
期中大作业丨题目以及解答剖析
2019-09-20 盛延敏

网络编程实战 进入课程

讲述：冯永吉
时长 00:22 大小 356.18K

你好，今天是期中大作业讲解课。诚如一位同学所言，这次的大作业不是在考察网络编程的

细节，而是在考如何使用系统 API 完成 cd、pwd、ls 等功能。不过呢，网络编程的框架总

归还是要掌握的。

我研读了大部分同学的代码，基本上是做得不错的，美中不足的是能动手完成代码编写和调

试的同学偏少。我还是秉持一贯的看法，计算机程序设计是一门实战性很强的学科，如果只

是单纯地听讲解，没有自己动手这一环，对知识的掌握总归还是差那么点意思。

代码我已经 push 到这里，你可以点进链接看一下。

客户端程序





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

https://github.com/froghui/yolanda/tree/master/mid-homework

废话少说，我贴下我的客户端程序：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

#include "lib/common.h"
#define MAXLINE 1024

int main(int argc, char **argv) {
 if (argc != 3) {
 error(1, 0, "usage: tcp_client <IPaddress> <port>");
 }
 int port = atoi(argv[2]);
 int socket_fd = tcp_client(argv[1], port);

 char recv_line[MAXLINE], send_line[MAXLINE];
 int n;

 fd_set readmask;
 fd_set allreads;
 FD_ZERO(&allreads);
 FD_SET(0, &allreads);
 FD_SET(socket_fd, &allreads);

 for (;;) {
 readmask = allreads;
 int rc = select(socket_fd + 1, &readmask, NULL, NULL, NULL);

 if (rc <= 0) {
 error(1, errno, "select failed");
 }

 if (FD_ISSET(socket_fd, &readmask)) {
 n = read(socket_fd, recv_line, MAXLINE);
 if (n < 0) {
 error(1, errno, "read error");
 } else if (n == 0) {
 printf("server closed \n");
 break;
 }
 recv_line[n] = 0;
 fputs(recv_line, stdout);
 fputs("\n", stdout);
 }

 if (FD_ISSET(STDIN_FILENO, &readmask)) {
 if (fgets(send_line, MAXLINE, stdin) != NULL) {
 int i = strlen(send_line);
 if (send_line[i - 1] == '\n') {
 send_line[i - 1] = 0;
 }

复制代码

客户端的代码主要考虑的是使用 select 同时处理标准输入和套接字，我看到有同学使用

fgets 来循环等待用户输入，然后再把输入的命令通过套接字发送出去，当然也是可以正常

工作的，只不过不能及时响应来自服务端的命令结果，所以，我还是推荐使用 select 来同

时处理标准输入和套接字。

这里 select 如果发现标准输入有事件，读出标准输入的字符，就会通过调用 write 方法发

送出去。如果发现输入的是 quit，则调用 shutdown 方法关闭连接的一端。

如果 select 发现套接字流有可读事件，则从套接字中读出数据，并把数据打印到标准输出

上；如果读到了 EOF，表示该客户端需要退出，直接退出循环，通过调用 exit 来完成进程

的退出。

服务器端程序

下面是我写的服务器端程序：

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

 if (strncmp(send_line, "quit", strlen(send_line)) == 0) {
 if (shutdown(socket_fd, 1)) {
 error(1, errno, "shutdown failed");
 }
 }

 size_t rt = write(socket_fd, send_line, strlen(send_line));
 if (rt < 0) {
 error(1, errno, "write failed ");
 }
 }
 }
 }

 exit(0);
}

1

2

3

4

5

6

7

#include "lib/common.h"
static int count;

static void sig_int(int signo) {
 printf("\nreceived %d datagrams\n", count);
 exit(0);
}

复制代码

防止断
更 请务

必加

首发微
信：1

71614
3665

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

char *run_cmd(char *cmd) {
 char *data = malloc(16384);
 bzero(data, sizeof(data));
 FILE *fdp;
 const int max_buffer = 256;
 char buffer[max_buffer];
 fdp = popen(cmd, "r");
 char *data_index = data;
 if (fdp) {
 while (!feof(fdp)) {
 if (fgets(buffer, max_buffer, fdp) != NULL) {
 int len = strlen(buffer);
 memcpy(data_index, buffer, len);
 data_index += len;
 }
 }
 pclose(fdp);
 }
 return data;
}

int main(int argc, char **argv) {
 int listenfd;
 listenfd = socket(AF_INET, SOCK_STREAM, 0);

 struct sockaddr_in server_addr;
 bzero(&server_addr, sizeof(server_addr));
 server_addr.sin_family = AF_INET;
 server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 server_addr.sin_port = htons(SERV_PORT);

 int on = 1;
 setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));

 int rt1 = bind(listenfd, (struct sockaddr *) &server_addr, sizeof(server_addr));
 if (rt1 < 0) {
 error(1, errno, "bind failed ");
 }

 int rt2 = listen(listenfd, LISTENQ);
 if (rt2 < 0) {
 error(1, errno, "listen failed ");
 }

 signal(SIGPIPE, SIG_IGN);

 int connfd;
 struct sockaddr_in client_addr;
 socklen_t client_len = sizeof(client_addr);

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

 char buf[256];
 count = 0;

 while (1) {
 if ((connfd = accept(listenfd, (struct sockaddr *) &client_addr, &client_len))
 error(1, errno, "bind failed ");
 }

 while (1) {
 bzero(buf, sizeof(buf));
 int n = read(connfd, buf, sizeof(buf));
 if (n < 0) {
 error(1, errno, "error read message");
 } else if (n == 0) {
 printf("client closed \n");
 close(connfd);
 break;
 }
 count++;
 buf[n] = 0;
 if (strncmp(buf, "ls", n) == 0) {
 char *result = run_cmd("ls");
 if (send(connfd, result, strlen(result), 0) < 0)
 return 1;
 } else if (strncmp(buf, "pwd", n) == 0) {
 char buf[256];
 char *result = getcwd(buf, 256);
 if (send(connfd, result, strlen(result), 0) < 0){
 return 1;
 }
 free(result);
 } else if (strncmp(buf, "cd ", 3) == 0) {
 char target[256];
 bzero(target, sizeof(target));
 memcpy(target, buf + 3, strlen(buf) - 3);
 if (chdir(target) == -1) {
 printf("change dir failed, %s\n", target);
 }
 } else {
 char *error = "error: unknown input type";
 if (send(connfd, error, strlen(error), 0) < 0)
 return 1;
 }
 }
 }
 exit(0);

}

拼课微
信：1

71614
3665

服务器端程序需要两层循环，第一层循环控制多个客户端连接，当然咱们这里没有考虑使用

并发，这在第三个模块中会讲到。严格来说，现在的服务器端程序每次只能服务一个客户连

接。

第二层循环控制和单个连接的数据交互，因为我们不止完成一次命令交互的过程，所以这一

层循环也是必须的。

大部分同学都完成了这个两层循环的设计，我觉得非常棒。

在第一层循环里通过 accept 完成了连接的建立，获得连接套接字。

在第二层循环里，先通过调用 read 函数从套接字获取字节流。我这里处理的方式是反复使

用了 buf 缓冲，每次使用之前记得都要调用 bzero 完成初始化，以便重复利用。

如果读取数据为 0，则说明客户端尝试关闭连接，这种情况下，需要跳出第二层循环，进入

accept 阻塞调用，等待新的客户连接到来。我看到有同学使用了 goto 来完成跳转，其实

使用 break 跳出就可以了，也有同学忘记跳转了，这里需要再仔细看一下。

在读出客户端的命令之后，就进入处理环节。通过字符串比较命令，进入不同的处理分支。

C 语言的 strcmp 或者 strncmp 可以帮助我们进行字符串比较，这个比较类似于 Java 语言

的 String equalsIgnoreCase 方法。当然，如果命令的格式有错，需要我们把错误信息通

过套接字传给客户端。

对于“pwd”命令，我是通过调用 getcwd 来完成的，getcwd 是一个 C 语言的 API，可

以获得当前的路径。

对于“cd”命令，我是通过调用 chdir 来完成的，cd 是一个 C 语言的 API，可以将当前目

录切换到指定的路径。有的同学在这里还判断支持了“cd ~”，回到了当前用户的 HOME

路径，这个非常棒，我就没有考虑这种情况了。

对于“ls”命令，我看到有同学是调用了 scandir 方法，获得当前路径下的所有文件列表，

再根据每个文件类型，进行了格式化的输出。这个方法非常的棒，是一个标准实现。我这里

呢，为了显得稍微不一样，通过了 popen 的方法，执行了 ls 的 bash 命令，把 bash 命令

的结果通过文件字节流的方式读出，再将该字节流通过套接字传给客户端。我看到有的同学

在自己的程序里也是这么做的。

这次的期中大作业，主要考察了客户端 - 服务器编程的基础知识。

客户端程序考察使用 select 多路复用，一方面从标准输入接收字节流，另一方面通过套接

字读写，以及使用 shutdown 关闭半连接的能力。

服务器端程序则考察套接字读写的能力，以及对端连接关闭情况下的异常处理等能力。

不过，服务器端程序目前只能一次服务一个客户端连接，不具备并发服务的能力。如何编写

一个具备高并发服务能力的服务器端程序，将是我们接下来课程的重点。我们将会重点讲述

基于 I/O 多路复用的事件驱动模型，并以此为基础设计一个高并发网络编程框架，通过这

个框架，实现一个 HTTP 服务器。挑战和难度越来越高，你准备好了吗?

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 期中大作业丨动手编写一个自己的程序吧！

下一篇 20 | 大名⿍⿍的select：看我如何同时感知多个I/O事件

精选留言 (9)  写留言

LDxy
2019-09-21

服务器端程序里面的count++是做何用的？

展开

 

沉淀的梦想
2019-09-21

测了一些strcmp，好像写大小写敏感的，更接近Java里的equals，而不是equalsIgnoreC
ase吧？

 

Steiner
2019-09-20

为什么select要用两个fd_set来操作,只有一个fd_set会出现什么问题?

 

(￣_￣)
2019-09-20

我用的把dup2把标准输入输出重定向到套接字，用system调用命令

 

_CountingStars
2019-09-20

可能老师的程序只是为了给我们演示。我发现老师程序主体都在一个main函数写的，没有
分开组织成多个小函数，有时 if 的嵌套有点深，其实可以把异常情况直接 return 回去，这
样嵌套就会少很多。这样代码也会容易理解一些。

展开

作者回复: 嗯，只是一个演示，你们可以自行优化。拆分成多个函数当然是可以的。

 

骏Jero
2019-09-20

老师，有个问题想问下 UDP报文最大长度？ 之前你的专栏udp那篇的提问，我编写代码在
局域网试了下可以达到65507个字节。然后参照往上一些资料有些根据mtu来进行计算，
但是为什么实际种事65507而不是mtu 1500字节计算出来的1472字节

展开

作者回复: 你是怎么测试的？贴上代码来看看，很感兴趣的说。

 1 

刘丹
2019-09-20

malloc的内存没有被释放？

展开

作者回复: 是的，已修正。一会更新下。

 

MoonGod
2019-09-20

老师有个问题没有想清楚，就是服务端代码中，在读取到客户端发送的EOF后，会打印prin
tf("server closed \n");。但我在实践的过程中，发现这行日志总是在客户端重新连接后，
并发送第一条指令后，才在服务端的控制台打印出来，为什么不是在客户端发送quit之后
立马打印出来的呢？

展开

作者回复: 我这里的现象是客户端quit之后会打印。你是什么系统？

 

传说中的成大大
2019-09-20

我觉得网络不难 难的是你让我去程序里面 ls pwd cd ../o(╥﹏╥)o

作者回复: 哈哈，不是都搞定了么

 1 

