
20 | RocketMQ Producer源码分析：消息生产的实现过程
2019-09-10 李玥

消息队列高手课 进入课程

讲述：李玥
时长 19:15 大小 13.23M

你好，我是李玥。

对于消息队列来说，它最核心的功能就是收发消息。也就是消息生产和消费这两个流程。我

们在之前的课程中提到了消息队列一些常见问题，比如，“如何保证消息不会丢失？”“为

什么会收到重复消息？”“消费时为什么要先执行消费业务逻辑再确认消费？”，针对这些

问题，我讲过它们的实现原理，这些最终落地到代码上，都包含在这一收一发两个流程中。

在接下来的两节课中，我会带你一起通过分析源码的方式，详细学习一下这两个流程到底是

如何实现的。你在日常使用消息队列的时候，遇到的大部分问题，更多的是跟 Producer 和

Consumer，也就是消息队列的客户端，关联更紧密。搞清楚客户端的实现原理和代码中的

细节，将对你日后使用消息队列时进行问题排查有非常大的帮助。所以，我们这两节课的重

点，也将放在分析客户端的源代码上。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程 
发数字“2”获取众筹列表



秉着先易后难的原则，我们选择代码风格比较简明易懂的 RocketMQ 作为分析对象。一起

分析 RocketMQ 的 Producer 的源代码，学习消息生产的实现过程。

在分析源代码的过程中，我们的首要目的就是搞清楚功能的实现原理，另外，最好能有敏锐

的嗅觉，善于发现代码中优秀的设计和巧妙构思，学习、总结并记住这些方法。在日常开发

中，再遇到类似场景，你就可以直接拿来使用。

我们使用当前最新的 release 版本 release-4.5.1 进行分析，使用 Git 在 GitHub 上直接下

载源码到本地：

客户端是一个单独的 Module，在 rocketmq/client 目录中。

从单元测试看 Producer API 的使用

在专栏之前的课程《09 | 学习开源代码该如何入手？》中我和你讲过，不建议你从 main()

方法入手去分析源码，而是带着问题去分析。我们本节课的问题是非常清晰的，就是要搞清

楚 Producer 是如何发消息的。带着这个问题，接下来我们该如何分析源码呢？

我的建议是，先看一下单元测试用例。因为，一般单元测试中，每一个用例就是测试代码中

的一个局部或者说是一个小流程。那对于一些比较完善的开源软件，它们的单元测试覆盖率

都非常高，很容易找到我们关心的那个流程所对应的测试用例。我们的源码分析，就可以从

这些测试用例入手，一步一步跟踪其方法调用链路，理清实现过程。

首先我们先分析一下 RocketMQ 客户端的单元测试，看看 Producer 提供哪些 API，更重

要的是了解这些 API 应该如何使用。

Producer 的所有测试用例都在同一个测试

类"org.apache.rocketmq.client.producer.DefaultMQProducerTest"中，看一下这个测

试类中的所有单元测试方法，大致可以了解到 Producer 的主要功能。

1

2

3

git clone git@github.com:apache/rocketmq.git
cd rocketmq
git checkout release-4.5.1

复制代码

https://time.geekbang.org/column/article/115519


这个测试类的主要测试方法如下：

其中 init 和 terminate 是测试开始初始化和测试结束销毁时需要执行的代码，其他以

testSendMessage 开头的方法都是在各种情况和各种场景下发送消息的测试用例，通过这

些用例的名字，你可以大致看出测试的功能。

比如，testSendMessageSync 和 testSendMessageAsync 分别是测试同步发送和异步发

送的用例，testSendMessageSync_WithBodyCompressed 是压缩消息发送的测试用

例，等等。

像 RocketMQ 这种开源项目，前期花费大量时间去编写测试用例，看似浪费时间，实际上

会节省非常多后期联调测试、集成测试、以及上线后出现问题解决问题的时间，并且能够有

效降低线上故障的概率，总体来说是非常划算的。强烈建议你在日常进行开发的过程中，也

多写一些测试用例，尽量把单元测试的覆盖率做到 50% 以上。

RockectMQ 的 Producer 入口类

为“org.apache.rocketmq.client.producer.DefaultMQProducer”，大致浏览一下代码

和类的继承关系，我整理出 Producer 相关的几个核心类和接口如下：

init 

terminate 

testSendMessage_ZeroMessage 

testSendMessage_NoNameSrv 

testSendMessage_NoRoute 

testSendMessageSync_Success 

testSendMessageSync_WithBodyCompressed 

testSendMessageAsync_Success 

testSendMessageAsync 

testSendMessageAsync_BodyCompressed 

testSendMessageSync_SuccessWithHook

防止断
更 请务

必加 

首发微
信：1

71614
3665



这里面 RocketMQ 使用了一个设计模式：门面模式（Facade Pattern）。

接口 MQProducer 就是这个模式中的门面，客户端只要使用这个接口就可以访问

Producer 实现消息发送的相关功能，从使用层面上来说，不必再与其他复杂的实现类打交

道了。

类 DefaultMQProducer 实现了接口 MQProducer，它里面的方法实现大多没有任何的业

务逻辑，只是封装了对其他实现类的方法调用，也可以理解为是门面的一部分。Producer

的大部分业务逻辑的实现都在类 DefaultMQProducerImpl 中，这个类我们会在后面重点

分析其实现。

有的时候，我们的实现分散在很多的内部类中，不方便用接口来对外提供服务，你就可以仿

照 RocketMQ 的这种方式，使用门面模式来隐藏内部实现，对外提供服务。

接口 MQAdmin 定义了一些元数据管理的方法，在消息发送过程中会用到。

启动过程

通过单元测试中的代码可以看到，在 init() 和 terminate() 这两个测试方法中，分别执行了

Producer 的 start 和 shutdown 方法，说明在 RocketMQ 中，Producer 是一个有状态的

服务，在发送消息之前需要先启动 Producer。这个启动过程，实际上就是为了发消息做的

门面模式主要的作用是给客户端提供了一个可以访问系统的接口，隐藏系统

内部的复杂性。



准备工作，所以，在分析发消息流程之前，我们需要先理清 Producer 中维护了哪些状态，

在启动过程中，Producer 都做了哪些初始化的工作。有了这个基础才能分析其发消息的实

现流程。

首先从测试用例的方法 init() 入手：

这段初始化代码的逻辑非常简单，就是创建了一个 DefaultMQProducer 的实例，为它初

始化一些参数，然后调用 start 方法启动它。接下来我们跟进 start 方法的实现，继续分析

其初始化过程。

DefaultMQProducer#start() 方法中直接调用了 DefaultMQProducerImpl#start() 方

法，我们直接来看这个方法的代码：

1

2

3

4

5

6

7

8

9

10

11

12

13

  @Before
  public void init() throws Exception {
      String producerGroupTemp = producerGroupPrefix + System.currentTimeMillis();
      producer = new DefaultMQProducer(producerGroupTemp);
      producer.setNamesrvAddr("127.0.0.1:9876");
      producer.setCompressMsgBodyOverHowmuch(16);
 
      // 省略构造测试消息的代码

 
      producer.start();
 
      // 省略用于测试构造 mock 的代码

  }

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

public void start(final boolean startFactory) throws MQClientException {
    switch (this.serviceState) {
        case CREATE_JUST:
            this.serviceState = ServiceState.START_FAILED;
 
            // 省略参数检查和异常情况处理的代码

 
            // 获取 MQClientInstance 的实例 mQClientFactory，没有则自动创建新的实例

            this.mQClientFactory = MQClientManager.getInstance().getAndCreateMQClientIns
            // 在 mQClientFactory 中注册自己

            boolean registerOK = mQClientFactory.registerProducer(this.defaultMQProduce
            // 省略异常处理代码

 

复制代码

拼课微
信：1

71614
3665



这里面，RocketMQ 使用一个成员变量 serviceState 来记录和管理自身的服务状态，这实

际上是状态模式 (State Pattern) 这种设计模式的变种实现。

与标准的状态模式不同的是，它没有使用状态子类，而是使用分支流程（switch-case）来

实现不同状态下的不同行为，在管理比较简单的状态时，使用这种设计会让代码更加简洁。

这种模式非常广泛地用于管理有状态的类，推荐你在日常开发中使用。

在设计状态的时候，有两个要点是需要注意的，第一是，不仅要设计正常的状态，还要设计

中间状态和异常状态，否则，一旦系统出现异常，你的状态就不准确了，你也就很难处理这

种异常状态。比如在这段代码中，RUNNING 和 SHUTDOWN_ALREADY 是正常状态，

CREATE_JUST 是一个中间状态，START_FAILED 是一个异常状态。

第二个要点是，将这些状态之间的转换路径考虑清楚，并在进行状态转换的时候，检查上一

个状态是否能转换到下一个状态。比如，在这里，只有处于 CREATE_JUST 状态才能转换

为 RUNNING 状态，这样就可以确保这个服务是一次性的，只能启动一次。从而避免了多

次启动服务而导致的各种问题。

接下来看一下启动过程的实现：

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

            // 启动 mQClientFactory
            if (startFactory) {
                mQClientFactory.start();
            }
            this.serviceState = ServiceState.RUNNING;
            break;
        case RUNNING:
        case START_FAILED:
        case SHUTDOWN_ALREADY:
            // 省略异常处理代码

        default:
            break;
    }
    // 给所有 Broker 发送心跳

    this.mQClientFactory.sendHeartbeatToAllBrokerWithLock();
}

状态模式允许一个对象在其内部状态改变时改变它的行为，对象看起来就像

是改变了它的类。



1. 通过一个单例模式（Singleton Pattern）的 MQClientManager 获取

MQClientInstance 的实例 mQClientFactory，没有则自动创建新的实例；

2. 在 mQClientFactory 中注册自己；

3. 启动 mQClientFactory；

4. 给所有 Broker 发送心跳。

这里面又使用了一个最简单的设计模式：单例模式。我们在这儿给出单例模式的定义，不再

详细说明了，不会的同学需要自我反省一下，然后赶紧去复习设计模式基础去。

其中实例 mQClientFactory 对应的类 MQClientInstance 是 RocketMQ 客户端中的顶层

类，大多数情况下，可以简单地理解为每个客户端对应类 MQClientInstance 的一个实

例。这个实例维护着客户端的大部分状态信息，以及所有的 Producer、Consumer 和各种

服务的实例，想要学习客户端整体结构的同学可以从分析这个类入手，逐步细化分析下去。

我们进一步分析一下 MQClientInstance#start() 中的代码：

这一部分代码的注释比较清楚，流程是这样的：

1. 启动实例 mQClientAPIImpl，其中 mQClientAPIImpl 是类 MQClientAPIImpl 的实

例，封装了客户端与 Broker 通信的方法；

单例模式涉及一个单一的类，该类负责创建自己的对象，同时确保只有单个

对象被创建。这个类提供了一种访问其唯一的对象的方式，可以直接访问，

不需要实例化该类的对象。

1

2

3

4

5

6

7

8

9

10

// 启动请求响应通道

this.mQClientAPIImpl.start();
// 启动各种定时任务

this.startScheduledTask();
// 启动拉消息服务

this.pullMessageService.start();
// 启动 Rebalance 服务

this.rebalanceService.start();
// 启动 Producer 服务

this.defaultMQProducer.getDefaultMQProducerImpl().start(false);

复制代码



2. 启动各种定时任务，包括与 Broker 之间的定时心跳，定时与 NameServer 同步数据等

任务；

3. 启动拉取消息服务；

4. 启动 Rebalance 服务；

5. 启动默认的 Producer 服务。

以上是 Producer 的启动流程。这里面有几个重要的类，你需要清楚它们的各自的职责。后

续你在使用 RocketMQ 时，如果遇到问题需要调试代码，了解这几个重要类的职责会对你

有非常大的帮助。

1. DefaultMQProducerImpl：Producer 的内部实现类，大部分 Producer 的业务逻

辑，也就是发消息的逻辑，都在这个类中。

2. MQClientInstance：这个类中封装了客户端一些通用的业务逻辑，无论是 Producer

还是 Consumer，最终需要与服务端交互时，都需要调用这个类中的方法；

3. MQClientAPIImpl：这个类中封装了客户端服务端的 RPC，对调用者隐藏了真正网络

通信部分的具体实现；

4. NettyRemotingClient：RocketMQ 各进程之间网络通信的底层实现类。

消息发送过程

接下来我们一起分析 Producer 发送消息的流程。

在 Producer 的接口 MQProducer 中，定义了 19 个不同参数的发消息的方法，按照发送

方式不同可以分成三类：

这三类发送实现基本上是相同的，异步发送稍微有一点儿区别，我们看一下异步发送的实现

方法"DefaultMQProducerImpl#send()"（对应源码中的 1132 行）：

单向发送（Oneway）：发送消息后立即返回，不处理响应，不关心是否发送成功；

同步发送（Sync）：发送消息后等待响应；

异步发送（Async）：发送消息后立即返回，在提供的回调方法中处理响应。

1

2

3

@Deprecated
public void send(final Message msg, final MessageQueueSelector selector, final Object a
    throws MQClientException, RemotingException, InterruptedException {

复制代码



我们可以看到，RocketMQ 使用了一个 ExecutorService 来实现异步发送：使用

asyncSenderExecutor 的线程池，异步调用方法 sendSelectImpl()，继续发送消息的后续

工作，当前线程把发送任务提交给 asyncSenderExecutor 就可以返回了。单向发送和同步

发送的实现则是直接在当前线程中调用方法 sendSelectImpl()。

我们来继续看方法 sendSelectImpl() 的实现：

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

    final long beginStartTime = System.currentTimeMillis();
    ExecutorService executor = this.getAsyncSenderExecutor();
    try {
        executor.submit(new Runnable() {
            @Override
            public void run() {
                long costTime = System.currentTimeMillis() - beginStartTime;
                if (timeout > costTime) {
                    try {
                        try {
                            sendSelectImpl(msg, selector, arg, CommunicationMode.ASYNC, 
                                timeout - costTime);
                        } catch (MQBrokerException e) {
                            throw new MQClientException("unknownn exception", e);
                        }
                    } catch (Exception e) {
                        sendCallback.onException(e);
                    }
                } else {
                    sendCallback.onException(new RemotingTooMuchRequestException("call t
                }
            }
 
        });
    } catch (RejectedExecutionException e) {
        throw new MQClientException("exector rejected ", e);
    }
}

1

2

3

4

5

6

7

8

// 省略部分代码

MessageQueue mq = null;
 
// 选择将消息发送到哪个队列（Queue）中

try {
    List<MessageQueue> messageQueueList =
        mQClientFactory.getMQAdminImpl().parsePublishMessageQueues(topicPublishInfo.getM
    Message userMessage = MessageAccessor.cloneMessage(msg);

复制代码



方法 sendSelectImpl() 中主要的功能就是选定要发送的队列，然后调用方法

sendKernelImpl() 发送消息。

选择哪个队列发送由 MessageQueueSelector#select 方法决定。在这里 RocketMQ 使用

了策略模式（Strategy Pattern），来解决不同场景下需要使用不同的队列选择算法问题。

RocketMQ 提供了很多 MessageQueueSelector 的实现，例如随机选择策略，哈希选择

策略和同机房选择策略等，如果需要，你也可以自己实现选择策略。之前我们的课程中提到

过，如果要保证相同 key 消息的严格顺序，你需要使用哈希选择策略，或者提供一个自己

实现的选择策略。

接下来我们再看一下方法 sendKernelImpl()。这个方法的代码非常多，大约有 200 行，但

逻辑比较简单，主要功能就是构建发送消息的头 RequestHeader 和上下文

SendMessageContext，然后调用方法 MQClientAPIImpl#sendMessage()，将消息发送

给队列所在的 Broker。

至此，消息被发送给远程调用的封装类 MQClientAPIImpl，完成后续序列化和网络传输等

步骤。

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

    String userTopic = NamespaceUtil.withoutNamespace(userMessage.getTopic(), mQClientFa
    userMessage.setTopic(userTopic);
 
    mq = mQClientFactory.getClientConfig().queueWithNamespace(selector.select(messageQue
} catch (Throwable e) {
    throw new MQClientException("select message queue throwed exception.", e);
}
 
// 省略部分代码

 
// 发送消息

if (mq != null) {
    return this.sendKernelImpl(msg, mq, communicationMode, sendCallback, null, timeout 
} else {
    throw new MQClientException("select message queue return null.", null);
}
// 省略部分代码

策略模式：定义一系列算法，将每一个算法封装起来，并让它们可以相互替

换。策略模式让算法独立于使用它的客户而变化。



可以看到，RocketMQ 的 Producer 整个发消息的流程，无论是同步发送还是异步发送，

都统一到了同一个流程中。包括异步发送消息的实现，实际上也是通过一个线程池，在异步

线程执行的调用和同步发送相同的底层方法来实现的。

在底层方法的代码中，依靠方法的一个参数来区分同步还是异步发送。这样实现的好处是，

整个流程是统一的，很多同步异步共同的逻辑，代码可以复用，并且代码结构清晰简单，便

于维护。

使用同步发送的时候，当前线程会阻塞等待服务端的响应，直到收到响应或者超时方法才会

返回，所以在业务代码调用同步发送的时候，只要返回成功，消息就一定发送成功了。异步

发送的时候，发送的逻辑都是在 Executor 的异步线程中执行的，所以不会阻塞当前线程，

当服务端返回响应或者超时之后，Producer 会调用 Callback 方法来给业务代码返回结

果。业务代码需要在 Callback 中来判断发送结果。这和我们在之前的课程《05 | 如何确保

消息不会丢失？》讲到的发送流程是完全一样的。

小结

这节课我带你分析了 RocketMQ 客户端消息生产的实现过程，包括 Producer 初始化和发

送消息的主流程。Producer 中包含的几个核心的服务都是有状态的，在 Producer 启动

时，在 MQClientInstance 这个类中来统一来启动。在发送消息的流程中，RocketMQ 分

了三种发送方式：单向、同步和异步，这三种发送方式对应的发送流程基本是相同的，同步

和异步发送是由已经封装好的 MQClientAPIImpl 类来分别实现的。

对于我们在分析代码中提到的几个重要的业务逻辑实现类，你最好能记住这几个类和它的功

能，包括 ：DefaultMQProducerImpl 封装了大部分 Producer 的业务逻辑，

MQClientInstance 封装了客户端一些通用的业务逻辑，MQClientAPIImpl 封装了客户端

与服务端的 RPC，NettyRemotingClient 实现了底层网络通信。

我在课程中，只能带你把主干流程分析清楚，但是很多细节并没有涉及，课后请你一定要按

照流程把源代码仔细看一遍，仔细消化一下没有提及到的分支流程，将这两个流程绘制成详

细的流程图或者时序图。

分析过程中提到的几个设计模式，是非常实用且常用的设计模式，希望你能充分理解并熟练

运用。

思考题

https://time.geekbang.org/column/article/111488


你有没有注意到，在源码中，异步发送消息方法 DefaultMQProducerImpl#send()(1132

行) 被开发者加了 @Deprecated（弃用）注解，显然开发者也意识到了这种异步的实现存

在一些问题，需要改进。请你结合我们专栏文章《10 | 如何使用异步设计提升系统性

能？》中讲到的异步设计方法想一想，应该如何改进这个异步发送的流程？欢迎在留言区写

下你的想法。

感谢阅读，如果你觉得这篇文章对你有帮助的话，也欢迎把它分享给你的朋友。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 期中测试丨10个消息队列热点问题自测

下一篇 21 | Kafka Consumer源码分析：消息消费的实现过程

lmtoo
2019-09-10

这种异步方式几乎没有意义，底层的netty已经实现了异步，这里只是在选择消息队列等判
断的过程加了异步，最终callback还是由netty线程来调用的

精选留言 (13)  写留言

https://time.geekbang.org/column/article/117272


展开

  3

微微一笑
2019-09-11

老师好，先祝您节日快乐！！！您辛苦了~ 
有几个疑问需要老师解答一下： 
①今天在看rocketMq源码过程中，发现DefaultMQProducer有个属性defaultTopicQue
ueNums，它是用来设置topic的ConsumeQueue的数量的吗？我之前的理解是，consu
meQueue的数量是创建topic的时候指定的，跟producer没有关系，那这个参数又有什…
展开

作者回复: A1：这个参数是控制客户端在生产消费的时候会访问同一个主题的队列数量，假设一个

主题有100个队列，对于每一个客户端来说，它没必要100个队列都访问，只需要使用其中的几个

队列就行了。 

 

A2：writeQueueNums和readQueueNums是在服务端来控制每个客户端在生产和消费的时候，

分别访问多少个队列。这两个参数是服务端参数，优先级是高于客户端控制的参数defaultTopicQ

ueueNums的。perm是设置Topic读写等权限的参数，具体如何设置你需要去看一下文档。 

 

A3：如果局限于：“APP/浏览器 --[http协议]-->web 服务”这样的场景，受限于http协议，前

端和web服务的交互一定是单向和同步的。一定要等待结果然后返回响应，但是，这种情况仍然

可以使用异步的方法，这个我在“08答疑”中解释秒杀的时候其实已经给出了答案。很多同学不

理解的原因是思维被web框架给限制住了。像spring web这种框架，它把处理web请求都给你封

装好了，你只要写一个handler就行了，很方便。但是，这个handler只能是一个同步方法，它必

须在返回值中给出响应结果，所以导致很多同学的思维转不过来这个弯儿。 

 

你可以结合我们讲的异步网络IO内容想一下，http协议发一个请求到服务端，就是发了一些数据

过来，服务端回响应也就是在这个连接上给它返回一些数据回去就可以了。至于什么时候往回发

响应数据，哪个线程来发，有要求吗？并没有。只要在超时之前发响应就可以了。我们讲得如何

来实现异步网络IO的方法处理的不就是这种情况吗？ 

 

这个过程不是说一定要做成和web框架一样的同步处理。 

 

  2

每天晒白牙
2019-09-10

我总结的kafka生产消息的源码分析 



https://mp.weixin.qq.com/s/-s34_y16HU6HR5HDsSD4bg

展开

  1

明日
2019-09-10

李老师节日快乐！ 
关于思考题看到了源码的注释说异常处理和超时时间有问题。 
自己看的话一是异常这里抛未知的原因，不够明确。 
二是这里用的线程池默认使用了虚拟机可用的线程，可能会对其他服务造成影响。 
三是超时时间这把线程阻塞可能等待的时间也包括进去了不太合适。 …
展开

  1

leslie
2019-09-10

编程语言的话Python或Go可以么？极客时间里都有购买，就是忙着其它课程的学习，一直
没顾的上编程语言的学习。 
       从开始一路跟到现在：算是少数一直在完全没有缺的课；前期一直遍边学习边针对开
篇时的学习目标针对当下工作环境的Nosql DB和MQ使用率的低下的问题找解决思路和方
案，课后笔记主要同样集中在思路以及针对思路的困惑查疑上，代码这块完全没顾上。…
展开

作者回复: 个人建议学习Java或者Go，这两种语言都有不错的生态系统，都可以用来构建大规模

集群。 

 

相对来说，Java的生态系统更强大，Go比较年轻，有很多Java不具备的语言特性。 

 

Python本来只是一门脚本语言，特别适合开发机器学习程序而火起来了，如果你不是从事机器学

习相关的研发，不太建议作为第一语言来学习。

  1

humor
2019-09-16

一是处理异常的代码很奇怪吧，有的异常使用sendCallback抛出，有的直接抛出；二是超
时的语义有问题，现在的timeout意思是消息在线程池中排队的时间

展开

 



墙角儿的花
2019-09-11

老师 对于im服务器集群，客户端的socket均布在各个服务器，目标socket不在同一个服务
器上时，服务器间需要转发消息，这个场景需要低延迟无需持久化，服务器间用redis的发
布订阅，因其走内存较快，即使断电还可以走库。im服务器和入库服务间用其他mq解耦，
因为这个环节需要持久化，所以选rocketmq或kafka，但kafka会延迟批量发布消息 所以
选rocketmq，这两个环节的mq选型可行吗。

展开

作者回复: 有一个问题你需要考虑，你是不是需要为每一个会话（比如，张三和李四之间开始聊

天，成为一个会话）在MQ中凑创建一个Topic呢？这样会导致MQ集群中的Topic数量非常多。假

设你的系统注册用户数是n，理论上最多会需要 n x n 个Topic，这还没有计算用户拉的群。 

 

对于海量的Topic数量，RocketMQ和Kafka都不是太好的选择。

 

QQ怪
2019-09-10

老师，节日快乐🎉

展开

作者回复: 感谢！

 

约书亚
2019-09-10

同楼上@lmtoo答案，源码一直追下去发现回调主要还是NettyRemoting做的，回调事件
应该发生在netty的event executor绑定的线程内。最上层创建线程池没什么意义。改进的
话是不是线程池去掉了就可以了。

 

leslie
2019-09-10

前期一直忙着强化和梳理一些基本功：操作系统、网络这块，学到现在发现老师的课程中
的代码能看懂，大致思路也能明白；就是写不出。Python或者Go可以么？ Java实
在、、、Python和Go极客时间都有购买课程。 
           可能目前线上的存储中间件现状比较差【许老师的课程对数据存储的定义，觉得有



道理就直接现用了】，尤其是Nosql DB和MQ基本处于闲置，故而一直焦虑在这块；可…
展开

作者回复: 感谢！ 

代码能力这块儿，除了学习，还是多写代码，熟能生巧。

 

付永强
2019-09-10

教师节快乐！

展开

作者回复: 感谢！

 

业余草
2019-09-10

教师节，老师们都辛苦了！

展开

作者回复: 感谢！

 

Hurt
2019-09-10

一定要学java吗 老师

展开

作者回复: 不需要一定会Java，但至少要熟练掌握一门编程语言。

 




