
17 | 如何正确使用锁保护共享数据，协调异步线程？
2019-08-31 李玥

消息队列高手课 进入课程

讲述：李玥
时长 14:04 大小 12.89M

你好，我是李玥。

在前几天的加餐文章中我讲到，JMQ 为了提升整个流程的处理性能，使用了一个“近乎无

锁”的设计，这里面其实隐含着两个信息点。第一个是，在消息队列中，“锁”是一个必须

要使用的技术。第二个是，使用锁其实会降低系统的性能。

那么，如何正确使用锁，又需要注意哪些事项呢？今天我们就来聊一聊这个问题。

我们知道，使用异步和并发的设计可以大幅提升程序的性能，但我们为此付出的代价是，程

序比原来更加复杂了，多线程在并行执行的时候，带来了很多不确定性。特别是对于一些需

要多个线程并发读写的共享数据，如果处理不好，很可能会产出不可预期的结果，这肯定不

是我们想要的。





 下载APP 

我给你举个例子来说明一下，大家应该都参与过微信群投票吧？比如，群主说：“今晚儿咱

们聚餐，能来的都回消息报一下名，顺便统计一下人数。都按我这个格式来报名。”然后，

群主发了一条消息：“群主，1 人”。

这时候小六和无双都要报名，过一会儿，他俩几乎同时各发了一条消息，“小六，2

人”“无双，2 人”，每个人发的消息都只统计了群主和他们自己，一共 2 人，而这时

候，其实已经有 3 个人报名了，并且，在最后发消息的无双的名单中，小六的报名被覆盖

了。

这就是一个非常典型的由于并发读写导致的数据错误。使用锁可以非常有效地解决这个问

题。锁的原理是这样的：任何时间都只能有一个线程持有锁，只有持有锁的线程才能访问被

锁保护的资源。

在上面微信群报名的例子中，如果说我们的微信群中有一把锁，想要报名的人必须先拿到

锁，然后才能更新报名名单。这样，就避免了多个人同时更新消息，报名名单也就不会出错

了。

避免滥用锁

那是不是遇到这种情况都要用锁解决呢？我分享一下我个人使用锁的第一条原则：如果能不

用锁，就不用锁；如果你不确定是不是应该用锁，那也不要用锁。为什么这么说呢？因为，

虽然说使用锁可以保护共享资源，但是代价还是不小的。

第一，加锁和解锁过程都是需要 CPU 时间的，这是一个性能的损失。另外，使用锁就有可

能导致线程等待锁，等待锁过程中线程是阻塞的状态，过多的锁等待会显著降低程序的性

能。

第二，如果对锁使用不当，很容易造成死锁，导致整个程序“卡死”，这是非常严重的问

题。本来多线程的程序就非常难于调试，如果再加上锁，出现并发问题或者死锁问题，你的

程序将更加难调试。

所以，你在使用锁以前，一定要非常清楚明确地知道，这个问题必须要用一把锁来解决。切

忌看到一个共享数据，也搞不清它在并发环境中会不会出现争用问题，就“为了保险，给它

加个锁吧。”千万不能有这种不负责任的想法，否则你将会付出惨痛的代价！我曾经遇到过

的严重线上事故，其中有几次就是由于不当地使用锁导致的。

只有在并发环境中，共享资源不支持并发访问，或者说并发访问共享资源会导致系统错误的

情况下，才需要使用锁。

锁的用法

锁的用法一般是这样的：

1. 在访问共享资源之前，先获取锁。

2. 如果获取锁成功，就可以访问共享资源了。

3. 最后，需要释放锁，以便其他线程继续访问共享资源。

在 Java 语言中，使用锁的例子：

1

2

3

4

5

6

7

8

9

10

private Lock lock = new ReentrantLock();

public void visitShareResWithLock() {
 lock.lock();
 try {
 // 在这里安全的访问共享资源

 } finally {
 lock.unlock();
 }
}

复制代码

也可以使用 synchronized 关键字，它的效果和锁是一样的：

使用锁的时候，你需要注意几个问题：

第一个，也是最重要的问题就是，使用完锁，一定要释放它。比较容易出现状况的地方是，

很多语言都有异常机制，当抛出异常的时候，不再执行后面的代码。如果在访问共享资源时

抛出异常，那后面释放锁的代码就不会被执行，这样，锁就一直无法释放，形成死锁。所

以，你要考虑到代码可能走到的所有正常和异常的分支，确保所有情况下，锁都能被释放。

有些语言提供了 try-with 的机制，不需要显式地获取和释放锁，可以简化编程，有效避免

这种问题，推荐你使用。

比如在 Python 中：

接下来我们说一下，使用锁的时候，遇到的最常见的问题：死锁。

如何避免死锁？

1

2

3

4

5

6

7

private Object lock = new Object();

public void visitShareResWithLock() {
 synchronized (lock) {
 // 在这里安全的访问共享资源

 }
}

复制代码

1

2

3

4

5

6

7

8

lock = threading.RLock()

def visitShareResWithLock():
 with lock:
 # 注意缩进

 # 在这里安全的访问共享资源

 # 锁会在 with 代码段执行完成后自动释放

复制代码

死锁是指，由于某种原因，锁一直没有释放，后续需要获取锁的线程都将处于等待锁的状

态，这样程序就卡死了。

导致死锁的原因并不多，第一种原因就是我在刚刚讲的，获取了锁之后没有释放，有经验的

程序员很少会犯这种错误，即使出现这种错误，也很容易通过查看代码找到 Bug。

还有一种是锁的重入问题，我们来看下面这段代码：

在这段代码中，当前的线程获取到了锁 lock，然后在持有这把锁的情况下，再次去尝试获

取这把锁，这样会导致死锁吗？

答案是，不一定。会不会死锁取决于，你获取的这把锁它是不是可重入锁。如果是可重入

锁，那就没有问题，否则就会死锁。

大部分编程语言都提供了可重入锁，如果没有特别的要求，你要尽量使用可重入锁。有的同

学可能会问，“既然已经获取到锁了，我干嘛还要再次获取同一把锁呢？”

其实，如果你的程序足够复杂，调用栈很深，很多情况下，当你需要获取一把锁的时候，你

是不太好判断在 n 层调用之外的某个地方，是不是已经获取过这把锁了，这个时候，获取

可重入锁就有意义了。

最后一种死锁的情况是最复杂的，也是最难解决的。如果你的程序中存在多把锁，就有可能

出现这些锁互相锁住的情况。我们一起来看下面这段 Python 代码：

1

2

3

4

5

6

7

public void visitShareResWithLock() {
 lock.lock(); // 获取锁

 try {
 lock.lock(); // 再次获取锁，会导致死锁吗？

 } finally {
 lock.unlock();
 }

复制代码

1

2

import threading

复制代码

这个代码模拟了一个最简单最典型的死锁情况。在这个程序里面，我们有两把锁：lockA 和

lockB，然后我们定义了两个线程，这两个线程反复地去获取这两把锁，然后释放。我们执

行以下这段代码，看看会出现什么情况：

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

def func1(lockA, lockB):
 while True:
 print("Thread1: Try to accquire lockA...")
 with lockA:
 print("Thread1: lockA accquired. Try to accquire lockB...")
 with lockB:
 print("Thread1: Both lockA and LockB accrquired.")

def func2(lockA, lockB):
 while True:
 print("Thread2: Try to accquire lockB...")
 with lockB:
 print("Thread2: lockB accquired. Try to accquire lockA...")
 with lockA:
 print("Thread2: Both lockA and LockB accrquired.")

if __name__ == '__main__':
 lockA = threading.RLock();
 lockB = threading.RLock()
 t1 = threading.Thread(target=func1, args=(lockA, lockB,))
 t2 = threading.Thread(target=func2, args=(lockA, lockB,))
 t1.start()
 t2.start()

1

2

3

4

5

6

7

8

9

10

$ python3 DeadLock.py
Thread1: Try to accquire lockA...
Thread1: lockA accquired. Try to accquire lockB...
Thread1: Both lockA and LockB accrquired.
Thread1: Try to accquire lockA...
... ...
Thread1: Try to accquire lockA...
Thread2: Try to accquire lockB...
Thread1: lockA accquired. Try to accquire lockB...
Thread2: lockB accquired. Try to accquire lockA...

复制代码

可以看到，程序执行一会儿就卡住了，发生了死锁。那死锁的原因是什么呢？请注意看代

码，这两个线程，他们获取锁的顺序是不一样的。第一个线程，先获取 lockA，再获取

lockB，而第二个线程正好相反，先获取 lockB，再获取 lockA。

然后，你再看一下死锁前的最后两行日志，线程 1 持有了 lockA，现在尝试获取 lockB，而

线程 2 持有了 lockB，尝试获取 lockA。你可以想一下这个场景，两个线程，各持有一把

锁，都等着对方手里的另外一把锁，这样就僵持住了。

这是最简单的两把锁两个线程死锁的情况，我们还可以分析清楚，你想想如果你的程序中有

十几把锁，几十处加锁解锁，几百的线程，如果出现死锁你还能分析清楚是什么情况吗？

关于避免死锁，我在这里给你几点建议。

1. 再次强调一下，避免滥用锁，程序里用的锁少，写出死锁 Bug 的几率自然就低。

2. 对于同一把锁，加锁和解锁必须要放在同一个方法中，这样一次加锁对应一次解锁，代

码清晰简单，便于分析问题。

3. 尽量避免在持有一把锁的情况下，去获取另外一把锁，就是要尽量避免同时持有多把

锁。

4. 如果需要持有多把锁，一定要注意加解锁的顺序，解锁的顺序要和加锁顺序相反。比

如，获取三把锁的顺序是 A、B、C，释放锁的顺序必须是 C、B、A。

5. 给你程序中所有的锁排一个顺序，在所有需要加锁的地方，按照同样的顺序加解锁。比

如我刚刚举的那个例子，如果两个线程都按照先获取 lockA 再获取 lockB 的顺序加

锁，就不会产生死锁。

最后，你需要知道，即使你完全遵从我这些建议，我也无法完全保证你写出的程序就没有死

锁，只能说，会降低一些犯错误的概率。

使用读写锁要兼顾性能和安全性

对于共享数据来说，如果说某个方法在访问它的时候，只是去读取，并不更新数据，那是不

是就不需要加锁呢？还是需要的，因为如果一个线程读数据的同时，另外一个线程同时在更

新数据，那么你读到的数据有可能是更新到一半的数据，这肯定是不符合预期的。所以，无

论是只读访问，还是读写访问，都是需要加锁的。

如果给数据简单地加一把锁，虽然解决了安全性的问题，但是牺牲了性能，因为，那无论读

还是写，都无法并发了，跟单线程的程序性能是一样。

实际上，如果没有线程在更新数据，那即使多个线程都在并发读，也是没有问题的。我在上

节课跟你讲过，大部分情况下，数据的读写比是不均衡的，读要远远多于写，所以，我们希

望的是：

这样就兼顾了性能和安全性。读写锁就是为这一需求设计的。我们来看一下 Java 中提供的

读写锁：

在这段代码中，需要读数据的时候，我们获取读锁，获取到的读锁不是一个互斥锁，也就是

说 read() 方法是可以多个线程并行执行的，这样使得读数据的性能依然很好。写数据的时

候，我们获取写锁，当一个线程持有写锁的时候，其他线程既无法获取读锁，也不能获取写

锁，达到保护共享数据的目的。

这样，使用读写锁就兼顾了性能和安全。

小结

读访问可以并发执行。

写的同时不能并发读，也不能并发写。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ReadWriteLock rwlock = new ReentrantReadWriteLock();

public void read() {
 rwlock.readLock().lock();
 try {
 // 在这儿读取共享数据

 } finally {
 rwlock.readLock().unlock();
 }
}
public void write() {
 rwlock.writeLock().lock();
 try {
 // 在这儿更新共享数据

 } finally {
 rwlock.writeLock().unlock();
 }
}

复制代码

锁可以保护共享资源，避免并发更新造成的数据错误。只有持有锁的线程才能访问被保护资

源。线程在访问资源之前必须获取锁，访问完成后一定要记得释放锁。

一定不要滥用锁，否则容易导致死锁。死锁的原因，主要由于多个线程中多把锁相互争用导

致的。一般来说，如果程序中使用的锁比较多，很难分析死锁的原因，所以需要尽量少的使

用锁，并且保持程序的结构尽量简单、清晰。

最后，我们介绍了读写锁，在某些场景下，使用读写锁可以兼顾性能和安全性，是非常好的

选择。

思考题

我刚刚讲到，Python 中提供了 try-with-lock，不需要显式地获取和释放锁，非常方便。

遗憾的是，在 Java 中并没有这样的机制，那你能不能自己在 Java 中实现一个 try-with-

lock 呢？

欢迎你把代码上传到 GitHub 上，然后在评论区给出访问链接。如果你有任何问题，也可

以在评论区留言与我交流。

感谢阅读，如果你觉得这篇文章对你有一些启发，也欢迎把它分享给你的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 16 | 缓存策略：如何使用缓存来减少磁盘IO？

L!en6o
2019-08-31

加一个锁回调 封装起来 实现 try-with-lock

展开

  2

张三
2019-08-31

幸亏学过极客时间的并发编程专栏，看懂了。我觉得并发容器的选择比较复杂。

  2

糖醋🏀
2019-09-01

java7开始io就有try-with-resource。
可以利用这一个特性，来说实现，自动释放。
代码如下：

public class AutoUnlockProxy implements Closeable { …
展开

作者回复: 👍👍👍

 2  1

刘天鹏
2019-09-02

对于golang应该就是这样吧
func foo(){
 lock.Lock()
 defer lock.Unlock()

精选留言 (12)  写留言

 //do something... …
展开

 

你说的灰
2019-09-02

public void visitShareResWithLock() {
 lock.lock();
 try {
 // 在这里安全的访问共享资源 …
展开

 1 

Cast
2019-09-01

老师，请问为什么要按逆序去释放锁呢？按照获取的顺序去释放好像也没什么毛病吧？

 

游弋云端
2019-09-01

ABBA锁最容易出问题，老师的经验很重要，尽可能避免锁中锁。

 

humor
2019-09-01

/**
*业务调用接口
**/
public interface Invoker{
 void invoke(); …
展开

 

monalisali
2019-08-31

老师，请教一个问题：假设有一个方法在计算报表，但这个计算的线程在执行过程中被意
外释放了（并不是抛异常）， 此时try catch捕获是捕获不到这种情况的。而从客户端看
来，这个计算过程就永远停在那里了，而后台又没能力告诉客户端：“你别等了”。 这种
情况应该如果处理呢？

展开

 1 

树梢的果实
2019-08-31

C语言下，通过宏很容易实现try-with-lock。
如果两个线程中获取mutex的顺序不一致，可以通过增加第三个mutex来避免死锁。
既然我们做异步、并行，磁盘读写也可以这么做啊，加一个queue，所有读写操作请求都
放到queue中，在单独的线程中完成IO操作并通过callback或另一个queue返回结果。不
知服务器上这么做有什么不妥？

展开

作者回复: 这样做是可以的，其实你用的这个阻塞队列它就是用锁来实现的。

 

许童童
2019-08-31

老师这篇文章的分享对我这样的非后端程序员很友好，感谢老师的分享。

 

😊
2019-08-31

锁是为了并发时的共享而创建，如果没有共享的真正需求不应该使用锁。锁带来的最大问
题就是复杂度和心智负担上升，所以很多框架把最复杂的实现隐藏在内部，留给使用者使
用准则

 

