方法一：
 //须添加对System.Web的引用
 using System.Web.Security;

 ...

 /// <summary>
 /// SHA1加密字符串
 /// </summary>
 /// <param name="source">源字符串</param>
 /// <returns>加密后的字符串</returns>
 public string SHA1(string source)
 {
 return FormsAuthentication.HashPasswordForStoringInConfigFile(source, "SHA1");
 }

 /// <summary>
 /// MD5加密字符串
 /// </summary>
 /// <param name="source">源字符串</param>
 /// <returns>加密后的字符串</returns>
 public string MD5(string source)
 {
 return FormsAuthentication.HashPasswordForStoringInConfigFile(source, "MD5");;
}
方法二(可逆加密解密)：
 using System.Security.Cryptography;

 ...

 public string Encode(string data)
 {
 byte[] byKey = System.Text.ASCIIEncoding.ASCII.GetBytes(KEY_64);
 byte[] byIV = System.Text.ASCIIEncoding.ASCII.GetBytes(IV_64);

 DESCryptoServiceProvider cryptoProvider = new DESCryptoServiceProvider();
 int i = cryptoProvider.KeySize;
 MemoryStream ms = new MemoryStream();
 CryptoStream cst = new CryptoStream(ms, cryptoProvider.CreateEncryptor(byKey, byIV), CryptoStreamMode.Write);

 StreamWriter sw = new StreamWriter(cst);
 sw.Write(data);
 sw.Flush();
 cst.FlushFinalBlock();
 sw.Flush();
 return Convert.ToBase64String(ms.GetBuffer(), 0, (int)ms.Length);

 }

 public string Decode(string data)
 {
 byte[] byKey = System.Text.ASCIIEncoding.ASCII.GetBytes(KEY_64);
 byte[] byIV = System.Text.ASCIIEncoding.ASCII.GetBytes(IV_64);

 byte[] byEnc;
 try

 {
 byEnc = Convert.FromBase64String(data);
 }
 catch

 {
 return null;
 }

 DESCryptoServiceProvider cryptoProvider = new DESCryptoServiceProvider();
 MemoryStream ms = new MemoryStream(byEnc);
 CryptoStream cst = new CryptoStream(ms, cryptoProvider.CreateDecryptor(byKey, byIV), CryptoStreamMode.Read);
 StreamReader sr = new StreamReader(cst);
 return sr.ReadToEnd();
 }
方法三(MD5不可逆)：
 using System.Security.Cryptography;

 ...

 //MD5不可逆加密

 //32位加密

 public string GetMD5_32(string s, string _input_charset)
 {
 MD5 md5 = new MD5CryptoServiceProvider();
 byte[] t = md5.ComputeHash(Encoding.GetEncoding(_input_charset).GetBytes(s));
 StringBuilder sb = new StringBuilder(32);
 for (int i = 0; i < t.Length; i++)
 {
 sb.Append(t[i].ToString("x").PadLeft(2, '0'));
 }
 return sb.ToString();
 }

 //16位加密
 public static string GetMd5_16(string ConvertString)
 {
 MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider();
 string t2 = BitConverter.ToString(md5.ComputeHash(UTF8Encoding.Default.GetBytes(ConvertString)), 4, 8);
 t2 = t2.Replace("-", "");
 return t2;
 }
方法四(对称加密)：
 using System.IO;
 using System.Security.Cryptography;

 ...

 private SymmetricAlgorithm mobjCryptoService;
 private string Key;
 /// <summary>
 /// 对称加密类的构造函数
 /// </summary>
 public SymmetricMethod()
 {
 mobjCryptoService = new RijndaelManaged();
 Key = "Guz(%&hj7x89H$yuBI0456FtmaT5&fvHUFCy76*h%(HilJ$lhj!y6&(*jkP87jH7";
 }
 /// <summary>
 /// 获得密钥
 /// </summary>
 /// <returns>密钥</returns>
 private byte[] GetLegalKey()
 {
 string sTemp = Key;
 mobjCryptoService.GenerateKey();
 byte[] bytTemp = mobjCryptoService.Key;
 int KeyLength = bytTemp.Length;
 if (sTemp.Length > KeyLength)
 sTemp = sTemp.Substring(0, KeyLength);
 else if (sTemp.Length < KeyLength)
 sTemp = sTemp.PadRight(KeyLength, ' ');
 return ASCIIEncoding.ASCII.GetBytes(sTemp);
 }
 /// <summary>
 /// 获得初始向量IV
 /// </summary>
 /// <returns>初试向量IV</returns>
 private byte[] GetLegalIV()
 {
 string sTemp = "E4ghj*Ghg7!rNIfb&95GUY86GfghUb#er57HBh(u%g6HJ($jhWk7&!hg4ui%$hjk";
 mobjCryptoService.GenerateIV();
 byte[] bytTemp = mobjCryptoService.IV;
 int IVLength = bytTemp.Length;
 if (sTemp.Length > IVLength)
 sTemp = sTemp.Substring(0, IVLength);
 else if (sTemp.Length < IVLength)
 sTemp = sTemp.PadRight(IVLength, ' ');
 return ASCIIEncoding.ASCII.GetBytes(sTemp);
 }
 /// <summary>
 /// 加密方法
 /// </summary>
 /// <param name="Source">待加密的串</param>
 /// <returns>经过加密的串</returns>
 public string Encrypto(string Source)
 {
 byte[] bytIn = UTF8Encoding.UTF8.GetBytes(Source);
 MemoryStream ms = new MemoryStream();
 mobjCryptoService.Key = GetLegalKey();
 mobjCryptoService.IV = GetLegalIV();
 ICryptoTransform encrypto = mobjCryptoService.CreateEncryptor();
 CryptoStream cs = new CryptoStream(ms, encrypto, CryptoStreamMode.Write);
 cs.Write(bytIn, 0, bytIn.Length);
 cs.FlushFinalBlock();
 ms.Close();
 byte[] bytOut = ms.ToArray();
 return Convert.ToBase64String(bytOut);
 }
 /// <summary>
 /// 解密方法
 /// </summary>
 /// <param name="Source">待解密的串</param>
 /// <returns>经过解密的串</returns>
 public string Decrypto(string Source)
 {
 byte[] bytIn = Convert.FromBase64String(Source);
 MemoryStream ms = new MemoryStream(bytIn, 0, bytIn.Length);
 mobjCryptoService.Key = GetLegalKey();
 mobjCryptoService.IV = GetLegalIV();
 ICryptoTransform encrypto = mobjCryptoService.CreateDecryptor();
 CryptoStream cs = new CryptoStream(ms, encrypto, CryptoStreamMode.Read);
 StreamReader sr = new StreamReader(cs);
 return sr.ReadToEnd();
 }
方法五：
 using System.IO;
 using System.Security.Cryptography;
 using System.Text;

 ...

 //默认密钥向量
 private static byte[] Keys = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
 /// <summary>
 /// DES加密字符串
 /// </summary>
 /// <param name="encryptString">待加密的字符串</param>
 /// <param name="encryptKey">加密密钥,要求为8位</param>
 /// <returns>加密成功返回加密后的字符串，失败返回源串</returns>
 public static string EncryptDES(string encryptString, string encryptKey)
 {
 try

 {
 byte[] rgbKey = Encoding.UTF8.GetBytes(encryptKey.Substring(0, 8));
 byte[] rgbIV = Keys;
 byte[] inputByteArray = Encoding.UTF8.GetBytes(encryptString);
 DESCryptoServiceProvider dCSP = new DESCryptoServiceProvider();
 MemoryStream mStream = new MemoryStream();
 CryptoStream cStream = new CryptoStream(mStream, dCSP.CreateEncryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
 cStream.Write(inputByteArray, 0, inputByteArray.Length);
 cStream.FlushFinalBlock();
 return Convert.ToBase64String(mStream.ToArray());
 }
 catch

 {
 return encryptString;
 }
 }

 /// <summary>
 /// DES解密字符串
 /// </summary>
 /// <param name="decryptString">待解密的字符串</param>
 /// <param name="decryptKey">解密密钥,要求为8位,和加密密钥相同</param>
 /// <returns>解密成功返回解密后的字符串，失败返源串</returns>
 public static string DecryptDES(string decryptString, string decryptKey)
 {
 try

 {
 byte[] rgbKey = Encoding.UTF8.GetBytes(decryptKey);
 byte[] rgbIV = Keys;
 byte[] inputByteArray = Convert.FromBase64String(decryptString);
 DESCryptoServiceProvider DCSP = new DESCryptoServiceProvider();
 MemoryStream mStream = new MemoryStream();
 CryptoStream cStream = new CryptoStream(mStream, DCSP.CreateDecryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
 cStream.Write(inputByteArray, 0, inputByteArray.Length);
 cStream.FlushFinalBlock();
 return Encoding.UTF8.GetString(mStream.ToArray());
 }
 catch

 {
 return decryptString;
 }
 }
方法六(文件加密)：
 using System.IO;
 using System.Security.Cryptography;
 using System.Text;

 ...

 //加密文件
 private static void EncryptData(String inName, String outName, byte[] desKey, byte[] desIV)
 {
 //Create the file streams to handle the input and output files.
 FileStream fin = new FileStream(inName, FileMode.Open, FileAccess.Read);
 FileStream fout = new FileStream(outName, FileMode.OpenOrCreate, FileAccess.Write);
 fout.SetLength(0);

 //Create variables to help with read and write.
 byte[] bin = new byte[100]; //This is intermediate storage for the encryption.
 long rdlen = 0; //This is the total number of bytes written.
 long totlen = fin.Length; //This is the total length of the input file.
 int len; //This is the number of bytes to be written at a time.

 DES des = new DESCryptoServiceProvider();
 CryptoStream encStream = new CryptoStream(fout, des.CreateEncryptor(desKey, desIV), CryptoStreamMode.Write);

 //Read from the input file, then encrypt and write to the output file.
 while (rdlen < totlen)
 {
 len = fin.Read(bin, 0, 100);
 encStream.Write(bin, 0, len);
 rdlen = rdlen + len;
 }

 encStream.Close();
 fout.Close();
 fin.Close();
 }

 //解密文件
 private static void DecryptData(String inName, String outName, byte[] desKey, byte[] desIV)
 {
 //Create the file streams to handle the input and output files.
 FileStream fin = new FileStream(inName, FileMode.Open, FileAccess.Read);
 FileStream fout = new FileStream(outName, FileMode.OpenOrCreate, FileAccess.Write);
 fout.SetLength(0);

 //Create variables to help with read and write.
 byte[] bin = new byte[100]; //This is intermediate storage for the encryption.
 long rdlen = 0; //This is the total number of bytes written.
 long totlen = fin.Length; //This is the total length of the input file.
 int len; //This is the number of bytes to be written at a time.

 DES des = new DESCryptoServiceProvider();
 CryptoStream encStream = new CryptoStream(fout, des.CreateDecryptor(desKey, desIV), CryptoStreamMode.Write);

 //Read from the input file, then encrypt and write to the output file.
 while (rdlen < totlen)
 {
 len = fin.Read(bin, 0, 100);
 encStream.Write(bin, 0, len);
 rdlen = rdlen + len;
 }

 encStream.Close();
 fout.Close();
 fin.Close();

}
using System;
using System.Security.Cryptography;//这个是处理文字编码的前提
using System.Text;

using System.IO;

/// <summary>
/// DES加密方法
/// </summary>
/// <param name="strPlain">明文</param>
/// <param name="strDESKey">密钥</param>
/// <param name="strDESIV">向量</param>
/// <returns>密文</returns>
public string DESEncrypt(string strPlain,string strDESKey,string strDESIV)

{

 //把密钥转换成字节数组
 byte[] bytesDESKey=ASCIIEncoding.ASCII.GetBytes(strDESKey);

 //把向量转换成字节数组
 byte[] bytesDESIV=ASCIIEncoding.ASCII.GetBytes(strDESIV);

 //声明1个新的DES对象
 DESCryptoServiceProvider desEncrypt=new DESCryptoServiceProvider();

 //开辟一块内存流
 MemoryStream msEncrypt=new MemoryStream();

 //把内存流对象包装成加密流对象
 CryptoStream csEncrypt=new CryptoStream(msEncrypt,desEncrypt.CreateEncryptor(bytesDESKey,bytesDESIV),CryptoStreamMode.Write);

 //把加密流对象包装成写入流对象
 StreamWriter swEncrypt=new StreamWriter(csEncrypt);

 //写入流对象写入明文
 swEncrypt.WriteLine(strPlain);

 //写入流关闭
 swEncrypt.Close();

 //加密流关闭
 csEncrypt.Close();

 //把内存流转换成字节数组，内存流现在已经是密文了
 byte[] bytesCipher=msEncrypt.ToArray();

 //内存流关闭
 msEncrypt.Close();

 //把密文字节数组转换为字符串，并返回
 return UnicodeEncoding.Unicode.GetString(bytesCipher);

}

/// <summary>
/// DES解密方法
/// </summary>
/// <param name="strCipher">密文</param>
/// <param name="strDESKey">密钥</param>
/// <param name="strDESIV">向量</param>
/// <returns>明文</returns>
public string DESDecrypt(string strCipher,string strDESKey,string strDESIV)

{

 //把密钥转换成字节数组
 byte[] bytesDESKey=ASCIIEncoding.ASCII.GetBytes(strDESKey);

 //把向量转换成字节数组
 byte[] bytesDESIV=ASCIIEncoding.ASCII.GetBytes(strDESIV);

 //把密文转换成字节数组
 byte[] bytesCipher=UnicodeEncoding.Unicode.GetBytes(strCipher);

 //声明1个新的DES对象
 DESCryptoServiceProvider desDecrypt=new DESCryptoServiceProvider();

 //开辟一块内存流，并存放密文字节数组
 MemoryStream msDecrypt=new MemoryStream(bytesCipher);

 //把内存流对象包装成解密流对象
 CryptoStream csDecrypt=new CryptoStream(msDecrypt,desDecrypt.CreateDecryptor(bytesDESKey,bytesDESIV),CryptoStreamMode.Read);

 //把解密流对象包装成读出流对象
 StreamReader srDecrypt=new StreamReader(csDecrypt);

 //明文=读出流的读出内容
 string strPlainText=srDecrypt.ReadLine();

 //读出流关闭
 srDecrypt.Close();

 //解密流关闭
 csDecrypt.Close();

 //内存流关闭
 msDecrypt.Close();

 //返回明文
 return strPlainText;

}
