·218·

第14章 ASP.NET XML和Web Service
在上一章中讲到的Web.config配置文件就是基于XML文件格式的，XML（Extensible Markup Language，可扩展标记语句）是一种描述数据和数据结构的语言，XML文本可以保存在任何存储文本中，这就让XML具有了可扩展性、跨平台型以及传输与存储方面的优点。
14.1 XML简介
标记语言（Markup Language）特指一系列约定好的标记来对电子文档进行标记，以实现对电子文档的语义、结构以及格式的定义。在ASP.NET开发中，最常用的标记语言就是HTML，HTML标记语言定义了HTML文档的语义、结构以及格式，以便在不同的浏览器中所呈现的内容是一致的。XML标记语言与SGML和HTML都属于标记语言，标记语言的发展如图14-1所示。

[image: image1.png]GML

SGML

XML

)

WML

XHTML

图14-1 标记语言的发展史
为了更加方便的适应互联网的需求，1996年开始创建XML标记语言。XML标记语言不仅具备了SGML标记语言强大的扩展性，同样也具备HTML标记语言的易用性。不仅如此，ASP.NET还将XML作为应用程序数据存储和传输的重要方法。

在当今互联网中，Web应用已经成为一种分布式组件技术。传统的Web应用技术解决的问题是如何让人使用Web提供的应用，而当今的Web应用技术是要解决如何让应用程序使用Web应用。由于Web应用能够跨平台、跨语言的为应用程序提供服务，所以Web应用和XML应用的前景是非常广阔的。

注意：这里所说的Web应用的跨平台是针对浏览器而言，Windows能够浏览一个Web应用，而Linux同样可以浏览一个Web应用。

14.2 读写XML
XML和HTML都是基于SGML（Standard Generalized Markup Language，标准通用标记语言）的，但是XML和HTML却有着很大的区别，这些区别不仅仅在于格式上的区别，还在于使用性、可扩展性等等。

14.2.1 XML与HTML

XML标记语言和HTML标记语言有着极大的不同，在应用程序开发中，XML标记语言能够适应于大部分的应用程序环境和开发需求。这些需求是HTML标记语言无法做到的，XML标记语言和HTML标记语言的具体区别如下所示。

· HTML标记是固定的，并且是没有层次的，在HTML文档中，用户无法自行创建标签，例如<book>这样的标签浏览器很可能解析不了，HTML中标记的作用是描述数据的显示方式，这种方式只能交付给浏览器进行处理，而HTML文档中的标记都是独立存在的，没有层次。

· XML的标记不是固定的且是有层次的，在XML文档中，用户可以自行创建标签，例如<day>这样的标签，XML标记不能够描述网页的外观和内容，XML只能够描述内容的数据结构和层次，在浏览器中浏览XML文档，也可以发现XML标记是有层次的。

在Visual Studio 2008中，.NET Framework提供了System.XML命名空间，该命名空间提供了一组可扩展类使得开发人员能够轻松的读、写、以及编辑XML文本。

14.2.2 创建XML文档

使用Visual Studio 2008能够创建XML文档，创建和使用XML文档无需XML语法分析器来专门负责分析语法，在.NET Framework中已经集成了可扩展类。右击现有项，单击【添加新项】选项，选择XML文件，如图14-2所示。
[image: image2.png]#810) RO
Ve OF Vizusl Studie CREMBE S
o
Windows Forms b Fif =0
e Ny Ee
=i (o) SRR T (AT web iR
el] SN FPRR
Reporting AN B o s
WorkELow HINL BT B Tseript fF
W to SAL % | SaL Server HiRE
HCF RS Hteb RS
[Srer BMBZH &w"\dawx HAEE
|2 2ty l
| pstr s e,
=3 ﬂiEimE =
[EE LS

=) JRFiTet

L

图14-2 创建XML文档

创建完成后，就需要向XML文档中编写XML标记，以下是一个完整的XML文档示例。

<?xml version="1.0" encoding="utf-8" ?>

<Root>

 <ShopInformation area="Asia">

 <Shop place="Wuhan">

 <Name>武汉电脑城</Name>

 <Phone>123456789</Phone>

 <Seller>J.Dan</Seller>

 <Seller>Bill Gates</Seller>

 </Shop>

 <Shop place="ShangHai">

 <Name>武汉电脑城</Name>

 <Phone>123456789</Phone>

 <Seller>Bill Gates</Seller>

 </Shop>

 </ShopInformation>

 <ShopInformation area="USA">

 <Shop place="S">

 <Name>PC STORE</Name>

 <Phone>123456789</Phone>

 <Seller>J.Dan</Seller>

 <Seller>Bill Gates</Seller>

 </Shop>

 <Shop place="S.K">

 <Name>Windows Mobile Store</Name>

 <Phone>123456789</Phone>

 <Seller>Bill Gates</Seller>

 </Shop>

 </ShopInformation>

</Root>
上述XML文档使用了自定义标记对商城进行了描述，包括商城所在地、商城名称、电话号码以及负责人等。编写XML文档时，开发人员能够自定义标签进行文档描述，但是在XML文档的头部必须进行XML文档声明，示例代码如下所示。

<?xml version="1.0" encoding="utf-8" ?>
上述代码在XML文档头部进行了声明，表示该文档是一个XML文档，并且说明该文档的版本为1.0的XML文档，该文档还可以包含一个encoding属性，指明文档中的编码类型。声明该文档是一个XML文档后，则需要在XML文档中编写根标记，这个标记可以是开发人员自定义标记名称，在这里被命名为Root，示例代码如下。

<Root>

<!-- 根标记内的所有内容 -->

</Root>
上述代码创建了一个根标记，在这里命名为Root。在XML文档中，所有的标记都应该被包含在一个根标记中，这样不仅方便描述也方便查阅。XML文档中的根标记不能够重复使用，如果重复使用则会提示异常。

在根标记内，应该编写需要描述的信息的标记。在这里，描述一个商城需要的一些属性，包括商城所在的州、所在地以及商城的主营类型等，通过XML标记语言可以自行创建标记来描述，示例代码如下所示。

 <ShopInformation area="USA">

//地区描述
 <Shop place="S">

//位置描述
 <Name>PC STORE</Name>

//商城名称
 <Phone>123456789</Phone>

//商城电话
 <Seller>J.Dan</Seller>

//商城销售人员
 <Seller>Bill Gates</Seller>

 </Shop>

 <Shop place="S.K">

 <Name>Windows Mobile Store</Name>

 <Phone>123456789</Phone>

 <Seller>Bill Gates</Seller>

 </Shop>

 </ShopInformation>

上述代码对商城的信息进行了描述，这些标签的意义如下所示：

· ShopInformation：商城信息，包括area属性来描述所在州或板块，这里说明了是在USA地区。

· Shop：商城在该板块的所在州、省市等信息。

· Name：商城的名称。

· Phone：商城的联系电话。

· Seller：商城的销售人员。

这些标签都是用户自定义的，XML文档允许开发人员自定义标签并，另外，XML文档也不局限所要描述的对象格式。例如当上述代码也可以编写另外一种样式时，同样能够被XML所识别，示例代码如下所示。
 <ShopInformation>

 <Area name="Usa">

//另一种地区表示方式
 <Shop>

 <Name>PC STORE</Name>

 <Phone>123456789</Phone>

 <Seller>J.Dan</Seller>

 <Seller>Bill Gates</Seller>

 <Place>S.K</Place>

//地区直接放在描述中
 </Shop>

 <Shop>

 <Name>Windows Mobile Store</Name>

 <Phone>123456789</Phone>

 <Seller>Bill Gates</Seller>

 <Place>S</Place>

 </Shop>

 </Area>

 </ShopInformation>
技巧：良好的缩进能够让XML文档更加方便阅读，同时XML文档是大小写敏感的，对于XML标记，标记头和标记尾的大小写规则必须匹配。

14.2.3 XML控件
在ASP.NET中提供了针对XML读写的控件XML控件，XML控件可以很好的解决XML文档的显示问题，如果需要浏览XML文档的数据，则只需要编写XML控件中的DocumentSource属性即可，示例代码如下所示。
<body>

 <form id="form1" runat="server">

 <div>

 <asp:Xml ID="xml1" runat="server" DocumentSource="~/XMLFile1.xml"></asp:Xml>

//使用XML控件

 </div>

 </form>

</body>
运行后如图14-3所示。
[image: image3.png]=lo/x|

(\ /)v B v 7rivesirenrs] | 49 | x| [BE
W &’ @xnEn | | & -

|
TINEBH;123456789] DanBill Gates TSN EBRH
123456789Bill GatesPC STORE1234567897 DanBill
GatesS KWindows Mobile Store123456789Bil GatesS

|

[[[G Intranet | RIPER: 2R [R00x - |

图14-3 XML控件

运行后会发现XML文档的内容都显示出来了，但是却没有层次感，因为XML控件并没有把记录分开，而是连续的呈现XML文档的内容。如果需要按照规范或开发人员的意愿呈现给浏览器，则必须使用XSL样式表。
14.2.4 XML文件读取类（XmlTextReader）
XmlTextReader类属于System.Xml命名空间，XmlTextReader类提供对XML数据的快速、单项、无缓冲的数据读取功能，因为XmlTextReader类是基于流的，所以使用XmlTextReader类读取XML内容只能够从前向后读取，而不能逆向读取。

因为XmlTextReader类的流形式，节约了读取XML文档的时间，也大量的节约了读取XML所需花费的内存空间，当需要读取XML节点时，只需要使用XmlTextReader类的Read()方法即可，示例代码如下所示。

 XmlTextReader rd = new XmlTextReader(Server.MapPath("XMLFile1.xml"));

//构造函数

 while (rd.Read())

//遍历节点
 {

 Response.Write("Node Type is : " + rd.NodeType +"
");

//输出Node
 Response.Write("Name is : " + rd.Name + "
");

//输出Name
 Response.Write("Value is :" + rd.Value + "
");

//输出Value
 Response.Write("<hr/>");

 }
上述代码使用XmlTextReader类的构造函数创建了XmlTextReader对象，并通过使用XmlTextReader类的Read()方法进行XmlTextReader对象的遍历。遍历XML文档后，需要使用Close方法进行XmlTextReader对象的关闭操作，这一点是非常重要的，如果不使用XmlTextReader类的Close方法，则相应的XML文件正在被进程使用，只有使用了Close方法才能将相应的文件关闭掉。示例代码如下所示。

 rd.Close();

//关闭Reader
XmlTextReader类遍历XML文件运行结果如图14-4所示。

[image: image4.png]| CABER _ vindors Internet Enlerer T 1SR

&)~ [rmecanoms rmam=] 43 | | [
W & exmEn | [5-8 &=-

|2l

HEE -

Node Type is : XmIDeclaration
Name is - xml
Value i version="1.0" encoding="utf-8"

H

Node Type is : Whitespace
Nameis:
Value is

Node Type is : Element
Name is - Root
Value is

Node Type is : Whitespace
Nameis:
Value is

Node Type is : Element
Name is - Shoplnformation
Value is

|

o N N B ETTNE S B R T

图14-4 XmlTextReader类遍历XML文件

在使用XmlTextReader类读取XML文件中相应的节点时，XmlTextReader类的NodeType会检查节点的类型，而XmlTextReader类的Name和Value会分别检查节点的名称和值，相应的XML代码如下所示。

 <Shop place="Wuhan">

 <Name>武汉电脑城</Name>

 <Phone>123456789</Phone>

 <Seller>J.Dan</Seller>

 <Seller>Bill Gates</Seller>

 </Shop>

上述代码中，使用XmlTextReader类进行读取，则Shop节点的NodeType为Element，Name的值为Shop，Value的值为空。XML文档中不止以上几种节点类型，XmlNodeType也包括其他节点类型，这些类型如下所示。
· Attribut：XML元素的属性。

· CDATA：用于转义文本块，避免将文本块识别为标记。

· Comment：XML文档的注释。

· Document：作为文档树的根的文档对象，可供每个XML文档进行访问。

· DocumentType：XML文档类型的声明。

· Element：XML元素。

· EndElement：当XmlTextReader达到元素末尾时返回。

· Entity：实体声明。

· Text：元素的文本内容。

· WhiteSpace：标记间的空白。

· XmlDeclaration：XML节点声明，它是文档中的第一个节点。

在XML文档中，空白标记和根节点的节点类型是不相同的，XmlTextReader类读取XML文件并遍历节点类型，根节点和空白节点遍历后结果如下所示。

Node Type is:XmlDeclaration

Nameis:xml

Value is:version="1.0" encoding="utf-8"

Node Type is:Whitespace

Nameis:

Value is:
其中根节点的节点类型为XmlDeclaration，Value值为version="1.0" encoding="utf-8"。

14.2.5 XML文件编写类（XmlTextWriter）
XmlTextWriter类属于System.Xml命名空间，同XmlTextReader类相同的是，XmlTextWriter类同样提供没有缓存，直向前的方式进行XML文件操作，但是与XmlTextReader类操作相反，XmlTextWriter类执行的是写操作。XmlTextWriter类的构造函数包括三种重载形式，分别为一个字符串、一个流对象和一个TextWriter对象。通过使用XmlTextWriter类可以动态的创建XML文档，示例代码如下所示。
 XmlTextWriter wr = new XmlTextWriter("newXml.xml", null);

//读取XML
 try

 {

 wr.Formatting = Formatting.Indented;

//格式化输出
 wr.WriteStartDocument();

//开始编写文档
 wr.WriteStartElement("ShopInformation");

//编写节点
 wr.WriteStartElement("Shop");

//编写节点
 wr.WriteAttributeString("place", "北京");

//编写节点
 wr.WriteElementString("Name", "中关村");

//编写节点
 wr.WriteElementString("Phone", "123456");

//编写节点
 wr.WriteElementString("Seller", "Guojing");

//编写节点
 wr.WriteEndElement();

//结束节点编写
 wr.WriteEndElement();

//结束节点编写
 Response.Write("操作成功");

 }

 catch

 {

 Response.Write("操作失败");

 }
上述代码创建了一个XmlTextWriter对象并通过XmlTextWriter对象编写XML文档，在使用XmlTextWriter类构造函数时，可以指定编码类型，或使用默认的编码类型，若使用默认的编码类型，参数传递null即可，默认编码类型将为UTF-8，示例代码如下所示。
 XmlTextWriter wr = new XmlTextWriter("newXml.xml", null);

//创建写对象
使用了XmlTextWriter类创建对象后，则需要使用XmlTextWriter对象的Formatting方法指定输出的格式，示例代码如下所示。
 wr.Formatting = Formatting.Indented;

//格式化输出
指定了输出格式之后，则需要开始为XML文档创建节点，在创建节点前，首先需要声明XML文档，则必须输出<?xml version="1.0" encoding="utf-8" ?>声明，声明1.0版本的xml文档代码如下所示。

 wr.WriteStartDocument();

//开始编写节点
声明文档后就可以使用WriteStartElement进行节点的创建，创建节点代码如下所示。

 wr.WriteStartElement("Shop");

//开始编写节点
上述代码创建了Shop节点，如果需要为该节点创建place=“北京”属性则需要使用WriteAttributeString方法进行创建，示例代码如下所示。

 wr.WriteAttributeString("place", "北京");

//编写属性
创建了父节点之后，可以通过WriteElementString方法创建子节点，示例代码如下所示。

 wr.WriteElementString("Name", "中关村");

//创建子节点
节点全部创建完成后，需要使用WriteEndElement方法进行尾节点的编写，示例代码如下所示。

 wr.WriteEndElement();

//结束节点编写
一个XML文档就编写完毕了，编写完成并不能自动的更新XML文档，还需要使用Flush方法进行数据更新，更新完毕后还需要关闭XmlTextWriter对象示例代码如下所示。

 wr.Flush();

//更新文件
 wr.Close();

//结束写对象
使用Flush方法就能够将XML数据保存在文件中，运行后XML文档结构如下所示。
<?xml version="1.0" encoding="utf-8" ?>

<ShopInformation>

 <Shop place="北京">

 <Name>中关村</Name>

 <Phone>123456</Phone>

 <Seller>Guojing</Seller>

 </Shop>

</ShopInformation>
14.2.6 XML文本文档类（XmlDocument）
XML文档在内存中是以DOM为表现形式的，DOM（Document Object Model）是对象化模型，DOM是以树的节点形式来标识XML数据，14.2.2中的XML文档读入DOM结构中，则在内存中的构造图如图14-5所示。

[image: image5.png]xml ‘ ‘ ‘Shoplnformation ‘

place 45t

Name Phone Seller

LS 123456 Guojing

图14-5 XML文档构造

XmlDocument类同样也属于命名空间System.Xml，XmlDocument类可以实现第一、第二级的W3C DOM。它使用DOM以一个层次结构树的形式将整个XML数据加载到内存中，从而能够使开发人员能够对内存中的任意节点进行访问、插入、更新和删除。由于XmlDocument类，简化开发人员对XML文档进行访问、插入和删除等操作。

XmlDocument类继承自System.Xml.XmlNode，该抽象类表示单个节点并具有基本的属性和方法来操作节点。利用XmlDocument对象的DocumentElement属性能够表示单个节点并进行操作。XmlDocument对象的DocumentElement返回一个指向文档元素的索引，可以通过读取给定的节点的HanChildNodes属性判断是否包括子节点。另外，使用XmlDocument对象的HasChildNodes和ChildNodes属性可以读取和遍历XML文件，示例代码如下所示。

 protected void Page_Load(object sender, EventArgs e)

 {

 XmlDocument doc = new XmlDocument();

//创建XmlDocument对象
 doc.Load(Server.MapPath("newXml.xml"));

//载入文件
 Response.Write("读取中..<hr/>");
 XmlNode node = doc.DocumentElement;

//读取节点
 output(node);

//使用输出函数
 Response.Write("读取完毕..<hr/>");

//输出HTML字串
 }

 protected void output(XmlNode node)

 {

 if (node != null)

//如果节点不等于空
 {

 format(node);

//格式化输出
 }

 if (node.HasChildNodes)

//判断是否包括子节点
 {

 node = node.FirstChild;

//获取子节点
 while (node != null)

 {

 output(node);

//使用递归
 node = node.NextSibling;

//遍历节点值和信息
 }

 }

 }

 protected void format(XmlNode node)

 {

 if (!node.HasChildNodes)

//判断是否包括子节点

 {

 Response.Write("node name is" + node.Name);

//输出节点
 Response.Write("node value is" + node.Value);

//输出节点
 Response.Write("
");

 }

 else

 {

 Response.Write(node.Name);

 if (XmlNodeType.Element == node.NodeType)

//遍历节点

 {

 XmlNamedNodeMap map = node.Attributes;

//遍历节点
 foreach (XmlNode att in map)

 {

 Response.Write("attrnode name is" + att.Name);

//格式化输出节点
 Response.Write("attrnode value is" + att.Value);

//格式化输出节点
 Response.Write("
");

 }

 }

 }

 }
上述代码通过使用XmlDocument类遍历节点，使用XmlDocument类遍历节点，首先需要创建一个XmlDocument对象，并使用Load方法加载一个XML文档，示例代码如下所示。

 XmlDocument doc = new XmlDocument();

//创建XmlDocument对象
 doc.Load(Server.MapPath("newXml.xml"));

//载入XML文件
创建对象之后，则需要使用递归的方法遍历显示每个节点。在遍历节点的过程中，需要对每个节点进行是否有子节点的判断，如果包括子节点，则先输出子节点，如果没有子节点则继续输出根节点。XmlDocument对象也可以向XML文档中添加一个新的元素，示例代码如下所示。

 XmlDocument doc = new XmlDocument();

//创建XmlDocument对象
 doc.Load(Server.MapPath("newXml.xml"));

//载入XML文件
 XmlNode node = doc.DocumentElement;

//创建节点对象
 node.RemoveChild(node.FirstChild);

//移除根节点
上述代码使用了XmlDocument对象的Load方法载入XML文档，当需要插入XML数据时，则先需要移除根节点，移除根节点之后就能够开始添加节点，示例代码如下所示。

 XmlNode Shop = doc.CreateElement("Shop");

//创建节点Shop
 XmlNode shop1 = doc.CreateElement("Name");

//创建节点Name
 XmlNode shop2 = doc.CreateElement("Phone");

//创建节点Phone
 XmlNode shop3 = doc.CreateElement("Seller");

//创建节点Seller
 XmlNode NameText = doc.CreateTextNode("NameText");

//创建节点文本
 XmlNode PhoneText = doc.CreateTextNode("PhoneText");

//创建节点文本
 XmlNode SellerText = doc.CreateTextNode("SellerText");

//创建节点文本
 shop1.AppendChild(NameText);

//添加文本
 shop2.AppendChild(PhoneText);

//添加文本
 shop3.AppendChild(SellerText);

//添加文本
 Shop.AppendChild(shop1);

//添加Shop子节点
 Shop.AppendChild(shop2);

//添加Shop子节点
 Shop.AppendChild(shop3);

//添加Shop子节点
 node.AppendChild(Shop);

//添加Shop节点
上述代码分别为节点添加子节点，并为子节点添加文本，添加完成后，需要使用XmlDocument对象的Save方法进行保存，示例代码如下所示。
 doc.Save("newXml.xml");
使用XmlDocument对象的Save方法即可将XML内容保存在XML文档中。使用XmlDocument对象不仅能够读取，新增XML文档，还支持修改、删除等操作，例如使用PrependChild和InsertBefore，InsertAfter等方法进行新增和删除节点和子节点操作。

14.3 XML串行化
使用XML串行化能够方便XML的存储或传输，能够把一个对象的公共域和属性保存为一种串行格式的过程，反串行化则是使用串行的状态信息将对象从串行XML状态还原为初始状态的过程。.NET Framework提供了命名空间来简化开发人员进行XML串行化。
14.3.1 XmlSerializer串行化类
.NET Framework提供了System.Runtime.Serialization和System.Xml.Serialization以提供串行化功能。而System.Xml.Serialization提供了一个XmlSerializer类，该类可以将一个对象串行和反串行化为XML格式。XmlSerializer类虽然能够执行串行化和反串行化，但是串行化和反串行化有一个最大的区别，就是串行化调用Serialize方法，而反串行化调用Deserialize方法。
如果需要将一个对象进行XML串行化，可以在类前添加[Serializable()]标识，声明一个定制串行化属性，如果需要将整个类都能够支持串行化，则必须添加该属性。XML串行化还包括以下属性：
· [XmlRoot]：用来识别作为XML文件根元素的类或结构，可以用此标记把一个元素的名称设置为根元素。

· [XmlElement]：共有的属性或字段可以作为一个元素被串行化到XML结构中。

· [XmlAttribute]：共有的属性或字段可以作为一个属性被串行化到XML结构中。

· [XmlIgnore]：共有的属性或字段不包括在串行化的XML结构中。

· [XmlArray]：共有的属性或字段可以作为一个元素数组被串行到XML结构中。

· [XmlArrayItem]：用来识别可以放到一个串行化数组中的类型。
14.3.2 基本串行化

基本串行化是指让.NET Framework自动的对对象进行串行化操作。使用基本串行化进行操作，只要求对象拥有类属性[Serializable()]即可。如果类中的某些属性或字段不需要进行串行化操作，则使用[NonSerializable()]属性即可，示例代码如下所示。
using System.Xml.Serialization;

namespace Ser

{

 [Serializable()]

//设置串行化属性
 class MySer

 {

 private string Shop { get; set; }

//设置Shop属性
 private string Name { get; set; }

//设置Name属性
 private string Phone { get; set; }

//设置Phone属性
 private string Seller { get; set; }

//设置Seller属性
 [NonSerialized()]

//设置非串行化
 private string Age { get; set; }

//设置Age属性
 }

}
上述代码使用了[Serializable()]属性声明一个类，则该类的成员都能够被串行化，而Age属性使用了[NonSerializable()]属性声明了该属性不应被串行化。使用[NonSerializable()]能够精确的控制串行化。若需要将类进行XML串行，则可以通过使用[XmlAttribute]等属性进行XML串行化操作，示例代码如下所示。

using System.Xml.Serialization;

namespace Ser

{

 [Serializable()]

//设置串行化
 [XmlRoot("SerXML")]

 class MySer

 {

 [XmlElement("Shop")]

//设置节点属性
 private string Shop { get; set; }

//设置Shop属性
 [XmlElement("Name")]

//设置节点属性
 private string Name { get; set; }

//设置Name属性
 [XmlElement("Phone")]

//设置节点属性
 private string Phone { get; set; }

//设置Phone属性
 [XmlElement("Seller")]

//设置节点属性
 private string Seller { get; set; }

//设置Seller属性
 [NonSerialized()]

//设置非串行化
 [XmlElement("Age")]

//设置节点属性
 private string Age { get; set; }

//设置Age属性
 }

}
上述代码运行后的结果形式呈现为XML格式，其格式如下所示。

<Shop>this.Shop</Shop>

<Name>this.Name</Name>
<Phone>this.Phone</Phone>

<Seller>this.Seller</Seller>
//<Age></Age>

在串行化结果输出时，并没有输出Age标签，是因为在Age属性前定义了[NonSerializable()]以控制该字段不会被串行化输出。

14.4 XML样式表XSL

XSL是XML的样式表语言，这种定义很像HTML中的CSS。XSL转换就是XSLT，XSLT是XSL标准中的重要组成部分，它可以把一个XML文档的数据以不同结构或格式转换为另一个文档，通过使用XSL能够将XML进行格式化输出。

14.4.1 XSL简介

与HTML样式相比，XML样式要更加复杂，HTML中标记的含义都是固定的，而XML允许开发人员能够自行创建标签，所以用样式控制XML会比在HTML控制更加复杂。

1．XSL与HTML

HTML样式控制通常是使用CSS层叠样式表进行控制，而XML中的样式控制通常使用XSL文档进行控制，HTML中的CSS和XML中的XSL有以下特征：
· CSS：用于HTML样式控制，由于HTML标签事先是规定好的，所以浏览器知道如何显示HTML样式，如在HTML文档中，<table></table>标签能够以表格的形式呈现在客户端浏览器。

· XSL：用于XML样式控制，由于XML的标签不是事先规定好的，所以XML文档中的标记并不能被浏览器理解，如XML文档中的<table></table>并不会被浏览器解释成表格。

相比于CSS而言，XSL能够作为XML文件的样式表而存在，而XSL又不仅仅需要提供样式控制，还需要提供XML文档的方法等，XSL包括3部分，这3部分分别为：

· 转换XML文档的方法。
· 定义XML部分和模式的方法。
· 格式化XML文档的方法。

2．XSLT

XSLT翻译为可扩展样式语言转换，XSL包含三种语言，其中最重要的是XSLT。XSL转换实际上就是XSLT，在Visual Studio 2008中，可以直接创建XSLT文件对XML文件进行样式控制，定义部分和模板方法。
XSLT可以将一个XML文档的数据以不同的结构或格式转换为另一个文档格式，如HTML。为了让XML文件能够格式化输出到浏览器并能够进行样式控制，XSLT能够对XML进行样式控制，通过编写模板，以及简易的编程控制就能够读取XML中节点的数据并重新组织，当用户访问XML文件时，能够同HTML一样被浏览器解释并呈现到客户端浏览器。

3．XSLT与XSL

XSLT是XSL中最重要的语言，也是XSL中最重要的组成部分，简而言之，XSL通过XSLT将一个XML源中的数据重新组织并呈现成另一种XML样式。
14.4.2 使用XSLT
使用XSL对XML进行样式控制和格式化XML文档，首先需要创建一个XML文档，这里XML文档代码如下所示。

<?xml version="1.0" encoding="utf-8" ?>

<Root>

 <ShopInformation area="Asia">

 <Shop place="Shanghai" value="Wuhan">

 <Name>上海电脑</Name>

 <Phone>123456789</Phone>

 <Seller>J.Dan</Seller>

 <Seller>Bill Gates</Seller>

 </Shop>

 <Shop place="Wuhan">

 <Name>广埠屯</Name>

 <Phone>123456789</Phone>

 <Seller>Bill Gates</Seller>

 </Shop>

 </ShopInformation>

</Root>
创建完成XML文档后则需要创建XSL文档，如图14-6所示。

[image: image6.png]#810) RO
Ve OF Vizusl Studie CREMBE S
J— o B O
WPF [Elver APt ERL
4 |3 SeRE Tl [l neb @tk
el] SN FPRR
Reporting % Ol 85
WorkfLow B Tseript fF

[50L Server $HBE
wWeb BBH

S Mindows WAEE
[s

B TR
AipEES

[RTR L SRR R

=) JRSITFLet walt

图14-6 创建XSLT文件

创建XSLT文件后，系统会自动生成代码，示例代码如下所示。

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl">

 <xsl:output method="xml" indent="yes"/>
 <xsl:template match="@* | node()">

 <xsl:copy>

 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>
上述代码将XSLT文件的输出方法设置为XML，为了能够方便对XML页面进行样式控制，可以将输出方法设置为HTML，XSLT文件示例代码如下所示。
<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl">

 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/Root/ShopInformation">

 <head>

 <title>

 一个XSLT样例

 </title>

 </head>

 <body>

 <div style="border:1px solid #ccc; padding:5px 5px 5px 5px;font-size;14px;">一个XSLT样例</div>

 <div style="padding:5px 5px 5px 5px;font-size;12px;">

 <xsl:value-of select="Shop"/>

 </div>

 </body>

 </xsl:template>

</xsl:stylesheet>
上述代码使用了XSLT文件对XML文件进行样式控制，首先需要声明XSLT文件，因为XSLT文件同样是基于XML的，所以在文件头部必须进行声明，示例代码如下所示。
<?xml version="1.0" encoding="utf-8"?>

同样XSLT也需要进行声明，示例代码如下所示。

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"

>

声明XSLT文件后，则可以编写XSLT文件的输出属性，创建时默认为XML，如果需要通过XSLT文件进行XML样式控制，则需要更改为HTML，示例代码如下所示。

 <xsl:output method="html" indent="yes"/>

编写XSLT文件的输出属性后，就可以编写XSL的模板，模板可以自定义标签也可以使用HTML标签。在编写模板时，需要指定模板规则的作用点，通过配置match属性可以配置模板规则的作用点，示例代码如下所示。

 <xsl:template match="/Root/ShopInformation">

从XML文件可以看出，根节点为Root，根节点Root下有一个ShopInformation节点，为了显示Shop节点的数据，则需要在模板规则的作用点的match属性设置路径。模板中，在需要呈现XML文档中相应节点的值可以使用<xsl:value-of>元素进行呈现，<xsl:value-of>元素将拷贝XML文档中相应的节点的值到该元素，并替换后呈现给浏览器，示例代码如下所示。

 <xsl:value-of select="Shop"/>

上述代码首先会通过模板路径找到相应节点，在这里使用select属性声明所要找到的节点名称，如<xsl:value-of select="Shop"/>，找到Shop节点后会将Shop节点的值替换<xsl:value-of select="Shop"/>，呈现给浏览器。在XML文档中，需要声明外部XSLT文件才能在访问XML页面时正确的解释标签，示例代码如下所示。

<?xml-stylesheet type="text/xsl" href="XSLTFile1.xslt"?>
直接在浏览器中浏览XSLT文件，则可以看到XSLT的结构树，如图14-7所示。XSLT文件制作了XML页面呈现时所需要的样式，从另一个角度来说，当用户在XML页面中定义了标签后，浏览器并不能解释这个标签，而可以通过XSLT文件告知浏览器如何解释自定义标签并呈现到页面，XML文件在浏览器中运行结果如图14-8所示。

[image: image7.png]=lolx|
COT)+ [rar/ocanone-armseraz] | 45| x| [EE Pl

vﬂv&gg & x|@n | |@--5§E-?—ﬁﬁm-

<2xml version="1.0" encoding="utf-g" 7>
- <xsl:stylesheet version="1.0"
xmins:xsl="http:/ /www.w3.0rg/1999/XSL /Transform"
xmins: msxsl="urn:schemas-microsoft-com:xslt" exclude-resuit-
prefixes="msxsl">
<xsl:output method="html" indent="yes" />
- <xsl:template match="/Root/ShopInformation">
- <head>
<title >—AXSLTHBI</title>
</head>
- <body>
<div style="border:1px solid #ccc; padding:5px 5px 5px
Spx;font-size;14px;’ >—AXSLTE </ div>
- <div style="padding:5px Spx 5px 5px;font-size
<xsl:value-of select="shop" />
</div>
</body>
</xsl:template>
</xsl:stylesheet>

2px;">

|

U0 T T T [G tmtranet | fRiPER: 27 [S00% ~

 [image: image8.png]=lolx|
G~ [imecanomsrson=] |43 | x| [e

% & =l |en |e-x| BB = omme-
|
—ANXSLTHE
_13SEAK 123456789 J Dan Bill Gates
|

[LT[GE e | RRES BA R -,

图14-7 XSLT结构树 图14-8 XML文件格式化输出

注意：IE 5.0以下版本的浏览器很可能无法浏览结构树，如果需要在浏览器中直接浏览XSLT文件或XML文件，需要IE 5.0以上版本。
14.5 Web服务（Web Service）
Web Service是Web服务器上的一些组件，客户端应用程序可通过Web发出HTTP请求来调用这些服务。通过ASP.NET开发人员可以创建自定义的Web Service或使用内置的应用程序服务，并从任何客户端应用程序调用这些服务。
14.5.1 什么是Web服务
Web服务（Web Service）可以被看作是服务器上的一个应用单元，它通过标准的XML数据格式和通用的Web协议为其他应用程序提供信息。Web Service为其他应用程序提供接口从而能够实现特定的任务，其他应用程序可以使用Web Service提供的接口实现信息交换。
Web Service的设计是为了解决不同平台，不同语言的技术层的差异，使用Web Service无论使用何种平台，何种语言都能够使用Web Service提供的接口，各种不同平台的应用程序也可以通过Web Service进行信息交互。

例如，当Web应用程序需要制作登录操作时，可以在Web页面进行登录操作设计，当Web应用逐渐壮大，当Web应用的某些应用可以发布到用户的操作系统时，就可以编写相应的应用程序来进行操作，如使用QQ类型的软件进行网站登录。但是这样做无疑产生了安全隐患，如果将服务器的用户名和地址等代码发布到本地，这样一些非法人员很可能能够通过反编译获取软件的信息，从而进行用户信息的盗取，而使用Web Service，本地应用程序可以调用Web应用中相应的方法来实现本地登录功能，而这些方法是存在于Web Service中。Web Service还具有以下特性：

· 实现了松耦合：应用程序与Web Service执行交互前，应用程序与Web Service之间的连接是断开的，当应用程序需要调用Web Service的方法时，应用程序与Web Service之间建立了连接，当应用程序实现了相应的功能后，应用程序与Web Service之间的连接断开。应用程序与Web应用之间的连接是动态建立的，实现了系统的松耦合。
· 跨平台性：Web Service是基于XML格式并切基于通用的Web协议而存在的，对于不同的平台，只要能够支持编写和解释XML格式文件就能够实现不同平台之间应用程序的相互通信。

· 语言无关性：无论是用何种语言实现Web Service，因为Web Service基于XML格式，只要该语言最后对于对象的表现形式和描述是基于XML的，不同的语言之间也可以共享信息。

· 描述性：Web Service使用WSDL作为自身的描述语言，WSDL具有解释服务的功能，WSDL还能够帮助其他应用程序访问Web Service。

· 可发现性：应用程序可以通过Web Service提供的注册中心查找和定位所需的Web Service。

Web Service也是使用和制作分布式所需的条件，使用Web Service能够让不同的应用程序之间进行交互操作，这样极大的简化了开发人员的平台的移植难度。

14.5.2 Web服务体系结构
要讲到Web Service体系结构就不得不提到SOA，SOA（Serveice-Oriented Architecture，面向服务的体系结构）是一个组件模型，它将应用程序的不同功能单元（称为服务）通过这些服务之间定义良好的接口和契约联系起来。
在SOA中，接口采用中立的方式定义，接口只声明开发人员如何继承和实现该接口，接口的声明应该是中立的、不依赖于平台、语言而实现的。接口相当于如何规定开发人员规范的进行Web Service中功能的实现。SOA具有以下特点。

· SOA服务具有平台独立的自我描述XML文档。Web服务描述语言（WSDL， Web Services Description Language）是用于描述服务的标准语言。

· SOA 服务用消息进行通信，该消息通常使用XML Schema来定义（也叫做XSD， XML Schema Definition）。

Web Service体系结构则采用了SOA模型，Web Service模型包含三个角色，这三个角色包括服务提供者、服务请求者和服务注册中心，如图14-9所示。

[image: image9.png]RSERPO

e

REERE

图14-9 Web Service体系结构

其中，服务提供者也可以称为服务的拥有者，它通过提供服务接口使Web Service在网络上是可用的。服务接口是可以被其他应用程序访问和使用的软件组件，如果服务提供者创建了服务接口，服务提供者会向服务注册中心发布服务，以注册服务描述。相对于Web Service而言，服务提供者可以看作访问服务的托管平台。
服务请求者也称为Web Service的使用者，服务请求者可以通过服务注册中心查找服务提供者，当请求者通过服务器中心查找到提供者之后，就会绑定到服务接口上，与服务提供者进行通信。相对于Web Service而言，服务请求者是寻找和调用提供者提供的接口的应用程序。

服务注册中心提供请求者和提供者进行信息通信，当服务提供者提供服务接口后，服务注册中心则会接受提供者发出的请求，从而注册提供者。而服务请求者对注册中心进行服务请求后，注册中心能够查找到提供者并绑定到请求者。
14.5.3 Web服务协议栈
在Web Service体系结构中，为了保证体系结构中的每个角色都能够正确和执行Web Service体系结构中的发布、查找和绑定操作，Web Service体系必须为每一层标准技术提供Web Service协议栈。Web Service协议栈如图14-10所示。
[image: image10.png]LS

BERR

AR

uDDI

WSDL

st

SOAP

HBEE

HTTP.
TP
SMPT.

R

PRI

图14-10 Web Service协议栈示意图

在Web Service协议栈中，最为底层的是网络传输层，Web服务协议是Web Service协议栈的基础。用户需要通过Web服务协议来调用服务接口。网络传输层可以使用多种协议，包括HTTP、FTP以及SMTP。
在网络传输层上一层的则是消息传递层，消息传递层使用SOAP作为消息传递协议，以实现服务提供者，服务注册中心和服务请求者之间进行信息交换。

在消息传底层之上的是服务描述层，服务描述层使用WSDL作为消息协议，WSDL使用XML语言来描述网络服务，在前面的章节中也讲到，WSDL具有自我描述性，它能够提供Web服务的一些特定信息。服务描述层包括了WSDL文档，这些文档包括功能、接口、结构等定义和描述。

在服务描述层之上的是服务发布层，该层使用UDDI协议作为服务的发布/集成协议。UDDI提供了Web服务的注册库，用于存储Web服务的描述信息。服务发布层能够为提供者提供发布Web服务的功能，也能够为服务请求者提供查询，绑定的功能。

当Web Service中触发了事件，如服务提供者发布服务接口、服务请求者请求服务等，服务提供者首先使用WSDL描述自己的服务接口，通过使用UDDI在服务器发布层向服务注册中心发布服务接口。服务注册中心则会返回WSDL文档。当服务请求者对服务注册中心执行服务请求，请求着通过WSDL文档的描述绑定相应的服务接口。

14.6 简单Web Service示例
在了解了Web Service基本的概念和协议栈的运行过程后，可以使用Visual Studio 2008进行Web Service应用程序的创建。单击菜单栏上的【文件】选项，在下拉菜单中选择【新建项目】选项，在新建项目窗口中选择【ASP.NET Web 服务应用程序】选项进行相应的应用程序创建，如图14-11所示。

[image: image11.png]IREAE) RO [8 Franevori 55 =]

Offics ZI[Visual Stadio CEEMER
HiEE
Reporting RSP T Yeb AL
= ASP.NET ATAX R3S SBIHE P WET ATAX RS SRIRPHY
e st 10T PRI vCr AL
Viswd 04 »
Hindows Ei]
¥eb :
e S
office
HiEE
Reporting
Ve
YorkLow
LM]
[FTERE WL ¥eb FRFSAUNE CNET Framevork 3.5)
E=10) [ies
O priise T 3 SERBEIE)
RTREH 0 18 ¥ ORERRARNER 0

w

图14-11 创建ASP.NET Web 服务应用程序

单击确定，系统则默认创建一个“Hello World”Web Service应用程序，示例代码如下所示。

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Services;

//使用WebServer命名空间
using System.Web.Services.Protocols;

//使用WebServer协议命名空间
using System.Xml.Linq;

namespace _14_6

{

 /// <summary>

 /// Service1 的摘要说明

 /// </summary>

 [WebService(Namespace = "http://tempuri.org/")]

 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

 [ToolboxItem(false)]

 // 若要允许使用 ASP.NET AJAX 从脚本中调用此 Web 服务，请取消对下行的注释。

 // [System.Web.Script.Services.ScriptService]

 public class Service1 : System.Web.Services.WebService

 {

 [WebMethod]

//声明为Web方法
 public string HelloWorld()

//创建Web方法
 {

 return "Hello World";

 }

 }

}
在上述代码中，系统引入了默认命名空间，这些空间为Web Service应用程序提供基础保障，这些命名空间声明代码如下所示。

using System.Web;

using System.Web.Services;

//使用WebServer命名空间
using System.Web.Services.Protocols;

//使用WebServer协议命名空间
运行该Web Service应用程序，运行结果如图14-12所示。
[image: image12.png]Servicel Internet Explorer

G~ B recanons ssworsrmicesome
* & Eservicel Heb RS

TR, BXEAEY BESESHE.

© HelloWorld

s Web BB http://tempuri.org/ {EAZABEZHE.
X AFF XML Web services 78 , EASASERE,

F0 XML Web services BEE—ME—AED , UESFRUSESEBETS Web LENERERST.
hitp://tempuri.ora/ AIFTATFANEE XML Web services , HERA) XML Web services TERENFANSES
.

EFSSSAS SRR XML Web services, 50, UERATS Internet SEEASETIN—TY, REAES
XML Web services SEZEEL URL , EEAVTEF Web LASSRAE, (XML Web services #&28% URL.)

7S ASP.NET 82 XML Web services 7, E[LUEES WebService 1514 Namespace RMEREHASEZA.
WebService FAEEETEA XML Web services Hiztt, TESARSNESEZRES
“http://microsoft.com/webservices/":

c#

[WebService (Namespace="http://microsoft .com/webservices/") |
public class MyWebService {

71 FW
i

U0 T T T [G tmtranet | fRiPER: 27

图14-12 Web Service应用程序

在运行Web Service应用程序后，Web Service应用程序将呈现一个页面。该页面显示了Web Service应用程序的名称，名称下面列举了Web Service应用程序中的方法。当开发人员增加方法时，Web Service应用程序方法列表则会自动增加。创建Web Service应用程序方法代码如下所示。

 [WebMethod]

//声明为Web方法
 public string PostMyTopic()

//创建Web方法
 {

 return "Your Topic has been posted";

//方法返回值
 }
保存并运行后，Web Service应用程序方法列表则会自动增加，如图14-13所示。单击该方法，Web Service应用程序会跳转到另一个页面，该页面提供了方法的调用测试，以及SOAP各个版本请求和相应的示例，如图14-14所示。

[image: image13.png]B - Tindows Internet Explorer -[o) x|

GO - [Err iiecaromsswsrsemce s l| 49| x| [5E P~
W B Esevict 10 B o B e o EEe -

Servi cef

TR, BXEAEY BESESHE.
* HelloWorld

+ PostMyTopic

T

[[[[[[[v | GPES 28 R0 -

 [image: image14.png]Servicel Internet Explorer

W A @ Servicet v

BE, FRERITIE.

PostMyTo|
Wit
EEEA HTTP POST iRieaiTing . Hes B8 &,

SOAP 1.1
TR SOAP 1.2 BRIMITTYL FETSSNEERSRE.

POST /Servicel.asmx HTTB/1.1
Host: localnost

Contenc-Type: texc/xml; charsec=ucf-g
Contenc-Length: length

SOAPACtion: "http://vempuri.org/PostMyTopic”

<2xml version="1.0" encoding="utf-8"2>
<soap:Envelope xmlns:xsi="htt]
<soap:Body>
<PostyTopic xmlns
</s0ap:Body>
</scap:Envelope>

‘http://tempuri.oxg/" />

/una.w3.02/2001/XMLSchena-instance” xmlns:xsd="http://

o

< |
L[] (G e | PR 2

[Fioot -

图14-13 Web Service应用程序方法列表 图14-14 测试方法

单击【调用】按钮，则浏览器会通过HTTP-POST协议向Web服务递交请求信息，方法被执行完毕后，返回XML格式的结果，如图14-15所示。

[image: image15.png]=gl
)+ [E] net A bocathost 5508/ Servicet =] | 43| X | [E%

U e || @ | @ X|

<2xml version="1.0" encoding="utf-g" 7>
<string xmins="http:/ /tempuri.org/">Your Topic has been posted</string>

= U0 T T T [G tmtranet | fRiPER: 27 [Rioos ~

图14-15 返回结果

14.7 自定义Web Service
在创建Web Service应用程序后，系统会自动创建Web Service应用程序并生成相关代码，通过修改自动生成的代码，能够快速创建和自定义Web Service应用程序，自定义Web Service应用程序能够让不同的应用程序引用Web Service提供的框架进行逻辑编程。
14.7.1 创建自定义的Web Service
通过创建自定义Web Service能够进行应用程序开发，Web Service同样支持带参数传递的方法，并能够在Web Service中进行数据查询等操作，保证了代码的安全性。创建一个Web Service，并编写相应的查询方法，示例代码如下所示。

 [WebMethod]

 public string Search(string title)

 {

 try

 {

 SqlConnection
 con = new SqlConnection("server='(local)';database='mytable';uid='sa';pwd='sa'");

 con.Open();

//打开数据库连接

 string strsql = "select * from mynews where title like '%" + title + "%'";
//查询语句
 SqlDataAdapter da = new SqlDataAdapter(strsql, con);

//创建适配器

 DataSet ds = new DataSet();

//创建数据集

 int i = da.Fill(ds, "mytable");

//填充数据集

 string result = "";

//初始化空字符串
 for (int j = 0; j < i; j++)

//遍历循环数据集
 {

 result += ds.Tables["mytable"].Rows[j]["title"].ToString() + "\n";
//输出结果，生成字符串
 }

 return result;

//返回结果
 }

 catch

 {

 string result = "没有任何结果";

 return result;

 }

 }
上述代码通过创建了一个Web Service方法进行新闻查询，通过新闻的标题title字段查询数据库中索引类似信息，运行Web Service应用程序后，其界面如图14-16所示。
单击Search按钮进行Web Service应用程序测试，对于需要传递参数的方法，测试过程中可以输入方法进行测试，如图14-17所示。

[image: image16.png]Servicel o

b B3 Internet Explorer =101 x|
B)~ B recaomssmmsisemens sm 2|49 % |[F P~

* & B servicst Vb 55 - "

- -y EEE - TR0 -

TR, BXEAEY BESESHE.

 Search

s Web BB http://tempuri.org/ {EAZABEZHE.
X AFF XML Web services 78 , EASASERE,

F0 XML Web services BEE—ME—AED , UESFRUSESEBETS Web LENERERST.
hitp://tempuri.ora/ AIFTATFANEE XML Web services , HERA) XML Web services TERENFANSES
.

EFSSSAS SRR XML Web services, 50, UERATS Internet SEEASETIN—TY, REAES
XML Web services SEZEEA URL , EEAVTEF Web LASSRAE, (XML Web services &&28% URL.) _'_I

K1} |
= U0 T T T [G tmtranet | fRiPER: 27 [# 1008 ~

 [image: image17.png]Internet Explorer -[o) x|

60v [E] vttp: iscathost 5508 5armicet. smtopsear =] 4| X | [FE Pl
W A Esevico v g5 B -y EEe - IR0 -

BE, FRERITIE.

Search
E
EEEF HTTP POST MNRERIERITING , B9E 8R" BE.

= &

tite: |

L]
sonp 1.1
LITE SOAP 1.2 BRIMITH. FETHSUNSERNTHE.

o

< |
B [T TG A et | fRIPER: 2R [#1008 -

图14-16 自定义Web Service应用程序 图14-17 输入参数

在文本框中输入title，单击【调用】按钮，则会向方法中传递参数并执行方法，执行方法后将会返回string类型的值，如图14-18所示。

[image: image18.png]http://localhost:55995/Servi cel. as

Internet Explorer -[o) x|

)~ [w7/ restbontsss955/servisal.smdsearen =] | 3| | [ol
e e || @sevica v | @i x| |@- "

<2xml versior
<string xmins

= -y FEE - TR0 -

=
*1.0" encoding="utf-8" 7>
“http://tempuri.org/">this is a new titlet </string>

|
= U0 T T T [G tmtranet | fRiPER: 27 [#ioow ~

图14-18 查询结果

在使用Web Service应用程序返回数据集时，可以直接返回DataSet对象，Web Service应用程序执行后将会将DataSet对象转换为XML格式并返回XML格式的执行结果，Search代码更改如下所示。

 [WebMethod]

 public DataSet Search(string title)

 {

 SqlConnection con = new SqlConnection("server='(local)';database='mytable';uid='sa';pwd='sa'");

 con.Open();

//打开数据连接
 string strsql = "select * from mynews where title like '%" + title + "%'";

//生成SQL语句
 SqlDataAdapter da = new SqlDataAdapter(strsql, con);

//创建适配器
 DataSet ds = new DataSet();

//创建数据集
 int i = da.Fill(ds, "mytable");

//填充数据集
 return ds;

//返回数据集
 }
上述代码查询后直接返回ds记录集，当输入查询字串“t”后，运行结果如图14-19所示。

[image: image19.png]http://localhost:55995/Servi cel. asnx/Search

ndc

Tnternet Explorer =1olx]

(00~ [v octhon ssstefervicst smmsfsewrar =] 43| X [FE [o]-]
W R e Brwin Xl |@vvg§uv§rﬁﬁm-@lam)-”

<2xml version="1.0" encoding="utf-g" 7>
- <Dataset xmins="http://tempuri.org/">
- <xs:schema id="NewDataSet’ xmins=""

xmins:xs="http:/ /www.w3.0rg/2001/XMLSchema" xmins:msdata="urr
icrosoft-com:xml-msdata">
- <xs:element name="NewDataSet' msdata:IsDataSet="true"
msdata:UseCurrentLocale="true">
- <xs:complexType>
- <xs:choice minOccurs="0" maxOccurs="unbounded">
- <xs:element name="mytable">
- <xs:complexType>

Bservicet 1

</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>

- <diffgr:

xmins:

~ <mytable diffgr

‘mytable1" msdata:rowOrder="0">

<ID>2</ID>
<TITLE>this is a new title! </ TITLE> |
</mytable>
- <mytable diffgr:id="mytable2" msdata:rowOrder
<ID>15</1D>
<TITLE>GEDataSetBART </ TITLE> -
= U0 T T T [G tmtranet | fRiPER: 27 [#ioow ~

图14-19 返回DataSet记录集
14.7.2 使用自定义的Web Service
当Web应用程序需要使用Web Service应用程序并调用其方法时，只需要添加服务引用即可。右击Web应用程序，选择【添加服务引用】选项，在弹出的添加服务引用窗口中单击【发现】按钮查找服务，如图14-20所示。

选择相应的服务引用后并更改命名空间，再单击【确定】按钮确认添加，则服务引用添加成功，在解决方案管理器中则会出现相应的服务引用，如图14-21所示。

[image: image20.png]21X

0 g - BB
FEESUEEAELITIRRATS RS UL, RN < « SRR
s

[itte: 7 Loealhost 55895 /Sarvi el azmx =] mEe || smo |-

5 S) $#(E©)

O Servical. ams

EERESAAEEERE.

TR RE | S

A BZziE o)

[perviceRefarsncal

 [image: image21.png]' i Froperties
= [DataSources
(% Systen. Data. DataSet. datasource
] AssemblyInfo. cs
=]
5 (3 Service Retermces
ervicubatusancel

hop1
ettt azpx
3 teb.conéie

 图14-20 添加服务引用 图14-21 服务引用添加完成

添加了服务引用之后，可以通过Web窗体使用和调用Web Service应用程序中的方法，Web窗体中HTML代码如下所示。

<body>

 <form id="form1" runat="server">

 <div>

 Search :

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:Button ID="Button1" runat="server" Text="开始搜索" onclick="Button1_Click"/>

 <asp:GridView ID="GridView1" runat="server">

 </asp:GridView>

 </div>

 </form>

</body>
创建了Web应用后则需要为按钮单击事件编写代码，示例代码如下所示。

 protected void Button1_Click(object sender, EventArgs e)

 {

 ServiceReference1.Service1SoapClient
 cs = new MyWeb.ServiceReference1.Service1SoapClient()

;//使用服务引用
 DataSet ds = new DataSet();

//创建数据集
 ds=cs.Search(TextBox1.Text);

//执行Web Service方法
 GridView1.DataSource = ds.Tables[0].DefaultView

;//绑定控件
 GridView1.DataBind();

//填充数据
 }
上述代码使用了服务引用，通过服务引用进行方法的实现，运行后如图14-22和图14-23所示。
[image: image22.png]=lo/x|

G0 el x

R

T % @xnEm | |@v >

=
Search :[f FHER
i) TITLE
2 this s a new tite!
15 {#EFDataSetiE A F1T|
|

[[(G FH Intranet | RIS BR

[-,

 [image: image23.png]=lo/x|

mv [E] vew iscatnont =] 49| % | [BE

T % @xnEm | |@ - ”
Search:| | JHEER
D TmE

1 HEXTHERE
2 thisis anew tile!

4 ENRsiRE

13 NINBENRGdR S0
14 NINHENRGdR S
15 {#EFDataSetiEAF{T|

|
[[G nraet | PR BR [R00x - |

图14-22 使用服务引用 图14-23 执行搜索

通过使用Web Service应用程序，从本地代码来看，隐藏了对数据的连接字串和查询操作代码，从应用程序角度来看，Web Service应用程序保证了应用程序的封闭性和安全性。
14.8 小结
本章讲解了XML文件基础，以及Web Service基础，XML作为.NET平台下微软强推的一种标记语言技术，其作用是不言而喻的。在SQL Server以及微软的其他应用软件中，也能够经常看到XML的影子，并且SQL Server 2005已经开始尝试支持XML数据类型，这说明XML在当今世界中的运用越来越广阔，也说明在未来的应用中，XML技术包含着广大的前景。通过讲解Web Service的基本概念，包括什么是Web Service，以及Web Service协议栈。同时，本章还包括：
· 创建XML文档：包括如何创建XML文档。

· XML控件：演示了如何使用XML控件呈现XML数据。

· XmlTextReader类：讲解了XmlTextReader类操作XML文档。

· XmlTextWriter类：讲解了XmlTextWriter类操作XML文档。

· XmlDocument类：讲解了XmlDocument类操作XML文档。

· XML串行化：讲解了XML串行化基本功能。

· XSL简介：介绍了XSL与HTML的异同。

· 使用XSLT：介绍了XSLT语法并通过XSLT控制XML样式。
· 什么是Web Service：讲解了Web Service基本概念。

· Web Service协议栈：讲解了Web Service协议栈的基本概念，以及Web Service是如何运作的。

本章还简单的讲解了XML串行化功能和通过程序创建Web Service示例，虽然串行化和Web Service只做了基本的讲解，但是熟练的掌握这些基础能够为今后的分布式开发打下良好的基础。

PAGE
389

