深入浅出C#三层架构 
本文用一个示例来介绍如何建设一个三层架构的项目，并说明项目中各个文件所处的层次与作用。写本文的目的，不是为了说明自己的这个方法有多对，而是希望给那些初学三层架构却不知从何入手的朋友提供一点帮助。因为网上的文章，大多是注重理论的介绍，而忽略了具体的实践应用，或者有示例但讲得不透彻。导致看了之后，理论上又学习了一遍，但还是不知道代码怎么写。所以想从这个方面入手写一下，让从来没做过三层架构的初学者也能照猫画虎，写出代码来。文中的代码是伪代码，仅用来阐明思路。
   正文：
一提三层架构，大家都知道是表现层（UI），业务逻辑层（BLL）和数据访问层（DAL），而且每层如何细分也都有很多的方法。但具体代码怎么写，到底那些文件算在哪一层，却是模模糊糊的。下面用一个简单的例子来带领大家实战三层架构的项目，这个例子只有一个功能，就是用户的简单管理。
首先建立一个空白解决方案，添加如下项目及文件

1、添加ASP.NET Web Application项目，命名为UI，新建Web Form类型文件User.aspx（含User.aspx.cs）

2、添加ClassLibrary项目，命名为BLL，新建Class类型文件UserBLL.cs

3、添加ClassLibrary项目，命名为DAL，新建Class类型文件UserDAL.cs。添加SQLHelper引用。（这个是微软的数据访问类，也可以不用，直接编写所有的数据访问代码。我一般用自己写的数据访问类DataAccessHelper ）。

4、添加ClassLibrary项目，命名为Model，新建Class类型文件UserModel.cs

5、添加ClassLibrary项目，命名为IDAL，新建Interface类型文件IUserDAL.cs

6、添加ClassLibrary项目，命名为ClassFactory

相信大家已经看出来了，这个和Petshop的示例没什么区别，而且更简单，因为在下也是通过Petshop学习三层架构的。但一些朋友对于这几个项目所处的层次，以及它们之间的关系，可能比较模糊，这里逐个说明一下：

1、User.aspx和User.aspx.cs

这两个文件（以及文件所属的项目，下面也是如此，不再重复强调了）都属于表现层部分。User.aspx比较好理解，因为它就是显示页面了。User.aspx.cs有些人觉得不应该算，而是要划到业务逻辑层中去。如果不做分层的话，那么让User.aspx.cs来处理业务逻辑，甚至操作数据库都没什么问题，但是做分层的话，这样就不应该了。在分层结构中，User.aspx.cs仅应该处理与显示有关的内容，其它部分都不应该涉及。

举例：我们实现用列表方式显示用户的功能，那么提取信息的工作是由BLL来做的，UI（本例中是User.aspx.cs）调用BLL得到UserInfo后，通过代码绑定到User.aspx的数据控件上，就实现了列表的显示。在此过程中User.aspx.cs对UI没有起到什么作用，仅是用来传递数据，而且因为实际编码中大部分情况都是如此的实现，所以使有些人觉得User.aspx.cs不应该算UI，而应该并入BLL负责逻辑处理。继续往下看，这时提出了一个新需求，要求在每个用户的前面加一个图标，生动地表现出用户的性别，而且不满18岁的用儿童图标表示。这个需求的实现，就轮到User.aspx.cs来做了，这种情况下User.aspx.cs才算有了真正的用途。

2、NewBLL.cs

添加如下方法：

public IList<UserInfo> GetUsers()：返回所有的用户信息列表

public UserInfo GetUser(int UserId)：返回指定用户的详细信息

public bool AddUser(UserInfo User)：新增用户信息

public bool ChangeUser(UserInfo User)：更新用户信息

public void RemoveUser(int UserId)：移除用户信息

此文件就属于业务逻辑层了，专门用来处理与业务逻辑有关的操作。可能有很多人觉得这一层唯一的用途，就是把表现层传过来的数据转发给数据层。这种情况确实很多，但这只能说明项目比较简单，或者项目本身与业务的关系结合的不紧密（比如当前比较流行的MIS），所以造成业务层无事可做，只起到了一个转发的作用。但这不代表业务层可有可无，随着项目的增大，或者业务关系比较多，业务层就会体现出它的作用来了。

此处最可能造成错误的，就是把数据操作代码划在了业务逻辑层，而把数据库作为了数据访问层。

举例：有些朋友感觉BLL层意义不大，只是将DAL的数据提上来就转发给了UI，而未作任何处理。看一下这个例子

BLL层

SelectUser（UserInfo userInfo）根据传入的username或email得到用户详细信息。

IsExist（UserInfo userInfo）判断指定的username或email是否存在。

然后DAL也相应提供方法共BLL调用

SelectUser（UserInfo userInfo）

IsExist（UserInfo userInfo）

这样BLL确实只起到了一个传递的作用。

但如果这样做：

BLL.IsExist（Userinfo userinfo）

{

UerInfo user = DAL.SelectUser（User）；


return (userInfo.Id != null);

}

那么DAL就无需实现IsExist()方法了，BLL中也就有了逻辑处理的代码。

3、UserModel.cs

实体类，这个东西，大家可能觉得不好分层。包括我以前在内，是这样理解的：UIßàModelßàBLLßàModelßàDAL，如此则认为Model在各层之间起到了一个数据传输的桥梁作用。不过在这里，我们不是把事情想简单，而是想复杂了。

Model是什么？它什么也不是！它在三层架构中是可有可无的。它其实就是面向对象编程中最基本的东西：类。一个桌子是一个类，一条新闻也是一个类，int、string、doublie等也是类，它仅仅是一个类而已。

这样，Model在三层架构中的位置，和int，string等变量的地位就一样了，没有其它的目的，仅用于数据的存储而已，只不过它存储的是复杂的数据。所以如果你的项目中对象都非常简单，那么不用Model而直接传递多个参数也能做成三层架构。

那为什么还要有Model呢，它的好处是什么呢。下面是思考一个问题时想到的，插在这里： 

Model在各层参数传递时到底能起到做大的作用？

在各层间传递参数时，可以这样：

AddUser（userId，userName，userPassword，…，）

也可以这样：

AddUser（userInfo）

这两种方法那个好呢。一目了然，肯定是第二种要好很多。

什么时候用普通变量类型（int,string,guid,double）在各层之间传递参数，什么使用Model传递？下面几个方法：

SelectUser（int UserId）

SelectUserByName（string username）

SelectUserByName（string username，string password）

SelectUserByEmail（string email）

SelectUserByEmail（string email，string password）

可以概括为：

SelectUser（userId）

SelectUser（user）

这里用user这个Model对象囊括了username，password，email这三个参数的四种组合模式。UserId其实也可以合并到user中，但项目中其它BLL都实现了带有id参数的接口，所以这里也保留这一项。

传入了userInfo，那如何处理呢，这个就需要按照先后的顺序了，有具体代码决定。

这里按这个顺序处理

首先看是否同时具有username和password，然后看是否同时具有email和password，然后看是否有username，然后看是否有email。依次处理。

这样，如果以后增加一个新内容，会员卡（number），则无需更改接口，只要在DAL的代码中增加对number的支持就行，然后前台增加会员卡一项内容的表现与处理即可。

4、UserDAL.cs

public IList<UserInfo> SelectUsers()：返回所有的用户信息列表

public UserInfo SelectUser(int UserId)：返回指定用户的相信信息

public bool InsertUser(UserInfo User)：新增用户信息

public bool UpdateUser(UserInfo User)：更新用户信息

public void DeleteUser(int UserId)：移除用户信息

很多人最闹不清的就是数据访问层，到底那部分才算数据访问层呢？有些认为数据库就是数据访问层，这是对定义没有搞清楚，DAL是数据访问层而不是数据存储层，因此数据库不可能是这一层的。也有的把SQLHelper（或其同类作用的组件）作为数据访问层，它又是一个可有可无的东西，SQLHelper的作用是减少重复性编码，提高编码效率，因此如果我习惯在乎效率或使用一个非数据库的数据源时，可以丢弃SQLHelper，一个可以随意弃置的部分，又怎么能成为三层架构中的一层呢。

可以这样定义：与数据源操作有关的代码，就应该放在数据访问层中，属于数据访问层

5、IUserDAL

数据访问层接口，这又是一个可有可无的东西，因为Petshop中带了它和ClassFactory类工厂，所以有些项目不论需不需要支持多数据源，都把这两个东西做了进来，有的甚至不建ClassFactory而只建了IDAL，然后“IUserDAL iUserDal = new UserDAL();”，不知意义何在。这就完全是画虎不成反类犬了。

许多人在这里有一个误解，那就是以为存在这样的关系：BLLßàIDALßàDAL，认为IDAL起到了BLL和DAL之间的桥梁作用，BLL是通过IDAL来调用DAL的。但实际是即使你如此编码：“IUserDAL iUserDal = ClassFacotry.CreateUserDAL()；”，那么在执行“iUserDal.SelectUsers()”时，其实还是执行的UserDAL实例，而不是IUserDAL实例，所以IDAL在三层中的位置是与DAL平级的关系。

通过上面的介绍，基本上将三层架构的层次结构说明了。其实，本人有一个判断三层架构是否标准的方法，那就是将三层中的任意一层完全替换，都不会对其它两层造成影响，这样的构造基本就符合三层标准了（虽然实现起来比较难^_^）。例如如果将项目从B/S改为C/S（或相反），那么除了UI以外，BLL与DAL都不用改动；或者将SQLServer改为Oracle，只需替换SQLServerDAL到OracleDAL，无需其它操作等等。本来想在文中加入一些具体的代码的，但感觉不是很必要，如果大家觉得需要的话，我再补充吧。

总结：不要因为某个层对你来说没用，或者实现起来特别简单，就认为它没有必要，或者摒弃它，或者挪作它用。只要进行了分层，不管是几层，每一层都要有明确的目的和功能实现，而不要被实际过程所左右，造成同一类文件位于不同层的情况发生。也不要出现同一层实现了不同的功能的情况发生。
















· 浅析C#中三层架构的实现
· http://developer.51cto.com  2008-12-09 14:18  佚名  中国IT教育整理  我要评论(1) 
本文讨论如何在C＃中实现三层架构，使用MS Access数据库存储数据。同时在三层架构中实现一个小型的可复用的组件来保存客户数据，并提供添加、更新、查找客户数据的功能。
这篇文章讨论如何在C＃中实现三层架构，使用MS Access数据库存储数据。在此，我在3层架构中实现一个小型的可复用的组件保存客户数据。并提供添加，更新，查找客户数据的功能。
背景
首先，我介绍一些3层架构的理论知识。简单说明：什么是3层架构？3层架构的优点是什么？
什么是三层架构？
3层架构是一种“客户端－服务器”架构，在此架构中用户接口，商业逻辑，数据保存以及数据访问被设计为独立的模块。主要有3个层面，第一层（表现层，GUI层），第二层（商业对象，商业逻辑层），第三层（数据访问层）。这些层可以单独开发，单独测试。
为什么要把程序代码分为3层。把用户接口层，商业逻辑层，数据访问层分离有许多的优点。
在快速开发中重用商业逻辑组件，我们已经在系统中实现添加，更新，删除，查找客户数据的组件。这个组件已经开发并且测试通过，我们可以在其他要保存客户数据的项目中使用这个组件。
系统比较容易迁移，商业逻辑层与数据访问层是分离的，修改数据访问层不会影响到商业逻辑层。系统如果从用SQL Server存储数据迁移到用Oracle存储数据，并不需要修改商业逻辑层组件和GUI组件
系统容易修改，假如在商业层有一个小小的修改，我们不需要在用户的机器上重装整个系统。我们只需要更新商业逻辑组件就可以了。
应用程序开发人员可以并行，独立的开发单独的层。
代码
这个组件有3层，第一个层或者称为GUI层用form实现，叫做FrmGUI。第二层或者称为商业逻辑层，叫做BOCustomer，是Bussniess Object Customer的缩写。最后是第三层或者称为数据层，叫做DACustomer，是Data Access Customer的缩写。为了方便，我把三个层编译到一个项目中。
用户接口层
下面是用户接口成的一段代码，我只选取了调用商业逻辑层的一部分代码。
//This function get the details from the user via GUI

//tier and calls the Add method of business logic layer.

private void cmdAdd_Click(object sender, System.EventArgs e)

{

try

{

cus = new BOCustomer();

cus.cusID=txtID.Text.ToString();

cus.LName = txtLName.Text.ToString();

cus.FName = txtFName.Text.ToString();

cus.Tel= txtTel.Text.ToString();

cus.Address = txtAddress.Text.ToString();

cus.Add();

}

catch(Exception err)

{

MessageBox.Show(err.Message.ToString());

}

}
 
//This function gets the ID from the user and finds the

//customer details and return the details in the form of

//a dataset via busniss object layer. Then it loops through

//the content of the dataset and fills the controls.
 
private void cmdFind_Click(object sender, System.EventArgs e)

{

try

{

String cusID = txtID.Text.ToString();
 
BOCustomer thisCus = new BOCustomer();
 
DataSet ds = thisCus.Find(cusID);
 
DataRow row;

row = ds.Tables[0].Rows[0];
 
//via looping

foreach(DataRow rows in ds.Tables[0].Rows )

{

txtFName.Text = rows["CUS_F_NAME"].ToString();

txtLName.Text = rows["CUS_L_NAME"].ToString();

txtAddress.Text = rows["CUS_ADDRESS"].ToString();

txtTel.Text = rows["CUS_TEL"].ToString();

}

}

catch (Exception err)

{

MessageBox.Show(err.Message.ToString());

}
 
}
 
//this function used to update the customer details.

private void cmdUpdate_Click(object sender, System.EventArgs e)

{

try

{

cus = new BOCustomer();

cus.cusID=txtID.Text.ToString();

cus.LName = txtLName.Text.ToString();

cus.FName = txtFName.Text.ToString();

cus.Tel= txtTel.Text.ToString();

cus.Address = txtAddress.Text.ToString();
 
cus.Update();

}

catch(Exception err)

{

MessageBox.Show(err.Message.ToString());

}

}
商业逻辑层
下面是商业逻辑层的所有代码，主要包括定义customer对象的属性。但这仅仅是个虚构的customer对象，如果需要可以加入其他的属性。商业逻辑层还包括添加，更新，查找，等方法。
商业逻辑层是一个中间层，处于GUI层和数据访问层中间。他有一个指向数据访问层的引用cusData = new DACustomer().而且还引用了System.Data名字空间。商业逻辑层使用DataSet返回数据给GUI层。
using System;
using System.Data;
namespace _3tierarchitecture
{
／／／
／／／ Summary description for BOCustomer.
／／／
public class BOCustomer
{
／／Customer properties
private String fName;
private String lName;
private String cusId;
private String address;
private String tel;
private DACustomer cusData;
public BOCustomer()
{
／／An instance of the Data access layer!
cusData = new DACustomer();
}
／／／
／／／ Property FirstName (String)
／／／
public String FName
{
get
{
return this.fName;
}
set
{
try
{
this.fName = value;
if (this.fName == "")
{
throw new Exception(
"Please provide first name ...");
}
}
catch(Exception e)
{
throw new Exception(e.Message.ToString());
}
}
}
／／／
／／／ Property LastName (String)
／／／
public String LName
{
get
{
return this.lName;
}
set
{
／／could be more checkings here eg revmove ' chars
／／change to proper case
／／blah blah
this.lName = value;
if (this.LName == "")
{
throw new Exception("Please provide name ...");
}
}
}
／／／
／／／ Property Customer ID (String)
／／／
public String cusID
{
get
{
return this.cusId;
}
set
{
this.cusId = value;
if (this.cusID == "")
{
throw new Exception("Please provide ID ...");
}
}
}
／／／
／／／ Property Address (String)
／／／
public String Address
{
get
{
return this.address;
}
set
{
this.address = value;

if (this.Address == "")
{
throw new Exception("Please provide address ...");
}
}
}
／／／
／／／ Property Telephone (String)
／／／
public String Tel
{
get
{
return this.tel;
}
set
{
this.tel = value;
if (this.Tel == "")
{
throw new Exception("Please provide Tel ...");
}
}
}
／／／
／／／ Function Add new customer. Calls
／／／ the function in Data layer.
／／／
public void Add()
{
cusData.Add(this);
}
／／／
／／／ Function Update customer details.
／／／ Calls the function in Data layer.
／／／
public void Update()
{
cusData.Update(this);
}
／／／
／／／ Function Find customer. Calls the
／／／ function in Data layer.
／／／ It returns the details of the customer using
／／／ customer ID via a Dataset to GUI tier.
／／／
public DataSet Find(String str)
{
if (str == "")
throw new Exception("Please provide ID to search");
DataSet data = null;
data = cusData.Find(str);
return data;
}
}
}
数据访问层
数据层包括处理MS Access数据库的细节。所有这些细节都是透明的，不会影响到商业逻辑层。数据访问层有个指向商业逻辑层的引用BOCustomer cus。为了应用方便并且支持其他数据库。
using System;
using System.Data.OleDb;
using System.Data;
namespace _3tierarchitecture
{
///
/// Summary description for DACustomer.
///
public class DACustomer
{
private OleDbConnection cnn;
//change connection string as per the
//folder you unzip the files
private const string CnnStr =
"Provider=Microsoft.Jet.OLEDB.4.0;Data " +
"Source= D:\\Rahman_Backup\\Programming\\" +
"Csharp\\3tierarchitecture\\customer.mdb;";
//local variables

