
20 | (0, eval)("x = 100") ：一行让严格模式形同虚设的破坏性
设计（上）
2019-12-30 周爱民

JavaScript核心原理解析 进入课程

讲述：周爱民
时长 22:38 大小 18.15M



你好，我是周爱民。

今天我们讨论动态执行。与最初的预告不同 ，我在这一讲里把原来的第 20 讲合并掉了，

变成了 20~21 的两讲合讲，但也分成了上、下两节。所以，其实只是课程的标题少了一

个，内容却没有变。

动态执行是 JavaScript 最早实现的特性之一，eval() 这个函数是从 JavaScript 1.0 就开始

内置了的。并且，最早的 setTimeout() 和 setInterval() 也内置了动态执行的特性：它们的

第 1 个参数只允许传入一个字符串，这个字符串将作为代码体动态地定时执行。



 下载APP 

NOTE：setTimeout/setInterval 执行字符串的特性如今仍然保留在大多数浏览器环境

中，例如 Safari 或 Mozilla，但这在 Node.js/Chrome 环境中并不被允许。需要留意的

是，setTimeout/setInterval 并不是 ECMAScript 规范的一部分。

关于这一点并不难理解，因为 JavaScript 本来就是脚本语言，它最早也是被作为脚本语言

设计出来的。因此，把“装载脚本 + 执行”这样的核心过程，通过一个函数暴露出来成为

基础特性既是举手之劳，也是必然之举。

然而，这个特性从最开始就过度灵活，以至于后来许多新特性在设计中颇为掣肘，所以在

ECMAScript 5 的严格模式出现之后，它的特性受到了很多的限制。

接下来，我将帮助你揭开重重迷雾，让你得见最真实的“eval()”。

eval 执行什么

最基本的、也是最重要的问题是：eval 究竟是在执行什么？

在代码eval(x)中，x必须是一个字符串，不能是其他任何类型的值，也不能是一个字符串

对象。如果尝试在 x 中传入其他的值，那么 eval() 将直接以该值为返回值，例如：

eval() 会按照 JavaScript 语法规则来尝试解析字符串 x，包括对一些特殊字面量（例如 8

进制）的语法解析。这样的解析会与 parseInt() 或 Number() 函数实现的类型转换有所不

复制代码
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

值 1
> eval(null)
null

值 2
> eval(false)
false

字符串对象
> eval(Object('1234'))
[String: '1234']

字符串值
> eval(Object('1234').toString())
1234

同，例如：

eval() 会将参数x强制理解为语句行，这样一来，当按照“语句 -> 表达式”的顺序解析

时，“{ }”将被优先理解为语句中的大括号。于是，下面的代码就成了 JavaScript 初学者

的经典噩梦：

由于第一个字符被理解为块语句，那么“abc:”就将被解析成标签语句；接下来，"1"会成

为一个“单值表达式语句”。所以，结果是返回了这个表达式的值，也就是 1。

NOTE：这一个示例就是原来用作第 20 讲的标题的一行代码。只不过，在实际写的时候

发现能展开讲的内容太少，所以做了一下合并。：)

eval 在哪儿执行

eval 总是将代码执行在当前上下文的“当前位置”。这里的所谓的“当前上下文”并不是

它字面意思中的“代码文本上下文”，而是指“（与执行环境相关的）执行上下文”。

我在之前的文章中给你提到过与 JavaScript 的执行系统相关的两个组件：环境和上下文。

但我一直在尽力避免详细地讨论它们，甚至在一些场合中将它们混为一谈。

复制代码
1

2

3

4

5

6

7

8

9

10

11

JavaScript 在源代码层面支持 8 进制
> eval('012')
10

但 parseInt() 不支持 8 进制（除非显式指定 radix 参数）
> parseInt('012')
12

Number() 也不支持 8 进制
> Number('012')
12

复制代码
1

2

3

试图返回一个对象
> eval('{abc: 1}')
1

然而，在讨论 eval()“执行的位置”的时候，这两个东西却必须厘清，因为严格地来讲，环

境是 JavaScript 在语言系统中的静态组件，而上下文是它在执行系统中的动态组件。

环境

怎么说呢？

JavaScript 中，环境可以细分为四种，并由两个类别的基础环境组件构成。这四种环境

是：全局（Global）、函数（Function）、模块（Module）和 Eval 环境；两个基础组件

的类别分别是：声明环境（Declarative Environment）和对象环境（Object

Environment）。

你也许会问：不对啊？我们常说的词法环境到哪里去了呢？不要着急，我们马上就会讲到它

的。这里先继续说清楚上面的六个东西。

首先是两个类别，它们是所有其他环境的基础，是两种抽象级别最低的、基础的环境组件。

声明环境就是名字表，可以是引擎内核用任何方式来实现的一个“名字 -> 数据”的对照

表；对象环境是 JavaScript 的一个对象，用来“模拟 / 映射”成上述的对照表的一个结

果，你也可以把它看成一个具体的实现。所以，

所以，所谓四种环境，其实是上述的两种基础组件进一步应用的结果。其中，全局

（Global）环境是一个复合环境，它由一对“对象环境 + 声明环境”组成；其他 3 种环

境，都是一个单独的声明环境。

你需要关注到的一个事实是：所有的四种环境都与执行相关——看起来它们“像是”为每

种可执行的东西都创建了一个环境，但是它们事实上都不是可以执行的东西，也不是执行系

统（执行引擎）所理解的东西。更加准确地说：

上述四种环境，本质上只是为 JavaScript 中的每一个“可以执行的语法块”创建了一个名

字表的影射而已。

概念：所有的“环境”本质上只有一个功能，就是用来管理“名字 -> 数据”的对照表；

应用：“对象环境”只为全局环境的 global 对象，或with (obj)...语句中的对象

obj创建，其他情况下创建的环境，都必然是“声明环境”。

执行上下文

JavaScript 的执行系统由一个执行栈和一个执行队列构成，这在之前也讲过。关于它们的

应用原理，你可以回顾一下第 6 讲（x: break x），以及第 10 讲（x = yield

x）中的内容。

在执行队列中保存的是待执行的任务，称为 Job。这是一个抽象概念，它指明在“创建”这

个执行任务时的一些关联信息，以便正式“执行”时可以参考它；而“正式的执行”发生在

将一个新的上下文被“推入（push）”执行栈的时候。

所以，上下文是一个任务“执行 / 不执行”的关键。如果一个任务只是任务，并没有执

行，那么也就没有它的上下文；如果一个上下文从栈中撤出，那么就必须有地方能够保存这

个上下文，否则可执行的信息就丢失了（这种情况并不常见）；如果一个新上下文被“推入

（push）”栈，那么旧的上下文就被挂起并压向栈底；如果当前活动上下文被“弹出

（pop）”栈，那么处在栈底的旧上下文就被恢复了。

NOTE：很少需要在用户代码（在它的执行过程中）撤出和保存上下文的过程，但这的确

存在。比如生成器（GeneratorContext），或者异步调用（AsyncContext）。

而每一个上下文只关心两个高度抽象的信息：其一是执行点（包括状态和位置），其二是执

行时的参考，也就是前面一再说到的“名字的对照表”。

所以，重要的是：每一个执行上下文都需要关联到一个对照表。这个对照表，就称为“词法

环境（Lexical Environment）”。显然，它可以是上述四种环境之任一；并且，更加重要

的，也可是两种基础组件之任一！

如上是一般性质的执行引擎逻辑，对于大多数“通用的”执行环境来说，这是足够的。

但对于 JavaScript 来说这还不够，因为 JavaScript 的早期有一个“能够超越词法环境”的

东西存在，就是“var 变量”。所谓词法环境，就是一个能够表示标识符在源代码（词法）

中的位置的环境，由于源代码分块，所以词法环境就可以用“链式访问”来映射“块之间的

层级关系”。但是“var 变量”突破了这个设计限制，例如：

复制代码
1 var x = 1;

这个示例中的“1、2、3”所在的“var 变量”x，都突破了它们所在的词法作用域（或对

应的词法环境），而指向全局的x。

于是，自 ECMAScript 5 开始约定，ECMAScript 的执行上下文将有两个环境，一个称为

词法环境，另一个就称为变量环境（Variable Environment）；所有传统风格的“var 声

明和函数声明”将通过“变量环境”来管理。

这个管理只是“概念层面”的，实际用起来，并不是这么回事。

管理

为什么呢？

如果你仔细读了 ECMAScript，你会发现，所谓的全局上下文（例如 Global Context）中

的两个环境其实都指向同一个！也就是：

这就是在实现中的取巧之处了。

对于 JavaScript 来说，由于全局的特性就是“var 变量”和“词法变量”共用一个名字

表，因此你声明了“var 变量”，那么就不能声明“同名的 let/const 变量”。例如：

2

3

4

5

6

7

8

if (true) {
 var x = 2;

 with (new Object) {
 var x = 3;
 }
}

复制代码
1

2

3

4

5

6

#(如下示例不可执行)
> globalCtx.LexicalEnvironment === global
true

> globalCtx.VariableEnvironment === global
true

所以，事实上它们“的确就是”同一个环境。

而具体到“var 变量”本身，在传统中，JavaScript 中只有函数和全局能够“保存 var 声明

的变量”；而在 ECMAScript 6 之后，模块全局也是可以保存“var 声明的变量”的。因

此，事实上也就只有它们的“变量环境（VariableEnvironment）”是有意义的，然而即使

如此（也就是说即使从原理上来说它们都是“有用的”），它们仍然是指向同一个环境组件

的。也就是说，之前的逻辑仍然是成立的：

那么，非得要“分别地”声明这两个组件又有什么用呢？答案是：对于 eval() 来说，它

的“词法环境”与“变量环境”存在着其他的可能性！

不用于执行的环境

环境在本质上是“作用域的映射”。作用域如果不需要被上下文管理，那么它（所对应的环

境）也就不需要关联到上下文。

在早期的 JavaScript 中，作用域与执行环境是一对一的，所以也就常常混用，而到了

ECMAScript 5 之后，有一些作用域并没有对应用执行环境，所有就分开了。在

ECMAScript 5 之后，ECMAScript 规范中就很少使用“作用域（Scope）”这个名词，转

而使用“环境”这个概念来替代它。

哪些东西的作用域不需要关联到上下文呢？例如一般的块级作用域：

复制代码1

2

3

> var x = 100
> let x = 200
SyntaxError: Identifier 'x' has already been declared

复制代码
1

2

3

4

5

6

#(如下示例不可执行)
> functionCtx.LexicalEnvironment === functionCtx.VariableEnvironment
true

> moduleCtx.LexicalEnvironment === moduleCtx.VariableEnvironment
true

很显然的，这里的with语句为对象x创建了一个对象闭包，就是对象作用域，也是我们在上

面讨论过的“对象环境”。然而，由于这个语句其实只需要执行在当前的上下文环境（函数

/ 模块 / 全局）中，因此它不需要“被关联到”一个执行上下文，也不需要作为一个独立的

可执行组件“推入（push）”到执行栈。所以，这时创建出来的环境，就是一个不用于执

行的环境。

只有前面所说过的四种环境是用于执行的环境，而其他的所有环境（以及反过来对应的作用

域）都是不用于执行的，它们与上下文无关。并且，既然与上下文没有关联，那么也就不存

在“词法环境”和“变量环境”了。

从语法上，（在代码文本中）你可以找到除了上述四种环境之外的其他任何一种块级作用

域，事实上它们每个作用域都有一个对应的环境：with 语句的环境用“对象环境”创建出

来，而其他的（例如 for 语句的迭代环境，又例如 swith/try 语句的块）是用“声明环

境”创建出来的。

对于这些用于执行的环境中的其中三个，ECMAScript 直接约定了它们（也就是

Global/Module/Function）的创建过程。例如全局环境，就称为

NewGlobalEnvironment()。因为它们都可以在代码解析（Parser）的阶段得到，并且在代

码运行之前由引擎创建出来。

而唯有一个环境，是没有独立创建过程，并且在程序运行过程中动态创建的，这就是“Eval

环境”。

所以 Eval 环境是主要用于应对“动态执行”的环境。

eval() 的环境

上面我们说到，所谓“Eval 环境”是主要用于应对“动态执行”的，并且它的词法环境与

变量环境“可能会不一样”。这二者其实是相关的，并且，这还与“严格模式”这一特殊机

制存在紧密的关系。

复制代码
1

2
// 对象闭包
with (x) ...

当在eval(x)使一般的方式执行代码时，如果x字符串中存在着var变量声明，那么会发生

什么事情呢？按照传统 JavaScript 的设计，这意味着在它所在的函数作用域，或者全局作

用域会有一个新的变量被创建出来。这也就是 JavaScript 的“动态声明（函数和 var 变

量）”和“动态作用域”的效果，例如：

如果按照传统的设计与实现，这就会要求 eval() 在执行时能够“引用”它所在的函数或全

局的“变量作用域”。并且进一步地，这也就要求 eval 有能力“总是动态地”查找这个作

用域，并且 JavaScript 执行引擎还需要理解“用户代码中的 eval”这一特殊概念。正是为

了避免这些行为，所以 ECMAScript 约定，在执行上下文中加上“变量环境（Variable

Environment）”这个东西，以便在执行过程中，仅仅只需要查找“当前上下文”就可以

找到这个能用来登记变量的名字表。

也就是说，“变量环境（VariableEnvironment）”存在的意义，就是动态的登记“var 变

量”。

因此，它也仅仅只用在“Eval 环境”的创建过程中。“Eval 环境”是唯一一个将“变量环

境”指向与它自有的“词法环境”不同位置的环境。

NOTE: 其实函数中也存在一个类似的例外。但这个处理过程是在函数的环境创建之后，

在函数声明实例化阶段来完成的，因此与这里的处理略有区别。由于是函数声明的实例

化（FunctionDeclaration Instantiation）阶段来处理，因此这也意味着每次实例化

（亦即是每次调用函数并导致闭包创建）时都会重复一次这个过程：在执行上下文的内

部重新初始化一次变量环境与词法环境，并根据严格模式的状态来确定词法环境与变量

环境是否是同一个。

这里既然提到了“Eval 自有的词法环境”，那么也稍微解释一下它的作用。

复制代码
1

2

3

4

5

6

7

var x = 'outer';
function foo() {
 console.log(x); // 'outer'
 eval('var x = 100;');
 console.log(x); // '100'
}
foo();

对于 Eval 环境来说，它也需要一个自己的、独立的作用域，用来确保在“eval(x)”的代码

x 中存在的那些 const/let 声明有自己的名字表，而不影响当前环境。这与使用一对大括号

来表示的一个块级作用域是完全一一致的，并且也使用相同的基础组件（即声明环境、

Declarative Environment）来创建得到。这就是在 eval() 中使用 const/let 不影响它所在

函数或其他块级作用域的原因，例如：

而同样的示例，由于“变量环境”指向它在“当前上下文（也就是 foo 函数的函数执行上

下文）”的变量环境，也就是：

所以，当 eval 中执行代码“var x = …”时，就可以通过

evalCtx.VariableEnvironment来访问到fooCtx.VariableEnvironment了。例

如：

复制代码
1

2

3

4

5

6

function foo() {
 var x = 100;
 eval('let x = 200; console.log(x);'); // 200
 console.log(x); // 100
}
foo();

复制代码
1

2

3

4

5

6

7

8

9

#(如下示例不可执行)
> evalCtx.VariableEnvironment === fooCtx.VariableEnvironment
true

> fooCtx.VariableEnvironment === fooCtx.LexicalEnvironment
true

> evalCtx.VariableEnvironment = evalCtx.LexicalEnvironment
false

复制代码
1

2

3

4

5

6

function foo() {
 var x = 100;
 eval('var x = 200; console.log(x);'); // 200, x 指向 foo() 中的变量 x
 console.log(x); // 200
}
foo();

也许你正在思考，为什么 eval() 在严格模式中就不能覆盖 / 重复声明函数、全局等环境中

的同名“var 变量”呢？

答案很简单，只是一个小小的技术技巧：在“严格模式的 Eval 环境”对应的上下文中，变

量环境与词法环境，都指向它们自有的那个词法环境。于是这样一来，在严格模式中使用

eval("var x...")和eval("let x...")的名字都创建在同一个环境中，它们也就自

然不能重名了；并且由于没有引用它所在的（全局或函数的）环境，所以也就不能改写这些

环境中的名字了。

那么一个 eval() 函数所需要的“Eval 环境”究竟是严格模式，还是非严格模式呢？

你还记得“严格模式”的使用原则么？eval(x) 的严格模式要么继承自当前的环境，要么就

是代码x的第一个指令是字符串“use strict”。对于后一种情况，由于 eval() 是动态

parser 代码x的，所以它只需要检查一下 parser 之后的 AST（抽象语法树）的第一个节

点，是不是字符串“use strict”就可以了。

这也是为什么“切换严格模式”的指示指令被设计成这个奇怪模样的原因了。

NOTE：按照 ECMAScript 6 之后的约定，模块默认工作在严格模式下（并且不能切换

回非严格模式），所以它其中的 eval() 也就必然处于严格模式。这种情况下（即严格模

式下），eval() 的“变量环境”与它的词法环境是同一个，并且是自有的。因此模块环

境中的变量环境（moduleCtx.VariableEnvironment）将永远不会被引用到，并且用户

代码也无法在其中创建新的“var 变量”。

最后一种情况

标题中的 eval() 的代码文本，说的却是最后一种情况。在这种情况下，代码文本将指向一

个“未创建即赋值”的变量x，我们知道，按照 ECMAScript 的约定，在非严格模式中，向

这样的变量赋值就意味着在全局环境中创建新的变量x；而在严格模式中，这将不被允许，

并因此而抛出异常。

由于 Eval 环境通过“词法环境与变量环境分离”来隔离了“严格模式”对它的影响，因此

上述约定在两种模式下实现起来其实都比较简单。

对于非严格模式来说，代码可以通过词法环境的链表逆向查找，直到 global，并且因为无

法找到x而产生一个“未发现的引用”。我们之前讲过，在非严格模式中，对“未发现的引

用”的置值将实现为向全局对象“global”添加一个属性，于是间接地、动态地就实现了添

加变量x。对于严格模式呢，向“未发现的引用”的置值触发一个异常就可以了。

这些逻辑都非常简单，而且易于理解。并且，最关键和最重要的是，这些机制与我今天所讲

的内容——也就是变量环境和词法环境——完全无关。

然而，接下来你需要动态尝试一下：

标题中的代码突破了“严格模式”的全部限制！这就是我下一讲要为你讲述的内容了。

今天没有设置知识回顾，也没有作业。但我建议你尝试一下标题中的代码，也可以回顾一下

本节课中提到的诸多概念与名词。

我相信，它与你平常使用的和理解的，有许多不一致的地方，甚至有矛盾之处。但是，相信

我，这就是这个专栏最独特的地方：它讲述 JavaScript 的核心原理，而不是重复那些你可

能已经知道的知识。

欢迎你在进行深入思考后，与其他同学分享自己的想法，也让我有机会能听听你的收获。

如果你按标题中的代码去尝试写 eval()，那么无论如何——无论你处于严格模式还是非

严格模式，你都将创建出一个变量 x 来。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 19 | a + b：动态类型是灾难之源还是最好的特性？（下）

下一篇 加餐 | 捡豆吃豆的学问（上）：这门课讲的是什么？

行问
2019-12-30

其实函数中也存在一个类似的例外。但这个处理过程是在函数的环境创建之后，在函数声
明实例化阶段来完成的，……

 据我的理解，函数在 JavaScript 中是一等公民，函数提升，但我不懂的是“函数每调用一
次，是否函数声明的实例化一次吗”。一直以来就是“定义（声明）一个函数”，再调…
展开

 

qqq
2019-12-30

eval 的间接调用会使用全局环境的对象环境，所有绕过了严格模式，是不是呀

 

精选留言 (4)  写留言

Astrogladiator-埃蒂...
2019-12-30

(0, eval)("x = 100")
我用typeof (0,eval) 显示这个是函数类型，应该是一个立即执行的函数
类似 (function(params){})(params);
"use strict" , eval)("x = 100")
我用typeof (0,eval) 显示这个是函数类型，应该是一个立即执行的函数 …
展开

 

Smallfly
2019-12-30

如果改成 eval(“x = 100”) 会报错，改成：

var x
eval(“x = 100”)
 …
展开

 

