
05 | 如何确保消息不会丢失?
2019-08-01 李玥

消息队列高手课 进入课程

讲述：李玥
时长 12:12 大小 13.97M

你好，我是李玥。这节课我们来聊聊丢消息的事儿。

对于刚刚接触消息队列的同学，最常遇到的问题，也是最头痛的问题就是丢消息了。对于大

部分业务系统来说，丢消息意味着数据丢失，是完全无法接受的。

其实，现在主流的消息队列产品都提供了非常完善的消息可靠性保证机制，完全可以做到在

消息传递过程中，即使发生网络中断或者硬件故障，也能确保消息的可靠传递，不丢消息。

绝大部分丢消息的原因都是由于开发者不熟悉消息队列，没有正确使用和配置消息队列导致

的。虽然不同的消息队列提供的 API 不一样，相关的配置项也不同，但是在保证消息可靠

传递这块儿，它们的实现原理是一样的。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

这节课我们就来讲一下，消息队列是怎么保证消息可靠传递的，这里面的实现原理是怎么样

的。当你熟知原理以后，无论你使用任何一种消息队列，再简单看一下它的 API 和相关配

置项，就能很快知道该如何配置消息队列，写出可靠的代码，避免消息丢失。

检测消息丢失的方法

我们说，用消息队列最尴尬的情况不是丢消息，而是消息丢了还不知道。一般而言，一个新

的系统刚刚上线，各方面都不太稳定，需要一个磨合期，这个时候，特别需要监控到你的系

统中是否有消息丢失的情况。

如果是 IT 基础设施比较完善的公司，一般都有分布式链路追踪系统，使用类似的追踪系统

可以很方便地追踪每一条消息。如果没有这样的追踪系统，这里我提供一个比较简单的方

法，来检查是否有消息丢失的情况。

我们可以利用消息队列的有序性来验证是否有消息丢失。原理非常简单，在 Producer 端，

我们给每个发出的消息附加一个连续递增的序号，然后在 Consumer 端来检查这个序号的

连续性。

如果没有消息丢失，Consumer 收到消息的序号必然是连续递增的，或者说收到的消息，

其中的序号必然是上一条消息的序号 +1。如果检测到序号不连续，那就是丢消息了。还可

以通过缺失的序号来确定丢失的是哪条消息，方便进一步排查原因。

大多数消息队列的客户端都支持拦截器机制，你可以利用这个拦截器机制，在 Producer 发

送消息之前的拦截器中将序号注入到消息中，在 Consumer 收到消息的拦截器中检测序号

的连续性，这样实现的好处是消息检测的代码不会侵入到你的业务代码中，待你的系统稳定

后，也方便将这部分检测的逻辑关闭或者删除。

如果是在一个分布式系统中实现这个检测方法，有几个问题需要你注意。

首先，像 Kafka 和 RocketMQ 这样的消息队列，它是不保证在 Topic 上的严格顺序的，

只能保证分区上的消息是有序的，所以我们在发消息的时候必须要指定分区，并且，在每个

分区单独检测消息序号的连续性。

如果你的系统中 Producer 是多实例的，由于并不好协调多个 Producer 之间的发送顺序，

所以也需要每个 Producer 分别生成各自的消息序号，并且需要附加上 Producer 的标识，

在 Consumer 端按照每个 Producer 分别来检测序号的连续性。

Consumer 实例的数量最好和分区数量一致，做到 Consumer 和分区一一对应，这样会比

较方便地在 Consumer 内检测消息序号的连续性。

确保消息可靠传递

讲完了检测消息丢失的方法，接下来我们一起来看一下，整个消息从生产到消费的过程中，

哪些地方可能会导致丢消息，以及应该如何避免消息丢失。

你可以看下这个图，一条消息从生产到消费完成这个过程，可以划分三个阶段，为了方便描

述，我给每个阶段分别起了个名字。

1. 生产阶段

在生产阶段，消息队列通过最常用的请求确认机制，来保证消息的可靠传递：当你的代码调

用发消息方法时，消息队列的客户端会把消息发送到 Broker，Broker 收到消息后，会给客

户端返回一个确认响应，表明消息已经收到了。客户端收到响应后，完成了一次正常消息的

发送。

生产阶段: 在这个阶段，从消息在 Producer 创建出来，经过网络传输发送到 Broker

端。

存储阶段: 在这个阶段，消息在 Broker 端存储，如果是集群，消息会在这个阶段被复制

到其他的副本上。

消费阶段: 在这个阶段，Consumer 从 Broker 上拉取消息，经过网络传输发送到

Consumer 上。

防止断
更 请务

必加

首发微
信：1

71614
3665

只要 Producer 收到了 Broker 的确认响应，就可以保证消息在生产阶段不会丢失。有些消

息队列在长时间没收到发送确认响应后，会自动重试，如果重试再失败，就会以返回值或者

异常的方式告知用户。

你在编写发送消息代码时，需要注意，正确处理返回值或者捕获异常，就可以保证这个阶段

的消息不会丢失。以 Kafka 为例，我们看一下如何可靠地发送消息：

同步发送时，只要注意捕获异常即可。

异步发送时，则需要在回调方法里进行检查。这个地方是需要特别注意的，很多丢消息的原

因就是，我们使用了异步发送，却没有在回调中检查发送结果。

2. 存储阶段

在存储阶段正常情况下，只要 Broker 在正常运行，就不会出现丢失消息的问题，但是如果

Broker 出现了故障，比如进程死掉了或者服务器宕机了，还是可能会丢失消息的。

1

2

3

4

5

6

7

try {
 RecordMetadata metadata = producer.send(record).get();
 System.out.println(" 消息发送成功。");
} catch (Throwable e) {
 System.out.println(" 消息发送失败！");
 System.out.println(e);
}

复制代码

1

2

3

4

5

6

7

8

producer.send(record, (metadata, exception) -> {
 if (metadata != null) {
 System.out.println(" 消息发送成功。");
 } else {
 System.out.println(" 消息发送失败！");
 System.out.println(exception);
 }
});

复制代码

如果对消息的可靠性要求非常高，可以通过配置 Broker 参数来避免因为宕机丢消息。

对于单个节点的 Broker，需要配置 Broker 参数，在收到消息后，将消息写入磁盘后再给

Producer 返回确认响应，这样即使发生宕机，由于消息已经被写入磁盘，就不会丢失消

息，恢复后还可以继续消费。例如，在 RocketMQ 中，需要将刷盘方式 flushDiskType 配

置为 SYNC_FLUSH 同步刷盘。

如果是 Broker 是由多个节点组成的集群，需要将 Broker 集群配置成：至少将消息发送到

2 个以上的节点，再给客户端回复发送确认响应。这样当某个 Broker 宕机时，其他的

Broker 可以替代宕机的 Broker，也不会发生消息丢失。后面我会专门安排一节课，来讲解

在集群模式下，消息队列是如何通过消息复制来确保消息的可靠性的。

3. 消费阶段

消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递，客户端从 Broker 拉取消

息后，执行用户的消费业务逻辑，成功后，才会给 Broker 发送消费确认响应。如果

Broker 没有收到消费确认响应，下次拉消息的时候还会返回同一条消息，确保消息不会在

网络传输过程中丢失，也不会因为客户端在执行消费逻辑中出错导致丢失。

你在编写消费代码时需要注意的是，不要在收到消息后就立即发送消费确认，而是应该在执

行完所有消费业务逻辑之后，再发送消费确认。

同样，我们以用 Python 语言消费 RabbitMQ 消息为例，来看一下如何实现一段可靠的消

费代码：

1

2

3

4

5

6

7

8

9

def callback(ch, method, properties, body):
 print(" [x] 收到消息 %r" % body)
 # 在这儿处理收到的消息

 database.save(body)
 print(" [x] 消费完成 ")
 # 完成消费业务逻辑后发送消费确认响应

 ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_consume(queue='hello', on_message_callback=callback)

复制代码

拼课微
信：1

71614
3665

你可以看到，在消费的回调方法 callback 中，正确的顺序是，先是把消息保存到数据库

中，然后再发送消费确认响应。这样如果保存消息到数据库失败了，就不会执行消费确认的

代码，下次拉到的还是这条消息，直到消费成功。

小结

这节课我带大家分析了一条消息从发送到消费整个流程中，消息队列是如何确保消息的可靠

性，不会丢失的。这个过程可以分为分三个阶段，每个阶段都需要正确的编写代码并且设置

正确的配置项，才能配合消息队列的可靠性机制，确保消息不会丢失。

你在理解了这几个阶段的原理后，如果再出现丢消息的情况，应该可以通过在代码中加一些

日志的方式，很快定位到是哪个阶段出了问题，然后再进一步深入分析，快速找到问题原

因。

思考题

我刚刚讲到，如果消息在网络传输过程中发送错误，由于发送方收不到确认，会通过重发来

保证消息不丢失。但是，如果确认响应在网络传输时丢失，也会导致重发消息。也就是说，

无论是 Broker 还是 Consumer 都是有可能收到重复消息的，那我们在编写消费代码时，

就需要考虑这种情况，你可以想一下，在消费消息的代码中，该如何处理这种重复消息，才

不会影响业务逻辑的正确性？欢迎在留言区与我分享讨论。

感谢阅读，如果你觉得这篇文章对你有帮助的话，也欢迎把它分享给你的朋友。

在生产阶段，你需要捕获消息发送的错误，并重发消息。

在存储阶段，你可以通过配置刷盘和复制相关的参数，让消息写入到多个副本的磁盘上，

来确保消息不会因为某个 Broker 宕机或者磁盘损坏而丢失。

在消费阶段，你需要在处理完全部消费业务逻辑之后，再发送消费确认。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 04 | 如何利用事务消息实现分布式事务？

下一篇 06 | 如何处理消费过程中的重复消息？

业余草
2019-08-01

一句话，消费做好幂等性即可！

展开

 1  8

QQ怪
2019-08-01

建议老师加餐如何做幂等性

展开

作者回复: 不用加餐，这是教学大纲内的内容，下节课就会讲到滴。

精选留言 (58)  写留言

  7

kane
2019-08-01

产生重复消息原因：
(1).发送消息阶段，发送重复的消息
(2) 消费消息阶段，消费重复的消息。
解决办法：
业务端去重 …
展开

 4  4

ly
2019-08-02

老师，我有几个理解：
当produer发送消息给blocker的时候（send方法），此方法会在blocker收到消息并正常
储存后才返回，此期间应该会阻塞，也就是如果blocker配置同步刷盘，可能会增加调用时
间（只能出现对消息敏感的场景）。
另外拉消息的时候，消费者A进行pull后，没有返回确认给blocker就挂了（或者因代码…
展开

作者回复: 两个消费者先后去拉消息是否能拉到同一条消息？

首先，消息队列一般都会有协调机制，不会让这种情况出现，但是由于网络不确定性，这种情况

还是在极小概率下会出现的。

在同一个消费组内，A消费者拉走了index=10的这条消息，还没返回确认，这时候这个分区的消

费位置还是10，B消费者来拉消息，可能有2种情况：

1. 超时前，Broker认为这个分区还被A占用着，会拒绝B的请求。

2. 超时后，Broker认为A已经超时没返回，这次消费失败，当前消费位置还是10，B再来拉消息，

会给它返回10这条消息。

  3

月下独酌
2019-08-01

消息需要入库可以靠唯一索引或主键约束，判断为重复的数据无法插入

  3

TH
2019-08-01

幂等性是一种办法，如果做不到幂等性，那么在消费端需要存储消费的消息ID，关键这个
ID什么时候存？如果是消费前就存，那么消费失败了，下次消费同样的消息，是否会认为
上次已经成功了？如果在消费成功后再存，那么消费会不会出现部分成功的情况？除非满
足事务ACID特性。
 …
展开

作者回复: 不用，Producer发消息的时候带着ProducerId并要指定分区发送，Consumer消费的

时候，需要按照每个Producer来检查序号的连续性。

  2

DC
2019-08-01

对于重复消息风险的处理代码，必须做好幂等。
有一种场景，消息发出后因为网络问题没有得到响应，此时服务挂掉，也无法重新发起消
息，这种情况这个消息算丢失了吧。
思路是在发消息前需要记录消息发送记录，发送完成后标记完成，重启服务后查看发送消
息，确无响应的消息，进行重发。不知道我提到的场景是否有问题

展开

作者回复: 且听下回分解。

  2

Better me
2019-08-01

对于思考题，我认为也可以像老师说的那样查看消息是否丢失的方法，如果Producer的某
条消息ack相应因为网络故障丢失，那么Producer此时重发消息的唯一标识应该和之前那
条消息是一样的，那么只需要在Consumer接受消息前判断是否有相同标识的消息，如果
有则拦截。还可以在消费端业务逻辑接口中做幂等判断，前面那种可以做到不侵入到业务
代码中，老师看看有没有什么问题

展开

作者回复: 非常好！但你需要考虑一下，在分布式环境中“Consumer接受消息前判断是否有相同

标识的消息”该如何实现呢？

 
2

芥末小龙
2019-08-01

玥哥好，我jio着只要在消费端做好幂等就可以，业务借口最好都要做幂等性校验，

作者回复: 你这结论都是用无数bug换来的呀。

  2

skyun
2019-08-02

老师，我关于事务消息有个疑问：如果生产者在执行完本地事务后向broke提交确认，但是
此时broke挂了，提交失败，broke因为挂了也无法进行回查，那么此时这条消息是不是就
丢了，从而导致两个系统中数据不一致，还是说这个不一致只是暂时的，等broke重启后，
依旧会根据halfMessage进行回查？望解答

展开

作者回复: 。如果Broker是集群模式，其他的Broker会替代宕机的Broker来继续进行反查。如果

Broker是单节点，只能等到Broker恢复后再继续进行反查。无论哪种模式，消息不会丢，是保存

在磁盘上的。

  1

游弋云端
2019-08-01

1、消费端支持幂等操作，业务上一般有难度；
2、消费端增加去冗余机制，例如缓存最新消费成功的N条消息的SN，收到消息后，先确认
是否是消费过的消息，如果是，直接应该ACK，并放弃消费。

作者回复: 思路是没问题的。

  1

敬艺
2019-08-01

一个队列对应多个消费实例的话该如何保证顺序性检查？还是使用reidis 缓存起来，每个
实例都去get出来判断？

展开

作者回复: 在消费端，即使同一个消费组里面有多个实例，只要你的消费代码是按照我们这节课中

讲的：“先处理消费业务逻辑，再提交消费成功确认”，就可以保证消费顺序，你可以想一下为

什么。

  1

sun留白
2019-08-01

依托消息防丢失做的序号，在消费者处理时，先检查序号是否在数据库存在，若存在直接
返回。

作者回复: 也是一种解决思路。

  1

许童童
2019-08-01

消费时，做好幂等性即可。老师可以具体讲一下怎么做幂等性吗？

作者回复: 且听下回分解。

  1

Geek_e7834d
2019-08-01

broker出现重复消息无所谓，最终是consumer来处理。使用Kafka之类的消息队列， 很大
原因是速度够快。 所以去重的处理需要速度很快。否则会严重拉低性能。业务逻辑有去重
最好。 如果没有。 对于Kafka而言，按照一个consumer一个分区。重复可能出现在一个
consumer端, 而可能是重复消息分布在不同的consumer。 对于一个consumer收到重复
消息， 有唯一ID容易判断，小于当前ID的可以丢弃（用crc之类的感觉不可行， 重复消…
展开

作者回复: 且听下回分解，哈。

  1

Geek_e7834d
2019-08-01

1. 不丢消息是以系统的performance下降为前提的， Kafka中的至少投递两个broker模式
打开后， 会比一个broker确认慢不少。事务对参数似乎做了更多的限制
2. max.in.flight.requests.per.connection 不等于1就有可能导致失败后重发的无序性。等
于1性能又慢了不少。还有别的参数会导致一个partition里的消息也可能不是严格按顺序的
吗？ …
展开

作者回复: 我们的课程还是以讲实现原理为主，没法面面俱到的来讲每一种消息队列的各种配置

项，只要掌握了原理，仔细看一下官方文档的配置说明，很容易就知道该怎么配置了。

  1

linqw
2019-08-01

1、老师有个疑问检测消息丢失是在还没上线之前做的测试，但是会不会可能在线下没出现
消息不一致，但是在线上的时候出现消息丢失了？线上
检测消息丢失逻辑会关闭，那线上是会有其他的检测机制么？

展开

作者回复: 这个检测逻辑可以在线上做，不会影响业务的。

  1

whhbbq
2019-08-01

请教下，在生产阶段，你需要捕获消息发送的错误，并重发消息。
那是在catch块里，再次调用发送消息的接口吧？如下
try {
 RecordMetadata metadata = producer.send(record).get();
 System.out.println(" 消息发送成功。"); …
展开

作者回复: 发送失败后如何处理需要看业务逻辑，当然主动重试也是一种方式。

  1

撒旦的堕落
2019-08-01

对于幂等 我们项目中有一个 学生报名学习课程 的业务在报名成功后 会往队列中发送消息

消费者接受到消息会进行分配作业 首先我们会往缓存中写入业务的唯一标识 然后进行业务
处理 业务处理成功后 发送确认 如果业务处理失败 则删除缓存 当有消息来的时候 我们查询
缓存数据库 判断业务是否已经做过 没有 则执行上面流程 有就直接确认消息

展开

  1

Alexdown
2019-08-01

『有些消息队列在长时间没收到发送确认响应后，会自动重试，如果重试再失败，就会以
返回值或者异常的方式告知用户』是否应该改为『有些消息队列的Producer在长时间没收
到消息队列发送的确认响应后，....』

作者回复: 就是这个意思，同学你这个表述非常清楚明白。

 1  1

