
01 | 为什么需要消息队列？
2019-07-23 李玥

消息队列高手课 进入课程

讲述：李玥
时长 11:24 大小 10.46M

你好，我是李玥。今天我们来讲讲为什么需要消息队列，消息队列主要解决的是什么问题。

消息队列是最古老的中间件之一，从系统之间有通信需求开始，就自然产生了消息队列。但

是给消息队列下一个准确的定义却不太容易。我们知道，消息队列的主要功能就是收发消

息，但是它的作用不仅仅只是解决应用之间的通信问题这么简单。

我们举个例子说明一下消息队列的作用。话说小袁是一家巧克力作坊的老板，生产出美味的

巧克力需要三道工序：首先将可可豆磨成可可粉，然后将可可粉加热并加入糖变成巧克力

浆，最后将巧克力浆灌入模具，撒上坚果碎，冷却后就是成品巧克力了。

最开始的时候，每次研磨出一桶可可粉后，工人就会把这桶可可粉送到加工巧克力浆的工人

手上，然后再回来加工下一桶可可粉。小袁很快就发现，其实工人可以不用自己运送半成





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

品，于是他在每道工序之间都增加了一组传送带，研磨工人只要把研磨好的可可粉放到传送

带上，就可以去加工下一桶可可粉了。 传送带解决了上下游工序之间的“通信”问题。

传送带上线后确实提高了生产效率，但也带来了新的问题：每道工序的生产速度并不相同。

在巧克力浆车间，一桶可可粉传送过来时，工人可能正在加工上一批可可粉，没有时间接

收。不同工序的工人们必须协调好什么时间往传送带上放置半成品，如果出现上下游工序加

工速度不一致的情况，上下游工人之间必须互相等待，确保不会出现传送带上的半成品无人

接收的情况。

为了解决这个问题，小袁在每组传送的下游带配备了一个暂存半成品的仓库，这样上游工人

就不用等待下游工人有空，任何时间都可以把加工完成的半成品丢到传送带上，无法接收的

货物被暂存在仓库中，下游工人可以随时来取。传送带配备的仓库实际上起到了“通信”过

程中“缓存”的作用。

传送带解决了半成品运输问题，仓库可以暂存一些半成品，解决了上下游生产速度不一致的

问题，小袁在不知不觉中实现了一个巧克力工厂版的消息队列。

哪些问题适合使用消息队列来解决？

接下来我们说一下日常开发中，哪些问题适合使用消息队列解决。

1. 异步处理

大多数程序员在面试中，应该都问过或被问过一个经典却没有标准答案的问题：如何设计一

个秒杀系统？这个问题可以有一百个版本的合理答案，但大多数答案中都离不开消息队列。

秒杀系统需要解决的核心问题是，如何利用有限的服务器资源，尽可能多地处理短时间内的

海量请求。我们知道，处理一个秒杀请求包含了很多步骤，例如：

如果没有任何优化，正常的处理流程是：App 将请求发送给网关，依次调用上述 5 个流

程，然后将结果返回给 APP。

对于对于这 5 个步骤来说，能否决定秒杀成功，实际上只有风险控制和库存锁定这 2 个步

骤。只要用户的秒杀请求通过风险控制，并在服务端完成库存锁定，就可以给用户返回秒杀

结果了，对于后续的生成订单、短信通知和更新统计数据等步骤，并不一定要在秒杀请求中

处理完成。

所以当服务端完成前面 2 个步骤，确定本次请求的秒杀结果后，就可以马上给用户返回响

应，然后把请求的数据放入消息队列中，由消息队列异步地进行后续的操作。

处理一个秒杀请求，从 5 个步骤减少为 2 个步骤，这样不仅响应速度更快，并且在秒杀期

间，我们可以把大量的服务器资源用来处理秒杀请求。秒杀结束后再把资源用于处理后面的

步骤，充分利用有限的服务器资源处理更多的秒杀请求。

可以看到，在这个场景中，消息队列被用于实现服务的异步处理。这样做的好处是：

风险控制；

库存锁定；

生成订单；

短信通知；

更新统计数据。

可以更快地返回结果；

减少等待，自然实现了步骤之间的并发，提升系统总体的性能。

防止断
更 请务

必加

首发微
信：1

71614
3665

2. 流量控制

继续说我们的秒杀系统，我们已经使用消息队列实现了部分工作的异步处理，但我们还面临

一个问题：如何避免过多的请求压垮我们的秒杀系统？

一个设计健壮的程序有自我保护的能力，也就是说，它应该可以在海量的请求下，还能在自

身能力范围内尽可能多地处理请求，拒绝处理不了的请求并且保证自身运行正常。不幸的

是，现实中很多程序并没有那么“健壮”，而直接拒绝请求返回错误对于用户来说也是不怎

么好的体验。

因此，我们需要设计一套足够健壮的架构来将后端的服务保护起来。我们的设计思路是，使

用消息队列隔离网关和后端服务，以达到流量控制和保护后端服务的目的。

加入消息队列后，整个秒杀流程变为：

1. 网关在收到请求后，将请求放入请求消息队列；

2. 后端服务从请求消息队列中获取 APP 请求，完成后续秒杀处理过程，然后返回结果。

秒杀开始后，当短时间内大量的秒杀请求到达网关时，不会直接冲击到后端的秒杀服务，而

是先堆积在消息队列中，后端服务按照自己的最大处理能力，从消息队列中消费请求进行处

理。

对于超时的请求可以直接丢弃，APP 将超时无响应的请求处理为秒杀失败即可。运维人员

还可以随时增加秒杀服务的实例数量进行水平扩容，而不用对系统的其他部分做任何更改。

这种设计的优点是：能根据下游的处理能力自动调节流量，达到“削峰填谷”的作用。但这

样做同样是有代价的：

增加了系统调用链环节，导致总体的响应时延变长。

上下游系统都要将同步调用改为异步消息，增加了系统的复杂度。

那还有没有更简单一点儿的流量控制方法呢？如果我们能预估出秒杀服务的处理能力，就可

以用消息队列实现一个令牌桶，更简单地进行流量控制。

令牌桶控制流量的原理是：单位时间内只发放固定数量的令牌到令牌桶中，规定服务在处理

请求之前必须先从令牌桶中拿出一个令牌，如果令牌桶中没有令牌，则拒绝请求。这样就保

证单位时间内，能处理的请求不超过发放令牌的数量，起到了流量控制的作用。

实现的方式也很简单，不需要破坏原有的调用链，只要网关在处理 APP 请求时增加一个获

取令牌的逻辑。

令牌桶可以简单地用一个有固定容量的消息队列加一个“令牌发生器”来实现：令牌发生器

按照预估的处理能力，匀速生产令牌并放入令牌队列（如果队列满了则丢弃令牌），网关在

收到请求时去令牌队列消费一个令牌，获取到令牌则继续调用后端秒杀服务，如果获取不到

令牌则直接返回秒杀失败。

以上是常用的使用消息队列两种进行流量控制的设计方法，你可以根据各自的优缺点和不同

的适用场景进行合理选择。

3. 服务解耦

消息队列的另外一个作用，就是实现系统应用之间的解耦。再举一个电商的例子来说明解耦

的作用和必要性。

我们知道订单是电商系统中比较核心的数据，当一个新订单创建时：

1. 支付系统需要发起支付流程；

2. 风控系统需要审核订单的合法性；

3. 客服系统需要给用户发短信告知用户；

拼课微
信：1

71614
3665

4. 经营分析系统需要更新统计数据；

5. ……

这些订单下游的系统都需要实时获得订单数据。随着业务不断发展，这些订单下游系统不断

的增加，不断变化，并且每个系统可能只需要订单数据的一个子集，负责订单服务的开发团

队不得不花费很大的精力，应对不断增加变化的下游系统，不停地修改调试订单系统与这些

下游系统的接口。任何一个下游系统接口变更，都需要订单模块重新进行一次上线，对于一

个电商的核心服务来说，这几乎是不可接受的。

所有的电商都选择用消息队列来解决类似的系统耦合过于紧密的问题。引入消息队列后，订

单服务在订单变化时发送一条消息到消息队列的一个主题 Order 中，所有下游系统都订阅

主题 Order，这样每个下游系统都可以获得一份实时完整的订单数据。

无论增加、减少下游系统或是下游系统需求如何变化，订单服务都无需做任何更改，实现了

订单服务与下游服务的解耦。

小结

以上就是消息队列最常被使用的三种场景：异步处理、流量控制和服务解耦。当然，消息队

列的适用范围不仅仅局限于这些场景，还有包括：

简单的说，我们在单体应用里面需要用队列解决的问题，在分布式系统中大多都可以用消息

队列来解决。

同时我们也要认识到，消息队列也有它自身的一些问题和局限性，包括：

作为发布 / 订阅系统实现一个微服务级系统间的观察者模式；

连接流计算任务和数据；

用于将消息广播给大量接收者。

引入消息队列带来的延迟问题；

增加了系统的复杂度；

可能产生数据不一致的问题。

所以我们说没有最好的架构，只有最适合的架构，根据目标业务的特点和自身条件选择合适

的架构，才是体现一个架构师功力的地方。

思考题

在你工作或学习涉及到的系统中，哪些问题可以通过引入消息队列来解决？对于系统中已经

使用消息队列，可以对应到这一讲中提到的哪个场景？如果没有可以对应的场景，那这个消

息队列在系统中起到的是什么作用？解决了什么问题？是否又带来了什么新的问题？欢迎在

留言区写下你的想法。

感谢阅读，如果你觉得这篇文章对你有帮助的话，也欢迎把它分享给你的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 预习 | 怎样更好地学习这门课？

下一篇 02 | 该如何选择消息队列？

精选留言 (75)  写留言

小伟
2019-07-24

个人的体会，消息队列的本质是将同步处理转成异步处理，异步会带来相应的好处，但也
有弊端。
Pros:
1.可在模块、服务、接口等不同粒度上实现解耦
2.订阅/消费模式也可在数据粒度上解耦 …
展开

作者回复: 总结到位，赞👍。

  8

白小白
2019-07-23

现在用的消息队列主要是做数据异步传输用的，之前也做过多个系统之间的解耦。看到用
消息队列做秒杀系统，忽然想到之前只想过用redis去做，利用redis去做了流量的把控。不
过细想想，这种情况下的redis和文章中的令牌桶很像……

展开

作者回复: 是的，令牌桶可以用消息队列实现，也可以用Redis实现，你也可以写一个简单的令牌

桶服务，原理是一样的。

  8

beiler
2019-07-25

还有个问题，如果消息量特别大的时候，消息是适合存在到redis中还是适合存到rabbitmq
中？必定您在文中提到一个词，小仓库，如果货量大了怎么办？

展开

作者回复: 首先redis肯定是不适合存消息的，虽然redis性能很好，但那是和主流的数据库比，一

般大概能到几万tps左右；而现代的消息队列都能很轻松的做到几十万tps级别的性能。

消息量特别大的时候，需要考虑使用有消息堆积能力的MQ，因为一旦消费慢，大量消息就会堆积

到MQ中，这种情况不太适合用RabbitMQ，可以考虑RocketMQ、Kafka和Pulsar。


1


6

风中花
2019-07-23

要不要继续买，继续买要不要！老师讲得这么好！纠结

展开

作者回复: 你买不了吃亏，买不了上当，买到的只有知识。

 1  6

mhswordman
2019-07-23

生产项目中用到了kafka，
1 异部的处理交易：提高用户请求的响应速度，同时也提升了用户的体验感。
2 削峰 ：保护服务器的一种方式，用户的请求放到kafka中，交易服务根据自己服务器的消
费能力来消费交易数据。
3 项目的解耦：交易服务和后续的服务之间是通过Kafka进行交付，当一个服务为多个服…
展开

作者回复: 总结的很赞！

  5

beiler
2019-07-25

令牌桶给了我很大的启发，我们可以在策略中心设置令牌桶，然后通过令牌桶控制整个job
的产出和数量。这样就不会经常有几百万个job了，缓存的压力也会大幅度减小。但是有一
个很诡异的问题，就以秒杀系统为例（我们的系统要比秒杀复杂点），我发现这种异步系
统如果需要统计任务数量的时候经常会计数不准，尽管在计数的时候我选择了原子操作，
但是计数还是会出现不准的现象。这个让我很苦恼，而且往往是运行很久的任务会出现…
展开

作者回复: 如果计数只是为了控制流量，没必要那么精确。

如果计数是业务需求必须要求准确，简单一点的话，可以使用Redis的INCR命令来计数，这个是

可以保证原子性的。Redis性能要是不能满足要求，也可以用Kafka+flink集群来解决。这两种方

案都是可以保证完全准确计数的。

另外，计数不准的问题，并不一定是计数模块本身的问题，还要查一下是不是系统的其它部分有

bug，导致重复计数或者漏计。

 2  4

微微一笑
2019-07-23

看到消息队列的专栏很兴奋，能学到底层源码、设计思想一直是我的梦，哈哈哈。目前在
一家互金公司负责一个资金平台的项目，负责对接车贷、消费金融两个系统，同时与第三
方资金渠道进行对接。在于车贷、消费金融这俩系统对接中，使用了rocketMQ进行系统间
的解耦，系统间升级优化上线互不影响。由于对接的第三方渠道越来越多渠道间耦合较严
重，下一步准备进行系统拆分，系统与系统间经过消息队列进行解耦。

展开

作者回复: 涉及到钱的系统，数据可靠性是最先需要考虑的问题。

 2  4

豆沙包
2019-07-23

我在公司负责审核系统，审核系统要求稳定性和可靠性比较高。消息队列很好的保证了系
统的稳定性。与此同时，除了实时mq，还用了许多延迟mq来进行任务的检查和异常重
试。

 1  4

Jxin
2019-07-23

1.拆单失败的延时重拆，死信告警。2.消峰和解耦也用到。

问题：控制topic消费线程也能限流，不一定要引入令牌桶，要弄令牌桶，其实走redis更好
一点。

展开

作者回复: 限流的方法有很多，当然不止令牌桶。令牌桶的优势是实现简单，易于控制。

  4

游弋云端
2019-07-24

是否可以利用共享内存、RDMA加速消息队列的性能，老师在这块有没有实践经验？

作者回复: 如果你说的共享内存指的是PageCache，很多消息队列都会用到，RDMA据我所知常见

的几种消息队列应该都还没有使用，像Kafka它在消费的时候，直接使用Zero Copy，数据直接从

PageCache写到NIC的缓冲区中，都不需要进入应用内存空间。

另外，现代的消息队列瓶颈并不在本机内存数据交换这块，主要还是受限于网卡带宽或者磁盘的

IO，像JMQ、Kafka这些消息队列，都可以打满万兆网卡或者把磁盘的读写速度拉满。

 1  3

Fortune
2019-07-23

看完了，也看完了评论，可能只有我一个没有实际项目中接触消息队列了，慢慢学吧，加
油！
目前做的是支付系统，只知道用redis用来存储用户token和进行验证这样子，当然中间用
户请求过来的过程中，是可以加队列来进行削峰的，应该是系统的并发并不高哈，就做了
个集群这样子，谢谢老师分享！

展开

  3

流氓无产者
2019-07-23

修改数据库做数据同步也可以用

展开

作者回复: 是的，很多公司会用消息队列来做异构数据库之间的数据同步，但是一定要注意顺序问

题。像MySQL Binlog这种，是要求严格有序的，否则会出现问题。

 2  3

Mark Yao
2019-07-23

打卡，打卡，我们系统目前使用rabbitmq，有些业务实时数据对接第三方厂家，有些数据
是TCP接入，有些HTTP过来，为解决和我们业务耦合。在使用遇到因特殊情况出现异常，
消息大量堆积，最后导致爆掉。

作者回复: 接下来会有一节课专门讲消息积压的问题。

  2

盛
2019-07-23

服务解耦：其实就是后续将要面对的问题。
 数据库压力偏大：虽然性能已经通过之前的丁奇的课获得了不少思路和处理方式，确实
让数据库的查询时间提升到之前的20-30%。
 数据量进一步再次增长后期压力太大了：redis已经用了，可是还是不够，希望能够通
过消息队列预先为6-12个月后的大数据量做些准备，以应当后期。

展开

作者回复: 架构可以随着业务的发展持续的演进，相信问题都可以解决。

  2

QQ怪
2019-07-23

滴滴滴，打卡

展开

作者回复: 打卡已收到，记得每节课都来打卡。

  2

我知道了嗯
2019-07-23

打卡，滴滴滴

展开

作者回复: 记得每节课来打卡。

  2

Hurt
2019-07-26

老师。用go语言 重新写消息队列 合适吗

展开

作者回复: 语言不是问题。

  1

sun留白
2019-07-24

在一个账户系统和客户系统之间，开户成功后，会用消息对队列，通知客户系统客户开户
成功的消息。账户系统通知客户系统不是强关联，所以通过消息队列，让客户系统去做后
续处理登记即可。但是，由于延迟的效果，客户系统不能及时拿到消息，或者消息不一
致，导致对于客户开户成与否，判断不一致；或者数据中中间丢失了，需要重发mq消息。

展开

作者回复: 这两个问题应该都是可以解决的，主流的消息队列，端到端的时延（从生产者发出消息

直到消费者收到消息）一般可以做到5ms以内，加上业务代码的处理逻辑，做到1s以内的时延不

是太难。另外，丢消息的问题大多是因为配置不当导致的，后面我们会专门去讲。

  1

业余草
2019-07-24

一步一个脚印，根上大部队的节奏！

展开

  1

傻白田先森

2019-07-23

收获总结：
1. 消息队列可以理解为一个暂存消息（可以是一条数据或者一个请求等等）的地方，有生
产者有消费者
2.消息队列的主要三个用处：
a. 实现异步处理，利用消息队列可以将串行化的功能，在非必要串行的地方实现并行化…
展开

作者回复: 总结的很到位，加油！

 1  1

