· Xml作为一个非常重要的纯文本格式已经进入了编程的很多领域，作为一个面向应用层面的c#也一样在很多领域离不开Xml。

 但是，c#在很多方面对Xml做了写封装，以至于很多操作Xml的代码，都不需要手动去写。例如，c#写WebService这种需要大量操作Xml的服务，除了极其个别的情况下，基本看不到任何操作Xml的代码。这是c#的一个优势，但是，最近发现正是这样一些c#的优势，导致了新一代c#程序员的能力退化。因为90%的情况下，不需要手动操作Xml，所以，年轻的c#程序员也觉得没必要为了这10%的情况，而去学如何手工读写Xml。真不知道，ms提供了这么简便的工具，是ms做的善事还是作的孽。。。

 好吧，废话就不说了，转入主题。

1.如何用Xml Dom的方式读取Xml

 Xml Dom方式是最原始的一种操作Xml的途径，从.net Framework 1.0开始就开始支持Dom方式。

1.1如何以Dom方式加载Xml

 要读取Xml首先要加载Xml，加载的方式有两种，一种是从流或类似的Reader加载，例如：

 当然还可以从字符串加载：

1.1读取无namespace的Xml

 Xml已经准备好了，下面就开始读取这个Xml。现在希望读取data节下面的所有item中的text，那么就可以：

 看看运行结果：

 但是，这样写的问题有很多，例如在data节点中有非item的节点，这样访问，也就被无差别的把非item项也写出来了。例如把如果数据改成这样：

 这样，在data节里面，除了4个item，还有一个other，这个other是不需要的，必须被排除掉，如果直接用第一中ChildNodes去访问的话，会得到这样的结果：

 显然“!@#”也被选择出来了，这可不是我们所期望的，

 所以，改用XPath的方式访问：

 其运行结果为：

 很好的other项排除在需要的节点外，这才是我们真正想要的结果:)

1.2读取有namespace的Xml

 和c#一样Xml也有namespace，并且namespace在Xml中的作用巨大，也许你并未感受到namespace的作用，但是，你可能已经不得不面对那些有namespace的Xml了。

 好吧，我们先加载一个有namespace的xml：

 这里，我们准备了一个namespace——urn:vwxyzh，并且把这个namespace缩写成v。举个例子来说，v:data就是urn:vwxyzh这个namespace下面的data。

 现在再用原来的XPath去跑一下：

 Oh, no!一个也没有选择出来，为什么会这样哪？

 因为原来的/data/item中的data节是没有namespace的data，和urn:vwxyzh的data不是一回事，所以，这个XPath根本定为不到任何节点。

 必须要修改部分代码才能达到我们的目的，先来看看Select方法有哪些重载吧：

 第一个重载，就是之前使用的那个，第二个重载，需要额外提供一个XmlNamespaceManager实例，一看名字就知道，这个实例是用于管理Xml的Namespace的。再查看一下这个类的成员：

 可以发现，创建这个实例需要一个XmlNameTable，谁能提供这个XmlNameTable的实例哪？XmlDocument本身就提供了这个XmlNameTable：

 这样，我们就可以修改为：

 先创建一个Manager的实例，然后使用AddNamespace方法，把“v”设置为“urn:vwxyzh”的缩写。然后修改XPath，把data修改成v:data，item修改成v:item，就可以了，现在来看一下运行结果：

 Yeah!这就是我们所需要的。

· 2 用Dom的方式创建/修改xml

 上一篇讲了如何用dom的方式读一个xml，这一篇就讲一下如何用dom的方式去写一个xml。不过，用dom的写Xml本身并不是一个好主意，因为Dom方式本身的废话超多，做一个简单的事情就需要好几句语句，但是作为一个基本的方式还是有必要了解一下的。

2.1 用Dom的方式去创建xml

 如果想写出这样一个xml：

 那么你可能需要这样一大段代码：

 分析一下，在dom方式下要创建任何一个xml的节点都必须要使用XmlDocument的对应的Create方法创建，然后再添加到对应的位置，这也就是Dom方式最麻烦的地方。

 看看运行结果：

 这个xml和我们期望的xml是等价的，只是没有被格式好，好吧，想要一个格式化好的文档，那么就修改一下写xml的部分（在讲xmlwriter的时候还会讲到这个setting类）：

 再看看运行结果：

 这样就和期望的xml一致了。

2.2 用Dom的方式去创建有namespace的xml

 如果有namespace的xml怎么创建哪？

 其实也很简单，换一个重载就可以了，在创建节点的时候用带有namespace的重载就可以了：

 再看一下结果：

2.3 用Dom的方式去修改xml

 修改xml其实也无非就是读取xml然后再做必要的增删改。

 在修改之前，首先当然就是要定为到xml的节点，这个在第一篇里面已经讲过。

 如果所做的修改是添加节点那么基本上就和上一节的内容相似：

 在原来这个xml的基础上添加一个person——Allen Lee，可以看到几乎就是把第一篇的读xml和前一节的创建xml结合起来，开看看运行结果吧：

 那么删除节点怎么办哪？

 例如，要从已经有多个Person的xml中，删除凡是FirstName叫Allen的Person，就可以这样写：

 注意，这里用了个XPath去查询所有的FirstName叫Allen的Person，也就是：

 /v:persons/v:person[v:firstName='Allen']
 v是namespace，之前用已经解释过了，这个XPath要找的是根节点里面的（/）persons节点（v:persons）里面的（/）person节点（v:person），那么[]在这里是什么意思哪？[]中间的部分代表条件约束，或者说是where，前面的XPath部分已经选择person节点，现在对找到的Person做个条件约束，条件的内容是firstname的值需要是Allen（v:firstName=’Allen’）。

 通过上面的这个XPath就可以定位到一个节点集，c#中为XmlNodeList类型，里面有一系列的节点（例子中为1个），然后将他移除即可，不过该死的Dom Api需要在父节点中删除这个节点，也就是不得不用这种很恶心的写法：

 node.ParentNode.RemoveChild(node);
 修改就暂时讲到这里，其他类型的修改由于比较简单，就展开再说了。

 看到这里，想必读者也知道如何操作xml了，但是，Dom Api的繁琐写法确实非常影响工作效率，下一篇，将进入Linq to Xml时代，来看看新的Api带来的巨大的工作效率的提升。

· c#进入了3.0时代，引入了强大的Linq，同时提供了Linq to Xml，这个全新的Xml Api。与Linq to Xml相比，传统的DOM Api就显得笨重而繁杂了。

Linq to Xml的本质

 首先，linq to xml是一种in-memory的技术（官方说法是：LINQ to XML provides an in-memory XML programming interface that leverages the .NET Language-Integrated Query (LINQ) Framework. LINQ to XML uses the latest .NET Framework language capabilities and is comparable to an updated, redesigned Document Object Model (DOM) XML programming interface.），也就是说，如果用Linq to Xml去打开一个Xml，也就会占用相应的内存。所以和DOM一样，在极端情况下，会出现内存不足。

 其次，linq to xml从本质上来说，就是linq to object+一套Xml Api，与linq to sql和linq to entity framework不同，后两者是使用特定的Linq Provider去翻译成对应系统的语言。

Linq to Xml的表现

 撇开理论的东西，还是来看看最简单的表现吧。如果要创建这样一个Xml：

<?xml version="1.0" encoding="utf-8" ?>

<persons>

 <person>

 <firstName>Zhenway</firstName>

 <lastName>Yan</lastName>

 <address>http://www.cnblogs.com/vwxyzh/</address>

 </person>

 <person>

 <firstName>Allen</firstName>

 <lastName>Lee</lastName>

 <address>http://www.cnblogs.com/allenlooplee/</address>

 </person>

</persons>

 我们只需要这样一句语句（vb.net可以更简单，当然这个超出了本文的范围）：

XDocument doc = new XDocument(

 new XDeclaration("1.0", "utf-8", null),

 new XElement("persons",

 new XElement("person",

 new XElement("firstName", "Zhenway"),

 new XElement("lastName", "Yan"),

 new XElement("address", "http://www.cnblogs.com/vwxyzh/")

),

 new XElement("person",

 new XElement("firstName", "Allen"),

 new XElement("lastName", "Lee"),

 new XElement("address", "http://www.cnblogs.com/allenlooplee/")

)

)

);

 看起来还行，构造一个Xml要比DOM方式简单的多，不过比起直接写Xml还是复杂了点，不过这个方式也可以这么用：

var persons = new[]

 {

 new

 {

 FirstName = "Zhenway",

 LastName = "Yan",

 Address = "http://www.cnblogs.com/vwxyzh/"

 },

 new

 {

 FirstName = "Allen",

 LastName = "Lee",

 Address = "http://www.cnblogs.com/allenlooplee/"

 }

 };

XDocument doc = new XDocument(

 new XDeclaration("1.0", "utf-8", null),

 new XElement("persons",

 from person in persons

 select new XElement("person",

 new XElement("firstName", person.FirstName),

 new XElement("lastName", person.LastName),

 new XElement("address", person.Address)

)

)

);

 这样，就可以看出Linq to Xml在通过外部数据构造Xml的便捷性（vb.net的方式更加简洁）。

 在来看看Linq to Xml的查询：

 XDocument doc = XDocument.Parse(@"<?xml version=""1.0"" encoding=""utf-8"" ?>

<persons>

 <person>

 <firstName>Zhenway</firstName>

 <lastName>Yan</lastName>

 <address>http://www.cnblogs.com/vwxyzh/</address>

 </person>

 <person>

 <firstName>Allen</firstName>

 <lastName>Lee</lastName>

 <address>http://www.cnblogs.com/allenlooplee/</address>

 </person>

</persons>");

 foreach (var item in doc.Root.Descendants("address"))

 {

 Console.WriteLine((string)item);

 }

 这里，要注意Descendants方法的签名：

public IEnumerable<XElement> Descendants(XName name);

 参数类型是XName，而传的是一个string，这个为什么是合法的哪？来看看XName中的一个定义：

public static implicit operator XName(string expandedName);

 原来有个隐式转换，这样就好理解了，编译器自动调用了隐式转换。

 再来看一个更加复杂的查询：

 XDocument doc = XDocument.Parse(@"<?xml version=""1.0"" encoding=""utf-8"" ?>

<persons>

 <person>

 <firstName>Zhenway</firstName>

 <lastName>Yan</lastName>

 <address>http://www.cnblogs.com/vwxyzh/</address>

 </person>

 <person>

 <firstName>Allen</firstName>

 <lastName>Lee</lastName>

 <address>http://www.cnblogs.com/allenlooplee/</address>

 </person>

</persons>");

 foreach (var item in from person in doc.Root.Descendants("person")

 where (string)person.Element("firstName") == "Zhenway"

 select (string)person.Element("address"))

 {

 Console.WriteLine(item);

 }

 那么有namespace的Xml如何用Linq to Xml来处理哪？

· 上集初步介绍了Linq to Xml的基本操作，简单的新建xml操作和简单的查询xml操作。不过，可以注意到的是上集里面的xml都是没有Namespace的xml，那么有Namespace的xml如何操作哪？

设置目标

 先看看我们目标，完整这样一个xml：

<?xml version="1.0" encoding="utf-8" ?>

<v:persons xmlns:v="http://www.cnblogs.com/vwxyzh/">

 <v:person>

 <v:firstName>Zhenway</v:firstName>

 <v:lastName>Yan</v:lastName>

 <v:address>http://www.cnblogs.com/vwxyzh/</v:address>

 </v:person>

</v:persons>

 注意，这个xml的每一个节点都是 http://www.cnblogs.com/vwxyzh/ 这个命名空间下的。

 当然，这样的xml也有很多种等效写法，具体请参考w3shools。

分析实现手段

 与之前一集相比，这里的”persons”，不再是一个纯粹的”persons”，而是一个带有Namespace的persons，所以在创建这样一个节点时不再是之前的：

var persons = new XElement("persons");

 而是需要修改成带有Namespace的节点名。

 那么如何获得这个带有Namespace的节点名哪？

 好吧，让我们回过头来看看XElement的构造函数：

public XElement(XName name);

 注意哦，参数的类型是XName，而不是string，那么平时为什么能用string哪？因为上一集里面提到过，XName定义了一个隐式的转换，可以把string隐式的转换成XName。

 所以，关于Namespace自然也要从XNamespace入手，然后找一个能够变成XName的方法，察看XNamespace的定义，就可以看到：

public static XName operator +(XNamespace ns, string localName);

 只要把XNamespace加上本地名称（string），就是一个XName了，非常简单。

 再看看如何创建一个XNamespace：

public static implicit operator XNamespace(string namespaceName);

 又是隐式转换。。。来看看具体如何创建一个带namespace的persons吧：

XNamespace v = "http://www.cnblogs.com/vwxyzh/";

var persons = new XElement(v + "persons");

 定义一个namespace，在使用时直接+string即可。在c#里面这已经是最简单的方式了。

实现

 到这里，已经可以完成上面的那个目标xml了：

XNamespace v = "http://www.cnblogs.com/vwxyzh/";

XDocument doc = new XDocument(

 new XDeclaration("1.0", "utf-8", null),

 new XElement(v + "persons",

 new XElement(v + "person",

 new XElement(v + "firstName", "Zhenway"),

 new XElement(v + "lastName", "Yan"),

 new XElement(v + "address", "http://www.cnblogs.com/vwxyzh/")

)

)

);

doc.Save(Console.Out);

 来看看执行结果：

<?xml version="1.0" encoding="gb2312"?>

<persons xmlns="http://www.cnblogs.com/vwxyzh/">

 <person>

 <firstName>Zhenway</firstName>

 <lastName>Yan</lastName>

 <address>http://www.cnblogs.com/vwxyzh/</address>

 </person>

</persons>

 和预期的略有不同，首先encoding被修改成gb2312，这是因为中文操作系统的Console的编码是gb2312，所以Xml的encoding被自动修改了，其次，原来的Namespace用v来缩写，但是输出的xml缺是改用了默认Namespace，不过如果看过前面提到的w3schools的话，就知道这两者是等价xml。

扩展

 在查找一个xml时，同样也是需要一个XName，因此当遇到有Namespace的xml，也可以用同样的手法：

 XDocument doc = XDocument.Parse(@"<?xml version=""1.0"" encoding=""utf-8"" ?>

<v:persons xmlns:v=""http://www.cnblogs.com/vwxyzh/"">

 <v:person>

 <v:firstName>Zhenway</v:firstName>

 <v:lastName>Yan</v:lastName>

 <v:address>http://www.cnblogs.com/vwxyzh/</v:address>

 </v:person>

 <v:person>

 <v:firstName>Allen</v:firstName>

 <v:lastName>Lee</v:lastName>

 <v:address>http://www.cnblogs.com/allenlooplee/</v:address>

 </v:person>

</v:persons>");

 XNamespace v = "http://www.cnblogs.com/vwxyzh/";

 foreach (var item in from person in doc.Root.Descendants(v + "person")

 where (string)person.Element(v + "firstName") == "Zhenway"

 select (string)person.Element(v + "address"))

 {

 Console.WriteLine(item);

 }

总结和下集预告

 Linq to Xml的介绍基本上就告一段落，不过，无论是Dom Api还是Linq to Xml都是In-Memory的工作方式，这样的工作方式对内存的要求相对较高，而且不适合超大xml文件的处理。

 因此，下集将介绍如何不占用内存的写一个超大的xml，当然其中也有Linq to Xml的一部分内容（Linq to Xml当初就预留了这部分）。

· using System.Xml;
//初始化一个xml实例
XmlDocument xml=new XmlDocument();

//导入指定xml文件
xml.Load(path);
xml.Load(HttpContext.Current.Server.MapPath("~/file/bookstore.xml"));

//指定一个节点
XmlNode root=xml.SelectSingleNode("/root");

//获取节点下所有直接子节点
XmlNodeList childlist=root.ChildNodes;

//判断该节点下是否有子节点
root.HasChildNodes;

//获取同名同级节点集合
XmlNodeList nodelist=xml.SelectNodes("/Root/News");

//生成一个新节点
XmlElement node=xml.CreateElement("News");

//将节点加到指定节点下，作为其子节点
root.AppendChild(node);

//将节点加到指定节点下某个子节点前
root.InsertBefore(node,root.ChildeNodes[i]);

//为指定节点的新建属性并赋值
node.SetAttribute("id","11111");

//为指定节点添加子节点
root.AppendChild(node);

//获取指定节点的指定属性值
string id=node.Attributes["id"].Value;

//获取指定节点中的文本
string content=node.InnerText;

//保存XML文件
string path=Server.MapPath("~/file/bookstore.xml");
xml.Save(path);
//or use :xml.Save(HttpContext.Current.Server.MapPath("~/file/bookstore.xml"));

二、具体实例

在C#.net中如何操作XML
需要添加的命名空间：
using System.Xml;

定义几个公共对象：
XmlDocument xmldoc ;
XmlNode xmlnode ;
XmlElement xmlelem ;

1，创建到服务器同名目录下的xml文件：

方法一：
xmldoc = new XmlDocument () ;
//加入XML的声明段落,<?xml version="1.0" encoding="gb2312"?>
XmlDeclaration xmldecl;
xmldecl = xmldoc.CreateXmlDeclaration("1.0","gb2312",null);
xmldoc.AppendChild (xmldecl);

//加入一个根元素
xmlelem = xmldoc.CreateElement ("" , "Employees" , "") ;
xmldoc.AppendChild (xmlelem) ;
//加入另外一个元素
for(int i=1;i<3;i++)
{

XmlNode root=xmldoc.SelectSingleNode("Employees");//查找<Employees>
XmlElement xe1=xmldoc.CreateElement("Node");//创建一个<Node>节点
xe1.SetAttribute("genre","李赞红");//设置该节点genre属性
xe1.SetAttribute("ISBN","2-3631-4");//设置该节点ISBN属性

XmlElement xesub1=xmldoc.CreateElement("title");
xesub1.InnerText="CS从入门到精通";//设置文本节点
xe1.AppendChild(xesub1);//添加到<Node>节点中
XmlElement xesub2=xmldoc.CreateElement("author");
xesub2.InnerText="候捷";
xe1.AppendChild(xesub2);
XmlElement xesub3=xmldoc.CreateElement("price");
xesub3.InnerText="58.3";
xe1.AppendChild(xesub3);

root.AppendChild(xe1);//添加到<Employees>节点中
}
//保存创建好的XML文档
xmldoc.Save (Server.MapPath("data.xml")) ;

//
结果：在同名目录下生成了名为data.xml的文件，内容如下，
<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
</Employees>

方法二：
XmlTextWriter xmlWriter;
 string strFilename = Server.MapPath("data1.xml") ;

 xmlWriter = new XmlTextWriter(strFilename,Encoding.Default);//创建一个xml文档
 xmlWriter.Formatting = Formatting.Indented;
 xmlWriter.WriteStartDocument();
 xmlWriter.WriteStartElement("Employees");

 xmlWriter.WriteStartElement("Node");
 xmlWriter.WriteAttributeString("genre","李赞红");
 xmlWriter.WriteAttributeString("ISBN","2-3631-4");

 xmlWriter.WriteStartElement("title");
 xmlWriter.WriteString("CS从入门到精通");
 xmlWriter.WriteEndElement();

 xmlWriter.WriteStartElement("author");
 xmlWriter.WriteString("候捷");
 xmlWriter.WriteEndElement();

 xmlWriter.WriteStartElement("price");
 xmlWriter.WriteString("58.3");
 xmlWriter.WriteEndElement();

 xmlWriter.WriteEndElement();

 xmlWriter.Close();
//
结果：
<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
</Employees>

2，添加一个结点：

XmlDocument xmlDoc=new XmlDocument();
xmlDoc.Load(Server.MapPath("data.xml"));
XmlNode root=xmlDoc.SelectSingleNode("Employees");//查找<Employees>
XmlElement xe1=xmlDoc.CreateElement("Node");//创建一个<Node>节点
xe1.SetAttribute("genre","张三");//设置该节点genre属性
xe1.SetAttribute("ISBN","1-1111-1");//设置该节点ISBN属性

XmlElement xesub1=xmlDoc.CreateElement("title");
xesub1.InnerText="C#入门帮助";//设置文本节点
xe1.AppendChild(xesub1);//添加到<Node>节点中
XmlElement xesub2=xmlDoc.CreateElement("author");
xesub2.InnerText="高手";
xe1.AppendChild(xesub2);
XmlElement xesub3=xmlDoc.CreateElement("price");
xesub3.InnerText="158.3";
xe1.AppendChild(xesub3);

root.AppendChild(xe1);//添加到<Employees>节点中
xmlDoc.Save (Server.MapPath("data.xml"));

//
结果：在xml原有的内容里添加了一个结点，内容如下，
<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="张三" ISBN="1-1111-1">
 <title>C#入门帮助</title>
 <author>高手</author>
 <price>158.3</price>
</Node>
</Employees>

3，修改结点的值（属性和子结点）：

XmlDocument xmlDoc=new XmlDocument();
xmlDoc.Load(Server.MapPath("data.xml"));

XmlNodeList nodeList=xmlDoc.SelectSingleNode("Employees").ChildNodes;//获取Employees节点的所有子节点

foreach(XmlNode xn in nodeList)//遍历所有子节点
{
XmlElement xe=(XmlElement)xn;//将子节点类型转换为XmlElement类型
if(xe.GetAttribute("genre")=="张三")//如果genre属性值为“张三”
{
xe.SetAttribute("genre","update张三");//则修改该属性为“update张三”

XmlNodeList nls=xe.ChildNodes;//继续获取xe子节点的所有子节点
foreach(XmlNode xn1 in nls)//遍历
{
XmlElement xe2=(XmlElement)xn1;//转换类型
if(xe2.Name=="author")//如果找到
{
xe2.InnerText="亚胜";//则修改
}
}
}
}
xmlDoc.Save(Server.MapPath("data.xml"));//保存。

//
结果：将原来的所有结点的信息都修改了，xml的内容如下，
<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="update张三" ISBN="1-1111-1">
 <title>C#入门帮助</title>
 <author>亚胜</author>
 <price>158.3</price>
</Node>
</Employees>

4，修改结点（添加结点的属性和添加结点的自结点）：
XmlDocument xmlDoc=new XmlDocument();
xmlDoc.Load(Server.MapPath("data.xml"));

XmlNodeList nodeList=xmlDoc.SelectSingleNode("Employees").ChildNodes;//获取Employees节点的所有子节点

foreach(XmlNode xn in nodeList)
{
XmlElement xe=(XmlElement)xn;
xe.SetAttribute("test","111111");

XmlElement xesub=xmlDoc.CreateElement("flag");
xesub.InnerText="1";
xe.AppendChild(xesub);
}
xmlDoc.Save(Server.MapPath("data.xml"));

//
结果：每个结点的属性都添加了一个，子结点也添加了一个，内容如下，
<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node genre="李赞红" ISBN="2-3631-4" test="111111">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
 <flag>1</flag>
</Node>
<Node genre="李赞红" ISBN="2-3631-4" test="111111">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
 <flag>1</flag>
</Node>
<Node genre="update张三" ISBN="1-1111-1" test="111111">
 <title>C#入门帮助</title>
 <author>亚胜</author>
 <price>158.3</price>
 <flag>1</flag>
</Node>
</Employees>

5，删除结点中的某一个属性：
XmlDocument xmlDoc=new XmlDocument();
xmlDoc.Load(Server.MapPath("data.xml"));
XmlNodeList xnl=xmlDoc.SelectSingleNode("Employees").ChildNodes;
foreach(XmlNode xn in xnl)
{
XmlElement xe=(XmlElement)xn;
xe.RemoveAttribute("genre");//删除genre属性

XmlNodeList nls=xe.ChildNodes;//继续获取xe子节点的所有子节点
foreach(XmlNode xn1 in nls)//遍历
{
XmlElement xe2=(XmlElement)xn1;//转换类型
if(xe2.Name=="flag")//如果找到
{
xe.RemoveChild(xe2);//则删除
}
}
}
xmlDoc.Save(Server.MapPath("data.xml"));

//]
结果：删除了结点的一个属性和结点的一个子结点，内容如下，
<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node ISBN="2-3631-4" test="111111">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node ISBN="2-3631-4" test="111111">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node ISBN="1-1111-1" test="111111">
 <title>C#入门帮助</title>
 <author>亚胜</author>
 <price>158.3</price>
</Node>
</Employees>

6，删除结点：
XmlDocument xmlDoc=new XmlDocument();
xmlDoc.Load(Server.MapPath("data.xml"));
XmlNode root=xmlDoc.SelectSingleNode("Employees");
XmlNodeList xnl=xmlDoc.SelectSingleNode("Employees").ChildNodes;
for(int i=0;i<xnl.Count;i++)
{
XmlElement xe=(XmlElement)xnl.Item(i);
if(xe.GetAttribute("genre")=="张三")
{
root.RemoveChild(xe);
if(i<xnl.Count)i=i-1;
}
}
xmlDoc.Save(Server.MapPath("data.xml"));

//]
结果：删除了符合条件的所有结点，原来的内容：

<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="张三" ISBN="1-1111-1">
 <title>C#入门帮助</title>
 <author>高手</author>
 <price>158.3</price>
</Node>
<Node genre="张三" ISBN="1-1111-1">
 <title>C#入门帮助</title>
 <author>高手</author>
 <price>158.3</price>
</Node>
</Employees>

删除后的内容：
<?xml version="1.0" encoding="gb2312"?>
<Employees>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
<Node genre="李赞红" ISBN="2-3631-4">
 <title>CS从入门到精通</title>
 <author>候捷</author>
 <price>58.3</price>
</Node>
</Employees>

7，按照文本文件读取xml

System.IO.StreamReader myFile =new
System.IO.StreamReader(Server.MapPath("data.xml"),System.Text.Encoding.Default);
//注意System.Text.Encoding.Default

string myString = myFile.ReadToEnd();//myString是读出的字符串
myFile.Close();

三、高级应用

/*读取xml数据 两种xml方式*/
<aaa>
 <bb>something</bb>
 <cc>something</cc>
</aaa>

<aaa>
 <add key="123" value="321"/>
</aaa>

/*第一种方法*/
DS.ReadXml("your xmlfile name");
Container.DataItem("bb");
Container.DataItem("cc");
DS.ReadXmlSchema("your xmlfile name");

/*第二种方法*/
<aaa>
 <add key="123" value="321"/>
</aaa>
如果我要找到123然后取到321应该怎么写呢？

using System.XML;
XmlDataDocument xmlDoc = new System.Xml.XmlDataDocument();
xmlDoc.Load(@"c:Config.xml");
XmlElement elem = xmlDoc.GetElementById("add");
string str = elem.Attributes["value"].Value

/*第三种方法: SelectSingleNode 读取两种格式的xml *---/
--
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <ConnectionString>Data Source=yf; user id=ctm_dbo;password=123</ConnectionString>
</appSettings>
</configuration>
--
XmlDocument doc = new XmlDocument();
doc.Load(strXmlName);

 XmlNode node=doc.SelectSingleNode("/configuration/appSettings/ConnectionString");
 if(node!=null)
 {
 string k1=node.Value; //null
 string k2=node.InnerText;//Data Source=yf; user id=ctm_dbo;password=123
 string k3=node.InnerXml;//Data Source=yf; user id=ctm_dbo;password=123
 node=null;
 }

**
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="ConnectionString" value="Data Source=yf; user id=ctm_dbo;password=123" />
</appSettings>
</configuration>
--
 XmlNode node=doc.SelectSingleNode("/configuration/appSettings/add");
 if(node!=null)
 {
 string k=node.Attributes["key"].Value;
 string v=node.Attributes["value"].Value;
 node=null;
 }
--
 XmlNode node=doc.SelectSingleNode("/configuration/appSettings/add");
 if(node!=null)
 {
 XmlNodeReader nr=new XmlNodeReader(node);
 nr.MoveToContent();
 //检查当前节点是否是内容节点。如果此节点不是内容节点，则读取器向前跳至下一个内容节点或文件结尾。
 nr.MoveToAttribute("value");
 string s=nr.Value;
 node=null;
 }

· 要对XML文件进行操作，须要声明以下命名空间：
using System.Xml;

一、检查指定XML文件是否存在

 System.IO.File.Exists(文件路径及名称);

二、利用C#编程创建 XML文件

 我在网上找到了这样的两段代码：
 代码一：
 XmlDocument xmldoc = new XmlDocument();
 XmlNode xmlnode;
 XmlElement xmlelem;
 XmlElement xmlelem2;
 XmlText xmltext;

 //加入XML的声明段落
 xmlnode = xmldoc.CreateNode(XmlNodeType.XmlDeclaration, "", "");
 xmlnode.InnerText+=" encoding=\"GB2312\"";
 xmldoc.AppendChild(xmlnode);

 //加入一个根元素
 xmlelem = xmldoc.CreateElement("", "ROOT", "");
 xmltext = xmldoc.CreateTextNode("Root Text");
 xmlelem.AppendChild(xmltext);
 xmldoc.AppendChild(xmlelem);

 //加入另外一个元素
 xmlelem2 = xmldoc.CreateElement("SampleElement");
 xmlelem2 = xmldoc.CreateElement("","SampleElement","");
 xmltext = xmldoc.CreateTextNode("The text of the sample element");
 xmlelem2.AppendChild(xmltext);
 xmldoc.ChildNodes.Item(1).AppendChild(xmlelem2);

 //保存创建好的XML文档
 try
 {
 xmldoc.Save("data.xml");
 }
 catch (Exception f)
 {
 //显示错误信息
 MessageBox.Show(f.Message);
 }
 //Console.ReadLine();
 这段代码在win2003ser+vs2005环境下测试成功，但是XML文件格式很乱，我不知道怎样调整格式，知道的朋友请赐教。

 代码二：
 string FileName =Application.StartupPath+"\\phone.xml";
 XmlTextWriter objXmlTextWriter = new XmlTextWriter(FileName,Encoding.Default);

 objXmlTextWriter.Formatting = Formatting.Indented;
 objXmlTextWriter.Indentation = 6;

 objXmlTextWriter.WriteStartDocument();

 objXmlTextWriter.WriteStartElement("", "PhoneBook", "");

 objXmlTextWriter.WriteStartElement("", "Name", "");
 objXmlTextWriter.WriteString("加菲尔德");
 objXmlTextWriter.WriteEndElement();

 objXmlTextWriter.WriteStartElement("", "Number", "");
 objXmlTextWriter.WriteString("5555555");
 objXmlTextWriter.WriteEndElement();

 objXmlTextWriter.WriteStartElement("", "City", "");
 objXmlTextWriter.WriteString("纽约");
 objXmlTextWriter.WriteEndElement();

 objXmlTextWriter.WriteStartElement("", "DateOfBirth", "");
 objXmlTextWriter.WriteString("26/10/1978");
 objXmlTextWriter.WriteEndElement();

 objXmlTextWriter.WriteEndElement();
 objXmlTextWriter.WriteEndDocument();

 objXmlTextWriter.Flush();

 objXmlTextWriter.Close();
 这段代码在win2003ser+vs2005环境下测试通过，出来的效果很好，也比较容易理解，我一般就是用这段代码创建XML文件。

三、读取、修改XML文件的某个节点的值

 string path = "phone.xml";
 XmlDocument doc = new XmlDocument();
 doc.Load(path);
 //读所有节点表
 XmlNamespaceManager xnm = new XmlNamespaceManager(doc.NameTable);
 //读取节点值
 XmlNode node = doc.SelectSingleNode("/PhoneBook/Name", xnm); //node.InnerText 就是读取出来的值

 //修改节点值
 node.InnerText="要修改的内容";

 //保存修改后的内容
 doc.Save(path);

· 引用命名空间：using System.Xml

1.检查所要操作的xml文件是否存在：
 System.IO.File.Exists(文件路径及名称);
2.得到xml文件：
（1）在asp.net中可以这样得到:
XmlDocument xmlDoc = new XmlDocument();
//导入xml文档
xmlDoc.Load(Server.MapPath("xmlTesting.xml"));
//导入字符串
//xmlDoc.LoadXml("<bookStore> <book id="01" price="3.5元"> 读者</book></bookStore>");
注：Server.MapPath("xmlTesting.xml")此时的xmlTesting.xml文件必须是在当前的解决方案里；同样可以写成完整的物理路径xmlDoc.Load (@"E:"软件学习"测试"myNoteWeb"xmlTesting.xml")
（2）在windForm中 直接用物理路径得到所要操作的xml文件具体实现方法同上
3.创建xml文件：
 XmlDocument xmlDoc = new XmlDocument(); //创建xml文档(实例化一个xml)
XmlNode root = xmlDoc.CreateElement("bookStore");//创建根节点
//创建第1个子结点：
XmlNode bookNode = xmlDoc.CreateElement("book");
bookNode.InnerText = "读者";
//为此节点添加属性
 法1：
 bookPublishNode.SetAttribute("id", "01")
 root.AppendChild(bookNode);
法2：
 XmlAttribute xmlattribute = tempXmlDoc.CreateAttribute("price");
 xmlattribute.Value = "3.5元";
 tempRoot .Attributes .Append (xmlattribute)
 //创建第2个根节点的子结点：
 XmlNode tempBookNode = xmlDoc.CreateElement("tempbook ");
 tempBookNode.InnerText ="文摘";
 root.AppendChild(tempBookNode);
· 方法一 ：使用XML控件

<% @ Page Language="C#"%>
<html>
<body>
<h3>读取XML方法一</h3>
<from runat=server>
<asp:Xml id="xml1" DocumentSource="grade.xml" runat="server" />
</from>

</body>
</html>

方法二： 使用DOM技术

<% @ Page Language="C#"%>
<% @ Import Namespace="System.Xml"%>
<% @ Import Namespace="System.Xml.Xsl"%>
<html>
<script language="C#" runat="server">
void Page_Load(Object sender,EventArgs e)
{
XmlDocument doc=new XmlDocument();
doc.Load(Server.MapPath("grade.xml"));
xml1.Document=doc;
}
</script>
<body>
<h3>读取XML方法二</h3>
<from runat=server>
<asp:Xml id="xml1" runat="server" />
</from>

</body>
</html>

方法三 ：使用DataSet对象

<% @ Page Language="C#"%>
<% @ Import Namespace="System.Data"%>
<% @ Import Namespace="System.Data.OleDb"%>
<script language="C#" runat="server">
void Page_Load(Object sender,EventArgs e)
{
DataSet objDataSet=new DataSet();
objDataSet.ReadXml(Server.MapPath("grade.xml"));
dgEmployees.DataSource=objDataSet.Tables["student"].DefaultView;
dgEmployees.DataBind();
}
</script>
<body>
<h3>读取XML方法三</h3>
<asp:DataGrid id="dgEmployees" runat="server" />

</body>
</html>

方法四 ：按文本方式读取

<% @ Page Language="C#"%>
<% @ Import Namespace="System.Xml"%>
<html>
<script language="C#" runat="server">
private void Page_Load(Object sender,EventArgs e)
{
XmlTextReader objXMLReader=new XmlTextReader(Server.MapPath("grade.xml"));
string strNodeResult="";
XmlNodeType objNodeType;
while(objXMLReader.Read())
{
objNodeType =objXMLReader.NodeType;
swith(objNodeType)
{
case XmlNodeType.XmlDeclaration:
//读取XML文件头
strNodeResult+="XML Declaration:"+objXMLReader.Name+""+objXMLReader.Value+"
";
break;
case XmlNodeType.Element:
//读取标签
strNodeResult+="Element:"+objXMLReader.Name+"
";
break;
case XmlNodeType.Text:
//读取值
strNodeResult+=" -Value:"+objXMLReader.Value+"
";
break;

}
//判断该节点是否有属性
if(objXMLReader.AttributeCount>0)
{ //用循环判断完所有节点
while(objXMLReader.MoveToNextAttibute)
{ //取标签和值
strNodeResult+=" -Attribute:"+objXMLReader.Name+" value:"+objXMLReader.Value+"
";
}
}
LblFile.Text=strNodeResult;
}
}
</script>
<body>
<h3>读取XML方法四</h3>
<from runat=server>
<asp:label id="LblFile" runat="server" />
</from>

</body>
</html>

· ASP.NET中常用功能代码总结（XML文件操作篇）
一．写入XML文件

 1[image: image26.png]

[image: image27.png]

/**//// <summary>
 2[image: image28.png]

/// 写入XML文件
 3[image: image29.png]

/// </summary>
 4[image: image30.png]

private void WriteXML()
 5[image: image31.png]

[image: image32.png]

[image: image33.png]

{
 6[image: image34.png]

[image: image35.png]

 /**//// 创建一个表示所要生成的XML文件路径的字符串。如果该路径指向NTFS分区，则需要相关的访问权限。
 7[image: image36.png]

 string filename = XMLFilePathTextBox.Text;
 8[image: image37.png]

 9[image: image38.png]

[image: image39.png]

 /**//// 创建一个写入XML数据的文件流
10[image: image40.png]

 System.IO.FileStream myFileStream = new System.IO.FileStream(filename, System.IO.FileMode.Create);
11[image: image41.png]

12[image: image42.png]

[image: image43.png]

 /**//// 使用文件流对象创建一个XmlTextWriter对象
13[image: image44.png]

 XmlTextWriter myXmlWriter = new XmlTextWriter(myFileStream, System.Text.Encoding.Unicode);
14[image: image45.png]

15[image: image46.png]

 myXmlWriter.Formatting = Formatting.Indented;
16[image: image47.png]

17[image: image48.png]

 try
18[image: image49.png]

[image: image50.png]

 [image: image51.png]

{
19[image: image52.png]

[image: image53.png]

 /**//// 使用WriteXMLbyXmlWriter方法把数据写入XmlTextWriter对象中
20[image: image54.png]

 WriteXMLbyXmlWriter(myXmlWriter, "MSFT", 74.5, 5.5, 49020000);
21[image: image55.png]

22[image: image56.png]

[image: image57.png]

 /**//// 通过Close方法的调用，XmlTextWriter对象的数据最终写入XML文件
23[image: image58.png]

 myXmlWriter.Close();
24[image: image59.png]

 Page.Response.Write("生成XML文档成功!");
25[image: image60.png]

 }
26[image: image61.png]

 catch
27[image: image62.png]

[image: image63.png]

 [image: image64.png]

{
28[image: image65.png]

 Page.Response.Write("生成XML文档失败!请检查路径是否正确，以及是否有写入权限。");
29[image: image66.png]

 }
30[image: image67.png]

}
31[image: image68.png]

32[image: image69.png]

private void WriteXMLbyXmlWriter(XmlWriter writer, string symbol, double price, double change, long volume)
33[image: image70.png]

[image: image71.png]

[image: image72.png]

{
34[image: image73.png]

 writer.WriteStartElement("Stock");
35[image: image74.png]

 writer.WriteAttributeString("Symbol", symbol);
36[image: image75.png]

 writer.WriteElementString("Price", XmlConvert.ToString(price));
37[image: image76.png]

 writer.WriteElementString("Change", XmlConvert.ToString(change));
38[image: image77.png]

 writer.WriteElementString("Volume", XmlConvert.ToString(volume));
39[image: image78.png]

 writer.WriteEndElement();
40[image: image79.png]

}

 二．通过DOM读取XML文件
 1[image: image80.png]

[image: image81.png]

/**//// <summary>
 2[image: image82.png]

/// 通过DOM读取XML文件
 3[image: image83.png]

/// </summary>
 4[image: image84.png]

private void ReadXMLbyDOM()
 5[image: image85.png]

[image: image86.png]

[image: image87.png]

{
 6[image: image88.png]

[image: image89.png]

 /**//// 创建XmlDocument类的实例
 7[image: image90.png]

 XmlDocument doc = new XmlDocument();
 8[image: image91.png]

 ArrayList NodeValues = new ArrayList();
 9[image: image92.png]

10[image: image93.png]

[image: image94.png]

 /**//// 把people.xml文件读入内存，形成一个DOM结构
11[image: image95.png]

 doc.Load(Server.MapPath("people.xml"));
12[image: image96.png]

 XmlNode root = doc.DocumentElement;
13[image: image97.png]

 foreach(XmlNode personElement in root.ChildNodes)
14[image: image98.png]

 NodeValues.Add(personElement.FirstChild.Value);
15[image: image99.png]

16[image: image100.png]

 XMLNodeListBox.DataSource = NodeValues;
17[image: image101.png]

 XMLNodeListBox.DataBind();
18[image: image102.png]

}
19[image: image103.png]

 三．通过XMLReader读取XML文件
 1[image: image104.png]

[image: image105.png]

/**//// <summary>
 2[image: image106.png]

/// 通过XMLReader读取XML文件
 3[image: image107.png]

/// </summary>
 4[image: image108.png]

private void ReadXMLbyXmlReader()
 5[image: image109.png]

[image: image110.png]

[image: image111.png]

{
 6[image: image112.png]

[image: image113.png]

 /**////创建XML读取器
 7[image: image114.png]

 XmlTextReader reader = new XmlTextReader(Server.MapPath("students.xml"));
 8[image: image115.png]

 ArrayList NodeValues = new ArrayList();
 9[image: image116.png]

10[image: image117.png]

 while(reader.Read())
11[image: image118.png]

[image: image119.png]

 [image: image120.png]

{
12[image: image121.png]

 if(reader.NodeType == XmlNodeType.Element && reader.Name == "NAME")
13[image: image122.png]

[image: image123.png]

 [image: image124.png]

{
14[image: image125.png]

 reader.Read();
15[image: image126.png]

 NodeValues.Add(reader.Value);
16[image: image127.png]

 }
17[image: image128.png]

 }
18[image: image129.png]

19[image: image130.png]

 XMLNodeListBox.DataSource = NodeValues;
20[image: image131.png]

 XMLNodeListBox.DataBind();
21[image: image132.png]

}

 四．通过Xpath读取XML文件
 1[image: image133.png]

[image: image134.png]

/**//// <summary>
 2[image: image135.png]

/// 通过Xpath读取XML文件
 3[image: image136.png]

/// </summary>
 4[image: image137.png]

private void ReadXMLbyXpath()
 5[image: image138.png]

[image: image139.png]

[image: image140.png]

{
 6[image: image141.png]

[image: image142.png]

 /**////注意：需要引入System.XML.XPath命名空间
 7[image: image143.png]

 XPathDocument xpdoc = new XPathDocument(Server.MapPath("people.xml"));
 8[image: image144.png]

 XPathNavigator nav = xpdoc.CreateNavigator();
 9[image: image145.png]

 XPathExpression expr = nav.Compile("descendant::PEOPLE/PERSON");
10[image: image146.png]

 XPathNodeIterator iterator = nav.Select(expr);
11[image: image147.png]

 ArrayList NodeValues = new ArrayList();
12[image: image148.png]

13[image: image149.png]

 while (iterator.MoveNext())
14[image: image150.png]

 NodeValues.Add(iterator.Current.ToString());
15[image: image151.png]

16[image: image152.png]

 XMLNodeListBox.DataSource = NodeValues;
17[image: image153.png]

 XMLNodeListBox.DataBind();
18[image: image154.png]

}
五．通过XSL显示XML文件
 1[image: image155.png]

[image: image156.png]

/**//// <summary>
 2[image: image157.png]

/// 通过XSL显示XML文件
 3[image: image158.png]

/// </summary>
 4[image: image159.png]

private void DisplayXML()
 5[image: image160.png]

[image: image161.png]

[image: image162.png]

{
 6[image: image163.png]

 System.Xml.XmlDocument xmldoc = new System.Xml.XmlDocument();
 7[image: image164.png]

 xmldoc.Load(Server.MapPath("user.xml"));
 8[image: image165.png]

 System.Xml.Xsl.XslTransform xmltrans = new System.Xml.Xsl.XslTransform();
 9[image: image166.png]

 xmltrans.Load(Server.MapPath("user.xsl"));
10[image: image167.png]

 Xml1.Document = xmldoc;
11[image: image168.png]

 Xml1.Transform = xmltrans;
12[image: image169.png]

}

 六．验证XML文件
[image: image170.png]

[image: image171.png]

/**//// <summary>
[image: image172.png]

/// 验证XML文件
[image: image173.png]

/// </summary>
[image: image174.png]

private void ValidateXML()
[image: image175.png]

[image: image176.png]

[image: image177.png]

{
[image: image178.png]

 FileStream stream = new FileStream(Server.MapPath("people.xml"), FileMode.Open);
[image: image179.png]

[image: image180.png]

[image: image181.png]

 /**////创建XmlValidatingReader类的对象
[image: image182.png]

 XmlValidatingReader vr = new XmlValidatingReader(stream, XmlNodeType.Element, null);
[image: image183.png]

[image: image184.png]

[image: image185.png]

 /**////加载XML架构文档
[image: image186.png]

 vr.Schemas.Add(null, Server.MapPath("people.xsd"));
[image: image187.png]

[image: image188.png]

[image: image189.png]

 /**////说明验证的方式是根据XML架构
[image: image190.png]

 vr.ValidationType = ValidationType.Schema;
[image: image191.png]

 vr.ValidationEventHandler += new ValidationEventHandler(ValidationHandler);
[image: image192.png]

[image: image193.png]

[image: image194.png]

 /**////对文档进行验证
[image: image195.png]

 while(vr.Read());
[image: image196.png]

[image: image197.png]

[image: image198.png]

 /**////显示验证过程完成
[image: image199.png]

 Page.Response.Write("Validation finished!");
[image: image200.png]

[image: image201.png]

[image: image202.png]

 /**////关闭打开的文件
[image: image203.png]

 stream.Close();
[image: image204.png]

}
[image: image205.png]

[image: image206.png]

private void ValidationHandler(object sender, ValidationEventArgs args)
[image: image207.png]

[image: image208.png]

[image: image209.png]

{
[image: image210.png]

[image: image211.png]

 /**////显示验证失败的消息
[image: image212.png]

 Page.Response.Write("Validation error: " + args.Message + "<p>");
[image: image213.png]

}
