamarca, Etc/GMT
-8, Etc/GMT-7, Etc/GMT-6, Europe/Zaporozhye, Canada/Yukon, Canada/Atlantic, Atlantic/St_Hele
na, Australia/Tasmania, Libya, Europe/Guernsey, America/Grand_Turk, US/Pacific-New, Asia/Sa
markand, America/Argentina/Cordoba, Asia/Phnom_Penh, Africa/Kigali, Asia/Almaty, US/Alaska,
Asia/Dubai, Europe/Isle_of Man, America/Araguaina, Cuba, Asia/Novosibirsk, America/Argentina/
Salta, Ftc/GMT+3, Africa/Tunis, Etc/GMT+2, Ftc/GMT+1, Pacific/Fakaofo, Africa/Tripoli, Etc/GMT+
0, Israel, Africa/Banjul, Etc/GMT+7, Indian/Comoro, Etc/GMT+6, Etc/GMT+5, Etc/GMT+4, Pacific/
Port_Moresby, US/Arizona, Antarctica/Syowa, Indian/Reunion, Pacific/Palau, Europe/Kaliningrad,
America/Montevideo, Africa/Windhoek, Asia/Karachi, Africa/Mogadishu, Australia/Perth, Brazil/E
ast, Etc/GMT, Asia/Chita, Pacific/Easter, Antarctica/Davis, Antarctica/McMurdo, Asia/Macao, Ame
rica/Manaus, Africa/Freetown, Europe/Bucharest, Asia/Tomsk, America/Argentina/Mendoza, Asia/
Macau, Europe/Malta, Mexico/BajaSur, Pacific/Tahiti, Africa/Asmera, Europe/Busingen, America/
Argentina/Rio_Gallegos, Africa/Malabo, Europe/Skopje, America/Catamarca, America/Godthab, E
urope/Sarajevo, Australia/ACT, GB-Eire, Africa/Lagos, America/Cordoba, Europe/Rome, Asia/Dacc
a, Indian/Mauritius, Pacific/Samoa, America/Regina, America/Fort_Wayne, America/Dawson_Cree

k, Africa/Algiers, Europe/Mariehamn, America/St_Johns, America/St_Thomas, Europe/Zurich,
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America/Anguilla, Asia/Dili, America/Denver, Africa/Bamako, Europe/Saratov, GB, Mexico/General,
Pacitfic/Wallis, Europe/Gibraltar, Africa/Conakry, Africa/Lubumbashi, Asia/lstanbul, America/Hava
na, NZ-CHAT, Asia/Choibalsan, America/Porto_Acre, Asia/Omsk, Europe/Vaduz, US/Michigan, Asi
a/Dhaka, America/Barbados, Europe/Tiraspol, Atlantic/Cape_Verde, Asia/Yekaterinburg, America/
Louisville, Pacific/Johnston, Pacific/Chatham, Europe/Ljubliana, America/Sao_Paulo, Asia/Jayap
ura, America/Curacao, Asia/Dushanbe, America/Guyana, America/Guayaquil, America/Martinique,
Portugal, Europe/Berlin, Europe/Moscow, Europe/Chisinau, America/Puerto_Rico, America/Rank
in_Inlet, Pacific/Ponape, Europe/Stockholm, Europe/Budapest, America/Argentina/Jujuy, Australi
a/Eucla, Asia/Shanghai, Universal, Europe/Zagreb, America/Port_of_Spain, Europe/Helsinki, Asia
/Beirut, Asia/Tel_Aviv, Pacific/Bougainville, US/Central, Africa/Sao_Tome, Indian/Chagos, Americ
a/Cayenne, Asia/Yakutsk, Pacific/Galapagos, Australia/North, Europe/Paris, Africa/Ndjamena, Pac
ific/Fiji, America/Rainy._River, Indian/Maldives, Australia/Yancowinna, SystemV/AST4, Asia/Oral, A
merica/Yellowknife, Pacific/Enderbury, America/Juneau, Australia/Victoria, America/Indiana/Veva
v, Asia/Tashkent, Asia/Jakarta, Africa/Ceuta, Asia/Barnaul, America/Recife, America/Buenos_Aire
s, America/Noronha, America/Swift_Current, Australia/Adelaide, America/Metlakatla, Africa/Djibo
uti, America/Paramaribo, Europe/Simferopol, Europe/Sofia, Africa/Nouakchott, Europe/Prague, A
merica/Indiana/Vincennes, Antarctica/Mawson, America/Kralendijk, Antarctica/Troll, Europe/Sam
ara, Indian/Christmas, America/Antigua, Pacific/Gambier, America/Indianapolis, America/Inuvik,
America/lgaluit, Pacific/Funafuti, UTC, Antarctica/Macquarie, Canada/Pacific, America/Moncton,
Africa/Gaborone, Pacific/Chuuk, Asia/Pyongyang, America/St_Vincent, Asia/Gaza, Etc/Universal,
PST8PDT, Atlantic/Faeroe, Asia/Qyzylorda, Canada/Newfoundland, America/KentuckyyLouisville,
America/Yakutat, Asia/Ho_Chi_Minh, Antarctica/Casey, Europe/Copenhagen, Africa/Asmara, Atlan
tic/Azores, Furope/Vienna, ROK, Pacific/Pitcairn, America/Mazatlan, Australia/Queensland, Pacifi
¢/Nauru, Europe/Tirane, Asia/Kolkata, SystemV/MST7, Australia/Canberra, MET, Australia/Broken
_Hill, Europe/Riga, America/Dominica, Africa/Abidjan, America/Mendoza, America/Santarem, Kw
ajalein, America/Asuncion, Asia/Ulan_Bator, NZ, America/Boise, Australia/Currie, EST5EDT, Pacifi
¢/Guam, Pacific/Wake, Atlantic/Bermuda, America/Costa_Rica, America/Dawson, Asia/Chongqging,
Eire, Europe/Amsterdam, America/Indiana/Knox, America/North_Dakota/Beulah, Africa/Accra, A
tlantic/Faroe, Mexico/BajaNorte, America/Maceio, Etc/UCT, Pacific/Apia, GMTO, America/Atka, Pa
cific/Niue, Australia/Lord_Howe, Europe/Dublin, Pacific/Truk, MST7MDT, America/Monterrey, Am
erica/Nassau, America/Jamaica, Asia/Bishkek, America/Atikokan, Atlantic/Stanley, Australia/NSW,
US/Hawaii, SystemV/CST6, Indian/Mahe, Asia/Aqtobe, America/Sitka, Asia/Vladivostok, Africa/Li
breville, Africa/Maputo, Zulu, America/Kentucky/Monticello, Africa/El_Aaiun, Africa/Ouagadougou,
America/Coral_Harbour, Pacific/Marquesas, Brazil/West, America/Aruba, America/North_Dakota/
Center, America/Cayman, Asia/Ulaanbaatar, Asia/Baghdad, Europe/San_Marino, America/Indiana
/Tell_City, America/Tijuana, Pacific/Saipan, System\Vy/YST9, Africa/Douala, America/Chihuahua, A
merica/0jinaga, Asia/Hovd, America/Anchorage, Chile/Easterisland, America/Halifax,
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Antarctica/Rothera, America/Indiana/Indianapolis, US/Mountain, Asia/Damascus, America/Argenti
na/San_Luis, America/Santiago, Asia/Baku, America/Argentina/Ushuaia, Atlantic/Reykjavik, Africa
/Brazzaville, Africa/Porto-Novo, America/la_Paz, Antarctica/DumontDUrville, Asia/Taipei, Antarcti
ca/South_Pole, Asia/Manila, Asia/Bangkok, Africa/Dar_es_Salaam, Poland, Atlantic/Madeira, Anta
rctica/Palmer, America/Thunder_Bay, Africa/Addis_Ababa, Asia/Yangon, Europe/Uzhgorod, Brazil
/DeNoronha, Asia/Ashkhabad, Etc/Zulu, America/Indiana/Marengo, America/Creston, America/Pu
nta_Arenas, America/Mexico_City, Antarctica/Vostok, Asia/Jerusalem, Europe/Andorra, US/Samo
a, PRC, Asia/Vientiane, Pacific/Kiritimati, America/Matamoros, America/Blanc-Sablon, Asia/Riyad
h, Iceland, Pacific/Pohnpei, Asia/Ujung_Pandang, Atlantic/South_Georgia, Europe/Lisbon, Asia/H
arbin, Europe/Oslo, Asia/Novokuznetsk, CST6CDT, Atlantic/Canary, America/Knox_IN, Asia/Kuwai
t, SystemV/HST10, Pacific/Efate, Africa/lome, America/Bogota, America/Menominee, America/Ad
ak, Pacific/Norfolk, Furope/Kirov, America/Resolute, Pacific/Tarawa, Africa/Kampala, Asia/Krasno
yarsk, Greenwich, SystemV/EST5, America/Edmonton, Europe/Podgorica, Australia/South, Canad
a/Central, Africa/Bujumbura, America/Santo_Domingo, US/Eastern, Europe/Minsk, Pacific/Auckla
nd, Africa/Casablanca, America/Glace_Bay, Canada/Eastern, Asia/Qatar, Europe/Kiev, Singapore,
Asia/Magadan, System\V/PST8, America/Port-au-Prince, Europe/Belfast, America/St_Barthelemy,

Asia/Ashgabat, Africa/Luanda, America/Nipigon, Atlantic/Jan_Mayen, Brazil/Acre, Asia/Muscat, As
ia/Bahrain, Furope/Vilnius, America/Fortaleza, Ftc/GMTO, US/East-Indiana, America/Hermosillo,

America/Cancun, Africa/Maseru, Pacific/Kosrae, Africa/Kinshasa, Asia/Kathmandu, Asia/Seoul, Au
stralia/Sydney, America/Lima, Australia/LHI, America/St_Lucia, Europe/Madrid, America/Bahia_B
anderas, America/Montserrat, Asia/Brunei, America/Santa_Ilsabel, Canada/Mountain, America/Ca
mbridge_Bay, Asia/Colombo, Australia/West, Indian/Antananarivo, Australia/Brisbane, Indian/Ma
yotte, US/Indiana-Starke, Asia/Urumaqi, US/Aleutian, Europe/Volgograd, America/Lower_Princes,

America/Vancouver, Africa/Blantyre, America/Rio_Branco, America/Danmarkshavn, America/Detro
it, America/Thule, Africa/Lusaka, Asia/Hong_Kong, Iran, America/Argentina/La_Rioja, Africa/Daka
r, SystemV/CST6CDT, America/Tortola, America/Porto_Velho, Asia/Sakhalin, Etc/GMT+10, Americ
a/Scoresbysund, Asia/Kamchatka, Asia/Thimbu, Africa/Harare, Etc/GMT+12, Etc/GMT+11, Navajo,
America/Nome, Europe/Tallinn, Turkey, Africa/Khartoum, Africa/Johannesburg, Africa/Bangui, E
urope/Belgrade, Jamaica, Africa/Bissau, Asia/Tehran, WET, Europe/Astrakhan, Africa/Juba, Amer
ica/Campo_Grande, America/Belem, Etc/Greenwich, Asia/Saigon, America/Ensenada, Pacific/Mid
way, America/Jujuy, Africa/Timbuktu, America/Bahia, America/Goose_Bay, America/Virgin, Ameri
ca/Pangnirtung, Asia/Katmandu, America/Phoenix, Africa/Niamey, America/Whitehorse, Pacific/N
oumea, Asia/Tbilisi, America/Montreal, Asia/Makassar, America/Argentina/San_Juan, Hongkong,

UCT, Asia/Nicosia, America/Indiana/Winamac, SystemVy/MST7MDT, America/Argentina/ComodRiva
davia, America/Boa_Vista, America/Grenada, Asia/Atyrau, Australia/Darwin, Asia/Khandyga, Asia/
Kuala_Lumpur, Asia/Famagusta, Asia/Thimphu, Asia/Rangoon, Europe/Bratislava, Asia/Calcutta,

America/Argentina/Tucuman, Asia/Kabul, Indian/Cocos, Japan, Pacific/Tongatapu, America/New
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_VYork, Etc/GMT-12, Etc/GMT-11, Etc/GMT-10, System\V/YSTIYDT, Europe/Ulyanovsk, Etc/GMT-14,

Etc/GMT-13, W-SU, America/Merida, EET, America/Rosario, Canada/Saskatchewan, America/St K
itts, Arctic/Longyearbyen, America/Fort_Nelson, America/Caracas, America/Guadeloupe, Asia/He
bron, Indian/Kerguelen, SystemV/PSTSPDT, Africa/Monrovia, Asia/Ust-Nera, Egypt, Asia/Srednek
olymsk, America/North_Dakota/New_Salem, Asia/Anadyr, Australia/Melbourne, Asia/Irkutsk, Ame
rica/Shiprock, America/Winnipeg, Europe/Vatican, Asia/Amman, Etc/UTC, SystemV/AST4ADT, Asi
a/Tokyo, America/Toronto, Asia/Singapore, Australia/Lindeman, America/Los_Angeles, SystemV)/

EST5EDT, Pacific/Majuro, America/Argentina/Buenos_Aires, Europe/Nicosia, Pacific/Guadalcanal,

Europe/Athens, US/Pacific, Europe/Monaco]

/B AT X HE LocalDateTime

LocalDateTime localDateTimel = LocalDateTime.now(Zoneld.of("America/El_Salvador"));

System.out.println(localDateTimel);
// 2019-10-27T700:46:21.268

/) UBT X ST E AT 8]
LocalDateTime localDateTime2 = LocalDateTime.now();

ZonedDateTime zonedDateTimel = localDateTime2.atZone(Zoneld.of("Africa/Nairobi"));

System.out.println(zonedDateTimel);
/) 2019-10-27T14:46:21.273+03:00/Africa/Nairobi]

9.7 5545 HHA B RIE% R

S ToiREE 3
java.time.Instant )
javaLiitil Date Date from(instant)
java.time. Instant 2
Timestamp.from(instant)

java.sgl Timestamp
java.time ZonedDateTime
java.util. GregorianCalendar
java.time. LocalDate
java sgl.Date
java.time.LocalTime
java.sgl. Time
java.time LocalDateTime
java.sgl.Timestamp
java.time Zoneld
java.uti. TimeZone
ava.time format. DateTimeFormatter
java.text DateFormat

GregorianCalendar.from(zonedDateTime)

Date valueOf({localDate)

Date valueOf(localDate)

Timestamp valueOf(localDateTime)

Timezone getTimeZone(id)

formatter toFormat()

FromizEE3E

date tolnstant()

timestamp.tolnstant()

cal toZonedDateTime()

date toLocalDate()

date toLocalTime()

timestamp_toLocalDate Time()

timeZone toZoneld()

p
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F+E= Java8 X fEpytLcg o

Java 8XEARAMEIRM T MAcH: AIEERVERR LA BT REREM, Sk, tIRE S,
NE, FFUAEGIBEZIKIGREE Java8 RRIES MRV TR,

B4, BIDREX—EME BingheAnnotation, TR,

package io.mykit.binghe java8.annotition;
import java.lang.annotation.”;

Jer
* @author binghe
* @version 1.0.0
* @description E XA
7
@Repeatable(BingheAnnotations.class)
@Target({ElementType. TYPE, ElementType.FIELD, ElementType.METHOD, ElementType.PARAMET
ER, ElementType. CONSTRUCTOR, ElementType.LOCAL_VARIABLE,ElementType. TYPE_PARAMETER})
@Retention(RetentionPolicy. RUNTIME)
public @interface BingheAnnotation {

String value();

A= 7E BingheAnnotation T2 FEb ENIERYEAZE S T — 1 @Repeatable(BingheAnnotation
s.class)FfE, B/MIERR: XNEEM? XPRiE Java8 FEX AJBEEEMEIXE, £TF Bingh
eAnnotations.class, AKRFI=, HEF FEMBAET .

ETE, BI1ENX—" BingheAnnotations JEA#E, W1 FFiRo
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package io.mykit.binghe.java8.annotation;

import java.lang.annotation.”;

Sk A
/

“ (@author binghe
* @version 1.0.0
* @description ENZA#F

* /
Y

@Target({ElementType. TYPE, ElementType.FIELD, ElementType.METHOD, ElementType.PARAMET
ER, ElementType. CONSTRUCTOR, ElementType.LOCAL_VARIABLE,ElementType. TYPE_PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
public @interface BingheAnnotations {

BingheAnnotation[] value();

EEXE, AXRBEBETMM! | &%, BingheAnnotations B2 —NER#ESE, EHEELTF BingheAn
notation SRR, LT —1@Repeatable(BingheAnnotations.class)/¥##, HHLE1%, Binghe
Annotations JFREEME X S EBRVFRE/ LT &EXS], BERERNE, 7 BingheAnnotation
SFREESR, EX T — BingheAnnotation /T ##FERVEAE, WHBRLZW, 7 BingheAnnotations E##
£, B1EEBZ BingheAnnotation 7. FTLL, 7E BingheAnnotation JZf# F15F @Repeata
ble(BingheAnnotations.class)3RPARI ATEEE. FE. FA. B8, WiEHE S EESFHA Bi
ngheAnnotation E &,

BESR, EATeIE—1 Binghe 2, 7 Binghe KHREX—init() 5%, 1E init 5% L, EERF
F@BingheAnnotation T ##FEEAEN AVEIE, 0 FPIT.

package io.mykit.binghe.java8.annotation;

Ve ks

* @author binghe
* @version 1.0.0
* @description Jit 247

* /
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@BingheAnnotation("binghe")
@BingheAnnotation("class")
public class Binghe {

@BingheAnnotation("init")
@BingheAnnotation("method")
public void init(){

Fitk, BAIRLETLUNIRESEAR T, B3 BingheAnnotationTest, XTEEFHRHITNIL, 0
TR

package io.mykit.binghe.java8.annotation;

import java.lang.reflect. Method;
import java.util. Arrays;

e
* @author binghe
* @version 1.0.0
* @description Jit ;247
Va

public class BingheAnnotationTest {

public static void main(String[] args) throws NoSuchMethodException {
Class<Binghe> clazz = Binghe.class;
BingheAnnotation[] annotations = clazz.getAnnotationsByType(BingheAnnotation.class);
System.out.printin("2€ EREEFMEINT: ");
Arrays.stream(annotations).forEach((a) -> System.out.print(a.value() + " "));

System.out.println();

System.out.println(" ");

Method method = clazz.getMethod("init");
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annotations = method.getAnnotationsByType(BingheAnnotation.class);

System.out.printin("75 A2 ERVEE T T ");

Arrays.stream(annotations).forEach((a) -> System.out.print(a.value() + " "));

iz1T main()757%, MBIl TRISERER.

K EREE TN
binghe class

FiE EMNBEEFEINT:
init method

¥7, SKMEX)LE, H2AH, KKAMUMERMS: hacker_binghe, Fhifri#ds, —i
RRERAR, —Ee#Hk, —ERA~~
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KA Rl PDF
XF AR HEARS:

BE “HikHiE S CRNE#ESHARE) POF BFH,
EE “BEEiQ” JE CTRSEEIR) PDF BFH.

S5iERRE

MRMRESACAIENERTE, BREERAXE T KTRR | BEARS, BACTFEIEH
R I FHIRS. REGE. BEENASRERAK, §HKAKRAR 1| BEARSEHR T ARERA
T, B—REAXETFIHR! NIEEDTLBEIFE T KARR 1 MEARSXE, Mk
BEIKR; BERMRELN T HRAR LR KX, RARTNRAET! WNRIREE G —1F5=
BOBIRES], SKRIECRRESIRYKER, #AT, FAERME, BrxoE T AaKRR 1 HIEAKRSIE,
BREMBEZEATE, IR IARA AR TBRE!
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