C#局域网聊天工具制作
1. 网络通讯编程的基础便是协议,信息的发送常用的协议有面向连接的TCP协议，以及不面向连接的UDP协议
2. TCP：TransmissionControlProtocol传输控制协议，其是一种面向连接的、可靠的字节流服务。面向连接意味着两个使用TCP的应用（通常是一个客户和一个服务器）在彼此交换数据之前必须先建立一个TCP连接。这一过程与打电话很相似，先拨号振铃，等待对方摘机说“喂”，然后才说明是谁。
3. UDP：UserDatagramProtocol用户数据报协议（RFC768），UDP传送数据前并不与对方建立连接，即UDP是无连接的，在传输数据前，发送方和接收方相互交换信息使双方同步。
4. 系统也要定义自己的通讯协议，来完成一些系统的功能，如用户上，下线的通知，都要定义自己的通讯协议来完成相应的功能！也可以称这种自定义的协议为“命令”.

5. 下面以著名的飞鸽传书为例，说明其自定义的协议（命令）
IPMSG_NOOPERATION不进行任何操作
IPMSG_BR_ENTRY用户上线
IPMSG_BR_EXIT用户退出
IPMSG_ANSENTRY通报在线
IPMSG_SENDMSG发送消息
IPMSG_RECVMSG通报收到消息
IPMSG_GETFILEDATA请求通过TCP传输文件
IPMSG_RELEASEFILES停止接收文件
IPMSG_GETDIRFILES请求传输文件夹以“IPMSG_BR_ENTRY用户上线”和“IPMSG_ANSENTRY通报在线”为例说明命令处理流程：当程序启动时，命令IPMSG_BR_ENTRY被广播到网络中，向所有在线的用户提示一个新用户的到达(即表示“我来了”)；所有在线用户将把该新上线用户添加到自己的用户列表中，并向该新上线用户发送IPMSG_ANSENTRY命令(即表示“我在线”)；该新上线用户接收到IPMSG_ANSENTRY命令后即将在线用户添加到自己的用户列表中。
PS:根据本系统的特征,可以在聊天部分采用UDP协议,在文件传输,视频,语音功能上采用TCP协议

6. 程序启动就要发送广播消息,如何发送广播消息,以及C#如何实现广播.
第一部分.什么是广播地址,以及广播地址怎么计算
1.1广播地址是什么？
主机号全为1,用于向一个网络内的所有主机发送信息的IP地址.如:受限的广播地址是255.255.255.255。该地址用于主机配置过程中IP数据报的目的地址，此时，主机可能还不知道它所在网络的网络掩码，甚至连它的IP地址也不知道。在任何情况下,路由器都不转发目的地址为受限的广播地址的数据报，这样的数据报仅出现在本地网络中。
PS:一般无特殊要求广播地址选择255.255.255.255即可.
1.2计算方法
首先计算网络地址=IP地址逻辑与(&)子网掩码
先把IP，子网掩码转为2进制，然后进行逻辑与运算，得出网络地址
例：
IP192.168.1.3子网掩码255.255.0.0
IP转二进制11000000.10100100.00000001.00000011
子网掩码11111111.11111111.00000000.00000000
与运算后11000000.10100100.00000000.00000000
192.168.0.0这就是网络地址，其中子网掩码全1对应为网络号,全0对应的是主机号,即192.168.0.0对应的网络号为192.168,主机号为0.0.将网络地址主机部分全取反后得到的地址便是广播地址:
广播地址11000000.10100100.11111111.11111111
换成10进制则为192.168.0.0
第二部分.C#利用UDP协议如何实现广播
2.1如何实现UDP广播,直接举例说明:
button1_Click时使用了UDP广播向外发送了数据
RecData()在后台接受UDP协议的消息

//UDP通过广播实现群发功能
namespace BroadcastExample
{
public partial class Form1:Form
{
delegate void AppendStringCallback(stringtext);
AppendStringCallback appendstringcallback;
//使用的接收端口51008
///<summary>
///端口号
///</summary>
private int port=51008;
///<summary>
///udp连接对象
///</summary>
private UdpClient udpclient;
public Form1()
{
InitializeComponent();
appendstringcallback = new AppendStringCallback(AppendString);
}
///<summary>
///委托对象的处理过程
///</summary>
///<paramname="text"></param>
private void AppendString(stringtext)
{
if(richtextBox2.InvokeRequired==true)
{
this.Invoke(appendstringcallback,text);
}
else
{
richtextBox2.AppendText(text+"\r\n");
}
}
///<summary>
///在后台运行的接收线程
///</summary>
private void RecData()
{
//本机指定端口接收
udpclient=new UdpClient(port);
IPEndPoint remote=null;
//接收从远程主机发送过来的信息
while(true)
{
try
{
//关闭udpclient时此句会产生异常
byte[]bytes=udpclient.Receive(refremote);
stringstr=Encoding.UTF8.GetString(bytes,0,bytes.Length);
AppendString(string.Format("来自{0}:{1}",remote,str));
}
catch
{
//退出循环,结束线程
break;
}
}
}
privatevoidForm1_Load(objectsender,EventArgse)
{
//创建一个线程接收接收远程主机发来的信息
Thread mythread=new Thread(new ThreadStart(RecData));
//将线程设为后台运行
mythread.IsBackground=true;
mythread.Start();
}
private void Form1_FormClosing(objectsender,FormClosingEventArgse)
{
udpclient.Close();
}
private void button1_Click(objectsender,EventArgse)
{
UdpClient myUdpclient=newUdpClient();

try
{
IPEndPoint iep=new IPEndPoint(IPAddress.Broadcast,port);
byte[]bytes=System.Text.Encoding.UTF8.GetBytes(textBox1.Text);
myUdpclient.Send(bytes,bytes.Length,iep);
textBox1.Clear();
myUdpclient.Close();
textBox1.Focus();
}
catch(Exceptionerr)
{
MessageBox.Show(err.Message,"发送失败");
}
finally
{
myUdpclient.Close();
}
}
}
}
启动主程序时,同时启动UDP的监听,这时应该使用集合来做为消息队列的缓存,以便用户能在任何时候浏览到消息.这个集合一般在主程序中定义,而用户接受消息,一般我们会弹出窗口给用户来浏览消息,以及在新窗口中回复消息,那如何将主窗口中的消息,传递到消息显示窗体中呢?
如何是Web(ASP.net)我们可以封装到form中传值,或者request传值,甚至可以在URL中接参数直接传值,而winform中窗体传值以上方法就都不在能用了.
在windowsform之间传值，我总结了有四个方法：全局变量、属性、窗体构造函数和delegate。
第一个全局变量：
这个最简单，只要把变量描述成static就可以了，在form2中直接引用form1的变量，代码如下：
在form1中定义一个static变量publicstaticinti=9;
Form2中的钮扣按钮如下：
privatevoidbutton1_Click(objectsender,System.EventArgse)
{
textBox1.Text=Form1.i.ToString();
}

第二个方法是利用属性：
假设我们需要点击主窗体FMMain中的某一个按钮时打开子窗体FMChild并将某一个值传给子窗体FMChild，一般情况下，我们点击按钮显示子窗体FMChild的代码为：　　FMChildfmChild=newFMChild（）；fmChild.ShowDialog（）；fmChild.Dispose（）；
　　如果我们需要将主窗体FMMain中的stringstrValueA的值传给FMChild，那么我们首先对strValueA进行如下处理：
　　privatestringstrValueA；publicstringStrValueA{get{returnstrValueA；}set{strValueA=value；}}
　　使其成为主窗体FMMain的一个属性，接着修改显示子窗体的代码为以下两种的其中一种。
　　方法一：
　　FMChildfmChild=newFMChild（）；fmChild.ShowDialog（this）；fmChild.Dispose（）；
　　方法二：
　　FMChildfmChild=newFMChild（）；FMChild.Owner=this；fmChild.ShowDialog（）；fmChild.Dispose（）；
　　然后在修改子窗体FMChild中申明一个主窗体FMMain对象，
　　FMMainfmMain；
　　在需要使用主窗体FMMain的stringstrValueA的地方加上如下代码：
　　fmMain=（FMMain）this.Owner；
　　这样，就可以获得主窗体FMMain中strValueA的值了。
　　这时，如果你需要将子窗体FMChild中的stringstrValueB传给主窗体FMMain，同样处理stringstrValueB.
　　privatestringstrValueB；publicstringStrValueB{get{returnstrValueB；}set{strValueB=value；}}
　　那么你在关闭子窗体代码fmChild.Dispose（）；后，可以写一些代码来保存或者处理FMChild的strValueB，例如：
　　stringstrTmp=fmChild.StrValueB；

第三个方法是用构造函数：
Form1的button按钮这样写：
privatevoidbutton1_Click(objectsender,System.EventArgse)
{
Form2temp=newForm2(9);
temp.Show();
}

Form2的构造函数这样写：
publicForm2(inti)
{
InitializeComponent();
textBox1.Text=i.ToString();
}

第四个方法是用delegate，代码如下：
Form2中先定义一个delegate
publicdelegatevoidreturnvalue(inti);
publicreturnvalueReturnValue;
form2中的button按钮代码如下：
privatevoidbutton1_Click(objectsender,System.EventArgse)
{
if(ReturnValue!=null)
ReturnValue(8);
}

Form1中的button按键如下：
privatevoidbutton1_Click(objectsender,System.EventArgse)
{
Form2temp=newForm2();
temp.ReturnValue=newtemp.Form2.returnvalue(showvalue);
temp.Show();
}

privatevoidshowvalue(inti)
{
textBox1.Text=i.ToString();
}

点击form2的button，form1中的textbox中的值就会相应变化。

在这四个方法中，
第一个是双向传值，也就是说，form1和form2改变i的值，另一方也会受到影响。
第二个方法可以单向也可以双向传值。
第三个方法是form1->form2单向传值。
第四个方法是form2->form1单向传值。
现在很多程序都有托盘功能,而我们的聊天工具更是如此,无论是QQ,旺旺,飞鸽传书等等,都是以托盘的形式工作在后台,对消息进行监听的.而VS2005给我们提供了现成的控件,来完成托盘的功能,下面我结合代码讲解下项目中可能用到的托盘技巧.
1.如何实现托盘功能:
在VS2005中直接添加notifyIcon控件,然后设置下icon属性,给其设置个图标即可,使用托盘功能.
但是托盘并不能实现我们要求的功能,具体的功能实现,需要我们手工添加代码实现.
2.如何最小化时自动到托盘
private void Form1_Resize(objectsender,System.EventArgse)
{
if(this.WindowState==FormWindowState.Minimized)
{
this.Visible=false;
this.notifyIcon1.Visible=true;
}
}
3.如何双击托盘恢复原状
private void notifyIcon1_Click(objectsender,System.EventArgse)
{
this.Visible=true;
this.WindowState=FormWindowState.Normal;
this.notifyIcon1.Visible=false;
}
4.实现托盘的闪烁功能(如QQ有消息时的闪烁)
(1).首先我们在空白窗体中拖入一个NotifyIcon控件和定时控件
privateSystem.Windows.Forms.NotifyIconnotifyIcon1;
privateSystem.Windows.Forms.Timertimer1;
(2).其次,我们准备两张ico图片,用来显示在任务栏,其中一张可用透明的ico图片,分别叫做1.ico和2.ico;并且建立两个icon对象分别用来存放两个ico图片;
privateIconico1=newIcon("1.ico");
privateIconico2=newIcon("2.ICO");//透明的图标
(3).在Form_load中初始化notifyicon:
privatevoidForm1_Load(objectsender,System.EventArgse)
{
this.notifyIcon1.Icon=ico1;//设置程序刚运行时显示在任务栏的图标
this.timer1.Enable=true;//将定时控件设为启用,默认为false;
}
(4).先设置一个全局变量i,用来控制图片索引,然后创建定时事件,双击定时控件就可以编辑
inti=0;
privatevoidtimer1_Tick(objectsender,System.EventArgse)
{
//如果i=0则让任务栏图标变为透明的图标并且退出
if(i<1)
{
this.notifyIcon1.Icon=ico2;
i++;
return;
}
//如果i!=0,就让任务栏图标变为ico1,并将i置为0;
else
this.notifyIcon1.Icon=ico1;
i=0;
}
由于消息传输要求较低,而且为了简化聊天的步骤,在局域网聊天中,采用UDP是非常好的选择.因为UDP可以不用连接,在获取用户列表后,直接点击用户名就可以发送消息,减少了等待连接等繁琐的步骤,很好的满足了聊天的即时性,实时性特点.
著名局域网聊天工具飞鸽,以及即时聊天工具QQ.在消息传输方面都是采用的UDP.
这讲,我将直接把我程序的源代码贴出来,来讲解,发送消息,接受消息的处理.
1.UDP发送信息
namespaceXChat.SendMes
{
public class MsgSend
{
private UdpClient udp=null;
private int PORT;
private IPEndPoint endP=null;
public MsgSend()
{
this.PORT=58888;
}
publicMsgSend(intport)
{
this.PORT=port;
}

///<summary>
///发送信息
///</summary>
///<paramname="hostName">要发送到的主机名</param>
///<paramname="message">要发送的信息</param>
publicvoidSendMessage(stringhostName,stringmessage)
{
this.udp=newUdpClient();
endP=newIPEndPoint(Dns.GetHostEntry(hostName).AddressList[0],PORT);
try
{
//byte[]b=Encoding.ASCII.GetBytes(hostName);
byte[]b=Encoding.UTF8.GetBytes(message);
udp.Send(b,b.Length,endP);
}
catch
{
System.Windows.Forms.MessageBox.Show("发送出错!");
}
finally
{
this.udp.Close();
}
}

}
}
要使用时直接new MsgSend().SendMessage(主机名,消息);

2.UDP接收消息
namespaceXChat.SendMes
{
//设置消息到前台的委托
public delegate voidSet Message(stringmes);
public class MsgRecive
{
private int PORT;
private UdpClient udp=null;
private Thread recThread=null;
private IPEndPoint ipep=null;
private SetMessages etMes;
public MsgRecive()
{
this.PORT=58888;
}
publicMsgRecive(intport)
{
this.PORT=port;
}
///<summary>
///开启后台接受消息线程
///</summary>
///<paramname="setMes">传入设置消息的委托</param>
publicvoidStartReciveMsg(SetMessagesetMes)
{
this.setMes=setMes;
udp=newUdpClient(PORT);
recThread=newThread(newThreadStart(ReciveMsg));
recThread.Start();
}

///<summary>
///关闭后台消息接收线程
///</summary>
publicvoidCloseReciveMsg()
{
recThread.Abort();
//recThread.Join();
udp.Close();
}
privatevoidReciveMsg()
{
while(true)
{
//这句很重要,否则CPU很容易100%
Thread.Sleep(500);
byte[] b = udp.Receive(refipep);
string message=Encoding.UTF8.GetString(b,0,b.Length);
this.setMes(message);
}
}
}
}
在前台private MsgRecive mr=null;
public xchatFrm()
{
……
this.mr=newMsgRecive(port);
this.mr.StartReciveMsg(newSetMessage(GetMes));
……
}
这几天一直想写一个类似QQ文件发送的东西，上网找了一些资料，都不是很理想，下面我把我的思路和基本实现代码说下。

 为了把问题说清楚，把一些变量都直接附值了，并没有通过输入附值

 private string path = "F:\\SmartMovie.EXE"; //要发送的文件

 private Socket s;

 private void listen()

 {

 string ip = "127.0.0.1"; //远程IP 这里定义为自己的机器

 IPAddress[] ih = Dns.GetHostAddresses(ip); //获得IP列表

 IPAddress newip = ih[0]; //获取IP地址

 int port = 6789; //定义端口

 IPEndPoint Conncet = new IPEndPoint(newip, port); //构造结点

 s = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); //初始化socket

 try

 {

 s.Connect(Conncet); //连接远程服务器

 if (s.Connected) //如果连接成功 s.Connected 则为true 否则为 false

 {

 Console.WriteLine("连接成功");

 Thread t = new Thread(new ThreadStart(set)); //创建进程

 t.Start(); //开始进程

 Console.WriteLine("发送完毕")

 }

 }

 catch(NullReferenceException e)

 {

 Console.WriteLine("{0}",e);

 }

 private void set() //创建set函数

 {

 Console.WriteLine("开始发送数据");

 byte[] b = new byte[10000000]; //创建文件缓冲区，这里可以认为文件的最大值

 FileStream file = File.Open(path, FileMode.Open,FileAccess.Read); //创建文件流

 int start = 0;

 int end = (int)file.Length; //获取文件长度 文件传送如果有需要超过int的范围估计就要改写FileStream类了

 try

 {

 while (end != 0)

 {

 int count = file.Read(b, start, end); //把数据写进流

 start += count;

 end -= count;

 }

 while (start != 0)

 {

 int n = s.Send(b, end, start, SocketFlags.None); //用Socket的Send方法发送流

 end += n;

 start -= n;

 }

 file.Close(); //关闭文件流

 s.Close(); //关闭Socket

 }

 catch (NullReferenceException e)

 {

 Console.WriteLine("{0}", e);

 }

 }

这样文件发送的模型就实现了

 接下去实现文件的接收，首先要确定对方发送文件的长度，其实上面的那段还要加入发送文件长度的功能，实现很简单，就是发送int变量end ，然后要求接收代码返回一个Boolean确定是否发送，这里为了更简明的说清楚原理并没有实现

 private void get()

 {

 string path = "G:\\da.exe"; //接收的文件

 FileStream file = new FileStream(path, FileMode.OpenOrCreate, FileAccess.Write); //写入文件流

 TcpListener listen = new TcpListener(6789); //监听端口

 Socket s1 = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); //定义Socket并初始化

 try

 {

 listen.Start(); //开始监听

 s1 = listen.AcceptSocket(); //获取Socket连接

 byte[] data = new byte[10000000]; //定义缓冲区

 int longer = data.Length;

 int start = 0;

 int mid = 0;

 if (s1.Connected) //确定连接

 {

 Console.WriteLine("连接成功");

 int count = s1.Receive(data, start, longer, SocketFlags.None); //把接收到的byte存入缓冲区

 mid += count;

 longer -= mid;

 while (count != 0)

 {

 count = s1.Receive(data, mid, longer, SocketFlags.None);

 mid += count;

 longer -= mid;

 }

 file.Write(data, 0, 1214134); //写入文件，1214134为文件大小，可以用socket发送获得，代码前面已经说明。

 s1.Close();

 file.Close();

 }

 }

 catch(NullReferenceException e)

 {

 Console.WriteLine("{0}",e);

 }

 }

本文来自CSDN博客，转载请标明出处：http://blog.csdn.net/yangminjie/archive/2007/12/21/1957989.aspx
