
04 | export default function() {}：你无法导出一个匿名函数
表达式
2019-11-18 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 24:09 大小 22.12M



你好，我是周爱民，欢迎回到我的专栏。

今天我要讲述的内容是从 ECMAScript 6 开始在 JavaScript 中出现的模块技术，这对许多

JavaScript 开发者来说都是比较陌生的。

一方面在于它出现得较晚，另一方面，则是因为在普遍使用的 Node.js 环境带有自己内置

的模块加载技术。因此，ECMAScript 6 模块需要通过特定的命令行参数才能开启，它的应

用一直以来也就不够广泛。



 下载APP 

导致这种现象的根本原因在于 ECMAScript 6 模块是静态装配的，而传统的 Node.js 模块

却是动态加载的。因而两种模块的实现效果与处理逻辑都大相径庭，Node.js 无法在短期内

提供有效的手段帮助开发者将既有代码迁移到新的模块规范下。

总结起来，确实是这些更为现实的原因阻碍了 ECMAScript 6 模块技术的推广，而非是

ECMAScript 6 模块是否成熟，或者设计得好与不好。

不过即使如此，ECMAScript 6 模块仍然在 JavaScript 的一些大型应用库、包，或者对新

规范更友好的项目中得到了不错的运用和不俗的反响，尤其是在使用转译器（例如 Babel）

的项目中，开发者通常是首选 ECMAScript 6 模块语法的。

因此 ECMAScript 6 模块也有着非常好的应用环境与前景。

导出的内容

上一讲我提到过有且仅有六种声明语法，而本质上 export 也就只能导出这六种声明语法所

声明的标识符，并且在导出时将它们统一称为“名字”。

在语言设计中，所谓“标识符”与“名字”是有语义差别的，export 将之称为名字，就意

味着这是一个标识符的子集。类似的其它子集也是存在的，例如“保留字是标识符名，但不

能用作标识符（A reserved word is an IdentifierName that cannot be used as an

Identifier）”。

在 JavaScript 语言的设计上，除了那些预设的标点符号（例如大括号、运算符之类），以

及部分的保留字和关键字之外，事实上用户代码可以书写的只有三种东西。这包括：

所以，如果在这个层面上解构一份你所书写的 JavaScript 代码，那么你所能书写 / 声明

的，就一定只有“名字和值”。

标识符：（通常是）一个名字；

字面量：表明由它的字面含义所决定的一个值；

模板：一个可计算结果的字符串值。

这个结论是非常非常关键的。为什么呢？因为 export 事实上就只能导出“名字和值”。然

而一旦它能导出“名字和值”，也就意味着它能导出一个模块中的“全部内容”，因为如上

所面所讲的：

“名字和值”正是你所书写的代码的全部。

我的代码去哪儿了呢？

你是不是一刹那之间觉得自己的代码都白写了。:)

确实是的，真的是白写了。不过，我在前面讲的都是纯粹的“语言设计”，在语言设计层面

上来讲，代码就是文本，是没有应用逻辑的。而你所写的代码绝大多数都是应用逻辑，当去

除掉这些应用逻辑之后，那些剩下的死气沉沉的、纯粹的符号，才是语言层面的所谓“代码

文本”。

去掉了执行逻辑所表达的那些行为、动作、结果和用户操作的代码，就是静态代码了。而事

实上，ECMAScript 6 中的模块就是用来理解你的程序中的那些静态代码的，也就是那些没

有任何生气的字符和符号。因此它也就只能理解上面所谓的 6 种声明，以及它们声明出来

的那些“名字和值”。

再无其它。

解析 export

所以，将所有 export 语法分类，其实也就只有两个大类。如下：

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

// 导出“（声明的）名字”
export <let/const/var> x ...;
export function x() ...
export class x ...
export {x, y, z, ...};

// 导出“（重命名的）名字”
export { x as y, ...};
export { x as default, ... };

// 导出“（其它模块的）名字”

关于导出声明的、重命名的和其它模块的名字这三种情况，其实都比较容易理解，就是形成

一个名字表，让外部模块能够查看就可以了。

但是对于最后这种形式，也就是“（导出）值”的形式，事实上是非常特殊的。因为如同我

在上面所讲过的，要导出一个模块的全部内容就必须导出“（全部的）名字和值”，然而纯

粹的值没有名字，于是也就没法访问了，所以这就与“导出点什么东西”的概念矛盾了。

因为这个东西要是没名字，也就连“自己是什么”都说不清楚，也就什么也不是了。

所以 ECMAScript 6 模块约定了一个称为"default"的名字，用于来导出当前模块中的一

个“值”。显然的，由于所谓“值”是表达式的运算结果，所以这里的语法形式就是：

export default;

其中的“_expression”_ 就是用于求值的，以便得到一个结果（Result）并导出成为缺省

的名字“default”。这里有两个便利的情况，一个是在 JavaScript 中，一般的字面量也是

值、也是单值表达式，因此导出这样一个字面量也是合法的：

第二个便利的情况，是因为 JavaScript 中对象也是字面量、也是值、也是单值表达式。而

对象成员可以组合其它任何数据，所以通过上述的语法几乎可以导出当前模块中全部

的“值”（亦即是任何可以导出的数据）。例如：

14

15

16

17

18

export ... from ...;

// 导出“值”
export default <expression

复制代码
1

2

3

export default 2; // as state of the module, etc.
export default "some messages"; // data or information
...

复制代码
1

2
var varName = 100;
export default {

所以，事实上export default ...虽然简单，却是对“导出名字”的非常必要的补充。

这样一来，用户既可以导出那些有名字的数据，也可以导出那些没有名字的数据，即一个模

块中所有的数据都可以被导出了。

那么接下来，就要讲到标题中的这个语法了：

你知道在这个语法中 export 到底导出了什么吗？是名字？还是值？

导出语句的处理逻辑

在讨论这个问题之前，你得先思考一个更关键的问题：“export 如何导出名字”。这个问

题的关键之处在于，如果只是导出一个名字，那么它其实在“某个名字表”中做一个登记项

就可以了。并且 JavaScript 中也的确是这样处理的。但是实际到使用的时候，这个名字还

是要绑定一个具体的值才是可以使用的。因此，一个 export 也必须理解为这样两个步骤：

这两个步骤其实与使用“var x = 100”来声明一个变量的过程是一致的。因此以如下代码

为例（注意六种声明在名字处理上是类似的），

3

4

5

6

7

8

9

 varName, // 直接导出名字
 propName: 123, // 导出值
 funcName: function() { }, // 导出函数
 foo() { // 或导出与主对象相关联的方法
 // method
 }
}

复制代码
1 export default function() {}

导出一个名字，以及

为上述名字绑定一个值

复制代码
1 export var x = 100;

在导出的时候，其实是先在“某个名字表”中登记一个“名字 x”就可以了。这个过程也就

是 JavaScript 在模块装载之前对 export 所做的全部工作。不过如果是从另一端（亦即是

import 语句）的角度看过来，那么就会多出来一个步骤。import 语句会（例如import

{x} from ...）：

有了上述的第二步操作，JavaScript 就可以依据所有它能在静态文本中发现的import语句

来形成模块依赖树，最后就可以找到这个模块依赖树最顶端的根模块，并尝试加载之。

所以关键的是，在“模块 export/import”语法中 ，JavaScript 是依赖 import 来形成依

赖树的，与 export 无关。但是直到目前为止（我的意思是直到找到所有导入和导出的名

字，并完成所有模块的装配的现在为止），没有任何一行用户的 JavaScript 代码是被执行

过的。至于原因，从本讲的最开始我就讲过了：这个 export/import 过程中，源代码只被

理解为静态的、没有逻辑的“代码文本”。那么既然“没有逻辑”，又怎么可能执行类似

于：

export default;

中的“expression”呢？要知道所谓表达式，就是程序的计算逻辑啊。

所以，这里先得到第一个关键结论：

在处理 export/import 语句的全程，没有表达式被执行！

导出名字与导出值的差异

现在，假如：

（与 export 类似的）按照语法在当前模块中声明名字，例如上面的x；然后，

（第二步）添加一个当前模块对目标模块的依赖项。

复制代码
1 export default <expression>;

中的“expression”在导入导出中完全不起作用（不执行），那么这行语句又能做什么

呢？事实上，这行语句与直接“导出一个名字”并没有任何区别。它与这样的语法相同：

它们都只是导出一个名字，只是前者导出的是“default”这个特殊名字，而后者导出的是

一个变量名“x”。它们都是确定的、符合语法规则的标识符，也可以表示为一个字符串的

字面文本。它们的作用也完全一致：就是在前面所说的“某个名字表”中添加“一个登记

项”而已。

所以，导出名字与导出值本质上并没有差异，在静态装配的阶段，它们都只是表达为一个名

字而已。

然后，也正是如同var x = 100;在执行阶段需要有一个将“值 100”绑定给“变量

x（的引用）”的过程一样，这个export default ...;语句也需要有完全相同的一个过

程来将它后面的表达式（expression）的结果值绑定给“default”这个名字。如果不这么

做，那么“export default”在语义上的就无法实现导出名字“default”了——在静态装

配阶段，名字“default”只是被初始化为一个“单次绑定的、未初始化的标识符”。

所以现在你就可以在语义上模拟这样一个过程，即：

你可以进一步地模拟 JavaScript 后续的装配过程。这个过程其实非常简单：

复制代码
1 export var x = 100;

复制代码
1

2

3

4

5

6

export default function() {}

// 类似于如下代码
//（但并不在当前模块中声明名字 "default"）
export var default = function() {}

找到并遍历模块依赖树的所有模块（这个树是排序的），然后

执行这些模块最顶层的代码（Top Level Module Evaluation）。

在执行到上述var default（或类似对应的export default ...）语句时，执

行后面的表达式，并将执行结果（Result）绑定给左侧的那个变量就可以了。如此，直到所

有模块的顶层代码都执行完毕，那么所有的导出名字和它们的值也都必然是绑定完成了的。

同样，由于 import 的名字与 export 的名字只是一个映射关系，所以 import 的名字——

所对应的值——也就初始化完成了。

再确切地说（这是第二个关键结论）：

所谓模块的装配过程，就是执行一次顶层代码而已。

匿名函数表达式的执行结果

接下来讨论语句中的... function() {}这个匿名函数表达式。

按照 JavaScript 的约定，匿名函数表达式可以理解为一个函数的“字面量（值）”。理

解“字面量值”这个说法是很有意义的——因为它意味着它没有名字——呵呵，你可不要

在心中暗骂哦，这绝不是废话。

“字面量（值）没有名字”就意味着执行这个“单值表达式”不会在当前作用域中产生一个

名字，即使这个函数是具名的，也必然是如此。所以，这才带来了 JavaScript 中的经典示

例，即：具名函数作为表达式时，名字在块级作用域中无意义。例如：

上面的例子中，x1~3 都是具有不同的语义的。其中，x2 是不会在当前作用域（示例中是

全局）中登记为名字的。而现在，就这一讲的主题来说，在使用下面的语法：

复制代码
1

2

3

4

5

6

7

8

9

// 具名函数作为表达式
var x1 = function x2() {
 ...
}

// 具名函数（声明）
function x3() {
 ...
}

导出一个匿名函数，或者一个具名的函数的时候，这两种情况下是不同的。但无论它是否具

名，它们都是不可能在当前作用域中绑定给default这个名字，作为这个名字对应的值

的。

这段处理逻辑被添加在语法：

ExportDeclaration: export defaultAnonymousFunctionDefinition;

NOTE: ECMAScript 是将这里导出的对象称为 _Expression_/AssignmentExpression，

这里所谓 _AnonymousFunctionDefinition_ 则是其中 _AssignmentExpression_ 的一

个具体实例。

的执行（Evaluation）处理过程中。也就是说当执行这行声明时，如果后面的表达式是匿名

函数声明，那么它将强制在当前作用域中登记为“default”这样一个特殊的名字，并且在

执行时绑定该匿名函数。所以，尽管语义上我们需要将它登记为类似var default ...

所声明的名字“default”，但事实上它被处理成了一个不可访问的中间名字，然后影射给

该模块的“某个名字表”。

不过需要注意的是，这是一个匿名函数定义（AnonymousFunctionDefinition），而不是

一个匿名函数表达式（Anonymous FunctionExpression）。一般函数的语句则被称为声

明（或更严谨地称为宣告，Function Declarations）。而所谓匿名函数定义，其本身是表

述为：

aName= FunctionExpression

或类似于此的语法风格的。——它可以用在一般的赋值表达式、变量声明的右操作数，以

及对象声明的成员初始值等等位置。在这些位置上，该函数表达式总是被关联给一个名字。

一方面，这种关联不是严格意义上的“名字 -> 值”的绑定语义；另一方面，当该函数关联

给名字（aName）时，JavaScript 又会反向地处理该函数（作为对象f）的属性f.name，

使该名字指向aName。

复制代码
1

2
export default function() { }
export default function x() { }

所以，在本讲中的“export default function() {}”，在严格意义上来说（这是第三个关键

结论）：

它并不是导出了一个匿名函数表达式，而是导出了一个匿名函数定义（Anonymous

Function Definition）。

因此，该匿名函数初始化时才会绑定给它左侧的名字“default”，这会导致import f

from ...之后访问f.name值会得到“default”这个名字。

类似的，你使用下面的代码也会得到这个“default”：

知识补充

关于 export，还可以有一些补充的知识点。

复制代码
1

2

3

4

var obj = {
 "default": function() {}
};
console.log(obj.default.name); // "default"

export ...语句通常是按它的词法声明来创建的标识符的，例如export var x =

...就意味着在当前模块环境中创建的是一个变量，并可以修改等等。但是当它被导入

时，在import语句所在的模块中却是一个常量，因此总是不可写的。

由于export default ...没有显式地约定名字“default（或default）”应该按

let/const/var的哪一种来创建，因此 JavaScript 缺省将它创建成一个普通的变量

（var），但即使是在当前模块环境中，它事实上也是不可写的，因为你无法访问一个命

名为“default”的变量——它不是一个合法的标识符。

所谓匿名函数，仅仅是当它直接作为操作数（而不是具有上述“匿名函数定义”的语法

结构）时，才是真正匿名的，例如：

复制代码
1 console.log((function(){}).name)); // ""

思考题

本讲的内容中，你需要重点复习三个关键结论的得出过程。这对于之前几讲中所讨论的内容

会是很好的回顾。

除此之外，建议你思考如下问题：

如果你并不了解什么是“变量提升”，不用担心，下一讲中我会再次提到它。

由于类表达式（包括匿名类表达式）在本质上就是函数，因此它作为 default 导出时的

性质与上面所讨论的是一致的。

导出项（的名字）总是作为词法声明被声明在当前模块作用域中的，这意味着它不可删

除，且不可重复导出。亦即是说即使是用var x...来声明，这个x也是在

lexicalNames 中，而不是在 _varNames_ 中。

所谓“某个名字表”，对于 export 来说是模块的导出表，对于 import 来说就是名字空

间（名字空间是用户代码可以操作的组件，它映射自内部的模块导入名字表）。不过，

如果用户代码不使用“import * as …”的语法来创建这个名字空间，那么该名字表就只

存在于 JavaScript 的词法分析过程中，而不会（或并不必要）创建它在运行期的实例。

这也是我一直用“某个名字表”来称呼它的原因，它并不总是以实体形式存在的。

上述名字表简化了 ECMAScript 中对导入导出记录（ImportEntry/ExportEntry Record

Fields）的理解。因此如果你试图了解更多，建议你阅读 ECMAScript 的具体章节。

没有模块会导出（传统意义上的）main()，因为 ECMAScript 为了维护模块的静态语

义，而把执行过程及其入口的定义丢回给了引擎或宿主本身。

为什么在 import 语句中会出现“变量提升”的效果？

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 03 | a.x = a = {n:2}：一道被无数人无数次地解释过的经典面试题

Y
2019-11-18

老师，关于这边文章的中心，我能总结成这个意思吗。
export default function(){}。这个语法本身没有任何的问题。但是他看似导出一个匿名函
数表达式。其实他真正导出的是一个具有名字的函数，名字的default。

作者回复: 是的。不过，这算是题解。中心还是模块装载执行和标识符绑定全过程来着😄

标识符和值绑定是“声明”语法处理的核心，而六种声明是js静态语法的核心。而静态语法，也就

是这一整篇“语言如何构建”的核心了🤓

  2

sprinty
2019-11-18

ESModule 根据 import 构建依赖树，所以在代码运行前名字就是已经存在于上下文，然

精选留言 (4)  写留言

后在运行模块最顶层代码，给名字绑定值，就出现了‘变量提升’的效果。

展开

作者回复: Yes! 满分答案👍

  2

许童童
2019-11-18

为什么在 import 语句中会出现“变量提升”的效果？
如老师所说，在代码真正被执行前，会先进行模块的装配过程，也就是执行一次顶层代
码。所以如果import了一个模块，就会先执行模块内部的顶层代码，看起来的现象就
是“变量提升”了。

展开

 

万籁无声
2019-11-18

感觉没有抓住主题思想在表达什么，可能是我层次太低了

作者回复: 正好，刚写完“Y”同学的留言，你不妨看看，应该正好能回答你的疑问。

（万恶的极客时间没有提供分留言链接的功能，产品同学要打手板心5次 🤔）

 

