
19 | a + b：动态类型是灾难之源还是最好的特性？（下）
2019-12-27 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 20:04 大小 18.38M



你好，我是周爱民。

上一讲，我们说到如何将复杂的类型转换缩减到两条简单的规则，以及两种主要类型。这两

条简单规则是：

两种主要类型则是字符串和数字值。

从值 x 到引用：调用 Object(x) 函数。1.

从引用 x 到值：调用 x.valueOf() 方法；或，调用四种值类型的包装类函数，例如

Number(x)，或者 String(x) 等等。

2.



 下载APP 

当类型转换系统被缩减成这样之后，有些问题就变得好解释了，但也确实有些问题变得更加

难解。例如 @graybernhardt 在讲演中提出的灵魂发问，就是：

如果你忘了，那么我们就一起来回顾一下这四个直击你灵魂深处的示例：

而这个问题，也就是这两讲的标题中“a + b”这个表达式的由来。也就是说，如何准确地

解释“两个操作数相加”，与如何全面理解 JavaScript 的类型系统的转换规则，关系匪

浅！

集中精力办大事

一般来说，运算符很容易知道操作数的类型，例如“a - b”中的减号，我们一看就知道意

图，是两个数值求差，所以 a 和 b 都应该是数值；又例如“obj.x”中的点号，我们一看也

知道，是取对象 obj 的属性名字符串 x。

当需要引擎“推断目的”时，JavaScript 设定推断结果必然是三种基础值（boolean、

number 和 string）。由于其中的 boolean 是通过查表来进行的，所以就只剩下了

number 和 string 类型需要“自动地、隐式地转换”。

但是在 JavaScript 中，“加号（+）”是一个非常特别的运算符。像上面那样简单的判

断，在加号（+）上面就不行，因为它在 JavaScript 中既可能是字符串连结，也可能是数

值求和。另外还有一个与此相关的情况，就是object[x]中的x，其实也很难明确地说它

如果将数组跟对象相加，会发生什么？

复制代码
1

2

3

4

5

6

7

8

9

10

11

> [] + {}
'[object Object]'

> {} + []
0

> {} + {}
NaN

> [] + []
''

是字符串还是数值。因为计算属性（computed property）的名字并不能确定是字符串还

是数值；尤其是现在，它还可能是符号类型（symbol）。

NOTE：在讨论计算属性名（computed property name）时，JavaScript 将它作为预

期为字符串的一个值来处理，即r = ToPrimitive(x, String)。但是这个转换的结

果仍然可能是 5 种值类型之一，因此在得到最终属性名的时候，JavaScript 还会再调用

一次ToString(r)。

由于“加号（+）”不能通过代码字面来判断意图，因此只能在运算过程中实时地检查操作

数的类型。并且，这些类型检查都必须是基于“加号（+）运算必然操作两个值数据”这个

假设来进行。于是，JavaScript 会先调用ToPrimitive()内部操作来分别得到“a 和 b 两

个操作数”可能的原始值类型。

所以，问题就又回到了在上面讲的Value vs. Primitive values这个东西上面。对象

到底会转换成什么？这个转换过程是如何决定的呢？

这个过程包括如下的四个步骤。

步骤一

首先，JavaScript 约定：如果x原本就是原始值，那么ToPrimitive(x)这个操作直接就

返回x本身。这个很好理解，因为它不需要转换。也就是说（如下代码是不能直接执行

的）：

步骤二

接下来的约定是：如果x是一个对象，且它有对应的五种PrimitiveValue内部槽之一，

那么就直接返回这个内部槽中的原始值。由于这些对象的valueOf()就可以达成这个目

的，因此这种情况下也就是直接调用该方法（步骤三）。相当于如下代码：

复制代码
1

2

3

1. 如果 x 是非对象，则返回 x
> _ToPrimitive(5)
5

但是在处理这个约定的时候，JavaScript 有一项特别的设定，就是对“引擎推断目的”这

一行为做一个预设。如果某个运算没有预设目的，而 JavaScript 也不能推断目的，那么

JavaScript 就会强制将这个预设为“number”，并进入“传统的”类型转换逻辑（步骤

四）。

所以，简单地说（这是一个非常重要的结论）：

如果一个运算无法确定类型，那么在类型转换前，它的运算数将被预设为 number。

NOTE1：预设类型在 ECMAScript 称为 PreferredType，它可以为 undefined

或"default"。但是“default”值是“传统的”类型转换逻辑所不能处理的，这种情况

下，JavaScript 会先将它重置为“number”。也就是说，在传统的转换模式

中，“number”是优先的。

NOTE2：事实上，只有对象的符号属性 Symbol.toPrimitive 所设置的函数才会被要求

处理“default”这个预设。这也是在 Proxy/Reflect 中并没有与类型转换相关的陷阱或

方法的原因。

于是，这里会发生两种情况（步骤三、步骤四）。

步骤三

其一，作为原始值处理。

如果是上述的五种包装类的对象实例（它们有五种PrimitiveValue内部槽之一），那么

它们的valueOf()方法总是会忽略掉“number”这样的预设，并返回它们内部确定（即

内部槽中所保留的）的原始值。

所以，如果我们为符号创建一个它的包装类对象实例，那么也可以在这种情况下解出它的

值。例如：

复制代码
1

2

3

2. 如果 x 是对象，则尝试得到由 x.valueOf() 返回的原始值
> Object(5).valueOf()
5

正是因为对象（如果它是原始值的包装类）中的原始值总是被解出来，所以：

这个代码看起来是两个对象“相加”，但是却等效于它们的原始值直接相加。

由于“对象属性存取”是一个“有预期”的运算——它的预期是“字符串”，因此会有第

二种情况。

步骤四

其二，进入“传统的类型转换逻辑”。

这需要利用到对象的valueOf()和toString()方法：当预期是“number”时，

valueOf()方法优先调用；否则就以toString()为优先。并且，重要的是，上面的预期

只决定了上述的优先级，而当调用优先方法仍然得不到非对象值时，还会顺序调用另一方

法。

这带来了一个结果，即：如果用户代码试图得到“number”类型，但x.valueOf()返回

的是一个对象，那么就还会调用x.toString()，并最终得到一个字符串。

到这里，就可以解释前面四种对象与数组相加所带来的特殊效果了。

解题 1：从对象到原始值

复制代码
1

2

3

4

5

6

> x = Symbol()

> obj = Object(x)

> obj.valueOf() === x
true

复制代码
1

2
> Object(5) + Object(5)
10

在a + b的表达式中，a和b是对象类型时，由于“加号（+）”运算符并不能判别两个操作

数的预期类型，因此它们被“优先地”假设为数字值（number）进行类型转换。这样一

来：

在这里，我们就看到会有一点点差异了。空数组转换出来，是一个空字符串，而对象的转换

成字符串时是’[object Object]’。

所以接下来的四种运算变成了下面这个样子：

好的，你应该已经注意到了，在第二和第三种转换的时候我打了三个问号“???”。因为如

果按照上面的转换过程，它们无非是字符串拼接，但结果它们却是两个数字值，分别是 0，

还有 NaN。

怎么会这样？！！

复制代码
1

2

3

4

5

6

7

在预期是'number'时，先调用`valueOf()`方法，但得到的结果仍然是对象类型；
> [typeof ([].valueOf()), typeof ({}.valueOf())]
['object', 'object']

由于上述的结果是对象类型（而非值），于是再尝试`toString()`方法来得到字符串
> [[].toString(), {}.toString()]
[''， '[object Object]']

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

[] + {}
> '' + '[object Object]'
'[object Object]'

{} + []
> ???
0

{} + {}
> ???
NaN

[] + []
> '' + ''
''

解题 2：“加号（+）”运算的戏分很多

现在看看这两个表达式。

你有没有一点熟悉感？嗯，很不幸，它们的左侧是一对大括号，而当它们作为语句执行的时

候，会被优先解析成——块语句！并且大括号作为结尾的时候，是可以省略掉语句结束

符“分号（;）”的。

所以，你碰到了 JavaScript 语言设计历史中最大的一块铁板！就是所谓“自动分号插入

（ASI）”。这个东西的细节我这里就不讲了，但它的结果是什么呢？上面的代码变成下面

这个样子：

实在是不幸啊！这样的代码仍然是可以通过语法解析，并且仍然是可以进行表达式计算求值

的！

于是后续的结论就比较显而易见了。

由于“+”号同时也是“正值运算符”，并且它很明显可以准确地预期后续操作数是一个数

值，所以它并不需要调用ToPrimitive()内部操作来得到原始值，而是直接使

用“ToNumber(x)”来尝试将x转换为数字值。而上面也讲到，“将对象转换为数字值，等

效于使用它的包装类来转换，也就是 Number(x)”。所以，上述两种运算的结果就变成了

下面的样子：

复制代码
1

2
{} + []
{} + {}

{}; +[]

{}; +{}

复制代码
1

2

3

4

5

+[] 将等义于
> + Number([])
0

+{} 将等义于

解题 3：预期 vs. 非预期

但是你可能会注意到：当使用“… + {}”时，ToPrimitive()转换出来的，是字符

串“[object Object]”；而在使用“+ {}”时，ToNumber(x)转换出来的却是值 NaN。所

以，在不同的预期下面，“对象 -> 值”转换的结果却并不相同。

这之间有什么规律吗？

我们得先理解哪些情况下，JavaScript 是不能确定用户代码的预期的。总结起来，这其实

很有限，包括：

其他情况下，JavaScript 不会为用户代码调整或假设预期值。这也就是说，按照

ECMAScript 内部的逻辑与处理过程，其他的运算（运算符或其他内置操作）对于“对象

x”，都是有目标类型明确的、流程确定的方法来转换为“（值类型的）值”的。

其他

显式的 vs. 隐式的转换

6

7
> + Number({})
NaN

“加号（+）”运算中，不能确定左、右操作数的类型；1.

“等值（==）”运算中，不能确定左、右操作数的类型；（JavaScript 认为，如果左、

右操作数之一为 string、number、bigint 和 symbol 四种基础类型之一，而另一个操

作数是对象类型 (x)，那么就需要将对象类型“转换成基础类型（ToPrimitive(x)）”来

进行比较。操作数将尽量转换为数字来进行比较，即最终结果将等效于：Number(x)

== Number(y)。）

2.

“new Date(x)”中，如果 x 是一个非 Date() 实例的对象，那么将尝试把 x 转换为基础

类型 x1；如果 x1 是字符串，尝试从字符串中 parser 出日期值；否则尝试 x2 =

Number(x1)，如果能得到有效的数字值，则用 x2 来创建日期对象。

3.

同样是在 Date() 的处理中，（相对于缺省时优先 number 类型来说，）JavaScript 内

部调整了 Date 在转换为值类型时的预期。一个 Date 类型的对象 (x) 转换为值时，将优

先将它视为字符串，也就是先调用 x.toString()，之后再调用 x.valueOf()。

4.

很大程度上来说，显式的转换其实只决定了“转换的预期”，而它内部的转换过程，仍然是

需要“隐式转换过程”来参与的。例如说：

对于这样的一个显式转换，Number() 只决定它预期的目标是’number’类型，并最终将

调用ToPrimitive(x, 'Number')来得到结果。然而，一如之前所说的，ToPrimitive()

会接受任何一个“原始值”作为结果x1返回（并且要留意的是，在这里 null 值也是原始

值），因此它并不保证结果符合预期'number'。

所以，最终 Number() 还会再调用一次转换过程，尝试将x1转换为数字。

字符串在“+”号中的优先权

另一方面，在“+”号运算中，由于可能的运算包括数据和字符串，所以按照隐式转换规

则，在不确定的情况下，优先将运算数作为数字处理。那么就是默认“+”号是做求和运算

的。

但是，在实际使用中，结果往往会是字符串值。

这是因为字符串在“+”号运算中还有另一层面的优先级，这是由“+”号运算符自已决定

的，因而并不是类型转换中的普遍规则。

“+”号运算符约定，对于它的两个操作数，在通过ToPrimitive()得到两个相应的原始

值之后，二者之任一是字符串的话，就优先进行字符串连接操作。也就是说，这种情况下另

一个操作数会发生一次“值 -> 值”的转换，并最终连接两个字符串以作为结果值返回。

那么，我们怎么理解这个行为呢？比如说，如果对象 x 转换成数字和字符串的效果如下：

复制代码
1

2

3

> x = new Object
> Number(x)
NaN

复制代码
1

2
x = {
 valueOf() { console.log('Call valueOf'); return Symbol() },

接下来我们尝试用它跟一个任意值做“+”号运算，例如：

“+”号运算在处理这种情况时，会先调用x的 valueOf() 方法，然后由于“+”号的两个

操作数都不是字符串，所以将再次尝试将它们转换成数字并求和。又例如：

这种情况下，由于存在一个字符串操作数，因此“字符串连接”运算被优先，于是会尝试将

x转换为字符串。

然而需要注意的是，上述两个操作中都并没有调用 x.toString()，而“都仅仅是”在

ToPrimitive() 内部操作中调用了 x.valueOf()。也就是说，在检测操作数的值类型“是否是

字符串”之后，再次进行的“值 -> 值”的转换操作是基于 ToPrimitive() 的结果值，而非

原对象x的。

这也是之前在“解题 3”中特别讲述 Date() 对象这一特例的原因。因为 Date() 在“调用

ToPrimitive()”这个阶段的处理顺序是反的，所以它会先调用 x.toString，从而产生不一样

的效果。例如：

3

4
 toString() { console.log('Call toString'); return 'abc' }
}

复制代码
1

2

3

4

例 1：与非字符串做“+”运算时
> true + x
Call valueOf
TypeError: Cannot convert a Symbol value to a number

复制代码
1

2

3

4

例 2：与字符串做“+”运算时
> 'OK, ' + x
Call valueOf
TypeError: Cannot convert a Symbol value to a string

复制代码
1

2

3

// 创建 MyDate 类，覆盖 valueOf() 和 toString() 方法
class MyDate extends Date {
 valueOf() { console.log('Call valueOf'); return Symbol() }

测试如下：

那么对于 Date() 这个类来说，这又是如何做到的呢？

Symbol.toPrimitive 的处理

简单地说，Date 类重写了原型对象 Date.prototype 上的符号属性

Symbol.toPrimitive。任何情况下，如果用户代码重写了对象的

Symbol.toPrimitive符号属性，那么ToPrimitive()这个转换过程就将由用户代码负

责，而原有的顺序与规则就失效了。

我们知道，由于调用ToPrimitive(hint)时的入口参数 hint 可能为

default/string/number这三种值之一，而它要求返回的只是“值类型”结果，也就是

说，结果可以是所有 5 种值类型之任一。因此，用户代码对ToPrimitive(hint)的重写

可以“参考”这个 hint 值，也可以无视之，也可以在许可范围内返回任何一种值。

简单地说，它就是一个超强版的valueOf()。

事实上，一旦用户代码声明了符号属性Symbol.toPrimitive，那么 valueOf() 就失效

了，ECMAScript 采用这个方式“一举”摧毁了原有的隐式转换的全部逻辑。这样一来，包

4

5
 toString() { console.log('Call toString'); return 'abc' }
}

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

示例
> x = new MyDate;

与非字符串做“+”运算时
> true + x
Call toString
trueabc

与非字符串做“+”运算时
> 'OK, ' + x
Call toString
OK, abc

括预期的顺序与重置，以及 toString 和 valueOf 调用等等都不复存焉。

一切重归于零：定制Symbol.toPrimitive，返回值类型；否则抛出异常。

NOTE：Date() 类中仍然是会调用 toString 或 valueOf 的，这是因为在它的

Symbol.toPrimitive实现中仅是调整了两个方法的调用顺序，而之后仍然是调用原始

的、内置的ToPrimitive()方法的。对于用户代码来说，可以自行决定该符号属性（方

法）的调用结果，无需依赖ToPrimitive()方法。

结语与思考

今天我们更深入地讲述了类型转换的诸多细节，除了这一讲的简单题解之外，对于“+”号

运算也做了一些补充。

总地来讲，我们是在讨论 JavaScript 语言所谓“动态类型”的部分，但是动态类型并不仅

限于此。也就是说 JavaScript 中并不仅仅是“类型转换”表现出来动态类型的特性。例如

一个更简单的问题：

“x === x”在哪些情况下不为 true？

这原本是这两讲的另一个备选的标题，它也是讨论动态类型问题的。只不过这个问题所涉的

范围太窄，并不适合展开到这两讲所涵盖的内容，因此被弃用了。这里把它作为一个小小的

思考题留给你，你可以试着找找答案。

NOTE1：我可以告诉你答案不只一个，例如“x 是 NaN”。^^.

NOTE2：“x 是 NaN”这样的答案与动态类型或动态语言这个体系没什么关系，所以它

不是我在这里想与你讨论的主要话题。

欢迎你在进行深入思考后，与其他同学分享自己的想法，也让我有机会能听听你的收获。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 18 | a + b：动态类型是灾难之源还是最好的特性？（上）

下一篇 20 | (0, eval)("x = 100") ：一行让严格模式形同虚设的破坏性设计（上）

sprinty
2019-12-27

强行找到一种方法, 但和本节所讲没啥关系：

Object.defineProperty(global, 'x', {
 get: function() {
 return Math.random(); …
展开

作者回复: 赞！

的确，这是除NaN之外我认为最可行的一个答案。事实上，这也是我在课程中提升“动态语言特

性”这个方向的原因：一部分动态特性是基于OOP来实现的，这正是JavaScript的混合语言特性

的应用。

精选留言 (6)  写留言

不过这个例子其实可以变成更简单。例如：


``` 

Object.defineProperty(global, 'x', { get: Symbol }) 

 

// 或 

Object.defineProperty(global, 'x', { get: Math.random }) 

``` 


AND, @晓小东 给出的Symbol()方案对这个getter方法是一个很好的补充，很好地利用了“symb

ol总是唯一”的特性。

  3

晓小东
2019-12-28

难道是这个吗， �如果作为标识符var x 确实没想出。
>> Symbol() === Symbol() // false

作者回复: 参见 @sprinty 的答案。呵呵，我自己也不知道有没有更多的可能了。

  1

晓小东
2019-12-27

老师我测很多代码得出一个总结：
参与 + 或 - 运算 + - 只认那五种值类型数据，
从包装对象实例（String， Number， Boolean, Symbol），和数组Object 对象调用val
ueOf可以看出
只要valueOf 返回五种值类型数据， 就不会toString()方法， 反之如果还是对象类型，…
展开

作者回复: 是的呀。

> 总结是： 在toPrimitive（）中要获取五种值类型数据包括undefined 和 null， ...

在上一小节里不是讲过了么？原文是：

> > 一种关于“原始值”的简单解释是：所有 5 种能放入私有槽（亦即是说它们有相应的包装

类）的值（Values），都是原始值；并且，再加上两个特殊值 undefined 和 null，那么就是所谓

原始值（Primitive values）的完整集合了。

> 只要valueOf 返回五种值类型数据， 就不会toString()方法， 反之如果还是对象类型，即使是

包装对象实例，还是会调用toString方法...

这在这一讲的“步骤4”中也讲到了。原文是：

> > 这需要利用到对象的valueOf()和toString()方法：当预期是“number”时，valueOf()方法

优先调用；否则就以toString()为优先。并且，重要的是，上面的预期只决定了上述的优先级，而

当调用优先方法仍然得不到非对象值时，还会顺序调用另一方法。

最后，关于Date()类型中顺序相反的问题，本讲里也是解释了的哟哟哟哟~ ^^.

 

Astrogladiator-埃蒂...
2019-12-27

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Equality_comparisons_a
nd_sameness

看了下mdn，还真是只有NaN这么一种情况。
 …
展开

作者回复: 绝对是还有的。至少一个。^^.

 1 

晓小东
2019-12-27

老师这个“其中的 boolean 是通过查表来进行的“ 这个查表该如何理解？？？

作者回复: Here:

https://tc39.es/ecma262/#sec-toboolean

 

潇潇雨歇
2019-12-27

想不出啦……NaN不是唯一的吗

展开

作者回复: 参见 @sprinty 的答案哟。总算有人给出来这个标准答案了。呵呵~

 6 

