
期中大作业丨题目以及解答剖析
2019-09-20 盛延敏

网络编程实战 进入课程

讲述：冯永吉
时长 00:22 大小 356.18K

你好，今天是期中大作业讲解课。诚如一位同学所言，这次的大作业不是在考察网络编程的

细节，而是在考如何使用系统 API 完成 cd、pwd、ls 等功能。不过呢，网络编程的框架总

归还是要掌握的。

我研读了大部分同学的代码，基本上是做得不错的，美中不足的是能动手完成代码编写和调

试的同学偏少。我还是秉持一贯的看法，计算机程序设计是一门实战性很强的学科，如果只

是单纯地听讲解，没有自己动手这一环，对知识的掌握总归还是差那么点意思。

代码我已经 push 到这里，你可以点进链接看一下。

客户端程序
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废话少说，我贴下我的客户端程序：
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#include "lib/common.h"
#define  MAXLINE     1024
 
int main(int argc, char **argv) {
    if (argc != 3) {
        error(1, 0, "usage: tcp_client <IPaddress> <port>");
    }
    int port = atoi(argv[2]);
    int socket_fd = tcp_client(argv[1], port);
 
    char recv_line[MAXLINE], send_line[MAXLINE];
    int n;
 
    fd_set readmask;
    fd_set allreads;
    FD_ZERO(&allreads);
    FD_SET(0, &allreads);
    FD_SET(socket_fd, &allreads);
 
    for (;;) {
        readmask = allreads;
        int rc = select(socket_fd + 1, &readmask, NULL, NULL, NULL);
 
        if (rc <= 0) {
            error(1, errno, "select failed");
        }
 
        if (FD_ISSET(socket_fd, &readmask)) {
            n = read(socket_fd, recv_line, MAXLINE);
            if (n < 0) {
                error(1, errno, "read error");
            } else if (n == 0) {
                printf("server closed \n");
                break;
            }
            recv_line[n] = 0;
            fputs(recv_line, stdout);
            fputs("\n", stdout);
        }
 
        if (FD_ISSET(STDIN_FILENO, &readmask)) {
            if (fgets(send_line, MAXLINE, stdin) != NULL) {
                int i = strlen(send_line);
                if (send_line[i - 1] == '\n') {
                    send_line[i - 1] = 0;
                }
 

复制代码



客户端的代码主要考虑的是使用 select 同时处理标准输入和套接字，我看到有同学使用

fgets 来循环等待用户输入，然后再把输入的命令通过套接字发送出去，当然也是可以正常

工作的，只不过不能及时响应来自服务端的命令结果，所以，我还是推荐使用 select 来同

时处理标准输入和套接字。

这里 select 如果发现标准输入有事件，读出标准输入的字符，就会通过调用 write 方法发

送出去。如果发现输入的是 quit，则调用 shutdown 方法关闭连接的一端。

如果 select 发现套接字流有可读事件，则从套接字中读出数据，并把数据打印到标准输出

上；如果读到了 EOF，表示该客户端需要退出，直接退出循环，通过调用 exit 来完成进程

的退出。

服务器端程序

下面是我写的服务器端程序：
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                if (strncmp(send_line, "quit", strlen(send_line)) == 0) {
                    if (shutdown(socket_fd, 1)) {
                        error(1, errno, "shutdown failed");
                    }
                }
 
                size_t rt = write(socket_fd, send_line, strlen(send_line));
                if (rt < 0) {
                    error(1, errno, "write failed ");
                }
            }
        }
    }
 
    exit(0);
}
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#include "lib/common.h"
static int count;
 
static void sig_int(int signo) {
    printf("\nreceived %d datagrams\n", count);
    exit(0);
}
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char *run_cmd(char *cmd) {
    char *data = malloc(16384);
    bzero(data, sizeof(data));
    FILE *fdp;
    const int max_buffer = 256;
    char buffer[max_buffer];
    fdp = popen(cmd, "r");
    char *data_index = data;
    if (fdp) {
        while (!feof(fdp)) {
            if (fgets(buffer, max_buffer, fdp) != NULL) {
                int len = strlen(buffer);
                memcpy(data_index, buffer, len);
                data_index += len;
            }
        }
        pclose(fdp);
    }
    return data;
}
 
int main(int argc, char **argv) {
    int listenfd;
    listenfd = socket(AF_INET, SOCK_STREAM, 0);
 
    struct sockaddr_in server_addr;
    bzero(&server_addr, sizeof(server_addr));
    server_addr.sin_family = AF_INET;
    server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    server_addr.sin_port = htons(SERV_PORT);
 
    int on = 1;
    setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
 
    int rt1 = bind(listenfd, (struct sockaddr *) &server_addr, sizeof(server_addr));
    if (rt1 < 0) {
        error(1, errno, "bind failed ");
    }
 
    int rt2 = listen(listenfd, LISTENQ);
    if (rt2 < 0) {
        error(1, errno, "listen failed ");
    }
 
    signal(SIGPIPE, SIG_IGN);
 
    int connfd;
    struct sockaddr_in client_addr;
    socklen_t client_len = sizeof(client_addr);
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    char buf[256];
    count = 0;
 
    while (1) {
        if ((connfd = accept(listenfd, (struct sockaddr *) &client_addr, &client_len)) 
            error(1, errno, "bind failed ");
        }
 
        while (1) {
            bzero(buf, sizeof(buf));
            int n = read(connfd, buf, sizeof(buf));
            if (n < 0) {
                error(1, errno, "error read message");
            } else if (n == 0) {
                printf("client closed \n");
                close(connfd);
                break;
            }
            count++;
            buf[n] = 0;
            if (strncmp(buf, "ls", n) == 0) {
                char *result = run_cmd("ls");
                if (send(connfd, result, strlen(result), 0) < 0)
                    return 1;
            } else if (strncmp(buf, "pwd", n) == 0) {
                char buf[256];
                char *result = getcwd(buf, 256);
                if (send(connfd, result, strlen(result), 0) < 0){
                    return 1;
                 }
                free(result);
            } else if (strncmp(buf, "cd ", 3) == 0) {
                char target[256];
                bzero(target, sizeof(target));
                memcpy(target, buf + 3, strlen(buf) - 3);
                if (chdir(target) == -1) {
                    printf("change dir failed, %s\n", target);
                }
            } else {
                char *error = "error: unknown input type";
                if (send(connfd, error, strlen(error), 0) < 0)
                    return 1;
            }
        }
    }
    exit(0);
 
}
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服务器端程序需要两层循环，第一层循环控制多个客户端连接，当然咱们这里没有考虑使用

并发，这在第三个模块中会讲到。严格来说，现在的服务器端程序每次只能服务一个客户连

接。

第二层循环控制和单个连接的数据交互，因为我们不止完成一次命令交互的过程，所以这一

层循环也是必须的。

大部分同学都完成了这个两层循环的设计，我觉得非常棒。

在第一层循环里通过 accept 完成了连接的建立，获得连接套接字。

在第二层循环里，先通过调用 read 函数从套接字获取字节流。我这里处理的方式是反复使

用了 buf 缓冲，每次使用之前记得都要调用 bzero 完成初始化，以便重复利用。

如果读取数据为 0，则说明客户端尝试关闭连接，这种情况下，需要跳出第二层循环，进入

accept 阻塞调用，等待新的客户连接到来。我看到有同学使用了 goto 来完成跳转，其实

使用 break 跳出就可以了，也有同学忘记跳转了，这里需要再仔细看一下。

在读出客户端的命令之后，就进入处理环节。通过字符串比较命令，进入不同的处理分支。

C 语言的 strcmp 或者 strncmp 可以帮助我们进行字符串比较，这个比较类似于 Java 语言

的 String equalsIgnoreCase 方法。当然，如果命令的格式有错，需要我们把错误信息通

过套接字传给客户端。

对于“pwd”命令，我是通过调用 getcwd 来完成的，getcwd 是一个 C 语言的 API，可

以获得当前的路径。

对于“cd”命令，我是通过调用 chdir 来完成的，cd 是一个 C 语言的 API，可以将当前目

录切换到指定的路径。有的同学在这里还判断支持了“cd ~”，回到了当前用户的 HOME

路径，这个非常棒，我就没有考虑这种情况了。

对于“ls”命令，我看到有同学是调用了 scandir 方法，获得当前路径下的所有文件列表，

再根据每个文件类型，进行了格式化的输出。这个方法非常的棒，是一个标准实现。我这里

呢，为了显得稍微不一样，通过了 popen 的方法，执行了 ls 的 bash 命令，把 bash 命令

的结果通过文件字节流的方式读出，再将该字节流通过套接字传给客户端。我看到有的同学

在自己的程序里也是这么做的。



这次的期中大作业，主要考察了客户端 - 服务器编程的基础知识。

客户端程序考察使用 select 多路复用，一方面从标准输入接收字节流，另一方面通过套接

字读写，以及使用 shutdown 关闭半连接的能力。

服务器端程序则考察套接字读写的能力，以及对端连接关闭情况下的异常处理等能力。

不过，服务器端程序目前只能一次服务一个客户端连接，不具备并发服务的能力。如何编写

一个具备高并发服务能力的服务器端程序，将是我们接下来课程的重点。我们将会重点讲述

基于 I/O 多路复用的事件驱动模型，并以此为基础设计一个高并发网络编程框架，通过这

个框架，实现一个 HTTP 服务器。挑战和难度越来越高，你准备好了吗?
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上一篇 期中大作业丨动手编写一个自己的程序吧！

下一篇 20 | 大名⿍⿍的select：看我如何同时感知多个I/O事件

精选留言 (9)  写留言



LDxy
2019-09-21

服务器端程序里面的count++是做何用的？

展开

 

沉淀的梦想
2019-09-21

测了一些strcmp，好像写大小写敏感的，更接近Java里的equals，而不是equalsIgnoreC
ase吧？

 

Steiner
2019-09-20

为什么select要用两个fd_set来操作,只有一个fd_set会出现什么问题?

 

(￣_￣ )
2019-09-20

我用的把dup2把标准输入输出重定向到套接字，用system调用命令

 

_CountingStars
2019-09-20

可能老师的程序只是为了给我们演示。我发现老师程序主体都在一个main函数写的，没有
分开组织成多个小函数，有时 if 的嵌套有点深，其实可以把异常情况直接 return 回去，这
样嵌套就会少很多。这样代码也会容易理解一些。

展开

作者回复: 嗯，只是一个演示，你们可以自行优化。拆分成多个函数当然是可以的。

 

骏Jero
2019-09-20

老师，有个问题想问下 UDP报文最大长度？ 之前你的专栏udp那篇的提问，我编写代码在
局域网试了下可以达到65507个字节。然后参照往上一些资料有些根据mtu来进行计算，
但是为什么实际种事65507而不是mtu 1500字节计算出来的1472字节

展开



作者回复: 你是怎么测试的？贴上代码来看看，很感兴趣的说。

 1 

刘丹
2019-09-20

malloc的内存没有被释放？

展开

作者回复: 是的，已修正。一会更新下。

 

MoonGod
2019-09-20

老师有个问题没有想清楚，就是服务端代码中，在读取到客户端发送的EOF后，会打印prin
tf("server closed \n");。但我在实践的过程中，发现这行日志总是在客户端重新连接后，
并发送第一条指令后，才在服务端的控制台打印出来，为什么不是在客户端发送quit之后
立马打印出来的呢？

展开

作者回复: 我这里的现象是客户端quit之后会打印。你是什么系统？ 

 

 

传说中的成大大
2019-09-20

我觉得网络不难 难的是你让我去程序里面 ls pwd cd ../o(╥﹏╥)o

作者回复: 哈哈，不是都搞定了么

 1 




