
18 | 如何用硬件同步原语（CAS）替代锁？
2019-09-03 李玥

消息队列高手课 进入课程

讲述：李玥
时长 12:03 大小 13.80M

你好，我是李玥。上节课，我们一起学习了如何使用锁来保护共享资源，你也了解到，使用

锁是有一定性能损失的，并且，如果发生了过多的锁等待，将会非常影响程序的性能。

在一些特定的情况下，我们可以使用硬件同步原语来替代锁，可以保证和锁一样的数据安全

性，同时具有更好的性能。

在今年的 NSDI（NSDI 是 USENIX 组织开办的关于网络系统设计的著名学术会议）上，伯

克利大学发表了一篇论文《Confluo: Distributed Monitoring and Diagnosis Stack for

High-speed Networks》，这个论文中提到的 Confluo，也是一个类似于消息队列的流数

据存储，它的吞吐量号称是 Kafka 的 4～10 倍。对于这个实验结论我个人不是很认同，因

为它设计的实验条件对 Kafka 来说不太公平。但不可否认的是，Confluo 它的这个设计思

路是一个创新，并且实际上它的性能也非常好。





 下载APP 

http://www.usenix.org/conference/nsdi19/presentation/khandelwal

Confluo 是如何做到这么高的吞吐量的呢？这里面非常重要的一个创新的设计就是，它使

用硬件同步原语来代替锁，在一个日志上（你可以理解为消息队列中的一个队列或者分

区），保证严格顺序的前提下，实现了多线程并发写入。

今天，我们就来学习一下，如何用硬件同步原语（CAS）替代锁？

什么是硬件同步原语？

为什么硬件同步原语可以替代锁呢？要理解这个问题，你要首先知道硬件同步原语是什么。

硬件同步原语（Atomic Hardware Primitives）是由计算机硬件提供的一组原子操作，我

们比较常用的原语主要是 CAS 和 FAA 这两种。

CAS（Compare and Swap），它的字面意思是：先比较，再交换。我们看一下 CAS 实现

的伪代码：

它的输入参数一共有三个，分别是：

返回的是一个布尔值，标识是否赋值成功。

通过这个伪代码，你就可以看出 CAS 原语的逻辑，非常简单，就是先比较一下变量 p 当前

的值是不是等于 old，如果等于，那就把变量 p 赋值为 new，并返回 true，否则就不改变

1

2

3

4

5

6

7

8

<< atomic >>
function cas(p : pointer to int, old : int, new : int) returns bool {
 if *p ≠ old {
 return false
 }
 *p ← new
 return true
}

复制代码

p: 要修改的变量的指针。

old: 旧值。

new: 新值。

变量 p，并返回 false。

这是 CAS 这个原语的语义，接下来我们看一下 FAA 原语（Fetch and Add）：

FAA 原语的语义是，先获取变量 p 当前的值 value，然后给变量 p 增加 inc，最后返回变

量 p 之前的值 value。

讲到这儿估计你会问，这两个原语到底有什么特殊的呢？

上面的这两段伪代码，如果我们用编程语言来实现，肯定是无法保证原子性的。而原语的特

殊之处就是，它们都是由计算机硬件，具体说就是 CPU 提供的实现，可以保证操作的原子

性。

我们知道，原子操作具有不可分割性，也就不存在并发的问题。所以在某些情况下，原语可

以用来替代锁，实现一些即安全又高效的并发操作。

CAS 和 FAA 在各种编程语言中，都有相应的实现，可以来直接使用，无论你是使用哪种编

程语言，它们底层的实现是一样的，效果也是一样的。

接下来，还是拿我们熟悉的账户服务来举例说明一下，看看如何使用 CAS 原语来替代锁，

实现同样的安全性。

CAS 版本的账户服务

假设我们有一个共享变量 balance，它保存的是当前账户余额，然后我们模拟多个线程并发

转账的情况，看一下如何使用 CAS 原语来保证数据的安全性。

这次我们使用 Go 语言来实现这个转账服务。先看一下使用锁实现的版本：

1

2

3

4

5

6

<< atomic >>
function faa(p : pointer to int, inc : int) returns int {
 int value <- *location
 *p <- value + inc
 return value
}

复制代码

这个例子中，我们让账户的初始值为 0，然后启动多个协程来并发执行 10000 次转账，每

次往账户中转入 1 元，全部转账执行完成后，账户中的余额应该正好是 10000 元。

如果你没接触过 Go 语言，不了解协程也没关系，你可以简单地把它理解为进程或者线程都

可以，这里我们只是希望能异步并发执行转账，我们并不关心这几种“程”他们之间细微的

差别。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

package main

import (
 "fmt"
 "sync"
)

func main() {
 // 账户初始值为 0 元
 var balance int32
 balance = int32(0)
 done := make(chan bool)
 // 执行 10000 次转账，每次转入 1 元
 count := 10000

 var lock sync.Mutex

 for i := 0; i < count; i++ {
 // 这里模拟异步并发转账

 go transfer(&balance, 1, done, &lock)
 }
 // 等待所有转账都完成

 for i := 0; i < count; i++ {
 <-done
 }
 // 打印账户余额

 fmt.Printf("balance = %d \n", balance)
}
// 转账服务

func transfer(balance *int32, amount int, done chan bool, lock *sync.Mutex) {
 lock.Lock()
 *balance = *balance + int32(amount)
 lock.Unlock()
 done <- true
}

复制代码

这个使用锁的版本，反复多次执行，每次 balance 的结果都正好是 10000，那这段代码的

安全性是没问题的。接下来我们看一下，使用 CAS 原语的版本。

这个 CAS 版本的转账服务和上面使用锁的版本，程序的总体结构是一样的，主要的区别就

在于，“异步给账户余额 +1”这一小块儿代码的实现。

那在使用锁的版本中，需要先获取锁，然后变更账户的值，最后释放锁，完成一次转账。我

们可以看一下使用 CAS 原语的实现：

首先，它用 for 来做了一个没有退出条件的循环。在这个循环的内部，反复地调用 CAS 原

语，来尝试给账户的余额 +1。先取得账户当前的余额，暂时存放在变量 old 中，再计算转

账之后的余额，保存在变量 new 中，然后调用 CAS 原语来尝试给变量 balance 赋值。我

们刚刚讲过，CAS 原语它的赋值操作是有前置条件的，只有变量 balance 的值等于 old

时，才会将 balance 赋值为 new。

我们在 for 循环中执行了 3 条语句，在并发的环境中执行，这里面会有两种可能情况：

一种情况是，执行到第 3 条 CAS 原语时，没有其他线程同时改变了账户余额，那我们是可

以安全变更账户余额的，这个时候执行 CAS 的返回值一定是 true，转账成功，就可以退出

循环了。并且，CAS 这一条语句，它是一个原子操作，赋值的安全性是可以保证的。

另外一种情况，那就是在这个过程中，有其他线程改变了账户余额，这个时候是无法保证数

据安全的，不能再进行赋值。执行 CAS 原语时，由于无法通过比较的步骤，所以不会执行

赋值操作。本次尝试转账失败，当前线程并没有对账户余额做任何变更。由于返回值为

false，不会退出循环，所以会继续重试，直到转账成功退出循环。

1

2

3

4

5

6

7

8

9

10

func transferCas(balance *int32, amount int, done chan bool) {
 for {
 old := atomic.LoadInt32(balance)
 new := old + int32(amount)
 if atomic.CompareAndSwapInt32(balance, old, new) {
 break
 }
 }
 done <- true
}

复制代码

这样，每一次转账操作，都可以通过若干次重试，在保证安全性的前提下，完成并发转账操

作。

其实，对于这个例子，还有更简单、性能更好的方式：那就是，直接使用 FAA 原语。

FAA 原语它的操作是，获取变量当前的值，然后把它做一个加法，并且保证这个操作的原

子性，一行代码就可以搞定了。看到这儿，你可能会想，那 CAS 原语还有什么意义呢？

在这个例子里面，肯定是使用 FAA 原语更合适，但是我们上面介绍的，使用 CAS 原语的

方法，它的适用范围更加广泛一些。类似于这样的逻辑：先读取数据，做计算，然后更新数

据，无论这个计算是什么样的，都可以使用 CAS 原语来保护数据安全，但是 FAA 原语，

这个计算的逻辑只能局限于简单的加减法。所以，我们上面讲的这种使用 CAS 原语的方法

并不是没有意义的。

另外，你需要知道的是，这种使用 CAS 原语反复重试赋值的方法，它是比较耗费 CPU 资

源的，因为在 for 循环中，如果赋值不成功，是会立即进入下一次循环没有等待的。如果线

程之间的碰撞非常频繁，经常性的反复重试，这个重试的线程会占用大量的 CPU 时间，随

之系统的整体性能就会下降。

缓解这个问题的一个方法是使用 Yield()， 大部分编程语言都支持 Yield() 这个系统调用，

Yield() 的作用是，告诉操作系统，让出当前线程占用的 CPU 给其他线程使用。每次循环结

束前调用一下 Yield() 方法，可以在一定程度上减少 CPU 的使用率，缓解这个问题。你也

可以在每次循环结束之后，Sleep() 一小段时间，但是这样做的代价是，性能会严重下降。

所以，这种方法它只适合于线程之间碰撞不太频繁，也就是说绝大部分情况下，执行 CAS

原语不需要重试这样的场景。

小结

1

2

3

4

func transferFaa(balance *int32, amount int, done chan bool) {
 atomic.AddInt32(balance, int32(amount))
 done <- true
}

复制代码

这节课我们一起学习了 CAS 和 FAA 这两个原语。这些原语，是由 CPU 提供的原子操作，

在并发环境中，单独使用这些原语不用担心数据安全问题。在特定的场景中，CAS 原语可

以替代锁，在保证安全性的同时，提供比锁更好的性能。

接下来，我们用转账服务这个例子，分别演示了 CAS 和 FAA 这两个原语是如何替代锁来

使用的。对于类似：“先读取数据，做计算，然后再更新数据”这样的业务逻辑，可以使用

CAS 原语 + 反复重试的方式来保证数据安全，前提是，线程之间的碰撞不能太频繁，否则

太多重试会消耗大量的 CPU 资源，反而得不偿失。

思考题

这节课的课后作业，依然需要你去动手来写代码。你需要把我们这节课中的讲到的账户服务

这个例子，用你熟悉的语言，用锁、CAS 和 FAA 这三种方法，都完整地实现一遍。每种实

现方法都要求是完整的，可以执行的程序。

因为，对于并发和数据安全这块儿，你不仅要明白原理，熟悉相关的 API，会正确地使用，

是非常重要的。在这部分写出的 Bug，都比较诡异，不好重现，而且很难调试。你会发

现，你的数据一会儿是对的，一会儿又错了。或者在你开发的电脑上都正确，部署到服务器

上又错了等等。所以，熟练掌握，一次性写出正确的代码，这样会帮你省出很多找 Bug 的

时间。

验证作业是否正确的方法是，你反复多次执行你的程序，应该每次打印的结果都是：

欢迎你把代码上传到 GitHub 上，然后在评论区给出访问链接。如果你有任何问题，也可

以在评论区留言与我交流。

感谢阅读，如果你觉得这篇文章对你有一些启发，也欢迎把它分享给你的朋友。

1 balance = 10000

复制代码

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 17 | 如何正确使用锁保护共享数据，协调异步线程？

下一篇 19 | 数据压缩：时间换空间的游戏

微微一笑
2019-09-03

老师好，实现了下CAS,代码连接：https://github.com/shenyachen/JKSJ/blob/master/
study/src/main/java/com/jksj/study/casAndFaa/CASThread.java。
对于FAA，通过查找资料，jdk1.8在调用sun.misc.Unsafe#getAndAddInt方法时，会根
据系统底层是否支持FAA，来决定是使用FAA还是CAS。

展开

作者回复: 👍👍👍

  4

一步

精选留言 (20)  写留言

2019-09-03

NodeJS中，没有发现有关操作CpU原语CAS或者FAA的实现的

作者回复: 可以试试这个：https://developer.mozilla.org/en-US/docs/Web/JavaScript/Refere

nce/Global_Objects/Atomics

 1  3

QQ怪
2019-09-03

MutxLock：https://github.com/xqq1994/algorithm/blob/master/src/main/java/co
m/test/concurrency/MutxLock.java
CAS、FFA:
https://github.com/xqq1994/algorithm/blob/master/src/main/java/com/test/conc
urrency/CAS.java …
展开

作者回复: 👍👍👍

  1

姜戈
2019-09-03

JAVA中的FAA和CAS: FAA就是用CAS实现的。

public final int getAndAddInt(Object var1, long var2, int var4) {
 int var5;
 do { …
展开

  1

明日
2019-09-03

Java实现: https://gist.github.com/imgaoxin/a2b09715af99b993e30b44963cebc530

作者回复: transfer2要放在循环中，否则有可能转账失败。

另外，transfer1中，虽然一个简单的加法不会引起任何异常，但总是把unlock放到finnally中是一

个好习惯。

  1

leslie
2019-09-03

打卡：老师一步步剥离一层层拨开实质-又涨知识了，期待老师的下节课。

  1

张三
2019-09-03

复习了一下Java中的原子类，对应到go里边的CAS实现中的for循环是自旋，还有就是要注
意ABA问题吧。

  1

张三
2019-09-03

Java里边有支持FAA这种CPU指令的实现吗？以前没听说

作者回复: 在java中，可以看一下java.util.concurrent.atomic.AtomicLong#getAndAdd

 1  1

王莹
2019-09-09

代码工程
https://github.com/dlutsniper/wy-ja-lock/tree/master/src/main/java/wy/ja/lock/de
mo
试验耗时的环节，深刻体会JIT的强大，执行次数越多，耗时均值越低
JIT吗？执行越多速度越快？ …
展开

 

青舟
2019-09-04

https://github.com/qingzhou413/geektime-mq.git
做了1000万次加法，
Lock: 380ms
CAS: 200ms
FAA: 280ms

展开

作者回复: java里面有AtomicInteger等等封装好的类，包含了CAS和FAA等原子操作，可以直接

使用的。

 1 

Randy Liu
2019-09-04

用户硬件同步原语来代替锁的效果，确实是一个好思路

 

许童童
2019-09-03

老师讲得很好，对于我这种基础薄弱的，长见识了，感谢老师。

 

潘政宇
2019-09-03

go的语法太奇特了，代码中的done作用是什么啊

展开

作者回复: 可以参考一下：https://blog.golang.org/pipelines

 

linqw
2019-09-03

最近出差都落下了好些，找个空闲时间把这些实现下

展开

 

刘天鹏
2019-09-03

对于 “CAS 和 FAA 在各种编程语言中，都有相应的实现”
我想起之前在操作数据的时候，为了并发的修改用户数据(Money)，当时的做法是
先Select出用户的Money
再对Money做操作
最后在Update的时候多附加一个条件（Money=OldMoney）

展开

作者回复: 其实很多实现方法和技巧都是相通的

 1 

刘天鹏
2019-09-03

https://gist.github.com/liutianpeng/6f72bca647be41705d68736a79246c2f
用Golang实现的版本,其实老师都已经实现了，Test和Benchmark都做了，果然操作时间
FAA < CAS < Mutex

另外还有一个问题 atomic.LoadXXX 这组函数是什么作用（或者说为了解决什么问题…
展开

作者回复: 就是确保这个赋值也是一个原子操作。

 

ponymm
2019-09-03

“CAS 和 FAA 在各种编程语言中，都有相应的实现，可以来直接使用，无论你是使用哪种
编程语言，它底层使用的系统调用是一样的，效果也是一样的。” 李老师这句话有点小问
题：car,faa并不是通过系统调用实现的，系统调用的开销不小，cas本来就是为了提升性
能，不会走系统调用。事实上是在用户态直接使用汇编指令就可以实现

展开

作者回复: 感谢你指出错误，我已经联系编辑在文稿中改正了。

 

😊
2019-09-03

yiald感觉还是不是等一定周期使用是不是更好，如果系统线程多，线程的频繁切换带来的
开销也不小，go的协程会好些

展开

 

白小白
2019-09-03

打卡打卡！晚上回家做作业！

展开

 

书策稠浊
2019-09-03

看完，先抢个沙发，晚点上链接。

展开

 

