热部署插件Jrebel安装步骤

Last modified by 国锐 原 on 2014/03/09 14:41

Comments (0) · Attachments (0) · History · Information
1.打开eclipse

2.Help-Eclipse Marketplace

3.搜索JRebel(第一页就有,一般不用搜),点击Install按钮

4.接下来参考

http://chen-rojer-gmail-com.iteye.com/blog/910748

maven3 jetty jrebel 搭建可调式的开发环境
maven

HYPERLINK "http://www.iteye.com/blogs/tag/Eclipse"Eclipse

HYPERLINK "http://www.iteye.com/blogs/tag/Web"Web

HYPERLINK "http://www.iteye.com/blogs/tag/JSF"JSF

HYPERLINK "http://www.iteye.com/blogs/tag/XML"XML

信息：maven3 jetty7.2 jrebel3.6.1

jetty是一个轻量级的container，一般和maven搭配使用，关于jrebel的作用，到网络查一查就知道了，绝对是好东西。

下面开始搭建环境，一个JSF2.0的web 应用为例

1首先使用eclipse建立一个web 接口的maven项目（不要告诉我你不知道怎么建）

j建好之后目录如下

[image: image1]

INCLUDEPICTURE "file:///C:\\Users\\zhaojian\\AppData\\Roaming\\Tencent\\Users\\303109654\\QQ\\WinTemp\\RichOle\\3ERPVXWP3RIPC0S([U9R2]7.jpg"[image: image2.jpg]G5 oy
@ sre/main/resources
@ sre/nain/java
)\ JRE System Library [J25E-1.5]
B Maven Dependencies
A Web App Libraries
E@ sre

- main

B webapp.

(= NETA-INF
(& WEB-TNF
i inder. el
& target
B ron el

接下来开始编辑pom.xml文件，文件内容如下<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Xml代码 [image: image3.png]

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.study</groupId>

 <artifactId>jetty</artifactId>

 <packaging>war</packaging>

 <version>0.0.1-SNAPSHOT</version>

 <name>jetty Maven Webapp</name>

 <url>http://maven.apache.org</url>

 <repositories>

 <!-- 配置下载JSF2.0 类库的maven仓库 -->

 <repository>

 <id>java.net</id>

 <name>java.net</name>

 <url>http://download.java.net/maven/2</url>

 </repository>

 </repositories>

 <!-- JSF2.0的依赖 -->

 <dependencies>

 <dependency>

 <groupId>com.sun.faces</groupId>

 <artifactId>jsf-api</artifactId>

 <version>2.0.4-b09</version>

 <scope>compile</scope>

 </dependency>

 <dependency>

 <groupId>com.sun.faces</groupId>

 <artifactId>jsf-impl</artifactId>

 <version>2.0.4-b09</version>

 <scope>compile</scope>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>3.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <finalName>jetty</finalName>

 <plugins>

 <!-- 配置 maven 的 jetty 插件 -->

 <plugin>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jetty-maven-plugin</artifactId>

 <version>7.2.2.v20101205</version>

 <configuration>

 <webAppConfig>

 <contextPath> /${project.artifactId}</contextPath> <!-- 指定 root context 在这里指定为${project.artifactId} 即 jetty，

 那么访问时就用http://localized:8080/jetty 访问，

 如果指定梶为test 就用http://localized:8080/test访问，更多信息，请查看jetty 插件官方文档-->

 </webAppConfig>

 <!-- 指定额外需要监控变化的文件或文件夹，主要用于热部署中的识别文件更新 -->

 <scanTargetPatterns>

 <scanTargetPattern>

 <directory>src</directory>

 <includes>

 <include>**/*.java</include>

 <include>**/*.properties</include>

 </includes>

 <!-- <excludes> <exclude>**/*.xml</exclude> <exclude>**/myspecial.properties</exclude>

 </excludes> -->

 </scanTargetPattern>

 </scanTargetPatterns>

 <scanIntervalSeconds>0</scanIntervalSeconds><!-- 指定监控的扫描时间间隔，0为关闭jetty自身的热部署，主要是为了使用jrebel -->

 <webAppSourceDirectory>${basedir}/src/main/webapp</webAppSourceDirectory><!-- 指定web页面的文件夹 -->

 </configuration>

 </plugin>

<!-- jerebel maven 插件，用于生成jrebel.xml -->

 <plugin>

 <groupId>org.zeroturnaround</groupId>

 <artifactId>jrebel-maven-plugin</artifactId>

 <executions>

 <execution>

 <id>generate-rebel-xml</id>

 <phase>process-resources</phase>

 <goals>

 <goal>generate</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <rebelXmlDirectory>${basedir}/src/main/webapp/WEB-INF/classes</rebelXmlDirectory><!-- 指定生成的jrebel.xml放在哪里，

 要求放在web应用的 classpath下 -->

 </configuration>

 </plugin>

 </plugins>

 <outputDirectory>${basedir}/src/main/webapp/WEB-INF/classes</outputDirectory><!-- 指定编译后文件的存放路径，因为jetty默认src/main/webapp为

 web应用的根目录而 maven compile 目标后的默认classpath 在target文件夹下，就造成jrebel.xml无法兼顾 jetty 默认的是webapp中的classes为 web 应用的根目录，

 而maven 默认是target 目录所以需要修改该maven的默认classes目录。 -->

 </build>

</project>

 配置好后，就剩下加入jrebel的参数了。要在eclipse里加入jrebel参数，需要装jrebel for eclipse 插件，装好之后，对pom.xml点右键，选择run->run configurations，在弹出的对话框中选择标签jrebel，勾选enable jrebel agent

[image: image4.jpg][—

& Hven B2
2 besmuren
2 cargotst

m2 cgstst @)

Y.
Tyter Djogs

25 Tyder Goocle App Ran

& Tyt Coeracs
Pothon B
Fython mittest

% by e

iy ek Coment Test
$. 5 ¥eb Beouser
XL

 确定，然后run就行了。如果要调试，就右键点击pom文件，选择debug就行。整个maven 项目已经上传，可以下载自己试试

