
15 | Kafka如何实现高性能IO？
2019-08-27 李玥

消息队列高手课 进入课程

讲述：李玥
时长 12:02 大小 11.03M

你好，我是李玥。

Apache Kafka 是一个高性能的消息队列，在众多消息队列产品中，Kafka 的性能绝对是处

于第一梯队的。我曾经在一台配置比较好的服务器上，对 Kafka 做过极限的性能压测，

Kafka 单个节点的极限处理能力接近每秒钟 2000 万条消息，吞吐量达到每秒钟 600MB。

你可能会问，Kafka 是如何做到这么高的性能的？

我们在专栏“进阶篇”的前几节课，讲的知识点一直围绕着同一个主题：怎么开发一个高性

能的网络应用程序。其中提到了像全异步化的线程模型、高性能的异步网络传输、自定义的

私有传输协议和序列化、反序列化等等，这些方法和优化技巧，你都可以在 Kafka 的源代

码中找到对应的实现。





 下载APP 

在性能优化方面，除了这些通用的性能优化手段之外，Kafka 还有哪些“独门绝技”呢？

这节课，我来为你一一揭晓这些绝技。

使用批量消息提升服务端处理能力

我们知道，批量处理是一种非常有效的提升系统吞吐量的方法。在 Kafka 内部，消息都是

以“批”为单位处理的。一批消息从发送端到接收端，是如何在 Kafka 中流转的呢？

我们先来看发送端，也就是 Producer 这一端。

在 Kafka 的客户端 SDK（软件开发工具包）中，Kafka 的 Producer 只提供了单条发送的

send() 方法，并没有提供任何批量发送的接口。原因是，Kafka 根本就没有提供单条发送

的功能，是的，你没有看错，虽然它提供的 API 每次只能发送一条消息，但实际上，Kafka

的客户端 SDK 在实现消息发送逻辑的时候，采用了异步批量发送的机制。

当你调用 send() 方法发送一条消息之后，无论你是同步发送还是异步发送，Kafka 都不会

立即就把这条消息发送出去。它会先把这条消息，存放在内存中缓存起来，然后选择合适的

时机把缓存中的所有消息组成一批，一次性发给 Broker。简单地说，就是攒一波一起发。

在 Kafka 的服务端，也就是 Broker 这一端，又是如何处理这一批一批的消息呢？

在服务端，Kafka 不会把一批消息再还原成多条消息，再一条一条地处理，这样太慢了。

Kafka 这块儿处理的非常聪明，每批消息都会被当做一个“批消息”来处理。也就是说，在

Broker 整个处理流程中，无论是写入磁盘、从磁盘读出来、还是复制到其他副本这些流程

中，批消息都不会被解开，一直是作为一条“批消息”来进行处理的。

在消费时，消息同样是以批为单位进行传递的，Consumer 从 Broker 拉到一批消息后，在

客户端把批消息解开，再一条一条交给用户代码处理。

比如说，你在客户端发送 30 条消息，在业务程序看来，是发送了 30 条消息，而对于

Kafka 的 Broker 来说，它其实就是处理了 1 条包含 30 条消息的“批消息”而已。显然处

理 1 次请求要比处理 30 次请求要快得多。

构建批消息和解开批消息分别在发送端和消费端的客户端完成，不仅减轻了 Broker 的压

力，最重要的是减少了 Broker 处理请求的次数，提升了总体的处理能力。

这就是 Kafka 用批量消息提升性能的方法。

我们知道，相比于网络传输和内存，磁盘 IO 的速度是比较慢的。对于消息队列的服务端来

说，性能的瓶颈主要在磁盘 IO 这一块。接下来我们看一下，Kafka 在磁盘 IO 这块儿做了

哪些优化。

使用顺序读写提升磁盘 IO 性能

对于磁盘来说，它有一个特性，就是顺序读写的性能要远远好于随机读写。在 SSD（固态

硬盘）上，顺序读写的性能要比随机读写快几倍，如果是机械硬盘，这个差距会达到几十

倍。为什么呢？

操作系统每次从磁盘读写数据的时候，需要先寻址，也就是先要找到数据在磁盘上的物理位

置，然后再进行数据读写。如果是机械硬盘，这个寻址需要比较长的时间，因为它要移动磁

头，这是个机械运动，机械硬盘工作的时候会发出咔咔的声音，就是移动磁头发出的声音。

顺序读写相比随机读写省去了大部分的寻址时间，它只要寻址一次，就可以连续地读写下

去，所以说，性能要比随机读写要好很多。

Kafka 就是充分利用了磁盘的这个特性。它的存储设计非常简单，对于每个分区，它把从

Producer 收到的消息，顺序地写入对应的 log 文件中，一个文件写满了，就开启一个新的

文件这样顺序写下去。消费的时候，也是从某个全局的位置开始，也就是某一个 log 文件

中的某个位置开始，顺序地把消息读出来。

这样一个简单的设计，充分利用了顺序读写这个特性，极大提升了 Kafka 在使用磁盘时的

IO 性能。

接下来我们说一下 Kafka 是如何实现缓存的。

利用 PageCache 加速消息读写

在 Kafka 中，它会利用 PageCache 加速消息读写。PageCache 是现代操作系统都具有的

一项基本特性。通俗地说，PageCache 就是操作系统在内存中给磁盘上的文件建立的缓

存。无论我们使用什么语言编写的程序，在调用系统的 API 读写文件的时候，并不会直接

去读写磁盘上的文件，应用程序实际操作的都是 PageCache，也就是文件在内存中缓存的

副本。

应用程序在写入文件的时候，操作系统会先把数据写入到内存中的 PageCache，然后再一

批一批地写到磁盘上。读取文件的时候，也是从 PageCache 中来读取数据，这时候会出现

两种可能情况。

一种是 PageCache 中有数据，那就直接读取，这样就节省了从磁盘上读取数据的时间；另

一种情况是，PageCache 中没有数据，这时候操作系统会引发一个缺页中断，应用程序的

读取线程会被阻塞，操作系统把数据从文件中复制到 PageCache 中，然后应用程序再从

PageCache 中继续把数据读出来，这时会真正读一次磁盘上的文件，这个读的过程就会比

较慢。

用户的应用程序在使用完某块 PageCache 后，操作系统并不会立刻就清除这个

PageCache，而是尽可能地利用空闲的物理内存保存这些 PageCache，除非系统内存不够

用，操作系统才会清理掉一部分 PageCache。清理的策略一般是 LRU 或它的变种算法，

这个算法我们不展开讲，它保留 PageCache 的逻辑是：优先保留最近一段时间最常使用的

那些 PageCache。

Kafka 在读写消息文件的时候，充分利用了 PageCache 的特性。一般来说，消息刚刚写入

到服务端就会被消费，按照 LRU 的“优先清除最近最少使用的页”这种策略，读取的时

候，对于这种刚刚写入的 PageCache，命中的几率会非常高。

也就是说，大部分情况下，消费读消息都会命中 PageCache，带来的好处有两个：一个是

读取的速度会非常快，另外一个是，给写入消息让出磁盘的 IO 资源，间接也提升了写入的

性能。

ZeroCopy：零拷贝技术

Kafka 的服务端在消费过程中，还使用了一种“零拷贝”的操作系统特性来进一步提升消费

的性能。

我们知道，在服务端，处理消费的大致逻辑是这样的：

这个过程中，数据实际上做了 2 次或者 3 次复制：

首先，从文件中找到消息数据，读到内存中；

然后，把消息通过网络发给客户端。

1. 从文件复制数据到 PageCache 中，如果命中 PageCache，这一步可以省掉；

2. 从 PageCache 复制到应用程序的内存空间中，也就是我们可以操作的对象所在的内

存；

3. 从应用程序的内存空间复制到 Socket 的缓冲区，这个过程就是我们调用网络应用框架

的 API 发送数据的过程。

Kafka 使用零拷贝技术可以把这个复制次数减少一次，上面的 2、3 步骤两次复制合并成一

次复制。直接从 PageCache 中把数据复制到 Socket 缓冲区中，这样不仅减少一次数据复

制，更重要的是，由于不用把数据复制到用户内存空间，DMA 控制器可以直接完成数据复

制，不需要 CPU 参与，速度更快。

下面是这个零拷贝对应的系统调用：

它的前两个参数分别是目的端和源端的文件描述符，后面两个参数是源端的偏移量和复制数

据的长度，返回值是实际复制数据的长度。

如果你遇到这种从文件读出数据后再通过网络发送出去的场景，并且这个过程中你不需要对

这些数据进行处理，那一定要使用这个零拷贝的方法，可以有效地提升性能。

小结

这节课，我们总结了 Kafka 的高性能设计中的几个关键的技术点：

1

2

#include <sys/socket.h>
ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

复制代码

使用批量处理的方式来提升系统吞吐能力。

基于磁盘文件高性能顺序读写的特性来设计的存储结构。

利用操作系统的 PageCache 来缓存数据，减少 IO 并提升读性能。

使用零拷贝技术加速消费流程。

以上这些，就是 Kafka 之所以能做到如此高性能的关键技术点。你可以看到，要真正实现

一个高性能的消息队列，是非常不容易的，你需要熟练掌握非常多的编程语言和操作系统的

底层技术。

这些优化的方法和技术，同样可以用在其他适合的场景和应用程序中。我希望你能充分理解

这几项优化技术的原理，知道它们在什么情况下适用，什么情况下不适用。这样，当你遇到

合适场景的时候，再深入去学习它的细节用法，最终就能把它真正地用到你开发的程序中。

思考题

课后，我希望你去读一读 Kafka 的源代码，从我们这节课中找一两个技术点，找到对应的

代码部分，真正去看一下，我们说的这些优化技术，是如何落地到代码上的。在分析源代码

的过程中，如果有任何问题，也欢迎你在留言区和我一起讨论。

感谢阅读，如果你觉得这篇文章对你有帮助的话，也欢迎把它分享给你的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 加餐 | JMQ的Broker是如何异步处理消息的？

下一篇 16 | 缓存策略：如何使用缓存来减少磁盘IO？

每天晒白牙
2019-08-27

谢谢老师，今天讲到的点，我会在课下去读源码并写出文章

作者回复: 期待

  7

微微一笑
2019-08-27

老师好，有些疑问希望老师解答下：
①rocketMq有consumeQueue，存储着offset，然后通过offset去commitlog找到对应的
Message。通过看rocketmq的开发文档，通过offset去查询消息属于【随机读】，offset
不是存储着消息在磁盘中的位置吗？为什么属于随机读呢？
②rocketMq的某个topic下指定的消息队列数，指的是consumeQueue的数量吗？ …
展开

作者回复: A1：这个过程就是随机读的过程。所有对文件的读写最终都要指定一个位置，都是按位

置去读。随机读和顺序读的区别是，读取的数据是不是在文件中连续的一段。

A2：是的。

A3：RocketMQ的consumerQueue文件和Kafka的index file作用是差不多的，都是log文件（保

存真正的消息）的索引，消费的时候，都需要先读索引，再读log，这个方面，两者并没有什么不

同。它们存储设计的真正的差异的是log文件的设计，RocketMQ每个Broker只有一组log文件，

而Kafka是每个分区一组log文件，你可以想一下，这两种设计各有什么优点和缺点。

另外，随机读和顺序读并没有严格的区分，不是非黑即白的。即使是最理想的顺序读，那它读第

一个字节也是需要寻址的，这是不是一次随机读呢？随机读的时候，只要不是每次只读一个字

节，你在读第二个字节的时候不就是顺序读吗？

所以，不用纠结这个概念，只要我们能做到读取数据的时候，尽量读连续的整块的数据，尽量减

少寻址次数，性能就会更好。

 3  3

精选留言 (20)  写留言

timmy21
2019-08-27

老师，我有两个疑问想请教一下：1. 我们平常打开文件写入数据是顺序写吗？2. 还有如何
进行随机写？是seek到某个位置开始写？但这样的话文件数据不是会被覆盖吗？

作者回复: A1：是的。

A2：是的，不同的编程语言API不太一样，但都提供了类似将指针移动到文件中某个位置的功能。

A3：会被覆盖。

 1  2

linqw
2019-08-28

尝试回答微微一笑的问题，老师有空帮忙看下哦
老师好，有些疑问希望老师解答下：
①rocketMq有consumeQueue，存储着offset，然后通过offset去commitlog找到对应的
Message。通过看rocketmq的开发文档，通过offset去查询消息属于【随机读】，offset
不是存储着消息在磁盘中的位置吗？为什么属于随机读呢？ …
展开

作者回复: 关于为什么分多个队列，我在之前的课程中提到过，和kafka分区一样，主要是为了能

并行消费，提升消费性能。另外还有一个作用是，多个队列（分区）可以分布到多个节点上，提

升主题整体的可用性。

  1

海罗沃德
2019-08-27

Kafka既然是批量處理消息，那麼是怎麼實現Kafka的實時數據流計算呢？

作者回复: 这里面的批量处理和大数据中讲的“流和批”是二个不同的概念。

大数据中的“批量计算”是相对于“流计算”来说的，它指的是，一个计算任务处理一批数据，

这批数据处理完了，这个计算任务就结束了。

我们这里的说的批量处理消息，是相对一条一条处理来说的，成批的处理会显著提升性能。

即使是在Flink或Storm这种纯正的流计算平台中，它对流数据进行传输、计算也是批量处理的。

 
1

linqw
2019-08-27

1、老师有个疑问，kafka在发送时，都会在客户端进行攒一波，然后过一定的时间，或者
达到一定的大小发送出去，批量发送的时候，是把一批同一个topic下的分区的消息进行批
量发送么？还是不管是属于同一分区的消息都进行批量发送，broker端是不会对批消息进
行拆分成每一条，那这样消费端消费到的消息不是有可能有不是订阅的分区么？
2、学习到现在，有个感想，很多事情看似很简单，但是实际再做的时候都没那么简单，…
展开

作者回复: 只有相同分区的消息才能组成同一个批消息。你的第三个问题太大了，改天有时间可以

专题聊一下。

 6  1

业余草
2019-08-27

只说了它的优点，其实它的缺点也很明显。把确定也顺便解释解释。

作者回复: 你可以分享一下，在使用Kafka的时候遇到了哪些问题。

  1

leslie
2019-08-27

老师的课程学到现在开始越来越费力了：一堂课学完笔记量已经直线上升了；对于今天的
课程读完后有些困惑之处烦劳老师可以指点迷津：
 1.客户端发送者的发送给服务器端的时候：其实是写入一个Packge或者说一个log包，
然后服务器端处理完这个包之后，作为一个批处理，处理完成后给客户端的消费者消费者
解包之后依次获得处理结果；是这样么。 …
展开

作者回复: 对于第一点，你的理解是没问题的。

第二个问题，我的建议是，平时注重学习积累，哪怕我只是开发一个CRUD，也要认真的做好每个

细节，把涉及到的知识搞清楚。而不是照葫芦画瓢跟网上抄一个能work的就行了。对于二次开发

这个事儿，先解决目的的问题。不能为了二次开发而二次开发，一定是遇到一个什么问题，经过

思考，二次开发是最佳的解决方案，这样才需要做二次开发。

至于涉及到哪些知识，我们这门课中讲的这些基础的东西大概率你会用到，其它的可以靠日常积

累和快速学习来解决。

  1

康师傅
2019-09-02

请教一下
我的理解是：顺序写是针对某个分区而言的，那么如果单个节点上的topic数量很多，或者
分区数很多，从整体来看应该还是会有很多的随机IO，因为会切换写不同的文件，这种情
况下整体性能是不是就不高了？
这种场景下，除了增加节点，将分区分布到多个节点上，是否还有其他有效提升性能的…
展开

 

牛牛
2019-09-02

老师、想请教下 RocketMQ的queue
1. 生产者和消费者都有自己的Queue吗 ？还是生产者的Queue就是消费这的Queue呢 ？
 如果各自有独立的Queue、这两者之间有什么联系没 ？
2. ReadQueue 和 WriteQueue 的作用是什么呢 ？这两个Queue都是针对某个topic而言
还是针对Producer和Consumer而言呢 ？ReadQueue和WriteQueue的数量可以不一致…
展开

 

嘉木
2019-09-02

如果你遇到这种从文件读出数据后再通过网络发送出去的场景，并且这个过程中你不需要
对这些数据进行处理，那一定要使用这个零拷贝的方法，可以有效地提升性能。

这个sendfile是不是从一个fd到另外一个fd的复制都是可以用的？

展开

 

K-Li
2019-08-30

老师，我知道kafka是攒一波消息后进行批处理的，那么在consumer消费到一条消息后如
果处理失败需要commit offset为上一条消息来重新消费的话是这么做到下一次来的就是刚
刚处理失败的那条数据而不是"一批"里的下一条？

展开

作者回复: 实际上是无法保证的，所以有可能会有重复消息。

 

K-Li
2019-08-30

老师，我知道kafka 是攒一波消息后做为一批来处理的。那消费端如果消费一条消息后处
理失败要重新消费，这时候要重新commit offset

展开

 

书策稠浊
2019-08-29

说了充分利用PageCache，但是并没有说怎么利用啊。

展开

 

每天晒白牙
2019-08-28

我整理的KafkaProducer的源码分析，后续会写关于老师今天介绍的点的分析
https://mp.weixin.qq.com/s/-s34_y16HU6HR5HDsSD4bg

 

老杨同志
2019-08-28

看了老师写的kafka这么多优点，从处理过程感觉可能会有几个缺点：1攒一批处理，可能
会增加单条消息的延时2批消息是客户端组织的，broker也不会是拆解批消息，多个客户端
发送时不能保证有序性。3消费时有一条消息失败整个批次重试

展开

 1 

jack
2019-08-27

老师，关于kafka有几个问题期待您的解答：
1、消费者是线程不安全的，多线程使用消费者，官方提供了两个方法，一是一个线程一个
消费者，但是这样总的线程数受到分区数量的影响；二是一个线程或者几个线程把数据都
消费到，然后将数据交给真正处理数据的线程池处理。想问您实际开发中哪种使用的更频

繁，更多呢？ …
展开

作者回复: 一般还是推荐每个分区单线程消费，如果消费性能不行就扩容分区，这样实现简单并且

可靠。你提到的第二种方法，不是说不能多线程异步（或者像你说的在while循环外）执行消费逻

辑，这样是可以的，但是你必须保证“对于每条消息，只有执行完全部消费逻辑之后，才能提交

消费位置”，这样才能不丢消息。只要能保证这点，无论是同步消费还是异步消费，或者自动还

是手动提交消费位置都是可以的。但实际开发的时候，手动提交消费位置如果处理不好，很容易

丢消息，所以不推荐。

 

游弋云端
2019-08-27

"应用程序在写入文件的时候，操作系统会先把数据写入到内存中的 PageCache，然后再
一批一批地写到磁盘". 这个地方如果不调用sync()或者fsync()，如果保障进程异常退出或
者节点掉电，数据不丢失的问题？

作者回复: 进程退出不会丢数据，操作系统会保证数据会被写入到磁盘中。但如果掉电了，数据是

有可能会丢失的。

 

许童童
2019-08-27

我也来写一下自己的总结：
Kafka高性能的原因：
1.批处理
2.顺序读写
3.PageCache充分利用操作系统缓存 …
展开

 

飞翔
2019-08-27

Kafka是scala写的 看不懂

展开

作者回复: 编程语言不是事儿，看不懂就学。

 1 

