A

Eﬁﬁ%ﬁﬁ*%%
RREHVNERE =

StreamigfEis®
JavaB I B 5k 2R
Lambdazikat i35 % 5 508

BejavasHRUMNRLE, BFRREENGEST S

MEEFRERE | FNEHL

ALIBABA CLOUD DEVELOPER COMMUNITY

THE WIND RIDERS PROGRAM

7GR, BEAMERIIAETR. MySQLIEARER. DAERESEHER,

ZERK, —ERNTAHARGERM. HRS. DHINEERE. DHNSES5RBERAH
RN, AEHk. SR S0 BY. B4R ASIESESIRE FENREER,

Al SEIEREIER W PEIMF mykit-data /FE; BB CRNERDHES [RIESKE).
(BEWELES KBIERALE) M (MySQLEARE: A&, MASTHSEA) FE; “KH

B HERARS1EE,.

APEIEH Github: Github & : /NS E,

MESHARE “REE” B EACTE AR
S5HEAKOL—EEmK SEBFFMEE T 08 T B RFTEIES

https://github.com/MaRuifu/Java8NewFeatures

fEERETT

$—E Java8 2%

1.1 Java8 B FLeHTAFE?

1.2 Java8 ML =?

$”ZF Lambda F&ixx{

2.1 f+42& Lambda FRIAH?

22 EBREL

2.3 Lambda FiX=

2.4 XEEEMAEM Lambda FRiAF
2.5 ERZEE| Lambda Tk

2.6 Lambda FIAHBNEE

2.7 O

2.8 Lambda AT BBIZ(

2.8.1 =fIl—

2.8.2 FH =

283 EfHI=

10

10

10

11

12

22

23

26

28

28

31

33

F=EF HHAEOLR
3.1 MARZOREHIEORD S
3.2 HfhREEO RS

3.3 mMARZOR#E# O
3.3.1 Consumer [

3.3.2 Supplier 0O

3.3.3 Function &

3.3.4 Predicate O

EIYE Java7 5 Java8 H#Y HashMap

4.1 JDK8 HashMap EHF
42 TmES5YR

4.3 FRiE]iR(F

4.4 &|F1RE

4.5 IAIRIE

4.6 Optional &28zk

35

35

35

37

37

38

38

40

42

42

42

42

43

43

44

FLE HASIRSMERSIA 45

5.1 B#5IH 45
5.2 M1E8851F 46
5.3 #H5|H 47
7 E Java8 ARy Stream 48
6.1 f+AZ Stream? 48
6.2 Stream #/FRI=TFE 48
6.3 WfAIRIEE Stream? 49
6.4 Stream BY[E)1R(F 50
6.5 Stream HYZR | H1R1E 52
6.6 FITRSEITR 56
6.7 Fork/Join #EZE 56
6.8 Stream iR 59
6.9 FNMAIEI#E Stream 7i? 60
6.10 Stream BYH[E1IRAE 65
6.11 Tm5t~ 65
6.12 BRET 70
6.13 HiF 73
6.14 Stream BY£L IFI1E 74

6.15 &5 LED 74

6.16 <y
6.17 WE
6.18 WNfrIWEE Stream JR?

6.19 FITMKEH

%tE Optional 3£
7.1 ft4ZE Optional 27

7.2 Optional 2711

FI\E BN E
8.1 EOFBIERINT A
8.2 BIATTERIRN

8.3 EOPRBIFET A

79

81

82

85

86

86

86

96

96

96

99

FNE ZAHBT [EIFN BRI E,

9.1 f£/ LocalDate. LocalTime. LocalDateTime
9.2 Instant BY|E)&

9.3 Duration # Period

9.4 HHARVIR(F

9.5 FEIT ST

9.6 FYXHYALIE

9.7 S1EH HHILERVAL IR

E+E Java8 3 :AERIEE

100

100

103

103

104

106

106

110

111

=

E—F Javal8 B <

& i

F—&E Java8 2'%A

1.1 Java8 B2

LambdaZixst

EHERED

LA RsEERs A

Stream API

JavasFiiFisE

\ RORELAG EHRSEE

FAEI EEAAPI

Hith#fiFit

BRI, Java8 FAFMEMI AR

o Lambda FiAT

o HEFEO

o HE5IBEMmERESIA

e Stream API

o EOMFINGEEFETHE
o FTEYIE]HHA AP

o HAthFTHME

Hrh, 5IRESRTZEEMRE Lambda RAXUAD Stream APl

9 > —E Java8 B

1.2 Java8 B R?

EEER
| KELD
B AHIStream AP
Javasfii= Lambdaisst
EFHT

EBALAEIZEETREOptional

=& skt Java8 (=2 W FETo

REER

ARBIEL (BGI0T #FHB0EE Lambda &)
SRAHY Stream AP

EFHT

o AR TIEFFE Optional

%% Lambda ®XR < 10

B —Z Lambda F"ixxt 5

2.1 42 Lambda Rix=?

Lambda RIATNE— T EBRE, FTATLUXFIER Lambda FiXT: Lambda @—EAI L%
B BEBMEIBRBGEIE—FH#HITER) . F Lambda RIALEBEHEMES. TE
MRS, #F B, #H Lambda RANEEBEE Java BB S FRIXBEIEF IR

2.2 BERANERE

TENBINEIER Lambda RIAXN 271, HIEREEEZAINL, Fld, HIEREZAIBAE
ELERFRD Integer FEEIBHRERI A/

Comparator<integer> com = new Comparator<integer>() {
@Override
public int compare(Integer o1, Integer 02) {

return Integer.compare(ol, 02);

£ LERAEH, HIVERERNERESEI T IR Integer ZERIBIRERIA/,
BT, HAIAI L ERERNERRGIEANSE, FBEIEMITERT, WA

TreeSet<Integer> treeSet = new TreeSet<>(com);

RN TR,

11 > $%F Lambda Rk

@Test
public void test1(){
Comparator<integer> com = new Comparator<integer>() {
@Override
public int compare(Integer ol, Integer 02) {

return Integer.compare(ol, 02);

I8

TreeSet<Integer> treeSet = new TreeSet<>(com);

AT B, EEIMERAEES, LiF EEERRE FE—1THHE.

return Integer.compare(ol, 02);

HpPARARR EERE TR . BENTBE LEN—1TRE, HMNEIEERZRANEE
hPREEZHIH.

2.3 Lambda XX

NRMFEA Lambda RIXAXTERAIA D Integer FHEBIERILLES, FANZWAISLILIE?

Comparator<integer> com = (x, y) -> Integer.compare(x, y);

E2%, A Lambda ®AL, FHMNRAFEEB—ITREREEBESEIM D Integer LBEHER
EE#

AT T LUE Lambda FRIATE 3B E] TreeSet IS 559, W FFITo

TreeSet<Integer> treeSet = new TreeSet<>((x, y) -> Integer.compare(x, y));

EMRREZsLEER Lambda ZAN—1THRIRLEERE B2 NERE 21T RITIAE.

%% Lambda ®XR < 12

BIEX, AORERR: REAEIRBENSANLRLRA I ERRBENBERNNATESR
W FAEEEF S —METRIE ANE?

HEL, HBWNE: LEBMNRZEBZIZET —D5, #1K BIE - ERER—R
BBIF, KL MERERAREES Lambda FRATHF A N EMEDNE.

2.4 XtbE#M A EF Lambda RixA

a0, MAERXF—IEXR: REEHAFFRIFRAT 30 ¥HRITER.
B, BIFECNE— Employee REFRFERTHE .

@Data

@Builder

@ToString

@NoArgsConstructor

@AllArgsConstructor

public class Employee implements Serializable {
private static final long serialVersionUID = -9079722457749166858L;
private String name;
private Integer age;

private Double salary;

£ Employee &, IAIERFHE T R THER. FRMFHE.

B, BB EEZ PRI Lst &5, WM.

protected List<Employee> employees = Arrays.asList(
new Employee("5K=", 18, 9999.99),
new Employee("Z=PH", 38, 5555.55),
new Employee("+£H", 60, 6666.66),

13 > $%F Lambda Rk

new Employee("#X7<", 16, 7T777.77),
new Employee("fH", 18, 3333.33)

1. BHEHRES

HNAEERAENRHESHNAARERNERATFT 30WRITER.

public List<Employee> filterEmployeesByAge(List<Employee> list){
List<Employee> employees = new ArrayList<>();
for(Employee e : list){
if(e.getAge() >= 30){
employees.add(e);

}
}
return employees;
}
ETE, JTWA—T EENAE.
@Test

public void test3(){
List<Employee> employeelist = filterEmployeesByAge(this.employees);
for (Employee e : employeelist){
System.out.println(e);

BT test3 77%, WHESIN AR,

Employee(name=2=P4, age=38, salary=5555.55)
Employee(name=FF, age=60, salary=6666.66)

%% Lambda ®XR < 14

BIERY, ERFRATHEST IONALER, EREMBLHEGHNAIAEEESRT,

a0, FREETEN: RREAQARFRATIIEKRTHESFT 5000 WRITER.

RS, FANA/ABREIBE—MRRIETIEATT %o

public List<Employee> filterEmployeesBySalary(List<Employee> list){
List<Employee> employees = new ArrayList<>();
for(Employee e : list){
if(e.getSalary() >= 5000){

employees.add(e);

}

return employees;

ST L filterEmployeesByAge() 7574 filterEmployeesBySalary 574/, FAT&IM, KIBHHA
EERZAEER, RE for BRI FHEGHIBTRE,

ORIEBIFAVFR—1FR, ERYAATPRFER/NTHESFT 20 IR TES, BRITEL
B—IEIEHET. BEXRERAENSEZERNATSERM!

XE, PAR—DREA: WTFXMERNGERFNLEARAZERE? BEE T NMEFRR: &
NRANTEHMIENR. K, BABNEHEERE—MEAEN, BEFREEHFNA. &Y
BYATVRIE? SRR HERN M| RITRIUAI A1 2= PSRBT S 45 H BV IRIT R AN
R RERAUEE () —SCRFS]
RITRIVE L,

2. ERIITRIVELAED

A EAIGIHRTCR MM LB AR, ARUETTE, WFRIHTRIAFRENEF I

https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41

15 > $%F Lambda Rk

BiE ORIV ——REEEERN 23 MGIHREEX) LT !) RKES,

BAEE X —MZ8E O MyPredicate, SHEEIRMEIEHITIR, FEMUKE true, F

RFEFMNERE falseo

public interface MyPredicate<T> {

/* *
* XIEBTFHT T TR T T
* FEAEEtrue, T EAINE/O]false
*/

boolean filter(T t);

ETRE, FAIGE MyPredicate #OBISLIZE FilterEmployeeByAge RIS EFM AT HESET
30MRTIEE.

public class FilterEmployeeByAge implements MyPredicate<Employee> {
@Override
public boolean filter(Employee employee) {
return employee.getAge() >= 30;

BIMNEX—TEIERTERNGE, EEENSHAMEBERINERES, ARNEE—1TR
1E XAy OSLAl, ERHRIEGIRBRFETRFMHRREITERRE,

T —
public List<Employee> filterEmployee(List<Employee> list, MyPredicate<Employee> myPredicate)
{
List<Employee> employees = new ArrayList<>();
for(Employee e : list){
if(myPredicate filter(e)){

employees.add(e);

https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41

%% Lambda &KX, < 16

}
}
return employees;
}
BTk, NS a AR a5,
@Test

public void test4(){
List<Employee> employeelList = this.filterEmployee(this.employees, new FilterEmployeeByAg
e());
for (Employee e : employeelist){
System.out.println(e);

1B17 test4() 7%, WHAVERIES W NFR.

Employee(name=2=[1, age=38, salary=5555.55)
Employee(name=FF, age=60, salary=6666.66)

BEIXE, RREBEHE—EAAFRARIRGIE?

=, XIERITRIBE], W FIRIHRIVRRER MM, —EBSR (atElle—
—REBEERAT 23 MR IHRIVEEX)L T !) RFE S,

BANSEREEFABFP IAARTHESF T 5000 WRATER, I, RMNRFE2E—
FilterEmployeeBySalary ZES2I MyPredicate #0, 0 NF.

public class FilterEmployeeBySalary implements MyPredicate<Employee>{
@Override
public boolean filter(Employee employee) {
return employee.getSalary() >= 5000;

https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41
https://mp.weixin.qq.com/s?__biz=Mzg4MjU0OTM1OA==&mid=2247489408&idx=1&sn=84c48c9c3707691bd7709ebec66e82f1&source=41

17 > $%F Lambda Rk

BEE, stAlERE WA AET, ElitAER4L9E A filterEmployee(List<Employee> li
st, MyPredicate<Employee> myPredicate) /57,

@Test
public void test5(){
List<Employee> employeeList = this.filterEmployee(this.employees, new FilterEmployeeBySal

ary());
for (Employee e : employeelist){
System.out.println(e);

BT testd 5%, MERERE R TR,

Employee(name=3k=, age=18, salary=9999.99

()
Employee(name=25M, age=38, salary=5555.55)
Employee(name=FEf, age=60, salary=6666.66)

()

Employee(name=&7, age=16, salary=7777.77

BIUES, AR AEHTRNE, TOTRRATEENERNEENL, KIMNRAFE
872 MyPredicate # OB LIMA R LI A ARENTIRZLE, AREMNRAEFRTEA filterEmployee(Li
st<Employee> list, MyPredicate<Employee> myPredicate) 575 5 TE &I EMMNE NEIE],

XE, PAR—DREA: EEAEABRERNIHEEMIIHRINE? NREM, FEE
AERIIHRIUCRIU I B 2 HIREIE? MBS R BZE — T RIRERMSITRIZFTA? XK
BEnHESR!

ERIRITRIAAABBERFRIHTT . S8REX —IIRRENE R, H(IHBRROIE—

Mgl !

%% Lambda ®XR < 18

3. ERRERE

BEAERANIMLERNZREBMUIRNBERINEE, ETXR, HIERERNEILRKLN
WRIEBTE, ARELRBEHRATRESFT 30NRTER.

@Test
public void test6(){
List<Employee> employeelist = this.filterEmployee(this.employees, new MyPredicate<Emplo
yee>() {
@Override
public boolean filter(Employee employee) {
return employee.getAge() >= 30;

b;
for (Employee e : employeelist){

System.out.println(e);

IB17 test6 737%, HMHIITERER.

Employee(name=2=P4, age=38, salary=5555.55)
Employee(name=EF, age=60, salary=6666.66)

BRINERIAARTHESFT 5000 WRATER, WA

@Test
public void test7(){
List<Employee> employeelist = this.filterEmployee(this.employees, new MyPredicate<Emplo
yee>() {
@Override
public boolean filter(Employee employee) {
return employee.getSalary() >= 5000;

19 > $%F Lambda Rk

b;
for (Employee e : employeelist){
System.out.println(e);

BT test? 757%, MBI FERER.

Employee(name=3Kk=, age=18, salary=9999.99)
Employee(name=28M, age=38, salary=5555.55)
Employee(name=EF, age=60, salary=6666.66)
Employee(name=i#X7x, age=16, salary=7777.77)

EZANEREERLEMBLHEGN A EERBE, HEBERIKIHEMARNEN, kel
B—PISRLILLEMMNE R T ERWNERER, BEAEE—FREET

BZ, FREZRNILLEN M AE, HFEARMREWMILIRZ! |
BEHZEEME RN A NIE?
4, E3L3%: Lambda Rix

EfEA Lambda A, BRITEZEVERZ ISR filterEmployee(List<Employee> list, My

Predicate<Employee> myPredicate) /5 7%.
ARE, RERATHEFT I0NRIER.

@Test
public void test8(){
filterEmployee(this.employees, (e) -> e.getAge() >= 30).forEach(System.out::println);

%% Lambda ®XR < 20

E3%, A Lambda ®ANRFE TR T R ITE BRI B Ho
IB17 test8 757, LI FRVERER.

Employee(name=28M, age=38, salary=5555.55)
Employee(name=FF, age=60, salary=6666.66)

BREMEA Lambda RATKIAB T A AT HEF T 5000 R TER, WHFAT

@Test
public void test9(){
filterEmployee(this.employees, (e) -> e.getSalary() >= 5000).forEach(System.out::println);

&3, £ Lambda FAL, XE—1TREMBET! !
BT testS 757%, LI FRVERER.

Employee(name=5k=, age=18, salary=9999.99)
Employee(name=28M, age=38, salary=5555.55)
Employee(name=EF, age=60, salary=6666.66)
Employee(name=#X7, age=16, salary=7777.77)

H9h, R Lambda XA, AFBLHBELIENES, HMIREEBLRAMESFIIEE
EMNBYTTER, AaHERER.

5. E3L3%: Stream API

£/ Lambda FRATNEES Stream API, SBALHMBENMES, BRI T EERIE T
EHEHARER.

21 > $%F Lambda Rk

Ban, N REBH— employees &£ &, FHiEA Lambda RIAF LKA T HEATFHEEFT 5
000 IR TE R,

@Test
public void test10(){
employees.stream() filter((e) -> e.getSalary() >= 5000).forEach(System.out::println);

=i, RGH—1ES, f£/A Lambda RiATVH Stream API, —{7ASRiaES IR HARER
TEH#HITHEL.

IB17 testl0 757, HWIHIITRILERER,

Employee(name=5k=, age=18, salary=9999.99
Employee(name=Z[H, age=38, salary=5555.55
name=F 7, age=60, salary=6666.66

Employee(name=&X7x, age=16, salary=7777.77

()
()
Employee()
()

NRFANNEZREETR PR TAVERR? HLBRER, 0.

@Test
public void test11(){
employees.stream() filter((e) -> e.getSalary() >= 5000).limit(2).forEach(System.out::println);

BEILVEE, FA AR TRAIT limit(2) KRG SRR R ITER. 1517 testll 757%, il
THERER

Employee(name=3Kk=, age=18, salary=9999.99)
Employee(name=2=P4, age=38, salary=5555.55)

£ Lambda FETUH Stream APl BRJLIREEENFERE R, BIMIREN LA R TEHEFT 5
000 IR T#E#o

%% Lambda ®XR < 22

@Test
public void test12(){
employees.stream() filter((e) -> e.getSalary() >= 5000).map(Employee::getName).forEach(Syste

m.out::println);

}

FILAEER], A map dIEE T TAARTEHEFT 5000 R THHE, &17 testl2 7%, Wil
THERER

K=
2y

(29

EAERESE? &5, AHXPEANKITRN: REBRIN

2.5 ERZEF| Lambda RiXz
B VSR BB ME S LM TRAE Lambda FARIE?
KB, BT LSRR R BRI A M E S R EE) Lambda FiAR
o ERAMNILLE| Lambda KA
ERES R,

Runnable r = new Runnable(){
@Override
public void run(){
System.out.printIn("Hello Lambda");

23 > $%F Lambda Rk
#1479 Lambda AU R0

Runnable r = () > System.out.printin("Hello Lambda");

o ERNHEIENSELEE Lambda RIAEASHETE
ERERNERLIF NS HRU TP,

TreeSet<Integer> ts = new TreeSet<>(new Comparator<integer>(){
@Override
public int compare(Integer ol, Integer 02){

return Integer.compare(ol, 02);

£ Lambda RAIFASEI TP,

TreeSet<Integer> ts = new TreeSet<>(

(01, 02) -> Integer.compare(ol, 02);

MEMLEE, Lambda RAXEZLLEMPNE LR ENZ.

2.6 Lambda RiAXAVIEE

Lambda FRIANTE Java iIBSH5INT “>7 #BERT, 7 BERHEFFN Lambda RiAT
MIRER S E T LKIRIER, ©F Lambda XA D AFES :

o EMIESI4EET Lambda REXNFENFRESE

%% Lambda ®XR < 24

Lambda RIAX AL EEX#EORMEI, Lambda RAXHNSESIRAR EX N EROF G E
GNES S I

o BMIERSHEET Lambda {&, Bl Lambda RiAXNEHRITHITHAEE,

Lambda &7 L2 O 75 AR AL IAITIAE.

FEANTETLUE Lambda RIATANE E 2L W0,

1. BEBR—: &, TR[EOME, Lambda ARE—LKIEG

Runnable r = () -> System.out.println("Hello Lambda");
BB TR
@Test

public void test1(){
Runnable r = () -> System.out.println("Hello Lambda");

new Thread(r).start();

2. IBEBINZ: Lambda REAFE—1MEH, HEHTROIE

Consumer<String> func = (s) -> System.out.println(s);

BB TP

@Test
public void test2(){
Consumer<String> consumer = (x) -> System.out.println(x);

consumer.accept("Hello Lambda");

25 > $%F Lambda Rk

3. EEBI=". Lambda RSFE—SHUE, SHEVVESEILIEER

Consumer<String> func = s -> System.out.println(s);

BRBIE0 N FrRe

@Test
public void test3(){
Consumer<String> consumer = x -> System.out.println(x);

consumer.accept("Hello Lambda");

4. EEEBIM: Lambda RER NS, HEBREE

BinaryOperator<integer> bo = (a, b) -> {
System.out.printin("E =z O");

return a + b;

BB TR

@Test
public void test4(){
Comparator<integer> comparator = (x, y) -> {
System.out.printin(" R =",

return Integer.compare(x, y);

5. BZEBILE: & Lambda MRE—FEDN, return FIXIES] LIEE

BinaryOperator<integer> bo = (a, b) > a + b;

%% Lambda ®XR < 26

BRBIE0 N FrRe

@Test
public void test5(){

Comparator<integer> comparator = (x, y) -> Integer.compare(x, y);

—

6. IEAEEI/N: Lambda RIANHISHIIRHIIKIBERBAILUERAT, EH JVM
IRIFERAETSET £ TFOCERTHEIERE, XpE KRBT

BinaryOperator<integer> bo = (Integer a, Integer b) > {
return a + b;

—

ZR/T:

BinaryOperator<integer> bo = (a, b) -> {

return a + b;

& Lambda AN PRSI LB E B RRIF S HERTS LAY Lambda AP ERIEERE,
RFEERARURE, XERN javac RIBEFN LETX, EEa#H 7S8R, Lambda &
ERBYRBERI T LI XIR, SHREIRSHETHR, XEUEFMBRY “REERT

Lambda RANFEZRMIEONZR:, PILL FATELERRIRH ARRRIE D,

SEE—MhRFENEDO, THREIEO,

27 > $%F Lambda Rk

FILUEIE Lambda FRIATURAEZIZOMNN SR, (B Lambda RAXME—IZNRE, F
NZFEEBEBMMEORNMR S5 E EHITER) S

FILEEEREZEO HER @Functionalinterface J3#E, XM UK BEEEEE—NRE
NEO, [FRY javadoc W=BE—%AEE, WAXMEOR— 1 EREHENZEL,

HMAI U BE X REEL, HER Lambda RATKSLIMABNAYTHEE,

BN, EAREFEOMN Lambda RIANKINXT FRFEAVIETEE,

B, FTEX—PREIEO MyFunc, #RPI7R.

@Functionallnterface
public interface MyFunc <T> {
public T getValue(T t);

BTIR, HNEX—MEEFRTETGE, HRSHN MyFunc EOLAIFF LRI FRTE.

public String handlerString(MyFunc<String= myFunc, String str){
return myFunc.getValue(str);

B%R, BT BEEXRBIEOFITNE, R IEERREIEOZHN Lambda
KA, AERFHRRUNKRE,

@Test

public void test6(){
String str = handlerString((s) -> s.toUpperCase(), "binghe");
System.out.println(str);

%% Lambda ®XR < 28

BT test6 1534, (BEEIAREBM AR,

BINGHE

AR IR F T ENE 8, W TR

@Test

public void test7(){
String str = handlerString((s) -> s.substring(0,4), "binghe");
System.out.println(str);

BT test? J5%, 1BHMERIERI TS,

bing

A LEER], 1A LUEE handlerString(MyFunc<String> myFunc, String str) 5E%E&
Lambda FAT X F T B HITIERIRIE

AR (FASHEE Lambda RiX: AT Lambda RAXIMEASEHEE, UK Lambd
a REAXMNSHERBUNZESZ Lambda REXARBHIRHIZOREE ,

YR Collections.sort()757%, 1B EFIHFF LIRS Employee (FttbiREwe, FiBRIZER
tbER) , fFM Lambda RAIEASEUE R,

29 > $%F Lambda Rk

D

m

X8, FAELeZ—" Employee 2K, AT HEFK, FI7E Employee KREX THE. F
UQEFDIJ\—ﬁ\?EX; yD—FFﬁTo

@Data

@Builder

@ToString

@NoArgsConstructor

@AllArgsConstructor

public class Employee implements Serializable {

private static final long serialVersionUID = -9079722457749166858L;
private String name;

private Integer age;

private Double salary;

BTk, HAE Testtambda EFREX—PHREE employees, employees TEE—

&, 7T Employee B9—"1FIFK, WA

protected List<Employee> employees = Arrays.asList(

new Employee("sK=", 18, 9999.99),
new Employee("Z=PY", 38, 5555.55),
FH", 60, 6666.66),
new Employee("#7X", 8, 7T777.77),

new Employee("Ht", 58, 3333.33)

new Employee

(
("
("
("

RIHABYER TIFTE 7, TR, MBI UKIMEFILSZET

N List

%% Lambda ®XR < 30

@Test
public void testl(){
Collections.sort(employees, (el, e2) > {
if(el.getAge() == e2.getAge()){
return el.getName().compareTo(e2.getName());

}
return Integer.compare(el.getAge(), e2.getAge());

b;

employees.stream().forEach(System.out::println);

ERRELLRE S, HMAERRMEIET . 1T17 testl 7%, [HEBERERW TR,

Employee(name=#X7<, age=8, salary=7777.77)
Employee(name=3k=, age=18, salary=9999.99

(
()
Employee(name=28M, age=38, salary=5555.55)
Employee(name=H+t, age=58, salary=3333.33)

()

Employee(name=Ff, age=60, salary=6666.66

REE TR IER, REEER return Integer.compare(el.getAge(), e2.getAge());
B K-return Integer.compare(el.getAge(), e2.getAge());BI0], 20 TFFfzo

@Test
public void test1(){
Collections.sort(employees, (el, e2) > {
if(el.getAge() == e2.getAge()){
return el.getName().compareTo(e2.getName());
}
return -Integer.compare(el.getAge(), e2.getAge());

b;

employees.stream().forEach(System.out::println);

BRIETT testl 737%, BHAERIEBMW TR,

31 > $%F Lambda Rk

Employee(name=Ff, age=60, salary=6666.66

)
Employee(name=H+, age=58, salary=3333.33)
)
)

(

(

Employee(name=2=1, age=38, salary=5555.55

Employee(name=3Kk=, age=18, salary=9999.99
(

Employee(name=#X7<, age=8, salary=7777.77)

ZRFTERNER,

1.ERRREEO, BOPERIMKR T E public String getValue(String str);

2.F5BAZE TestLambda, EKHREEHEERBEOAEASE, B—PFRBEBRAKRE, HIENH
EBNIRENE,

3ER—IFRIEME 2 MIE 4 MRIMUEFHITEENTFH,

)

B, SIBE—MERET(EO MyFunction, & MyFunction #0_EfI EFf#@Functionalinterfac
e MMREAZ— MR IED. WTHAT.

@Functionallnterface
public interface MyFunction {
public String getValue(String str);

7E TestLambda FEAFEA stringHandler 757%, S8 O3 AFFMIENZF RSB MR ZEONE
B, FHEFIZEMEEBARMNEONS ERVIEBFRFR, WTFT.

%% Lambda ®XR < 32

public String stringHandler(String str, MyFunction myFunction){
return myFunction.getValue(str);

BETR, BNEME—DFRBIRMARNGRIEE, T TR

@Test

public void test2(){
String value = stringHandler("binghe", (s) -> s.toUpperCase());
System.out.println(value);

JE1T test2 7k, 1SRRI S,

BINGHE

FABERKLINF TR BENBVRIE, 0 FFRe

@Test

public void test3(){
String value = stringHandler("binghe", (s) -> s.substring(1, 3));
System.out.println(value);

AR FRPZRIREE 2 MIE 41N FSIUEHITEEF R, FRBITIREM 0 FFI&8Y, Fr
LUX BE BN F fT R ERAME substring(1, 3), AR substring(2, 4), XtBERZ/IMAFES
ICEYEEIR,

F=5h, A LR Lambda RERFR , IR FAHENESTLRE, HiROIMEEHHFR S,

BT test3 7%, ARWNFIR.

]

33 > $%F Lambda Rk

LAEBR—IMERMNZERESRIED, ZRERN<T, R>, B, TENSHEE, RIENER
BRYEE,

2EOPEANRAR T %o

3.7f TestLambda ARG E. EAROFASEITERD long Z2EEAEYH,

4. BRIZF long BB HAIFEIR,

)

B, FAHRBERENRHINED MyFunc, 0P,

@Functionallnterface

public interface MyFunc<T, R> {

R getValue(T t1, T t2);

TR, HNE TestLambda EAREIE—MIMEFRA long BEIER A, WTHFIT.

public void operate(Long numl, Long num2, MyFunc<Long, Long> myFunc){

System.out.println(myFunc.getValue(numl, num2));

FATRILMER TE AR long S EHBIH,

%% Lambda ®&XH < 34

@Test
public void test4(){
operate(100L, 200L, (x, y) > x + y);

1T1T testd &, SRR

300

LA long BLEIRBIFRAR, BIREE,

@Test
public void test5(){
operate(100L, 200L, (x, y) > x ™ vy);

1&1T tests A%, SR TFIT.

20000

BIXE, FEERZIMAFEEX Lambda RANE TERBRNIERE, RBZZES), 5
REBE LTI ESE Lambda FRIAFAIFERE.

35 > :

F=-F KE

IO

RO

T

o

XE, HEAFBITZIURERWAT Javad RIZHAYRERIEO,.

3.1 FRIZICEK

B0

a5

B, FBREORZORBRINED, WA,

B iEO F

fERAS

Consumer ;5 %%

B0

RN T I RN BERE, EOENXBIGE!

void accept(T t)

Supplier {457

®O

IREIEAV TR, BHOEXBGE:
T get()

Function<T, R>

RO

SEEEIN T BT RN FAIRIE, 7 R EEADRE]

R, BOENBEAE: R apply(T 1)

Predicate #=
AN

HREREN TN RES BELIRFM, HiR[E]
SRR, BOENXBIGE:

boolean test(T t)

boolean Z£

3.2 HftheRzEkd

R T RIZC

i) REEE
void
T
R
boolean
025

\REUECSN, Java8 IR i T —EEMAYRE IO,

E=% HEHEEORSRK < 36

¥ iEO SEHHER | REOIFEB ERAR
BiFunction(T, U, R) T, U R XFRER T,U OB FBIR(E, 1REIR £
BER, BOEXWAEE:
R apply(T t, U u)
UnaryOperator T T BN THNRHIT— TEE, HR
(Function ¥ M) B TEREW £R, G87H%ER
T apply(T t)
BinaryOperator TT T RN THXNRIETZ TEE, R
(BiFunction F#M) B TEREW £R, G8HER
T apply(T t1, T t2)
BiConsumer<T, U> T, U void WEEAN T, U SHNAE 15, B887%
79 void accept(T t, U u)
TolntFunction T int T8 int [ERYEREL
TolongFunction T long T8 long BRIRER
ToDoubleFunction T double 115 double ERIERER
IntFunction int R ZEOY int KEBYRREL
LongFunction long R S0 long FLERIREL
DoubleFunction double R 2508 double ZEAIRIERIER

37 > BTE mEEORE
3.3 EAXZOEK RO
3.3.1 Consumer &0

1. #OR8A

Consumer EOZHEZEMZEO, LiREME, Java8 #%F Consumer BIE X FFATo

@Functionallnterface

public interface Consumer<T> {
void accept(T t);
default Consumer<T> andThen(Consumer<? super T> after) {

Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };

2. (ERTH

public void handlerConsumer(Integer number, Consumer<integer> consumer){

consumer.accept(number);

@Test
public void testl1(){
this.handlerConsumer(10000, (i) -> System.out.printin(i));

E=% HEHEEORSRK < 38

3.3.2 Supplier &0

1. #&O5EA

Supplier #EORMAREO, HiREE, Java8 H13F Supplier #OBIE X W N0

@Functionallnterface
public interface Supplier<T> {
T get();

2. fERTH

public List<Integer> getNumberList(int num, Supplier<integer> supplier){
List<Integer> list = new ArrayList<>();
for(int i = 0; i < num; i++){

list.add(supplier.get())

}

return list;
}
@Test

public void test2(){
List<Integer> numberList = this.getNumberList(10, () -> new Random().nextInt(100));

numberlList.stream().forEach(System.out::println);

3.3.3 Function 0

1. #&O5EA

Function EO2X#HEZEO, AIR[ENE, Java8 Xt Function ZEOBE X W N

39 > FB=E RHIEOSUN

@Functionallnterface

public interface Function<T, R> {

R apply(T t);

default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));

default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));

static <T> Function<T, T> identity() {

return t > t;

2. R

public String handlerString(String str, Function<String, String> func){
return func.apply(str);

@Test

public void test3(){
String str = this.handlerString("binghe", (s) -> s.toUpperCase());
System.out.println(str);

E=% HEHEEORSRK < 40

3.3.4 Predicate #0O

1. #&O5EA

Predicate #OZM= 8420, REMEZEEN boolean, Java8 Xt Predicate #HEOME XM
FlT7Tco

@Functionallnterface

public interface Predicate<T> {
boolean test(T t);

default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) > test(t) && other.test(t);

default Predicate<T> negate() {
return (t) > ltest(t);

default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);

static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
7 Objects::isNull
. object -> targetRef.equals(object);

41 > FBIDE RHEAEORN

2. fERTH

public List<String> filterString(List<String> list, Predicate<String> predicate){
List<String> strList = new ArrayList<>();
for(String str : list){
if(predicate.test(str)){

strlist.add(str);
}
}
return strList;
}
@Test

public void test4(){
List<String> list = Arrays.asList("Hello", "Lambda", "binghe", "lyz", "World");
List<String> strList = this.filterString(list, (s) -> s.length() >= 5);
strList.stream().forEach(System.out::println);

AR REHNFST Java8 PR ORBNIZONAZL, HREAEORNEMRAEN
fefERT!

$BPUE Java7 5 Java8 PRI HashMap < 42

$IMNE Java7 5 Java8 By HashMap———o

o JDK7 HashMap oA+t ®R (RETHMIEN, RHTRAMINEIHERK)

o JDK8 HashMap M NEAB+HER+IEN (RETRMEN, SRKHTRANEERKE,
8 HashMap R BEATFT 64, HEEMHERNKXNNKRTEFT 8, BRI IVLEN
CEE: dEMEZXMI—H))

4.1 JDK8 HashMap EHtF

NRMIERT HashMap PAEMHNEN TRSBTRERFN, FHEEHEGFEHFNTRN

HashCode 3, REBR HFITEMEl (HashMap 2KE+HE17TEE HashMap VU E) HAIE
BlH],
4.2 w5k

o filter—##U Lambda , MARHFHIFRREL TR,
o limit—&lTR, EETEFTBILTELRE,
. skip(n) — BbdnER, RE—METHE n DIRERER. BERFTEAE n 1, NERE

— T 5 limit(n) B4k

o distinct——7ikt, WBIMPTAER TR hashCode() A equals() EFREETER

4.3

a1

. map——]%tlﬂl Lambda , RTRFEMAEMEATIRRES . BR—TPRBIEASE, %

SRNBEIS N TEL, FRERNE— TR,

> ZIE Java7l 5 Java8 Y HashMap

o flatMap——EW—PREBIENSE, BRFPNES MEERRE S — MR, AEIEREREER
— R

o sorted()—— BAHRE

e sorted(Comparator com)——EHIH=

o allMatch— 0B RSB ILEFAETR

e anyMatch— KB ZSE/PIEE—PTE
e noneMatch—10&E BT & B LENTE
o findFirst—REIE—NTE

e findAny——REIHEIRFANERTE

o count—IREIRFITTREIZ ML

e max—REIRAZRAE

o Min—IREIRF&R/IME

o reduce(T identity, BinaryOperator) / reduce(BinaryOperator) — AL RFTERE
HEEER, —MEo,

o collect——B ML N EHAMA N FW— Collector B ORI, T4 Stream FITEM
CRMFE

AR RHITTRIREG, FEEBRER

$BPUE Java7 5 Java8 PRI HashMap < 44

ATREBRTHHEE

e Optional.of(T t) : 8JE— Optional 32|

o Optional.empty() : BIE—"N=H Optional 324

o Optional.ofNullable(T t):#& t &2 null,gE Optional S2fI, TN EEZSLHA)

e isPresent() : MRS EEE

e OrElse(T t) : WRIFBNREEE, R[EINZE, SNR[E]t

o orElseGet(Supplier s) MRBFBWREEE, REZE, TUHRE s KEEIE

e map(Function f): WRBEBEXNHAIE, HREIEFA Optional, EN&REl Optional.emp

ty()
e flatMap(Function mapper):5 map M, EFRRE{EXLTE Optional

45 > BEE H5ESIRSMWERsIA

FRE HASIASWIERE51A

5.1 F&5|B

HEL®4 Lambda (RRVIRME, BEBERIUNTTET, IUERFESIR! XEFEZIENRE:
SKIMR 772K, NS ESIRAENS SR FE—E

AT ARFESIBR? HASIAMBIRIER 7 BHERMNNRIALENE TR R,
BN TF=FERIER:

o WR:SLHIHE

o EKiFESHE

o ETfIAE

X8, TSI NG

Bign:

(x) -> System.out.println(x);

ZBTF.

System.out::println

BEE 7FESIBEMERsIA < 46

e :

BinaryOperator<Double> bo = (x, y) -> Math.pow(x, y);

ZBTF:

BinaryOperator<Double> bo = Math::pow;

a0

compare((x, y) -> x.equals(y), "binghe", "binghe")

ZBTF.

compare(String::equals, "binghe", "binghe")

AR UEESIRFENE—IESHRZRARNR, HEE - SREEESIRAENE-_18
(LS. ClassName::methodName .

VU0 TP

ClassName::new

SRHAEOMBES, BNSRBINEOTHERS. FJUBWE:ss| BIRELE X G,
SNSRI RBESEOTHMR A ENS IR —H!

e :

47 > BEE H5ESIRSMWERsIA
Function<Integer, MyClass> fun = (n) -> new MyClass(n);
FRET:
Function<Integer, MyClass> fun = MyClass:new;
5.3 #X4A5|A
IV TFRo

type[]::new

Bign:

Function<Integer, Integer[]> fun = (n) -> new Integer[n];

ZBTF:

Function<Integer, Integer[]> fun = Integer[]::new;

$ENE Java8 FIHJ Stream < 48

FE/5E Java8 Y Stream 5

6.1 +4 2 Stream?

Java8 HFERMARNEENNRT, £F—P2F Lambda RE; ZIP—1NIE Stream API(

java.util.stream.”)o

Stream 2 Java8 HFAMBEESNXBHRET, TROILIEEMBENESHITHIRIE, TR
TIEEERMEN. IR HBIBEFRIE, B Stream APl SESEIRHITIRIE, MEMTE
A SQL SATHEUIRES M, WA LIER Stream APl RHATIITIRIE. BMa2Z, Stream AP
RET —MEME S T EANAIEEENS R

MEMIERE, BTRFUIER (&6, M4EF) FEANTHERFY. “SEHNEME, &
HOZEHE! 7

FE: O Stream BOASEZMETE, @ Stream A2 TRENR, HR, M11SRE—NF
BLERMF Streams @ Stream BRIERILRHITH., XEWKREMISEFIEELERWEHES T,

6.2 Stream R{ERN=1NFE

e B Stream
—MNIER (0. &5 Bl , KB,

o IERIE
— D rREiR iR, NEIERREIEHRITAE,

49 > E/"E Java8 A9 Stream

o ZRHIRIF(RIRIEIF)

— DRI, ITHIEIR(ERE, ArEER.

Java8 ##y Collection #ZOY B, H TR MNREURB A A

1. 3XEY Stream

e default Stream stream() : R[E—MFER

o default Stream parallelStream() : &[E—"NHITR

2. HERLABIE Stream

Java8 FHY Arrays RVERAS TS stream() BILURENERAAT:

o static Stream stream(T[] array): RE—"NR

BHTRN, BAIENNEARLRAEAE:

e public static IntStream stream(int[] array)

e public static LongStream stream(long[] array)

e public static DoubleStream stream(double[] array)

3. HESIER

FILUEAFHSTT A Stream.of(), BEERMESIE—1R. ERUERERERHRENSE,

$ENE Java8 FIHJ Stream < 50

e public static Stream of(T--- values) : REI—7

4. HERHBIER

FRERER B2 P] A B2 PR Ao

B LUEARES A Stream.iterate() 1 Stream.generate(), SIEBIIRETR.

o AR

public static Stream iterate(final T seed, final UnaryOperator f)

o ERk

public static Stream generate(Supplier s)

Z N RIEHRIER] USRI — DK e, BRIEMKEL LR R R IEIR(E, BN FEIRIFR=
PATIERBORLIR! MER IHRIEN—RIE 2R, ¥y “tBlIEkE”

1. SR

51 > 8BXE Java8 By Stream

BiE 3
filter(Predicate p) EUW Lambda FiXT, MEIRRPHIRELTE
distinct() v, WmATAERRY hashCode()#l equals() AFREE M TR
limit(long maxSize) BUTR, CHITRTBIATEHE
skip(long n) Bhd TR, RE—MIETHE n MITENR. ERFITEAEN D,
NEREI—NET. 5 limit()A7EEAM

2. B

HiE

DU

map(Function f)

ER—T R

TERZH, ZRBESWNAEIS TR

£, FREBRF—ETRITER

mapToDouble(ToDoubleFunction f)

ER—T R

TERZH, ZREBESWNAEIS I TER

£, PE—"10F DoubleStream
mapTolnt(TolntFunction f) BR—TMRBIERNSE, ZRBSEKNARIS TR

L, FE—10MF IntStream

mapToLong(ToLongFunction f)

B — M ERER
£,

TERNZE, ZREB=HNABREG TR
=4 —"M0vF LongStream

flatMap(Function f)

B — R
ik

TERZE, BRPNEe MERIRES —
AEIEFTE MR — TR

=

FRE Java8 HH9 Stream 52
3. #HF
Bk iR
sorted() FE—NTR, ETRERAINEHF
sorted(Comparator comp) FE—NEOR, HiztbiRs s HRE
6.5 Stream BRI IHIE(E
ZIFIRIER MTITKEAERE R, HERJUREMARAME, F: List. Integer,

BEZEZE void o

1. E#xSLE
HiE 1230
allMatch(Predicate p) KwEEEILEFTA TR
anyMatch(Predicate p) wERLREPILE—ERE
noneMatch(Predicate p) RERT S BLEMBTR
findFirst() REIE—NTTE
findAny/() KRB EHFIRFANFIBTTR

53 > E/"E Java8 A9 Stream

2. &it
BiE 3
count() R[ERAITTEN S
max(Comparator ¢) RENRPEAE
min(Comparator c) RENRAR/IVE
forEach(Consumer ¢ MERER (A Collection IZBOFERF AMHuER, FRAIMBER.
#HR, Stream APIERAERER——TBBEFHEMRIMRER)

5k DU

reduce(T iden, BinaryOperator b) AR RPTERELSSER, FE—NME, RET

reduce(BinaryOperator b) LR R TERELSSER, F8—1ME, KD
Optional
4. Wk
BiE ra

collect(Collector c) | ¥R ANEMA. FU— Collector #FHOAMSKIN, BT 4 Stream
R RBIC 2B A,

Collector #OFRFENTRILAE 7 ANEINIRHFITURERIRE(GNUREEE! List. Set. Map). B2
Collectors SEAEFIRM TIRZFEH A, AILUHEMEIEENUNERLG, BAAFEUNTE

$ENE Java8 FIHJ Stream < 54

5iE RESEE §3::
toList List ERATTEWES List
toSet Set RPN TR EE! Set
toCollection Collection ERANTREWERIIENES
counting Long ERATENDE
summingint Integer XA RV E SR KA
averaginglint Double HERHBITE Integer BERFIYE

summarizingint

IntSummaryStatistics

WEE R Integer BIERVSEITHE. HIEITFIYE,

joining String EERTPE TS

maxBy Optional RIS AR EAE

minBy Optional RIELL IR s R &/ IME
reducing IR It == Vit M—NMERRMEENRIBEF S, FIA

BinaryOperator S nEZENES, ML
PRERME

collectingAndThen

B MR B 2

BRZ PGS, HRREERYE

groupingBy

Map<K, List>

RIEEBIEEXROAE, BENK, ERAV

partitioningBy

Map<Boolean, List>

1R3E true 8 false HTHKX

FESTREII T,

e tolist

List<User> users = list.stream().collect(Collectors.toList());

55 > E/"E Java8 A9 Stream

o toSet

Set<User> users = list.stream().collect(Collectors.toSet());

e toCollection

Collection<User> users = list.stream().collect(Collectors.toCollection(ArrayList::new));

e counting

long count = list.stream().collect(Collectors.counting());

e summingint

int total = list.stream().collect(Collectors.summingInt(User::getAge));

e averagingint

double avg = list.stream().collect(Collectors.averagingInt(User::getAge));

e summarizinglint

IntSummaryStatistics iss = list.stream().collect(Collectors.summarizingInt(User::getAge));

e joining

String str = list.stream().map(User::getName).collect(Collectors.joining());

e maxBy

Optional<U> max = list.stream().collect(Collectors.maxBy(comparingInt(User::getAge)));

e MinBy

Optional<U> min = list.stream().collect(Collectors.minBy(comparingInt(User::getAge)));

e reducing

int total = list.stream().collect(Collectors.reducing(0, User:getAge, Integer:sum));

e collectingAndThen

int i = list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));

$ENE Java8 FIHJ Stream < 56

e groupingBy
Map<U.Status, List<U>> map = list.stream().collect(Collectors.groupingBy(User::getStatus));

e partitioningBy

Map<Boolean, List<U>> map = list.stream().collect(Collectors.partitioningBy(User:getManage));

FITRAMBIE—TRNBE DS M EIER, HRTRNEIED 5L IES NIRRT,

Java 8 R FHITHIT T ML, BNTLUIRR SN EIRHITHITIRIE, Stream API BILIE
BAMEHIIED parallel() 5 sequential() TEFHITARSINE R 8 THIHR

1. EREA

Fork/Join 1E2R: BEBEXENERT, B—PKRES, #1770 fork) liETMNIMES (HrE
FEIHIRE) , BR—MBNMESEENSGRHEHT join LR, FE Hadoop ##Y MapReduce

HEZE,

2. Fork/Join fERSE4G&ZHHIXS!

XA “THEHE KRIU (work-stealing) : SRITHESHERILUSERD DR E/NEIE
SHIT, FRIMESIBIZAZNGIR, AEBMN—THELER YR — B ERE B 2RI

Heh,

R T —RRBILAZ ML I fork/join FERPIMBAIMENE P B ENESHLEL N L E—K
AR MR — MR EEPITIESH T RERRTERRIET BBAREIESA TFHERE.

57 > 8BXE Java8 By Stream

m7E fork/join MEZR LI INRE D F il B FFiFHIN—DFIOI RN TR M IS AR LI 1T A AL
BZF RN AE 2 T IEMBERTITRF R BRHRIT XM A TURLD T EENFFRELIRS
T |‘£E BEo

3. Fork/Join {EZ2 3251

THET Fordoin IBZRVRIEZ f5, FAIRLRFhE — MR Fork/Join 1EZR LI & A YR 51
ERF, DUEEBNREBIIFRIEME Fork/Join 1E28, WY, AEIET, B, KKEY FEHRELT
WHASF Fork/Join 1EZRBY58 K,

package io.binghe.concurrency.example.ags;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.Future;
import java.util.concurrent.RecursiveTask;
@SIf4]
public class ForkJoinTaskExample extends RecursiveTask<Integer> {
public static final int threshold = 2;
private int start;
private int end;
public ForkJoinTaskExample(int start, int end) {
this.start = start;
this.end = end;
}
@Override
protected Integer compute() {
int sum = 0;
SR IES EB) Bt B S
boolean canCompute = (end - start) <= threshold;
if (canCompute) {
for (int i = start; i <= end; i++) {

sum += i

$ENE Java8 FIHJ Stream < 58

} else {
/) WIRAESAFEIE, BT REHTFESITE
int middle = (start + end) / 2;
ForkJoinTaskExample leftTask = new ForkJoinTaskExample(start, middle);
ForkJoinTaskExample rightTask = new ForkJoinTaskExample(middle + 1, end);

) RITFES
leftTask.fork();
rightTask.fork();

/) FEFESHITARSHAELGR
int leftResult = leftTask.join();
int rightResult = rightTask.join();

/) EHFES
sum = leftResult + rightResult;

}

return sum,;

}
public static void main(String[] args) {

ForkJoinPool forkjoinPool = new ForkJoinPool();

JEE—TITEFS, 8 1+2+3+4
ForkJoinTaskExample task = new ForkJoinTaskExample(1, 100);

AT — TS

Future<integer> result = forkjoinPool.submit(task);

try {
log.info("result:{}", result.get());
} catch (Exception e) {

log.error("exception", e);

59 > E/"E Java8 A9 Stream

Java8 HFEMARNEEMNNT, £—12 Lambda RXI; BI—"NIE Stream API(

java.util.stream.”)o

Stream Z Java8 FREESHXBHEMS, BRI LUIESEMRBENEGHITAVRIE, BJLUK

TIFBEZRNE. DB HIESIRME, £/ Stream API ESHIBHITIRME, BMEMTE

FA SQL $HITHVEIEESE, tHelLUfEA Stream APl EFHAITHITIRMF, BME2, Stream AP

R T —MsME 5 T ERNAELERN TS .

fa] 9 Stream?

i (Stream) FURZMHANE?

B AR ARIERE, ATRFWER (&85, A% FERBTERF.
BRRREE, MANRITE! 7

HE:

MStream BoA=FETE,

@Stream F2RTRENR, Bk, MilsRE—MFEERAHFT Streams

GStream RIERIEERITH, XBHREMIZFIFTELERHNINES 1T,

Stream IR{EL B

1. 8l Stream

—MER (W0 &5, B4H) , R

2. FRiaElg(E

— PDEREHRIERE, XHUERBVEIEHTTOE,

3. IHRF(XIRIECE)

—DERIRME, ITRIERIEE, HEEER .

A=

B7NE Java8 iy Stream < 60

#9EE [> Fiter [

map

E—T T

SR

L

6.9 WNEIEIE Stream 7it?

s

PIEER{E

XE, QIEMAZE TestStreamAPIL, FrERIR{EESZETE TestStreamAPI1 K 5EALAY,

(1) & Collection RFIE SR stream () iAE#H parallelStream() &R 32 Stream,

£ Java8 #1, Collection #EOWY B, HE TR MNREUARBEIAFGE, WP

default Stream<E> stream() {

return StreamSupport.stream(spliterator(), false);

}

default Stream<E> parallelStream() {

return StreamSupport.stream(spliterator(), true);

Hrh, stream() 55 RE—DIRFER, parallelStream()755%:&([E1—N 1T

FATRILAE RIS RS 75 Uk e IR R H AT e

61 > 8BXE Java8 By Stream

List<String> list = new ArrayList<>();
list.stream();

list.parallelStream();

(2) @i Arrays FREVERE TS 74 stream () FRENELAR 7R

Java8 HHY Arrays KBVERS A stream() BILUREVERAR , W0 TFIR.

public static <T> Stream<T> stream(T[] array) {
return stream(array, O, array.length);

ERCEEBIBIERN: fAN—NZEEA, REXMZER] Stream i

BRILZ 9N, TE Arrays KARIRIRMH T stream () 5/ ARVE0 FEEHFE o

public static <T> Stream<T> stream(T[] array) {

return stream(array, 0, array.length);

public static <T> Stream<T> stream(T[] array, int startinclusive, int endExclusive) {

return StreamSupport.stream(spliterator(array, startinclusive, endExclusive), false);

public static IntStream stream(int[] array) {

return stream(array, 0, array.length);

public static IntStream stream(int[] array, int startinclusive, int endExclusive) {

return StreamSupport.intStream(spliterator(array, startinclusive, endExclusive), false);

public static LongStream stream(long[] array) {

return stream(array, O, array.length);

$ENE Java8 FIHJ Stream <

public static LongStream stream(long[] array, int startinclusive, int endExclusive) {

return StreamSupport.longStream(spliterator(array, startinclusive, endExclusive), false);

public static DoubleStream stream(double[] array) {
return stream(array, O, array.length);

public static DoubleStream stream(double[] array, int startinclusive, int endExclusive) {

62

return StreamSupport.doubleStream(spliterator(array, startinclusive, endExclusive), false);

BR LRES R B AR E LB RVIRAA R KL Stream FAVIRTE,

AT OB FE ISR FISRIER Arrays 2£89 stream() /574K A Stream 7o

Integer[] nums = new Integer(]{1,2,3,4,5,6,7,8,9};

Stream<Integer> numStream = Arrays.stream(nums);

(3) @id Stream EHIEEE T 7% of () FRENERAA TR

BILMEREST A Stream.of(), B EREGE—NR. ER]MERNEEHENSL.

AR EE Stream B9 of) 57%, W NFITo

public static<T> Stream<T> of(T t) {
return StreamSupport.stream(new Streams.StreamBuilderimpl<>(t), false);
}
@SafeVarargs
@SuppressWarnings("varargs")
public static<T> Stream<T> of(T... values) {
return Arrays.stream(values);

63 > E/"E Java8 A9 Stream

BILAEER, 7£ Stream £, BETEHED of) 5%, —PRFEEN—NZESH, —IFEF

AN—DRIZEZESE,

AT LR TEBAREREIRER of B7AEIE—" Stream o

Stream<String> strStream = Stream.of("a", "b", "c");

(4) BIBERR

B LUEARES A Stream.iterate() 1 Stream.generate(), SIEBIIRETR.

JeREFE Stream K iterate() 57570 generate() 57ABRES, W NN

public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
Objects.requireNonNull(f);
final Iterator<T> iterator = new lterator<T>() {
@SuppressWarnings("unchecked")
Tt = (T) Streams.NONE;

@Override
public boolean hasNext() {

return true;

@Override
public T next() {
return t = (t == Streams.NONE) ? seed : f.apply(t);

L

return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
iterator,
Spliterator.ORDERED | Spliterator.IMMUTABLE), false);

$ENE Java8 FpJ Stream < 64

public static<T> Stream<T> generate(Supplier<T> s) {
Objects.requireNonNull(s);
return StreamSupport.stream(

new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long. MAX_VALUE, s), false);

BREAI LB, iterate()B7AEERFER S BANEMTLIREM, M generate() A5+
EREA “EN B9ANERLREM. FA10ILUER TEAIERGIRERXM N A EERR Stream

=y
/)lbo

o A
Stream<Integer> intStream = Stream.iterate(0, (x) -> x + 2);
intStream.forEach(System.out::println);

BT LR, SAKE—ERLER, XMREZ—BRFE T A, URBMNIFERD 10 T
B, ZANEHRIEIE? HLWRE R, A Stream IR limit ZA7EHITREITLAIL T, ST

Stream<Integer> intStream = Stream.iterate(0, (x) -> x + 2);

intStream.limit(10).forEach(System.out::println);

o ERk

Stream.generate(() -> Math.random()).forEach(System.out::println);

ERREEFZ—ERERENS, NRFBNIF24EE 5 MEVE, WREEEA limit()757xE
HITERBIRIA,

Stream.generate(() -> Math.random()).limit(5).forEach(System.out::println);

(5) RIB=R

7E Stream FHIRME T — empty() 5%, W TFFFT

65 > E/"E Java8 A9 Stream

public static<T> Stream<T> empty() {
return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);

AT LUERA Stream ZEHY empty()57EKBIE—= Stream 7, 90 FFizo

Stream<String> empty = Stream.empty();

6.10 Stream B9HR|a)IR(E

Z A REIEER] DUEBRGE R — KL, BRIFRKE EMALRIERME, SNFERIESR
PATIEARINIR! MR IIRIERN—RMEEEAIE, ¥ “BMRE" o Stream BHEHRIERT
=B R AEREIER LAY,

Stream BYFRENRIEERME LRI LD N THESTIA. BRES. HiFp. BTK, s 5IxdxXLE
BRI T R RV PR

6.11 TmxS5tlA

X8, FTRSMEMTA B XAVIREEERI F &K

BiE 3
filter(Predicate p) U Lambda RA, MRAAHRFEL TR
distinct() v, WmATAERMTTEM hashCode() 1 equals() & BEETE
limit(long maxSize) BUOR, BEHIOIERTBIATEHE
skip(long n) BRI TR, RE—METEI n DNITEIR. &attEi A n
MRE—P=5. 5 limit(n) B4b

$ENE Java8 FIHJ Stream < 66

B, 7RI NERRE), LUEINRER.

AT EFNEER, HIEMET —PWREKA, W

protected List<Employee> list = Arrays.asList(
new Employee("5K=", 18, 9999.99),
new Employee("Z=PH", 38, 5555.55),
new Employee("EH", 60, 6666.66),
new Employee("#&X7X", 8, T777.77),
new Employee("H+", 58, 3333.33)

Hrh, Employee ZE89E X N FRo

@Data

@Builder

@ToString

@NoArgsConstructor

@AllArgsConstructor

public class Employee implements Serializable {
private static final long serialVersionUID = -9079722457749166858L;
private String name;
private Integer age;

private Double salary;

Employee SERYE X LLIREE, XEB, HHMAERT, ZERIRAEIF, K{TE=ZEEMB Employ
ee WRIEGHITIRIF. 77, WITTFBEMFBVIRIERL,

1. filter() 5%

filter() A2 ER A THEW Lambda X, MAFHRELETTER, HIE Stream EOHRYRE
ORFRo

67 > 8BXE Java8 By Stream

Stream<T> filter(Predicate<? super T> predicate);

BILIER, T£ filter() F57AH, BE(LIE Predicate I OMX R, Predicate IHOX 2 M ARIE?
RHEE TR,

@Functionallnterface

public interface Predicate<T> {

boolean test(T t);

default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) > test(t) && other.test(t);

default Predicate<T> negate() {
return (t) > ltest(t);

default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);

static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
. object -> targetRef.equals(object);

BILAIEER], Predicate 2 —PREIUEO, EPEOTEXNEEFEN test() 7%, test()H7E

W2 EIN R t, R[E— boolean KA HIEIE,

$ENE Java8 FIHJ Stream < 68

EIXE, BEAKBAT: filter() 5 22EHE Predicate OB test() AR B14E R It iR
IR, WR test()HIERNREIZER N true, TSN ; R test()H7ARREBILER A false, MIARF

BN,

X8, FATRILUER TERIRAISREISRAYNER filter() 75 7ARIER T

JRIEBE: FEUT FEFR BRI, H Stream apl #1751
S/ FIEJRIE: T =TT
Stream=<Person> stream = list.stream() filter((e) > {
System.out.println("Stream API HHa}igfE");
return e.getAge() > 30;

b;

), ERITRIBEAZE, —ImER, —IOFTED, mENFEEEER LLEES, EXX2E
RERIER, B Stream APl 2o

TEBHRNRBBINBEN, BREHNIANFTER,.

J/IEBE

kerator<Person> it = list.iterator();

while (it.hasNext()) {
System.out.println(it.next());

2. limit()A&

TEFAN: 8TR, EETETNBIAESRE.

FeRE limit 7TEBIENX, W0 T

Stream<T> limit(long maxSize);

69 > E/"E Java8 A9 Stream

limit()75757E Stream E#OPRIENX LR ER, RFJEEN—" long KRB FEIF,

FATRT LR BR U0 N PR BI AR SRAER limit()757%,

ST EZ B 2 TNME

list.stream().filter((e) -> e.getAge() >30).limit(2).forEach(System.out :: println);

X8, HNVPIECE B MSReRlE, HEMOR, TR UESEN MUStR. MEE
FEES, RBLZNE 2FNEFHRTER, WASREETERSE, AJLUIRSHE,

3. skip()A3&

BhdcE, RE—MMETE] n N TENR. &EAFTE A2 n D, MRE-PER. 5
limit(n) E4bo

RS E SN PR To

Stream<T> skip(long n);

RREX R EER, FAFRIFZ2EAN— long RRRHFEIF, HEXEHT n M.

& R BI TPRo

/KT BT 2 TME

list.stream().skip(2).forEach(System.out :: println);

4. distinct() 5%

N

=

Hik, BIRATEMITER hashCode() #1 equals() & BREETES

$ENE Java8 FIHJ Stream < 70

IRBBTE X0 FFfrRe

Stream<T> distinct();

EEXRAPRITRHITEE,

FATRI LN R ERY 7 TUKAEA disinct() 7575,

list.stream().distinct().forEach(System.out :: println);

XBEE—MEEFERMT: distinct EEXLEKHETS hashCode () # equals () FEA
AT LAfER.

KT R RAY AN N &P,

753k R
map(Function Bl — N RYSENBY, ZRYERNAE T

=L, HEMSM— BT ER,

mapToDouble(ToDoubleFunction f) BI— 1M RBIERSE, ZRESWNARISN T
=Lk, =E—"PHHE DoubleStream,

mapTolnt(TolntFunction f) BEWR— P REBIENSE, ZRBSENBEIE T

=L, FE—"1HM IntStreamso

mapTolLong(ToLongFunction f) BWR—TMREBIFNSH, ZRBSHNBRSNT

=L, FE—NHB LongStream

71 > E/"E Java8 A9 Stream

HiE DU
flatMap(Function f) BE—DREENSEH, BRPRE MEE RS

— N, AR EREER— TR

1. map()55i&

BIR—MREBENSE,] SRNAEIS N T 2L, HFRERNE—DMBITR,

Je3RE Java8 B Stream EOXS T map()/7AB9ERR, W NFIRo

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

FATRT LRI T 75 TUE A map()757%.

ST — TN T Z ARSI R map HIREH, ST TENITIXTEREL, AaRO]
L|st<Strmg> list = Arrays.asList("aaa", "bbb", " , "ddd");
list.stream().map((e) -> e.toUpperCase()).forEach(System.out::printf);

J/RER Person I — TN 725 F name, HR[E]—1%EE

List<String> names = this.list.stream().map(Person :: getName).collect(Collectors.toList());

2. flatMap()

B — P RBENSE, BRPHS MEERS — DR, ARERERERER— M.

JeRE Java8 H1 Stream EOXT T flatMap() S5 EBIERE, 30 N

<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

$ENE Java8 FIHJ Stream < 72

AT LUER I T A IER flatMap() 7374, ATET AR, X2, Frihhd 7E flatMa
p() 73 ERIPE U,

e
“flatMap —— U —TERETENZE, PRI TMEEE— T e = —1
Vi)
7
@Test

public void testFlatMap () {
StreamAPI_Test s = new StreamAPI|_Test();
List<String> list = Arrays.asList("aaa", "bbb", "ccc", "ddd");
list.stream().flatMap((e) -> s.filterCharacter(e)).forEach(System.out::println);

J/UTREH map NEESIEE
list.stream().map((e) -> s.filterCharacter(e)).forEach((e) -> {

e forEach(System.out::println);

CJF—TNF GBI
7
public Stream<Character> filterCharacter(String str){
List<Character> list = new ArrayList<>();
for (Character ch : str.toCharArray()) {
list.add(ch);
}

return list.stream();

HSL map A/ERAEETF Collaction BY add 57%, 3R add IR M EERIEM ST M 4 #AE,
mi flatMap B9IERLAEZ T Collaction 89 addAll 757%, BHUREEGEIE, RER 2 M&E&a6H,
MA R _4E54H,

73 > E/"E Java8 A9 Stream

6.13 HiFF

KT HIFAR XA AU T &RFRo

BiE R
sorted() PE— R, EPRBAIRFHE
sorted(Comparator comp) FEE—NR, HpZtbRSEIFHF

M ERRIEFILEY: sorted BEMMAZE, —MEREEASE, WBAHRFE, TE—MWRE
& Comparator #MO2%, MUBESIHF.

Se3kE Java8 M Stream EOXT T sorted() /559 BR, W Ao

Stream<T> sorted();

Stream<T> sorted(Comparator<? super T> comparator);
sorted() I ARVEX LEIRE R, FMABIERT -
BT LUZRA T A REA Stream B89 sorted () %o

V=t i

List<Employee> persons = list.stream().sorted().collect(Collectors.toList());

S E AT
List<Employee> personsl = list.stream().sorted((el, e2) > {
if (el.getAge() == e2.getAge()) {
return O;
} else if (el.getAge() > e2.getAge()) {
return 1;

} else {

$ENE Java8 FIHJ Stream < T4

return -1;

}
}).collect(Collectors.toList());

6.14 Stream B9 1Li2{E

LIGIRTERMRMBIMKEENER. HEARTUREAA2RNE, F: List. Integer.
Double. String &%, EZEZ void .

£ Java8 H, Stream BYRIERIERILID AN B SILE. MLAOMUE, Z TR, HiImo5E
BB X R HE(F,

6.15 Ef}5SLEAC

Stream APl 1B X B SILERI A0 R &R

PRt R
allMatch(Predicate p) wERGLEAETER
anyMatch(Predicate p) KwEELELPLE—NtEHE
noneMatch(Predicate p) RERTEXELEMBTR

findFirst() R[EIE—NTE
findAny() REIHAIRPNERTTE
count() [ERFATTE R
max(Comparator ¢) RERFRAE
min(Comparator c) RENRFRIVE
forEach(Consumer c¢) RERER(ER Collection #EOFEZRHF AMUELT, FA5h
k. M/, Stream APl ERANERENR)

75 > E/"E Java8 A9 Stream

BEFRY, HIMNENEENFEHITEENTONAE, X8, ®ITELEIL— Employee £,
Employee ZERITE X 30 P70

@Data
@Builder
@ToString
@NoArgsConstructor
@AllArgsConstructor
public class Employee implements Serializable {
private static final long serialVersionUID = -9079722457749166858L;
private String name;
private Integer age;
private Double salary;
private Stauts stauts;
public enum Stauts{
WORKING,
SLEEPING,
VOCATION

B, BNEMHEPEX =BT MIRABIES employees, W0 FF7Ro

protected List<Employee> employees = Arrays.asList(
new Employee("sk=", 18, 9999.99, Employee.Stauts.SLEEPING),
new Employee("Z=P0", 38, 5555.55, Employee.Stauts. WORKING),
new Employee("£H", 60, 6666.66, Employee.Stauts. WORKING),
new Employee("#X7x", 8, 7777.77, Employee.Stauts.SLEEPING),
new Employee("H+", 58, 3333.33, Employee.Stauts.VOCATION)

TT, EELIFEMET . &K, HwAEME Stream BN IET %,

1. allMatch()

$ENE Java8 FIHJ Stream < 76

allMatch() F/ax T OERS LA B TR, HTE Stream EOFBIE X FFITo

boolean allMatch(Predicate<? super T> predicate);

HA TR LOBE SN RISk EEA allMatch()757%,

boolean match = employees.stream().allMatch((e) -> Employee.Stauts.SLEEPING.equals(e.getStau
ts()));

System.out.println(match);

R £ allMatch() A58, REMEMNTERLTARRZE, allMatch() 53574 SiR[E true,

2. anyMatch()53%

anyMatch 2R BEES E/VLEE—N TR, HIE Stream FORBE XU TP

boolean anyMatch(Predicate<? super T> predicate);

TR OB RN TR BISRER anyMatch() 57,

boolean match = employees.stream().anyMatch((e) -> Employee.Stauts.SLEEPING.equals(e.getSta
uts()));

System.out.println(match);

8 £/ anyMatch() AR, RESEE—IMREFAELMY, anyMatch() A EREIRE

true.

3. noneMatch()5%

noneMatch() A/ExR OB RE X B ILEFTB TR, HTE Stream ZOFBIE XN TR0

T > E/"E Java8 A9 Stream

boolean noneMatch(Predicate<? super T> predicate);

BATRT OB 25080 TR I3 noneMatch() 5%

boolean match = employees.stream().noneMatch((e) -> Employee.Stauts.SLEEPING.equals(e.getSt

auts());
System.out.println(match);

SEE: £/ noneMatch() /53K, REMBEMNTEHBRAFTAEMLER, noneMatch() A EA &R

8] true,

4. findFirst()755%

findFirst() 57AFRTREIE—1TTE. HIT Stream ZHOFE X W IR

Optional<T> findFirst();

AR LUBI S0 SR BIRE A findFirst() 757%,

Optional<Employee> op = employees.stream().sorted((el, e€2) -> Double.compare(el.getSalary(),
e2.getSalary())).findFirst();
System.out.println(op.get());

5. findAny() A%

findAny() &R R BISRTNRTRIER TR, HAE Stream EOFRIE XU N AR,

Optional<T> findAny();

AR OB SN TR BISREER findAny() 5%

$ENE Java8 FIHJ Stream < 78

Optional<Employee> op = employees.stream().filter((e) -> Employee.Stauts. WORKING.equals(e.ge
tStauts())).findFirst();
System.out.println(op.get());

6. count()Ai%

count() 5 ARMREIRAP TR Z . H1E Stream O HBYE XA TR

long count();

FATRI LU S TR BIRAERA count() 757%.

long count = employees.stream().count();

System.out.println(count);

7. max() A&

max() AR R EIRARAE. HiE Stream O FRIE XU FFAR.

Optional<T> max(Comparator<? super T> comparator);

FATRI LU SN TR AR EEA max() 73 7%.

Optional<Employee> op = employees.stream().max((el, e2) -> Double.compare(el.getSalary(), e
2.getSalary()));
System.out.println(op.get());

8. min() A&

min() A 7ERTREIRAPER/IVE. HIE Stream ZOFIE XU TR

79 > SB/NE Java8 My Stream
Optional<T> min(Comparator<? super T> comparator);

FATRT LU SE M TR BIREEA min()757%,

Optional<Double> op = employees.stream().map(Employee::getSalary).min(Double::compare);
System.out.println(op.get());

9. forEach()/&%

forEach() 7 ERRAERIENR(ER Collection HOFEARF EMUIEN, AILIER, K,
Stream APl EERNERER), EHFE Stream EOAZBRIE XU TR

void forEach(Consumer<? super T> action);
AT E] LOE K90 R BIsRAER forEach() 75 7%,

employees.stream().forEach(System.out::println);

6.16 LY

Stream API B XA 5 A TR,

HiE &R
reduce(T iden, BinaryOperator b) AR ITERESEGRRE, BE—ME, RE T
reduce(BinaryOperator b) AR RPTERELSSER, FE—ME, X[
Optional

reduce() 7 E1E Stream #ZOHBIE XU FFATRo

$ENE Java8 FIHJ Stream < 80

T reduce(T identity, BinaryOperator<T> accumulator);
Optional<T> reduce(BinaryOperator<T> accumulator);
<U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combi

ner);

AR LUBI 20 N BIRER reduce F57%.

List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);

Integer sum = list.stream().reduce(0, (x, y) > x +y);

System.out.println(sum);

System.out.println("------------------—-ee - ");

Optional<Double> op = employees.stream().map(Employee::getSalary).reduce(Double::sum);

System.out.println(op.get());

FATB A LUIER employees FIFkAP “5K” HIMAREL,

Optional<integer> sum = employees.stream()
.map(Employee::getName)
flatMap(TestStreamAPI1:filterCharacter)
.map((ch) -> {
if(ch.equals('75"))

return 1;

else

return 0;
}).reduce(Integer::sum);

System.out.println(sum.get());

AR ERFIFERTEREBNARNRREMENREE, KRELFIFEFBRLAE,

81 > 8BXE Java8 By Stream

6.17 W&

5k R

collect(Collector ¢) | KmsEimAEMAZ. FW—1 Collector #FZOBISEI, BT 44 Stream g
EMOC RS E

collect()57A7E Stream EOFBITE XU PR

<R> R collect(Supplier<R> supplier,
BiConsumer<R, ? super T> accumulator,
BiConsumer<R, R> combiner);

<R, A> R collect(Collector<? super T, A, R> collector);

FATRT LU S TR BISRAE A collect 757%o

Optional<Double> max = employees.stream()
.map(Employee::getSalary)
.collect(Collectors.maxBy(Double::compare));
System.out.printin(max.get());
Optional<Employee> op = employees.stream()
.collect(Collectors.minBy((el, e2) -> Double.compare(el.getSalary(), e2.getSalary())));
System.out.println(op.get());
Double sum = employees.stream().collect(Collectors.summingDouble(Employee::getSalary));
System.out.println(sum);
Double avg = employees.stream().collect(Collectors.averagingDouble(Employee::getSalary));
System.out.println(avg);
Long count = employees.stream().collect(Collectors.counting());
System.out.println(count);

System.out.println(" ");

DoubleSummaryStatistics dss = employees.stream()
.collect(Collectors.summarizingDouble(Employee::getSalary));

System.out.println(dss.getMax());

$ENE Java8 FIHJ Stream < 82

6.18 NfAYeEE Stream 7i?

Collector O M 77/ARYSKILRE T AEIXTRHAITURERIR(E (ROUEE R List. Set. Map)o
Collectors SLRZSRM TRZFS 7%, FJUS B2 E IWESELA, BAEHDESEAIMTR:

BiE RESEE §3::
toList List HRATEWEE List
toSet Set R TTRWEES) Set
toCollection Collection ERATEWERICIENES
counting Long HERPTERRTE
summingint Integer SRR ESE KA
averaginglint Double HERPITE Integer BT &

summarizingInt | IntSummaryStatistics | WE&ERF Integer BENFITHE, W FHE

joining String ERORPE DTSR
maxBy Optional RIEL R SR IR R A (E
minBy Optional RIELL R e R R/ ME
reducing JE PR Faa = D E- i M—MERAZMBHFAE F45, FIA BinaryO
perator 5 MATRZENES, MM LIHED
(=]
collectingAndThen | FRiRRFLREIRIFEEY BRF—MUNESE, WHE REHRKE

83 > E/"E Java8 A9 Stream

Hi& RE SR 3z
groupingBy Map<K, List> RIERBEEENRDA, B MK ERAV
partitioningBy Map<Boolean, List> RHE true X false HITHKX

B TFEN NAYE AR A0 N R

BiE fERTBGI
toList List employees=list.stream().collect(Collectors.tolist());
toSet Set employees=list.stream().collect(Collectors.toSet());
toCollection Collection employees=list.stream().collect(Collectors.toCollection(Arra
yList::new));
counting long count = list.stream().collect(Collectors.counting());
summingint int total=list.stream().collect(Collectors.summingInt(Employee::getSal

ary));

averagingint

double avg= list.stream().collect(Collectors.averagingint(Employee::ge

tSalary))

summarizingint

IntSummaryStatistics iss= list.stream().collect(Collectors.summarizing

Int(Employee::getSalary));

Collectors String str=list.stream().map(Employee::getName).collect(Collectors.jo
ining());
maxBy Optionalmax=list.stream().collect(Collectors.maxBy(comparingInt(Em

ployee::getSalary)));

$ENE Java8 FIHJ Stream < 84

BiE fERRHG
minBy Optional min = list.stream().collect(Collectors.minBy(comparingInt(E
mployee::getSalary)));
reducing int total=list.stream().collect(Collectors.reducing(0, Employee::getSala

r, Integer:sum));

collectingAndThen

int how=list.stream().collect(Collectors.collectingAndThen(Collectors.

toList(), List:size));

groupingBy

Map<Emp.Status, List> map=list.stream() .collect(Collectors.groupin

gBy(Employee::getStatus));

partitioningBy

Map<Boolean,List>vd=list.stream().collect(Collectors.partitioningBy(E

mployee::getManage));

public void test4(){

Optional<Double> max = emps.stream()

.map(Employee::getSalary)

.collect(Collectors.maxBy(Double::compare));

System.out.println(max.get());

Optional<Employee> op = emps.stream()

.collect(Collectors.minBy((el, e2) -> Double.compare(el.getSalary(), e2.getSalary())));

System.out.println(op.get());

Double sum = emps.stream()

.collect(Collectors.summingDouble(Employee::getSalary));

System.out.println(sum);

Double avg = emps.stream()

.collect(Collecors.averagingDouble(Employee::getSalary));

85 > E/"E Java8 A9 Stream

System.out.println(avg);
Long count = emps.stream()

.collect(Collectors.counting());

DoubleSummaryStatistics dss = emps.stream()
.collect(Collectors.summarizingDouble(Employee::getSalary));
System.out.println(dss.getMax());

BERY, ATRARRE—TNABTDRE N IER, FRNERLED 5B N ERIVM.

Java 8 BEHTHITT ML, FNTUREZ G EIRHTHITIRIE. Stream APl BILIE
BEMEEIT parallel() 5 sequential() EHITASINERZEHITUIE o

Java8 FRHITHR LA

Java8 WHITRHIT T REMNMNMA, HEEFR EERANELTIEFZRNIEE, K1IRFH
2EARMA TRIAHIRLRI LU Java8 FBIFH TR IERA I8 ETE,

LongStream.rangeClosed(0, 10000000L).parallel().reduce(0, Long:sum);

£ Java8 FUNAIRIERIIHRHIT R BITRIE?

Stream API BILIFEBAMEMIET parallel() 5 sequential() EHITRS RITRZEIHITII

HLE Optional & < 86

¥+HZE Optional 3£ o

7.1 +42 Optional 3£?

Optional Z(java.util.Optional) 2—1&2E, KEXR—MEFEENFE, BXRA null XR
—MERTFE, WAE Optional AIUBIHFMRAXMER. HEAILUBRTIEHEE,

Optional £ERBA&A:

Optional.of(T t) : g&— Optional £fl,

Optional.empty() : BIFE—M=#Y Optional 3,

Optional.ofNullable(T t):& t & null, 8l Optional SEf),EN6IEZSLA,

e isPresent() : ¥ITRELEEE,

e OrElse(T t) : WMRIBEBNREEE, RENZE, BRG] t

o orElseGet(Supplier s) MRBEANREEE, REZE, SURE s FREEIE,

e map(Function f): INRBEXNHEHLIE, FR[EILNEFRY Optional, &NLR[El Optional.emp
ty()o

o flatMap(Function mapper):5 map L, EFR[E{EXIUZE Optionals

7.2 Optional 2|
1. % Optional 3£

(1) R empty()/7EBIER—NZ=H Optional WK :

Optional<String> empty = Optional.empty();

87 > 2t Optional £

(2) &£/ of() /5 %8I Optional XY%R:

String name = "binghe";
Optional<String> opt = Optional.of(name);
assertEquals("Optional[binghe]", opt.toString());

fedin of |EFRILINET, BNEME=IEHRES. §Iil, TENEFRSMHTIETRE,

String name = null;

Optional<String> opt = Optional.of(name);

MRFTNFBELR—ETE, BRI LUER FEBRAIFTT.

String name = null;

Optional<String> opt = Optional.ofNullable(name);

£/ ofNullable() 5%, MHEFHEBFHE—NTEN, FMERES, MRBRE—D=H Optio
nal W&, WEFKAIE Optional.empty() 75—,

2. isPresent

AT LUERX A isPresent() A 5E— Optional WRAEREHE, REEIFT ARG true,

Optional<String> opt = Optional.of("binghe");

assertTrue(opt.isPresent());

opt = Optional.ofNullable(null);

assertFalse(opt.isPresent());

£ Java8 Z i, I —MEAATHAKILEZE,

$HE Optional & < 88

if(name = null){

System.out.println(name.length);

£ Java8 H7, FA s A LUEARII T AR E=ET

Optional<String> opt = Optional.of("binghe");
opt.ifPresent(name -> System.out.printin(name.length()));

3. orElse # orElseGet

(1) orElse

orElse() 73 A A0R(E] Optional WRAMEIAME, EREANA—D FIASH - TRWRFF
F—ME, MEEE, SMREENE “FRINSEH

String nullName = null;
String name = Optional.ofNullable(nullName).orElse("binghe");
assertEquals("binghe", name);

(2) orElseGet

5 orElse()77EEM, ERXPDEEAZER—D BN , ME—TREED,

String nullName = null;
Strng name = Optional.ofNullable(nullName).orElseGet(() -> "binghe");
assertEquals("binghe", name);

() ZEBHAKH?

ZRERE_ENXR), BRLIMIZ— TS EREEENT A,

89 > 2t Optional £

public String getDefaultName() {
System.out.printIn("Getting Default Name");
return "binghe";

TR, #TmNIIREER N ERIRE AKX,

String text;

System.out.println("Using orElseGet:");

String defaultText = Optional.ofNullable(text).orElseGet(this::getDefaultName);
assertEquals("binghe", defaultText);

System.out.printin("Using orElse:");
defaultText = Optional.ofNullable(text).orElse(getDefaultName());
assertEquals("binghe", defaultText);

AEXERAIF, AR Optional WRFEEHEZ—N=ME, ERMNEEEFHRITER

Using orElseGet:
Getting default name...
Using orElse:

Getting default name...

> Optional X RAEBRIFLE value, HILMITEARER,

M4, = Optional WRAFEMRRKEMFTANE? Tl]—HeKEIE T,

String name = "binghe001";
System.out.println("Using orElseGet:");
String defaultName = Optional.ofNullable(name).orElseGet(this::getDefaultName);

assertEquals("binghe001", defaultName);

System.out.printIn("Using orElse:");

%+HE Optional & < 90

defaultName = Optional.ofNullable(name).orElse(getDefaultName());

assertEquals("binghe001", defaultName);

IBITERW NFRo

Using orElseGet:
Using orElse:
Getting default name...

BILLER], LM orElseGet()7ART, getDefaultName()AHARH1T, AA Optional f&%5
8, MM orElse BINIRREHNIT. FRUARILAEBE, H{ETFERT, orElse #8LEF orElseGet, %6
T— PR WRCIBENRE, FENERE, BEAADRNFHEMLRKT, XBRRERITER
B— 75,

4. orElseThrow

orElseThrow() 775 HiBE— N AEFEMNENNE, HARE—DEIAME, MEMEEE,

String nullName = null;

String name = Optional.ofNullable(nullName).orElseThrow(IllegalArgumentException::new);

5. get

get()37AFR 2 Optional STRFIREVE,

Optional<String> opt = Optional.of("binghe");
String name = opt.get();

assertEquals("binghe", name);

£ get() A BRI LUREIRBRERNE, BRELNFE. SETFEN, SHH— NoSuc

hElementException & &-

91 > 2t Optional £

Optional<String> opt = Optional.ofNullable(null);
String name = opt.get();

6. filter

Bl —r#iEd, S5aE08, MREl—1 Optional W&, &Nk [E—1=H) Optiona
[MR

String name = "binghe";

Optional<String= nameOptional = Optional.of(name);

boolean isBinghe = nameOptional filter(n -> "binghe".equals(name)).isPresent();
assertTrue(isBinghe);

boolean isBinghe001 = nameOptional filter(n -> "binghe001".equals(name)).isPresent();
assertFalse(isBinghe001);

2 filter(752 BB T BENTE,
ETR, BIVERE—GIRG, FINEETE— Person 2, MTA.

public class Person{
private int age;
public Person(int age){
this.age = age;

}
J/EHE get set FriA

g0, JMNFBEDREBFLRTE 25 25 35 5 ZAIRIABE, BT Java8 2RI IF 2 E—
SRYEERNE N AR FISEERSE 25 ¥ 5 35 % Z Al

$HE Optional & < 92

public boolean filterPerson(Peron person){
boolean isInRange = false;
if(person = null && person.getAge() >= 25 && person.getAge() <= 35){
isilnRange = true;

}

return isinRange;

E LA, AT AR TR T0E TR,

)

assertTrue(filterPerson(new Peron(18))

);
);
)

)
assertFalse(filterPerson(new Peron(29))
assertFalse(filterPerson(new Peron(16))

K

((
assertFalse(filterPerson(new Peron(34
((

assertFalse(filterPerson(null));

R EA Optional, MERMOEIE?

public boolean filterPersonByOptional(Peron person){
return Optional.ofNullable(person)
.map(Peron::getAge)
filter(p > p >= 25)
filter(p > p <= 35)
.isPresent();

£ Optional B LAFBRZ T, XE, map(XNEBR—MERBRNSZ—NME, FEXE
R R RFKAYE,

7. map

MRBENELE, FHiREIEFEN Optional, BNRE Optional.empty()o

93 > 2t Optional £

List<String> names = Arrays.asList("binghe001", "binghe002", "", "binghe003", "", "binghe004");
Optional<List<String>> listOptional = Optional.of(names);

int size = listOptional
.map(List::size)
.orElse(0);

assertEquals(6, size);

EXMIFHR, FONER— List EEHET —LEFRH, ASEHBEXA List £/ Optional
HEREK, WH map(), KRB List EGHIKE. map(REINAERMHEEEE— Optional SR,
XESENFERRE, HNSFIAEE 0o M THARE—1DFRF ERIKE.

String name = "binghe";
Optional<String>= nameOptional = Optional.of(name);

int len = nameOptional
.map(String:length())
.orElse(0);
assertEquals(6, len);
BB LU map()BES filter() BEaE&1ER, WA,

String password = " password ";
Optional<String> passOpt = Optional.of(password);
boolean correctPassword = passOpt.filter(

pass -> pass.equals("password")).isPresent();

assertFalse(correctPassword);

correctPassword = passOpt
.map(String::trim)
filter(pass -> pass.equals("password"))
.isPresent();

assertTrue(correctPassword);

ERARIHE LR B HITIVE, BEERED NIEERE,

$HE Optional & < 94

8. flatMap

5 map F£M, ERRENEXIUE Optionals

BRIZEAVMEBE—1> Person 25,

public class Person {
private String name;
private int age;

private String password;

public Optional<String> getName() {
return Optional.ofNullable(name);

public Optional<integer> getAge() {
return Optional.ofNullable(age);

public Optional<String> getPassword() {
return Optional.ofNullable(password);

}

/RS get set 7%

R, BATAILUE Person 25| Optional #, FH#1TMNR, WTHFIR.

Person person = new Person("binghe", 18);

Optional<Person> personOptional = Optional.of(person);

Optional<Optional<String=> nameOptionalWrapper = personOptional.map(Person::getName);
Optional<String= nameOptional = nameOptionalWrapper.orElseThrow(lllegalArgumentException::
new);

String namel = nameOptional.orElse("");

assertEquals("binghe", namel);

95 > 2t Optional £

String name = personOptional
flatMap(Person::getName)
.orElse("");

assertEquals("binghe", name);

AR Ak getName R[EIBZE— Optional &R, WREHE map, HMNEEEHFEA—NX
get()755%, MEM flatMap()FAFEE T,

BN\E BAAE < 96

BI\E AT E °

8.1 EZOFBIRING &

Java 8 MAWEOMEERBEARAGFKINSG X, AN “BINGE , BRINTEER
default XEFEM -

Bign, AR LAEX —180 MyFunction, B, G188 —1EIATA getName, W0 N,

public interface MyFunction<T>{
T get(Long id);
default String getName(){
return "binghe";

8.2 BAIAFERYIEN
£ Java8 B, BUATSEEE “HA%S SR,

E—TEOREXT —PERINGE, MAII—PREFEOPREX T —PRIBWTTEN, &
BT BYRM,

LiEFRRERNTGH, MB—PRERMT BFNEIH, BAaZOPAEFHEEZR
MBHRIBINT EZS B,

fan, BEB—PEOR MyFunction, F—2E MyClass, 0 FFRo

97 > BIN\E BIAFE

e MyFunction

public interface MyFunction{
default String getName(){

return "MyFunction";

o MyClass £

public class MyClass{
public String getName(){
return "MyClass";

bR, Bl SubClass 24k MyClass 2, HSLI MyFunction 20, 0 FFI7R.

public class SubClass extends MyClass implements MyFunction{

K, FAIBIE—" SubClassTest 28, ¥ SubClass Z#4TMt, 0 NFIRo

public class SubClassTest{
@Test
public void testDefaultFunction(){
SubClass subClass = new SubClass();
System.out.println(subClass.getName());

BT AR, RBEHFRH MyClass.

FI\E BiAFE < 98

2.2OMR, NR—NMREORE—IRIANGE, ME—TMEOLERT-TEAE
HERMMSHRIIRNTGZE (FEFERBRRINGE) , BAVTBRIZHTERE

RS,

B0, WEBENEO, 9509 MyFunction # MyInterface, & BEB—BIASGE getName
(), BRI

e MyFunction 01

public interface MyFunction{
default String getName(){

return "function";

o Myinterface £

public interface MylInterface{
default String getName(){

return "interface";

SSINZE MyClass [RIBFSLIR T MyFunction #04 MyInterface £, EF MyFunction #H]
MylInterface O EBTETE getName()ZRINFT3E, FrLL, MyClass B S getName() 75 AR R b
=, WP,

public class MyClass{
@Override
public String getName(){
return MyInterface.super.getName();

ItEBY, MyClass 2EHRBY getName 75 %REIRZ: interface,

99 > B)N\E RIUFE
0R MyClass 89 getName() /572 BEHIZE MyFunction #0089 getName() /3%, W FFRo

public class MyClass{
@Override
public String getName(){
return MyFunction.super.getName();

ItbBY, MyClass ZEHRBY getName 7 %R [EIRYZ: function.

8.3 EOFHFEH A

£ Java8 A, BOPARFRINEESHZE, FRAANEOR. HER. F130 MyFunction O E
X T 8% send()o

public interface MyFunction{
default String getName(){
return "binghe";
}
static void send(){
System.out.printIn("Send Message...");

AT EZFERN T AR MyFunction #08 send 535775

MyFunction.send();

BNE AMEYEMESER < 100

BNE ZcHhB i) F0ET 8] 2 o

FEHE:

e now: FETTE, RIEBHFIRECIENR
o of: BT, RIEEEHH/NERIZENR
e plusDays,plusWeeks,plusMonths,plusYears: [E%#] LocalDate WRAM/LA. JLE. JLD

E\)_LE
o minusDays,minusWeeks,minusMonths,minusYears: M2 LocalDate XSYZBEILR. J1
B A NEF

e plus,minus: ZIAEEED—> Duration 5% Period

o withDayOfMonth,withDayOfYear,withMonth,withYear: B k#. FHRE#. B, F
IMENIEEMEFIREIFH LocalDate MR

o getDayOfYear: FR1SHNKE(1~366)

o getDayOfWeek: FR1FEHAJL(R[EI— DayOfWeek MZE1(E)

e getMonth: KBAH, RE— Month #ZE

e getMonthValue: X1BH % (1~12)

o getYear: KBEMH

o until: FKEMMBHEIZ(EIH Period MR, SEIEE ChronoUnits BIEF

o isBefore,isAfter: ELEFE LocalDate

e isLeapYear: FrEEEEF

9.1 M LocalDate. LocalTime. LocalDateTime

LocalDate. LocalTime. LocalDateTime ZERLFIBRAILHNNER, DHIFRRFER 1SO-86
01 B AR BER. Bal. HEAFIETE, ©ANRM T EEMH AT E, HAES HEIINEEE B,

101 > BmAE AMEEREEE

BAEE5RXEXER.

7E: 1S0-8601 HIA A S ZEFFRENARSIE I AR B BB BINRTE

HiE DU
now() S 7%, RIESRITESIENR
of() S T7A, RIEEE BH/BECIZ WR

plusDays, plusWeeks, plusMonth

s, plusYears

=80 LocalDate SW&RAMILKR. JUA. JLTA. JIEF

minusDays, minusWeeks,

minusMonths, minusYears

MZHE] LocalDate W&EE/ LK. JLBE. JINA. JIE

plus, minus

ISR — Duration Bf Period

withDayOfMonth, withDayOfYear,
withMonth, withYear

BREMEE. FHRE. B, FMHEBRAEBE
B B # & [B] # B LocalDate ¥R

getDayOfMonth RIS AMRE(1-31)

getDayOfYear RIS R (1-366)

getDayOfWeek IKISEHRJLEREI—1 DayOfWeek MZE1E)
getMonth RIEA, REI— Month #ZE

getMonthValue

RERM(1-12)

getYear

RISFD

until

RIEM NHERZ BN Period MR, WEETE

ChronoUnits 9%

BNE AESEHIBY R 2

102

FiE iR
isBefore, isAfter EEE# D LocalDate
isLeapYear 2 S EEE
AN IR R TR NN T

VY ETIE - il

LocalDateTime localDateTimel = LocalDateTime.now();
System.out.println(localDateTimel);

/) BITEEE 2019-10-27T13:49:09.483

// 1EE 7708

LocalDateTime localDateTime2 = LocalDateTime.of(2019, 10, 27, 13, 45,10);
System.out.println(localDateTime2);

) B TEEE . 2019-10-27T13:45:10

LocalDateTime localDateTime3 = localDateTimel
V=3
.plusYears(3)
/= TA
.minusMonths(3);
System.out.println(localDateTime3);
/) BmITEEE 2022-07-27T13:49:09.483

System.out.printin(localDateTimel.getYear());) BITEEE 2019
System.out.println(localDateTimel.getMonthValue()); // =775 10

System.out.println(localDateTimel.getDayOfMonth()); // iz7725%. 27

(
(
(
(
(
(

System.out.println(localDateTimel.getHour()); /) BT 13
System.out.println(localDateTimel.getMinute());) BT 52
System.out.println(localDateTimel.getSecond()); /) BT 6

LocalDateTime localDateTime4 = LocalDateTime.now();
System.out.println(localDateTime4); // 2019-10-27T14:19:56.884
LocalDateTime localDateTime5 = localDateTime4.withDayOfMonth(10);
System.out.println(localDateTime5); // 2019-10-10T14:19:56.884

103 > BAE AHETEATE R

9.2 Instant Bja]&%

BT “HEg” fvizE. ©FLU Unix TE(EHMIREN UTC BIX 1970 F 1 B 1 BF®&RN D)
FHaPREHBIEREITEE -

RS0 R R

Instant instantl = Instant.now(); // Z(2AZFEL UTC A7[X
System.out.println(instantl);
/) BTTEEE 2019-10-27T705:59:58.2217

/) WEEEE

OffsetDateTime offsetDateTime = instantl.atOffset(ZoneOffset.ofHours(8));
System.out.println(offsetDateTime);

) E(TEEER . 2019-10-27T13:59:58.221+08:00

J/ EERAT)&
System.out.println(instantl.toEpochMilli());

/) BITEEE 1572156145000

/) L Unix TTENER, HiTHREESE
Instant instant2 = Instant.ofEpochSecond(60);

System.out.println(instant2);
/) BITEEE 1970-01-01T00:01:002

9.3 Duration # Period
Duration:FEFHEFR “Ba" 8.

Period: BFIHE® “HEF” BT o

FNE AHIBYEFBYEE < 104

Instant instant_1 = Instant.now();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}

Instant instant_2 = Instant.now();

Duration duration = Duration.between(instant_1, instant_2);
System.out.println(duration.toMillis());
) IBEITEEE 1000

LocalTime localTime_1 = LocalTime.now();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

}

LocalTime localTime_2 = LocalTime.now();

System.out.println(Duration.between(localTime_1, localTime_2).toMillis());
/) IBITESE 1000
LocalDate localDate_1 = LocalDate.of(2018,9, 9);

LocalDate localDate_2 = LocalDate.now();

Period period = Period.between(localDate_1, localDate_2);
System.out.println(period.getYears());) BT]

System.out.println(period.getMonths()); S BT]
System.out.println(period.getDays());) EiTEEE 18

9.4 HEARVIR(E

TemporalAdjuster : BYEIR1EZR. BN AIREREREGIN: FEARERE “T1MEHE" %
1215,

105 > EAE AHETEIFNATEIR

TemporalAdjusters : ZFEBIEHSHEIRE T RKENEA TemporalAdjuster BIEI,

FIRNEREX A B, WRFR:

LocalDate nextSunday = LocalDate.now().with(TemporalAdjusters.next(DayOfWeek.SUNDAY));

SRR IS0 TR

LocalDateTime localDateTimel = LocalDateTime.now();
System.out.println(localDateTimel); // 2019-10-27T14:19:56.884

/) FEOX N E—A A AT
System.out.printin(localDateTimel.with(TemporalAdjusters.firstDayOfMonth()));
9-10-01T714:22:58.574

V3 AN ES =t
System.out.printin(localDateTimel.with(TemporalAdjusters.next(DayOfWeek.SUNDAY)));
019-11-03T714.22:58.574

/S BEX: T—1TI1EH

LocalDateTime localDateTime2 = localDateTimel.with(l > {
LocalDateTime localDateTime = (LocalDateTime) ;
DayOfWeek dayOfWeek = localDateTime.getDayOfWeek();

if (dayOfWeek.equals(DayOfWeek.FRIDAY)) {
return localDateTime.plusDays(3);

} else if (dayOfWeek.equals(DayOfWeek.SATURDAY)) {
return localDateTime.plusDays(2);

} else {
return localDateTime.plusDays(1);

b;
System.out.printin(localDateTime2);
) EITEEE 2019-10-28T14:30:17.400

/201

/2

BNE AMEYEMESER < 106

9.5 fEthSRIIL

java.time.format.DateTimeFormatter 2£: ZAIRM T =MW A A:

o FIRE XBIFRERET
o EEWRMHEXIBI
o BREXBIEI

RS0 R R

DateTimeFormatter dateTimeFormatterl = DateTimeFormatter.ISO_DATE;
LocalDateTime localDateTime = LocalDateTime.now();

String strDatel = localDateTime.format(dateTimeFormatterl);
System.out.println(strDatel);

/) IETTEER: 2019-10-27

// Date -> String

DateTimeFormatter dateTimeFormatter2 = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:s
52

String strDate2 = dateTimeFormatter2.format(localDateTime);

System.out.println(strDate2);

/) IEITEER: 2019-10-27 14:36:11

s/ String -> Date

LocalDateTime localDateTimel = localDateTime.parse(strDate2, dateTimeFormatter2);
System.out.println(localDateTimel);

) B TEEE . 2019-10-27T14:37:39

9.6 FFXAYLLIE

Java8 AN T XXM, mEXMBEYE N5 ZonedDate. ZonedTime. Zoned

DateTimes

107 > BAE AMEYEFEEE

HApg M IXENINVE 1D, #X D #A {XE)/(m) 890, Bl @ Asia/Shanghai
%o

e Zoneld: ZEFBETHENHNKXEER
e getAvailableZonelds() : FILUGABNFABBIX X E
o of(id) : BIEEMNXEEIREN Zoneld IR

RS0 R

/) RERBTBEAIETX
Set<String> set = Zoneld.getAvailableZonelds();
System.out.println(set);
// [Asia/Aden, America/Cuiaba, Etc/GMT+9, Etc/GMT+S8, Africa/Nairobi, America/Marigot, Asia/Aqt
au, Pacific/Kwajalein, America/El_Salvador, Asia/Pontianak, Africa/Cairo, Pacific/Pago_Pago, Afri
ca/Mbabane, Asia/Kuching, Pacific/Honolulu, Pacific/Rarotonga, America/Guatemala, Australia/H
obart, Europe/London, America/Belize, America/Panama, Asia/Chungking, America/Managua, A
merica/Indiana/Petersburg, Asia/Yerevan, Europe/Brussels, GMT, Europe/Warsaw, America/Chica
go, Asia/Kashgar, Chile/Continental, Pacific/Yap, CET, Etc/GMT-1, Etc/GMT-0, Europe/Jersey, Am
erica/Tegucigalpa, Etc/GMT-5, Europe/Istanbul, America/Eirunepe, Etc/GMT-4, America/Miguelon,
Etc/GMT-3, Europe/Luxembourg, Etc/GMT-2, Etc/GMT-9, America/Argentina/Catamarca, Etc/GMT
-8, Etc/GMT-7, Etc/GMT-6, Europe/Zaporozhye, Canada/Yukon, Canada/Atlantic, Atlantic/St_Hele
na, Australia/Tasmania, Libya, Europe/Guernsey, America/Grand_Turk, US/Pacific-New, Asia/Sa
markand, America/Argentina/Cordoba, Asia/Phnom_Penh, Africa/Kigali, Asia/Almaty, US/Alaska,
Asia/Dubai, Europe/Isle_of Man, America/Araguaina, Cuba, Asia/Novosibirsk, America/Argentina/
Salta, Ftc/GMT+3, Africa/Tunis, Etc/GMT+2, Ftc/GMT+1, Pacific/Fakaofo, Africa/Tripoli, Etc/GMT+
0, Israel, Africa/Banjul, Etc/GMT+7, Indian/Comoro, Etc/GMT+6, Etc/GMT+5, Etc/GMT+4, Pacific/
Port_Moresby, US/Arizona, Antarctica/Syowa, Indian/Reunion, Pacific/Palau, Europe/Kaliningrad,
America/Montevideo, Africa/Windhoek, Asia/Karachi, Africa/Mogadishu, Australia/Perth, Brazil/E
ast, Etc/GMT, Asia/Chita, Pacific/Easter, Antarctica/Davis, Antarctica/McMurdo, Asia/Macao, Ame
rica/Manaus, Africa/Freetown, Europe/Bucharest, Asia/Tomsk, America/Argentina/Mendoza, Asia/
Macau, Europe/Malta, Mexico/BajaSur, Pacific/Tahiti, Africa/Asmera, Europe/Busingen, America/
Argentina/Rio_Gallegos, Africa/Malabo, Europe/Skopje, America/Catamarca, America/Godthab, E
urope/Sarajevo, Australia/ACT, GB-Eire, Africa/Lagos, America/Cordoba, Europe/Rome, Asia/Dacc
a, Indian/Mauritius, Pacific/Samoa, America/Regina, America/Fort_Wayne, America/Dawson_Cree

k, Africa/Algiers, Europe/Mariehamn, America/St_Johns, America/St_Thomas, Europe/Zurich,

SNE ApfEMeEE < 108

America/Anguilla, Asia/Dili, America/Denver, Africa/Bamako, Europe/Saratov, GB, Mexico/General,
Pacitfic/Wallis, Europe/Gibraltar, Africa/Conakry, Africa/Lubumbashi, Asia/lstanbul, America/Hava
na, NZ-CHAT, Asia/Choibalsan, America/Porto_Acre, Asia/Omsk, Europe/Vaduz, US/Michigan, Asi
a/Dhaka, America/Barbados, Europe/Tiraspol, Atlantic/Cape_Verde, Asia/Yekaterinburg, America/
Louisville, Pacific/Johnston, Pacific/Chatham, Europe/Ljubliana, America/Sao_Paulo, Asia/Jayap
ura, America/Curacao, Asia/Dushanbe, America/Guyana, America/Guayaquil, America/Martinique,
Portugal, Europe/Berlin, Europe/Moscow, Europe/Chisinau, America/Puerto_Rico, America/Rank
in_Inlet, Pacific/Ponape, Europe/Stockholm, Europe/Budapest, America/Argentina/Jujuy, Australi
a/Eucla, Asia/Shanghai, Universal, Europe/Zagreb, America/Port_of_Spain, Europe/Helsinki, Asia
/Beirut, Asia/Tel_Aviv, Pacific/Bougainville, US/Central, Africa/Sao_Tome, Indian/Chagos, Americ
a/Cayenne, Asia/Yakutsk, Pacific/Galapagos, Australia/North, Europe/Paris, Africa/Ndjamena, Pac
ific/Fiji, America/Rainy._River, Indian/Maldives, Australia/Yancowinna, SystemV/AST4, Asia/Oral, A
merica/Yellowknife, Pacific/Enderbury, America/Juneau, Australia/Victoria, America/Indiana/Veva
v, Asia/Tashkent, Asia/Jakarta, Africa/Ceuta, Asia/Barnaul, America/Recife, America/Buenos_Aire
s, America/Noronha, America/Swift_Current, Australia/Adelaide, America/Metlakatla, Africa/Djibo
uti, America/Paramaribo, Europe/Simferopol, Europe/Sofia, Africa/Nouakchott, Europe/Prague, A
merica/Indiana/Vincennes, Antarctica/Mawson, America/Kralendijk, Antarctica/Troll, Europe/Sam
ara, Indian/Christmas, America/Antigua, Pacific/Gambier, America/Indianapolis, America/Inuvik,
America/lgaluit, Pacific/Funafuti, UTC, Antarctica/Macquarie, Canada/Pacific, America/Moncton,
Africa/Gaborone, Pacific/Chuuk, Asia/Pyongyang, America/St_Vincent, Asia/Gaza, Etc/Universal,
PST8PDT, Atlantic/Faeroe, Asia/Qyzylorda, Canada/Newfoundland, America/KentuckyyLouisville,
America/Yakutat, Asia/Ho_Chi_Minh, Antarctica/Casey, Europe/Copenhagen, Africa/Asmara, Atlan
tic/Azores, Furope/Vienna, ROK, Pacific/Pitcairn, America/Mazatlan, Australia/Queensland, Pacifi
¢/Nauru, Europe/Tirane, Asia/Kolkata, SystemV/MST7, Australia/Canberra, MET, Australia/Broken
_Hill, Europe/Riga, America/Dominica, Africa/Abidjan, America/Mendoza, America/Santarem, Kw
ajalein, America/Asuncion, Asia/Ulan_Bator, NZ, America/Boise, Australia/Currie, EST5EDT, Pacifi
¢/Guam, Pacific/Wake, Atlantic/Bermuda, America/Costa_Rica, America/Dawson, Asia/Chongqging,
Eire, Europe/Amsterdam, America/Indiana/Knox, America/North_Dakota/Beulah, Africa/Accra, A
tlantic/Faroe, Mexico/BajaNorte, America/Maceio, Etc/UCT, Pacific/Apia, GMTO, America/Atka, Pa
cific/Niue, Australia/Lord_Howe, Europe/Dublin, Pacific/Truk, MST7MDT, America/Monterrey, Am
erica/Nassau, America/Jamaica, Asia/Bishkek, America/Atikokan, Atlantic/Stanley, Australia/NSW,
US/Hawaii, SystemV/CST6, Indian/Mahe, Asia/Aqtobe, America/Sitka, Asia/Vladivostok, Africa/Li
breville, Africa/Maputo, Zulu, America/Kentucky/Monticello, Africa/El_Aaiun, Africa/Ouagadougou,
America/Coral_Harbour, Pacific/Marquesas, Brazil/West, America/Aruba, America/North_Dakota/
Center, America/Cayman, Asia/Ulaanbaatar, Asia/Baghdad, Europe/San_Marino, America/Indiana
/Tell_City, America/Tijuana, Pacific/Saipan, System\Vy/YST9, Africa/Douala, America/Chihuahua, A
merica/0jinaga, Asia/Hovd, America/Anchorage, Chile/Easterisland, America/Halifax,

109 > BAE AMEYEFEEE

Antarctica/Rothera, America/Indiana/Indianapolis, US/Mountain, Asia/Damascus, America/Argenti
na/San_Luis, America/Santiago, Asia/Baku, America/Argentina/Ushuaia, Atlantic/Reykjavik, Africa
/Brazzaville, Africa/Porto-Novo, America/la_Paz, Antarctica/DumontDUrville, Asia/Taipei, Antarcti
ca/South_Pole, Asia/Manila, Asia/Bangkok, Africa/Dar_es_Salaam, Poland, Atlantic/Madeira, Anta
rctica/Palmer, America/Thunder_Bay, Africa/Addis_Ababa, Asia/Yangon, Europe/Uzhgorod, Brazil
/DeNoronha, Asia/Ashkhabad, Etc/Zulu, America/Indiana/Marengo, America/Creston, America/Pu
nta_Arenas, America/Mexico_City, Antarctica/Vostok, Asia/Jerusalem, Europe/Andorra, US/Samo
a, PRC, Asia/Vientiane, Pacific/Kiritimati, America/Matamoros, America/Blanc-Sablon, Asia/Riyad
h, Iceland, Pacific/Pohnpei, Asia/Ujung_Pandang, Atlantic/South_Georgia, Europe/Lisbon, Asia/H
arbin, Europe/Oslo, Asia/Novokuznetsk, CST6CDT, Atlantic/Canary, America/Knox_IN, Asia/Kuwai
t, SystemV/HST10, Pacific/Efate, Africa/lome, America/Bogota, America/Menominee, America/Ad
ak, Pacific/Norfolk, Furope/Kirov, America/Resolute, Pacific/Tarawa, Africa/Kampala, Asia/Krasno
yarsk, Greenwich, SystemV/EST5, America/Edmonton, Europe/Podgorica, Australia/South, Canad
a/Central, Africa/Bujumbura, America/Santo_Domingo, US/Eastern, Europe/Minsk, Pacific/Auckla
nd, Africa/Casablanca, America/Glace_Bay, Canada/Eastern, Asia/Qatar, Europe/Kiev, Singapore,
Asia/Magadan, System\V/PST8, America/Port-au-Prince, Europe/Belfast, America/St_Barthelemy,

Asia/Ashgabat, Africa/Luanda, America/Nipigon, Atlantic/Jan_Mayen, Brazil/Acre, Asia/Muscat, As
ia/Bahrain, Furope/Vilnius, America/Fortaleza, Ftc/GMTO, US/East-Indiana, America/Hermosillo,

America/Cancun, Africa/Maseru, Pacific/Kosrae, Africa/Kinshasa, Asia/Kathmandu, Asia/Seoul, Au
stralia/Sydney, America/Lima, Australia/LHI, America/St_Lucia, Europe/Madrid, America/Bahia_B
anderas, America/Montserrat, Asia/Brunei, America/Santa_Ilsabel, Canada/Mountain, America/Ca
mbridge_Bay, Asia/Colombo, Australia/West, Indian/Antananarivo, Australia/Brisbane, Indian/Ma
yotte, US/Indiana-Starke, Asia/Urumaqi, US/Aleutian, Europe/Volgograd, America/Lower_Princes,

America/Vancouver, Africa/Blantyre, America/Rio_Branco, America/Danmarkshavn, America/Detro
it, America/Thule, Africa/Lusaka, Asia/Hong_Kong, Iran, America/Argentina/La_Rioja, Africa/Daka
r, SystemV/CST6CDT, America/Tortola, America/Porto_Velho, Asia/Sakhalin, Etc/GMT+10, Americ
a/Scoresbysund, Asia/Kamchatka, Asia/Thimbu, Africa/Harare, Etc/GMT+12, Etc/GMT+11, Navajo,
America/Nome, Europe/Tallinn, Turkey, Africa/Khartoum, Africa/Johannesburg, Africa/Bangui, E
urope/Belgrade, Jamaica, Africa/Bissau, Asia/Tehran, WET, Europe/Astrakhan, Africa/Juba, Amer
ica/Campo_Grande, America/Belem, Etc/Greenwich, Asia/Saigon, America/Ensenada, Pacific/Mid
way, America/Jujuy, Africa/Timbuktu, America/Bahia, America/Goose_Bay, America/Virgin, Ameri
ca/Pangnirtung, Asia/Katmandu, America/Phoenix, Africa/Niamey, America/Whitehorse, Pacific/N
oumea, Asia/Tbilisi, America/Montreal, Asia/Makassar, America/Argentina/San_Juan, Hongkong,

UCT, Asia/Nicosia, America/Indiana/Winamac, SystemVy/MST7MDT, America/Argentina/ComodRiva
davia, America/Boa_Vista, America/Grenada, Asia/Atyrau, Australia/Darwin, Asia/Khandyga, Asia/
Kuala_Lumpur, Asia/Famagusta, Asia/Thimphu, Asia/Rangoon, Europe/Bratislava, Asia/Calcutta,

America/Argentina/Tucuman, Asia/Kabul, Indian/Cocos, Japan, Pacific/Tongatapu, America/New

BNE AMEYEMESER < 110

_VYork, Etc/GMT-12, Etc/GMT-11, Etc/GMT-10, System\V/YSTIYDT, Europe/Ulyanovsk, Etc/GMT-14,

Etc/GMT-13, W-SU, America/Merida, EET, America/Rosario, Canada/Saskatchewan, America/St K
itts, Arctic/Longyearbyen, America/Fort_Nelson, America/Caracas, America/Guadeloupe, Asia/He
bron, Indian/Kerguelen, SystemV/PSTSPDT, Africa/Monrovia, Asia/Ust-Nera, Egypt, Asia/Srednek
olymsk, America/North_Dakota/New_Salem, Asia/Anadyr, Australia/Melbourne, Asia/Irkutsk, Ame
rica/Shiprock, America/Winnipeg, Europe/Vatican, Asia/Amman, Etc/UTC, SystemV/AST4ADT, Asi
a/Tokyo, America/Toronto, Asia/Singapore, Australia/Lindeman, America/Los_Angeles, SystemV)/

EST5EDT, Pacific/Majuro, America/Argentina/Buenos_Aires, Europe/Nicosia, Pacific/Guadalcanal,

Europe/Athens, US/Pacific, Europe/Monaco]

/B AT X HE LocalDateTime

LocalDateTime localDateTimel = LocalDateTime.now(Zoneld.of("America/El_Salvador"));

System.out.println(localDateTimel);
// 2019-10-27T700:46:21.268

/) UBT X ST E AT 8]
LocalDateTime localDateTime2 = LocalDateTime.now();

ZonedDateTime zonedDateTimel = localDateTime2.atZone(Zoneld.of("Africa/Nairobi"));

System.out.println(zonedDateTimel);
/) 2019-10-27T14:46:21.273+03:00/Africa/Nairobi]

9.7 5545 HHA B RIE% R

S ToiREE 3
java.time.Instant)
javaLiitil Date Date from(instant)
java.time. Instant 2
Timestamp.from(instant)

java.sgl Timestamp
java.time ZonedDateTime
java.util. GregorianCalendar
java.time. LocalDate
java sgl.Date
java.time.LocalTime
java.sgl. Time
java.time LocalDateTime
java.sgl.Timestamp
java.time Zoneld
java.uti. TimeZone
ava.time format. DateTimeFormatter
java.text DateFormat

GregorianCalendar.from(zonedDateTime)

Date valueOf({localDate)

Date valueOf(localDate)

Timestamp valueOf(localDateTime)

Timezone getTimeZone(id)

formatter toFormat()

FromizEE3E

date tolnstant()

timestamp.tolnstant()

cal toZonedDateTime()

date toLocalDate()

date toLocalTime()

timestamp_toLocalDate Time()

timeZone toZoneld()

p

111 > $B1+E Java8 XHRAVIER

F+E= Java8 X fEpytLcg o

Java 8XEARAMEIRM T MAcH: AIEERVERR LA BT REREM, Sk, tIRE S,
NE, FFUAEGIBEZIKIGREE Java8 RRIES MRV TR,

B4, BIDREX—EME BingheAnnotation, TR,

package io.mykit.binghe java8.annotition;
import java.lang.annotation.”;

Jer
* @author binghe
* @version 1.0.0
* @description E XA
7
@Repeatable(BingheAnnotations.class)
@Target({ElementType. TYPE, ElementType.FIELD, ElementType.METHOD, ElementType.PARAMET
ER, ElementType. CONSTRUCTOR, ElementType.LOCAL_VARIABLE,ElementType. TYPE_PARAMETER})
@Retention(RetentionPolicy. RUNTIME)
public @interface BingheAnnotation {

String value();

A= 7E BingheAnnotation T2 FEb ENIERYEAZE S T — 1 @Repeatable(BingheAnnotation
s.class)FfE, B/MIERR: XNEEM? XPRiE Java8 FEX AJBEEEMEIXE, £TF Bingh
eAnnotations.class, AKRFI=, HEF FEMBAET .

ETE, BI1ENX—" BingheAnnotations JEA#E, W1 FFiRo

$F+E Java8 ITERAVIER < 112

package io.mykit.binghe.java8.annotation;

import java.lang.annotation.”;

Sk A
/

“ (@author binghe
* @version 1.0.0
* @description ENZA#F

* /
Y

@Target({ElementType. TYPE, ElementType.FIELD, ElementType.METHOD, ElementType.PARAMET
ER, ElementType. CONSTRUCTOR, ElementType.LOCAL_VARIABLE,ElementType. TYPE_PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
public @interface BingheAnnotations {

BingheAnnotation[] value();

EEXE, AXRBEBETMM! | &%, BingheAnnotations B2 —NER#ESE, EHEELTF BingheAn
notation SRR, LT —1@Repeatable(BingheAnnotations.class)/¥##, HHLE1%, Binghe
Annotations JFREEME X S EBRVFRE/ LT &EXS], BERERNE, 7 BingheAnnotation
SFREESR, EX T — BingheAnnotation /T ##FERVEAE, WHBRLZW, 7 BingheAnnotations E##
£, B1EEBZ BingheAnnotation 7. FTLL, 7E BingheAnnotation JZf# F15F @Repeata
ble(BingheAnnotations.class)3RPARI ATEEE. FE. FA. B8, WiEHE S EESFHA Bi
ngheAnnotation E &,

BESR, EATeIE—1 Binghe 2, 7 Binghe KHREX—init() 5%, 1E init 5% L, EERF
F@BingheAnnotation T ##FEEAEN AVEIE, 0 FPIT.

package io.mykit.binghe.java8.annotation;

Ve ks

* @author binghe
* @version 1.0.0
* @description Jit 247

* /

113 > $B1+E Java8 XHRAVIER

@BingheAnnotation("binghe")
@BingheAnnotation("class")
public class Binghe {

@BingheAnnotation("init")
@BingheAnnotation("method")
public void init(){

Fitk, BAIRLETLUNIRESEAR T, B3 BingheAnnotationTest, XTEEFHRHITNIL, 0
TR

package io.mykit.binghe.java8.annotation;

import java.lang.reflect. Method;
import java.util. Arrays;

e
* @author binghe
* @version 1.0.0
* @description Jit ;247
Va

public class BingheAnnotationTest {

public static void main(String[] args) throws NoSuchMethodException {
Class<Binghe> clazz = Binghe.class;
BingheAnnotation[] annotations = clazz.getAnnotationsByType(BingheAnnotation.class);
System.out.printin("2€ EREEFMEINT: ");
Arrays.stream(annotations).forEach((a) -> System.out.print(a.value() + " "));

System.out.println();

System.out.println(" ");

Method method = clazz.getMethod("init");

$B+E Java8 IHENIGR < 114
annotations = method.getAnnotationsByType(BingheAnnotation.class);

System.out.printin("75 A2 ERVEE T T ");

Arrays.stream(annotations).forEach((a) -> System.out.print(a.value() + " "));

iz1T main()757%, MBIl TRISERER.

K EREE TN
binghe class

FiE EMNBEEFEINT:
init method

¥7, SKMEX)LE, H2AH, KKAMUMERMS: hacker_binghe, Fhifri#ds, —i
RRERAR, —Ee#Hk, —ERA~~

115 > ARSI POF | BERE

KA Rl PDF
XF AR HEARS:

BE “HikHiE S CRNE#ESHARE) POF BFH,
EE “BEEiQ” JE CTRSEEIR) PDF BFH.

S5iERRE

MRMRESACAIENERTE, BREERAXE T KTRR | BEARS, BACTFEIEH
R I FHIRS. REGE. BEENASRERAK, §HKAKRAR 1| BEARSEHR T ARERA
T, B—REAXETFIHR! NIEEDTLBEIFE T KARR 1 MEARSXE, Mk
BEIKR; BERMRELN T HRAR LR KX, RARTNRAET! WNRIREE G —1F5=
BOBIRES], SKRIECRRESIRYKER, #AT, FAERME, BrxoE T AaKRR 1 HIEAKRSIE,
BREMBEZEATE, IR IARA AR TBRE!

T "RWE /&I / 28—87 #R

	作者简介
	目录
	第一章Java8总览
	1.1 Java8有哪些新特性？
	1.2 Java8有哪些优点？

	第二章 Lambda表达式
	2.1 什么是Lambda表达式？
	2.2 匿名内部类
	2.3 Lambda表达式
	2.4 对比常规方法和Lambda表达式
	2.5 匿名类到Lambda表达式
	2.6 Lambda表达式的语法
	2.7 函数式接口
	2.8 Lambda表达式典型案例
	2.8.1 案例一
	2.8.2 案例二
	2.8.3 案例三

	第三章 函数式接口总览
	3.1 四大核心函数式接口总览
	3.2 其他函数接口总览
	3.3 四大核心函数式接口
	3.3.1 Consumer接口
	3.3.2 Supplier接口
	3.3.3 Function接口
	3.3.4 Predicate接口

	第四章 Java7与Java8中的HashMap
	4.1 JDK8 HashMap重排序
	4.2 筛选与切片
	4.3 中间操作
	4.4 终止操作
	4.5 规约操作
	4.6 Optional 容器类

	第五章 方法引用与构造器引用
	5.1 方法引用
	5.2 构造器引用
	5.3 数组引用

	第六章 Java8中的Stream
	6.1 什么是Stream?
	6.2 Stream操作的三个步骤
	6.3 如何创建Stream?
	6.4 Stream的中间操作
	6.5 Stream 的终止操作
	6.6 并行流与串行流
	6.7 Fork/Join 框架
	6.8 Stream概述
	6.9 如何创建Stream流？
	6.10 Stream的中间操作
	6.11 筛选与切片
	6.12 映射
	6.13 排序
	6.14 Stream的终止操作
	6.15 查找与匹配
	6.16 规约
	6.17 收集
	6.18 如何收集Stream流？
	6.19 并行流实例

	第七章 Optional类
	7.1 什么是Optional类？
	7.2 Optional类示例

	第八章 默认方法
	8.1 接口中的默认方法
	8.2 默认方法的原则
	8.3 接口中的静态方法

	第九章 本地时间和时间戳
	9.1 使用 LocalDate、 LocalTime、
	9.2 Instant 时间戳
	9.3 Duration 和 Period
	9.4 日期的操作
	9.5 解析与格式化
	9.6 时区的处理
	9.7 与传统日期处理的转换

	第十章 Java8对注解的增强
	冰河原创PDF
	写在最后

