
Twilight Software Development Studio © 2011

1

如何:使用 PicturBox 实现类似淘宝网站图片的局部放大功能

选自：http://xuzhihong1987.blog.163.com/blog/static/267315872011822113131823/

概要：

 本文将讲述如何使用 PictureBox 控件实现图片的局部放大浏览功能，效果类似淘宝网

站的图片局部放大浏览，通过鼠标悬浮查看局部大图，同时扩展了鼠标滚轮放大缩小功能。

本文将详细讲述实现该功能的主要思路，例子虽是在 Winform 的环境下实现（当时开发的

系统用的是 winform），但是代码实现思路在其他环境（如 WPF）应该是通用的。

关键词：图片局部放大、PictureBox、图片细节展示

解决方案：

下面要实现的功能就是类似淘宝网站的图片局部放大功能，既然是山寨淘宝的功能，那

么我们首先来看一下淘宝网站图片放大的效果图：

当然这个图片是在淘宝首页上随便选的一张（呵呵，不含任何宣传的成分）。不管这个功能

淘宝官网是如何实现的，但是毋庸置疑，该功能非常实用（至少我个人还是感觉还是不错的），

即用户友好度很高。如果能把该功能做到我们自己的系统或网站中，那岂不是挺好？主动学

人之长，到哪都好用。可惜，我百度，google 了一下，竟然没人肯透露具体怎么做的，偶尔

有人问到，但是回答似乎不尽人意，笔者想想也对，虽然很大一部分人知道怎么做或是已经

做成功过了，但是没能把思想分享出来。那么就有我来抛砖引玉吧，期待更多的人参与讨论

和指导。

言归正传，我们按老规矩，还是先看看我们自己实现的效果图吧，由于只是为了实现功

能，布局什么的都没考虑，所以美观方面就不能和上面的图片效果进行比较了，大家暂时将

http://xuzhihong1987.blog.163.com/blog/static/267315872011822113131823/

Twilight Software Development Studio © 2011

2

就一下。

功能需求：

该功能的需求就是当鼠标悬浮在图片上，将该图片的固定大小（以鼠标点为中心的一个

矩形标识区域），右边以大图的方式显示出来，同时鼠标移动时，矩形区域随鼠标而动，右

边的浏览大图位置相应改变，便于用户查看图片细节。矩形标识区域和浏览大图都是是在鼠

标悬浮时出现，鼠标离开后消失，而且矩形标识区域边框只能在图片中，不能离开图片。

实现思路：

第一步：布局

Twilight Software Development Studio © 2011

3

按照上面的布局方式，在 Form 中放入三个 PictureBox 控件，ID 分别为：picBox、

picBox_Show、picBoxOriginal。该功能的实际应用上用到的只要两个就行，这里多加一个是

为了对比用。

 picBox:展示图，用于固定图片的大小，这里设置为 150×150px

 picBox_Show:图片局部放大显示的区域，默认为 400×300，大小可根据鼠标滚轮进行缩

放。

 picBoxOriginal：是实际图片的尺寸，在这里是为了对比效果。找的一张 200×200px 的

原图。

将 picBox_Show 的 BorderStyle 的属性设置为 FixedSingle，即有边框，Visible 的属性设置为 false，

即开始运行是不显示 picBox_Show。

将 picBox 的 SizeMode 属性设置为 Zoom。【重要】设置为等比例缩放，避免图片显示变形。

为 picBox 和 picBoxOriginal 选择一张图片（Image 属性），注：两个是同一张图片

第二步：鼠标事件

由于 picBoxOrginal 只是为了对比效果，仅仅是显示而已，我们不需要对其操作。

对 picBox 注册三个事件：鼠标移动 MouseMoveve、鼠标离开 MouseLeave、Paint 事件。只

属性的事件中双击即可自动在.cs 文件中生成事件（当然你喜欢的话，后加代码注册也可以，

笔者比较懒，喜欢双击的）。

注：你们自动生成的都应该是 picBox_Paint、picBox_MouseMove、picBox_MouseLeave 事件，

因为一开始自动生成用的是默认的 ID（pictureBox1），后来为了正规点就换了个 ID，这里就

没改了，当然这不影响我们的功能。

 private void pictureBox1_Paint(object sender, PaintEventArgs e)

 {

 //定位逻辑，详细后面实现

}

Twilight Software Development Studio © 2011

4

Paint 事件中处理逻辑：当鼠标移动在图片的某个位置时，我们需要绘个长方形区域，同时

显示局部放大图片（picBox_Show）。当执行 picBox.Refresh()方法时将触发该事件。

 private void pictureBox1_MouseMove(object sender, MouseEventArgs e)

 {

 picBox.Focus(); //否则滚轮事件无效

 isMove = true;

 movedPoint_X = e.X;

 movedPoint_Y = e.Y;

 picBox.Refresh();

 }

在鼠标移动事件中，我们需要记录当前鼠标点的位置 ，有全局变量movedPoint_X, movedPoint_Y存储。

 //鼠标移动后点的坐标

 int movedPoint_X, movedPoint_Y;

同时我们需要设置一个鼠标移动状态isMove ，作为全局变量[bool isMove = false;]，标识是否需要重新

绘图。

 private void pictureBox1_MouseLeave(object sender, EventArgs e)

 {

 picBox_Show.Visible = false;

 picBox.Refresh();

 picBox_Show.Width = 400;

 picBox_Show.Height = 300;

 }

鼠标移开后，局部显示图片(picBox_Show)隐藏，picBox 绘制的长方形也要去掉，最简单的就是调用

Refresh()方法了。

 void picBox_Show_MouseWheel(object sender, MouseEventArgs e)

 {

 double scale = 1;

 if (picBox_Show.Height > 0)

 {

 scale = (double)picBox_Show.Width / (double)picBox_Show.Height;

 }

 picBox_Show.Width += (int)(e.Delta * scale);

 picBox_Show.Height += e.Delta;

 }

鼠标滑轮事件，当鼠标滑动时，picBox_Show 的大小可以改变。这个事件需要代码注册：picBox.MouseWheel

+= new MouseEventHandler(picBox_Show_MouseWheel);写在构造函数中。[当然取名为：picBox_MouseWheel

似乎更合理，呵呵]

效果如下所示，picBox_Show 随鼠标滚轮等比例放大：

Twilight Software Development Studio © 2011

5

第三步：区域定位

 这一步我们就是写 Paint 方法了，也就是这个功能的核心。需要做的功能就是画带网格

的矩形，和显示矩形选择区域对于的大图。

 画带网格的矩形

我们选择先画矩形（DrawRectangle 方法），再填充网格的方式解决。为什么不直接使用

更简单的阴影画笔画网格（FillRectangle 方法）呢?等一下我会讲到。

画 矩 形 的 原 理 如 上 图 所 示 ， A 点 时 刻 记 录 鼠 标 点 的 位 置 ， 坐 标 为

（movedPoint_X,movedPoint_Y）,在 MoveMove 事件中改变值。

 movedPoint_X = e.X;

 movedPoint_Y = e.Y;

Twilight Software Development Studio © 2011

6

知道鼠标点位置我们就开始画长方形了，直接使用 DrawRectangle 方法，改方法需要两个参

数：画笔和长方形。

画笔全局定义为：

 Pen pen = new Pen(Color.FromArgb(91, 98, 114)); //画笔颜色

 长方形需要知道左上角的坐标 B 点（_x,_y），计算如下：

 /*画长方形*/

 int _x = movedPoint_X - rect_W/2;

 int _y = movedPoint_Y - rect_H/2;

需要注意的是，就是边界问题，如下图所示：

边界问题解决如下：

 _x = _x < 0 ? 0 : _x;

 _y = _y < 0 ? 0 : _y;

 _x = _x >= picBox.Width-rect_W ? picBox.Width-rect_W-3 : _x; //减3px的目的就

是为了让长方形的边框不会刚好被picBox的边框挡住了

 _y = _y >= picBox.Height-rect_H? picBox.Height-rect_H-3: _y;

 Rectangle rect = new Rectangle(_x,_y, rect_W, rect_H);

g.DrawRectangle(pen, rect);//其中： Graphics g = e.Graphics;

长方形好了，那么我们就开始填充网格了，网格填充其实就是在矩形区域中画线平均分割成小方格。

预先定义一下网格的形式：

 //网格边长：5px 一格

 const int gridSize = 2;

 //网格的行、列数

 int rowGridCount = rect_H / gridSize;

 int columnGridCount = rect_W / gridSize;

那么画网格直接循环即可，横竖画线，如下代码：

 //*填充网格*/

 int x1, x2, y1, y2;

 x1 = x2 = _x;

 y1 = y2 = _y;

Twilight Software Development Studio © 2011

7

 x2 += rect_W;

 for (int i = 1; i < rowGridCount; i++)

 {

 y1 += gridSize;

 y2 += gridSize;

 g.DrawLine(pen, x1, y1, x2, y2);

 }

 x1 = x2 = _x;

 y1 = y2 = _y;

 y2 += rect_H;

 for (int j = 1; j < columnGridCount; j++)

 {

 x1 += gridSize;

 x2 += gridSize;

 g.DrawLine(pen, x1, y1, x2, y2);

 }

 显示矩形选择区域对于的大图

该步重点就是根据等比例裁剪图片，计算缩放比例：

 Bitmap bmp = (Bitmap)picBox.Image;

 double rate_W = Convert.ToDouble(bmp.Width) / picBox.Width;

 double rate_H = Convert.ToDouble(bmp.Height) / picBox.Height;

bmp 得到的是实际的图片大小，由于我们前面设置了 picBox 的 SizeMode 属性为 Zoom，

所以我们看到的 picBox 大小可能是经过了缩放的。所以不要错误地认为

rate_W=rate_H==1

这样的话，我们使用位图的 Clone 方法，截取网格矩形对应原图的局部图形 bmp2:

 Bitmap bmp2 = bmp.Clone(new Rectangle(Convert.ToInt32(rate_W*_x),

Convert.ToInt32(rate_H*_y), Convert.ToInt32(rate_W*rect_W), Convert.ToInt32(rate_H*rect_H)),

picBox.Image.PixelFormat);

最后个picBox_Show的Image属性赋值：

 picBox_Show.Image = bmp2;

picBox_Show.SizeMode = PictureBoxSizeMode.Zoom;

 picBox_Show.Visible = true;

当然没错赋值之前记得释放一下资源：

 if (picBox_Show.Image != null)

 {

 picBox_Show.Image.Dispose();

 }

到这里就完成了我们所需要的功能，是不是感觉很简单？是的，我也这么认为，以后碰到没实现过的东西，

仔细研究一下原理，那么就容易实现了，祝大家顺利成功。

 画网格为什么避简求难？

最后简单解释一下：我们选择先画矩形（DrawRectangle 方法），再填充网格的方式解决。

为什么不直接使用更简单的阴影画笔画网格（FillRectangle 方法）呢?

Twilight Software Development Studio © 2011

8

 确实这样做效率低，而且实现逻辑还比较麻烦。

大家先看看下图就明白了：

附后台完整代码：

 public Form1()

 {

 InitializeComponent();

 picBox.MouseWheel += new MouseEventHandler(picBox_Show_MouseWheel);

 }

 void picBox_Show_MouseWheel(object sender, MouseEventArgs e)

 {

 double scale = 1;

 if (picBox_Show.Height > 0)

 {

 scale = (double)picBox_Show.Width / (double)picBox_Show.Height;

 }

 picBox_Show.Width += (int)(e.Delta * scale);

 picBox_Show.Height += e.Delta;

 }

Twilight Software Development Studio © 2011

9

 bool isMove = false;

 //鼠标移动后点的坐标

 int movedPoint_X, movedPoint_Y;

 //画笔颜色

 Pen pen = new Pen(Color.FromArgb(91, 98, 114));

 HatchBrush brush = new HatchBrush(HatchStyle.Cross, Color.FromArgb(91, 98,

114),Color.Empty); //使用阴影画笔画网格

 //选取区域的大小

 const int rect_W = 80;

 const int rect_H = 60;

 //网格边长：5px 一格

 const int gridSize = 2;

 //网格的行、列数

 int rowGridCount = rect_H / gridSize;

 int columnGridCount = rect_W / gridSize;

 private void pictureBox1_Paint(object sender, PaintEventArgs e)

 {

 if (isMove == true)

 {

 Graphics g = e.Graphics;

 /*画长方形*/

 int _x = movedPoint_X - rect_W/2;

 int _y = movedPoint_Y - rect_H/2;

 _x = _x < 0 ? 0 : _x;

 _y = _y < 0 ? 0 : _y;

 _x = _x >= picBox.Width-rect_W ? picBox.Width-rect_W-3 : _x; //减3px的目的就

是为了让长方形的边框不会刚好被picBox的边框挡住了

 _y = _y >= picBox.Height-rect_H? picBox.Height-rect_H-3: _y;

 Rectangle rect = new Rectangle(_x,_y, rect_W, rect_H);

 g.DrawRectangle(pen, rect);

 // g.FillRectangle(brush, rect);

 ///*填充网格*/

 int x1, x2, y1, y2;

 x1 = x2 = _x;

 y1 = y2 = _y;

 x2 += rect_W;

 for (int i = 1; i < rowGridCount; i++)

Twilight Software Development Studio © 2011

10

 {

 y1 += gridSize;

 y2 += gridSize;

 g.DrawLine(pen, x1, y1, x2, y2);

 }

 x1 = x2 = _x;

 y1 = y2 = _y;

 y2 += rect_H;

 for (int j = 1; j < columnGridCount; j++)

 {

 x1 += gridSize;

 x2 += gridSize;

 g.DrawLine(pen, x1, y1, x2, y2);

 }

 /*裁剪图片*/

 if (picBox_Show.Image != null)

 {

 picBox_Show.Image.Dispose();

 }

 Bitmap bmp = (Bitmap)picBox.Image;

 //缩放比例

 double rate_W = Convert.ToDouble(bmp.Width) / picBox.Width;

 double rate_H = Convert.ToDouble(bmp.Height) / picBox.Height;

 Bitmap bmp2 = bmp.Clone(new Rectangle(Convert.ToInt32(rate_W*_x),

Convert.ToInt32(rate_H*_y), Convert.ToInt32(rate_W*rect_W), Convert.ToInt32(rate_H*rect_H)),

picBox.Image.PixelFormat);

 picBox_Show.Image = bmp2;

 picBox_Show.SizeMode = PictureBoxSizeMode.Zoom;

 picBox_Show.Visible = true;

 isMove = false;

 }

 }

 private void pictureBox1_MouseMove(object sender, MouseEventArgs e)

 {

 picBox.Focus(); //否则滚轮事件无效

 isMove = true;

 movedPoint_X = e.X;

Twilight Software Development Studio © 2011

11

 movedPoint_Y = e.Y;

 picBox.Refresh();

 }

 private void pictureBox1_MouseLeave(object sender, EventArgs e)

 {

 picBox_Show.Visible = false;

 picBox.Refresh();

 picBox_Show.Width = 400;

 picBox_Show.Height = 300;

 }

 Feitianxinhong 2011-09-22

