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The C++ In-Depth Series

Bjarne Stroustrup, Editor

"l have made this letter longer than usual, because | lack the time to make it short. "
—Blaise Pascal

The advent of the ISO/ANSI C++ standard marked the beginning of a new era for C++
programmers. The standard offers many new facilities and opportunities, but how can a
real-world programmer find the time to discover the key nuggets of wisdom within this
mass of information? The C++ In-Depth Series minimizes learning time and confusion by
giving programmers concise, focused guides to specific topics.

Each book in this series presents a single topic, at a technical level appropriate to that
topic. The Series' practical approach is designed to lift professionals to their next level of
programming skills. Written by experts in the field, these short, in-depth monographs can
be read and referenced without the distraction of unrelated material. The books are cross-
referenced within the Series, and also reference The C++ Programming Language by
Bjarne Stroustrup.

As you develop your skills in C++, it becomes increasingly important to separate essential
information from hype and glitz, and to find the in-depth content you need in order to
grow. The C++ In-Depth Series provides the tools, concepts, techniques, and new
approaches to C++ that will give you a critical edge.

Titles in the Series

Accelerated C++: Practical Programming by Example, Andrew Koenig
and BarbaraE. Moo
Essential C++, Stanley B. Lippman
Exceptional C++; 47 Engineering Puzzles, Programming Problems,
and Solutions, Herb Sutter
Modern C++ Design: Applied Generic Programming and Design Patterns,
Andrei Alexandrescu

For more information, check out the series Web site at
http://www.aw.com/cseng/series/indepth/
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Preface

A new approach to C++ programming

We assume that you want to learn quickly how to write useful C++ programs. Therefore,
we start by explaining the most useful parts of C++. This strategy may seem obvious
when we put it that way, but it has the radical implication that we do not begin by
teaching C, even though C++ builds on C. Instead, we use high-level data structures from
the start, explaining only later the foundations on which those data structures rest. This
approach lets you to begin writing idiomatic C++ programs immediately.

Our approach is unusual in another way: We concentrate on solving problems, rather than
on exploring language and library features. We explain the features, of course, but we do
so in order to support the programs, rather than using the programs as an excuse to
demonstrate the features.

Because this book teaches C++ programming, not just features/it is particularly useful for
readers who already know some C++, and who want to use the language in a more
natural, effective style. Too often, people new to C++ learn the language mechanics
without learning how to apply the language to everyday problems.

Our approach works—for beginners and experienced
programmers

We used to teach a week-long intensive C++ course every summer at Stanford
University. We originally adopted a traditional approach to that course: Assuming that the
students already knew C, we started by showing them how to define classes, and then
moved systematically through the rest of the language. We found that our students would
be confused and frustrated for about two days—until they had learned enough that they
could start writing useful programs. Once they got to that point, they learned quickly.

When we got our hands on a C++ implementation that supported enough of what was
then the brand-new standard library, we overhauled the course. The new course used the
library right from the beginning, concentrated on writing useful programs, and went into
details only after the students had learned enough to use those details productively.

The results were dramatic: After one day in the classroom, our students were able to
write programs that had taken them most of the week in the old course. Moreover, their
frustration vanished.

Abstraction

Our approach is possible only because C++, and our understanding of it, has had time to
mature. That maturity has let us ignore many of the low-level ideas that were the
mainstay of earlier C++ programs and programmers.



The ability to ignore details is characteristic of maturing technologies. For example, early
automobiles broke down so often that every driver had to be an amateur mechanic. It
would have been foolhardy to go for a drive without knowing how to get back home even
if something went wrong. Today's drivers don't need detailed engineering knowledge in
order to use a car for transportation. They may wish to learn the engineering details for
other reasons, but that's another story entirely.

We define abstraction as selective ignorance—concentrating on the ideas that are relevant
to the task at hand, and ignoring everything else—and we think that it is the most
important idea in modern programming. The key to writing a successful program is
knowing which parts of the problem to take into account, and which parts to ignore. Every
programming language offers tools for creating useful abstractions, and every successful
programmer knows how to use those tools.

We think, abstractions are so useful that we've filled this book with them. Of course, we
don't usually call them abstractions directly, because they come in so many forms.
Instead, we refer to functions, data structures, classes, and inheritance—all of which are
abstractions. Not only do we refer to them, but we use them throughout the book.

If abstractions are well designed and well chosen, we believe that we can use them even

if we don't understand all the details of how they work. We do not need to be automotive
engineers to drive a car, nor do we need to understand everything about how C++ works
before we can use it.

Coverage

If you are serious about C++ programming, you need to know everything in this book—
even though this book doesn't tell you everything you need to know.

This statement is not as paradoxical as it sounds. No book this size can contain everything
you'll ever need to know about C++, because different programmers and applications
require different knowledge. Therefore, any book that covers all of C++—such as
Stroustrup's The C++ Programming Language (Addison-Wesley, 2000)—uwill inevitably tell
you a lot that you don't need to know. Someone else will need it, even if you don't.

On the other hand, many parts of C++ are so universally important that it is hard to be
productive without understanding them. We have concentrated on those parts. It is
possible to write a wide variety of useful programs using only the information in this book.
Indeed, one of our reviewers, who is the lead programmer for a substantial commercial
system written in C++, told us that this book covers essentially all of the facilities that he
uses in his work.

Using these facilities, you can write true C++ programs—not C++ programs in the style
of C, or any other language. Once you have mastered the material in this book, you will
know enough to figure out what else you want to learn, and how to go about it. Amateur
telescope makers have a saying that it is easier to make a 3-inch mirror and then to make
a 6-inch mirror than to make a 6-inch mirror from scratch.

We cover only standard C++, and ignore proprietary extensions. This approach has the
advantage that the programs that we teach you to write will work just about anywhere.
However, it also implies that we do not talk about how to write programs that run in
windowing environments, because such programs are invariably tied to a specific
environment, and often to a specific vendor. If you want to write programs that will work



only in a particular environment, you will have to turn elsewhere to learn how to do so—
but don't put this book down quite yet! Because our approach is universal, you will be
able to use everything that you learn here in whatever environments you use in the
future. By all means, go ahead and read that book about GUI applications that you were
considering—but please read this one first.

A note to experienced C and C++ programmers

When you learn a new programming language, you may be tempted to write programs in
a style that is familiar from the languages that you already know. Our approach seeks to
avoid that temptation by using high-level abstractions from the C++ standard library right
from the start. If you are already an experienced C or C++ programmer, this approach
contains some good news and some bad news—and it's the same news.

The news is that you are likely to be surprised at how little of your knowledge will help
you understand C++ as we present it. You will have more to learn at first than you might
expect (which is bad), but you will learn more quickly than you might expect (which is
good). In particular, if you already know C++, you probably learned first how to program
in C, which means that your C++ programming style is built on a C foundation. There is
nothing wrong with that approach, but our approach is so different that we think you'll
see a side of C++ that you haven't seen before.

Of course, many of the syntactic details will be familiar, but they're just details. We treat
the important ideas in a completely different order from what you've probably
encountered. For example, we don't mention pointers or arrays until Chapter 10, and
we're not even going to discuss your old favorites, printf and malloc, at all. On the other
hand, we start talking about the standard-library string class in Chapter 1. When we say
we're adopting a new approach, we mean it!

Structure of this book

You may find it convenient to think of this book as being in two parts. The first part,
through Chapter 7, concentrates on programs that use standard-library abstractions. The
second part, starting with Chapter 8, talks about defining your own abstractions.

Presenting the library first is an unusual idea, but we think it's right. Much of the C++
language—especially the harder parts—exists mostly for the benefit of library authors.
Library users don't need to know those parts of the language at all. By ignoring those
parts of the language until the second part of the book, we make it possible to write
useful C++ programs much more quickly than if we had adopted a more conventional
approach.

Once you have understood how to use the library, you will be ready to learn about the
low-level facilities on which the library is built, and how to use those facilities to write
your own libraries. Moreover, you will have a feeling for how to make a library useful, and
when to avoid writing new library code altogether.

Although this book is smaller than many C++ books, we have tried to use every
important idea at least twice, and key ideas more than that. As a result, many parts of
the book refer to other parts. These references look like 839.4.3/857, which refers to text
on page 857 that is part of section 39.4.3—or at least it would do so if this book had that
many sections or pages. The first time we explain each idea, we mention it in bold italic



type to make it easy to find and to call your attention to it as an important point.

Every chapter (except the last) concludes with a section called Details. These sections
serve two purposes: They make it easy to remember the ideas that the chapter
introduced, and they cover additional, related material that we think you will need to
know eventually. We suggest that you skim these sections on first reading, and refer back
to them later as needed.

The two appendices summarize and elucidate the important parts of the language and
library at a level of detail that we hope will be useful when you are writing programs.

Getting the most out of this book

Every book about programming includes example programs, and this one is no different.
In order to understand how these programs work, there is no substitute for running them
on a computer. Such computers abound, and new ones appear constantly—which means
that anything we might say about them would be inaccurate by the time you read these
words. Therefore, if you do not yet know how to compile and execute a C++ program,
please visit http://www.acceleratedcpp.com and see what we have to say there. We will
update that website from time to time with information and advice about the mechanics
of running C++ programs. The site also offers machine-readable versions of some of the
example programs, and other information that you might find interesting.
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Getting started

Let us begin by looking at a small C++ program:

/'l a small C++ program
#i ncl ude <i ostreanp

int main()

{

std::cout << "Hello, world!'" << std::endl;
return O;

Programmers often refer to such a program as a Hel | o, wor | d! program. Despite its
small size, you should take the time to compile and run this program on your computer
before reading further. The program should write

Hel |l o, worl d!

on the standard output, which will typically be a window on your display screen. If you
have trouble, find someone who already knows C++ and ask for help, or consult our
Website, http://www.acceleratedcpp.com, for advice.

This program is useful because it is so simple that if you have trouble, the most likely
reasons are obvious typographical errors or misconceptions about how to use the
implementation. Moreover, thoroughly understanding even such a small program can
teach a surprising amount about the fundamentals of C++. In order to gain this
understanding, we'll look in detail at each line of the program.

0.1 Comments

The first line of our program is

/'l a small C++ program

The / /| characters begin a comment, which extends to the end of the line. The compiler
ignores comments; their purpose is to explain the program to a human reader. In this
book, we shall put the text of each comment in italic type, to make it easier for you to
distinguish comments from other parts of the program.


http://www.acceleratedcpp.com
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0.2 #include

In C++, many fundamental facilities, such as input-output, are part of the standard
library, rather than being part of the core language. This distinction is important
because the core language is always available to all C++ programs, but you must
explicitly ask for the parts of the standard library that you wish to use.

Programs ask for standard-library facilities by using #include directives. Such
directives normally appear at the beginning of a program. The only part of the standard
library that our program uses is input-output, which we request by writing

#i ncl ude <i ostreanr

The name | 0St r eamsuggests support for sequential, or stream, input-output, rather
than random-access or graphical input-output. Because the name i 0St r eamappears in
an #1 ncl ude directive and it is enclosed in angle brackets (< and >), it refers to a part
of the C++ library called a standard header.

The C++ standard does not tell us exactly what a standard header is, but it does define
each header's name and behavior. Including a standard header makes the associated
library facilities available to the program, but exactly how the implementation does so is
its concern, not ours.

0.3 The main function

A function is a piece of program that has a name, and that another part of the program
can call, or cause to run. Every C++ program must contain a function named nmai n.
When we ask the C++ implementation to run a program, it does so by calling this
function.

The nmai n function is required to yield an integer as its result, the purpose of which is to
tell the implementation whether the program ran successfully. A zero value indicates
success; any other value means there was a problem. Accordingly, we begin by writing

int main()

to say that we are defining a function named mai n that returns a value of type i nt .
Here, i nt is the name that the core language uses to describe integers. The parentheses
after mai n enclose the parameters that our function receives from the implementation. In
this particular example, there are no parameters, so there is nothing between the
parentheses. We'll see how to use main's parameters in 810.4/179.

0.4 Curly braces



We continue our definition of the main function by following the parentheses with a
sequence of statements enclosed in curly braces (often simply called braces):

int main()
{ /1 left brace

/1l the statements go here
} /1l right brace

In C++, braces tell the implementation to treat whatever appears between them as a
unit. In this example, the left brace marks the beginning of the statements in our nai n
function, and the right brace marks their end. In other words, the braces indicate that all
the statements between them are part of the same function.

When there are two or more statements within braces, as there are in this function, the
implementation executes them in the order in which they appear.

<< =
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0.5 Using the standard library for output

The first statement inside the braces does our program'’s real work:

std::cout << "Hello, world!'" << std::endl;

This statement uses the standard library's output operator, <<, to write Hel | o,
wor | d!' on the standard output, and then to write the value of st d: : endl .

Preceding a name by st d: : indicates that the name is part of a namespace named st d.
A namespace is a collection of related names; the standard library uses st d to contain all
the names that it defines. So, for example, the | 0st r eamstandard header defines the
names cout and endl| , and we refer to these names as st d: : cout and std: : endl .

The name st d: : cout refers to the standard output stream, which is whatever facility
the C++ implementation uses for ordinary output from programs. In a typical C++
implementation under a windowing operating system, st d: : cout will denote the window
that the implementation associates with the program while it is running. Under such a
system, the output written to st d: : cout will appear in the associated window.

Writing the value of st d: : endl ends the current line of output, so that if this program
were to produce any more output, that output would appear on a new line.

0.6 The return statement

A return statement, such as

return O;

ends execution of the function in which it appears, and passes the value that appears
between the r et ur n and the semicolon (0 in this example) back to the program that
called the function that is returning. The value that is returned must have a type that is
appropriate for the type that the function says it will return. In the case of nai n, the
return type is i nt and the program to which nai n returns is the C++ implementation
itself. Therefore, a r et ur n from nai N must include an integer-valued expression, which
is passed back to the implementation.

Of course, there may be more than one point at which it might make sense to terminate a
program; such a program may have more than one r et ur n statement. If the definition
of a function promises that the function returns a value of a particular type, then every

I et ur n statement in the function must return a value of an appropriate type.

<< i
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0.7 A slightly deeper look

This program uses two additional concepts that permeate C++: expressions and scope.
We will have much more to say about these concepts as this book progresses, but it is
worthwhile to begin with some of the basics here.

An expression asks the implementation to compute something. The computation yields a
result, and may also have side effects-that is, it may affect the state of the program or
the implementation in ways that are not directly part of the result. For example, 3+4 is an
expression that yields 7 as its result, and has no side effects, and

std::cout << "Hello, world!'" << std::endl

is an expression that, as its side effect, writes Hel | o, wor| d! on the standard output
stream and ends the current line.

An expression contains operators and operands, both of which can take on many forms.
In our Hel | o, worl d! expression, the two << symbols are operators, and st d: : cout ,
"Hell o, world! " andstd::endl are operands.

Every operand has a type. We shall have much more to say about types, but essentially,
a type denotes a data structure and the meanings of operations that make sense for that
data structure. The effect of an operator depends on the types of its operands.

Types often have names. For example, the core language defines i nt as the name of a
type that represents integers, and the library defines st d: : 0st r eamas the type that
provides stream-based output. In our program, st d: : cout has type st d: : ostream

The << operator takes two operands, and yet we have written two << operators and three
operands. How can this be? The answer is that << is left-associative, which, loosely
speaking, means that when << appears twice or more in the same expression, each <<
will use as much of the expression as it can for its left operand, and as little of it as it can
for its right operand. In our example, the first << operator has "Hel | o, world! " as
its right operand and st d: : cout as its left operand, and the second << operator has

st d: : endl as its right operand and std: :cout << "Hello, world! " asits left
operand. If we use parentheses to clarify the relationship between operands and
operators, we see that our output expression is equivalent to

(std::cout << "Hello, world!") << std::end

Each << behaves in a way that depends on the types of its operands. The first << has

st d: : cout, which has type st d: : ost r eam as its left operand. Its right operand is a
string literal, which has a mysterious type that we shall not even discuss until 10.2/176.
With those operand types, << writes its right operand's characters onto the stream that
its left operand denotes, and its result is its left operand.

The left operand of the second << is therefore an expression that yields st d: : cout ,
which has type st d: : ost r eant the right operand is st d: : endl , which is a



manipulator. The key property of manipulators is that writing a manipulator on a stream
manipulates the stream, by doing something other than just writing characters to it.
When the left operand of << has type st d: : ost r eamand the right operand is a
manipulator, << does whatever the manipulator says to do to the given stream, and
returns the stream as its result. In the case of st d: : endl , that action is to end the
current line of output.

The entire expression therefore yields st d: : cout as its value, and, as a side effect, it
writes Hel | o, wor | d! on the standard output stream and ends the output line. When
we follow the expression by a semicolon, we are asking the implementation to discard the
value-which action is appropriate, because we are interested only in the side effects.

The scope of a name is the part of a program in which that name has its meaning. C++
has several different kinds of scopes, two of which we have seen in this program.

The first scope that we used is a namespace, which, as we've just seen, is a collection of
related names. The standard library defines all of its names in a namespace named st d,
so that it can avoid conflicts with names that we might define for ourselves-as long as we
are not so foolish as to try to define st d. When we use a name from the standard library,
we must specify that the name we want is the one from the library; for example,

st d: : cout means cout as defined in the namespace named St d.

The name st d: : cout is a qualified name, which uses the : : operator. This operator is
also known as the scope operator. To the left of the : . is the (possibly qualified) name
of a scope, which in the case of st d: : cout is the namespace named st d. To the right of
the : : is a name that is defined in the scope named on the left. Thus, st d: : cout means
"the name cout that is in the (namespace) scope st d."

Curly braces form another kind of scope. The body of mai n-and the body of every
function-is itself a scope. This fact is not too interesting in such a small program, but it

will be relevant to almost every other function we write.
=
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0.8 Detalls

Although the program we've written is simple, we've covered a lot of ground in this
chapter. We intend to build on what we've introduced here, so it is important for you to
be sure that you understand this chapter fully before you continue.

To help you do so, this chapter-and every chapter except Chapter 16-ends with a section
called Details and a set of exercises. The Details sections summarize and occasionally
expand on the information in the text. It is worth looking at each Details section as a
reminder of the ideas that the chapter introduced.

Program structure: C++ programs are usually in free form, meaning that spaces are
required only when they keep adjacent symbols from running together. In particular,
newlines (i.e., the way in which the implementation represents the change from one line
of the program to the next) are just another kind of space, and usually have no additional
special meaning. Where you choose to put spaces in a program can make it much easier-
or harder-to read. Programs are normally indented to improve readability.

There are three entities that are not free-form:

string literals
characters enclosed in double quotes; may not span lines

#i ncl ude nane
must appear on a line by themselves (except for comments)

/'l comrents
/'] followed by anything; ends at the end of the current line

A comment that begins with / * is free-form; it ends with the first subsequent */ and can
span multiple lines.

Types define data structures and operations on those data structures. C++ has two kinds
of types: those built into the core language, such as i nt , and those that are defined
outside the core language, such as st d: : ostream

Namespaces are a mechanism for grouping related names. Names from the standard
library are defined in the namespace called st d.

String literals begin and end with double quotes (" ); each string literal must appear
entirely on one line of the program. Some characters in string literals have special
meaning when preceded by a backslash (\ ):

\'n newline character
\t tabcharacter
\'b backspace character

\ treats this symbol as part of the string rather than as the string terminator



\' samemeaningas ' in string literals, for consistency with character literals
(81.2/14)

\\ includesa \ in the string, treating the next character as an ordinary character
We'll see more about string literals in 10.2/176 and 8A.2.1.3/302.

Definitions and headers: Every name that a C++ program uses must have a
corresponding definition. The standard library defines its names in headers, which
programs access through #i ncl ude. Names must be defined before they are used;
hence, a #i ncl ude must precede the use of any name from that header. The

<i ost r ean® header defines the library's input-output facilities.

The main function: Every C++ program must define exactly one function, named nai n,
that returns an i nt . The implementation runs the program by calling nai n. A zero return
from nai n indicates success; a nonzero return indicates failure. In general, functions
must include at least one r et ur n statement and are not permitted to fall off the end of
the function. The nmai n function is special: It may omit the return; if it does so, the
implementation will assume a zero return value. However, explicitly including a return
from nai n is good practice.

Braces and semicolons: These inconspicuous symbols are important in C++ programs.
They are easy to overlook because they are small, and they are important because
forgetting one typically evokes compiler diagnostic messages that may be hard to
understand.

A sequence of zero or more statements enclosed in braces is a statement, called a block,
which is a request to execute the constituent statements in the order in which they
appear. The body of a function must be enclosed in braces, even if it is only a single
statement. The statements between a pair of matching braces constitute a scope.

An expression followed by a semicolon is a statement, called an expression statement,
which is a request to execute the expression for its side effects and discard its result. The
expression is optional; omitting it results in a null statement, which has no effect.

Output: Evaluating st d: : cout << e writes the value of € on the standard-output
stream, and yields st d: : cout , which has type 0st r eam as its value in order to allow
chained output operations.

Exercises
0-0. Compile and run the Hel | o, wor | d! program.

0O-1. What does the following statement do?

3 + 4;
0-2. Write a program that, when run, writes

This (") is a quote, and this (\) is a backsl ash.

0-3. The string literal "\t " represents a tab character; different C++ implementations



display tabs in different ways. Experiment with your implementation to learn how it treats
tabs.

0-4. Write a program that, when run, writes the Hel | o, wor | d! program as its output.

0-5. Is this a valid program? Why or why not?

#i ncl ude <i ostreanr
int main() std::cout << "Hello, world!'" << std::endl;

0-6. Is this a valid program? Why or why not?

#i ncl ude <i ostreany
int main() {{{{{{ std::cout << "Hello, world!" << std::endl; }}}}}}

0-7. What about this one?

#i ncl ude <i ostreanr

int main()
{
/* This is a cormment that extends over several lines
because it uses /* and */ as its starting and ending delimters */
std::cout << "Does this work?" << std::endl;
return O;
}

0-8. ...and this one?

#1 ncl ude <i ostreanr

int main()
{
/'l This is a comment that extends over several lines
/'l by using // at the beginning of each line instead of using /*
/[l or */ to delimt comments.
std::cout << "Does this work?" << std::endl;
return 0O;
}

0-9. What is the shortest valid program?

0-10. Rewrite the Hel | o, wor | d! program so that a newline occurs everywhere that

whitespace is allowed in the program.
[rox_3
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Working with strings

Chapter 0 looked closely at a tiny program, which we used to introduce surprisingly many
fundamental C++ ideas: comments, standard headers, scopes, nhamespaces, expressions,
statements, string literals, and output. This chapter continues our overview of the
fundamentals by writing similarly simple programs that use character strings. In the
process, we'll learn about declarations, variables, and initialization, as well as something
about input and the C++ st ri ng library. The programs in this chapter are so simple that
they do not even require any control structures, which we will cover in Chapter 2.

1.1 Input

Once we can write text, the logical next step is to read it. For example, we can modify the
Hel | o, worl d! program to say hello to a specific person:

/'l ask for a person's nane, and greet the person
#i ncl ude <i ostreanr
#i ncl ude <string>

int main()

{
/'l ask for the person's nane
std::cout << "Please enter your first nanme: "
/1 read the nane
std::string nane; /1 define nane
std::cin >> nane; /1 read into
/1 wite a greeting
std::cout << "Hello, " << nanme << "!" << std::endl
return O;

}

When we execute this program, it will write

Pl ease enter your first nane:

on the standard output. If we respond, for example,



Vladimr

then the program will write

Hello, Mladimr!

Let's look at what's going on. In order to read input, we must have a place to put it. Such
a place is called a variable. A variable is an object that has a name. An object, in turn,
is a part of the computer's memory that has a type. The distinction between objects and
variables is important because, as we'll see in 83.2.2/45, 84.2.3/65, and 810.6.1/183, it
is possible to have objects that do not have names.

If we wish to use a variable, we must tell the implementation what name to give it and
what type we want it to have. The requirement to supply both a name and a type makes
it easier for the implementation to generate efficient machine code for our programs. The
requirement also lets the compiler detect misspelled variable names-unless the
misspelling happens to match one of the names that our program said it intended to use.

In this example, our variable is named nane, and its type is st d: : stri ng. As we saw in
80.5/3and 80.7/5, theuse of st d: : implies that the name, st ri ng, that follows it is
part of the standard library, not part of the core language or of a nonstandard library. As
with every part of the standard library, st d: : st ri ng has an associated header, namely
<stri ng>, so we've added an appropriate #i ncl ude directive to our program.

Thefirststatement,

std::cout << "Please enter your first nanme: ";

should be familiar by now: It writes a message that asks for the user's name. An
important part of this statement is what isn't there, namely the st d: : endl manipulator.
Because we did not use st d: : endl , the output does not begin a new line after the
program has written its message. Instead, as soon as it has written the prompt, the
computer waits-on the same line-for input. The next statement,

std::string nane; /1 define nane

is a definition, which defines our variable named name that has type st d: : stri ng.
Because this definition appears within a function body, nane is a local variable, which
exists only while the part of the program within the braces is executing. As soon as the
computer reaches the }, it destroys the variable nane, and returns any memory that the
variable occupied to the system for other uses. The limited lifetime of local variables is
one reason that it is important to distinguish between variables and other objects.

Implicit in the type of an object is its interface-the collection of operations that are
possible on an object of that type. By defining nane as a variable (a named object) of
type string, we are implicitly saying that we want to be able to do with nane whatever
the library says that we can do with st ri ngs.

One of those operations is to initialize the st ri ng. Defining a St ri ng variable implicitly



initializes it, because the standard library says that every St ri ng object starts out with a
value. We shall see shortly that we can supply a value of our own when we create a
string. If we do not do so, then the st ri ng starts out containing no characters at all.
We call such a st ri ng an empty or null stri ng.

Once we have defined name, we execute

std::cin >> nane; /1 read into nane

which is a statement that reads from st d: : ci n into nane. Analogous with its use of the
<< operator and st d: : cout for output, the library uses the >> oper at or and

st d: : ci n for input. In this example, >> reads a St r i ng from the standard input and
stores what it read in the object named nane. When we ask the library to read a st ri ng,
it begins by discarding whitespace characters (space, tab, backspace, or the end of the
line) from the input, then reads characters into nane until it encounters another
whitespace character or end-of-file. Therefore, the result of executing std: : cin >>
nane is to read a word from the standard input, storing in nane the characters that
constitute the word.

The input operation has another side effect: It causes our prompt, which asks for the
user's name, to appear on the computer's output device. In general, the input-output
library saves its output in an internal data structure called a buffer, which it uses to
optimize output operations. Most systems take a significant amount of time to write
characters to an output device, regardless of how many characters there are to write. To
avoid the overhead of writing in response to each output request, the library uses the
buffer to accumulate the characters to be written, and flushes the buffer, by writing its
contents to the output device, only when necessary. By doing so, it can combine several
output operations into a single write.

There are three events that cause the system to flush the buffer. First, the buffer might
be full, in which case the library will flush it automatically. Second, the library might be
asked to read from the standard input stream. In that case, the library immediately
flushes the output buffer without waiting for the buffer to become full. The third occasion
for flushing the buffer is when we explicitly say to do so.

When our program writes its prompt to cout , that output goes into the buffer associated
with the standard output stream. Next, we attempt to read from ci n. This read flushes
the cout buffer, so we are assured that our user will see the prompt.

Our next statement, which generates the output, explicitly instructs the library to flush
the buffer. That statement is only slightly more complicated than the one that wrote the
prompt. Here we write the string literal "Hel | 0, " followed by the value of the stri ng
variable namne, and finally by st d: : endl . Writing the value of st d: : endl ends the line
of output, and then flushes the buffer, which forces the system to write to the output
stream immediately.

Flushing output buffers at opportune moments is an important habit when you are writing
programs that might take a long time to run. Otherwise, some of the program's output
might languish in the system's buffers for a long time between when your program writes
it and when you see it.

<< =D
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1.2 Framing a name

So far, our program has been restrained in its greetings. We'd like to change that by
writing a more elaborate greeting, so that the input and output look like this:

Pl ease enter your first name: Estragon

EE R R I R I I I I R I I
* *
* Hello, Estragon! *
* *

khkkhkkhkkhkkhkkdkdkhxkkx*k

Our program will produce five lines of output. The first line begins the frame. It is a
sequence of * characters as long as the person's name, plus some characters to match
the salutation ("Hel | 0, "), plus a space and an * at each end. The line after that will be
an appropriate number of spaces with an * at each end. The third line is an *, a space,
the message, a space, and an * . The last two lines will be the same as the second and
first lines, respectively.

A sensible strategy is to build up the output a piece at a time. First we'll read the name,
then we'll use it to construct the greeting, and then we'll use the greeting to build each
line of the output. Here is a program that uses that strategy to solve our problem:

/'l ask for a person's nane, and generate a franed greeting
#i ncl ude <i ostreanr
#i ncl ude <string>

int main()

{

std::cout << "Please enter your first nanme: ";
std::string nane;
std::cin >> nane;

/1 build the nessage that we intend to wite
const std::string greeting = "Hello, " + name + "!"

/1 build the second and fourth lines of the output
const std::string spaces(greeting.size(), " ');
const std::string second = "* " + spaces + " *";

/1 build the first and fifth lines of the output
const std::string first(second.size(), '"*");

/'l wite it all

std::cout << std::endl;

std::cout << first << std::endl
std::cout << second << std::endl;



std::cout << "* " << greeting << " *" << std::endl;
std::cout << second << std::endl;
std::cout << first << std::endl;

return O;

First, our program asks for the user's name, and reads that name into a variable named
name. Then, it defines a variable named gr eet i ng that contains the message that it
intends to write. Next, it defines a variable named spaces, which contains as many
spaces as the number of characters in gr eet i ng. It uses the spaces variable to define
a variable named second, which will contain the second line of the output, and then the
program constructs f i r st as a variable that contains as many * characters as the
number of characters in second. Finally, it writes the output, a line at a time.

The #i ncl ude directives and the first three statements in this program should be
familiar. The definition of gr eet i ng, on the other hand, introduces three new ideas.

One idea is that we can give a variable a value as we define it. We do so by placing,
between the variable's name and the semicolon that follows it, an = symbol followed by
the value that we wish the variable to have. If the variable and value have different
types-as 810.2/176 shows that st r i ngs and string literals do-the implementation will
convert the initial value to the type of the variable.

The second new idea is that we can use + to concatenate a st ri ng and a string literal-
or, for that matter, two st ri ngs (but not two string literals). We noted in passing in
Chapter O that 3 + 4 is 7. Here we have an example in which + means something
completely different. In each case, we can determine what the + operator does by
examining the types of its operands. When an operator has different meanings for
operands of different types, we say that the operator is overloaded.

The third idea is that of saying const as part of a variable's definition. Doing so promises
that we are not going to change the value of the variable for the rest of its lifetime.
Strictly speaking, this program gains nothing by using const . However, pointing out
which variables will not change can make a program much easier to understand.

Note that if we say that a variable is const , we must initialize it then and there, because
we won't have the opportunity later. Note also that the value that we use to initialize the
const variable need not itself be a constant. In this example, we won't know the value of
gr eet i ng until after we have read a value into name, which obviously can't happen until
we run the program. For this reason, we cannot say that nane is const , because we
change its value by reading into it.

One property of an operator that never changes is its associativity. We learned in Chapter
0 that << is left-associative, so that st d: : cout << s << t means the same as
(std::cout << s) << t. Similarly, the + operator (and, for that matter, the >>
operator) is also left-associative. Accordingly, the value of "Hel |l o, " + nane + "!"
is the result of concatenating "Hel | o, " with nane, and concatenating the result of that
concatenation with " ! " . So, for example, if the variable nane contains Est r agon, then
the value of "Hel l 0, " + nanme + "!" isHell o, Estragon!

At this point, we have figured out what we are going to say, and saved that information in



the variable named gr eet i ng. Our next job is to build the frame that will enclose our
greeting. In order to do so, we introduce three more ideas in a single statement:

std::string spaces(greeting.size(), " ');

When we defined gr eet i ng, we used an = symbol to initialize it. Here, we are following
spaces by two expressions, which are separated by a comma and enclosed in
parentheses. When we use the = symbol, we are saying explicitly what value we would
like the variable to have. By using parentheses in a definition, as we do here, we tell the
implementation to construct the variable-in this case, spaces-from the expressions, in
a way that depends on the type of the variable. In other words, in order to understand
this definition, we must understand what it means to construct a St ri ng from two
expressions.

How a variable is constructed depends entirely on its type. In this particular case, we are
constructing a st ri ng from-well, from what? Both expressions are of forms that we
haven't seen before. What do they mean?

The first expression, greeti ng. si ze(), is an example of calling a member function.
In effect, the object named gr eet i ng has a component named Si ze, which turns out to
be a function, and which we can therefore call to obtain a value. The variable gr eet i ng
has type st d: : st ri ng, which is defined so that evaluating gr eet i ng. si ze() yields
an integer that represents the number of characters in gr eet i ng.

The second expression, ' ', is a character literal. Character literals are completely
distinct from string literals. A character literal is always enclosed in single quotes; a string
literal is always enclosed in double quotes. The type of a character literal is the built-in
type char; the type of a string literal is much more complicated, and we shall not explain
it until 810.2/176. A character literal represents a single character. The characters that
have special meaning inside a string literal have the same special meaning in a character
literal. Thus, if we want' or\ , we must precede it by \ . For that matter, ' \n', "\t"',
"\"', and related forms work analogously to the way we saw in Chapter O that they work
for string literals.

To complete our understanding of spaces, we need to know that when we construct a
st ri ng from an integer value and a char value, the result has as many copies of the
char value as the value of the integer. So, for example, if we were to define

std::string stars(10, '*');

then st ars. si ze() would be 10, and stars itself would contain * ** * * * * % * %

Thus, spaces contains the same number of characters as gr eet i ng, but all of those
characters are blanks.

Understanding the definition of second requires no new knowledge: We concatenate " *
", our string of spaces, and " *" to obtain the second line of our framed message. The
definition of f i r st requires no new knowledge either; it gives f i r st a value that
contains as many * characters as the number of characters in second.



The rest of the program should be familiar; all it does is write strings in the same way we

didin 81.1/9.
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1.3 Details

Types:

char
Built-in type that holds ordinary characters as defined by the implementation.

wchar _t

Built-in type intended to hold "wide characters,” which are big enough to
hold characters for languages such as Japanese.

The string type is defined in the standard header <st ri ng&gt ;. An object of type
st ri ng contains a sequence of zero or more characters. If n is an integer, C is a char,
I S is an input stream, and 0S is an output stream, then the st ri ng operations include

std::string s;
Defines s as a variable of type st d: : st ri ng that is initially empty.

std::string t = s;
Defines t as a variable of type st d: : st ri ng that initially contains a copy
of the characters in S , where s can be either a st ri ng or a string literal.

std::string z(n, c¢);
Defines z as a variable of type st d: : st ri ng that initially contains n copies
of the character c . Here, ¢ must be a char , nota stri ng or a string literal.

0s << s

Writes the characters contained in S , without any formatting changes, on the
output stream denoted by 0S . The result of the expression is 0S .

is > s

Reads and discards characters from the stream denoted by i S until encountering
a character that is not whitespace. Then reads successive characters

from i s into S , overwriting whatever value S might have had, until the next
character read would be whitespace. The resultisi s .

s +t

The result of this expression is an st d: : st ri ng that contains a copy of the
characters in s followed by a copy of the characters int . Either s ort , but
not both, may be a string literal or a value of type char .

S. size()
The number of characters in S .

Variables can be defined in one of three ways:

std::string hello = "Hell o"; /1 define the variable with an explicit initia



std::string stars(100, "*"); /1l construct the variable
/1l according to its type and the given express

std::string nane; /'l define the variable with an inplicit initia
/'l which depends on its type

Variables defined inside a pair of curly braces are local variables/which exist only while
executing the part of the program within the braces. When the implementation reaches
the } , it destroys the variables, and returns any memory that they occupied to the
system. Defining a variable as const promises that the variable's value, will not change
during its lifetime. Such a variable must be initialized as part of its definition, because
there is no way to do so later.

Input: Executing std: : ci n >> v discards any whitespace characters in the standard
input stream, then reads from the standard input into variable v . It returns st d: : ci n ,
which has type | St r eam, in order to allow chained input operations.

Exercises

1-0. Compile, execute, and test the programs in this chapter.

1-1. Are the following definitions valid? Why or why not?

const std::string hello = "Hello";
const std::string nmessage = hello + ", world" + "!";

1-2. Are the following definitions valid? Why or why not?

const std::string exclam= "1";
const std::string nessage = "Hello" + ", world" + exclam

1-3. Is the following program valid? If so, what does it do? If not, why not?

#i ncl ude <i ostreanp
#i ncl ude <string>

int main()
{
{ const std::string s = "a string";
std::cout << s << std::endl; }
{ const std::string s = "another string";
std::cout << s << std::endl; }
return O;
}

1-4. What about this one? What if we change }} to }; } in the third line from the end?



#i ncl ude <i ostreany
#i ncl ude <string>

int main()
{
{ const std::string s = "a string";
std::cout << s << std::endl;
{ const std::string s = "another string";
std::cout << s << std::endl; }}
return O,
}

1-5. Is this program valid? If so, what does it do? If not, say why not, and rewrite it to be
valid.

#i ncl ude <i ostreanr
#i ncl ude <string>

int main()
{
{ std::string s = "a string";
{ std::string x =s + ", really";

std::cout << s << std::endl; }
std::cout << x << std::endl;

}

return O;

1-6. What does the following program do if, when it asks you for input, you type two
names (for example, Samuel Beckett)? Predict the behavior before running the program,
then try it.

#i ncl ude <i ostreanr
#i ncl ude <string>

int main()
{
std::cout << "What is your nanme? ";
std::string nane;
std::cin >> nane;
std::cout << "Hello, " << nane
<< std::endl << "And what is yours? ";
std::cin >> nane;
std::cout << "Hello, " << nane
<< "; nice to neet you too!" << std::endl;

return O;

<o
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Looping and counting

In 81.2/11, we developed a program that writes a formatted frame around a greeting. In
this chapter, we're going to make the program more flexible so that we can change the
size of the frame without rewriting the program.

Along the way, we'll start learning about arithmetic in C++, and how C++ supports loops
and conditions, and we'll explore the related idea of loop invariants.

2.1 The problem

The program in 81.2/12 wrote a greeting with a frame around it. For example, if our user
gave us the name ESt r agon, our program would write

khkkhkkhkkhkxhkxdkhkhxkhxk

* *

* Hello, Estragon! *

* *

khkkhkkhkkdkxhkxdkhkkhxkhxk

The program built up the output a line at a time. It defined variables named fi r st and
second to contain the first and second lines of the output, and wrote the greeting itself,
surrounded by some characters, as the third line. We didn't need separate variables for
the fourth or fifth output lines, because those were the same as the second and first lines
respectively.

This approach has a major shortcoming: Each line of the output has a part of the
program-and a variable-that corresponds to it. Therefore, even a simple change to the
output format, such as removing the spaces between the greeting and the frame, would
require rewriting the program. We would like to produce a more flexible form of output
without having to store each line in a local variable.

We will approach this problem by generating each character of the output separately,
except for the greeting itself, which we already have available as a st ri ng. What we
shall discover is that there is no need to store the output characters in variables, because
once we have written a character, we don't need it any more.

2.2 Overall structure



We'll begin by reviewing the part of the program that we don't have to rewrite:

#1 ncl ude <i ostreanr
#i ncl ude <string>

int main()

{
/'l ask for the person's nane
std::cout << "Please enter your first name: ";
/1 read the nane
std::string nane;
std::cin >> nane;
/1 build the nessage that we intend to wite
const std::string greeting = "Hello, " + name + "!";
/1 we have to rewite this part...
return O;

}

As we rewrite the part of the program that the we have to rewrite this part... comment
represents, we shall already be in a context that defines nane, gr eet i ng, and the
relevant names from the standard library. We will build up the new version of the
program a piece at a time, and then, in 82.5.4/29, we'll put all the pieces together.

<< i
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2.3 Writing an unknown number of rows

We can think of our output as a rectangular array of characters, which we must write one
row at a time. Although we don't know how many rows it has, we do know how to
compute the number of rows.

The greeting takes up one row, as do the top and bottom rows of the frame. We've
accounted for three rows so far. If we know how many blank rows we intend to leave
between the greeting and the frame, we can double that number and add three to obtain
the total number of rows in the output:

/1 the nunber of blanks surrounding the greeting
const int pad = 1,

[/l total nunber of rows to wite
const int rows = pad * 2 + 3;

We want to make it easy to find the part of our program that defines the number of
blanks, so we give that number a name. The variable called pad represents the amount of
padding around the frame. Having defined pad, we use it in computing r ows, which will
control how many rows we write.

The built-in type | nt is the most natural type to use for integers, so we've chosen that
type for pad and r ows. We also said that both variables are const , which we know from
81.2/13 is a promise that we will not change the value of either pad or r ows.

Looking ahead, we intend to use the same number of blanks on the left and right sides as
on the top and bottom, so one variable will serve for all four sides. If we are careful to
use this variable every time we want to refer to the number of blanks, changing the size
of the frame will require only changing the program to give the variable a different value.

We have computed how many rows we need to write; our next problem is to do so:
/'l separate the output from the input
std::cout << std::endl;

/1l wite rows rows of output
int r = 0;

/1 invariant: we have witten r rows so far
while (r '= rows) {

/1 wite a row of output (as we will describe in 82.4/22)
std::cout << std::endl:
++r

We start, as we did in 81.2/12, by writing a blank line, so that there will be some space



between the input and the output. The rest of this fragment contains so many new ideas
that we need to look at it closely. Once we've understood how it works, we'll think about
how to write each individual row.

2.3.1 The while statement

Our program controls how many rows of output it writes by using a while statement,
which repeatedly executes a given statement as long as a given condition is true. A
whi | e statement has the form

whil e (condition)
st at enent

The statement is often called the while body.

The whi | e statement begins by testing the value of the condition. If the condition is
false, it does not execute the body at all. Otherwise, it executes the body once, after
which it tests the condition again, and so on. The whi | e alternates between testing the
condition and executing the body until the condition is false, at which point execution
continues after the end of the entire whi | e statement.

Loosely speaking, we can think of the whi | e statement in our example as saying, "As
long as the value of r is not equal to r ows, do whatever is within the { }."

It is conventional to put the whi | € body on a separate line and indent it, to make
programs easier to read. The implementation doesn't stop us from writing

whil e (condition) statenent

but if we do so, we should think about whether we might be making life harder for other
people who might read our program.

Note that there is no semicolon after statement in this description. Either the statement is
indeed just a statement, or it is a block, which is a sequence of zero or more statements
enclosed in { }. If the statement is just an ordinary statement, it will end with a
semicolon of its own, so there's no need for another one. If it is a block, the block's }
marks the end of the statement, so again there's no need for a semicolon. Because a
block is a sequence of statements enclosed by braces, we know from 80.7/5 that a block
is a scope.

The while begins by testing its condition, which is an expression that appears in a
context where a truth value is required. The expressionr ! = r ows is an example of a
condition. This example uses the inequality operator, ! =, to compare r and r OWs. Such
an expression has type bool, which is a built-in type that represents truth values. The
two possible values of type bool are true and false, with the obvious meanings.

The other new facility in this program is the last statement in the whi | e body, which is

++r



The ++ is the increment operator, which has the effect of incrementing-adding 1 to-the
variable r . We could have written

instead, but incrementing an object is so common that a special notation for doing so is
useful. Moreover, as we shall see in 85.1.2/79, the idea of transforming a value into its
immediate successor, in contrast with computing an arbitrary value, is so fundamental to
abstract data structures that it deserves a special notation for that reason alone.

2.3.2 Designing a while statement

Determining exactly what condition to write in a Whi | e statement is sometimes difficult.
Similarly, it can be hard to understand precisely what a particular whi | e statement does.
It is not too hard to see that the whi | e statement in §2.3/19 will write a number of
output rows that depends on the value of r ows, but how can we be confident that we
know exactly how many rows the program will write? For example, how do we know
whether the number will berows, rows - 1, rows + 1, or something else entirely?
We could trace through the whi | e by hand, noting the effect of each statement's
execution on the state of the program, but how do we know that we haven't made a
mistake along the way?

There is a useful technique for writing and understanding Whi | e statements that relies on
two key ideas-one about the definition of a whi | e statement, and the other about the
behavior of programs in general.

The first idea is that when a Whi | € finishes, its condition must be f al se-otherwise the
whi | e wouldn't have finished. So, for example, when the whi | e in 82.3/19 finishes, we
know thatr ! = r ows is false and, therefore, that r is equal to r ows.

The second idea is that of a loop invariant, which is a property that we assert will be
true about a Whi | e each time it is about to test its condition. We choose an invariant that
we can use to convince ourselves that the program behaves as we intend, and we write
the program so as to make the invariant true at the proper times. Although the invariant
is not part of the program text, it is a valuable intellectual tool for designing programs.
Every useful whi | e statement that we can imagine has an invariant associated with it.
Stating the invariant in a comment can make a Whi | € much easier to understand.

To make this discussion concrete, we will look again at the whi | e statementin §2.3/19.
The comment immediately before the whi | e says what the invariant is: We have written
r rows of output so far.

To determine that this invariant is correct for this program fragment, we must verify that
the invariant is true each time the whi | e is about to test its condition. Doing so requires
us to verify that the invariant will be true at two specific points in the program.

The first point is just before the whi | e tests its condition for the first time. It is easy to
verify the invariant at this point in our example: Because we have written no rows of
output so far, it is obvious that setting r to O makes the invariant true.



The second point is just before we reach the end of the whi | e body. If the invariant is
true there, it will be true the next time the whi | e tests the condition. Therefore, the
invariant will be true every time.

In exchange for writing our program so that it meets these two requirements-causing the
invariant to be true before the whi | e starts, and again at the end of the whi | e body-we
can be confident that the invariant is true not only each time the whi | e tests the
condition, but also after the whi | e finishes. Otherwise, the invariant would have had to
be true at the beginning of one of the iterations of the whi | € body and false afterward-
and we have already arranged for that to be impossible.

Here is a summary of what we know about our program fragment:

/'l invariant: we have witten r rows so far
int r = 0;
/'l setting r to O makes the invariant true
while (r !'=rows) {
/1 we can assune that the invariant is true here

/1 witing a row of output nakes the invariant false
std::cout << std::endl;

/'l incrementing r makes the invariant true again
++r;

}

/'l we can conclude that the invariant is true here

The invariant for our whi | e is that we have written r rows of output so far. When we
define r , we give it an initial value of 0. At this point, we haven't written anything at all.
Setting I to 0 obviously makes the invariant true, so we have met the first requirement.

To meet the second requirement, we must verify that whenever the invariant is true when
the whi | e is about to test its condition, a trip through the condition and body will leave
the invariant true at the end of the body.

Writing a row of output causes the invariant to become false, because r is no longer the
number of rows we have written. However, incrementing I to account for the row that
was written will make the invariant true again. Doing so makes the invariant true at the
end of the body, so we have met the second requirement.

Because both requirements are true, we know that after the whi | e finishes, we have
written r rows. Moreover, we have already seen thatr == r ows. Together, these two
facts imply that r ows is the total number of rows that we have written.

The strategy that we used to understand this loop will come in handy in a variety of
contexts. The general idea is to find an invariant that states a relevant property of the
variables that the loop involves (we have written r rows), and to use the condition to
ensure that when the loop completes, those variables will have useful values (r ==

I ows). The loop body's job is then to manipulate the relevant variables so as to arrange
for the condition to be false eventually, while maintaining the truth of the invariant.
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2.4 Writing a row

Now that we understand how to write a given number of rows, we can turn our attention
to writing a single row. In other words, we can start filling in the part of the program
represented by the write a row of output commentin 2.3/19.

We begin by observing that all the output lines are the same length. If we think of the
output as a rectangular array, then that length is the number of columns in the array. We
can compute that number by adding twice the padding to the length of the greeting, and
then adding two for the asterisks at the ends:

const std::string::size_type cols = greeting.size() + pad * 2 + 2;

The easy part of reading this definition is to see that we've said that col s is const ,
thereby promising that the value of col s will not change after we have defined it. The
harder part to understand is that we have defined col s using an unfamiliar type, namely
std::string::size_type. We know that the first :: is the scope operator and that
the qualified name st d: : st ri ng means the name st ri ng from the namespace st d.
The second :: similarly says that we want the name si ze_t ype from the class stri ng.
Like namespaces and blocks, classes define their own scopes. The st d: : st ri ng type
defines Si ze_t ype to be the name of the appropriate type for holding the number of
characters in a St ri ng. Whenever we need a local variable to contain the size of a string,
we should use st d: : string::size_type as the type of that variable.

The reason that we have given col s a type of std: : string::size_ type is toensure
that col s is capable of containing the number of characters in gr eet i ng, no matter how
large that number might be. We could simply have said that col s has type i nt , and
indeed, doing so would probably work. However, the value of col S depends on the size of
the input to our program, and we have no control over how long that input might be. It is
conceivable that someone might give our program a string so long that an i nt is
insufficient to contain its length.

The i nt type is sufficient for r ows because the number of rows depends only on the
value of pad, which we control. Every C++ implementation is required to allow every i nt
variable to take on values up to at least 32767, which is plenty. Nevertheless, whenever
we define a variable that contains the size of a particular data structure, it is a good habit
to use the type that the library defines as being appropriate for that specific purpose.

It is impossible for a string to contain a negative number of characters. Accordingly,
std::string::size type isan unsigned type-objects of that type are incapable of
containing negative values. This property does not affect the programs in this chapter,
but we shall see later on in 88.1.3/142 that it can be critically important.

Having figured out how many characters to write, we can use another whi | e statement
to write them:

std::string::size_type c = 0;



// invariant: we have witten ¢ characters so far in the current row
while (c !'= cols) {

/1 wite one or nore characters

/1 adjust the value of ¢ to maintain the invariant

This whi | e behaves analogously to the one in 2.3/19, except for one difference in the
body: This time we have said write one or more characters instead of writing exactly one
row as we did in 82.3/19. There is no reason that we have to write only a single character
each time through the body. As long as we write at least one character, we will ensure
progress. All we have to do is ensure that the total number of characters we write on this
row is exactly col s.

2.4.1 Writing border characters

Our remaining problem is to figure out what characters to write. We can solve part of this
problem by noting that if we are on the first or last row, or on the first or last column,
then we know that we should write an asterisk. Moreover, we can use our knowledge of
the loop invariants to determine whether it is time to write an asterisk.

For example, if r is zero, we know from the invariant that we have not yet written any
rows, which means that we are writing part of the first row. Similarly, if r is equal to
rows - 1, we know that we have written r ows - 1 rows already, so we must now be
writing part of the last row. We can use analogous reasoning to conclude that if C is zero,
then we are writing part of the first column, and if ¢ is equal tocol s - 1, we are
writing part of the last column. Using this knowledge, we can fill in more of our program:

/'l invariant: we have witten ¢ characters so far in the current row
while (c !'= cols) {

if (r=01]] r ==rows - 1||] ¢c=0]|] ¢ =-cols - 1) {
std::cout << "*";
} else {

/! wite one or nore nonborder characters
/1l adjust the value of ¢ to maintain the invariant

This statement introduces so many new ideas that it requires detailed explanation.
2.4.1.1 if statements
The whi | e body consists of a block (&2.3.1/19) that contains an if statement, which we

use to determine whether it is time to write an asterisk. An i f statement can take either
of two forms:

if (condition)
st at ement



or, as used here,

if (condition)
statenent 1
el se
st at enent 2

As with the whi | e statement, the condition is an expression that yields a truth value. If
the condition is true, then the program executes the statement that follows the i f . In the
second form of the i f statement, if the condition is false, then the program executes the
statement that follows the el se.

It is worth noting, just as with our description of the form of the whi | e statement, that
the formatting that we use to illustrate the i f statement is merely conventional.
However, readers will find it much easier if code follows formatting conventions such as
the ones that we've used in the examples in this book.

2.4.1.2 Logical operators

What about the condition itself?
r==01|] r ==rows - 1 || ¢ =0]|] ¢c ==vcols -1

This condition is true if r isO orrows - 1,orifc isO orcols - 1. The condition uses
two new operators, the == operator and the | | operator. C++ programs test for equality
by using the == symbol, to distinguish it from the assignment operator =. Thus, r ==
yields a bool that indicates whether the value of r is equal to 0. The logical-or
operator, written as | | , yields t r ue if either of its operands is t r ue.

The relational operators have lower precedence than the arithmetic operators. In
expressions that contain more than one operator, precedence defines how the operands
group. For example,

r == rows - 1
means
r == (rows - 1)

rather than

(r ==rows) - 1

because the arithmetic operator - has higher precedence than the relational operator ==.



In other words, we are subtracting 1 from r ows and comparing the result with r , which,
in this program, is what we wanted. We can override precedence by enclosing in
parentheses a subexpression that we want to use as a single operand. For example, if we
really wanted to execute (r == rows) - 1, we could do so by including the
parentheses as shown. This expression would compare r with r ows and subtract 1 from
the result, yielding either O or - 1 depending on whether r was equal to r ows.

The logical-or operator tests whether either of its operands is t r ue. Its form is

conditionl || condition2

where, as usual, conditionl and condition2 are conditions-expressions that yield truth
values. The | | expression yields a bool , which is t r ue if either of the conditions is
true.

The | | operator has lower precedence than the relational operators, and, like most C++
binary operators, is left-associative. Moreover, it has a property that most other C++
operators do not share: If a program finds that the left operand of | | is true, it does not
evaluate the right operand at all. This property is often called short-circuit evaluation,
and as we shall see in 85.6/89, it can have a crucial effect on how we write our programs.

Because | | is left-associative, and because of the relative precedence of | | , == ,and -,
r==01|] r ==rows - 1||] ¢ =0]|] ¢c =vcols - 1
means the same as it would if we were to place all of its subexpressions in parentheses:

((r ==01] r == (rows - 1)) [| ¢ ==0) || ¢ == (cols - 1)

In order to evaluate this latter expression using the short-circuit strategy, the program

first evaluates the left operand of the outermost | | , which is
(r ==01]] r == (rows - 1)) || ¢ ==

To do so, it must first evaluate the left operand of this inner | | , which is
r=01| r == (rows - 1)

which, in turn, means evaluating



((r ==01]] r ==(rows - 1)) || ¢ ==0) || ¢ == (cols - 1)

must be true. If r is nonzero, the next step is to compare r with rows - 1. If that test
fails, then the program will compare C with zero, and if that fails, it will compare C with
col s - 1 to determine the final result.

In other words, when we write a series of conditions separated by | | operators, we are
asking the program to test each of these conditions in turn. If any of the inner conditions
ist r ue, then the whole condition is t r ue; otherwise, the whole condition is f al se. Each
| | operator stops as soon as it can determine its result, so if any of the inner conditions
is t r ue, the subsequent conditions go untested. If we step back from the details, we
should be able to see that these four equality tests are checking whether we are in the
first row, the last row, the first column, or the last column, and, therefore, that the i f
statement writes an asterisk if we're in the top or bottom row, or if we're in the first or
last column. Otherwise, it does something else, which we must now define.

2.4.2 Writing nonborder characters

It is now time to write the statements that correspond to the comments that say

/!l wite one or nore nonborder characters
/'l adjust the value of ¢ to maintain the invariant

in the program fragment in 82.4.1/23. These statements must deal with the characters
that are not part of the border. It should be easy to see that each of these characters is
either a space or part of the greeting. The only problem is figuring out which one it is, and
what to do about it.

We begin by testing whether we are about to write the first character of the greeting,
which we do by finding if we're in the correct row and on the correct column within that
row. The row we seek is the one after we've written the initial row of asterisks, followed
by pad additional rows. The appropriate column comes after we have written the initial
asterisk on this row, followed by pad spaces. Our knowledge of the invariants tells us that
we're on the right row when r is equal to pad + 1, and be at the appropriate column
when c is equal to pad + 1.

In other words, to determine whether we are about to write the first character of the
greeting, we must check whether r and c are both equal to pad + 1. If we've reached
the right place to write the greeting, we'll do so; otherwise, we'll write a space instead. In
both cases, we have to remember to update C appropriately:

if (r == pad + 1 & ¢ == pad + 1) {
std::cout << greeting;
c += greeting.size();

} else {
std::cout << " ",

}

The condition inside the | f statement uses the logical-and operator. As with the | |



operator, the && operator tests two conditions and yields a truth value. It is left-
associative and uses a short-circuit evaluation strategy. Unlike the | | operator, the &&
operator yields t r ue only if both conditions are t r ue. If either condition is f al se, the
result of & is f al se. The second condition will be tested if and only if the first condition
istrue.

If the test succeeds, then it's time to write the greeting. In doing so, we falsify our
invariant, because C is no longer equal to the number of characters we have written on
this row. We make our invariant true again by adjusting the value of C to account for the
characters that we have written. The expression that updates C uses another new
operator, called the compound-assignment operator, to adjust C to account for the
number of characters in the name when we wrote it. Such a compound assignment is a
shorthand way of adding the right- and left-hand sides together and storing the result in
the left-hand side. In other words, if we write ¢ += greeti ng. si ze(), that statement
has the same effect as if we had writtenc = ¢ + greeting. si ze().

The remaining possibility is that we're not on the border, and we're not about to write the
greeting. In that case, we need to write a space and increment C to make the invariant
true again, which we do in the el se branch of the i f statement.
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2.5 The complete framing program

At this point, we have revised the entire program, but the code is scattered enough to be
hard to find. Therefore, we shall show the whole program again. However, before we do
so, we want to shorten the program in three ways.

The first abbreviation will be a kind of declaration that lets us say once and for all that a
given name comes from the standard library. Doing so will allow us to avoid saying

st d: : in so many places. The second abbreviation is a shorthand way of writing a
particularly common kind of whi | e statement. Finally, we can shorten the program
slightly by incrementing C in one place instead of two.

2.5.1 Abbreviating repeated uses of std::

By now, you are probably tired of seeing-and writing-st d: : in front of every name from
the standard library. Saying st d: : explicitly was a good way of reminding you which
names came from the standard library, but you should have a pretty good idea of what
they are at this point.

C++ offers a way of saying that a particular name should always be interpreted as
coming from a particular namespace. For example, by writing

using std::cout;

we can say that we intend to use the name cout to mean st d: : cout exclusively, and
that we do not intend to define anything named cout ourselves. Once we have done so,
we can say cout instead of st d: : cout .

Logically enough, such a declaration is called a using-declaration. The name that it
mentions behaves similarly to other names. For example, if a USi ng-declaration appears
within braces, the name that it defines has its given meaning from where it is defined to
the closing brace.

From now on, we'll write using-declarations to shorten our programs.
2.5.2 Using for statements for compactness

Let's look again at the control structures that we used in the program in 82.3/19. If we
look only at the program's outermost structure, we see

int r =0

while (r !'=rows) {
/1 stuff that doesn't change the value of r
++r



This particular form of whi | e appears frequently. Before it starts, we define and initialize
a local variable, which we test in the condition. The whi | € body adjusts the value of the
variable so that eventually the condition will fail. Because this kind of control structure is
so common, the language provides a shorthand way of writing it:

for (int r =0; r I'=rows; ++r) {
/1l stuff that doesn't change the value of r

}

Either of these examples will cause r to take on a sequence of values, the first of which is
0, and the last of whichisrows - 1. We can think of O as being the beginning of a
range, and r ows as being the off-the-end value for the range. Such a range is called a
half-open range, and is often written as [begin, off-the-end). The deliberately
unbalanced brackets [ ) remind the reader that the range is asymmetric. So, for
example, the range [ 1, 4) contains 1, 2, and 3, but not 4. Similarly, we say that r
takes on the values in [ 0, rows). A for statement has the following form:

for (init-statenent condition; expression)
st at ement

The first line is often known as the for header. It controls the statement that follows,
which is often called the for body. The init-statement must be either a definition
(81.1/10) or an expression statement (80.8/6). Because each of these kinds of statement
ends with its own semicolon, there is no additional semicolon between the init-statement
and the condition.

A f or statement begins by executing the init-statement part of the f or header, which it
does only once, at the beginning of the f or . Typically, the init-statement defines and
initializes the loop control variable, which will be tested as part of the condition. If a
variable is defined in the init-statement, it is destroyed on exit from the f or , so it is
inaccessible to code that follows the f or statement.

On every trip through the loop, including the first, the program evaluates the condition. If
the condition yields t r ue, then it executes the f or body. Having done so, it executes the
expression. It then repeats the test, continuing to execute the f or body followed by the
expression in the f or header until the test condition fails.

More generally, the meaning of a f or statement is

i nit-statement

while (condition) {
st at enent
expressi on;



where we have been careful to enclose the init-statement and the whi | e in extra braces,
thereby limiting the lifetime of any variables declared in the init-statement. Note
particularly the presence and absence of semicolons. We do not write a semicolon after
the init-statement or statement because they are statements, with their own semicolons if
they need them. We do include a semicolon after expression in order to turn it into a
statement.

2.5.3 Collapsing tests

We can divide the code associated with the write one or more characters comment in
82.4/23 into three cases: We are writing a single asterisk, a space, or the entire greeting.
As our program stands, we adjust C to maintain our invariant after we write an asterisk,
and we adjust it again after we write a space. There's nothing wrong with doing so, but it
is often possible to change the order of tests in a program so as to make it possible to
merge two or more identical statements into one.

Because our three cases are mutually exclusive, we can test them in any order. If we
begin by first testing whether we are about to write the greeting, then we know that in
the other two cases, incrementing C suffices to maintain the invariant, so we can collapse
the two increments into one:

if (we are about to wite the greeting) {
cout << greeting;
c += greeting.size();
} else {
if (we are in the border)
cout << "*":
el se
cout << " "
++C:

After collapsing the increments, we also find that two of our blocks are just single
statements, so we can drop two pairs of braces. Notice how the different indentation of
++C; draws attention to the fact that it is executed regardless of whether we are in the
border.

2.5.4 The complete framing program

If we put all the pieces together and use these three abbreviation techniques, we get the
following program:

#i ncl ude <i ostreanp
#i ncl ude <string>

/'l say what standard-library names we use

using std::cin; using std::endl;
usi ng std::cout; using std::string;
int main()

{



/1 ask for the person's nane
cout << "Please enter your first nanme: "

/1l read the nane
string nane;
cin >> nane;

/1 build the nessage that we intend to wite
const string greeting = "Hello, " + nane + "!";

/1 the nunmber of blanks surrounding the greeting
const int pad = 1;

/1 the nunmber of rows and columms to wite
const int rows = pad * 2 + 3;
const string::size_type cols = greeting.size() + pad * 2 + 2;

/1 wite a blank line to separate the output fromthe input
cout << endl;

/1 wite rows rows of output
/'l invariant: we have witten r rows so far
for (int r =0; r !'=rows; ++r) {

string::size_type ¢ = 0;

/[l invariant: we have witten ¢ characters so far in the current row
while (c I'= cols) {

/1 is it time to wite the greeting?
if (r == pad + 1 & ¢ == pad + 1) {
cout << greeting
c += greeting.size();
} else {

/[l are we on the border?

if (r =01[] r =rows - 1|
c ==0]] ¢c =cols - 1)
cout << "*":
el se
cout << " ",
++C;
}
}
cout << endl
}
return 0O;
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2.6 Counting

Most experienced C++ programmers have a habit that may seem weird at first: Their
programs invariably begin counting from O rather than from 1. For example, if we reduce
the outer f or loop of the program above to its essentials, we get

for (int r =0; r !'=rows; ++r) {
Il write a row

We could have written this loop as

for (int r = 1; r <= rows; ++r) {
Il wite a row

One version counts from O and uses ! = as its comparison; the other counts from 1 and
uses <= as its comparison. The number of iterations is the same in each case. Is there
any reason to prefer one form over the other?

One reason to count from O is that doing so encourages us to use asymmetric ranges to
express intervals. For example, it is natural to use the range [ 0, rows) to describe the
first f or statement, as it is to use the range [ 1, rows] to describe the second one.

Asymmetric ranges are usually easier to use than symmetric ones because of an
important property: A range of the form [ m n) hasn - melements, and a range of the
form[m n] hasn - m + 1 elements. So, for example, the number of elements in [ O,
r ows) is obvious (i.e., rows - 0, orrows) but the number in[ 1, rows] is less so.

This behavioral difference between asymmetric and symmetric ranges is particularly
evident in the case of empty ranges: If we use asymmetric ranges, we can express an
empty range as [N, n),incontrastto [N, n-1] for symmetric ranges. The possibility
that the end of a range could ever be less than the beginning can cause no end of trouble
in designing programs.

Another reason to count from O is that doing so makes loop invariants easier to express.
In our example, counting from 0 makes the invariant straightforward: We have written r
rows of output so far. What would be the invariant if we counted from 1?

One would be tempted to say that the invariant is that we are about to write the r th row,
but that statement does not qualify as an invariant. The reason is that the last time the
while tests its condition, r is equal tor ows + 1, and we intend to write only r OWS rows.
Therefore, we are not about to write the r th row, so the invariant is not true!

Our invariant could be that we have writtenr - 1 rows so far. However, if that's our
invariant, why not simplify it by starting r at 0?



Another reason to count from O is that we have the option of using ! = as our comparison
instead of <=. This distinction may seem trivial, but it affects what we know about the
state of the program when a loop finishes. For example, if the conditionisr ! = rows,
then when the loop finishes, we know thatr == r OWs. Because the invariant says that
we have written r rows of output, we know that we have written exactly r ows rows all
told. On the other hand, if the condition isr <= r ows, then all we can prove is that we
have written at least rows rows of output. For all we know, we might have written more.

If we count from O, then we can user ! = r ows as a condition when we want to ensure
that there are exactly r ows iterations, or we can use < r OWs if we care only that the
number of iterations is r ows or more. If we count from 1, we can use r <= r ows if we
want at least r OWs iterations-but what if we want to ensure that r OWs is the exact
number? Then we must test a more complicated condition, suchasr == rows + 1.
This extra complexity offers no compensating advantage.
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2.7 Details

Expressions: C++ inherits a rich set of operators from C, several of which we have
already used. In addition, as we've already seen with the input and output operators,
C++ programs can extend the core language by defining what it means to apply built-in
operators to objects of class type. Correctly understanding complicated expressions is a
fundamental prerequisite to effective programming in C++. Understanding such
expressions requires understanding

e How the operands group, which is controlled by the precedence and associativity of
the operators used in the expression

e How the operands will be converted to other types, if at all

e The order in which the operands are evaluated

Different operators have different precedence. Most of the operators are left-associative,
although the assignment operators and the operators taking a single argument are right-
associative. We list the most common operators here-regardless of whether we've used
them in this chapter. We've ordered them by precedence from highest to lowest, with a
double line separating groupings with the same precedence.

X.y
The member y of object X

x[y]

The element in object X indexed by y

X+—+

Increments X , returning the original value of X
X__

Decrements X , returning the original value of X

++X
Increments X , returning the incremented value
--X

Decrements X , returning the decremented value
Ix

Logical negation. If X istrue then! x is f al se .

X*y

Product of X and y

x/ly

Quotient of X and y . If both operands are integers,

the implementation chooses whether to round toward zero or - 8
X% vy

Remainder of X divided by y , equivalenttox - ((x / y) * vy)

X +y

Sum of X and y

X-y

Result of subtracting y from X

X>>y



For integral X and y, X shifted right by y bits; y must be non-negative.
If X isan i stream, reads from X into y

X <<y

For integral X and y, X shifted left by y bits; y must be non-negative.
If X is an oSt r eam, writesy onto X .

X relop y
Relational operators yield a bool indicating the truth of the relation.
The operators (<, >, <=, and >=) have their obvious meanings.

X ==
Yields a bool indicating whether X equals y
XI=y

Yields a bool indicating whether X is not equal to y

X && y
Yields a bool indicating whether both X and y are t r ue .
Evaluates y only if X istrue .

x|y
Yields a bool indicating whether either X ory istrue .

Evaluates y only if X is f al se .

X=y
Assign the value of y to X , yielding X as its result.

X Op=y

Compound assignment operators; equivalentto X = X 0p VY,
where op is an arithmetic or shift operator.

X?yl:y2
Yields y1 if X istrue ; y2 otherwise.
Evaluates only one of y1 and y2 .

There is usually no guarantee as to the order in which an expression's operands are
evaluated. Because the order of evaluation is not fixed, it is important to avoid writing a
single expression in which one operand depends on the value of another operand. We'll
see an example in 4.1.5/60.

Operands will be converted to the appropriate type when possible. Numeric operands in
expressions or relational expressions are converted by the usual arithmetic
conversions described in detail in 8A.2.4.4/304. Basically, the usual arithmetic
conversions attempt to preserve precision. Smaller types are converted to larger types,
and signed types are converted to unsigned. Arithmetic values may be converted to bool
: A value of O is considered f al se ; any other value is t r ue . Operands of class type are
converted as specified by the type. We'll see in Chapter 12 how to control such
conversions.

Types:

bool
Built-in type representing truth values; may be either t r ue or f al se

unsi gned
Integral type that contains only non-negative values



short
Integral type that must hold at least 16 bits

| ong
Integral type that must hold at least 32 bits

size_t
Unsigned integral type (from <cst ddef >) that can hold any object's size

string::size type
Unsigned integral type that can hold the size of any stri ng

Half-open ranges include one but not both of their endpoints. For example, [ 1, 3)
includes 1 and 2 , but not 3 .

Condition: An expression that yields a truth value. Arithmetic values used in conditions
are converted to bool : Nonzero values convert to t r ue ; zero values convert to f al se .

Statements:

usi ng nanespace-nane: ! nane ;
Defines name as a synonym for namespace- name: : nane

t ype- name nane;
Defines name with type t ype- nane

type- name nanme = val ue;
Defines name with type t ype- nane initialized as a copy of value.

t ype- name nane(args) ;
Defines name with type t ype- nane constructed as appropriate for the given
arguments in ar gs

expression ;
Executes expr essi on for its side effects.

{ statenent(s) }

Called a block. Executes the sequence of zero or more st at enent (S) in order. May
be used wherever a st at enent is expected. Variables defined inside the braces have
scope limited to the block.

whil e (condition) statenent

If condition is f al se , do nothing; otherwise, execute st at enent and then repeat the
entire whi | e .

for(init-statenent condition; expression) statenent

Equivalent to{ init-statenment while (condition ) {statenent
expression ; } } .



if (condition) statenent
Executes st at enent if condition istrue.

if (condition) statenent else statenent?2

Executes st at enent if condi tion istrue, otherwise executes st at enent 2
Each el se is associated with the nearest matching i f .

return val ;

Exits the function and returns val to its caller.

Exercises

2-0. Compile and run the program presented in this chapter.

2-1 . Change the framing program so that it writes its greeting with no separation from
the frame.

2-2 . Change the framing program so that it uses a different amount of space to separate
the sides from the greeting than it uses to separate the top and bottom borders from the
greeting.

2-3. Rewrite the framing program to ask the user to supply the amount of spacing to
leave between the frame and the greeting.

2-4. The framing program writes the mostly blank lines that separate the borders from
the greeting one character at a time. Change the program so that it writes all the spaces
needed in a single output expression.

2-5. Write a set of " *" characters so that they form a square, a rectangle, and a triangle.
2-6. What does the following code do?

int i = 0;

while (i < 10) {

i += 1
std::cout << i << std::endl;

2-7. Write a program to count down from 10 to -5 .
2-8. Write a program to generate the product of the numbers in the range [ 1, 10) .

2-9. Write a program that asks the user to enter two numbers and tells the user which
number is larger than the other.

2-10. Explain each of the uses of st d: : in the following program:

int main() {
int k = 0

while (k '=n) { /'l invariant: we have witten k asterisks so far

usi ng std::cout;



cout << "k
++K;

}

std::cout << std::endl; /'l std:: is required here
return O,

R s o 3
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Working with batches of data

The programs that we explored in Chapters 1 and 2 did little more than read a single
string and write it again, sometimes with decoration. Most problems are more complicated
than such simple programs can solve. Among the most common sources of complexity in
programs is the need to handle multiple pieces of similar data.

Our programs have already started doing so, in the sense that a St ri ng comprises
multiple characters. Indeed, it is exactly the ability to put an unknown number of
characters into a single object-a St r i ng-that makes these programs easy to write.

In this chapter, we'll look at more ways of dealing with batches of data, by writing a
program that reads a student's exam and homework grades and computes a final grade.
Along the way, we'll learn how to store all the grades, even if we don't know in advance
how many grades there are.

3.1 Computing student grades

Imagine a course in which each student's final exam counts for 40% of the final grade,
the midterm exam counts for 20%, and the average homework grade makes up the
remaining 40%. Here is our first try at a program that helps students compute their final
grades:

#i ncl ude <i omani p>
#i ncl ude <i os>

#i ncl ude <i ostreane
#i ncl ude <string>

using std::cin; using std::setprecision;
using std::cout; using std::string;

using std::endl; using std::streansize;
int main()

{

/'l ask for and read the student's nane
cout << "Please enter your first nane: ";
string nane;

cin >> nane;

cout << "Hello, " << nane << "I" << endl;

/'l ask for and read the mdterm and final grades
cout << "Please enter your midtermand final exam grades: ";



doubl e mdterm final
cin >> mdterm>> final

/'l ask for the homework grades
cout << "Enter all your honmework grades,

"foll owed by end-of-file: ";

/1 the nunmber and sum of grades read so far
int count = O;
doubl e sum = 0;

/1 a variable into which to read
doubl e x;

/1 invariant:
/1 we have read count grades so far, and
/1 sumis the sumof the first count grades
while (cin >> x) {
++count ;
sum += Xx;

}

/[l wite the result

streansi ze prec = cout.precision();

cout << "Your final grade is " << setprecision(3)
<< 0.2 * mdterm+ 0.4 * final + 0.4 * sum/ count
<< setprecision(prec) << endl

return O;

As usual, we begin with #i ncl ude directives and usi ng-declarations for the library
facilities that we intend to use. These facilities include <i ormani p> and <i 0S>, which we
have not yet seen. The <i 0S> header defines St r eansi ze, which is the type that the
input-output library uses to represent sizes. The <i ormani p> header defines the
manipulator set pr eci si on, which lets us say how many significant digits we want our
output to contain.

When we used endl| , which is also a manipulator, we did not have to include the
<i omani p> header. The endl manipulator is used so often that its definition appears in
<i ost r ean®, rather than in <i omani p>.

The program begins by asking for and reading the student’'s name, and the midterm and
final grades. Next, it asks for the student's homework grades, which it continues to read
until it encounters an end-of-file signal. Different C++ implementations offer their users
different ways of sending such a signal to a program, the most common way being to
begin a new line of input, hold down the control key, and press z (for computers running
Microsoft Windows) or d (for computers running the Unix or Linux systems).

While reading the grades, the program uses count to keep track of how many grades
were entered, and stores in SUmMa running total of the grades. Once the program has
read all the grades, it writes a greeting message, and reports the student's final grade. In
doing so, it uses count and sumto compute the average homework grade.



Much of this program should already be familiar, but there are several new usages, which
we will explain.

The first new idea occurs in the section that reads the student's exam grades:

cout << "Enter your midtermand final exam grades: ";
double mdterm final
cin >> mdterm>> final

The first of these statements should be familiar: It writes a message, which, in this case,
tells the student what to do next. The next statement defines m dt er mand f i nal as
having type doubl e, which is the built-in type for double-precision floating-point
numbers. There is also a single-precision floating-point type, called f | oat . Even though
it might seem that f | oat is the appropriate type, it is almost always right to use doubl e
for floating-point computations.

These types' names date back to when memory was much more expensive than it is
today. The shorter floating-point type, called f | oat , is permitted to offer as little
precision as six significant (decimal) digits or so, which is not even enough to represent
the price of a house to the nearest penny. The doubl e type is guaranteed to offer at
least ten significant digits, and we know of no implementation that does not offer at least
15 significant digits. On modern computers, doubl e is usually much more accurate than
f 1 oat, and not much slower. Sometimes, doubl e is even faster.

Now that we have defined the m dt er mand f i nal variables, we read values into them.
Like the output operator (80.7/4), the input operator returns its left operand as its result.
So, we can chain input operations just as we chain output operations, so

cin > mdterm>> final

has the same effect as

cin > mdterm
cin >> final:

Either form reads a number from the standard input into m dt er m and the next number
into fi nal .

The next statement asks the student to enter homework grades:

cout << "Enter all your homework grades,

"followed by end-of-file: ";

A careful reading will reveal that this statement contains only a single <<, even though it
seems to be writing two string literals. We can get away with this because two or more
string literals in a program, separated only by whitespace, are automatically
concatenated. Therefore, this statement has exactly the same effect as



cout << "Enter all your honework grades, followed by end-of-file: ";

By breaking the string literal in two, we avoid lines in our programs that are too long to
read conveniently.

The next section of the code defines the variables that we'll use to hold the information
that we intend to read. Of these, the interesting part is

int count = O;
double sum= 0

Note that we give the initial value O to both sumand count . The value O has type i nt ,
which means that the implementation must convert it to type doubl e in order to use it to
initialize sum We could have avoided this conversion by initializing sum to 0. O instead of
0, but it makes no practical difference in this context: Any competent implementation will
do the conversion during compilation, so there is no run-time overhead, and the result
will be exactly the same.

In this case, what's more important than the conversion is that we give these variables an
initial value at all. When we do not specify an initial value for a variable we are implicitly
relying on default-initialization. The initialization that happens by default depends on
the type of the variable. For objects of class type, the class itself says what initializer to
use if there is not one specified. For example, we noted in 81.1/10 that if we do not
explicitly initialize a st ri ng, then the st ri ng is implicitly initialized to be empty. No
such implicit initialization happens for local variables of built-in type.

Local variables of built-in type that are not explicitly initialized are undefined, which
means that the variable's value consists of whatever random garbage already happens to
occupy the memory in which the variable is created. It is illegal to do anything to an
undefined value except to overwrite it with a valid value. Many implementations do not
detect the violations of this rule, and allow access to undefined values. The result is
almost always a crash or a wrong result, because whatever is in memory by
happenstance is almost never a correct value; often it is a value that is invalid for the

type.

Had we not given either sumor count an initial value, our program most likely would
have failed. The reason is that the first thing the program does with these variables is to
use their values: The program reads count in order to increment it, and it reads Ssumin
order to add its value to the one we just read. By the same token, we do not bother to
give an initial value to X, because the first thing we do with it is read into it, thereby
obliterating any value we might have given it.

The only new aspect of the while statement is the form of its condition:

/'l invariant:
/1 we have read count grades so far, and
/1 sumis the sumof the first count grades
while (cin >> x) {
++count ;



sum += X;

We already know that the whi | e loop executes so long as the condition ci n >> X
succeeds. We'll explore the details of what it means to treat Ci n >> X as a condition in
83.1.1/39, but for now, what's important to know is that this condition succeeds if the
most recent input request (i.e., Ci  >> X) succeeded.

Inside the whi | e, we use the increment and compound-assignment operators, both of
which we used in Chapter 2. From the discussion there we know that ++count adds 1 to
count , and that sum += X adds X to sum

All that is left to explain is how the program does its output:

streansi ze prec = cout. precision();

cout << "Your final grade is " << setprecision(3)
<< 0.2 * midterm+ 0.4 * final + 0.4 * sum/ count
<< setprecision(prec) << endl;

Our goal is to write the final grade with three significant digits, which we do by using

set preci si on. Like endl , set preci si on is a manipulator. It manipulates the stream
by causing subsequent output on that stream to appear with the given number of
significant digits. By writing set pr eci si on( 3) , we ask the implementation to write
grades with three significant digits, generally two before the decimal point and one after.

By using set pr eci si on, we change the precision of any subsequent output that might
appear on cout . Because this statement is at the end of the program, we know that
there is no such output. Nevertheless, we believe that it is wise to reset COUt 's precision
to what it was before we changed it. We do so by calling a member function (81.2/14) of
cout named pr eci si on. This function tells us the precision that a stream uses for
floating-point output. We use set pr eci si on to set the precision to 3, write the final
grade, and then set the precision back to the value that pr eci Si on gave us. The
expression that computes the grade uses several of the arithmetic operators: * for
multiplication, / for division, and + for addition, each of which has the obvious meaning.

We could have used the pr eci si on member function to set the precision, by writing

/'l set precision to 3, return previous val ue
streansi ze prec = cout. precision(3);
cout << "Your final grade is "
<< 0.2 * mdterm+ 0.4 * final + 0.4 * sum/ count << endl;
/'l reset precision to its original value
cout . preci sion(prec);

However, we prefer to use the set pr eci si on manipulator, because by doing so, we can
minimize the part of the program in which the precision is set to an unusual value.

3.1.1 Testing for end of input



Conceptually, the only really new part of this program is the condition in the whi | e
statement. That condition implicitly uses an i St r eamas the subject of the whi | e
condition:

while (cin >> x) {/*...*/}

The effect of this statement is to attempt to read from ci n. If the read succeeds, X will
hold the value that we just read, and the whi | e test also succeeds. If the read fails
(either because we have run out of input or because we encountered input that was
invalid for the type of X), then the whi | e test fails, and we should not rely on the value
of X.

Understanding how this code works is a bit subtle. We can start by remembering that the
>> operator returns its left operand, so that asking for the value of cin >> X is
equivalent to executing ci n >> X and then asking for the value of Ci n. For example, we
can read a single value into X, and test whether we were successful in doing so, by
executing

if (cin >>x) {/*...*]}

This statement has the same meaning as

cin >> x;
if (cin) {/* ... * }

When we use Ci 1 >> X as a condition, we aren't just testing the condition; we are also
reading a value into X as a side effect. Now, all we need to do is figure out what it means
to use Ci n as a condition in a whi | e statement.

Because Ci N has type | St r eam which is part of the standard library, we must look to
the definition of i st r eamfor the meaning of i f (ci n) orwhil e (cin). The details of
that definition turn out to be complicated enough that we won't discuss it in detail until
812.5/222. However, even without these details, we can already understand a useful
amount of what is happening.

The conditions that we used in Chapter 2 all involved relational operators that directly
yield values of type bool . In addition, we can use expressions that yield values of
arithmetic type as conditions. When used in a condition, the arithmetic value is converted
to a bool : Nonzero values convert to t r ue; zero values convert to f al se. For now,
what we need to know is that similarly, the i St r eamclass provides a conversion that can
be used to convert Cci n into a value that can be used in a condition. We don't yet know
what type that value has, but we do know that the value can be converted to bool .
Accordingly, we know that the value can be used in a condition. The value that this
conversion yields depends on the internal state of the i St r eamobject, which will
remember whether the last attempt to read worked. Thus, using Ci n as a condition is
equivalent to testing whether the last attempt to read from ci n was successful.

There are several ways in which trying to read from a stream can be unsuccessful:



« We might have reached the end of the input file.

« We might have encountered input that is incompatible with the type of the variable
that we are trying to read, such as might happen if we try to read an i nt and find
something that isn't a number.

e The system might have detected a hardware failure on the input device.

In any of these cases, the effect is the same: Using this input stream as a condition will
indicate that the condition is false. Moreover, once we have failed to read from a stream,
all further attempts to read from that stream will fail until we reset the stream, which
we'll learn how to do in 84.1.3/57.

3.1.2 The loop invariant

Understanding the invariant (82.3.2/20) for this loop requires special care, because the
condition in the whi | e has side effects. Those side effects affect the truth of the
invariant: Successfully executing Ci N >> X makes the first part of the invariant-the part
that says that we have read count grades-false. Accordingly, we must change our
analysis to account for the effect that the condition itself might have on the invariant.

We know that the invariant was true before evaluating the condition, so we know that we
have already read count grades. If Ci n >> X succeeds, then we have now read count
+ 1 grades. We can make this part of the invariant true again by incrementing count .
However, doing so falsifies the second part of the invariant-the part that says that sumis
the sum of the first count grades-because after we have incremented count , sumis
now the sum of the first count - 1 grades, not the first count grades. Fortunately, we
can make the second part of the invariant true by executing sum += X; so that the
entire invariant will be true on subsequent trips through the while.

If the condition is false, it means that our attempt at input failed, so we didn't get any
more data, and so the invariant is still true. As a result, we do not have to account for the

condition’'s side effects after the whi 1e finishes.
e 3
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3.2 Using medians instead of averages

The program that we've written so far has a design shortcoming: It throws away each
homework grade as soon as it has read it. Doing so is fine for computing averages, but
what if we wanted to use the median homework grade instead of the average?

The most straightforward way to find the median of a collection of values is to sort the
values into increasing (or decreasing) order and pick the middle one—or, if the number of
values is even, take the average of the two values nearest the middle. Medians are often
more useful than averages, because although they still account correctly for consistent
performance, they won't cause a few lousy grades to blow the whole course.

A bit of thinking should convince us that to compute medians, we must change our
program fundamentally. In order to find the median of an unknown number of values, we
must store every value until we have read them all. To find the average, we were able to
store only the count and running total of the items we'd read. The average was just the
total divided by the count.

3.2.1 Storing a collection of data in a vector

To compute the median, we must read and store all the homework grades, then sort
them, and finally pick the middle one (or two). To do this computation conveniently and
efficiently, we need a way to

e Store a number of values that we will read one at a time, without knowing in
advance how many values there are

e Sort the values after we have read them all

e Get at the middle value(s) efficiently

The standard library provides a type, named vector, that we can use to solve all these
problems easily. A vect or holds a sequence of values of a given type, grows as needed
to accommodate additional values, and lets us get at each individual value efficiently.

Let's start rewriting our grading program by making it put the grades into a vect or ,
instead of computing the sum and throwing the grades away. The original version of that
code looked like

/'l original program (excerpt):
int count = O;
double sum= 0
doubl e x;
/1l invariant:
/'l we have read count grades so far, and
/1 sumis the sumof the first count grades
while (cin >> x) {
++count ;
sum += Xx;



This loop kept track of how many grades it read, and kept a running total of their value.
The need to keep both these variables in step with the values as we read them made the
loop invariant relatively complicated. In contrast, using a vect or to store values as we
read them is much simpler:

/'l revised version of the excerpt:
doubl e x;
vect or <doubl e> honewor k;

/'l invariant: homework contains all the homework grades read so far
while (cin >> x)
homewor k. push_back( x) ;

We haven't changed the basic structure of our code: It still reads values one at a time
into X until it encounters end-of-file or invalid input. What's different is what we do with
those values.

Let's start with honmewor k, which we define as having type vect or <doubl e>. A

vect or is a container that holds a collection of values. All of the values in an individual
vect or are the same type, but different vect or s can hold objects of different types.
Whenever we define a vect or , we must specify the type of the values that the vect or
will hold. Our definition of honewor k says that it is a vect or , which will hold values of
type doubl e.

The vect or type is defined using a language feature called template classes. We'll see
how to define a template class in Chapter 11. For now, what's important is to realize that
we can separate what it means to be a vect or from the particular type of the objects
that the vect or holds. We specify the type of the objects inside angle brackets. For
example, objects of type vect or <doubl e> are vect or s that hold objects of type
doubl e, objects of type vect or <st ri ng> hold st ri ngs, and so on.

The whi | e loop operates by reading values from the standard input and storing them in
the vect or . As before, we read into X until we hit end-of-file or encounter input that is
not a doubl e. What is new is

homewor k. push_back( x) ;

As with greeti ng. si ze() in 81.2/14, we can see that push_back is a member
function, which is defined as part of the vect or type, and that we are asking that
function to act on behalf of the object named hormewor k. We call that function, passing it
X. What push_back does is append a new element to the end of the vect or . It gives
that new element the value that we passed as the argument to push_back. Thus,
push_back pushes its argument onto the back of a vect or . As a side effect, it increases
the size of the vect or by one.

Because the push_back function is such a good match for what we're trying to do, it is
trivial to see that calling it will maintain our loop invariant. Therefore, it is clear that when
we drop out of the whi | e, we will have read all the homework grades and stored them in
honewor k, which is what we wanted.



Next, we have to think about the output.
3.2.2 Generating the output

In the original version of the program from &3.1/35, we calculated the student's grade
within the output expression itself:

streansi ze prec = cout. precision();

cout << "Your final grade is " << setprecision(3)
<< 0.2 * mdterm+ 0.4 * final + 0.4 * sum/ count
<< setprecision(prec) << endl;

where f i nal and m dt er mheld the exam grades, and sumand count contained the
sum of all the homework grades and the count of how many grades were entered.

As we remarked in 83.2.1/41, the easiest way to calculate the median is to sort our data
and then find the middle value, or the average of the two middle values if we have an
even number of elements. We can make the computation easier to understand if we
separate the computation of the median from the code that writes the output.

In order to find the median, we begin by noting that we are going to need to know the

size of the homewor k vector at least twice: once to check whether the size is zero, and
again to compute the location of the middle element(s). To avoid having to ask for the

size twice, we will store the size in a local variable:

t ypedef vector<doubl e>::size_type vec_sz;
vec_sz size = homework. size();

The vect or type defines a type named vect or <doubl e>: : si ze_t ype, and a function
named Si ze. These members operate analogously to the ones in st ri ng: The type
defined by si ze _type is an unsi gned type guaranteed sufficient to hold the size of the
largest possible vect or , and si ze() returns a Si ze_t ype value that represents the
number of elements in the vect or .

Because we need to know the size in two places, we will remember the value in a local
variable. Different implementations use different types to represent sizes, so we cannot
write the appropriate type directly and remain implementation-independent. For that
reason, it is good programming practice to use the si ze_t ype that the library defines to
represent container sizes, which we do in naming the type of si ze.

In this example, that type is unwieldy to write—and to read. To simplify our program, we
have used a language facility that we haven't encountered before, called a typedef.
When we include the word t ypedef as part of a definition, we are saying that we want
the name that we define to be a synonym for the given type, rather than a variable of
that type. Thus, because our definition includes t ypedef , it defines the name vec_sz as
a synonym for vect or <doubl e>: : si ze_t ype. Names defined viat ypedef have the
same scope as any other names. That is, we can use the name VveCc_Sz as a synonym for
the si ze_t ype until the end of the current scope.



Once we know how to name the type of the value that homewor k. si ze() returns, we
can store that value in a local variable, named Si ze, of the same type. It is worth noting
that even though we are using the name si ze for two different purposes, there is no
conflict or ambiguity. The only way to ask for the size of a vect or is by putting a call to
the si ze function on the right-hand side of a dot, with a vect or on the left-hand side.
In other words, the Si ze that is defined as a local variable is in a different scope than the
one that is an operation on vect or s. Because these names are in different scopes, the
compiler (and the programmer) can know which Si ze is intended.

Because it is meaningless to find the median of an empty dataset, our next job is to verify
that we have some data:

if (size == 0) {
cout << endl << "You nust enter your grades. "
"Please try again." << endl;
return 1,

We can detect this state of affairs by checking whether si ze is zero. If it is, the most
sensible action is to complain and stop the program. We do so by returning 1 to indicate
failure. As discussed in Chapter 0, the system presumes that if mai n returns 0, the
program succeeded. Returning anything else has an implementation-defined meaning, but
most implementations treat any nonzero value as failure.

Now that we have verified that we have data, we can begin computing the median. The
first part of doing so is to sort the data, which we do by calling a library function:

sort (honmewor k. begi n(), honmework. end());

The sort function, defined in the <al gori t hn> header, rearranges the values in a
container so that they are in nondecreasing order. We say nondecreasing instead of
increasing because some elements might be equal to one another.

The arguments to sort specify the range of elements to be sorted. The vect or class
provides two member functions, begi n and end, for this kind of usage. We'll have much
more to say about begi n and end in 85.2.2/81, but what is important for now is to know
that honmewor k. begi n() denotes the first element in the vect or named honewor k,
whereas homewor k. end() denotes (one past) the last element in honmewor K.

The sort function does its work in place: It moves the values of the container's elements
around rather than creating a new container to hold the results.

Once we have sorted homework, we need to find the middle element or elements:

vec_sz md = sizel?2;

doubl e nedi an;

median = size %2 == 0 ? (homework[m d] + homework[mi d-1]) / 2
homewor k[ m d] ;



We begin by dividing Si ze by 2 in order to locate the middle of the vect or . If the
number of elements is even, this division is exact. If the number is odd, then the result is
the next lower integer.

Exactly how we compute the median depends on whether the number of elements is even
or odd. If it is even, the median is the average of the two elements closest to the middle.
Otherwise, there is an element in the middle, the value of which is the median.

The expression that assigns a value to medi an uses two new operators: the remainder
operator, % and the conditional operator, often called the ? : operator.

The remainder operator, % returns the remainder that results from dividing its left
operand by its right operand. If the remainder after dividing by 2 is 0, then the program
has read an even number of elements.

The conditional operator is shorthand for a simple if-then-else expression. First, it
evaluates the expression, si ze % 2 == 0, that precedes the ? part of the operator as a
condition to obtain a bool value. If the condition yields t r ue, then the result is the value
of the expression between the ? and the : that follows; otherwise, the result is the value
of the expression after the : . So, if we read an even number of elements, we'll set

nmedi an to the average of the two middle elements. If we read an odd number, then we'll
set medi an to homewor k[ m d] . Analogous to &% and | | , the ? : operator first
evaluates its leftmost operand. Based on the resulting value, it then evaluates exactly one
of its other operands.

The references to homewor k[ m d] and honmewor k[ m d- 1] show one way to access an
element of avect or . Every element of every vect or has an integer, called its index,
associated with it. So, for example, homewor k[ m d] is the element of honmewor k with
index mM d. As you might suspect from §2.6/30, the first element of the vect or named
homewor k is homewor k[ 0] , and the last element is honewor k[ si ze - 1].

Each element is itself an (unnamed) object of the type stored in the container. So,
homewor k[ m d] is an object of type doubl e, on which we can invoke any of the
operations that type doubl e supports. In particular, we can add two elements, and we
can divide the resulting sum by 2 to get the average value of the two objects.

Once we know how to access the elements of honewor k, we can see how the median
computation works. Assume first that Si ze is even, so that m d is si ze / 2. Then
there must be exactly m d elements of homewor k on each side of the middle:

mid size=1
. { _
elements < median elements = median j
|
0 mid-1

Because we know that each half of homewor k has exactly m d elements, it should be
easy to see that the indices of the two elements nearest the middle are m d - 1 and
m d; the median is the average of these elements.



If the number of elements is odd, then m d is really ( si ze-1) / 2, because of
truncation. In that case, we can think of our sorted honewor k vector as two segments
with m d elements each, separated by a single element in the middle. That element is the
median:

mid
elements < median I elements = median
I F
0 mid-1
mid+1 size-1

In either case, our median computation relies on the ability to access a vect or element
knowing only its index.

Once we have computed the median, We need only compute and write the final grade:

streansi ze prec = cout. precision();

cout << "Your final grade is " << setprecision(3)
<< 0.2 * mdterm+ 0.4 * final + 0.4 * nedi an
<< setprecision(prec) << endl;

The final program isn't much more complicated than the program in 83,1/35, even though
it does much more work. In particular, even though our honewor k vector will grow as
needed to accommodate grades for as many homework assignments as our students can
tolerate, our program doesn't need to worry about obtaining the memory to store all
those grades. The standard library does all that work for us.

Here is the entire program. The only parts that we have not already mentioned are the
#i ncl ude directives, the corresponding usi ng-declarations, and a few more comments:

#i ncl ude <al gorithmn
#i ncl ude <i omani p>
#i ncl ude <i os>

#i ncl ude <i ostreanp
#i ncl ude <string>

#i ncl ude <vector>

using std::cin; using std::sort;

using std::cout; using std::streansize;
using std::endl; using std::string;
using std::setprecision; using std::vector;

int main()

{

/1 ask for and read the student's nane
cout << "Please enter your first nane: ";
string nane;

cin >> nane;



cout << "Hello, " << nane << "!'" << endl;

/'l ask for and read the midterm and final grades

cout << "Please enter your nmidtermand final exam grades: ";
double mdterm final

cin >> mdterm >> final

/1 ask for and read the homework grades
cout << "Enter all your honmework grades,

"foll owed by end-of-file: *;

vect or <doubl e> honewor k;
doubl e x;
/1 invariant: homework contains all the honmework grades read so far
while (cin >> x)
homewor k. push_back(x) ;

/1 check that the student entered some homework grades
t ypedef vector<doubl e>::size type vec_sz;
vec_sz size = honework. size();
if (size == 0) {
cout << endl << "You nust enter your grades.
"Please try again." << endl
return 1;

}

/1 sort the grades
sort (homewor k. begi n(), homework. end());

/1 conpute the nedian honework grade

vec_sz md = sizel?2;

doubl e nedi an;

medi an = size %2 == 0 ? (honework[mid] + honework[mid-1]) / 2
homewor k[ mi d] ;

/'l conpute and wite the final grade

streansi ze prec = cout. precision();

cout << "Your final grade is " << setprecision(3)
<< 0.2 * mdterm+ 0.4 * final + 0.4 * nmedi an
<< setprecision(prec) << endl;

return O;

3.2.3 Some additional observations

This code contains some points that deserve particular attention. First, there's a bit more
to know about why we exit the program if homewor k is empty. Logically, taking the
median of an empty collection of values is undefined—we have no idea what it might
mean. Therefore, exiting does the right thing: If we don't know what to do, we might as
well quit. But it is important to know what would happen if we had continued execution. If
the input were empty, and we neglected to test that we had read at least one number,
the code to compute the median would fail. Why?



If we had read no elements, then honmewor k. si ze() , and therefore Si ze, would be 0.
Likewise, m d would be 0. When we executed homewor k[ mi d] , we would be looking at
the first element (the one indexed by 0) in homewor k. But there are no elements in
homewor k! When we execute honewor k[ 0] , all bets are off as to what we get.

vect or s do not check whether the index is in range. Such checking is up to the user.

The next important observation is that vect or <doubl e>: : si ze_t ype, like all
standard-library size types, is an unsigned integral type. Such types are incapable of
storing negative values at all; instead, they store values modulo 2", where n depends on
the implementation. So, for example, there would never be any point in checking whether
homewor k. si ze() < 0, because that comparison would always yield f al se.

Moreover, whenever ordinary integers and unsigned integers combine in an expression,
the ordinary integer is converted to unsigned. In consequence, expressions such as
homewor k. si ze() - 100 yield unsigned results, which means that they, too, cannot
be less than zero—even if homewor k. si ze() < 100.

Finally, it is also worth noting that the execution performance of our program is actually
quite good, even though the vect or <doubl e> object grows as needed to accommodate
its input, rather than being allocated with the right size immediately.

We can be confident about the program's performance because the C++ standard
imposes performance requirements on the library's implementation. Not only must the
library meet the specifications for behavior, but it must also achieve well-specified
performance goals. Every standard-conforming C++ implementation must

o Implement vect or so that appending a large number of elements to a vect or is
no worse than proportional to the number of elements
e Implement sort to be no slower than nlog(n), where n is the number of elements

being sorted

The whole program is therefore guaranteed to run in nlog(n) time or better on any
standard-conforming implementation. In fact, the standard library was designed with a
ruthless attention to performance. C++ is designed for use in performance-critical
applications, and the emphasis on speed pervades the library as well.
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3.3 Detalls

Local variables are default-initialized if they are defined without an explicit initializer.
Default-initialization of a built-in type means that the value is undefined. Undefined
values may be used only as the left-hand side of an assignment.

Type definitions:
typedef type nane; Deinesnane as a synonym for type.

The vector type, defined in <vect or >, is a library type that is a container that holds a
sequence of values of a specified type, vectors grow dynamically. Some important
operations are:

vector<T>::size type

A type guaranteed to be able to hold the number of elements in the
largest possible vect or .

v. begi n()

Returns a value that denotes the first element in v.

v. end()

Returns a value that denotes (one past) the last element in v.

vect or <T> v;
Creates an empty vector that can hold elements of type T.

v. push_back(e)
Grows the vector by one element initialized to e.

v[i]

Returns the value stored in position i .

V. size()
Returns the number of elements in V.

Other library facilities

sort(b, e)
Rearranges the elements defined by the range [ b, €) into nondecreasing order.
Defined in <al gori t hnp.

max(el, e2)
Returns the larger of the expressions €l and €2; el and €2 must have exactly the same
type. Defined in <al gori t hnp.

while (cin >> x)
Reads a value of an appropriate type into x and tests the state of the stream. If the



stream is in an error state, the test fails; otherwise, the test succeeds, and the body of
the whi | e is executed.

S. preci sion(n)
Sets the precision of stream S to n for future output (or leaves it unchanged if n is
omitted). Returns the previous precision.

set preci si on(n)
Returns a value that, when written on an output stream S, has the effect of calling
S. preci si on(n). Defined in <i omani p>.

streansi ze

The type of the value expected by set pr eci si on and returned by pr eci si on.
Defined in <i 0s>.

Exercises

3-0. Compile, execute, and test the programs in this chapter.

3-1. Suppose we wish to find the median of a collection of values. Assume that we have
read some of the values so far, and that we have no idea how many values remain to be
read. Prove that we cannot afford to discard any of the values that we have read. Hint:
One proof strategy is to assume that we can discard a value, and then find values for the
unread—and therefore unknown—part of our collection that would cause the median to be
the value that we discarded.

3-2. Write a program to compute and print the quartiles (that is, the quarter of the
numbers with the largest values, the next highest quarter, and so on) of a set of integers.

3-3. Write a program to count how many times each distinct word appears in its input.
3-4. Write a program to report the length of the longest and shortest St ri ng in its input.

3-5. Write a program that will keep track of grades for several students at once. The
program could keep two vect or s in sync: The first should hold the student's names, and
the second the final grades that can be computed as input is read. For now, you should
assume a fixed number of homework grades. We'll see in 84.1.3/56 how to handle a
variable number of grades intermixed with student names.

3-6. The average-grade computation in 3.1/36 might divide by zero if the student didn't
enter any grades. Division by zero is undefined in C++, which means that the
implementation is permitted to do anything it likes. What does your C++ implementation
do in this case? Rewrite the program so that its behavior does not depend on how the

implementation treats division by zero.
=
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Organizing programs and data

Although the program in 3.2.2/46 is larger than we would like, it would have been larger
still without vect or, string, and sort . These library facilities, like others that we
have used, share several qualities: Each one

e Solves a particular kind of problem
e Is independent of most of the others
e« Has a name

Our own programs have the first of these qualities, but lack the others. This lack is fine
for small programs, but as we set out to solve larger problems, we will find that our
solutions will become unmanageable unless we break them into independent, named
parts.

Like most programming languages, C++ offers two fundamental ways of organizing large
programs: functions (sometimes called subroutines) and data structures. In addition,
C++ lets programmers combine functions and data structures into a single notion called a
class, which we'll explore starting in Chapter 9.

Once we have learned how to use functions and data structures to organize our
computations, we also need the ability to divide our programs into files that we can
compile separately and combine after compilation. The last part of this chapter will show
how C++ supports separate compilation.

4.1 Organizing computations

We shall begin by writing a function to calculate a student's final grade from the midterm
and final exam grades and overall homework grade. We'll assume that we've already
calculated the overall homework grade from the individual homework grades, which we
have been computing as the average or median. Aside from that assumption, this function
will use the same policy as the one that we've been using all along: Homework and the
final exam contribute 40% each to the total, and the midterm makes up the remaining
20%.

Whenever we do—or might do—a computation in several places, we should think about
putting it in a function. An obvious reason for doing so is that then we can use the
function instead of redoing the computation explicitly. Not only does using functions
reduce our total programming effort, but doing so also makes it easier for us to change
the computation if we wish. For example, assume we wanted to change our grading
policy. If we had to hunt through every program we had ever written, looking for the
parts that dealt with grading, we would probably become discouraged quickly.



There is a more subtle advantage to using functions for such computations: A function
has a name. If we name a computation, we can think about it more abstractly—we can
think more about what it does and less about how it works. If we can identify important
parts of our problems, and create named pieces of our programs that correspond to those
parts, then our programs will be easier to understand and the problems easier to solve.

Here is a function that computes grades according to our policy:

/'l conpute a student's overall grade from m dterm and final exam grades and homne\
doubl e grade(double midterm double final, double homework)

{
}

return 0.2 * mdterm+ 0.4 * final + 0.4 * honework;

Until now, all the functions that we've defined have been named mai n . We define most
other functions similarly, by specifying the return type, followed first by the function
name, next by a parameter list enclosed in (), and, finally, by the function body, which
is enclosed in { } . The rules are more complicated for functions that return values that
denote other functions; see 8A.1.2/297 for the full story.

In this example, the parameters are nm dt erm fi nal , and honewor k , each of which
has type doubl e . They behave like variables that are local to the function, which means
that calling the function creates them and returning from the function destroys them.

As with any other variables, we must define the parameters before using them. Unlike
other variables, defining them does not create them immediately; only calling the function
creates them. Therefore, whenever we call the function, we must supply corresponding
arguments , which are used to initialize the parameters when the function begins
execution. For example, in 83.1/36 we computed a grade by writing

cout << "Your final grade is " << setprecision(3)
<< 0.2 * midterm+ 0.4 * final + 0.4 * sum/ count
<< setprecision(prec) << endl;

If we had the grade function available, we could have written

cout << "Your final grade is << setprecision(3)
<< grade(m dterm final, sum/ count)
<< setprecision(prec) << endl;

Not only must we supply arguments that correspond to the parameters of the functions
that we call, but we must supply them in the same order. Accordingly, when we call the
gr ade function, the first argument must be the midterm grade, the second must be the
final exam grade, and the third must be the homework grade.

Arguments can be expressions, such as sum / count , not just variables. In general,
each argument is used to initialize the. corresponding parameter, after which the
parameters behave like ordinary local variables inside the function. So, for example, when
we call grade(m dterm final, sum/ count) , the grade function's parameters



are initialized to copies of the arguments' values, and do not refer directly to the
arguments themselves. This behavior is often called call by value, because the
parameter takes on a copy of the value of the argument.

4.1.1 Finding medians

Another problem that we solved in 83.2.2/46, and that we can imagine wanting to solve
in other contexts, is finding the median of avect or . We'll see in 88.1.1/140 how to
define a function that is so general that it works with a vect or of any type of value. For
now, we'll limit our attention to vect or <doubl e> .

To write our function, we'll start with the part of the program in 83.2.2/47 that computes
medians, and make a few changes:

/'l conpute the median of a vector<doubl e>
/'l note that calling this function copies the entire argunment vector
doubl e nedi an(vect or <doubl e> vec)

{

t ypedef vector<doubl e>::size_type vec_sz;

vec_sz size = vec.size();

if (size == 0)

t hrow dormai n_error("nedian of an enpty vector");

sort(vec. begin(), vec.end());

vec_ sz md = size | 2

return size %2 == 0 ? (vec[md] + vec[mid-1]) / 2 : vec[nmd];
}

One change is that we named our vector vec , rather than hormewor k . After all, our
function can compute the median of anything, not just homework grades. We also
eliminated the variable medi an , because we no longer need it: We can return the
median as soon as we've calculated it. We are still using si ze and m d as variables, but
now they are local to the nmedi an function and, therefore, inaccessible (and irrelevant)
elsewhere. Calling the nedi an function will create these variables, and returning from
the function will destroy them. We define veC_Sz as a local type name, because we don't
want to conflict with anyone who might want to use that name for another purpose.

The most significant change is what we do if the vect or is empty. In 83.2.2/46, we
knew that we would have to complain to whoever was running our program, and we also
knew who that person would be and what kind of complaint would make sense. In this
revised version, on the other hand, we don't know who is going to be using it, or for what
purpose, so we need a more general way of complaining. That more general way is to
throw an exception if the vect or is empty.

When a program throws an exception, execution stops in the part of the program in which
the t hr ow appears, and passes to another part of the program, along with an exception
object , which contains information that the caller can use to act on the exception.

The most important part of the information that is passed is usually the mere fact that an



exception was thrown. That fact, along with the type of the exception object, is usually
enough to let the caller figure out what to do. In this particular example, the exception
that we throw is domai n_err or , which is a type that the standard library defines in
header <st dexcept > for use in reporting that a function's argument is outside the set of
values that the function can accept. When we create a donmai n_er r or object to throw,
we can give it a St ri ng that describes what went wrong. The program that catches the
exception can use this St ri ng in a diagnostic message, as we shall see in §4.2.3/65.

There is one more detail about how functions behave that is important to understand.
When we call a function, we can think of the parameters as local variables whose initial
values are the arguments. If we do so, we can see that calling a function involves copying
the arguments into the parameters. In particular, when we call nedi an , the vect or
that we use as an argument will be copied into vec .

In the case of the medi an function, it is useful to copy the argument to the parameter,
even if doing so takes significant time, because the medi an function changes the value of
its parameter by calling sort . Copying the argument prevents changes made by sort
from propagating back to the caller. This behavior makes sense, because taking the

nmedi an of a vect or should not change the vect or itself.

4.1.2 Reimplementing our grading policy

The gr ade function in 84.1/52 assumes that we already know the student's overall
homework grade, and not just the individual homework assignments' grades. How we
obtain that grade is part of our policy: We used the average in 3.1/36 and the median in
83.2.2/47. Accordingly, we might wish to express this part of our grading policy in a
function, along the same lines as we did in 84.1/52:

/'l conpute a student's overall grade frommdterm and final exam grades

/'l and vector of hormework grades.

/'l this function does not copy its argument, because nedi an does so for us.
doubl e grade(double m dterm double final, const vector<doubl e>& hw)

{
if (hw size() == 0)
t hrow donmai n_error ("student has done no honework");
return grade(mdterm final, nedian(hw));

This function has three points of particular interest.

The first point is the type, const vect or <doubl e>& , that we specify for the third
argument. This type is often called "reference to vect or of const doubl e ." Saying
that a name is a reference to an object says that the name is another name for the
object. So, for example, if we write

vect or <doubl e> honewor k;
vect or <doubl e>& hw = honewor k; /'l hwis a synonym for honework

we are saying that hwis another name for honmewor k . From that point on, anything we



do to hwis equivalent to doing the same thing to honewor k , and vice versa. Adding a
const , asin

/'l chwis a read-only synonym for homework
const vector<doubl e>& chw = honewor k;

still says that chw is another name for honmewor k , but the const promises that we will
not do anything to chw that might change its value.

Because a reference is another name for the original, there is no such thing as a reference
to a reference. Defining a reference to a reference has the same effect as defining a
reference to the original object. For example, if we write

/1 hwl and chwl are synonyns for homework; chwl is read-only
vect or <doubl e>& hwl = hw,
const vector<doubl e>& chwl = chw,

then hwl is another name for honewor k , just as hwis, and chwl , like chw , is another
name for homewor k that does not allow write access.

If we define a nonconst reference—a reference that allows writing—we cannot make it
refer to a const object or reference, because doing so would require permission that the
const denies. Therefore, we cannot write

vect or <doubl e>& hw2 = chw, /'l error: requests wite access to chw

because we promised not to modify chw .

Analogously, when we say that a parameter has type const vect or <doubl e>& , we
are asking the implementation to give us direct access to the associated argument,
without copying it, and also promising that we won't change the parameter's value (which
would otherwise change the argument too). Because the parameter is a reference to
const , we can call this function on behalf of both const and nonconst vect or s.
Because the parameter is a reference, we avoid the overhead of copying the argument.

The second point of particular interest about the gr ade function is that like the one in
84.1/52, itis named gr ade —even though it calls the other gr ade function. The notion
that we can have several functions with the same name is called overloading , and
figures prominently in many C++ programs. Even though we have two functions with the
same name, there is no ambiguity, because whenever we call gr ade , we will supply an
argument list, and the implementation will be able to tell from the type of the third
argument which gr ade function we mean.

The third point is that we check whether honewor k. si ze() is zero, even though we
know that medi an will do so for us. The reason is that if nedi an discovers that we are
asking for the median of an empty vect or , it throws an exception that includes the
message nmedi an of an enpty vect or . This message is not directly useful to
someone who is computing student grades. Therefore, we throw our own exception,



which we hope will give the user more of a clue as to what has gone wrong.
4.1.3 Reading homework grades

Another problem that we have had to solve in several contexts is reading homework
grades into avect or .

There is a problem in designing the behavior of such a function: It needs to return two
values at once. One value is, of course, the homework grades that it read. The other is an
indication of whether the attempted input was successful.

There is no direct way to return more than one value from a function. One indirect way to
do so is to give the function a parameter that is a reference to an object in which it is to
place one of its results. This strategy is common for functions that read input, so we'll use
it. Doing so will make our function look like this:

/'l read honework grades froman input streaminto a vector<doubl e>
i stream& read_hw(i stream& i n, vector<double>& hw) {
/1 we must fill in this part

return in;

In 84.1.2/54, we saw a program with a const vect or <doubl e>& parameter; now
we're dropping the const . A reference parameter without a const usually signals an
intent to modify the object that is the function's argument. For example, when we
execute

vect or <doubl e> honmewor k;

read_hw(cin, homework);

the fact that r ead_hw's second parameter is a reference should lead us to expect that
calling r ead_hw will change the value of honewor k .

Because we expect the function to modify its argument, we cannot call the function with
just any expression. Instead, we must pass an lvalue argument to a reference
parameter. An lvalue is a value that denotes a nontemporary object. For example, a
variable is an Ivalue, as is a reference, or the result of calling a function that returns a
reference. An expression that generates an arithmetic value, such as sum/ count ,
is not an lvalue.

Both of the parameters to r ead_hw are references, because we expect the function to
change the state of both arguments. We don't know the details of how ci n works, but
presumably the library defines it as a data structure that stores everything the library
needs to know about the state of our input file. Reading input from the standard input file
changes the state of the file, so it should logically change the value of ci n as well.

Notice that r ead _hwreturns i n . Moreover, it does so as a reference. In effect, we are
saying that we were given an object, which we are not going to copy, and we will return



that same object, again without copying it. Returning the stream allows our caller to write

if (read_hw(cin, homework)){/*...*/}

as an abbreviation for

read_hw(cin, homework);
if (cin) {/*...*/}

We can now think about how to read the homework grades. Obviously, we want to read
as many grades as exist, so it would seem as if we could just write

/1 first try not quite right
doubl e x;
while (in >> x)

hw. push_back(x) ;

This strategy doesn't quite work, for two reasons. The first reason is that we haven't
defined hw —our caller defined it for us. Because we didn't define it, we don't know what
data might be there already. For all we know, our caller might be using our function to
process homework for lots of students, in which case hw might contain the previous
student's grades. We can solve this problem by calling hw. cl ear () before we begin our
work.

The second reason that our strategy fails is that we don't quite know when to stop. We
can keep reading grades until we can no longer do so, but at that point we have a
problem. There are two reasons why we might no longer be able to read a grade: We
might have reached end-of-file, or we might have encountered something that is not a
grade.

In the first case, our caller will think that we have reached end-of-file. This thought will be
true but misleading, because the end-of-file indication will have occurred only after we
have successfully read all the data. Normally, an end-of-file indication means that an
input attempt failed.

In the second case, when we have encountered something that isn't a grade, the library
will mark the input stream as being in failure state , which means that future input
requests will fail, just as if we had reached end-of file. Therefore, our caller will think that
something is wrong with the input data, when the only problem was that the last
homework grade was followed by something that was not a homework grade.

In either case, then, we would like to pretend that we never saw whatever followed the
last homework grade. Such pretense turns out to be easy: If we reached end-of-file, there
was no additional input to read; if we encountered something that wasn't a grade, the
library will have left it unread for the next input attempt. Therefore, all we must do is tell
the library to disregard whatever condition caused the input attempt to fail, be it end-of-
file or invalid input. We do so by calling i n. cl ear () to reset the error state inside i n ,
which tells the library that input can continue despite the failure.



There is one more detail to consider: Perhaps we have already run out of input, or
encountered an error condition, before even trying to read the first homework grade. In
that case, we must leave the input stream strictly alone, lest we inadvertently seduce our
caller into trying to read nonexistent input at some point in the future.

Here is the complete read_hw function:

/'l read honework grades froman input streaminto a vector<doubl e>
i stream& read_hw(i stream& in, vector<doubl e>& hw)

{
if (in) {
/1l get rid of previous contents
hw. cl ear () ;

/'l read honework grades
doubl e x;
while (in >> x)

hw. push_back(x) ;

/'l clear the streamso that input will work for the next student
in.clear();

}

return in;

Note that the cl ear member behaves completely differently for i st r eamobjects than it
does for vect or objects. For | st r eamobjects, it resets any error indications so that
input can continue; for vect or objects, it discards any contents that the vector might
have had, leaving us with an empty vector again.

4.1.4 Three kinds of function parameters

We would like to pause at this point for an important observation: We have defined three

functions—nedi an, grade, and r ead_hw—that operate on homework vectors. Each of
these functions treats the corresponding parameter in a fundamentally different way from

the others, and each treatment has a purpose.

The medi an function (84.1.1/53) has a parameter of type vect or <doubl e> . Therefore,
calling that function causes the argument to be copied, even though that argument might
be a huge vect or . Despite the inefficiency, vect or <doubl e> is the right parameter
type for medi an , because this type ensures that taking the median of a vect or doesn't
change the vect or . The nedi an function sort s its parameter. If it did not copy its
argument, then calling nedi an( honewor k) would change the value of honmewor k .

The gr ade function that takes a homework vect or (84.1.2/54) has a parameter of type
const vect or <doubl e>& . In this type, the & asks the implementation not to copy the
argument, and the const promises that the program will not change the parameter.
Such parameters are an important technique for making programs more efficient. They
are a good idea whenever the function will not change the parameter's value, and the
parameter is of a type, such as vect or or stri ng , with values that might be time-
consuming to copy. It is usually not worth the bother to use const references for



parameters of simple built-in types, such as i nt or doubl e . Such small objects are
usually fast enough to copy that there's little, if any, overhead in passing them by value.

The r ead_hw function has a parameter of type vect or <doubl e>& , without the const

. Again, the & asks the implementation to bind the parameter directly to the argument,
thus avoiding having to copy the argument. But here, the reason to avoid the copy is that
the function intends to change the argument's value.

Arguments that correspond to nonconst reference parameters must be Ivalues—that is,
they must be nontemporary objects. Arguments that are passed by value or bound to a
const reference can be any value. For example, suppose we have a function that returns
an empty vect or

vect or <doubl e> enmpt yvec()

vect or <doubl e> v; /1 no el enments
return v;

We could call this function, and use the result as an argument to our second gr ade
function from 84.1.2/54:

grade(mdterm final, enptyvec());

When run, the gr ade function would throw an exception immediately, because its
argument is empty. However, calling gr ade this way would be syntactically legal.

When we call r ead _hw, both of its arguments must be Ivalues, because both parameters
are nonconst references. If we give r ead_hw a vector that is not an lvalue

read_hw(cin, enptyvec()); [l error: enptyvec() is not an |value

the compiler will complain, because the unnamed vect or that we create in the call to
enpt yvec will disappear as soon as r ead _hwreturns. If we were allowed to make this
call, the effect would be to store input in an object that we couldn't access!

4.1.5 Using functions to calculate a student's grade

The whole point of writing these functions is to use them in solving problems. For
example, we can use them to reimplement our grading program from 83.2.2/46:

/'l include directives and using-declarations for library facilities

/'l code for nedian function from 84.1.1/53

/'l code for grade(double, double, double) function from 84.1/52

/'l code for grade(double, double, const vector<double>& function from 84.1.2/54
/'l code for read _hw(istream® vector<double>&) function from 84.1.3/57

int main()



/1l ask for and read the student's nane
cout << "Please enter your first nane: "
string nane;

cin >> nane;

cout << "Hello, " << nane << "!'" << endl;

/1 ask for and read the mdtermand final grades

cout << "Please enter your nmidtermand final exam grades: ";
double midterm final

cin >> mdterm >> final

/1 ask for the honework grades
cout << "Enter all your honmework grades,

"foll owed by end-of-file: ";

vect or <doubl e> honewor k;

/1 read the homewor k grades
read_hw(cin, honmeworKk);

/1 conpute and generate the final grade, if possible

try {
doubl e final _grade = grade(nmidterm final, homework);

streansi ze prec = cout.precision();
cout << "Your final grade is " << setprecision(3)
<< final _grade << setprecision(prec) << endl;
} catch (domain_error) {
cout << endl << "You mnust enter your grades. "
"Pl ease try again." << endl
return 1,

}

return 0O;

}

The changes from the earlier version are in how we read the homework grades, and in
how we calculate and write the result.

After asking for our user's homework grades, we call our r ead__hw function to read the
data. The whi | e statement inside r ead _hw repeatedly reads homework grades until we
hit end-of-file or encounter a data value that is not valid as a double.

The most important new idea in this example is the try statement. It tries to execute the
statements in the { } that follow the t r y keyword. If a domai n_err or exception
occurs anywhere in these statements, then it stops executing them and continues with
the other set of { } -enclosed statements. These statements are part of a catch clause ,
which begins with the word cat ch , and indicates the type of exception it is catching.

If the statements between t ry and cat ch complete without throwing an exception, then
the program skips the cat ch clause entirely and continues with the next statement,
which isreturn O ; in this example.

Whenever we write a t 'y statement, we must think carefully about side effects and when
they occur. We must assume that anything between t ry and cat ch might throw an



exception. If it does so, then any computation that would have been executed after the
exception is skipped. What is important to realize is that a computation that might have
followed an exception in time does not necessarily follow it in the program text.

For example, suppose that we had written the output block more succinctly as

/'l this exanple doesn't work

try {
streansi ze prec = cout. precision();

cout << "Your final grade is " << setprecision(3)
<< grade(m dterm final, homework) << setprecision(prec);

}

The problem with this rewrite is that although the implementation is required to execute
the << operators from left to right, it is not required to evaluate the operands in any
specific order. In particular, it might call grade after it writes Your final grade is.
If gr ade throws an exception, then the output might contain that spurious phrase.
Moreover, the first call to set pr eci si on might set the output stream's precision to 3
without giving the second call the opportunity to reset the precision to its previous value.
Alternatively, the implementation might call grade before writing any output; whether it
does so depends entirely on the implementation.

This analysis explains why we separated the output block into two statements: The first
statement ensures that the call to gr ade happens before any output is generated.

A good rule of thumb is to avoid more than one side effect in a single statement.
Throwing an exception is a side effect, so a statement that might throw an exception
should not cause any other side effects, particularly including input and output.

Of course, we cannot run our Mai n function as written. We need the i ncl ude directives
and usi ng -declarations for the library facilities that the program uses. We also use the
names r ead_hw and the grade function that takes a const vect or <doubl e>& third
argument. The definitions of these functions, in turn, use the nedi an function and the
gr ade function that takes three doubles.

In order to execute this program, we have to ensure that those functions are defined (in
the proper order) before our mai n function. Doing so yields an inconveniently large
program. Rather than write it out directly here, we'll see in 84.3/65 how we can partition
such programs more succinctly into files. Before we do so, let's look at better ways to
structure our data.
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4.2 Organizing data

Computing one student's grades may be useful to that student, but the computation is
simple enough that a pocket calculator could handle it almost as well as our program. On
the other hand, if we are teaching a course, we will want to compute grades for a class
full of students. Let's revise our program to make it useful for an instructor.

Instead of interactively reporting one student's grade, we'll assume that we are given a
file that contains many students' names and grades. Each name is followed by a midterm
grade and a final exam grade, and then by one or more homework assignment grades.
Such a file might look like

Smith 93 91 47 90 92 73 100 87
Carpenter 75 90 87 92 93 60 0 98

Our program should calculate each student's overall grade using medians: The median
homework grade counts 40%; the final, 40%; and the midterm, 20%. For this input, the
output would be

Car pent er 86. 8
Smith 90. 4

In the output, we want the report to be organized alphabetically by student, and we want
the final grades to line up vertically so that they are easier to read. These requirements
imply that we'll need a place to store the records for all the students, so that we can
alphabetize them. We'll also need to find the length of the longest name, so that we know
how many spaces to put between each name and its corresponding grade.

Assuming that we have a place to store the data about a single student, we can use a
vect or to hold all the student data. Once the vect or contains data for all the students,
we can Sort it, and then calculate and write each student's grades. We'll start by
creating a data structure to hold the student data, and by writing some auxiliary functions
to read and process those data. After we have developed these abstractions, we'll use
them to solve the overall problem.

4.2.1 Keeping all of a student's data together

We know that we need to read each student's data and then arrange the students in
alphabetical order. When we do so, we want to keep the students' names and grades
together. Therefore, we need a way to store in one place all the information that pertains
to one student. That place should be a data structure that holds the student's name,
midterm and final exam grades, and all the homework grades.

In C++, we define such a data structure as follows:



struct Student_info {
string nane;
double mdterm final;
vect or <doubl e> honewor k;
}; /] note the semicolon it's required

This struct definition says that St udent i nf 0 is a type, which has four data members.
Because St udent i nf o is a type, we can define objects of that type, each of which will
contain an instance of these four data members.

The first member, named nane , is of type St ri ng ; the second and third are doubl e s
named m dt er mand fi nal ; and the last is a vect or of doubl e s named honewor k .

Each object of St udent _i nf o type holds information about one student. Because

St udent _i nf o is a type, we can use a vect or <St udent _i nf 0> object to hold
information about an arbitrary number of students, just as we used a vect or <doubl e>
object to hold an arbitrary number of homework grades.

4.2.2 Managing the student records

If we break our problem into manageable components, we'll see that there are three
separable steps, which we can represent by separate functions: We need to read data into
a St udent _i nf o object, we need to generate the overall grade for a St udent i nfo
object, and we need to be able to sort a vect or of St udent _i nf 0 objects.

The function that reads one of our records is a lot like the r ead__hw function that we
wrote in 84.1.3/57. In fact, we can use that function to read the homework grades. In
addition, we'll need to read the student's name and exam grades:

istream& read(istream& i s, Student _info& s)

{
/1 read and store the student's nanme and m dterm and final exam grades
is >> s.nane >> s.mdterm>> s.final;
read_hw(is, s.honework); /1 read and store all the student's honework gre
return is;
}

There is no ambiguity in naming this function r ead , because the type of its second
parameter will tell us what we're reading. Overloading will distinguish it from any other
function called r ead that might read into another kind of structure. Like r ead_hw , this
function takes two references: one to the i St r eamfrom which to read, and another to
the object in which to store what it reads. When we use the parameter s inside the
function, we will affect the state of the argument that we were passed.

This function works by reading values into the nane, m dterm, and fi nal members of
the object s , and then calling r ead _hw to read the homework grades. We might reach
end-of-file, or encounter input failure, at any point during this process. If so, the
subsequent input attempts will do nothing, and when we return, i S will be in the
appropriate error state. Note that this behavior relies on the fact that the r ead_hw



function (84.1.3/57) carefully leaves the input stream in an error state if it was already in
such a state when we called r ead_hw.

The other function that we need computes a final grade for a St udent _i nf o0 object. We
already solved most of this problem when we defined the gr ade function in 84.1.2/54.
We will continue that work just a little further by overloading the gr ade function with a
version that determines the overall grade for a St udent i nf o object:

doubl e grade(const Student _info& s)

{
}

return grade(s.mdterm s.final, s.homework);

This function operates on an object of type St udent i nf o, and returns a doubl e that
represents the overall grade. Note that the parameter has type const Student i nfo&
, rather than just plain St udent i nf o, so that when we call it, we do not incur the
overhead of copying an entire St udent _i nf o object.

Note also that this function does not protect against an exception being thrown by the

gr ade function that it calls. The reason is that there isn't anything that our gr ade
function can do to handle the exception beyond what the gr ade function that it calls has
already done. Because our gr ade function doesn't cat ch the exception, any exception
that occurs will be passed back to our caller, which presumably will be in a better position
than we are to decide what to do about students who did no homework.

Our last task, before writing the whole program, is to decide how we will sort our vect or
of St udent _i nf 0 objects. In the nmedi an function (84.1.1/53), we sorted a
vect or <doubl e> parameter, named vec , by using the library sort function:

sort(vec. begin(), vec.end());

However, assuming our data is in a vect or called st udent s , we can't just say

sort(students. begin(), students.end()); /1 not quite right

Why not? We'll have much more to say about sort and other library algorithms in
Chapter 6, but it is worth thinking a bit abstractly about how the sort function might
operate. In particular, how does sort know how to arrange the values in the vect or ?

The sort function must compare elements of the vect or in order to put them in
sequence. It does so by using the < operator for the element type of whatever vect or it
is asked to sort. We can call sort on a vect or <doubl e> , because the < operator will
compare two doubl e s and give us an appropriate result. What will happen when sor t
tries to compare the values of type St udent i nf o ? The < operator does not have an
obvious meaning when applied to St udent i nf 0 objects. Indeed, when sort tries to
compare two such objects, the compiler will complain.

Fortunately, the sort function takes an optional third argument that is a predicate . A



predicate is a function that yields a truth value, typically of type bool . If this third
argument is present, the sort function will use it to compare elements instead of using
the < operator. Therefore, we need to define a function that takes two St udent _i nf o s,
and that says whether the first is less than the second. Because we want to order the
students alphabetically by name, we'll write our comparison function to compare only the
names:

bool conpare(const Student _info& x, const Student_info& y)

{
}

return X.nanme < y.nang;

This function simply delegates the work of comparing St udent i nf o s to the stri ng
class, which provides a < operator for comparing St r i ng s. That operator compares
st ri ng s by applying normal dictionary ordering. That is, it considers the left-hand
operand to be less than the right-hand operand if it is alphabetically ahead of the right-
hand operand. This behavior is exactly what we need.

Having defined conpar e , we can sort the vect or by passing the conpar e function as a
third argument to the sort library function:

sort (students. begin(), students.end(), conpare);

When sort compares elements, it will call our conpar e function to do so.

4.2.3 Generating the report

Now that we have functions to process student records, we can generate our report:

int main()

{
vect or<St udent _i nfo> students;
Student _i nfo record;
string::size_type maxlen = O;

/1 read and store all the records, and find the I ength of the |ongest nane
while (read(cin, record)) {

max|l en = max(nmaxl en, record. nane. size());

student s. push_back(record);

}

/'l al phabetize the records
sort(students. begin(), students.end(), conpare);

for (vector<Student info> :size type i = O;
i = students.size(); ++i) {

/1 wite the nane, padded on the right to maxlen + 1 characters
cout << students[i].nane
<< string(maxlen + 1 - students[i].nane.size(), ' ");



/'l conmpute and wite the grade
try {
doubl e final _grade = grade(students[i]);
streansi ze prec = cout. precision();
cout << setprecision(3) << final _grade
<< setprecision(prec);
} catch (domain_error e) {
cout << e.what();

}

cout << endl:
}
return O;

We have already seen most of this code, but a couple of points are new.

The first novelty is the call to the library function nax , which is defined in the header

<al gori t hn . On the surface, max 's behavior is obvious. However, one aspect of its
behavior is not obvious: Its arguments must both have the same type, for complicated
reasons that we shall explore in 88.1.3/142. This requirement makes it essential for us to
define max| en to be a variable of type stri ng: : si ze_type ; it won't do merely to
define it as an i nt

The second novelty is the expression

string(maxlen + 1 - students[i].nane.size(), ' ')

This expression constructs a nameless object (§1.1/10) of type stri ng . The object
contains maxl en + 1 - students[i].nane.size() characters, all of which are
blank. This expression is similar to the definition of Spaces in 81.2/13, but it omits the
name of the variable. This omission effectively turns the definition into an expression.
Writing st udent s[ i ] . nanme followed by this expression yields output that contains the
characters in st udent s[ i ] . name , padded on the right to exactly maxl en + 1
characters.

The f or statement uses the index i to walk through st udent s one element at a time.
We get the name to write by indexing into st udent s to get the current St udent i nfo
element. We then write the nane member from that object, using an appropriately
constructed St r i ng of blanks to pad the output.

Next we write the final grade for each student. If the student didn't do any homework,
the grade computation will throw an exception. In that case, we cat ch the exception,
and instead of writing a numeric grade, we write the message that was thrown as part of
the exception object. Every one of the standard-library exceptions, such as

domai n_error , remembers the (optional) argument used to describe the problem that
caused the exception to be thrown. Each of these types makes a copy of the contents of
that argument available through a member function named what . The cat ch in this
program gives a name to the exception object that it gets from gr ade (84.1.2/54), so



that it can write as output the message that it obtains from what () . In this case, that
message will tell the user that the st udent has done no honewor k . If there is no
exception, we use the set pr eci si on manipulator to specify that we'll write three
significant digits, and then write the result from gr ade .
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4.3 Putting it all together

So far we have defined a number of abstractions (functions and a data structure) that are
useful in solving our various grading problems. The only way we have seen of using these
abstractions is to put all their definitions in a single file and compile that file. Obviously,
this approach becomes complicated very quickly. To reduce that complexity, C++, like
many languages, supports the notion of separate compilation, which allows us to put
our program into separate files and to compile each of these files independently.

We'll start by understanding how to package the nedi an function so that others can use
it. We begin by putting the definition of the nedi an function into a file by itself so that
we can compile it separately. That file must include declarations for all the names that the
nmedi an function uses. From the library, medi an uses the vect or type, the sort
function, and the domai n_er r or exception, so we will have to include the appropriate
headers for these facilities:

/'l source file for the nmedian function
#i ncl ude <al gorithnme> /1l to get the declaration of sort

#i ncl ude <st dexcept > /'l to get the declaration of domain_error
#i ncl ude <vector> /'l to get the declaration of vector
usi ng std::donain_error; usi ng std::sort; usi ng std::vector;

/'l conpute the median of a vector<doubl e>
/'l note that calling this function copies the entire argument vector
doubl e nedi an(vect or <doubl e> vec)

{
}

/1 function body as defined in 84.1.1/53

As with any file, we must give our source file a name. The C++ standard does not tell us
how to name source files, but in general, a source file's name should suggest its contents.
Moreover, most implementations constrain source-file names, usually requiring the last
few characters of the name to have a specific form. Implementations use these file
suffixes to determine whether a file is a C++ source file. Most implementations require
the names of C++ source files to end in . cpp, .C, or. c, so we might put the nedi an
function in a file named nedi an. cpp, nedi an. C, or nedi an. ¢, depending on the
implementation.

The next step is to make the nedi an function available to other users. Analogous with
the standard library, which puts the names it defines into headers, we can write our own
header file that will allow users to access names that we define. For example, we could
note in a file named nedi an. h that our nedi an function exists. If we did so, users could
use it by writing:

/1 a much better way to use nedian
#i ncl ude "nedi an. h"



#1 ncl ude <vector>

int min(){/* ..*}

When we use a #i ncl ude directive with double quotes rather than angle brackets,
surrounding the header name, we are saying that we want the compiler to copy the entire
contents of the header file that corresponds to that name into our program in place of the
#i ncl ude directive. Each implementation decides where to look for header files, and
what the relationship is between the string between the quotes and the name of the file.
We shall talk about "the header file medi an. h" as shorthand for "the file that the
implementation decides is the one that corresponds to the name nmedi an. h."

It is worth noting that although we refer to our own headers as header files, we refer to
the implementation-supplied headers as standard headers rather than standard header
files. The reason is that header files are genuine files in every C++ implementation, but
system headers need not be implemented as files. Even though the #i ncl ude directive is
used to access both header files and system headers, there is no requirement that they
be implemented in the same way.

Now that we know we must supply a header file, the obvious question is what should be
in it. The simple answer is that we must write a declaration for the medi an function,
which we do by replacing the function body with a semicolon. We can also eliminate the
names of the parameters, because they are irrelevant without the function body:

doubl e nedi an(vect or <doubl e>) ;

Our nmedi an. h header cannot contain just this declaration; we must also include any
names that the declaration itself uses. This declaration uses vect or , so we must make
sure that that name is available before the compiler sees our declaration:

/'l median. h
#i ncl ude <vector>
doubl e nedi an(std::vector<doubl e>);

We include the vect or header so that we can use the name st d: : vect or in declaring
the argument to nedi an. The reason that we mention st d: : vect or explicitly, rather
than writing a usi ng-declaration, is more subtle.

In general, header files should declare only the names that are necessary. By restricting
the names contained in a header file, we can preserve maximum flexibility for our users.
For example, we use the qualified name for st d: : vect or because we have no way of
knowing how the user of our nedi an function wants to refer to st d: : vect or . Users of
our code might not want a usi ng-declaration for vect or . If we write one in our header,
then all programs that | ncl ude our header get a using st d: : vect or declaration,
regardless of whether they wanted it. Header files should use fully qualified names rather
than usi ng-declarations.

There is one last detail to cover: Header files should ensure that it is safe to include the
file more than once as part of compiling the program. As it happens, our header file is



already safe as it stands, because it contains only declarations. However, we consider it
good practice to cater to multiple inclusion in every header file, not just the ones that
need it. We do so by adding some preprocessor magic to the file:

#i f ndef GUARD nedi an_h
#defi ne GUARD nedi an_h

/1 medi an. h—final version
#i ncl ude <vect or >
doubl e nedi an(std: : vector<doubl e>);

#endi f

The #ifndef directive checks whether GUARD nedi an_h is defined. This is the name of
a preprocessor variable, which is one of a variety of ways of controlling how a program
is compiled. A full discussion of the preprocessor is beyond the scope of this book.

In this context, the #i f ndef directive asks the preprocessor to process everything
between it and the next matching #endi f if the given name is not defined. We must
choose a name that is unique in the entire program, so we make one from the name of
our file and a string, such as GUARD , that we hope will not be duplicated elsewhere.

The first time nedi an. h is included in a program, GJARD nedi an_h will be undefined,
so the preprocessor will look at the rest of the file. The first thing it does is to define
GUARD nedi an_h, so that subsequent attempts to include medi an. h will have no
effect.

The only other subtlety is that it is a good idea for the #i f ndef to be the very first line of
the file, without even a comment before it:

#i f ndef variabl e

#endi f

The reason is that some C++ implementations detect files that have this form and, if the
variable is defined, do not even bother to read the file the second time around.
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4.4 Partitioning the grading program

Now that we know how to arrange to compile the nedi an function separately, the next
step is to package our St udent i nf o structure and associated functions:

#i f ndef GUARD St udent _info
#define GUARD Student info

/1 Student _info.h header file
#i ncl ude <i ostreanr

#i ncl ude <string>

#i ncl ude <vector>

struct Student _info {
std::string nane;
double mdterm final;

st d: : vect or <doubl e> honmewor k;

b

bool conpare(const Student info& const Student info&);
std::istrean& read(std::istream% Student _info&);
std::istrean& read_hw(std::istream% std::vector<double>&);
#endi f

Notice that we explicitly use st d: : to qualify names from the standard library, rather
than including usi ng -declarations, and that St udent _i nf 0. h declares the conpar e,
read, and r ead_hw functions, which are closely associated with the St udent i nfo
structure. We will use these functions only if we are also using this structure, so it makes
sense to package these functions with the structure definition.

The functions should be defined in a source file that will look something like:

/'l source file for Student_info-related functions
#i ncl ude "Student i nfo. h"

using std::istream using std::vector;

bool conpare(const Student info& x, const Student _info& y)

{
}

return X.name < y.nane,

i stream& read(istrean& i s, Student_info& s)

{
/1 read and store the student's nane and m dterm and final exam grades
is > s.nane >> s.mdterm>> s.final;

read_hw(is, s.homework); // read and store all the student's honework grade:

return is;



}

/'l read homework grades froman input streaminto a “vector'
i stream& read_hw(istreanm& in, vector<doubl e>& hw)
{
if (in) {
/1 get rid of previous contents
hw. cl ear () ;

/'l read honewor k grades
doubl e x;
while (in >> x)

hw. push_back( x) ;

/'l clear the streamso that input will work for the next student
in.clear();

}

return in;

Note that because we include the St udent i nf 0. h file, this file contains both
declarations and definitions of our functions. This redundancy is harmless, and is actually
a good idea. It gives the compiler the opportunity to check for consistency between the
declarations and the definitions. These checks are not exhaustive in most
implementations, because complete checking requires seeing the entire program, but they
are useful enough to make it worthwhile for source files to include the corresponding
header files.

The checking and its incompleteness stem from a common source: The language requires
function declarations and definitions to match exactly in their result type, and in the
number and types of parameters. This rule explains the implementation's ability to
check—but why the incompleteness? The reason is that if a declaration and definition
differ enough, the implementation can only assume that they describe two different
versions of an overloaded function, and that the missing definition will appear elsewhere.
For example, suppose we defined median as in 84.1.1/53, and we declared it incorrectly
as

int nedian (std::vector<doubl e>); /'l return type should be double

If the compiler sees this declaration when it compiles the definition, it will complain,
because it knows that the return type of nedi an( vect or <doubl e>) cannot
simultaneously be doubl e and i nt . Suppose, however, that instead we had declared

doubl e nmedi an (doubl e); /'l argunment type should be vector<doubl e>

Now the compiler can't complain, because nedi an( doubl e) could be defined elsewhere.
If we call the function, then the implementation must eventually look for its definition. If
it doesn't find the definition, it will complain at that point.

Note, too, that in the source file, there is no problem with usi ng -declarations. Unlike a



header file, a source file has no effect on the programs

that use these functions. Hence

reliance on usi ng -declarations in a source file is purely a local decision.

What's left is to write a header file to declare the various overloaded gr ade functions:

#i f ndef GUARD grade_h
#defi ne GUARD grade_h

/1 grade.h
#i ncl ude <vect or >
#i ncl ude "Student _info. h"

doubl e grade(doubl e, doubl e,
doubl e grade(doubl e, double,
doubl e grade(const Student_infog&);

doubl e) ;

#endi f

const std::vector<doubl e>&);

Notice how bringing the declarations of these overloaded functions together makes it
easier to see all the alternatives. We will define all three functions in a single file, because

they are closely related. Again, the name of the file will
but will probably be gr ade. cpp,

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<st dexcept >
<vect or >
"grade. h"
"medi an. h"

" St udent _i nfo. h"

using std::dommin_error; using std::vector

/1 definitions for the grade functions from 84

depend on the implementation,

grade. C, or gr ade. c:

.1/52, 84.1.2/54 and 84.2.2/63
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4.5 The revised grading program

Finally we can write our complete program:

#i ncl ude <al gorithnwe

#i ncl ude <i omani p>

#i ncl ude <i os>

#i ncl ude <i ostreanr

#i ncl ude <stdexcept >

#i ncl ude <string>

#i ncl ude <vector>

#i ncl ude "grade. h"

#i ncl ude "Student _info.h"

usi ng std::cin; usi ng std::setprecision;
usi ng std::cout; usi ng std::sort;

usi ng std::donain_error; usi ng std::streansize;
usi ng std::endl; using std::string;

usi ng std:: max; usi ng std::vector;

int main()

{

vect or <St udent _i nf o> students;
St udent _info record,;
string::size_type nmaxlen = O; /1 the length of the |ongest nane

/1 read and store all the students data
/1 Invariant: students contains all the student records read so far
/1 max|l en contains the I ength of the |ongest nane in students
while (read(cin, record)) {

/1 find I ength of |ongest nane

max|l en = max(nmaxl en, record. nane. size());

student s. push_back(record);

}

/1 al phabetize the student records
sort(students. begin(), students.end(), conpare);

/1 wite the nanes and grades
for (vector<Student info> :size type i = O;
i != students.size(); ++i) {

/1l wite the nane, padded on the right to naxlen + 1 characters
cout << students[i].nane
<< string(maxlen + 1 - students[i].nane.size(), ' ');

/'l conpute and wite the grade

try {
doubl e final _grade = grade(students[i]);
streansi ze prec = cout. precision();
cout << setprecision(3) << final_grade



<< setprecision(prec);
} catch (donmmin_error e) {
cout << e.what();

}

cout << endl:
}
return O;

This program should be fairly straightforward to understand. As usual, we start with the
necessary i ncl udes and usi ng-declarations. Of course, we need mention only those
headers and declarations that we use in this source file. In this program, we have our
own headers to include as well as library headers. Those headers make available the
definition of the St udent i nf o type, and declarations for the functions that we use to
manipulate St udent i nf 0 objects and generate grades. The nmai n function itself is the

same as the one that we presented in 84.2.3/64.
[rox_3
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4.6 Details

Program structure:

#i ncl ude <system header >

Angle brackets, < >, enclose system headers. System headers may or may not be
implemented as files.

#i ncl ude "user-defi ned-header-fil e-nane"

User-defined header files are i ncl uded by enclosing the name in quotes. Typically,
user-defined headers have a suffix of . h.

Header files should be guarded against multiple inclusion by wrapping the file in an

#i f ndef GUARD_header_name directive. Headers should avoid declaring names that
they do not use. In particular, they should not include usi ng-declarations, but instead
should prefix standard-library names with st d: : explicitly.

Types:

T&

Denotes a reference to the type T. Most commonly used to pass a parameter that a
function may change. Arguments to such parameters must be lvalues.

const T&

Denotes a reference to the type T that may not be used to change the value to which
the reference is bound. Usually used to avoid cost of copying a parameter to a function.

Structures: A structure is a type that contains zero or more members. Each object of the
structure type contains its own instance of each of its members. Every structure must
have a corresponding definition:

struct type-nane {
type-specifier nenber-nane;

}; /1 note the sem col on

Like all definitions, a structure definition may appear only once per source file, so it
should normally appear in a properly guarded header file.

Functions: A function must be declared in every source file that uses it, and defined only
once. The declarations and definitions have similar forms:

ret-typefunction-nane (parmdecls) /1 function declaration
[inline] ret-typefunction-nane (parmdecls) { /1 function definition
/'l function body goes here

}



Here, r et - t ype is the type that the function returns, par m decl s is a comma-
separated list of the types for the parameters of the function. Functions must be declared
before they are called. Each argument’s type must be compatible with the corresponding
parameter. A different syntax is necessary to declare or define functions with sufficiently
complicated return types; see 8A.1.2/297 for the full story.

Function names may be overloaded: The same f unct i on- nane may define multiple

functions so long as the functions differ in the number or types of the parameters. The
implementation can distinguish between a reference and a const reference to the same

type.

We can optionally qualify a function definition with inline, which asks the compiler to
expand calls to the function inline when appropriate—that is, to avoid function-call
overhead by replacing each call to the function by a copy of the function body, modified
as necessary. To do so, the compiler needs to be able to see the function definition, so
i nl i nes are usually defined in header files, rather than in source files.

Exception handling:

try { // code
Initiates a block that might t hr ow an exception.

} catch(t) { /* code* / }

Concludes the t r y block and handles exceptions that match the type t . The code
following the cat ch performs whatever action is appropriate to handle the exception
reported in t .

throw e;
Terminates the current function; throws the value e back to the caller.

Exception classes: The library defines several exception classes whose names suggest
the kinds of problems they might be used to report:

| ogic_error domai n_error i nval i d_ar gunent

| ength_error out _of _range runtine_error

range_error overfl ow error under fl ow error
e. what ()

Returns a value that reports on what happened to cause the error.
Library facilities:

sl < s2
Compares strings sl and s2 by applying dictionary ordering.

s.wi dt h(n)
Sets the width of stream S to n for the next output operation (or leaves it unchanged if
N is omitted). The output is padded on the left to the given width. Returns the previous

width. The standard output operators use the existing width value and then call
wi dt h(0) to reset the width.



setw(n)
Returns a value of type st reansi ze (83.1/36) that, when written on an output stream
S, has the effect of calling s. wi dt h(n) .

Exercises

4-0. Compile, execute, and test the programs in this chapter.

4-1. We noted in 84.2.3/65 that it is essential that the argument types in a call to max
match exactly. Will the following code work? If there is a problem, how would you fix it?

i nt maxl en;
Student _info s;
max(s. name. si ze(), naxlen);

4-2. Write a program to calculate the squares of | nt values up to 100. The program
should write two columns: The first lists the value; the second contains the square of that
value. Use set w (described above) to manage the output so that the values line up in
columns.

4-3. What happens if we rewrite the previous program to allow values up to but not
including 1000 but neglect to change the arguments to set w? Rewrite the program to be
more robust in the face of changes that allow i to grow without adjusting the set w
arguments.

4-4. Now change your squares program to use doubl e values instead of | nt s. Use
manipulators to manage the output so that the values line up in columns.

4-5. Write a function that reads words from an input stream and stores them in a
vect or . Use that function both to write programs that count the number of words in the
input, and to count how many times each word occurred.

4-6. Rewrite the St udent _i nf o structure to calculate the grades immediately and store
only the final grade.

4-7. Write a program to calculate the average of the numbers stored in a
vect or <doubl e>.

4-8. If the following code is legal, what can we infer about the return type of f ?

double d = f()[n];
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5

Using sequential containers and analyzing strings

We've made a fair start on the core C++ language, and we've learned something about
the stri ng and vect or classes as well. We can solve a lot of problems with just these
tools.

In this chapter, we'll expand our focus beyond these facilities, and start to understand in
more depth how to use the library. As we'll see, the facilities that the library provides can
help us solve messier problems than the ones that we've confronted so far.

Not only does the standard library provide useful data structures and functions, but it also
reflects a consistent architecture: Once we have learned how one kind of container
behaves, we are well on our way to understanding how to use all the library containers.

For example, as we'll see in the second half of this chapter, we can often use a st ri ng
as if it were a vect or . Many useful operations on one library type are logically the same
as the operations on another. The library is constructed so that such equivalent
operations work the same way on different types.

5.1 Separating students into categories

Let's revisit our student-grading problem from 84.2/61, supposing this time that not only
do we wish to calculate all the students' grades, but we would also like to know which
students failed the course. The idea is that if we have a vect or of St udent _i nfo
records, we would like to extract the ones for students who failed the course, and store
those records in another vect or . We also want to remove the data for failing students
from the original vect or , so that it will contain only records for students who passed.
We'll start by writing a simple function to test whether a student failed:

/'l predicate to determ ne whether a student failed
bool fgrade(const Student _info& s)

{
}

return grade(s) < 60;

We use the gr ade function from 4.2.2/63 to calculate the grade, and we arbitrarily
define a failing grade as one that is less than 60.

The most straightforward approach to solving our overall problem is to examine each
student record and push it onto one of two vect or s, one for students with passing



grades and the other for students with failing grades:

/'l separate passing and failing student records: first try
vect or <Student _i nfo> extract _fail s(vector<Student _info>& students)

{

vect or <Student _i nfo> pass, fail

for (vector<Student_info>: :size typei =0
i = students.size(); ++i)
if (fgrade(students[i]))
fail.push_back(students[i]);
el se
pass. push_back(students[i]);

students = pass;
return fail;

Of course, before we can compile this code, we must add #i ncl ude directives and

usi ng-declarations for the names that we are using. In general, we will no longer show
these statements in code that we present. When we use a new header, though, we will
continue to mention it.

Like the r ead_hwand r ead functions from Chapter 4, this function effectively has two
outputs: One is the vect or <St udent _i nf 0> that we return, which contains the records
for students who failed; the other is created as a side effect of calling extract fails.
The function's parameter is a reference, so changes to the parameter are reflected in the
argument. When the function finishes, the vect or that was passed as an argument will
contain records only for students who passed the course.

The function works by creating two vect or s, which hold the data for passing and failing
students respectively. The function looks at each record in st udent s, and appends a
copy of that record to pass or f ai | depending on the student's grade.

After the f or statement is finished, we copy the passing records back into st udent s
and return the failing records.

5.1.1 Erasing elements in place

Our extract _fail s function does what we want, and is reasonably efficient, but it has
a subtle flaw: It requires enough memory to hold two copies of each student record. The
reason is that as it builds up pass and f ai | , the original records are still around. When

the function is done with its f or statement, and is ready to copy the results and return,

there are two copies of each student record.

We would like to avoid keeping multiple copies of data around any longer than necessary.
One way to do so is to eliminate pass entirely. Instead of creating two vect or s, we will
create a single local variable, named f ai | , to hold the value that we intend to return. For
each record in st udent s, we will compute the grade. If it is a passing grade, we'll leave
the record alone; if it's a failing grade, we'll append a copy of it to f ai | and remove it
from students.



To use this strategy, we need a way to remove an element from a vect or . The good
news is that such a facility exists; the bad news is that removing elements from vect or s
is slow enough to argue against using this approach for large amounts of input data. If
the data we process get really big, performance degrades to an astonishing extent.

For example, if all of our students were to fail, the execution time of the function that we
are about to see would grow proportionally to the square of the number of students. That
means that for a class of 100 students, the program would take 10,000 times as long to
run as it would for one student. The problem is that our input records are stored in a
vect or, which is optimized for fast random access. One price of that optimization is that
it can be expensive to insert or delete elements other than at the end of the vect or .

We shall see two ways to solve the performance problem: We can use a data structure
that is better suited to our algorithm, or we can use a smarter algorithm that avoids the
overhead of our initial design. From here through 5.5.2/87, we'll develop a solution that
uses a more appropriate data structure. We'll show an algorithmic solution in 86.3/116.

Before we can understand why these solutions are improvements, we must have
something to improve. Therefore, we'll begin by looking at the slow but direct solution:

/'l second try: correct but potentially slow
vect or<Student _i nfo> extract _fails(vector<Student info>& students)
{

vect or<Student _i nfo> faill

vector<Student _info>::size typei =0

/1 invariant:elenments [0, i) of students represent passing grades
while (i !'= students.size()) {
if (fgrade(students[i])) {
fail.push_back(students[i]};
students. erase(students. begin() + i);

} else
++i ;
}
return fail;

We begin this version by creating f ai | , which is the vect or into which we'll copy the
records for students with failing grades. We next define i , which we'll use as an index
into st udent s. We'll process each record, iterating through st udent s until we've seen
all the entries in st udent s.

For each record in st udent s, we determine whether it represents a failing grade. If so,
then we need to copy that record into f ai | and remove it from st udent s. The
push_back call to append a copy of st udents[i] tofail is nothing new. What is new
is the way we remove the element from st udent s:

students. erase(students. begin() + i);

The vect or type includes a member named er ase, which removes an element from the



vect or . The argument to er ase indicates which element to remove. As it happens,
there is no version of the er ase function that operates on indices, because, as we shall
see in 85.5/85, not all containers support indices, and it is more useful for the library to
offer a form of er ase that will work the same way with all containers. Instead, the

er ase function takes a type that we shall discuss in 85.2.1/80. What's important to
understand now is that we can indicate which element to erase by adding our index to the
value returned by st udent s. begi n() . Recall that st udent s. begi n() returns a value
that denotes the vect or 's initial element—the one with index O . If we add an integer,
such as i , to that value, the result denotes the element with index i . We can now see
that this call to er ase removes the i th element from st udent s.

Once we have removed an element from the vect or, the vect or now has one fewer
element than it did before:

element 1
student=.=ize{) = n
elements we ve already seen EAIL|  elemenis we haven 't processed
(these elements are copied)
student=s =ize() = n — 1
elemenis we “ve already seen elemenis we haven t processed

In addition to changing the size of the vect or, er ase removes the element with index
i , thereby causing i to denote the next element in the sequence. Each element after
position | is copied to the preceding position. Thus, although i does not change, er ase
has the effect of adjusting the index to denote the next element in the vect or , which
means that we must not increment it for the next iteration.

If the record we're looking at does not contain a failing grade, then we want to leave it in
st udent s. In that case, we must increment i , so that | will refer to the next record on

the next trip through the whi | e.

We determine whether we have seen all the records in st udent s by comparing i with
student s. si ze() . When we erase an element from the vect or , the vect or has one
fewer element than it did before. Therefore, it is essential that we call St udent s. si ze
on each trip through the condition. If, instead, we precomputed and stored the result of
Sl ze

/'l this code will fail because of misguided optimnzation
vect or <St udent _i nfo>: : si ze_type size = students. size();
while (i 1= size) {
if (fgrade(students[i])) {
fail.push_back(students[i]);
students. erase(students. begin() + i);
} else
++



our program would fail, because calling er ase would have changed the number of
elements in st udent s. If we precomputed the Si ze and actually er ased any records
for failing students, then we would make too many trips through st udent s, and the
references to st udent s[i ] would be to nonexistent elements! Fortunately, calls to

Si ze() are usually fast, so the expected overhead from calling Si ze each time is
negligible.

5.1.2 Sequential versus random access

Both versions of our ext ract fail s function share a property with many programs
that work with containers, which property is not immediately obvious from the code: Each
of these functions accesses container elements only sequentially. That is, each version of
the function looks at each student record in turn, decides what to do with it, and then
proceeds to the next record.

The reason that this property is not obvious from the code is that the function uses an
integer, | , to access each element of st udent s. It is possible to compute the value of an
integer in arbitrary ways, which means that in order for us to determine whether we are
accessing the container sequentially, we must look at every operation that might affect
the value of i , and determine that operation's effect. Another way to view the problem is
that when we write st udent s[ i ] to access an element of st udent s, we are implicitly
saying that we might access st udent s's elements in any order, not just sequentially.

The reason we care about the sequence in which we access container elements is that
different types of containers have different performance characteristics and support
different operations. If we know that our program uses only those operations that a
particular type of container supports efficiently, then we can make our program more
efficient by using that kind of container.

In other words, because our function requires only sequential access, we do not need to
use indices, which provide the ability to access any element randomly. Instead, we'd like
to rewrite the function so as to restrict access to the container elements to operations
that support only sequential access. To that end, the C++ library supplies an assortment
of types called iterators, which allow access to data structures in ways that the library can
control. This control lets the library ensure efficient implementation.
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5.2 Iterators

To make our discussion more concrete, let us look at the container operations that
extract fails actually uses.

The first such operation is using the index i to fetch values from the St udent i nfo
structure. For example, f gr ade(student s[i]) fetches the i th element of the vect or
named st udent s, and passes that element to the f gr ade function. We know that we
access the elements of st udent s sequentially, because we access those elements only
by using i as an index, and the only operations we ever perform on i are to read it in
order to compare it with the size of the vect or, and to increment it:

while (i !'= students.size()) {
/1 work gets done here; but doesn't change the value of i
i ++;

From this usage, it is clear that we use i only sequentially.

Unfortunately, even though we know this fact, the library has no way to know it. By using
iterators instead of indices, we can make that knowledge available to the library. An
iterator is a value that

o ldentifies a container and an element in the container

e Lets us examine the value stored in that element

e Provides operations for moving between elements in the container

e Restricts the available operations in ways that correspond to what the container can
handle efficiently

Because iterators behave analogously to indices, we can often rewrite programs that use
indices to make them use iterators instead. As an example, suppose that st udent s is a
vect or <St udent _i nf 0> that contains records for some students. Let's look at how we
could write those students' names onto cout . One way uses an index for the iteration:

for (vector<Student_info>: :size_type i = 0;
i 1= students.size(); ++i)
cout << students[i].nanme << endl;

Another way uses iterators:

for (vector<Student info>::const iterator iter = students.begin();
iter !'= students.end(); ++iter) {
cout << (*iter).name << endl;



There's quite a lot going on in this rewrite, so let's pick it apart a bit at a time.
5.2.1 Iterator types

Every standard container, such as vect or , defines two associated iterator types:

contai ner-type::const_iterator
container-type::iterator

where cont ai ner - t ype is the container type, such as vect or <St udent _i nf 0>, that
includes the type of the container elements. When we want to use an i t er at or to
change the values stored in the container, we use the iterator type. If we need only read
access, then we use the const it erat or type.

Abstraction is selective ignorance. The details of what particular type an iterator has may
be complicated, but we don't need to understand these details. All we need to know is
how to refer to the iterator type, and what operations the iterator allows. We need to
know the type so that we can create variables that are iterators. We don't need to know
anything about that type's implementation. For example, our definition of i t er

vect or<Student _info>::const_iterator iter = students. begin();

says that i t er is of type vect or <St udent i nfo>::const _iterator.We don't
know the actual type of i t er —that's an implementation detail of vect or —nor do we
need to know. All that we need to know is that vect or <st udent _i nf 0> has a member
named const i terat or that defines a type that we can use to obtain read-only access
to elements of the vect or .

The other thing we need to know is that there is an automatic conversion from type

i terator totype const _iterator.As we're about to learn, st udent s. begi n()
returns an i t er at or, but we said thati t er isaconst __iterator. In order to initialize
I t er with the value of st udent s. begi n() , the implementation converts the

i t erat or value into the corresponding const it erat or. This conversion is one way,
meaning that we can convert an i t erat or toaconst iterator but not vice versa.

5.2.2 Iterator operations

Having defined i t er, we set it to the value of st udent s. begi n() . We have used the
begi n and end functions before, so we should know what these functions do: They
return a value that denotes the beginning or (one past) the end of a container. We'll
explain our repeated emphasis on "(one past)"” in 88.2.7/149. What's useful to know now
is that begi n and end functions return a value of the iterator type for the container.
Thus, begin returns a vect or <St udent _i nfo>::iterator positioned at the initial
element of the container, so i t er initially refers to the first element in st udent s. The
condition in the f or statement,

iter = students.end()



checks whether we've reached the end of the container. Recall that end returns a value
that denotes (one past) the end of the container. As with begi n, the type of this value is
vect or <Student info>::iterator.We can compare two iterators, const or not,
for inequality (or equality). If i t er is equal to the value returned by st udent s. end(),
then we're through.

The last expression in the f or header, ++i t er, increments the iterator so that it refers
to the next element in st udent s on the next trip through the f or . The expression

++i t er uses the increment operator, overloaded for the iterator type. The increment
operator has the effect of advancing the iterator to the next element in the container. We
don't know, and shouldn't care, how the increment operator works. All that we need to
know is that afterward, the iterator denotes the next element in the container.

In the body of thefor, iter is positioned on an element in st udent s, which element
we need to write. We access that element by calling the dereference operator, * . When
applied to an iterator, the * operator returns an lvalue (84.1.3/56) that is the element to
which the iterator refers. Therefore, the output operation

cout << (*iter).name

has the effect of writing the current element's nanme member on the standard output.

In order to execute correctly, this expression requires parentheses that override the
normal operator precedence. The expression *i t er returns the value that the iterator

i t er denotes. The precedence of . is higher than the precedence of * , which means that
if we want the * operation to apply only to the left operand of the . , we must enclose

*i ter in parentheses to get (*i ter). If we wrote *i t er. nane, the compiler would
treat itas * (i t er. nane), which would be a request to fetch the name member from
object i t er, and apply the dereference operator to that object. The compiler would
complain because i t er does not have a member named nane. By writing
(*iter).nane, we say that we want to refer to the nanme member of the *i t er object.

5.2.3 Some syntactic sugar

In the code we just saw, we dereferenced an iterator, and then fetched an element from
the value returned. This combination of operations is so common that there is an
abbreviation for it: Instead of

(*iter).nane

we can write

i ter->nane

We can use this syntactic sugar to rewrite the last example in 85.2/80:



for (vector<Student info>: :const _iterator iter = students.begin();
iter = students.end(); ++iter) {
cout << iter->nane << endl

5.2.4 The meaning of students.erase (students.begin () + i)

Now that we understand more about iterators, we can see the real point of

students. erase(students. begin() + i);

in the program in 85.1.1/77. We've already seen that st udent s. begi n() is an iterator
that refers to the initial element of st udent s, and that st udent s. begi n() + i refers
to the i th element of st udent s. What is important to realize is that this latter
expression gets its meaning from the definition of + on the types of st udent s. begi n()
and i . In other words, the iterator and index types determine the meaning of + in this
expression.

If st udent s were a container that did not support random-access indexing, it is likely
that st udent s. begi n() would be of a type that did not have + defined—in which case
the expression st udent s. begi n() + 1 would not compile. In effect, such a container
would be able to shut off random access to its elements, while still allowing sequential

access through iterators.
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5.3 Using iterators instead of indices

Using what we have learned about iterators, and one more new fact, we can reimplement
the extract fail s function in a way that does not use indexing at all:

/'l version 3: iterators but no indexing; still potentially slow
vect or <Student _i nfo> extract _fails(vector<Student_info>& students)

{

vect or <St udent _i nfo> fail
vector<Student _info>::iterator iter = students.begin();
while (iter !'= students.end()) {
if (fgrade(*iter)) {
fail.push_back(*iter);
iter = students.erase(iter);
} else
++iter;

}

return fail

}

We start by defining f ai | as we did before. Next, we define the iterator, named i t er ,
that we'll use—in place of an index—to look at the elements in st udent s . Note that we
give it type i t er at or instead of const iterator :

vector<Student _info>::iterator iter = student.begin();

because we intend to use it to modify st udent s , which we do in the call to er ase . We
initialize i t er to denote the first element in st udent s .

We continue with a whi | e statement that will look at every element of st udent s .
Remember that i t er is an iterator that denotes an element in the container, so *i t er is
the value of that element. To decide whether a student passed or failed, we pass that
value to f gr ade . Similarly, we changed the code that copies the failing records into
fail by writing

fail.push_back(*iter) ; /1 dereference the iterator to get the el enent
instead of
fail.push_back(students[i]); /'l index into the vector to get the el enment

The erase has gotten simpler, because we now have an iterator to pass directly:



iter = students.erase(iter);

We no longer have to calculate an iterator by adding the index i to st udent s. begi n()

The new fact that we used here is easy to overlook, but crucially important: We now
assign to i t er the value that er ase returns. Why?

A bit of thinking should convince us that removing the element that i t er denoted must
invalidate that iterator. After we have called st udent s. erase(iter) , we know that
i t er can no longer refer to the same element because that element is gone. In fact,
calling er ase on a vect or invalidates all iterators that refer to elements after the one
that was just er ase d. If you look back at the diagram in 85.1.1/78, it should be obvious
that after we erase the element marked FAI L , that element is gone, and each of the
elements after it has moved. If the elements have moved, any iterators referring to them
must be meaningless as well.

Fortunately, er ase returns an iterator that is positioned on the element that follows the
one that we just erased. Therefore, executing

iter = students.erase(iter);

makes i t er refer to the element after the erasure, which is exactly what we need.

If we're dealing with an element that did not represent a failing grade, then we still need
to increment i t er so that we'll be positioned on the next element for the next trip
through the loop. We do so by incrementing i t er in the el se branch.

Incidentally, as in 85.1.1/78, we might be tempted to optimize the loop by saving the
value of st udent s. end() to avoid evaluating it each time through the whi | € . In other
words, we might be tempted to change

while (iter !'= students.end())

to

/'l this code will fail because of m sguided optinization
vector<Student _info>: :iterator iter = students. begin(),
end _iter = students.end();
while (iter '= end_iter) {
11
}

This loop will almost surely fail at run time. Why?

The reason is that if we ever execute st udent s. er ase , doing so will invalidate every
iterator after the point erased, including end_i t er ! Therefore, it is essential that we call
st udent s. end each time through the loop, just as it was essential in 85.1.1/78 to call



st udent s. si ze each time through the loop.
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5.4 Rethinking our data structure for better performance

For small inputs, our implementation works fine. However, as we said in 85.1.1/77, as our
input grows, the performance degrades substantially. Why?

Let's think again about using er ase to remove an element from a vect or . The library
optimizes the vect or data structure for fast access to arbitrary elements. Moreover, we
saw in 83.2.3/48 that vect or s perform well when growing a vect or one element at a
time, as long as elements are added at the end of the vect or .

Inserting or removing elements from the interior of a vect or is another story. Doing so
requires that all elements after the one inserted or removed be moved in order to
preserve fast random access. Moving elements means that the run time of our new code
might be as slow as quadratic in the number of elements in the vect or . For small inputs,
we might not notice, but each time the size of our input doubles, the execution time can
quadruple. If we ask our program to deal with all the students in a school rather than just
the students in a class, even a fast computer will take too long to execute the program.

If we want to do better, we need a data structure that lets us insert and delete elements
efficiently anywhere in the container. Such a container is unlikely to support random
access through indices. Even if it did so, integer indices would be less than useful,
because inserting and deleting elements would have to change the indices of other
elements. Now that we know how to use iterators, we have a way of dealing with such a

data structure that does not provide index operations.
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5.5 The list type

By rewriting the code to use iterators, we have removed our reliance on indices. We now
need to reimplement our program using a data structure that will let us delete elements
efficiently from within the container.

The need to insert or delete elements inside a data structure is pretty common. Not
surprisingly, the library provides a type, named | i st and defined in the <| i st > header,
that is optimized for this kind of access.

Just as vect or s are optimized for fast random access, | i St s are optimized for fast
insertion and deletion anywhere within the container. Because | | St s have to maintain a
more complicated structure, they are slower than vect or s if the container is accessed
only sequentially. That is, if the container grows and shrinks only or primarily from the
end, avect or will outperform a | i st. However, if a program deletes many elements
from the middle of the container—as our program does—then | i st s will be faster for
large inputs, becoming much faster as the inputs grow.

Like a vector, al i st is a container that can hold objects of most.any type. As we'll
see, | I st s and vect or s share many operations. As a result, we can often translate
programs that operate on vect or s into programs that operate on | i St's, and vice versa.
Often, all that changes is our variables’ types.

One key operation that vect or s support, but | i st s do not, is indexing. As we just saw,
we can write a version of extract fail s that uses vect or s to extract records that
correspond to failing students, but that uses iterators instead of indices. It turns out that
we can transform that version of extract fail s tousel i sts instead of vect ors
merely by changing the appropriate types:

/'l version 4: use list instead of vector
list<Student info> extract_fails(list<Student_info>& students)
{

[ist<Student _info> fail

list<Student_info> :iterator iter = students.begin();

while (iter !'= students.end()) {
if (fgrade(*iter)) {
fail.push_back(*iter);
iter = students.erase(iter);
} else
++iter;
}

return fail;

}

If we compare this code with the version from 85.3/82, we see that the only change is to
replace vect or by | i st in the first four lines. So, for example, the return type and the
parameter to the function are now | i st <St udent i nf 0>, as is the local container fail,



into which we put the failing grades. Similarly, the type of the iterator is the one defined
by the | i st class. Hence, we defineiter astheiterator type that is a member of

i st<Student info>. Theli st type is a template, so we must say what kind of
object the | i st holds by naming that type inside angle brackets, just as we do when we
define a vect or .

There are no changes in the program's logic. Of course, our caller will now have to
provide us with al i st, and will geta | i St in return. Moreover, the details of how the
library implements the operations are quite different, because this version operates on
lists and the other ones operate on vect or s. When we execute ++i t er , we are doing
whatever it means to advance the iterator to the next element in the | i st . Similarly,

iter = students.erase(iter);

calls the | i st version of er ase and assigns the | | st iterator returned from er ase into
i t er. The implementations of the increment and er ase operations will surely differ from
their vector counterparts.

5.5.1 Some important differences

One important way in which the operations on | i st s differ from those on vect or s is the
effect of some of the operations on iterators. For example, when we er ase an element
from a vect or, all iterators that refer to the element erased, or subsequent elements,
are invalidated. Using push_back to append an element to a vect or invalidates all
iterators referring to that vect or . This behavior follows from the fact that erasing an
element moves the following elements, and appending to a vect or might reallocate the
entire vect or to make room for the new element. Loops that use these operations must
be especially careful to ensure that they have not saved copies of any iterators that may
be invalidated. Inappropriately saving the value of st udent s. end() is a particularly rich
source of bugs.

For | i st's, on the other hand, the er ase and push_back operations do not invalidate
iterators to other elements. Only iterators that refer to the element actually er ased are
invalidated, because that element no longer exists.

We have already mentioned that | | st class iterators do not support full random- access
properties. We'll have much more to say about iterator properties in 88.2.1/144. For now,
what's important to know is that, because of this lack of support, we cannot use the
standard-library sort function to sort values that are stored in a | i St . Because of this
restriction, the | i st class provides its own sort member function, which uses an
algorithm that is optimized for sorting data stored in a | i st . Thus, to sort elements in a

| i st, we must call the sort member

|ist<Student _info> students;
students. sort (conpare);

rather than the global sort function



vect or <St udent _i nf o> students;
sort (students. begin(), students.end(), conpare);

as we do for vect or s. It is worth noting that because the conpar e function operates on
St udent _i nf o objects, we can use the same conpar e function to sort ali st of
St udent _i nf o records that we used to sort a vect or of them.

5.5.2 Why bother?

The code that extracts records for failing students is a good example of the effect of data
structure choices on performance. The code accesses elements sequentially, which
generally implies that a vect or is the best choice. On the other hand, we also delete
elements from the interior of the container, thus favoring | i st s.

As with any performance-related question, the data structure that is "best" depends on
whether performance even matters. Performance is a tricky subject that is generally
outside the scope of this book, but it is worth noting that the choice of data structure can
have a profound effect on a program's performance. For small inputs, | | St s are slower
than vect or s. For large inputs, a program that uses vect or s in an inappropriate way
can run much more slowly than it would if it were to use | i St's. It can be surprising how
quickly performance degrades as the input grows.

To test our programs' performance, we used three files of student records. The first file
had 735 records. The second file was ten times as big, and the third, ten times bigger
than that, or 73,500 records. The following table records the time, in seconds, that it took
to execute the programs on each file size:

File size |ist vect or
735 0.1 0.1

7, 350 0.8 6.7
73, 500 8.8 597.1

For the file with 73,500 records, the | i st version of the program took less than nine
seconds to run, whereas the vect or version took nearly ten minutes. The discrepancy
would have been even greater had there been more failing students.
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5.6 Taking strings apart

Now that we've seen some of what we can do with containers, we're going to turn our
attention back to st ri ng s. Until now, we've done only a few things with stri ng s:
We've created them, read them, concatenated them, written them, and looked at their
size. In each of these uses, we have dealt with the st ri ng as a single entity. Often, this
kind of abstract usage is what we want: We want to ignore the detailed contents of a
string . Sometimes, though, we need to look at the specific charactersina string .

As it turns out, we can think of a St ri ng as a special kind of container: It contains only
characters, and it supports some, but not all, of the container operations. The operations
that it does support include indexing, and the St ri ng type provides an iterator that is
similar to a vect or iterator. Thus, many of the techniques that we can apply to vect or
s apply also to stri ng s.

For example, we might want to break a line of input into words, separated from each
other by whitespace (space, tab, backspace, or the end of the line). If we can read the
input directly, we can get the words from the input trivially. After all, that's exactly how
the st ri ng input operator executes: It reads characters up to the whitespace character.

However, there are times when we want to read an entire line of input and examine the
words within that line. We'll see examplesin 87.3/126 and 87.4.2/131.

Because such an operation might be generally useful, we'll write a function to do it. The
function will take a st ri ng and return a vect or <stri ng>, which will contain an entry
for each whitespace-separated word in that st ri ng . In order to understand this
function, you need to know that st ri ng s support indexing much the same way as

vect or s do. So, for example, if S is a St ri ng that contains at least one character, the
first character of s is s[ 0] , and the last character of s is s[s. si ze() - 1] .

Our function will define two indices, i and | , that will delimit each word in turn. The idea
is that we will locate a word by computing values for i and ] such that the word will be
the characters in the range [i, | ) . For example,

i3

'

Given the existence a=s

Once we have these indices, we'll use the characters that they delimit to create a new
string , which we will copy into our vect or . When we are done, we will return the
vect or to our caller:

vector<string> split(const string& s)

{
vector<string> ret;
typedef string::size_type string_size;
string_size i = 0;



/'l invariant: we have processed characters [original value of i, i)
while (i !'= s.size()) {
/'l ignore |eading blanks

/1 invariant: characters in range [original i, current i) are all spaces
while (i !'= s.size() && isspace(s[i]))
++i

/1l find end of next word
string_size j =1i;

/'l invariant: none of the characters in range [original j, current j)is a sj

while (j !'= s.size() && !isspace(s[j]))
j+
/1 if we found some nonwhitespace characters

if (i '=7j) {

/1l copy froms starting at i and taking j - i chars
ret. push_back(s.substr(i, j - i));
i =
}
}
return ret;

In addition to the system headers that we have already encountered, this code needs the
<cct ype> header, which defines | sspace . More generally, this header defines useful
functions for processing individual characters. The C at the beginning of cCt ype is a
reminder that the ct ype facility is part of C++'s inheritance from C.

The spl i t function has a single parameter, which is a reference to a const string
that we'll name s . Because we will be copying words from s , spl i t does not need to
change the string . Asin 84.1.2/54, we can pass a const reference to avoid the cost
of copying the st ri ng , while still ensuring that spl i t will not change its argument.

We start off by defining r et , which will hold the words from the input st ri ng . The next
two statements define and initialize our first index, i . As we saw in §2.4/22,
string::size_type is the name for the appropriate type to index a st ri ng . Because
we need to use this type more than once, we start by defining a shorter synonym for this
type, as we did in 83.2.2/43, to simplify the subsequent declarations. We will use I as the
index that finds the start of each word, advancing i through the input st ri ng one word
at a time.

The test in the outermost Whi | € ensures that once we've processed the last word in the
input, we'll stop.

Inside the whi | e , we start by positioning our two indices. First, we find the first non-
space character in S that is at or after the position currently indicated by i . Because
there might be multiple whitespace characters in the input, we increment i until it
denotes a character that is not whitespace.

There is a lot going on in this statement:

while (i !'= s.size() && isspace(s[i]))
++i ;



The | sspace function is a predicate that takes a char and returns a value that indicates
whether that char is whitespace. The && operator tests whether both its operands are

t rue , failing if either of them is f al se . In this expression, the operation will succeed if
I is not equal to the size of S (meaning that we have not reached the end of the st ri ng
), and s[ i ] is a whitespace character. In that case, we will increment i and check again.

As we described in 82.4.2.2/26, the logical &% operation uses a short-circuit strategy for
evaluating its operands. Unlike our earlier examples, this one relies on the short-circuit
property of & . The binary logical operations (operators &% and | | ) execute by testing
their left-hand operands first. If that test suffices to determine the overall result, then the
right-hand operand is not evaluated. In the case of the &% , the second condition is
evaluated if and only if the first condition is t r ue . Thus, the condition in the whi | e
executes by first checking whetheri ! = s. si ze() . Only if this test succeeds does it
use i to look at a character in s . Of course, if i is equal to s. Si ze() , then there are
no more characters left to examine, and so we drop out of the loop.

Once we fall out of this whi | e , we know either that i denotes a character that is not
whitespace, or that we've run out of input without finding such a character.

Assuming that i is still a valid index, the next whi | e will find the space that terminates
the current word in S . We start by creating our other index, | , and initializing it to the
value of i . The next whi | e ,

while (j !'= s.size() && !isspace(s[j]))
+4

executes similarly to the previous one, but this time the whi | e stops when it encounters
a whitespace character. As before, we start by ensuring that | is still in range. If so, we
again call i sspace on the character indexed by | . This time, we negate the return from
I sspace using the logical negation operator, ! . In other words, we want the condition
to be true if i sspace(s[j]) isnottrue.

Having completed the two inner whi | e loops, we know that we have either found another
word or run out of input while looking for a word. If we have run out of input, then both i
and | will be equal to s. si ze() . Otherwise, we have found a word, which we must
push onto r et

/1 if we found sonme nonwhitespace characters

if (i '=7j) {
/1 copy froms starting at i and taking j - i chars
ret.push_back(s.substr(i, j - i));
io=;

The call to push_back uses a member of the st ri ng class, named substr , that we
have not previously seen. It takes an index and a length, and creates a new st ri ng that
contains a copy of characters from the initial St ri ng , starting at the index given by the



first argument, and copying as many characters as indicated by its second argument. The
substring that we extract starts at i , which is the first character in the word that we just
found. We copy characters from S starting with the one indexed by i , and continuing

until we have copied the characters in the (half-open) range [ i, |) . Remembering from
82.6/31 that the number of elements in a half-open range is the difference between the
bounds, we see that we will copy exactly ] - i characters.
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5.7 Testing our split function

Having written our function, we'd like to test it. The easiest way to do so is to write a
program that reads a line of input and passes that line to the spl i t function. We can
then write the contents of the vect or that spl it returns. Such a test program will
make it easy to inspect the output, and to verify that the spl i t function generates the
words that we expect.

More usefully, this test function should produce the same results as a program that just
reads words from the standard input and writes the words one per output line. We can
write this latter program, run it and our test program on the same input files, and verify
that our programs generate identical output. If so, we can be fairly confident in our

spl it function.

Let's start by writing the test program for split:

int main() {
string s;
/1 read and split each line of input
while (getline(cin, s)) {
vector<string> v = split(s);

/'l wite each word in v
for (vector<string> :size_type i = 0; i != v.size(); ++i)
cout << v[i] << endl;

}

return O;

This program needs to read the input an entire line at a time. Fortunately, the stri ng
library provides what we need in the get | i ne function, which reads input until it reaches
the end of the line. The get | i ne function takes two arguments. The first is the | st r eam
from which to read; the second is a reference to the st ri ng into which to store what is
read. As usual, the get | i ne function returns a reference to the i st r eamfrom which we
read, so that we can test that i st r eamin a condition. If we hit end-of-file or encounter
invalid input, then the return from get | i ne will indicate failure and we'll break out of the
whi | e.

As long as we can read a line of input, we store that line in S and pass it to spl i t,
storing the return value from spl it in v. Next, we loop through Vv, writing each st ri ng
in that vect or on a separate line.

Assuming that we added the proper #i ncl udes, including one for our own header that
contained a declaration for spl i t , we could run this function and visually verify that it
and spl i t work as expected. We can do even better, though, by comparing the output of
this program with a program that lets the library do all the work:



int main()

{
string s;
while (cin >> s)
cout << s << endl;
return O0;
}

This program and the previous one should generate identical output. Here, we let the
st ri ng input operator separate the input stream into a series of words, which we write

one to a line. By running both programs on the same, complex input, we can have a good
idea that our split function works.
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5.8 Putting strings together

In 81.2/12 and §82.5.4/29, we wrote a program to write someone's name centered in a
box of asterisks. However, we never actually created a st ri ng to hold our program's
output. Instead, we wrote the various parts of our output, one at a time, and let the
output file combine those fragments into a picture.

We will now revisit this problem, with the aim of building a single data structure that
represents the entire framed string. This program is a simplified version of one of our
favorite examples, called character pictures. A character picture is a rectangular array of
characters that can be displayed. It is a simplification of what happens in a real
application—in this case, applications based on bitmap graphics. The simplifications are to
use characters instead of bits, and to write onto ordinary files instead of displaying on
graphical hardware. The problem builds on an exercise originally presented in the first
edition of Stroustrup's The C++ Programming Language (Addison-Wesley, 1986), and
that we explored in some depth in Ruminations on C++ (Addison-Wesley, 1997).

5.8.1 Framing a picture

The particular variation of the character-picture problem that we'd like to explore in this

section writes all the words stored in a vect or <st ri ng>, one to a line, and surrounds

these st ri ngs with a border. We'll line the st ri ngs up along the left-hand border, and
leave a single space between the edge of asterisks and the words we are writing.

Assume that p is avect or <st ri ng> that contains the strings"this is an","
exanple","to","illustrate", and"fram ng". Then we would like to have a
function named f r ame, which behaves in such a way that calling f r ane( p) yields a
value of type vect or <st ri ng> with elements that, when written, are

kkhkkkhkkkhkkkkkkkkx

* thisis an *

* exanpl e *
* to *
* illustrate *
* framng *

kkhkkkhkkkhkkkkkkkkx

Note that the border is rectangular, not ragged, even though the st ri ngs themselves
are of different lengths. This fact implies that we'll need a function to find the length of
the longest st ri ng in the vect or . Let's start there:

string::size_type w dth(const vector<string>& v)

{
string::size_type maxlen = 0O;
for (vector<string>: :size type i = 0; i !'= v.size(); ++i)
mexl en = max(maxlen, v[i].size());

return maxlen;



This function will iterate through the vect or , setting max| en to the largest size that
we've seen so far. When we fall out of the loop, max| en will hold the length of the
longest string inv.

The only tricky aspect of the frame function is its interface. We know that it will operate
on a vect or <st ri ng>, but what about the return type? It will be convenient if the
function creates a new picture rather than change the picture it was given:

vector<string> frame(const vector<string>& v) {
vector<string> ret;
string::size_type maxlen = wi dth(v);
string border(maxlen + 4, '*');

/1 wite the top border
ret. push_back(border);

/1 wite each interior row, bordered by an asterisk and a space

for (vector<string> :size type i =0; i !=v.size(); ++i) {
ret.push_back( "* " + v[i] +
string(maxlen - v[i].size(), " ') + ." *")
}

/1 wite the bottom border
ret.push_back(border);
return ret;

We said that the function will not change the picture that it is passed, so we declare the
parameter as a reference to const . The function will return a vect or <st r i ng>, which
we'll build in r et . We begin by figuring out how long each output st ri ng will be; then
we create a st ri ng with that many asterisks, which we'll use to create the top and
bottom border.

These borders are four characters longer than the longest st r i ng: one each for the
right- and left-hand borders, and another two for the spaces that separate the borders
from the st ri ngs. Taking a syntactic cue from the definition of spaces in 81.2/12 that
we explained in 81.2/13, we define bor der to be a st ri ng that contains maxl en + 4
asterisks. We call push__back to append a copy of border to r et , thereby forming the
top border.

Next, we copy the picture that we are framing. We define the index i , which we will use
to walk through v until we've copied each element. In the call to push_back, we use the
+ operator from st ri ng, which, as we learned in 81.2/13, concatenates its arguments.

To form the output line, we concatenate the right- and left-hand borders with the stri ng
that we want to display, which is stored in V[ i ] . The third St ri ng in our concatenation,
string(maxlen - v[i].size(), " "), constructs an unnamed, temporary St ri ng
that holds the right number of blanks. We construct this st ri ng in the same way that we
initialized border. We obtain the number of blanks by subtracting the size of the current



string from maex| en.

With this knowledge, we can see that the argument to push_back is a new st ri ng that
consists of an asterisk, followed by a space, followed by the current st ri ng, followed by
enough spaces to make the st ri ng as long as the longest st ri ng, followed by another
space and another asterisk.

All that's left is to append the bottom border and return.
5.8.2 Vertical concatenation

What makes character pictures a fun example is that, once we have them, we can do
things with them. We just saw one operation—framing a picture. Another operation is
concatenation, which we can do both vertically and horizontally. We'll look at vertical
concatenation here, and at horizontal concatenation in the next section.

Pictures are naturally organized by rows, in the sense that we represent a picture by a
vect or <st ri ng>, each element of which is a row. Therefore, concatenating two pictures
vertically is simple: We merely concatenate the vect or s that represent them. Doing so
will cause the two pictures to line up along their left margins, which is a reasonable way
to define vertical concatenation.

The only problem is that although there is a St r i ng concatenation operation, there is no

vect or concatenation operation. As a result, we have to do the work ourselves:

vector<string> vcat (const vector<string>& top,
const vector<string>& bottomn

{
/'l copy the top picture
vector<string> ret = top
/'l copy entire bottom picture
for (vector<string>::const _iterator it = bottom begin();
it I'= bottomend(); ++it)
ret.push_back(*it);
return ret;
}

This function uses only facilities that we have already seen: We define r et as a copy of
t op, append each element of bott omto r et , and return ret as its result.

The loop in this function implements one form of a common idea, namely, that of
inserting a copy of elements from one container into another. In this particular case, we
are appending the elements, which we can think of as inserting them at the end.

Because this operation is so common, the library offers a way of doing it without writing a

loop. Instead of

for (vector<string>: :const_iterator it = bottom begin();
it != bottomend(); ++it)



ret.push_back(*it);

we can write

ret.insert(ret.end(), bottom begin(), bottomend());

with the same effect.
5.8.3 Horizontal concatenation

By horizontal concatenation, we mean taking two pictures, and making a new picture in
which one of the input pictures forms the left part of the new picture, and the other forms
the right part. Before we start, we need to think about what we want to do when the
pictures to concatenate are different sizes. We'll arbitrarily decide that we'll align them
along their top edges. Thus, each row of the output picture will be the result of
concatenating the corresponding rows of the two input pictures. We'll have to pad the
left-hand picture's rows to make them take up the right amount of space in the output
picture.

In addition to padding the left-hand picture, we also have to worry about what to do when
the pictures have a different number of rows. For example, if p holds our initial picture,
we might want to concatenate the original value of p horizontally with the result of
framing p. That is, we'd like hcat (p, frane(p)) to produce

thls |S an *hkhkkkkkkhkxkhxkx*k

exanpl e * this is an *
to *to *
illustrate * illustrate *
fram ng * framng *

*kkkhkkkkhkkhkxkhxkx*k

Note that the left-hand picture has fewer rows than the right-hand picture. This fact
implies that we will have to pad the output on the left-hand side to account for these
missing rows. If the left-hand picture is longer, we'll just copy the st ri ngs from it into
the new picture; we won't bother to pad the (empty) right side with blanks. With this
analysis complete, we can write our function:

vector<string>
hcat (const vector<string>& left, const vector<string>& right)

{

vector<string> ret;

/1 add 1 to | eave a space between pictures
string::size_type widthl = width(left) + 1,

/1 indices to | ook at elenents fromleft and right respectively
vector<string>:.:size_type i =0, j = 0;

/1 continue until we've seen all rows from both pictures



while (i !'=left.size() || j '=right.size()) {
/'l construct new string to hold characters from both pictures
string s;

/'l copy a row fromthe left-hand side, if there is one
if (i '=left.size())
s = left[i++];

/1 pad to full wdth
s += string(widthl - s.size(), " ");

/1l copy a row fromthe right-hand side, if there is one
if (j '=right.size())
s += right[j++];

/1 add s to the picture we're creating
ret. push_back(s);
}

return ret;

We start, as we did for f r anme and vcat , by defining the picture that we'll return. Our
next step is to compute the width to which we must pad the left-hand picture. That width
will be one more than the width of the picture itself, to leave a space between the pictures
when we concatenate them. Next, we iterate through both pictures, copying an element
from the first, padded as necessary, followed by an element from the second.

The only tricky part is taking care of what to do if we run out of elements in one picture
before we run out of elements in the other. Our iteration continues until we have copied
all the elements for each input vect or . Hence, the whi | e loop continues until both
indices reach the end of their respective pictures.

If we have not yet exhausted | ef t , we copy its current element into S. Regardless of
whether we copied anything from | ef t , we next call the st ri ng compound assignment
operator, +=, to pad the output to the appropriate width. The compound assignment
operator defined by the st ri ng library operates as you might expect: It adds the right-
hand operand to its left-hand operand and stores the result in the left-hand side. Of
course, "add" here means string concatenation.

We determine how much to pad by subtracting S. si ze() from wi dt hl. We know that
either s. si ze() is the size of the st ri ng that we copied from | ef t, or it is zero
because there was no entry to copy. In the first case, S. si ze() will be greater than zero
and less than wi dt h1, because we added one to the length of the longest st ri ng to
account for a space between the two pictures. Thus, in this case, we'll append one or
more blanks to S. If S. Si ze() is zero, then we'll pad the entire output line.

Having copied and padded the st ri ng for the left-hand picture, we need only append the
st ri ng from the right-hand picture, assuming that there still is an element from r i ght
to copy. Regardless of whether we added a value from ri ght , we push s onto the output
vect or, and continue until we've processed both input vect or s— remembering to
return to our caller the picture that we've created.

It is important to note that the correct behavior of our program depends on the fact that



S is local to the whi | e loop. Because S is declared inside the whi | e, it is created, with a

null value, and destroyed on each trip through the loop.
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5.9 Detalls

Containers and iterators: The standard library is designed so that similar operations on
different containers have the same interface and the same semantics. The containers we
have used so far are all sequential containers. We'll see in Chapter 7 that the library also
provides associative containers. All the sequential containers and the st ri ng type
provide the following operations:

container<T>:.:iterator
cont ai ner<T>::const _iterator

The name of the type of the iterator on this container.

cont ai ner<T>::size type

The name of the appropriate type to hold the size of the largest possible instance of this
container.

c. begi n()
c.end()
Iterators referring to the first and (one past) the last element in the container.
c. rbegin()
c.rend()
Iterators referring to the last and (one beyond) the first element in the container that
grant access to the container's elements in reverse order.
cont ai ner <T> c;
cont ai ner<T> c¢c(c2);
Defines C as a container that is empty or a copy of c2 if given.

cont ai ner<T> c(n);

Defines C as a container with n elements that are value-initialized (&§7.2/125) according
to the type of T. If T is a class type, that type will control how to initialize the elements.
If T is a built-in arithmetic type, then the elements will be initialized to O.

cont ai ner<T> c(n, t);
Defines C as a container with n elements that are copies of t .

cont ai ner<T> c(b, e);
Creates a container that holds a copy of the elements denoted by iterators in the range
[b, e).

c =c2
Replaces the contents of container ¢ with a copy of the container c2.

c.size()
Returns the number of elements in C as a Si ze_t ype.



c. enpty()

Predicate that indicates whether ¢ has no elements.

c.insert(d, b, e)

Copies elements denoted by iterators in the range [ b, €) and inserts them into C
immediately before d.

c.erase(it)
c.erase(b, e)

Removes the element denoted by i t or the range of elements denoted by [ b, €) from
the container C. This operation is fast for | i st but can be slow for vect or and

st ri ng, because for these types it involves copying all the elements after the one that
is removed. For | i st, iterators to the element(s) that are erased are invalidated. For
vect or and stri ng, all iterators to elements after the one erased are invalidated.

c. push_back(t)
Adds an element to the end of ¢ with the value t .

Containers that support random access, and the st ri ng type, also provide the following:

c[n]
Fetches the character at position n from the container C.

Iterator operations:

*it
Dereferences the iterator i t to obtain the value stored in the container at the position
that i t denotes. This operation is often combined with . to obtain a member of a class

object, as in (*i t). X, which yields the member X of the object denoted by the iterator
i t. * has lower precedence than . and the same precedence as ++ and —

i t->X
Equivalent to (*i t) . X, which returns the member X denoted by the object obtained by
dereferencing the iterator i t . Same precedence as the . operator.

++i
it++
Increments the iterator so that it denotes the next element in the container.
b ==
b !==¢e
Compares two iterators for equality or inequality.

The st ri ng type offers iterators that support the same operations as do iterators on
vect or s. In particular, st ri ng supports full random access, about which we'll learn
more in Chapter 8. In addition to the operations on containers, St ri ng also provides:

s.substr (i, j)

Creates a new St ri ng that holds a copy of the characters in S with indices in the range
[i, 1 +7j).



getline(is, s)
Reads a line of input from i S and stores itin S.

S += s2
Replaces the value of S by S + S2.

The vect or type offers the most powerful iterators, called random-access iterators, of
any of the library containers. We'll learn more about these in Chapter 8.

Although all the functions we've written have relied on dynamically allocating our vect or
elements, there are also mechanisms for preallocating elements, and an operation to
direct the vect or to allocate, but not to use, additional memory in order to avoid the
overhead of repeated memory allocations.

v.reserve(n)

Reserves space to hold n elements, but does not initialize them. This operation does not
change the size of the container. It affects only the frequency with which vector may
have to allocate memory in response to repeated calls to | nsert or push_back.

v.resize(n)

Gives V a new size equal to n. If n is smaller than the current size of v, elements
beyond n are removed from the vect or . If n is greater than the current size, then new
elements are added to v and initialized as appropriate to the type in v.

The | i st type is optimized for efficiently inserting and deleting elements at any point in
the container. The operations on | i St s and | i st iterators include those described in
85.9/96. In addition,

| .sort()

| .sort(cmp)
Sorts the elements in | using the < operator for the type in the | i st , or the predicate
cnp.

The <cct ype> header provides useful functions for manipulating character data:

i sspace(c) true if ¢ is a whitespace character.
i sal pha(c) true if ¢ is an al phabetic character.
isdigit(c) true if ¢ is a digit character.

i sal num(c) true if cis aletter or a digit.

i spunct(c) true if ¢ is a punctuation character.
i supper(c) true if ¢ is an uppercase letter.

i sl ower(c) true if c is a lowercase letter.

t oupper (c) Yi el ds the uppercase equivalent to c
t ol ower (c) Yi el ds the | owercase equivalent to c

Exercises

5-0. Compile, execute, and test the programs in this chapter.

5-1. Design and implement a program to produce a permuted index. A permuted index is



one in which each phrase is indexed by every word in the phrase. So, given the following
input,

The quick brown fox
junmped over the fence

the output would be

The qui ck brown fox
junped over the fence
The qui ck brown f ox
junped over the fence
j unped over the fence
The qui ck brown fox
j unped over the fence

The qui ck brown fox

A good algorithm is suggested in The AWK Programming Language by Aho, Kernighan,
and Weinberger (Addison-Wesley, 1988). That solution divides the problem into three
steps:

1. Read each line of the input and generate a set of rotations of that line. Each rotation
puts the next word of the input in the first position and rotates the previous first
word to the end of the phrase. So the output of this phase for the first line of our
input would be

The qui ck brown fox
qui ck brown fox The
brown fox The quick
fox The quick brown

Of course, it will be important to know where the original phrase ends and where the
rotated beginning begins.

2. Sort the rotations.

3. Unrotate and write the permuted index, which involves finding the separator, putting
the phrase back together, and writing it properly formatted.

5-2. Write the complete new version of the student-grading program, which extracts
records for failing students, using vect or s. Write another that uses | | st s. Measure the
performance difference on input files of ten lines, 1,000 lines, and 10,000 lines.

5-3. By using a t ypedef , we can write one version of the program that implements
either a vect or -based solution or a | i St -based one. Write and test this version of the
program.

5-4. Look again at the driver functions you wrote in the previous exercise. Note that it is
possible to write a driver that differs only in the declaration of the type for the data
structure that holds the input file. If your vect or and | i st test drivers differ in any
other way, rewrite them so that they differ only in this declaration.

5-5. Write a function named cent er (const vect or <stri ng>&) that returns a



picture in which all the lines of the original picture are padded out to their full width, and
the padding is as evenly divided as possible between the left and right sides of the
picture. What are the properties of pictures for which such a function is useful? How can
you tell whether a given picture has those properties?

5-6. Rewrite the ext ract fai | s function from 85.1.1/77 so that instead of erasing
each failing student from the input vector v, it copies the records for the passing students
to the beginning of v, and then uses the r esi ze function to remove the extra elements
from the end of v. How does the performance of this version compare with the one in
85.1.1/77?

5-7. Given the implementation of frame in 85.8.1/93, and the following code fragment

vector<string> v;
frame(v);

describe what happens in this call. In particular, trace through how both the wi dt h
function and the frame function operate. Now, run this code. If the results differ from
your expectations, first understand why your expectations and the program differ, and
then change one to match the other.

5-8. In the hcat function from &5.8.3/95, what would happen if we defined s outside the
scope of the whi | e? Rewrite and execute the program to confirm your hypothesis.

5-9. Write a program to write the lowercase words in the input followed by the uppercase
words.

5-10. Palindromes are words that are spelled the same right to left as left to right. Write
a program to find all the palindromes in a dictionary. Next, find the longest palindrome.

5-11. In text processing it is sometimes useful to know whether a word has any
ascenders or descenders. Ascenders are the parts of lowercase letters that extend above
the text line; in the English alphabet, the letters b, d, f, h, k, I, and t have ascenders.
Similarly, the descenders are the parts of lowercase letters that descend below the line;

In English, the letters g, j, p, q, and y have descenders. Write a program to determine
whether a word has any ascenders or descenders. Extend that program to find the longest

word in the dictionary that has neither ascenders nor descenders.
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Using library algorithms

As we saw in Chapter 5, many container operations apply to more than one type of
container. For example, vector, string,andli st allow us to insert elements by
calling i nsert and remove elements by calling er ase . These operations have the same
interface for each type that supports them. For that matter, many container operations
also apply to the st ri ng class.

Every container—as well as the st ri ng class—provides companion iterator types, which
let us navigate through a container and examine its elements. Again, the library ensures
that every iterator that supplies an operation does so through the same interface. For
example, we can use the ++ operator to advance any type of iterator from one element to
the next; we can use the * operator to access the element associated with any type of
iterator; and so on.

In this chapter, we'll see how the library exploits these common interfaces to provide a
collection of standard algorithms. By using these algorithms, we can avoid writing (and
rewriting) the same code over and over again. More important, we can write programs
that are smaller and simpler than we would write otherwise—sometimes astonishingly so.

Like containers and iterators, algorithms also use consistent interface conventions. This
consistency lets us learn a few of the algorithms and then apply that knowledge to others
as the need arises. In this chapter, we'll use several of the library algorithms to solve
problems related to processing st ri ng s and student grades. Along the way, we'll cover
most of the core concepts in the algorithm library.

Unless we say otherwise, the <al gor i t hn®> header defines all the algorithms that we
introduce in this chapter.

6.1 Analyzing strings

In 85.8.2/94, we used a loop to concatenate two character pictures:

for (vector<string>::const _ iterator it = bottom begin();
it I'= bottomend(); ++it)
ret.push_back(*it);

We noted that this loop was equivalent to inserting a copy of the elements of bot t omat
the end of r et , an operation that vectors provided directly:

ret.insert(ret.end(), bottom begin(), bottomend());



This problem has an even more general solution: We can separate the notion of copying
elements from that of inserting elements at the end of a container, as follows:

copy(bottom begin(), bottomend(), back_ inserter(ret));

Here, copy is an example of a generic algorithm, and back i nsert er is an example of
an iterator adaptor.

A generic algorithm is an algorithm that is not part of any particular kind of container,
but instead takes a cue from its arguments’ types about how to access the data it uses.
The standard library's generic algorithms usually take iterators among their arguments,
which they use to manipulate the elements of the underlying containers. So, for example,
the copy algorithm takes three iterators, which we’ll call begi n, end , and out , and
copies all the elements in the range [ begi n, end) to a sequence of elements starting
at out and extending as far as necessary. In other words,

copy(begin, end, out);

has the same effect as

while (begin !'= end)
*out ++ = *begi n++;

except that the whi | e body changes the values of the iterators, and copy doesn't.

Before we describe iterator adaptors, we should note that this loop depends on the use of
the postfix version of the increment operators. These operators differ from the prefix
versions, which we have used up to now, in that begi n++ returns a copy of the original
value of begi n , incrementing the stored value of begi n as a side effect. In other words,

it = begin++;

is equivalent to

it = begin;
++begi n;

The increment operators have the same precedence as * , and they are both right-
associative, which means that * out ++ has the same meaning as * (out ++) . Thus,

*out ++ = *begi n++;



is equivalent to the more verbose
{ *out = *begin; ++out; ++begin; }

Let's return to iterator adaptors , which are functions that yield iterators with properties
that are related to their arguments in useful ways. The iterator adaptors are defined in

<i t er at or > . The most common iterator adaptor is back i nserter , which takes a
container as its argument and yields an iterator that, when used as a destination,
appends values to the container. For example, back i nserter (ret) is an iterator that,
when used as a destination, appends elements to r et . Therefore,

copy(bottom begin(), bottomend(), back_ inserter(ret));

copies all of the elements of bot t omand appends them to the end of r et . After this
function completes, the size of r et will have increased by bott om si ze() . Notice that
we could not call

/] error—et is not an iterator
copy(bottom begin(), bottomend(), ret);

because copy's third argument is an iterator, not a container. Nor could we call

/'l error - no element at ret.end()
copy(bottom begin(), bottomend(), ret.end());

This latter mistake is particularly insidious, because the program will compile. What it
does when you try to run it is another story entirely. The first thing copy will try to do is
assign a value to the element at r et . end() . There's no element there, so what the
implementation will do is anybody's guess.

Why is copy designed this way? Because separating the notions of copying elements and
expanding a container allows programmers to choose which operations to use. For
example, we might want to copy elements on top of elements that already exist in a
container, without changing the container's size. As another example, which we shall see
in 86.2.2/112, we might want to use back i nserter to append elements to a container
that are not merely copies of another container's elements.

6.1.1 Another way to split
Another function that we can write more directly using the standard algorithms is split ,
which we saw in 85.6/88. The hard part of writing that function was dealing with the

indices that delimited each word in the input line. We can replace the indices by iterators,
and use standard-library algorithms to do much of the work for us:

/'l true if the argunent is whitespace, false otherw se



bool space(char c)

{
}

return isspace(c);

/1l false if the argunent is whitespace, true otherw se
bool not _space(char c)

{
return !isspace(c);
}
vector<string> split(const string& str)
{
typedef string::const _iterator iter;
vector<string> ret;
iter i = str.begin();
while (i !'=str.end()) {
/'l ignore |eading blanks
i =find_if(i, str.end(), not_space);
/1 find end of next word
iter j =find_if(i, str.end(), space);
/'l copy the characters in [i, j)
if (i !'=str.end())
ret.push_back(string(i, j));
i =g,
}
return ret;
}

This code uses a lot of new functions, so it will take a bit of explanation. The key idea to
keep in mind is that it implements the same algorithm as the original, using i and | to
delimit each word in st r . Once we've found a word, we copy it from str , and push the
copy onto the back of r et

This time, I and | are iterators, not indices. We use t ypedef to abbreviate the iterator
type, so that we can use i t er instead of the longer string::const _iterator .
Although the st ri ng type does not support all of the container operations, it does
support iterators. Therefore, we can use the standard-library algorithms on the characters
ofastring, just as we can use them on the elements of a vect or .

The algorithm that we use in this example is f i nd_i f . Its first two arguments are
iterators that denote a sequence; the third is a predicate, which tests its argument and
returnstrue orfal se . The find_if function calls the predicate on each element in
the sequence, stopping when it finds an element for which the predicate yields t r ue .

The standard library provides an i sspace function to test whether a character is a space.
However, that function is overloaded, so that it will work with languages, such as
Japanese, that use other character types, such as wchar _t (81.3/14). It's not easy to
pass an overloaded function directly as an argument to a template function. The trouble is



that the compiler doesn't know which version of the overloaded function we mean,
because we haven't supplied any arguments that the compiler might use to select a
version. Accordingly, we'll write our own predicates, called space and not _space , that
make clear which version of i sspace we intend.

The first call to f i nd_i f seeks the first nonspace character, which begins a word.
Remember that one or more spaces might begin a line or might separate adjacent words
in the input. We don't want to include these spaces in the output.

After the first calltofind i f ,i will denote the first nonspace, if any, in str . We use i
in the next call to fi nd_i f , which looks for the first spacein [i, str.end()) .If
find_ if fails to find a value that satisfies the predicate, it returns its second argument,
which, in this case, is st r. end() . Therefore, ] will be initialized to denote the blank
that separates the next word in st r from the rest of the line, or, if we are on the last
word in the line, | will be equal to str.end() .

At this point, i and ] delimit a word in str . All that's left is to use these iterators to
copy the data from str into r et . In the earlier version of spl it , we used
string::substr to create the copy. However, that version of spl i t operated on
indices, not iterators, and there isn't a version of subst r that operates on iterators.
Instead, we construct a new string directly from the iterators that we have. We do so by
using an expression, string(i, ]) , thatis somewhat similar to the definition of
spaces that we explained in 81.2/13. Our present example constructs a St ri ng that is
a copy of the characters in the range [ 1, ] ) . We push this new st ri ng onto the back
of ret

It is worth pointing out that this version of the program omits the tests of the index |
against st r. si ze() . Nor are there the obvious equivalent tests of the iterator against
str.end() . The reason is that the library algorithms are written to handle gracefully
calls that pass an empty range. For example, at some point the first call to fi nd_i f will
set i to the value returned by str. end() , but there is no need to check i before
passing it to the second callto find i f . The reason is that fi nd_i f will look in the
empty range [, str.end()) and will return str. end() to indicate that there is no
match.

6.1.2 Palindromes

Another character-manipulation problem that we can use the library to solve succinctly is
determining whether a word is a palindrome. Palindromes are words that are spelled the
same way front to back as back to front. For example, "civic," "eye," "level," "madam,"
and "rotor" are all palindromes.

Here is a compact solution that uses the library:

bool is_palindronme(const string& s)

{
}

return equal (s. begin(), s.end(), s.rbegin());

The r et ur n statement in this function's body calls the equal function and the r begi n
member function, both of which we have not yet seen.



Like begi n, r begi n returns an iterator, but this time it is an iterator that starts with the
last element in the container and marches backward through the container.

The equal function compares two sequences to determine whether they contain equal
values. As usual, the first two iterators passed to equal specify the first sequence. The
third argument is the starting point for the second sequence. The equal function
assumes that the second sequence is the same size as the first, so it does not need an
ending iterator. Because we pass S. I begi n() as the starting point for the second
sequence, the effect of this call is to compare values from the back of S to values in the
front. The equal function will compare the first character in S with the last. Then it will
compare the second to the next to last, and so on. This behavior is precisely what we
want.

6.1.3 Finding URLs

As the last of our examples of character manipulation, let's write a function that finds Web
addresses, called uniform resource locators (URLs), that are embedded ina string . We
might use such a function by creating a single st ri ng that holds the entire contents of a
document. The function would then scan the document and find all the URLs in it. A URL
is a sequence of characters of the form

protocol-name: //resource-name

where protocol-name contains only letters, and resource-name may consist of letters,
digits, and certain punctuation characters. Our function will take a st ri ng argument and
will look for instances of :// in that st ri ng . Each time we find such an instance, we'll
look for the protocol-name that precedes it, and the resource-name that follows it.

Because we want our function to find all the URLs in its input, we'll want it to return a
vect or <stri ng>, with one element for each URL. The function executes by moving the
iterator b through the stri ng , looking for the characters :// that might be a part of a
URL. If we find these characters, it looks backward to find the protocol-name, and it looks
forward to find the resource-name:

vector<string> find_urls(const string& s)
{
vector<string> ret;
typedef string::const_iterator iter;
iter b = s.begin(), e = s.end();

/1 1ook through the entire input
while (b = e) {

/'l ook for one or nore letters followed by ://
b = url _beg(b, e);

/1 if we found it

if (b!=¢e) {
/'l get the rest of the URL
iter after = url_end(b, e);

/'l renmenber the URL



ret.push_back(string(b, after));

/1 advance b and check for nore URLs on this |ine
b = after;
}
}

return ret;

We start by declaring r et , which is the vector into which we will put the URLs as we find
them, and by obtaining iterators that delimit the st ri ng . We will have to write the

url _beg and url _end functions, which will find the beginning and end of any URL in the
input. The ur| _beg function will be responsible for identifying whether a valid URL is
present and, if so, for returning an iterator that refers to the first character of the
protocol-name. If it does not identify a URL in the input, then it will return its second
argument (€ in this case) to indicate failure.

If url _beg finds a URL, the next task is to find the end of the URL by calling url _end .
That function will search from the given position until it reaches either the end of the
input or a character that cannot be part of a URL. It will return an iterator positioned one
past the last character in the URL.

Thus, after the calls to ur| _beg and url _end , the iterator b denotes the beginning of a
URL, and the iterator after denotes the position one past the last character in the URL:

text http|:// | wuw.acceleratedcopp.com more text

b = url beg(k, <) after = url _end(b, e}

We construct a new St ri ng from the characters in this range, and push that stri ng
onto the back of r et

All that remains is to increment the value of b and to look for the next URL. Because URLs
cannot overlap one another, we set b to (one past) the end of the URL that we just found,
and continue the whi | e loop until we've looked at all the input. Once that loop exits, we
return the vect or that contains the URLs to our caller.

Now we have to think about url beg and url _end . The url _end function is simpler,
so we'll start there:

string::const _iterator
url _end(string::const_iterator b, string::const_iterator e)

{
}

return find_if(b, e, not_url _char);



This function just forwards its work to the library fi nd_i f function, which we used in
8§6.1.1/103. The predicate that we passto fi nd_i f is one that we will write, named
not url _char . It will return t r ue when passed a character that cannot be in a URL:

bool not _url _char(char c)

{
/1 characters, in addition to al phanunerics, that can appear in a URL
static const string url _ch = "~ /?2: @&$-_ .+ *"(),";
/1 see whether c can appear in a URL and return the negative
return ! (isalnum(c) ||
find(url _ch.begin(), url_ch.end(), ¢) !'= url_ch.end());
}

Despite being small, this function uses a fair bit of new material. First is the use of the

st at i ¢ storage class specifier . Local variables that are declared to be st ati c are
preserved across invocations of the function. Thus, we will create and initialize the
string url _ch only on the first call to not _url _char . Subsequent calls will use the
object that the first call created. Because url _chisaconst string, its value will not
change once we have initialized it.

The not _ur| _char function also uses the i sal numfunction, which the <cct ype>
header defines. This function tests whether its argument is an alphanumeric character (a
letter or a digit).

Finally, f i nd is another algorithm that we haven't used yet. It is similartofind i f ,
except that instead of calling a predicate, it looks for the specific value given as its third
argument. As with fi nd_i f , if the value that we want is present, the function returns an
iterator denoting the first occurrence of the value in the given sequence. If the value is
not found, then find returns its second argument.

With this information in hand, we can now understand the not _ur| char function.
Because we negate the value of the entire expression before we return it,

not url char will yield f al se if c is a letter, a digit, or any of the characters in
url _ch . If ¢ is any other value, the function returnstr ue .

Now the hard part begins: implementing ur| _beg . This function is messy, because it
must deal with the possibility that the input might contain :// in a context that cannot be
a valid URL. In practice, we'd probably have a list of acceptable protocol-names and look
only for those. For simplicity, though, we'll limit ourselves to being sure that one or more
letters precede the :// separator, and at least one character follows it:

string::const_iterator
url _beg(string::const_iterator b, string::const_iterator e)

{
static const string sep = "://";

typedef string::const_iterator iter;

/'l i marks where the separator was found
iter i = b;



while ((i = search(i, e, sep.begin(), sep.end())) !'=¢e) {

/'l make sure the separator isn't at the beginning or end of the Iline

if (i '=b & i + sep.size() '=¢€) {
/1 beg marks the beginning of the protocol -nane
iter beg = i;
while (beg != b && isal pha(beg[-1]))
- - beg;

/'l is there at | east one appropriate character before and after the :
if (beg '=1i && !'not_url_char(i[sep.size()]))
return beg;

}

/'l the separator we found wasn't part of a URL advance i past this separe
i += sep.size();

}

return e;

The easy part is to write the function header. We know that we'll be passed two iterators
denoting the range in which to look, and that we'll return an iterator that denotes the
beginning of the first URL in that range, if one exists. We also declare and initialize a local
st ring , which will hold the characters that make up the separator that identifies a
potential URL. Like url _ch in the not _ur| char function (86.1.3/107), this stri ng is
stati c and const . Thus, we will not be able to change the st ri ng , and its value will
be created only on the first invocation of url _beg .

The function executes by placing two iterators into the st ri ng delimited by b and e :

b e

l l

text http|:// | www.acceleratedcpp.com more text

|

beg i

The iterator i will denote the beginning of the URL separator, if any, and beg will indicate
the beginning of the protocol-name , if any.

The function first looks for the separator, by calling sear ch , a library function that we
haven't used before. This function takes two pairs of iterators: The first pair denotes the
sequence in which we are looking, and the second pair denotes the sequence that we wish
to locate. As with other library functions, if sear ch fails, it returns the second iterator.
Therefore, after the call to sear ch , either i denotes (one past) the end of the input
string, oritdenotes a : that is followed by //.

If we found a separator, the next task is to get the letters (if any) that make up the
protocol-name. We first check whether the separator is at the beginning or end of the



input. If the separator is in either of those places, we know that we don't have a URL,
because a URL has at least one character on each side of its separator. Otherwise, we
need to try to position the iterator beg . The inner whi | e loop moves beg backward
through the input until it hits either a nonalphabetic character or the beginning of the
string . It uses two new ideas: The first is the notion that if a container supports
indexing, so do its iterators. In other words, beg[ - 1] is the character at the position
immediately before the one that beg denotes. We can think of beg[ -1 ] as an
abbreviation for * (beg - 1) . we'll learn more about such iterators in 88.2.6/148. The
second new idea is the i sal pha function, defined in <cct ype> , which tests whether its
argument is a letter.

If we were able to advance the iterator over as much as a single character, we assume
that we've found a protocol-name. Before returning beg , we still have to check that
there's at least one valid character following the separator. This test is more complicated.
We know that there is at least one more character in the input, because we're inside the
body of an i f that compares the value of i + sep. si ze() with e . We can access the
first such character as i [ sep. si ze()] , which is an abbreviation for * (i +

sep. si ze()) . We test whether that character can appear in a URL by passing the
character to not _ur| _char . This function returns t r ue if the character is not valid, so
we negate the return to check whether the character is valid.

If the separator is not part of a URL, then the function advances i past the separator and
keeps looking.

This code uses the decrement operator , which we mentioned in the operator table in
82.7/32, but which we have not previously used. It works like the increment operator, but
it decrements its operand instead. As with the increment operator, it comes in prefix and
postfix versions. The prefix version, which we use here, decrements its operand and
returns the new value.
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6.2 Comparing grading schemes

In 84.2/61, we presented a grading scheme that based students’ final grades, in part, on
their median homework scores. Devious students can exploit this scheme by deliberately
not turning in all their homework assignments. After all, the bottom half of their
homework grades has no effect on their final grade. If they've done enough homework to
ensure a good grade, why not stop doing homework altogether?

In our experience, most students do not exploit this particular loophole. However, we did
have occasion to teach one class that gleefully and openly did so. We wondered whether
the students who skipped homework had, on average, different final grades than those
who did all the homework. While we were thinking about how to answer that question, we
decided that it might be interesting to see what the answer would be if we used one of
two alternative grading schemes:

e Using the average instead of the median, and treating those assignments that the
student failed to turn in as zero
e Using the median of only the assignments that the student actually submitted

For each of these grading schemes, we wanted to compare the median grade of the
students who turned in all their homework with the median grade of the students who
missed one or more assignments. We wound up with a program that had to solve two
distinct subproblems:

1. Read all the student records, separating the students who did all the homework from
the others.

2. Apply each of the grading schemes to all the students in each group, and report the
median grade of each group.

6.2.1 Working with student records

Our first subproblem is to read and classify the student records. Fortunately, we already
have some code we can use in solving this part of the problem: We can use the

St udent i nf o type from §4.2.1/61 and the associated r ead function from 84.2.2/62 to
read the student data records. What we don't have yet is a function that checks whether a
student has done all the homework. Writing such a function is easy:

bool did_all_hw(const Student info& s)
{

return ((find(s.homework. begin(), s.homework.end(), 0))
== s. homework. end());

}

This function looks in s. homewor k to see whether any of the values stored there is 0.
Because we give at least partial credit for any assignment that is turned in, a O grade
means that the assignment was not submitted. We compare the return from f i nd with
homework.end(). As usual, f i nd returns its second argument if it fails to find the value
that it seeks.



With these two functions, writing code to read and separate the student records is
simplicity itself. We'll read each student record, check whether the student did all the
homework, and append the record to one of two vect or s, which, for want of a better
idea, we'll name di d and di dnt . While we're at it, we'll check that neither vector is
empty, so that we'll know that our analysis will actually tell us something useful:

vect or <Student i nfo> did, didnt;
St udent i nfo student;

/'l read all the records, separating them based on whether all homework was done
while (read(cin, student)) {
if (did_all_hw(student))
di d. push_back(student);
el se
di dnt . push_back(student);

}

/'l check that both groups contain data

if (did.empty()) {
cout << "No student did all the homework!" << endl
return 1,

}

if (didnt.empty()) {
cout << "Every student did all the honework!" << endl
return 1;

The only new idea here is the enpt y member function, which yields t r ue if the container
is empty and f al se otherwise. It is a better idea to use this function to check for an
empty container than it is to compare the si ze with 0, because for some kinds of
containers, it might be more efficient to check whether the container has any elements
than to figure out exactly how many elements there are.

6.2.2 Analyzing the grades

We now know how to read and classify student records into the di d and di dnt vectors.
The next step is to analyze them, which means we need to think a little about how to
structure the analysis.

We know that we have three analyses to perform, and each analysis has two parts, which
analyze separately the students who did and who didn't do all the homework. Because we
will do each analysis on two sets of data, we certainly want to make each analysis its own
function. However, there are some operations, such as reporting in a common format,
that we are going to want to do on pairs of analyses, rather than on individual analyses.
Evidently, we'll want to make writing the results of each pair of analyses into a function as
well.

The tricky part is that we want to call the function that writes the analysis results three
times, once for each kind of analysis. We want that function to call the appropriate
analysis function twice, once each for the di d and di dnt objects. However, we want the
function that generates the reports to call a different analysis function each time we call
it! How do we arrange that?



The easiest solution is to define three analysis functions and pass each one as an
argument to the reporting function. Remember that we've used such arguments already,
such as when we passed the conpar e function to the library sort routinein 84.2.2/64.
In this case, we want our output routine to take five arguments:

e The stream on which to write the output

e A string that represents the name of the analysis

e The function to use for the analysis

e Two arguments, each of which is one of the vect or s that we want to analyze

For example, let's assume that the first analysis, which looks at the medians, is done by a
function called nedi an_anal ysi s . Then, we'd like to report the results for each group
of students by executing

write_anal ysis(cout, "nedian", nedian_analysis, did, didnt);

Before we define wi te_anal ysi s, let's define nedi an_anal ysi s . We would like to
give that function a vect or of student records, and we would like it to compute the
students' grades according to the normal grading scheme and to return the median of
those grades. We can define that function as follows:

/'l this function doesn't quite work
doubl e nedi an_anal ysi s(const vector<Student i nfo>& students)

{

vect or <doubl e> gr ades;

transforn(students. begin(), students.end(),
back _inserter(grades), grade);
return nedi an(grades);

Although this function might appear difficult at first glance, it introduces only one new
idea, namely the t r ansf or mfunction. This function takes three iterators and a function.
The first two iterators specify a range of elements to transform; the third iterator is the
destination into which to put the result of running the function.

When we call t r ansf or m, we are responsible for ensuring that the destination has room
for the values from the input sequence. In this case, there is no problem, because we
obtain the destination by calling back i nserter (86.1/102), thereby arranging that

t ransf or m's results will be appended to gr ades , which will automatically grow as
necessary to accommodate the results.

The fourth argument to t r ansf or mis a function that t r ansf or mapplies to each
element of the input sequence to obtain the corresponding element of the output
sequence. Therefore, when we call t r ansf or min this example, the effect is to apply the
gr ade function to each element of st udent s , and to append each grade to the vect or
named gr ades . When we have all these students' grades, we call medi an , which we
defined in 84.1.1/53, to compute their median.



There's only one problem: As the comment notes, this function doesn't quite work.

One reason that it doesn't work is that there are several overloaded versions of the

gr ade function. The compiler doesn't know which version to call, because we haven't
given gr ade any arguments. We know that we want to call the version from §4.2.2/63,
but we need a way to tell the compiler to do so.

The other reason is that the gr ade function will t hr ow an exception if any student did no
homework at all, and the t r ansf or mfunction does nothing about exceptions. If an
exception occurs, the t r ansf or mfunction will be stopped at the point of the exception,
and control will return to nedi an_anal ysi s . Because nedi an_anal ysi s doesn't
handle the exception either, the exception will continue to propagate outward. The effect
will be that this function will also exit prematurely, passing control to its caller, and so on,
until control reaches an appropriate cat ch . If there is no such cat ch , as would be
likely in this case, the program itself is terminated, and the message that was thrown is
printed (or not, depending on the implementation).

We can solve both problems by writing an auxiliary function that will t ry the gr ade
function and handle the exception. Because we are calling the gr ade function explicitly,
rather than passing it as an argument, the compiler will be able to figure out which
version we mean:

doubl e grade_aux(const Student _info& s)

{
try {
return grade(s);
} catch (domain_error) {
return grade(s.mdterm s.final, 0) ;
}
}

This function will call the version of gr ade from 84.2.2/63. If an exception occurs, we will
cat ch it and call the version of gr ade , from §4.1/52, that takes three doubl e s that
represent the exam scores and overall homework grade. Thus, we'll assume that students
who did no homework at all got a O grade on their homework, but their exams still count.
Now, we can rewrite the analysis function to use gr ade_aux :

/1 this version works fine
doubl e nmedi an_anal ysi s(const vector<Student _i nfo>& st udents)

{

vect or <doubl e> gr ades;

transforn(students. begin(), students.end(),
back_inserter(grades), grade_aux);
return nedi an(grades);

Having seen what an analysis routine looks like, we are now in a position to define
write_anal ysi s, which uses an analysis routine to compare two sets of students:



void wite_anal ysis(ostream& out, const string& nane,
doubl e anal ysi s(const vect or <Student _i nf 0>&)
const vector<Student _i nfo>& did
const vector <Student _i nfo>& di dnt)

out << name << ": nmedian(did) =" << analysis(did) <<
", median(didnt) = " << analysis(didnt) << endl;

Again, this function is surprisingly small, although it does introduce two new ideas. The
first is how to define a parameter that represents a function. The parameter definition for
anal ysi s looks just like the function declaration that we wrote in 84.3/67. (Actually, as
we shall learn in 810.1.2/172, there is slightly more going on here than meets the eye.
The additional detail doesn't affect the current discussion directly.)

The other new idea is the return type, void. The built-in type voi d can be used only in a
few restricted ways, one of which is to name a return type. When we say a function
"returns" a voi d , we're really saying that it has no return value. We can exit from such a
function by executing a r et ur n statement with no value, such as

return;

or, as we do here, by falling off the end of the function. Ordinarily, we cannot just fall off
the end of a function, but the language allows functions that return voi d to do so. At this
point, we can write the rest of our program:

int main()

{
/] students who did and didn't do all their honework
vect or <Student _i nfo> did, didnt;

/'l read the student records and partition them
St udent _i nfo student;
while (read(cin, student)) {
if (did_all_hw(student))
di d. push_back(student);
el se
di dnt . push_back( st udent);

/1 verify that the analyses will show us somethi ng

if (did.enpty()) {
cout << "No student did all the honework!" << endl;
return 1;

if (didnt.enmpty()) {
cout << "Every student did all the homework!" << endl;
return 1;

/1 do the anal yses



write_anal ysis(cout, "nedian", nedian_analysis, did, didnt);
write_anal ysis(cout, "average", average_analysis, did, didnt);
write_anal ysis(cout, "nmedian of homework turned in",

optim stic_nedian_analysis, did, didnt);

return O;

All that remains is to write aver age_anal ysi s and opti m sti c_nedi an_anal ysi s

6.2.3 Grading based on average homework grade

We would like the aver age_anal ysi s function to compute the students' grades by
using the average homework grade, rather than the median. Therefore, the logical first
step is to write a function to compute the average of a vect or , with the aim of using it
instead of medi an for grade computation:

doubl e average(const vector<doubl e>& v)

{
}

return accumul ate(v. begin(), v.end(), 0.0) / v.size();

This function uses accumnul at e , which, unlike the other library algorithms we've used, is
declared in <nuner i c> . As this header's name implies, it offers tools for numeric
computation. The accunul at e function adds the values in the range denoted by its first
two arguments, starting the summation with the value given by its third argument.

The type of the sum is the type of the third argument, so it is crucially important for us to
use 0. 0 , as we did here, instead of 0. Otherwise, the result would be an i nt , and any
fractional part would be lost.

Having used accumnul at e to generate the sum of all the elements in the range, we divide
that sum by V. si ze() , which is the number of elements in the range. The result of that
division, of course, is the average, which we return to our caller.

Once we have the aver age function, we can use it to implement the aver age_gr ade
function to reflect this alternative grading policy:
doubl e average_grade(const Student _info& s)

{
}

return grade(s.mdterm s.final, average(s.honework));

This function uses the aver age function to compute an overall homework grade, which it
then gives to the gr ade function from §4.1/52 to use in computing the final grade.

With this infrastructure in place, the aver age_anal ysi s function is simplicity itself:



doubl e average_anal ysi s(const vect or <Student _i nfo>& students)

{

vect or <doubl e> grades

transfornm(students. begin(), students.end(),
back_inserter(grades), average_grade);
return nedi an(grades);

The only difference between this function and nedi an_anal ysi s (86.2.2/113) s its
name and its use of aver age_gr ade instead of gr ade_aux .

6.2.4 Median of the completed homework

The last analysis scheme, opti m sti c_mnedi an_anal ysi s , gets its name from the
optimistic assumption that the students' grades on the homework that they didn't turn in
would have been the same as the homework that they did turn in. With that assumption,
we would like to compute the median of just the homework that each student submitted.
We'll call this computation an optimistic median, and we'll begin by writing a function to
compute it. Of course, we have to contend with the possibility that a student did no
homework at all, in which case we’ll use 0 as the overall homework grade:

/1l nmedian of the nonzero elenents of s.honework, or O if no such el ements exi st
doubl e optim stic_nedi an(const Student info& s)

{
vect or <doubl e> nonzer o;
remove_copy(s. homewor k. begi n(), s.honmework. end(),
back_inserter(nonzero), 0);
if (nonzero.enpty())
return grade(s.mdterm s.final, 0);
el se
return grade(s.nmdterm s.final, median(nonzero));
}

This function works by extracting the nonzero elements from the honmewor k vector and
putting them into a new vector, called nonzer o . Once we have the nonzero homework
grades, we call the version of gr ade defined in §4.1/52 to compute the final score based
on the nedi an of the homework assignments that were actually submitted.

The only new idea in this function is how we get values into nonzer o , which we do by
calling the r enbve_copy algorithm. To understand the call to r enbve_CoOpy , you may
find it useful to know that the library provides "copying" versions of many of the
algorithms. So, for example, r enbve_copy does what r enove does, but copies its
results to an indicated destination.

The r enove function finds all values that match a given value and "removes" those
values from the container. All the values in the input sequence that are not "removed" will
be copied into the destination. We'll have more to say shortly about what "remove"
means in this context.



The r enbve_copy function takes three iterators and a value. As with most algorithms,
the first two iterators denote the input sequence. The third denotes the beginning of the
destination for the copy. As with copy , the r enove_copy algorithm assumes that there
is enough space in the destination to hold all the elements that are copied. We call
back i nserter to grow nonzero as needed.

We should now be able to see that the effect of the r enbve_copy call is to copy into
nonzero all the nonzero elements in S. honewor k . We then check whether v is empty,
and if not, we do the normal gr ade calculation based on the nedi an of the nonzer o
grades. If v is empty, then we use O as the homework grade.

Of course, to complete our analysis, we need to write an analysis function to call our
opti m stic_nedi an function. We leave doing so as an exercise.
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6.3 Classifying students, revisited

In Chapter 5, we looked at the problem of copying records with failing grades into a
separate vect or and then removing those records from the existing vector. The obvious,
easy approach to this problem proved to have abysmal performance as the input size
grew. We went on to show how to solve the performance problem by using a | | st
instead of a vect or , but we also promised to revisit the problem and show an
algorithmic solution that would perform similarly to the revised data structure.

We can use the algorithm library to demonstrate two other solutions. The first is slightly
slower because it uses a pair of library algorithms and visits every element twice. We can
do better by using a more specialized library algorithm that will let us solve the problem
in a single pass.

6.3.1 A two-pass solution

Our first approach will use a strategy similar to the one that we used in 86.2.4/115, when
we wanted only the nonzero homework grades. In that case, we didn't want to change
homewor K itself, so we used r enbve_copy to put copies of the nonzero homework
grades into a separate vect or . In our current problem, we need both to copy and
remove the nonzero elements:

vect or <St udent _i nf o>
extract fails(vector<Student info>& students) {
vect or <Student _i nfo> fail;
renove_copy_if(students. begin(), students.end(),
back inserter(fail), pgrade);
students. erase(renove_if(students. begin()), students.end(),
fgrade), students.end());
return fail;

The interface to the program is identical to that from &5.3/82, which presented the
obvious vect or -based solution that used iterators instead of indices. As in that solution,
we'll use the vect or that we were passed to hold grades for students who passed, and
define f ai | to hold the failing grades. There the similarities end.

In the original program, we used an iterator named i t er to march through the container,
copying the records with failing grades into f ai | , and using the er ase member to erase
them from st udent s. This time, we use the r enove_copy_i f function to copy the
failing grades into f ai | . That function operates as did the r enove_copy function that
we used in 86.2.4/116, except that it uses a predicate as its test, rather than a value. We
give it a predicate that inverts the result of calling f gr ade (85.1/75):

bool pgrade(const Student _info& s)
{

return !fgrade(s);



When we pass a predicate to r enove_copy i f, we are asking it "remove" each element
that satisfies the predicate. In this context, "removing" an element means not copying it,
so we copy only those elements that do not satisfy the predicate. Therefore, passing

pgr ade to renbve_copy_i f copies only the student records with failing grades.

The next statement is somewhat complicated. First, we call r enove i f to "remove" the
elements that correspond to failing grades. Again, the quotes around "remove" are
because nothing is actually removed. Instead, r enove i f copies all the elements that do
not satisfy the predicate—in this case, all the student records with passing grades.

This call is tricky to understand because r enove_i f uses the same sequence as its
source and destination. What it really does is copy to the beginning of the sequence the
elements that don't meet the predicate. For example, suppose we started with seven
students with grades as follows:

pass | pass ‘ fail fail | pass 1 fail TF-;S-‘

! 1

students.begin() students.end()

Then the call to r enove_i f would leave the first two records untouched, because they're
already in the right places. It would "remove" the next two records by treating them as
free space to be overwritten by the next records that should be kept. So, when it sees the
fifth record, which represents a student who passed, it would copy that record into the
now free position that used to hold the first of the “removed" failing records, and so on:

C €Y M

pass i pass : fail fail J_pass i fail j pass

! T

students.begin() students.end()

The result in this case would be to copy the four passing records to the beginning of the
sequence, leaving the remaining three records untouched. So that we can know how
much of the sequence is still relevant, r enove i f returns an iterator that refers to one
past the last element that it did not "remove":

[pass pass | pass | pass | pass | fail | pass
! kB f

students.begin() result of remove_if students.end/()

Next, we need to er ase these unneeded records from st udent s. We have not used this
version of er ase before. It takes two iterators, and erases all the elements in the range
delimited by those iterators. If we er ase the elements between the iterator returned
from the call to renove_if and st udent s. end(), we are left with just the passing



records:

pass | pass | pass | pass

1 T

students.begin() students.end()

6.3.2 A single-pass solution

Our first algorithmic solution performs pretty well, but we should be able to do slightly
better. The reason is that the solution in 6.3.1/117 calculates the grade for every
element in students twice: once from r enove_copy_i f and a second time from
remove_if.

Although there is no library algorithm that does exactly what we want, there is one that
approaches our problem from a different angle: It takes a sequence and rearranges its
elements so that the ones that satisfy a predicate precede the ones that do not satisfy it.

There are really two versions of this algorithm, which are named partiti on and

stabl e _partition. The difference is that parti ti on might rearrange the elements
within each category, and st abl e_partiti on keeps them in the same order aside from
the partitioning. So, for example, if the student names were already in alphabetical order,
and we wanted to keep them that way within each category, we would need to use

st abl e_partition rather than partition.

Each of these algorithms returns an iterator that represents the first element of the
second section. Therefore, we can extract the failing grades this way:

vect or <St udent _i nf o>
extract _fails(vector<Student i nfo>& students)

{
vector<Student info>::iterator iter =
stabl e_partition(students. begin(), students.end(), pgrade);
vect or<Student _info> fail (iter, students.end());
students. erase(iter, students.end());
return fail;
}

To understand what is going on here, let's start with our hypothetical input data again:

pass | pass | fail | fail | pass | fail | pass

f f

students.begin()} students.end()




After calling st abl e_partition, we would have

pass | pass | pass : pass | fail fail fail

! ! !

students.begin() iter students.end()

We construct fail from a copy of the failing records, which are the ones in the range
[Iter, students.end())., and then erase those elements from st udent s.

When we ran our algorithm-based solutions, they had roughly the same overall
performance as the | i st -based solution. As expected, once the input was large enough,
the algorithm and | | st -based solutions were substantially better than the vect or
solution that used erase. The two algorithmic solutions are good enough that the time
consumed by the input library dominated the timings for input files up to about 75,000
records. To compare the effects of the two strategies in ext ract fail s, we separately
analyzed the performance of just this portion of the program. Our timings confirmed that
the one-pass algorithm ran about twice as fast as the two-pass solution.
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6.4 Algorithms, containers, and iterators

There is a fact that is crucial to understand in using algorithms, iterators, and containers:

Al gorithns act on container el enments—they do not act on containers.

The sort, renove_if,and partition functions all move elements to new positions

in the underlying container, but they do not change the properties of the container itself.

For example, renove_i f does not change the size of the container on which it operates;
it merely copies elements around within the container.

This distinction is especially important in understanding how algorithms interact with the
containers that they use for output. Let's look in more detail at our use of renove_if in
86.3.1/117. As we've seen, the call

renmove_i f (students. begin(), students.end(), fgrade)

did not change the size of st udent s. Rather, it copied each element for which the
predicate was false to the beginning of st udent s, and left the rest of the elements
alone. When we need to shorten the vector to discard those elements, we must do so
ourselves. In our example, we said

students. erase(renove_if(students. begin(), students.end(), fgrade),
students. end());

Here, er ase changes the vect or by removing the sequence indicated by its arguments.
This call to erase shortens st udent s so that it contains only the elements we want. Note
that er ase must be a member of vect or , because it acts directly on the container, not
just on its elements.

Similarly, it is important to be aware of the interaction between iterators and algorithms,
and between iterators and container operations. We've already seen, in 85.3/83 and
8§5.5.1/86, that container operations such as er ase and i nsert invalidate the iterator
for the element er ased. More important, in the case of vect or s and stri ngs,
operations such as er ase or i nsert also invalidate any iterator denoting elements after
the one er ased or i nsert ed. Because these operations can invalidate iterators, we
must be careful about saving iterator values if we are using these operations.

Similarly, functions such as partiti onorrenove_if, which can move elements
around within the container, will change which element is denoted by particular iterators.
After running one of these functions, we cannot rely on an iterator continuing to denote a

specific element.
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6.5 Details

Type modifiers:

static type vari abl e;

For local declarations, declares variable with st at i ¢ storage class. The value of
variable persists across executions of this scope and is guaranteed to be initialized
before the variable is used for the first time. When the program exits from the scope,
the variable keeps its value until the next time the program enters that scope. We'll see
in 813.4/244 that the meaning of st at i ¢ varies with context.

Types: The built-in type voi d can be used in a restricted number of ways, one of which
is to indicate that a function yields no return value. Such functions can be exited through
ar et urn; that has no value or by falling off the end of the function.

Iterator adaptors are functions that yield iterators. The most common are the adaptors
that generate i nsert _iterators, which are iterators that grow the associated
container dynamically. Such iterators can be used safely as the destination of a copying
algorithm. They are defined in header <i t er at or >:

back _inserter(c)

Yields an iterator on the container C that appends elements to C. The container must
support push_back, which the | i st, vector, and the stri ng types all do.

front _inserter(c)

Like back i nsert er, but inserts at the front of the container. The container must
support push_front, which | i st does, but st ri ng and vect or do not.

inserter(c, it)
Like back_i nsert er, but inserts elements before the iterator i t .

Algorithms: Unless otherwise indicated, <al gor i t hn> defines these algorithms:

accumul ate(b, e, t)

Creates a local variable and initializes it to a copy of t (with the same type as t , which
means that the type of t is crucially important to the behavior of accunul at e), adds
each element in the range [ b, €) to the variable, and returns a copy of the variable as
its result. Defined in <nuneri c>.

find(b, e, t)

find if(b, e, p)

search(b, e, b2, e2)
Algorithms to look for a given value in the sequence [ b, e). The fi nd algorithm looks
for the value t ; the fi nd_i f algorithm tests each element against the predicate p; the
search algorithm looks for the sequence denoted by [ b2, €e2).

copy(b, e, d)
renmove_copy(b, e, d, t)



remove_copy_if(b, e, d, p)
Algorithms to copy the sequence from [ b, €) to the destination denoted by d. The
copy algorithm copies the entire sequence; r enbve_Ccopy copies all elements not
equal tot ; and renove_copy_i f copies all elements for which the predicate p fails.

renove_if(b, e, p)
Arranges the container so that the elements in the range [ b, e) for which the
predicate p is false are at the front of the range. Returns an iterator denoting one past
the range of these "unremoved" elements.

renove(b, e, t)
Like remove_i f, but tests which elements to keep against the value t .

transform(b, e, d, f)
Runs the function f on the elements in the range [ b, €), storing the result of f in d.

partition(b, e, p) stable partition(b, e, p)

Partitions the elements in the range [ b, €), based on the predicate p, so that
elements for which the predicate ist r ue are at the front of the container. Returns an
iterator to the first element for which the predicate is f al se, or e if the predicate is
t r ue for all elements. The st abl e_partiti on function maintains the input order
among the elements in each partition.

Exercises

6-0. Compile, execute, and test the programs in this chapter.

6-1. Reimplementthe f r ame and hcat operations from 85.8.1/93 and 85.8.3/94 to
use iterators.

6-2. Write aprogramtotestthe fi nd_ur| s function.
6-3. What does this program fragment do?
vector<int> u(10, 100);
vector<int> v;
copy(u. begin(), u.end(), v.begin());
Write a program that contains this fragment, and compile and execute it.

6-4. Correct the program you wrote in the previous exercise to copy from U into v.
There are at least two possible ways to correct the program. Implement both, and
describe the relative advantages and disadvantages of each approach.

6-5. Write an analysis functiontocall opti m sti c_nedi an.

6-6. Note that the function from the previous exercise and the functions from
86.2.2/113 and 86.2.3/115 do the same task. Merge these three analysis functions into a
single function.

6-7. The portion of the grading analysis program from §6.2.1/110 that read and



classified student records depending on whether they did (or did not) do all the homework
is similar to the problem we solved in extract fail s. Write a function to handle this
subproblem.

6-8. Write a single function that can be used to classify students based on criteria of
your choice. Test this function by using it in place of the extract fail s program, and
use it in the program to analyze student grades.

6-9. Use a library algorithm to concatenate all the elements of a vect or <st ri ng>.
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Using associative containers

All the containers that we have used until now have been sequential containers, whose
elements remain in the sequence that we choose for them. When we use push_back or

i nsert to add elements to a sequential container, each element will stay where we put it
until we do something to the container that reorders the elements.

Some kinds of programs are hard to write efficiently if we restrict ourselves to sequential
containers. For example, if we have a container of integers, and we wish to write a
program that determines whether any element of the container has the value 42, we have
two plausible strategies—neither of which is ideal. One alternative is to inspect every
element of the container until we find 42 or run out of elements. This approach is
straightforward, but potentially slow—especially if the container has many elements. The
other alternative is for us to keep the container in an appropriate order and devise an
efficient algorithm to find the element we seek. This approach can yield fast searches, but
such algorithms are not easy to devise. In other words, we must live with a slow
program, or come up with our own sophisticated algorithm. Fortunately, as we'll see in
this chapter, the library offers a third alternative.

7.1 Containers that support efficient look-up

Instead of storing data in a sequential container, we can use an associative container.
Such containers automatically arrange their elements into a sequence that depends on
the values of the elements themselves, rather than the sequence in which we inserted
them. Moreover, associative containers exploit this ordering to let us locate particular
elements much more quickly than do the sequential containers, without our having to
keep the container ordered by ourselves.

Associative containers offer efficient ways to find an element that contains a particular
value, and might contain additional information as well. The part of each container
element that we can use for these efficient searches is called a key. For example, if we
were keeping track of information about students, we might use the student’'s name as
the key, so that we could find students efficiently by name.

In the sequential containers, the closest that we have seen to a key is the integer index
that accompanies every element of a vect or . However, even these indices are not really
keys, because every time we insert or delete a vect or element, we implicitly change the
index of every element after the one that we touched.

The most common kind of associative data structure is one that stores key-value pairs,
associating a value with each key, and that lets us insert and retrieve elements quickly
based on their keys. When we put a particular key-value pair into the data structure, that



key will continue to be associated with the same value until we delete the pair. Such a
data structure is called an associative array. Many languages, such as AWK, Perl, and
Sno-bol, have associative arrays built in. In C++, associative arrays are part of the
library. The most common kind of associative array in C++ is called a map, and,
analogous with other containers, it is defined in the <nmap> header.

In many ways, maps behave like vect or s. One fundamental difference is that the index
of a map need not be an integer; it can be a St ri ng, or any other type with values that
we can compare so as to keep them ordered.

Another important difference between associative and sequential containers is that,
because associative containers are self-ordering, our own programs must not do anything
that changes the order of the elements. For that reason, algorithms that change the
contents of containers often don't work for associative containers. In exchange for that
restriction, associative containers offer a variety of useful operations that are impossible
to implement efficiently for sequential containers.

This chapter presents several programming examples that use maps to write compact and

efficient look-up-intensive programs.
=
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7.2 Counting words

As a simple example, think about how we might count the number of times that each
distinct word occurs in our input. With associative arrays, the solution is almost trivial:

int main()
{
string s;
map<string, int> counters; /'l store each word and an associ ated counter
/'l read the input, keeping track of each word and how often we see it
while (cin >> s)
++counters[s];
/1 wite the words and associ ated counts
for (map<string, int>: :const_iterator it = counters.begin();
it !'= counters.end(); ++it) {
cout << it->first << "\t" << it->second << endl
}
return O,
}

As with other containers, we must specify the type of the objects that the nap will hold.
Because a map holds key-value pairs, we need to mention not only the type of the values,
but also the type of the keys. So,

map<string, int> counters;

defines count er s as a map that holds values of type i nt that are associated with keys
of type string. We often speak of such a container as "a map from string toi nt ,"
because we can use the map by giving it a st ri ng as a key, and getting back the
associated | nt data.

The way we define count er s captures our intent to associate each word that we read
with an integer counter that records how many times we have seen that word. The input
loop reads the standard input, a word at a time, into S . The interesting part is

++count ers[s];

What happens here is that we look in count er s , using the word that we just read as the
key. The result of count er s[ s] is the integer that is associated with the st ri ng stored
in S . We then use ++ to increment that integer, which indicates that we have seen the
word once more.

What happens when we encounter a word for the first time? In that case, count er s will



not yet contain an element with that key. When we index a map with a key that has not
yet been seen, the nap automatically creates a new element with that key. That element
is value-initialized , which, for simple types such as i nt , is equivalent to setting the
value to zero. Thus, when we read a new word for the first time and execute

++count er s[ s] with that new word, we are guaranteed that the value of

count er s[ s] will be zero before we increment it. Incrementing count er s[ s] will,
therefore, correctly indicate that we have seen that word once so far.

Once we have read the entire input, we must write the counters and the associated
words. We do so in much the same way as we would write the contents of a | i st or a
vect or : We iterate through the container in a f or loop, which uses a variable of the
iterator type defined by the nap class. The only real difference is in how we write the data
in the body of the for statement:

cout << jit->first << "\t" << it->second << endl;

Recall that an associative array stores a collection of key-value pairs. Using [ | to access
a map element conceals this fact, because we put the key inside the [ | and get back the
associated value. So, for example, count er s[ s] is ani nt . However, when we iterate
over a map , we must have a way to get at both the key and the associated value. The
map container lets us do so by using a companion library type called pai r .

A pair is a simple data structure that holds two elements, which are named fi r st and
second . Each element in a map is really a pai r , with afi rst member that contains
the key and a second member that contains the associated value. When we dereference
a map iterator, we obtain a value that is of the pai r type associated with the map .

The pai r class can hold values of various types, so when we create a pai r , we say
what the types of the f i r st and second data members should be. For a map that has a
key of type K and a value of type V , the associated pai r type is pai r <const K, V>.

Note that the pai r associated with a map has a key type that is const . Because the
pai r key is const , we are prevented from changing the value of an element's key. If
the key were not const , we might implicitly change the element's position within the
map . Accordingly, the key is always const , so that if we dereference a map<stri ng,
i nt>

iterator, we get a pai r<const string, int>.Thus,it->first isthe current
element's key, and i t - >second is the associated value. Because i t is an iterator, *i t
is an Ivalue (84.1.3/56), and therefore it ->first andit->second are also Ivalues.
However, the type of i t - >f i r st includes const, which prevents us from changing it.

With this knowledge, we can see that the output statement writes each key (that is, each
distinct word from the input), followed by a tab and the corresponding count.
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7.3 Generating a cross-reference table

Once we know how to count how often words occur in the input, a logical next step is to
write a program to generate a cross-reference table that indicates where each word
occurs in the input. This extension requires several changes to our basic program.

First, instead of reading a word at a time, we'll need to read a line at a time, so that we
can associate line numbers with words. Once we're reading lines instead of words, we'll
need a way to break each line into its constituent words. Fortunately, we already wrote
such a function, named spl i t, in 6.1.1/103. We can use this function to turn each input
line into a vect or <st ri ng>, from which we can extract each word.

Rather than using spl i t directly, we're going to make it a parameter to the cross-
reference function. That way, we leave open the possibility of changing the way we find
the words on a line. For example, we could pass the fi nd_ur| s function from
86.1.3/105, and use the cross-reference function to see where URLs appear in the input.

As before, we will use a map with keys that are the distinct words from the input. This
time, however, we will have to associate a more complicated value with each key. Instead
of keeping track of how often the word occurs, we want to know all the line numbers on
which the word occurred. Because any given word may occur on many lines, we will need
to store the line numbers in a container.

When we get a new line number, all we will need to do is append that number to those
that we already have for that word. Sequential access to the container elements will
suffice, so we can use a vect or to keep track of line numbers. Therefore, we will need a
map from string to vect or <i nt >.

With these preliminaries out of the way, let's look at the code:

/1 find all the lines that refer to each word in the input
map<string, vector<int> >
xref (istream& in,
vector<string> find_words(const string& = split)

string line;
int |line_nunber = 0;
map<string, vector<int> > ret;

/1 read the next line
while (getline(in, line)) {
++|l i ne_nunber;

/'l break the input line into words
vector<string> words = find_ words(line);

/'l renenber that each word occurs on the current |ine

for (vector<string>: :const_ iterator it = words. begin();
it '= words.end(); ++it)
ret[*it].push_back(line_nunber);



}

return ret;

Both the return type and the argument list of this function deserve attention. If you look
at the declaration of our return type and the local variable r et , you will see that we
carefully wrote >> instead of >>. The compiler needs that space, because if it sees >>
without intervening spaces, it will assume that it is looking at an >> operator, rather than
at two separate > symbols.

In the argument list, notice that f i nd_wor ds defines a function parameter, which
captures our intent to pass to xr ef the function to use to spl i t the input into words.
The other interesting thing is that we say = spl it after the definition of f i nd_wor ds,
which indicates that this parameter has a default argument. When we give a parameter
a default argument, we're saying that callers can omit that argument if they wish. If they
supply an argument, the function will use it. If they omit the argument, the compiler will
substitute the default. Thus, users can call this function in either of two ways:

xref (cin); /'l uses split to find words in the input stream
xref(cin, find_urls); /'l uses the function naned find_ urls to find words

The function body starts by defining a st r i ng variable, named | i ne, which will hold
each line of input as we read it, and an i nt variable, named | i ne_nunber , to hold the
line number of the line that we are currently processing. The input loop calls get | i ne
(85.7/91) to read a line at a time into | | ne. As long as there is input, we increment the
line counter and then process each word in the line.

We begin that processing by declaring a local variable named wor ds, which will hold all
the words from | I ne, and initialize it by calling f i nd_wor ds. That function will be either
our spl it function (86.1.1/103), which splits | i ne into its component words, or another
function that takes a St ri ng argument and returns a vect or <st r i ng> result. We
continue with a f or statement that visits each element in wor ds, updating the nap each
time through wor ds.

The f or header should be familiar: It defines an iterator, and marches that iterator
sequentially through wor ds. The statement that forms the body of the f or may be hard
to understand on first reading,

ret[*it].push_back(line_nunber);

so we'll pick it apart a bit at a time. The iterator i t denotes an element of wor ds, and so
*i t is one of the words in the input line. We use that word to index our map. The
expressionret [ *i t] returns the value stored in the map at the position indexed by *i t .
That value is a vect or <i nt >, which holds the line numbers on which this word has
appeared so far. We call that vect or 's push_back member to append the current line
number to the vect or .

As we saw in 87.2/125, if this is the first time we've seen this word, then the associated



vect or <i nt > will be value-initialized. Value-initialization of class types is a bit
complicated, as we'll see in 89.5/164; what we need to know is that vect or s are value-
initialized the same way that variables of type vect or are created when we don't give
them an initial value explicitly. In both cases, the vect or is created without any
elements. Thus, when we insert a new st ri ng key into the map, it will be associated with
an empty vect or <i nt >. The call to push_back will append the current line number to
this initially empty vect or .

Having written the xr ef function, we can use it to generate a cross-reference table:

int main()
{
/1 call xref using split by default
map<string, vector<int> > ret = xref(cin);
/1 wite the results
for (map<string, vector<int> >::const_iterator it = ret.begin();
it '=ret.end(); ++it) {
/'l wite the word
cout << it->first << " occurs on line(s): ";
/1 followed by one or nore |ine nunbers
vector<int>::const _iterator line_it = it->second. begin();
cout << *line_it; // wite the first |ine number
++line_it;
/'l wite the rest of the line nunbers, if any
while (line_it '=it->second.end()) {
cout << ", " << *line_it;
++line_it;
}
/Il wite a newline to separate each word fromthe next
cout << endl:
}
return O,
}

We expect that this code will look as unfamiliar as the code that updated the map.
Nevertheless, it uses only operations that we've already seen.

We begin by calling xr ef to build a data structure that contains the numbers of the lines
on which each word appears. We use the default value for the function parameter, so this
call to xr ef will use spl it to break the input into words. The rest of the program writes
the contents of the data structure that spl i t returns.

Most of the program is the f or statement, the form of which should be familiar from
87.2/124. It starts at the first element in r et and looks at all the elements in sequence.

As you read the body of the f or loop, remember that dereferencing a map iterator yields
a value of type pai r. The fi r st element of the pai r holds the (const ) key, and the



second element is the value associated with that key.

We begin the f or loop by writing the word that we're processing and a message:

cout << it->first << " occurs on line(s): ";

That word is the key at the position in the map associated with the iterator i t . We get at
the key by dereferencing the iterator and fetching the f i r st element from the pai r.

We are justified in writing the message at this point because the only way an element
could have gotten into r et is if it represents a word with one or more references. In this
case, we know for certain that at least one line number will follow the message. We don't
know if there will be more than one, so we are ambiguous about the plural.

Justasit->first isthe key, i t - >second is the associated value, which in this case is
avect or <i nt > that holds the current word's line numbers. We define | i ne_it as an
iterator that we will use to access the elements of i t - >second.

We want commas to separate those numbers, but we don't want a stray comma at the
end. Therefore, we must treat either the first or the last element specially. We choose to
treat the first one specially, by writing that element explicitly. It is safe to do so because
every element of r et represents a word with at least one reference to it. Having written
an element, we increment the iterator to indicate that we've done so. Then the whi | e
loop iterates through the remaining elements (if any) of the vect or <i nt >. For each
element, it writes a comma, followed by the value of the element.
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7.4 Generating sentences

We'll wrap up this chapter with a slightly more complicated example: We can use a nap
to write a program that takes a description of a sentence structure—a grammar—and
generates random sentences that meet that description. For example, we might describe
an English sentence as a noun and a verb, or as a noun, a verb, and an object, and so on.

The sentences that we can construct will be more interesting if we can handle complicated
rules. For example, rather than saying merely that a sentence is a noun followed by a
verb, we might allow noun phrases, where a noun phrase is either simply a noun or an
adjective followed by a noun phrase. As a concrete example, given the following input

Cat egori es Rul es
<noun> cat
<noun> dog
<noun> tabl e
<noun- phr ase> <noun>
<noun- phr ase> <adj ecti ve> <noun- phrase>
<adj ecti ve> | arge
<adj ecti ve> br own
<adj ecti ve> absurd
<ver b> j unps
<ver b> sits

on the stairs

under the sky

wherever it wants

t he <noun-phrase> <verb> <l ocati on>

<l ocati on>
<l ocati on>
<l ocati on>
<sent ence>

our program might generate

the table junps wherever it wants

The program should always start by finding a rule for how to make a sentence. In this
input, there is only one such rule—the last one in our table:

<sent ence> t he <noun-phrase> <verb> <l ocation>

This rule says that to make a sentence, we write the word the, a noun-phrase, a verb,
and finally a location. The program begins by randomly selecting a rule that matches
<noun-phrase>. Evidently the program chose the rule

<noun- phrase> <noun>

and then resolved the noun using the rule



<noun> t abl e

The program must still resolve verb and location, which apparently it did by selecting

<ver b> j unps

for the verb and

<| ocation> wherever it wants

for the location. Note that this last rule maps a category to several words that wind up in
the generated sentence.

7.4.1 Representing the rules

Our table contains two kinds of entries: categories, which are enclosed in angle brackets,
and ordinary words. Each category has one or more rules; each ordinary word stands for
itself. When the program sees a string enclosed in angle brackets, we know that the
string will represent a category, so we will have to make the program find a rule that
matches the category and expand the right-hand part of that rule. If the program sees
words that are unadorned by angle brackets, then we know that it will be able to place
those words directly into the generated sentence.

Thinking about how our program might operate, it appears that the program will read a
description of how to create sentences, and then randomly generate a sentence. So the
first question is: How should we store the description? When we generate sentences, we
need to be able to match each category to a rule that will expand that category. For
example, we first need to find the rule for how to create a <sent ence>; from that rule,
we will need to find rules for <noun- phr ase>, <ver b>, <l ocat i on>; and so on.
Apparently, we'll want a map that maps categories to the corresponding rules.

But what kind of map? The categories are easy: We can store them as st ri ngs, so the
key type of our map will be stri ng.

The value type is more complicated. If we look at the table again, we can see that any
given rule may be a collection of St ri ngs. For example, the category sent ence is
associated with a rule that has four components: the word t he and three other st ri ngs,
which are themselves categories. We know how to represent values of this kind: We can

use a vect or <st ri ng> to hold each rule. The problem is that each category may
appear more than once in the input. For example, in our sample input description, the
category <noun> appears three times, as do the categories <adj ect i ve> and

<l ocat i on>. Because these categories appear three times, each one will have three
matching rules.

The easiest way to manage multiple instances of the same key will be to store each
collection of rules in its own vect or . Thus, we'll store the grammar in a nap from
string to vect or s, which themselves hold vect or <st ri ng>.



This type is quite a mouthful. Our program will be clearer if we introduce synonyms for
our intermediate types. We said that each rule is a vect or <st ri ng>, and that each

category maps to a vect or of these rules. Our analysis implies that we really want to
define three types—one for the rule, one for a collection of rules, and one for the map:

typedef vector<string> Rul e;
typedef vector<Rul e> Rul e_coll ection;
typedef map<string, Rule_collection> G ammar;

7.4.2 Reading the grammar

Having resolved how to represent the grammar, let's write a function to read it:

/'l read a granmar froma given input stream
G anmar read_grammar (i strean& in)

{
G ammar ret;
string line;
/'l read the input
while (getline(in, line)) {
/1 split the input into words
vector<string> entry = split(line);
if (lentry.empty())
/1 use the category to store the associated rule
ret[entry[0]]. push_back(
Rul e(entry.begin() + 1, entry.end()));
}
return ret;
}

The function will read from an input stream and generate a G- anmar as output. The

whi | e loop looks like many that we've seen before: It reads a line at a time from i n and
stores what it read in | i ne. The whi | e terminates when we run out of input or
encounter invalid data.

The body of the whi | e is astonishingly concise. We use the spl i t function from
86.1.1/103 to break the input into words, and store the resulting vect or in a variable
called entry. If entry is empty, we saw a blank input line, so we disregard it.
Otherwise, we know that the first element in ent r y will be the category that we are
defining.

We use this element as the index into r et . The expression ret [ entry[ 0] ] yields the
object of type Rul e _col | ecti on that is associated with the category in ent ry[ 0] ,
remembering that a Rul e_col | ecti on isavect or, each element of which holds a

Rul e (or, equivalently, a vect or <st ri ng>). Therefore, ret[ entry[ 0] ] isavector,
onto the back of which we push the rule that we just read. That rule is in ent r y, starting
with the second element; the first element in ent ry is the category. We construct a new,



unnamed Rul e, by copying the elements from ent ry (except for the first element), and
push that newly created Rul e onto the back of the Rul e _col | ecti on indexed by
ret[entry[0]] .

7.4.3 Generating the sentence

Having read all the input, we must next generate a random sentence. We know that our
input will be a grammar, and that we want to produce a sentence. Our output will be a
vect or <st ri ng> that represents the output sentence.

That's the easy part. The more interesting problem is how the function should work. We
know that initially we'll need to find a rule that corresponds to <sent ence>. Moreover,
we know that we are going to build our output in pieces, which we will assemble from
various rules and parts of rules.

In principle, we could concatenate those pieces to form our result. However, because
there is no built-in concatenation operation for vect or s, we will start with an empty
vect or and call push_back repeatedly on it.

These two constraints—starting with <sent ence>, and calling push_back repeatedly on
an initially empty vect or —suggest that we are going to want to define our sentence
generator in terms of an auxiliary function, which we will call as follows:

vector<string> gen_sentence(const G amar& Q)

{
vector<string> ret;
gen_aux(g, "<sentence>", ret);
return ret;

}

In effect, the call to gen_aux is a request to use the grammar g to generate a sentence
according to the <sent ence> rule, and to append that sentence to r et .

Our remaining task is to define gen_aux. Before we do so, we note that gen_aux will
have to determine whether a word represents a category, which it will do by checking
whether the word is bracketed. We shall, therefore, define a predicate to do so:

bool bracketed(const string& s)

{
return s.size() > 1 && s[0] == "< && s[s.size() - 1] =="'>";

}

The job of gen_aux is to expand the input St ri ng that it is given as its second
argument by looking up that st ri ng in the grammar that is its first parameter and
placing its output into its third parameter. By "expand" we mean the process that we
described in 7.4/129. If our St ri ng is bracketed, we then have to find a corresponding
rule, which we'll expand in place of the bracketed category. If the input St ri ng is not
bracketed, then the input itself is part of our output and can be pushed onto the output
vect or with no further processing:



voi d
gen_aux(const Grammar& g, const string& word, vector<string>& ret)

{

if (!bracketed(word)) {
ret. push_back(word);

} else {
/'l locate the rule that corresponds to word
Grammar: :const _iterator it = g.find(word);
if (it == g.end())

throw | ogic_error("enpty rule");

/'l fetch the set of possible rules
const Rule_collection& ¢ = it->second,

/1 from which we sel ect one at random
const Rule& r = c[nrand(c.size())];

/'l recursively expand the selected rule
for (Rule::const_iterator i =r.begin(); i !'=r.end(); ++i)
gen_aux(g, *i, ret);

Our first job is trivial: If the word is not bracketed, it represents itself, so we can append
it tor et and we're done. Now comes the interesting part: finding in g the rule that
corresponds to our word. You might think that we could simply refer to g[ wor d] , but
doing so would give us the wrong result. Recall from 87.2/125 that when you try to index
a map with a nonexistent key, it automatically creates an element with that key. That will
never do in this case, because we don't want to litter our grammar with spurious rules.
Moreover, g is a const map, so even if we wanted to create new entries, we couldn't do
so. Indeed, [ ] isn't even defined on a const map.

Evidently, we must use a different facility: The fi nd member of the map class looks for
the element, if any, with the given key, and returns an iterator that refers to that element
if it can find one. If no such element exists in g, the fi nd algorithm returns g. end() .
The comparison between i t and g. end( ) , therefore, serves to ensure that the rule
exists. If it doesn't exist, that means the input was inconsistent—it used a bracketed word
without a corresponding rule—so we throw an exception.

At this point, i t is an iterator that refers to an element of g, which is a map.
Dereferencing this iterator yields a pai r, the second member of which is the value of the
map element. Therefore, i t - >second denotes the collection of rules that correspond to
this category. For convenience, we define a reference named C as a synonym for this
object.

Our next job is to select a random element from this collection, which we do in the
initialization of r . This code

const Rule& r = c[nrand(c.size())];

is unfamiliar, and is, therefore/worth a close look. First, recall that we defined C to be a



Rul e _col | ecti on, which is a kind of vect or . We call a function named nr and, which
we will define in 87.4.4/135, to select a random element of this vect or . When we give
nrand an argument n, it returns a random integer in the range [ O, n) . Finally, we
define r as a synonym for that element.

Our final task in gen_aux is to examine every element of r . If the element is bracketed,
we have to expand it into a sequence of words; otherwise, we append it to r et . What
may seem like magic on first reading is that this processing is exactly what we are doing
in gen_aux—and therefore, we can call gen_aux to do it!

Such a call is called recursive, and it is one of those techniques that looks like it can't
possibly work—until you've tried it a few times. To convince yourself that this function
works, begin by noting that the function obviously works if word is not bracketed.

Next, assume that wor d is bracketed, but its rule's right-hand side has no bracketed
words of its own. It should still be easy to see that the program will work in this case,
because when it makes each recursive call, the gen_aux that it calls will immediately see
that the word is not bracketed. Therefore, it will append the word to r et and return.

The next step is to assume that wor d refers to a slightly more complicated rule—one that
uses bracketed words in its right-hand side, but only words that refer to rules with no
bracketed words of their own. When you encounter a recursive call to gen_aux, do not
try to figure out what it does. Instead, remember that you have already convinced
yourself that it works in this case, because you know that at worst, its argument is a
category that does not lead to any further bracketed words. Eventually, you will see that
the function works in all cases, because each recursive call simplifies the argument.

We do not know any sure way to explain recursion. Our experience is that people stare at
recursive programs for a long time without understanding how they work. Then, one day,
they suddenly get it—and they don't understand why they ever thought it was difficult.
Evidently, the key to understanding recursion is to begin by understanding recursion. The
rest is easy.

Having written gen_sent ence, r ead_gr anmar , and the associated auxiliary functions,
we'll want to use them:

int main() {
/1 generate the sentence
vector<string> sentence = gen_sentence(read_gramrar(cin));

/1 wite the first word, if any
vector<string>::const _iterator it = sentence. begin();
if (!sentence.enpty()) {

cout << *it;

++it;
}
/'l wite the rest of the words, each preceded by a space
while (it !'= sentence.end()) {
cout << " " << *it,
++it;
}

cout << endl;



return O;

We read the grammar, generate a sentence from it, and then write the sentence a word
at a time. The only even minor complexity is that we put a space in front of the second
and subsequent words of the sentence.

7.4.4 Selecting a random element

It is now time to write nr and. We begin by noting that the standard library includes a
function named r and (defined in <cst dl i b>). That function takes no arguments, and
returns a random integer in the range [ 0, RAND MAX] , where RAND MAX is a large
integer that is also defined in <cst dl i b>. Our job is to reduce the range [ O,
RAND_MAX] , which includes both 0 and RAND_NMAX, to [ O, n), which includes O but not
n, with the understanding that n <= RAND NAX.

You might think that it would suffice to compute r and() % n, which is the remainder
when dividing the random integer by n. In practice, this technique fails for two reasons.

The most important reason is pragmatic: r and() really returns only pseudo-random
numbers. Many C++ implementations' pseudo-random-number generators give
remainders that aren't very random when the quotients are small integers. For example,
it is not uncommon for successive results of r and() to be alternately even and odd. In
that case, if n is 2, successive results of rand() % n will alternate between 0 and 1.

There is another, more subtle reason to avoid using rand() % n: If the value of n is
large, and RAND_ NMAX is not evenly divisible by n, some remainders will appear more
often than others. For example, suppose that RAND MAX is 32767 (the smallest
permissible value of RAND MAX for any implementation) and n is 20000. In that case,
there would be two distinct values of r and() that would cause r and() % n to be 10000
(namely, 10000 and 30000), but only one value of r and() that would cause r and() %
n to be 15000 (namely, 15000). Therefore, the naive implementation of nr and would
yield 10000 as a value of nr and( 20000) twice as often as it would yield 15000.

To avoid these pitfalls, we'll use a different strategy, by dividing the range of available
random numbers into buckets of exactly equal size. Then we can compute a random
number and return the number of the corresponding bucket. Because the buckets are of
equal size, some random numbers may not fall into any bucket at all. In that case, we
keep asking for random numbers until we get one that fits.

The function is easier to write than to describe:

/'l return a randominteger in the range [0, n)
int nrand(int n)

{
if (n <=0 || n > RAND MAX)
t hrow domain_error("Argunment to nrand is out of range");

const int bucket_size = RAND MAX / n;
int r;



dor =rand() / bucket_size;
while (r >= n);

return r;

The definition of bucket _si ze relies on the fact that integer division truncates its result.
This property implies that RAND MAX / n is the largest integer that is less than or equal
to the exact quotient. As a consequence, bucket _si ze is the largest integer with the
property that n * bucket size <= RAND MAX.

The next statement is a do while statement. A do whi | e is like a whi | e statement,
except that it always executes the body at least once, and tests the condition at the end.
If that condition yields t r ue, then the loop repeats, executing the push_back until the
whi | e fails. In this case, the body of the loop sets I to a bucket number. Bucket O will
correspond to values of r and() in the range [ 0, bucket size), bucket 1 will
correspond to values in the range [ bucket _si ze, bucket size * 2), andso on. If
the value of r and() is so large thatr >= n, the program will continue trying random
numbers until it finds one that it likes, at which point it returns the corresponding value of
r.

For example, let's assume that RAND MAX is 32767 and n is 20000. Then bucket _si ze
will be 1, and nr and will work by discarding random numbers until it finds one less than
20000. As another example, assume that n is 3. Then bucket _si ze will be 10922. In
this case, values of r and() in the range [ 0, 10922) will yield O, values in the range
[ 10922, 21844) will yield 1, values in the range [ 21844, 32766) will yield 2, and

values of 32766 or 32767 will be discarded.
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7.5 A note on performance

If you have used associative arrays in other languages, those arrays were probably
implemented in terms of a data structure called a hash table. Hash tables can be very
fast, but they have compensating disadvantages:

e For each key type, someone must supply a hash function, which computes an
appropriate integer value from the value of the key.

e A hash table's performance is exquisitely sensitive to the details of the hash function.

e There is usually no easy way to retrieve the elements of a hash table in a useful
order. C++ associative containers are hard to implement in terms of hash tables:

e The key type needs only the < operator or equivalent comparison function.

e The time to access an associative-container element with a given key is logarithmic
in the total number of elements in that container, regardless of the keys' values.

e Associative-container elements are always kept sorted by key.

In other words, although C++ associative containers will typically be slightly slower than
the best hash-table data structures, they perform much better than naive data structures,
their performance does not require their users to design good hash functions, and they
are more convenient than hash tables because of their automatic ordering. If you're
generally familiar with associative data structures, you might want to know that C++
libraries typically use a balanced self-adjusting tree structure to implement associative
containers.

If you really want hash tables, they are available as parts of many C++ implementations.
However, because they are not part of standard C++, they are beyond the scope of this
book. Although no standard can be ideal for every purpose, the standard associative

containers are more than adequate for most applications.
[ ot 3
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7.6 Detalls

The do while statement is similar to the whi | e statement (&2.3.1/19), except that the
test is at the end. The general form of the statement is

do statenent
while (condition);

The statement is executed first, after which the condition and statement are executed
alternately until the condition is f al se.

Value-initialization: Accessing a map element that doesn't yet exist creates an element
with a value of V() , where V is the type of the values stored in the map. Such an
expression is said to be value-initialized. 89.5/164 explains the details of value-
initialization; the most important aspect is that built-in types are initialized to 0.

rand() is a function that yields a random integer in the range [ 0, RAND_MAX] . Both
rand and RAND NMAX are defined in <cst dl i b>.

pair<K, V= is a simple type whose objects hold pairs of values. Access to these data
values is through their names, fi r st and second respectively.

map<K, V> is an associative array with key type K and value type V. The elements of a
map are key-value pairs, which are maintained in key order to allow efficient access of
elements by key. The iterators on maps are bidirectional (88.2.5/148). Dereferencing a
map iterator yields a value of type pai r <const K, V>. The nap operations include:

map<kK, V> m
Creates a new empty nap, with keys of type const K and values of type V.

map<K, V> m(cnp);
Creates a new empty nmap with keys of type const K and values of type V, that uses
the predicate cnp to determine the order of the elements.

i K]
Indexes the map using a key, k, of type K, and returns an Ivalue of type V. If there is no
entry for the given key, a new value-initialized element is created and inserted into the
map with this key. Because using [ ] to access a map might create a new element, [ ] is
not allowed on a const map.

m begi n()
m end()

Return iterators that can be used to access the elements of a nap. Note that
dereferencing one of these iterators yields a key-value pair, not just a value.

m fi nd(k)



Returns an iterator referring to the element with key k, or m end() if no such element
exists.

For a map<K, V> and an associated iterator p, the following apply:
p->first Yields an Ivalue of type const K that is the key for the element p denotes.

p- >second Yields an Ivalue of type V that is the value part of the element that p
denotes.

Exercises

7-0. Compile, execute, and test the programs in this chapter.

7-1. Extend the program from 8§7.2/124 to produce its output sorted by occurrence
count. That is, the output should group all the words that occur once, followed by those
that occur twice, and so on.

7-2. Extend the program in 84.2.3/64 to assign letter grades by ranges:

A 90-100

B 80-89.99...
C 70-79.99...
D 60-69.99...
F <60

The output should list how many students fall into each category.

7-3. The cross-reference program from 87.3/126 could be improved: As it stands, if a
word occurs more than once on the same input line, the program will report that line
multiple times. Change the code so that it detects multiple occurrences of the same line
number and inserts the line number only once.

7-4. The output produced by the cross-reference program will be ungainly if the input file
is large. Rewrite the program to break up the output if the lines get too long.

7-5. Reimplement the grammar program using a | i st as the data structure in which we
build the sentence.

7-6. Reimplement the gen_sent ence program using two vect or s: One will hold the
fully unwound, generated sentence, and the other will hold the rules and will be used as a
stack. Do not use any recursive calls.

7-7. Change the driver for the cross-reference program so that it writes | I ne if there is
only one line and | i nes otherwise.

7-8. Change the cross-reference program to find all the URLs in a file, and write all the
lines on which each distinct URL occurs.

7-9. (difficult) The implementation of nrand in 87.4.4/135 will not work for arguments
greater than RAND MAX. Usually, this restriction is no problem, because RAND MAX is
often the largest possible integer anyway. Nevertheless, there are implementations under
which RAND MAX is much smaller than the largest possible integer. For example, it is not



uncommon for RAND MAX to be 32767 (21> -1) and the largest possible integer to be
2147483647 (231 -1). Reimplement nr and so that it works well for all values of n.

R s [ o3
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8

Writing generic functions

The first part of this book concentrated on writing programs that use the fundamentals of
the C++ language, and the abstractions that the standard library provides, to solve
concrete problems. Starting with this chapter, we'll turn our attention to learning how to
write our own abstractions.

These abstractions take several forms. This chapter discusses generic functions, which are
functions with parameter types that we do not know until we call the functions. Chapters
9 through 12 show how to implement abstract data types. Finally, starting in Chapter 13,
we will learn about object-oriented programming (OOP).

8.1 What is a generic function?

Whenever we have written a function so far, we've known the types of the function's
parameters and return value. This knowledge may seem at first like an integral part of
any function's description. Nonetheless, a closer look will reveal that we have already
used—but not written—functions with argument and return types that we do not know
until we use the functions.

For example, in 86.1.3/107, we used a library function named f i nd, which takes two
iterators and a value as arguments. We can use the same f i nd function to find values of
any appropriate type in any kind of container. This usage implies that we do not know
what f i nd's argument or result types will be until we use it. Such a function is called a
generic function, and the ability to use and create generic functions is a key feature of
the C++ language.

The language support for generic functions is not hard to understand. What is difficult is
understanding exactly what we mean when we say that f i nd can accept arguments of
"any appropriate type." For example, how can we describe how f I nd behaves in a way
that will enable someone who wishes to use it to know whether it will work with particular
arguments? The answer to this question lies partly within the C++ language and partly
outside it.

The part that is inside the language is the idea that the ways in which a function uses a
parameter of unknown type constrain that parameter's type. For example, if a function
has parameters X and y, and computes X + Yy, then the mere existence of that
computation implicitly requires that X and y have types for which X + YV is defined.
Whenever you call such a function, the implementation checks that your arguments' types
meet the constraints implied by the ways in which the function uses its parameters.

The part of the answer that lies outside the C++ language is the way in which the



standard library organizes the constraints on its functions' parameters. We have already
shown you one example of this organization—namely, the notion of an iterator. Some
types are iterators; others aren't. The f i nd function takes three arguments, of which the
first two are required to be iterators.

When we say that a particular type is an iterator, we are really saying something about
the operations that the type supports: A type is an iterator if and only if it supports a
particular collection of operations in a particular way. If we were to set out to write the

f 1 nd function ourselves, we would do so in a way that relies only on the operations that
every iterator must support. If we were to write our own container—as we shall do in
Chapter 11—then we would have to supply iterators that support all the appropriate
operations.

The notion of an iterator is not part of the C++ language proper. However, it is a
fundamental part of the standard library's organization, and it is that part that makes
generic functions as useful as they are. This chapter shows some examples of how the
library might implement generic functions. Along the way, it explains just what an iterator
is— or, more precisely, what iterators are, because they come in five different varieties.

This chapter is more abstract than the ones we've seen so far, because it is in the very
nature of generic functions to be abstract. If we wrote functions that solved specific
problems, those functions wouldn't be generic. Nevertheless, you will find that most of the
functions that we describe are familiar, because we have used them in earlier examples.
Moreover, it shouldn't be hard to imagine how you might use even the unfamiliar ones.

8.1.1 Medians of unknown type

The language feature that implements generic functions is called template functions.
Templates let us write a single definition for a family of functions—or types—that behave
similarly, except for differences that we can attribute to the types of their template
parameters. We'll explore template functions in this chapter, and template classes in
Chapter 11.

The key idea behind templates is that objects of different types may nevertheless share
common behavior. Template parameters let us write programs in terms of that common
behavior, even though we do not know the specific types that correspond to the template
parameters when we define the template. We do know the types when we use a template,
and that knowledge is available when we compile and link our programs. For generic
parameters, the implementation doesn’t need to worry about what to do about objects
with types that might vary during execution—only during compilation.

Although templates are a cornerstone of the standard library, we can use them for our
own programs as well. For example, we wrote a function in 84.1.1/53 to calculate the
median of a vect or <doubl e>. That function relied on the ability to sort avect or,
and then to fetch a specific element given its index, so we cannot easily make that
function work on arbitrary sequences of values. Even so, there is no reason to restrict the
function

to vect or <doubl e>; we can take the median of vect or s of other types as well.

Template functions allow us to do so:

tenpl at e<cl ass T>
T medi an(vect or <T> v)



typedef typenane vector<T>::size_ type vec_sz;

vec_sz size = v.size();
if (size == 0)
throw domai n_error ("nmedi an of an enpty vector");

sort(v.begin(), v.end());
vec_sz md = sizel2;

return size %2 == 0 ? (v[md] +v[md-1]) / 2 : v[md];

The first novelties here are the template header,

tenpl at e<cl ass T>

and the use of T in the parameter list and return type. The template header tells the
implementation that we are defining a template function, and that the function will take a
type parameter. Type parameters operate much like function parameters: They define
names that can be used within the scope of the function. However, type parameters refer
to types, not to variables. Thus, wherever T appears in the function, the implementation
will assume that T names a type. In the nedi an function, we use the type parameter
explicitly to say what type of objects the vect or named Vv holds, and to specify the
return type of the function.

When we call this medi an function, the implementation will bind T to a type that it
determines at that point, during compilation. For example, we might take the median of a
vect or <i nt > object named Vi by calling medi an(vi ) . From this call, the
implementation can infer that T is i nt . Wherever we use T in this function, the
implementation generates code as if we had written i nt . In effect, the implementation
instantiates our code as if we had written a specific version of medi an that took a

vect or <i nt > and returned an i nt . We'll have more to say about instantiation shortly.

The next novelty is the use of typename in the definition of vec_sSz. It is there to tell
the implementation that vect or <T>: : si ze_t ype is the name of a type, even though
the implementation doesn't yet know what type T represents. Whenever you have a type,
such as vect or <T>, that depends on a template parameter, and you want to use a
member of that type, such as si ze_t ype, that is itself a type, you must precede the
entire name by typename to let the implementation know to treat the name as a type.
Although the standard library ensures that vect or <T>: : si ze_t ype is the name of a
type for any T, the implementation, having no special knowledge of the standard-library
types, has no way of knowing this fact.

As you read a template, you will usually see that the type parameters pervade its
definition, even if many of the type dependencies are implicit. In our medi an function,
we use the type parameters explicitly only in the function return type and parameter list,
and in the definition of vec_sz. However, because V has type vect or <T>, any operation
involving v implicitly involves this type. For example, in the expression



(vimid] + v[md-1]) / 2

we have to know the type of V's elements in order to know the types of v[ m d] and

v[ m d- 1] . These types, in turn, determine the type of the + and / operators. If we call
nmedi an on a vect or <i nt >, then we can see that + and / take i nt operands and
return i nt results. Calling medi an for a vect or <doubl e> does the arithmetic on
doubl e values. We can't call nedi an for a vect or <st ri ng>, because the nedi an
function uses division, and the st ri ng type does not have a division operator. This
behavior is what we want. After all, what would it mean to find the nedi an of a

vect or <stri ng>?

8.1.2 Template instantiation

When we call medi an on behalf of a vect or <i nt >, the implementation will effectively
create and compile an instance of the function that replaces every use of T by i nt . If we
also call medi an for a vect or <doubl e>, then the implementation will again infer the
types from the call. In this case, T will be bound to doubl e, and the implementation will
generate another version of nedi an using doubl e in place of T.

The C++ standard says nothing about how implementations should manage template i
nstantiation, so every implementation handles instantiation in its own particular way.
While we cannot say exactly how your compiler will handle instantiation, there are two
important points to keep in mind: The first is that for C++ implementations that follow
the traditional edit-compile-link model, instantiation often happens not at compile time,
but at link time. It is not until the templates are instantiated that the implementation can
verify that the template code can be used with the types that were specified. Hence, it is
possible to get what seem like compile-time errors at link time.

The second point matters if you write your own templates: Most current implementations
require that in order to instantiate a template, the definition of the template, not just the
declaration, has to be accessible to the implementation. Generally, this requirement
implies access to the source files that define the template, as well as the header file. How
the implementation locates the source file differs from one implementation to another.
Many implementations expect the header file for the template to include the source file,
either directly or via a #i ncl ude. The most certain way to know what your
implementation expects is to check its documentation.

8.1.3 Generic functions and types

We said in §8.1/139 that the difficult part of designing and using templates is
understanding precisely the interaction between a template and the "appropriate types"
that can be used with the template. We saw one obvious type dependency in our
definition of the template version of nedi an: The types stored in the vect or s that are
passed to the nedi an function must support addition and division, and these operations
had better map to their normal arithmetic meanings. Fortunately, most types that define
division are arithmetic types, so such dependencies are unlikely to create problems in
practice.

More subtle type issues arise in the interactions between templates and type conversions.
For example, when we called find to check whether students had done all their homework,



we wrote

find(s.homework. begi n(), s.honework.end(), 0);

In this case, honmewor k is a vect or <doubl e>, but we told find to look for an i nt . This
particular type mismatch is of no consequence: We can compare an i nt value with a
doubl e value with no loss of meaning. However, when we called accunul at e

accurul ate(v. begin(), v.end(), 0.0)

we noted that the correctness of our program depended on our using the doubl e form of
zero, rather than the i nt . The reason is that the accurmnul at e function uses the type of
its third argument as the type of its accumulator. If that type is i nt —even if we're
adding a sequence of doubl es—the addition will be truncated to just the integer part. In
this case, the implementation would let us pass an | nt , but the sum that we obtained
would lack precision.

Finally, when we called max

string::size_type maxlen = 0;
mexl en = max(maxl en, namne. size());

we noted that it was essential that the type of nax| en match exactly the type returned
by nane. si ze() . If the types don't match, the call will not compile. Now that we know
that template parameter types are inferred from the argument types, we can understand
why this behavior exists. Consider a plausible implementation of the max function:

tenpl at e<cl ass T>
T max(const T& left, const T& right)

{
}

return left > right ? left : right;

If we pass an i nt and a doubl e to this function, the implementation has no way to infer
which argument to convert to the other argument's type. Should it resolve the call as
comparing the values as i nt s, and so return an i nt, or should it treat both arguments
as doubl e and return a doubl e? There's no way for the implementation to make this

determination, so the call fails at compile time.
ot 3
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8.2 Data-structure independence

The medi an function that we just implemented used templates to generalize across types
that a vect or might contain. We can call this function to find the median of a vect or of
values of any kind of arithmetic type.

More generally, we would like to be able to write a simple function that deals with values
stored in any kind of data structure, suchasalist, a vector ,orastring. For
that matter, we would like to be able to act on part of a container, rather than having to
use the entire container.

For example, the standard library uses iterators to allow us to call f i nd on any
contiguous part of any container. If C is a container, and val is a value of the type stored
in the container, we use find by writing expressions such as

find(c.begin(), c.end(), val)
Why did we have to mention C twice? Why doesn't the library let us say
c.find(val)

by analogy with c. si ze() , or even
find(c, val)

passing the container directly to f i nd as an argument? Both questions turn out to have
the same answer: By using iterators, and thereby requiring us to mention C twice, the
library makes it possible to write a single f i nd function that can find a value in any
contiguous part of any container. Neither of these other approaches allows us to do so.

Let's look first at c. f i nd(val ) . If the library let us use c. fi nd(val ) , we would be
calling find as a member of whatever type C has—which means that whoever defined the
type of ¢ would have to define f i nd as a member. Also, if the library used the
c.find(val) style for the algorithms, then we would be unable to use these functions
for built-in arrays, about which we shall learn in Chapter 10.

Why does the library require us to give c. begi n() and c. end() as arguments to f i nd
instead of letting us pass C directly? The reason to pass two values is that doing so
delimits a range, which makes it possible to look in part of a container instead of insisting
on looking through the whole thing. For example, think about how you would write the
spl it functionin 86.1.1/103if fi nd_i f were restricted to searching an entire
container.

There is a more subtle reason for generic functions to take iterator arguments instead of
container arguments directly: It is possible for iterators to access elements that aren't in



containers at all in the ordinary sense. For example, in 86.1.2/105, we used the r begi n
function, which yields an iterator that grants access to its container’'s elements in reverse
order. Passing such an iterator as an argument to fi nd or fi nd_i f lets us search the
container's elements in reverse order, which would be impossible if these functions
insisted on taking a container as an argument directly.

Of course, it would be possible to overload the library functions, so that one could call
them with either a container or a pair of iterators as an argument. However, it is far from
clear that the extra convenience would outweigh the extra complexity in the library.

8.2.1 Algorithms and iterators

The easiest way to understand how templates let us write data-structure-independent
programs is to look at implementations of some of the more popular standard-library
functions. These functions all include iterators among their arguments, which identify the
container elements on which the functions will act. All standard-library containers, and
some other types, such as st ri ng , supply iterators that allow these functions to act on
the containers' elements.

Some containers support operations that others do not. This support, or lack thereof,
translates into operations that some iterators support and others do not. For example, it
is possible to access an element with a given index directly in avect or , butnotina

| i st . Accordingly, if we have an iterator that refers to an element of a vect or , the
design of that iterator makes it possible to obtain an iterator that refers to another
element of that same vect or by adding the difference between the elements' indices to
the iterator. Iterators that refer to | i st elements offer no analogous facility.

Because different kinds of iterators offer different kinds of operations, it is important to
understand the requirements that various algorithms place on the iterators that they use,
and the operations that various kinds of iterators support. Whenever two iterators support
the same operation, they give it the same name. For example, all iterators use ++ to
cause an iterator to refer to the next element of its container.

Not all algorithms need all the iterator operations. Some algorithms, such as fi nd , use
very few iterator operations. We can find values using any of the container iterators that
we've seen. Other algorithms, such as sort , use the most powerful operations, including
arithmetic, on iterators. Of the types we've seen in the library, only vect or s and
string s are compatible with sort . (Sorting a st ri ng arranges its individual
characters in nondecreasing order.)

The library defines five iterator categories , each one of which corresponds to a specific
collection of iterator operations. These iterator categories classify the kind of iterator that
each of the library containers provides. Each standard-library algorithm says what
category it expects for each iterator argument. Thus, the iterator categories give us a way
to understand which containers can use which algorithms.

Each iterator category corresponds to a strategy for accessing container elements.
Because iterator categories correspond to access strategies, they also correspond to
particular kinds of algorithms. For example, some algorithms make only a single pass
over their input, so they don't need iterators that can make multiple passes. Others
require the ability to access arbitrary elements efficiently given only their indices, and,
therefore, require the ability to add indices and integers.



We will now describe each access strategy, show an algorithm that uses it, and describe
the corresponding iterator category.

8.2.2 Sequential read-only access

One straightforward way to access a sequence is to read its elements sequentially. Among
the library functions that does so is f i nd , which we can implement as

tenplate <class In, class X> In find(In begin. In end, const X& x)

{
while (begin != end & *begin != Xx)
++begi n;
return begin;

If we call fi nd(begin, end, x) ,the resultis either the first iterator i t er in the
range [ begi n, end) such that*iter == X, or end if no such iterator exists.

We know that this function accesses the elements in the range [ begi n, end)
sequentially, because the only operation it ever uses to change the value of begi n is ++ .
In addition to using ++ to change the value of begin, it uses ! = to compare begi n and
end , and * to access the container element to which begi n refers. These operations are
sufficient to read sequentially the elements to which a range of iterator values refers.

Although the operations are sufficient, they are not the only operations that we might
want to use. For example, we might have implemented find this way:

tenplate <class In, class X> In find(In begin, In end, const X& X)
{
if (begin == end || *begin == x)
return begin;
begi n++;
return find(begin, end, x);

Although most C++ programmers would find this recursive programming style unusual,
programmers accustomed to languages such as Lisp or ML will feel right at home. This

version of find uses begi n++ instead of ++begi n , and == instead of | = . From these
two examples, we can conclude that an iterator that offers sequential read-only access to
elements of a sequence should support ++ (both prefix and postfix), ==, ! =, and unary

*

There is one other operator that such an iterator ought to support, and that is the
equivalence between i t er - >nenber and (*iter). nmenber that we used, for example,
in 87.2/124. Therewe used i t - >f i r st as an abbreviation for (*it).first , and we
would certainly like to be able to do so in general.

If a type provides all of these operations, we call it an input iterator . Every container
iterator that we've seen supports all these operations, so they are all input iterators. Of
course, they support other operations as well, but that additional support does not affect



the fact that they are input iterators.

When we say that find requires input iterators as its first and second arguments, we are
saying that we can give find arguments of any type that meets the input-iterator
requirements, including iterators that support additional operations.

8.2.3 Sequential write-only access

Input iterators can be used only for reading elements of a sequence. Obviously, there are
contexts in which we would like to be able to use iterators to write elements of a
sequence. For example, consider the copy function

tenpl ate<cl ass I n, class Qut>
Qut copy(In begin, In end, Qut dest)

{
whil e (begin !'= end)
*dest ++ = *begi n++;
return dest;
}

This function takes three iterators; the first two denote the sequence from which to copy,
and the third denotes the beginning of the destination sequence. We saw this same

whi | e loop in 86.1/102: The function operates by advancing begi n through the
container until it reaches end , copying each element into dest as it goes.

As the name | n suggests, begi n and end are input iterators. We use them only for
reading elements, just as we did in f i nd . What about Qut , the type of the parameter
dest ? Looking at the operations on dest , we see that in this function, we need only be
able to evaluate *dest = value and dest ++ . As with f i nd , logical completeness
argues that we should also be able to evaluate ++dest

There is one other requirement that is less evident. Suppose it is an iterator that we wish
to use for output only, and we execute

*It = X;
++it;
++it;
it =y,

By incrementing it twice between assignments to *i t , we have left a gap in our output
sequence. Therefore, if we wish to use an iterator exclusively for output, there is an
implicit requirement that we not execute ++i t more than once between assignments to
*it , or assign a value to *i t more than once without incrementing i t .

If a function uses a type in a way that meets these requirements, we call that type an
output iterator. All the standard containers provide iterators that meet these
requirements, as does back i nserter . Itis worth noting that the "write-once"
property is a requirement on programs that use iterators, not on iterators themselves.
That is, iterators that satisfy only the output-iterator requirements are required to support
only programs that maintain that property. The iterator generated by back i nserter is



an output iterator, so programs that use it must obey the "write-once" requirement. The
container iterators all offer additional operations, so programs that use them are not
restricted in this way.

8.2.4 Sequential read-write access

Suppose we want to be able to read and write the elements of a sequence, but only
sequentially: We intend to advance iterators forward but never backward. An example of
a library function that does so is r epl ace , from the <al gori t hn®> header:

tenpl at e<cl ass For, class X>
voi d repl ace(For beg, For end, const X& x, const X& y)

{
while (beg !'= end){
if (*beg == x)
*beg = vy;
++beg;
}
}

This function examines the elements in the range [ beg, end) and replaces every
element that is equal to X by y . It should be clear that the type For needs to support all
the operations supported by an input iterator, as well as all the operations supported by
an output iterator. Moreover, it should not need to meet the single-assignment
requirement of output iterators, because it now makes sense to read the element value
after assigning it, and perhaps to change it. Such a type is a forward iterator , and it is
required to support

*it (for both reading and writing)

++it and it++ (but not --it or it—)

it ==j and it !'=j (where j has the sanme type as it)
it->menber (as a synonymfor (*it).menber)

All the standard-library containers meet the forward-iterator requirements.
8.2.5 Reversible access

Some functions need to get at a container's elements in reverse order. The most
straightforward example of such a function is r ever se , which the standard library
defines in the <al gori t hn> header

tenpl at e<cl ass Bi > void reverse(Bi begin, Bi end)
{
while (begin !'= end) {
--end;
if (begin !'= end)
swap(*begi n++, *end);



In this algorithm, we march end backward from the end of the vect or and beg forward
from the beginning, exchanging the elements that they reference as we go.

This function uses the iterators begi n and end as if they were forward iterators, except
that it also uses - - , which is obviously the key to being able to traverse a sequence
backward. If a type meets all the requirements of a forward iterator, and also supports - -
(both prefix and postfix), we call it a bidirectional iterator .

The standard-library container classes all support bidirectional iterators.
8.2.6 Random access

Some functions need to be able to jump around in a container. One good example of such
a function is the classical binary-search algorithm. The standard library implements this
algorithm in several forms, the most straightforward of which is called—you guessed
it—bi nary_sear ch . The standard-library implementation actually uses some clever
techniques (well beyond the scope of this book) that allow it to do binary searches on
sequences defined by forward iterators. A simpler version, which requires random-access
iterators, looks like this:

tenpl at e<cl ass Ran, class X>
bool binary_search(Ran begin, Ran end, const X& Xx)
{
while (begin < end) {
/1 find the mdpoint of the range
Ran md = begin + (end - begin) / 2;
/'l see which part of the range contains x; keep l|ooking only in that part
if (x < *md)
end = m d;
else if (*md < x)
begin = md + 1;
/1 if we got here, then *md == x so we're done
el se return true;

}

return fal se;

In addition to relying on the other usual iterator properties, this function relies on the
ability to do arithmetic on iterators. For example, it subtracts one iterator from another to
obtain an integer, and adds an iterator and an integer to obtain another iterator. Again,
the notion of logical completeness adds requirements to random-access iterators. If p and
g are such iterators, and n is an integer, then the complete list of additional
requirements, beyond those for bidirectional iterators, is

p+n
p -9

p[n] (equivalent to *(p + n))
pP<d p>d, p<=gq, and p >=(

, p-n and n + p



Subtracting two iterators yields the distance between the iterators as an integral type that
we will discuss in 810.1.4/175. We did not include == and ! = in the requirements because
random-access iterators also support the requirements on bidirectional iterators.

The only algorithm that we have used that requires random-access iterators is the sort
function. The vect or and st ri ng iterators are random-access iterators. However, the
| i st iterator is not; it supports only bidirectional iterators. Why?

The essential reason is that | | st s are optimized for fast insertion and deletion. Hence,
there is no quick way to navigate to an arbitrary element of the | i st . The only way to
navigate through a | i st is to look at each element in sequence.

8.2.7 lIterator ranges and off-the-end values

As we've seen, the convention that algorithms take two arguments to specify ranges is
nearly universal in the library. The first argument refers to the first element of the range;
the second argument refers to one past the last element of the range. Why do we specify
one past the end of the range? When is it even valid to do so?

In 82.6/30, we saw one reason to use an upper bound for a range that is one past the
last value in the range—namely, that if we specified the end of a range by a value equal
to the last element, then we would be saying implicitly that the last element was special
somehow. If the end value is treated specially, it is easy to write programs that
mistakenly stop one iteration before the end. As far as iterators are concerned, there are
at least three more reasons to mark the end of a range by an iterator that is one past the
last element, instead of one that refers to the last element directly.

One reason is that if the range had no elements at all, there would be no last element to
mark the end. We would then be in the curious position of having to designate an empty
range by an iterator that refers to where the element before the beginning of the range
would be. With that strategy, we would have to handle empty ranges differently from all
others, which would make our programs harder to understand and less reliable. We saw
in 86.1.1/103 that treating empty ranges the same as any others simplified our program.

The second reason is that marking the end of a range by an iterator that is one past the
end lets us get away with comparing iterators only for equality and inequality, and makes
it unnecessary to define what it means for one iterator to be less than another. The point
is that we can tell immediately if the range is empty by comparing the two iterators; the
range is empty if and only if the iterators are equal. If they are unequal, then we know
that the beginning iterator refers to an element, so we can do something and then
increment that iterator to reduce the size of the range. In other words, marking ranges by
the beginning and one past the end allows us to use loops of the form

/'l invariant: we nust still process the elenents in the range [begin, end)
while (begin !'= end) {

/1 do something with the elenment to which begin refers

++begi n;

and we need only to be able to do (in)equality comparisons on iterators.

The third reason is that defining a range by the beginning and one past the end gives us a



natural way to indicate "out of range." Many standard-library algorithms—and algorithms
that we ourselves write—take advantage of this out-of-range value by returning the
second iterator of a range to indicate failure. For example, our ur| _beg function in
86.1.3/108 used this convention to signal its inability to find a URL. If the algorithms did
not have this value available, they would have to invent one, which would complicate both
the algorithms and the programs that use them.

In short, although it may seem odd to indicate the end of a range by an iterator that
refers to one element past the end, doing so makes most programs simpler and more
reliable than they would be otherwise. To this end, every container type is required to
support an off-the-end value for its iterators. Each container's end member returns such
a value, and that value can be the result of other iterator operations as well. For example,
if C is a container, copying c. begi n() and incrementing that copy a number of times
equal to c. si ze() will yield an iterator that is equal to c. end() . The effect of
dereferencing an off-the-end iterator is undefined, as is that of computing an iterator
value that is before the beginning of a container, or more than one past the end.

<o



R s [ o3

8.3 Input and output iterators

Why are input and output iterators separate categories from forward iterators if no
standard container requires the distinction? One reason is that not all iterators are
associated with containers. For example, if C is a container that supports push_back,
then back i nserter(c) isan output iterator that meets no other iterator
requirements.

As another example, the standard library provides iterators that can be bound to input
and output streams. Not surprisingly, the iterators for istream meet the requirements for
input iterators, and those for 0Sst r eans meet the requirements for output iterators. Using
the appropriate stream iterator, we can use the normal iterator operations to manipulate
an i st reamor an 0st r eam For example, ++ will advance the iterator to the next value
in the stream. For input streams, * will yield the value at the current position in the input,
and for output streams, * will let us write to the corresponding 0St r eam The stream
iterators are defined in the <i t er at or > header.

The input stream iterator is an input-iterator type named i st ream i t er at or :

vector<int> v;

/'l read ints fromthe standard input and append themto v

copy(istreamiterator<int>(cin), istreamiterator<int>(),
back_inserter(v));

As usual, the first two arguments to copy specify a range from which to copy. The first
argument constructs a new | St ream i t er at or, bound to ci n, that expects to read
values of type | nt . Remember that C++ input and output are typed operations: When we
read from a stream, we always say the type of value that we expect to read, although
those types are often implicit in the operations that do the read. For example,

getline(cin, s) /'l read data into a string
cin >> s.name >> s.mdterm>> s.final; /'l read a string and two doubl es

Similarly, when we define a stream iterator, we must have a way to tell it what type it
should read from or write to the stream. Accordingly, the stream iterators are templates.

The second argument to COpYy creates a default (empty) i St ream it erat or <i nt >,
which is not bound to any file. The i St ream i t er at or type has a default value with the
property that any | St ream_ i t er at or that has reached end-of-file or is in an error state
will appear to be equal to the default value. Therefore, we can use the default value to
indicate the "one-past-the-end" convention for copy.

We can now see that the call to copy will read values from the standard input until we hit
end-of-file or an input that is not valid as an i nt .

We cannot use an i St ream i t er at or for writing. If we wish to write, we need an



ostream it erat or, which is the iterator type whose objects we use for output:

/'l wite the elenents of v each separated fromthe other by a space
copy(v. begin(), v.end(), ostream.iterator<int>(cout, " "));

Here we copy the entire vect or onto the standard output. The third argument constructs
a new iterator bound to cout , which expects to write values of type i nt .

The second argument used to construct the ost ream i t er at or <i nt > object specifies
a value to be written after each element. Typically, this value is a string literal. If we do
not supply such a value, the ost ream i t er at or will write values without any
separation. Therefore, if we omit the separator, a call to copy will run all the values
together into one unreadable mess:

/'l no separation between el enents!
copy(v.begin(), v.end(), ostream.iterator<int>(cout));
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8.4 Using iterators for flexibility

We can make a slight improvement in the spl i t function that we presented in
86.1.1/103. As written, the spl i t function returns a vect or <st ri ng>, which is
limiting: Instead of a vect or, our users might want a | i st <st ri ng> or another kind of
container. Nothing about the spl i t algorithm requires that we produce a vect or .

We can be more flexible by rewriting spl i t to take an output iterator instead of
returning a value. In this version of the function, we'll use that iterator to write the words
that we find. Our caller will have bound the iterator to the output location where the
values should be placed:

tenpl ate <cl ass Qut> /'l changed
void split(const string& str, Qut os) { /1 changed
typedef string::const_iterator iter;
iter i = str.begin();
while (i !'= str.end()) {
/'l ignore |eading blanks

i =find_if(i, str.end(), not_space);

/1 find end of next word

iter j =find_if(i, str.end(), space);
/'l copy the characters in [i, j)
if (i !'=str.end())
*os++ = string(i, j); /'l changed

i =

Like the wri t e_anal ysi s function that we wrote in 86.2.2/113, our new version of
spl i t has nothing to return, so we say that its return type is voi d. We have now made
spl it atemplate function that takes a single type parameter Qut , the name of which
suggests an output iterator. Recall that because forward, bidirectional, and random-
access iterators meet all the output-iterator requirements, we can use our spl it with
any kind of iterator except a pure input iterator such as i stream.terator.

The parameter 0S is of type Qut . We will use it to write the values of the words as we
find them. We do so near the end of the function

*os++ = string(i, j); /'l changed

which writes the word that we just found. The subexpression * 0S denotes the current



position in the container to which 0s is bound, so we assign the value of string(i, )
to the element at that position. Having done the assignment, we increment 0S so that we
meet the output-iterator requirements, and so that the next trip through the loop will
assign a value to the next container element.

Programmers who wish to use this revised spl i t function will have to change their
programs, but now we can write the words into almost any container. For example, if S is
the st ri ng whose words we want to append to a |l i st called word_| i st, then we
could call spl i t as follows:

split(s, back_inserter(word_list));

Similarly, we can write a trivial program to test our split program:

int main()
{
string s;
while (getline(cin, s))
split(s, ostream.iterator<string>(cout, "\n"));
return O,
}

Like the driver function that we wrote in 85.7/90, this function calls spl i t to separate
the input line into separate words, and writes those words onto the standard output. We
write to cout by passing to spl it an ostream.iterator<string> that we bind to

cout . When spl i t assigns to *0s, it will be writing to cout .
e 3
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8.5 Detalls

Template functions that return simple types have the form
t enpl at e<cl ass type-paraneter [, class type-paraneter]... >
ret-type function-nane (paraneter-1|ist)

Each type-parameter is a name that may be used inside the function definition wherever a
type is required. Each of these names should be used in the function parameter-list to
name the type of one or more parameters.

If the types do not all appear in the argument list, then the caller must qualify the

function-name with the actual types that cannot be inferred. For example,

tenpl ate<class T> T zero() { return 0; }

defines zer 0 to be a template function with a single type parameter, which is used to
name the return type. In calling this function, we must supply the return type explicitly:

doubl e x = zero<doubl e>()

The t ypenanme keyword must be used to qualify declarations that use types that are
defined by the template type parameters. For example,

typenane T::size_type nane;

declares namne to have type si ze_t ype , which must be defined as a type inside T .

The implementation automatically instantiates a separate instance of the template
function for each set of types used in a call to the function.

Iterators: A key contribution of the C++ standard library is the idea that algorithms can
achieve data-structure independence by using iterators as the glue between algorithms
and containers. Furthermore, the realization that algorithms can be factored based on the
operations that are required for the iterators that they use means that it is easy to match
a container with the algorithms that can be used on it.

There are five iterator categories. In general, the later categories subsume the operations
in the earlier ones:

Input iterator: Sequential access in one direction, input only

Qutput iterator: Sequenti al access in one direction, output only
Forward iterator: Sequential access in one direction, input and out put
Bi directional iterator: Sequential access in both directions, input and out put

Random access iterator: Efficient access to any el enment, input and out put



Exercises

8-0. Compile, execute, and test the programs in this chapter.

8-1. Note that the various anal ysi s functions we wrote in 86.2/110 share the same
behavior; they differ only in terms of the functions they call to calculate the final grade.
Write a template function, parameterized by the type of the grading function, and use
that function to evaluate the grading schemes.

8-2. Implement the following library algorithms, which we used in Chapter 6 and
described in 86.5/121. Specify what kinds of iterators they require. Try to minimize the
number of distinct iterator operations that each function requires. After you have finished
your implementation, see 8B.3/321 to see how well you did.

equal (b, e, d) search(b, e, b2, e2)
find(b, e, t) find_if(b, e, p)
copy(b, e, d) renove_copy(b, e, d, t)
renove_copy_if(b, e, d, p) renove(b, e, t)
transform(b, e, d, f) partition(b, e, p)

accunul ate(b, e, t)

8-3. As we learned in 84.1.4/58, it can be expensive to return (or pass) a container by
value. Yet the nedi an function that we wrote in §8.1.1/140 passes the vect or by value.
Could we rewrite the nmedi an function to operate on iterators instead of passing the

vect or ? If we did so, what would you expect the performance impact to be?

8-4. Implement the swap function that we used in 88.2.5/148. Why did we call swap
rather than exchange the values of * beg and * end directly? Hint: Try it and see.

8-5. Reimplement the gen_sent ence and xr ef functions from Chapter 7 to use output
iterators rather than writing their output directly to a vect or <st ri ng> . Test these new
versions by writing programs that attach the output iterator directly to the standard
output, and by storing the results ina |l i st <stri ng>andavector<string>.

8-6. Suppose that mhas type map<i nt, string>, and that we encounter a call to
copy(m begin(), mend(), back_inserter(x)) .What can we say about the
type of X ? What if the call were copy( x. begin(), x.end(), back inserter(m)
instead?

8-7. Why doesn't the max function use two template parameters, one for each argument
type?

8-8. In the bi nary_sear ch function in 88.2.6/148, why didn't we write (begi n +
end) / 2 instead of the more complicated begin + (end - begin) /27?

<o e
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9

Defining new types

C++ has two kinds of types: built-in types and class types. Built-in types, so called
because they are defined as part of the core language, include char, i nt, and doubl e.
The types that we've used from the library, such as string, vector,andi stream
are all class types. Except for some of the low-level, system-specific routines in the input-
output library, the library classes rely only on the same language facilities that any
programmer can use to define application-specific types.

Much of the design of C++ rests on the idea of letting programmers create types that are
as easy to use as are the built-in types. As we shall see, the ability to create types with
straightforward, intuitive interfaces requires substantial language support, as well as taste
and judgment in class design. We'll start by using the grading problem from Chapter 4 as
a way of exploring the most fundamental class-definition facilities. Starting in Chapter 11,
we will build on these basic concepts by looking at how we can build types that are as

complete as the ones that the library offers.
=
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9.1 Student_info revisited

In 84.2.1/61, we wrote a simple data structure called St udent i nf o and a handful of
functions, which made it easy to write programs to deal with students' course grades.
However, the data structure and functions that we wrote were not well suited for other
programmers to use.

Whether we were aware of it or not, programmers who wanted to use our functions had
to follow certain conventions. For example, we assumed that anyone who used a newly
created St udent i nf o object would first read data into it. Failure to do so would result
in an object that had an empty honewor k vector and undefined values (£3.1/38) for

m dt er mand f i nal . Any use of these values would yield unpredictable behavior— either
incorrect results or an outright crash. Moreover, if a user wanted to check whether a

St udent _i nf o contained valid data, the only way to do so would be to look at the actual
data members, which would require detailed knowledge of how we had implemented the
St udent _i nf o class.

A related problem is that someone who used our programs would probably assume that
once a record for a student has been read from a file, that student’s data will not change
in the future. Unfortunately, our code offers no basis for that assumption.

A third problem is that the "interface" to our original St udent i nf o structure is
scattered. By convention, we might put the functions, such as r ead, that change the
state of a St udent _i nf 0 object into a single header file. Doing so would help
subsequent users of our code—if we decide to do so—but there is no requirement for such

grouping.

As we'll see in this chapter, we can extend the St udent i nf o structure to solve each of

these problems.
[rort 3
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9.2 Class types

At its most fundamental level, a class type is a mechanism for combining related data
values into a data structure, so that we can treat that data structure as a single entity.
For example, the St udent i nf o structure that we built in 84.2.1/61,

struct Student _info {
std::string nane;

double mdterm final;

st d: : vect or <doubl e> honewor k;

}

let us define and manipulate objects of type St udent i nf 0 . Each object of this type
has four data elements: astd: : stri ng named name, astd: : vect or <doubl e>
named honmewor k , and two doubl e s named i dt er mand f i nal

As it stands, programmers who use the St udent i nf o type may—and must—
manipulate these data elements directly. They may manipulate the data directly because
the definition of St udent _i nf o has not restricted access to the data elements. They
must do so because no other operations are available on St udent i nfo .

Rather than letting users access the data directly, we would like to hide the
implementation details of how St udent i nf 0 s are stored. In particular, we want to
require the type's users to access objects only through functions. To do so, we first need
to provide the users with convenient operations for manipulating St udent _i nf o objects.
These operations will form the interface to our class.

Before looking at these functions, it is worth reviewing why we are using the fully
qualified names for st d: : stri ng and std: : vect or , rather than assuming that a

usi ng -declaration that allowed us to access the names directly had been made. Code
that wants to use our St udent i nf o structure must have access to the class definition,
so we will put the definition in a header file. As we pointed out in 84.3/67, code that is
intended for use by others should contain the minimal number of declarations necessary.
Obviously, we must define the name St udent i nf 0 , because that is the name we want
users to use. The fact that st ri ng and vect or are used by St udent i nf o is an
implementation artifact. There is no reason to force usi ng -declarations on users of

St udent _i nf o just because we use these types in the implementation.

In our programming examples, and as a matter of good practice, we use the qualified
names in code that goes into header files, but we will continue to assume that the
corresponding source files contain appropriate usi ng -declarations. Therefore, when we
write program text that we intend to appear outside a header file, we will generally not
use fully qualified names.

9.2.1 Member functions

In order to control access to St udent i nf o objects, we need to define an interface that



programmers can use. Let's start by defining operations to r ead a record and to calculate
the overall grade:

struct Student _info {
std::string nane;
double mdterm final;
st d: : vect or <doubl e> honmewor k;

std::istream& read(std::istreang); /1 added
doubl e grade() const; /1 added
b

We still say that each St udent i nf o object has four data elements, but we've also
given St udent i nf o two member functions. These member functions will let us r ead a
record from an input stream and calculate the final gr ade for any St udent i nfo
object. The const on the declaration of gr ade is a promise that calling the gr ade
function will not change any of the data members of the St udent i nf 0 object.

We first discussed member functions in 81.2/14 when we talked about using the sSi ze
member of class St ri ng . Essentially, a member function is a function that is a member
of a class object. In order to call a member function, our users must nominate the object
of which the function to be called is a member. So, analogous to calling

greeting. size() forastring object named gr eeti ng , our users will call
s.read(cin) ors.grade() on behalf of a St udent _i nf 0 object named s . The call
s. read(ci n) will read values from the standard input and set the state of s
appropriately. The call s. gr ade() will calculate and return the final grade for s .

The definition of the first of our member functions looks a lot like the original version of
readin 84.2.2/62:

i stream& Student i nfo::read(istrean& in)

{
in >> nane >> mdterm>> final;
read_hw(in, honmework);
return in;

}

As we did originally, we would put these functions in a common source file named
Student _info.cpp, Student _info.C, orStudent info.c.Theimportant point
is that the declarations for these functions are now part of our St udent i nf o structure,
so they must be available to all users of the St udent _i nf o class.

There are three important comparison points between this code and the original:

1. The name of the function is St udent i nf o: : r ead instead of plain r ead .

2. Because this function is a member of a St udent _i nf o object, we do not need to
pass a St udent _i nf 0 object as an argument, or to define a St udent _i nf o object
at all.

3. We access the data elements of our object directly. For example, in 84.2.2/62, we
referred to s. m dt er m; here we refer to just ni dt er m.



We will explain each of these differences in turn.

The : : in the function name is the same scope operator that we have already used, as far
back as 80.7/5, to access names that the standard library defines. For example, we wrote
string::size_type to getthe name si ze_t ype that is a member of class st ri ng .

Similarly, by writing St udent _i nf o: : read , we are defining the function, named r ead

, that is a member of the St udent _i nf o type.

This member function requires only an i st r ean® parameter, because the

St udent _i nf o0& parameter will be implicit in any call. Remember that when we call a
function that is a member of a vect or or st ri ng object, we must say which vect or or
stri ng we want. For example, if S isastring , then we write s. si ze() to call the

Si ze member of object S . There is no way to call the Si ze function from class stri ng
without nominating a St ri ng object. In the same way, when we call the r ead function,
we will have to say explicitly into which St udent i nf 0 object we're reading. That object
is implicitly used in the r ead function.

The references to the members inside r ead are unqualified because they are references
to members of the object on which we are operating. In other words, if we call
s.read(cin) fora Student i nf o object named s , then we are operating on object S
.Whenread uses midterm final , and honmework , it will be usings. mdterm s
final ,ands. homewor k respectively.

Now let's look at the grade member:

doubl e Student _info::grade() const

{
}

return ::grade(mdterm final, honework);

This version resembles the version in 84.2.2/63, and differs from it in ways analogous to
the differences in r ead : We define gr ade as a member of St udent _i nf o, the function
takes an implicit rather than an explicit reference to a St udent _i nf 0 object, and it
accesses the members of that object without any qualification.

This code contains two more important differences. First, note the call to : : gr ade .
Putting : : in front of a name insists on using a version of that name that is not a member
of anything. In this case, we need the : : so that the call will reach the version of gr ade
that takes two doubl e s and a vect or <doubl e>, which we defined in §4.1.2/54.
Without it, the compiler would think that we were referring to St udent i nfo: : gr ade ,
and would complain because we tried to call it with too many arguments.

The other important difference is the use of const immediately after gr ade 's parameter
list. We can understand this usage by comparing our new function declaration with the
original:

doubl e Student _info::grade() const { ... } /'l menber-function version
doubl e grade(const Student _info& { ... } /1 original from 84.2.2/63



In the original function, we passed the St udent i nf o as a reference to const . By
doing so, we ensured that we could ask for the gr ade of a const Student _info
object, and that the compiler would complain if the gr ade function tried to change its
parameter.

When we call a member function, the object of which it is a member is not an argument.
Therefore, there is no entry in the parameter list in which we might be able to say that
the object is const . Instead, we qualify the function itself, thereby making it a const
member function. Member functions that are const may not change the internal state
of the object on which they are executing: We are guaranteed that if we call s. gr ade()
on behalf of a St udent _i nf 0 object named s , doing so will not change the data
members of S .

Because the function guarantees that it will not change the values in the object, we can
call it for const objects. By the same token, we cannot call nonconst functions on
const objects, so, for example, we cannot call the r ead member on behalf of a const
St udent _i nf o object. After all, a function such as r ead says that it can change the
object's state. Calling such a function on a const object could violate our const
promise.

It is important to note that even if a program never creates any const objects directly, it
may create lots of references to const objects through function calls. When we pass a
nonconst object to a function that takes a const reference, then the function treats that
object as if it were const , and the compiler will permit it to call only const members of
such objects.

Note that we included the const qualifier in both the declaration of the function inside
the class definition and in the definition of the function. As always, argument types must
be identical between the function declaration and definition (84.4/69).

9.2.2 Nonmember functions

Our new design made r ead and gr ade into member functions. What about conpar e ?
Should it also be a member of the class?

Aswe'llseein 89.5/164, 811.2.4/193, 811.3.2/196, 812.5/222,and 813.2.1/234, the
C++ language requires certain kinds of functions to be defined as members. It turns out
that conpar e is not one of these, so we have the option to do it either way. There is a
general rule that helps us decide what to do in such cases: If the function changes the
state of an object, then it ought to be a member of that object. Unfortunately, even this
rule says nothing about functions that do not change the state of the object, so we still
must decide what to do about conpar e .

To do so, we should think a bit about what the function does and how users might want to
call it. The conpar e function decides which of its St udent _i nf o arguments is "less
than" the other, based on inspecting the arguments' name members. We'll see in
812.2/213 that there is sometimes an advantage to defining operations such as conmpar e
outside the class body. Therefore, we shall leave conpar e as a global function, which we
will implement shortly.
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9.3 Protection

By defining the gr ade and r ead functions as members, we have fixed half of our
problem: Users of type St udent i nf o no longer have to manipulate the internal state of
the object directly. However, they still can do so. We would like to hide the data, and
allow users to access the data only through our member functions.

C++ supports data hiding by allowing authors of types to say which members of those
types are public, and hence accessible to all users of the type, and which parts are
private, and inaccessible to users of the type:

class Student _info {

public:
/'l interface goes here
doubl e grade() const;
std::istream& read(std::istrean®);

private:

/'l inplementati on goes here
std::string nane;

double mdterm final;

st d:: vect or<doubl e> honewor k;

}s

We've made a couple of changes to our definition of St udent i nf o: We've said class
instead of st r uct , and we've added two protection labels. Each protection label
defines the accessibility of all the members that follow the label. Labels can occur in any
order within the class, and can occur multiple times.

By putting name, honmewor k, m dt erm and f i nal after a pri vat e label, we have
made these data elements inaccessible to users of the St udent _i nf 0 type. References
to these members from nonmember functions are now illegal, and the compiler will
generate a diagnostic message to the effect that the member is private or inaccessible.
The members in the public section are fully available; any user may call r ead or gr ade.

What about the use of cl ass instead of St r uct ? We can use either keyword to define a
new type. The only difference between saying st ruct and cl ass is the default
protection, which applies to every member defined before the first protection label. If we
say cl ass St udent i nf o, then every member between the first { and the first
protection label is pri vat e. If, instead, we write st ruct St udent i nf o, then every
member declared between the { and the first protection label is public. For example,

class Student info {
publi c:
doubl e grade() const;
/'l etc.

}



is equivalent to

struct Student_info {
doubl e grade() const; /'l public by default
/'l etc.

}s

and

class Student _info {

std::string nane; /'l private by default
/'l other private nmenbers
publi c:

doubl e grade() const;
/'l other public nmenbers

b
is equivalent to

struct Student _info {
private:

std::string nane;

/'l other private nenbers
publi c:

doubl e grade() const;

/'l other public nmenbers

}s

In each of these definitions, we're saying that we'll allow users to get at the member
functions of St udent _i nf 0 objects, but we will not allow them to access the data
members.

There is no difference between what we can do with a st ruct or a cl ass. In fact, there
is no way, short of reading the code, for our users to distinguish whether we used
struct orcl ass to define our class type. Our choice of st ruct or cl ass can have a
useful documentation role. In general, our programming style is to reserve st r uct to
denote simple types whose data structure we intend to expose. For that reason, we used
struct to define our original St udent i nf o data type in Chapter 4. Now that we
intend to build a type that will control access to its members, we use class to define our
St udent _i nf o type.

9.3.1 Accessor functions

At this point, we've hidden our data members, so that users can no longer modify the
data in a St udent i nf 0 object. Instead, they must use the r ead operation to set the
data members, and the gr ade function to find out the f i nal gr ade for a given

St udent i nf 0. There's one more operation that we must still provide: We must give



users a way to get at the student's name. For example, think a bit about the program in
84.5/70, in which we wrote a formatted report of student gr ades. That program needs to
access the student's name in order to generate the report. Although we want to allow

r ead access, we do not want to allow write access. Doing so is straightforward:

class Student_info {

public:

doubl e grade() const;
std::istream& read(std::istream) /'l nmust change definition
std::string name() const { return n; } /1 added

private:
std::string n; /'l changed

double mdterm final;
std::vect or <doubl e> honewor k;

}s

Instead of giving our users access to the nane data member, we've added a member
function, also named nane, that will give (read-only) access to the corresponding data
value. Of course, we have to change the data member's name to avoid confusing it with
the name of the function.

The nane function is a const member function, which takes no arguments and which
returns a st ri ng that is a copy of n. By copying n, rather than returning a reference to
it, we ensure that users can read but not change the value of n. Because we need only
read access to the data, we declare the member function as const .

When we defined gr ade and r ead, we did so outside the class definition. When we define
a member function as part of the class definition, as we have done here with the nane
function, we are hinting to the compiler that it should avoid function-call overhead and
expand calls to the function inline (84.6/72) if possible.

Functions such as name are often called accessor functions. This nomenclature is
potentially misleading, because it implies that we are granting access to a part of our data
structure. Indeed, historically, such functions were often introduced to allow easy access
to hidden data, thus breaking the encapsulation that we were trying to achieve. Accessors
should be provided only when they are part of the abstract interface of the class. In the
case of St udent _i nf 0, our abstraction is that of a student and a corresponding final
grade. Therefore, the notion of a student name is part of our abstraction, and it is fitting
to provide a nane function. On the other hand, we do not provide accessors to the other
grades—m dt erm f i nal , or homewor k. These grades are an essential part of our
implementation, but they are not part of our interface.

Having added the name member function, we can now write the compare function:

bool conpare(const Student info& x, const Student _info& y)

{
}

return x.name() < y.nane();

This function looks a lot like the version from 84.2.2/64. The only difference is how we



get at the student's name. In the original version, we could access the data member
directly; here, we must invoke the nane function, which returns the student's name.
Because conpar e is part of our interface, we should include a declaration for this
function in the same header that defines St udent i nf 0 and we should include this
definition in the associated source file that contains the definitions of the member
functions.

9.3.2 Testing for empty

Having hidden our members and provided the appropriate accessor function, we have one
remaining problem: There is still a reason that a user might want to look directly at an
object's data. For example, consider what happens if we call gr ade on an object for
which r ead has not been called:

Student _info s;
cout << s.grade() << endl; /'l exception: s has no data

Because we haven't called r ead to give s any values, the homewor k member of s will be
empty, and the call to gr ade will throw an exception. Although our users can cat ch the
exception, they have no way to detect the problem in advance, so that they can avoid
making the call at all.

Using the original St udent _i nf o structure from Chapter 4, users could test the
honmewor k member to determine whether a call to gr ade would succeed. If homewor k
turned out to be empty, then they knew not to call gr ade. This approach worked, but at
the cost of forcing users to know about the structure of the object in order to perform the
test. We can do better, by offering the same test in a more abstract form:

class Student _info {

public:
bool valid() const { return !honmework.enpty(); }
/'l as before

}s

The val i d function will tell the user whether the object contains valid data, with a value
of t r ue indicating that the student did at least one homework assignment, and therefore
that it is possible to compute the student's grade. Our users can call val i d to determine
whether subsequent operations will succeed. For example, before calling gr ade, a user
can check whether the object is val i d, thereby avoiding a potential exception.
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9.4 The Student_info class

At this point we have resolved most of our objections to the original St udent i nfo
structure, so it is worth reviewing what we've done:

class Student_info {
public:
std::string nane() const { return n; }
bool valid() const { return !homework.enmpty(); }

/1 as defined in 89.2.1/157, and changed to read into n instead of name
std::istream& read(std::istream);

doubl e grade() const; /1 as defined in 89.2.1/158
private:

std::string n;

double mdterm final;

st d:: vect or<doubl e> honewor k;

}s

bool conpare(const Student info& const Student _info&);

Users can change the state of a St udent i nf o object only by calling the r ead member
function. They cannot reach inside an object and directly change any of the data
members. Instead, we provide operations that hide our implementation. Finally, all the
operations on St udent _i nf 0 objects are logically gathered together.
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9.5 Constructors

Although our class is reasonably complete and usable as it stands, there is one more thing
to think about: We have not said anything about what happens when objects are created.

We know that the library guarantees that when we create an object of a library class, the
object starts with an appropriate value. For example, when we define astri ng or a
vect or without an initial value, we get an empty St ri ng or vect or. Both stri ng and
vect or also allow us to give a new object an initial value, such as specifying a size or a
count and a fill character.

Constructors are special member functions that define how objects are initialized. There
is no way to call a constructor explicitly. Instead, creating an object of class type calls the
appropriate constructor automatically as a side effect.

If we do not define any constructors, the compiler will synthesize one for us. We'll have
more to say about synthesized operations in 811.3.5/201. What we need to know now is
what happens if we do not define any constructors. In this case, our users will be able to
define St udent _i nf 0 objects, but will not be able to initialize them explicitly, except as
a copies of other St udent _i nf 0 objects.

The synthesized constructor will initialize the data members to a value that depends on
how the object is being created. If the object is a local variable, then the data members
will be be default-initialized (83.1/38). If the object is used to initialize a container
element, either as a side effect of adding a new element to a nap, or as the elements of a
container defined to have a given size, then the members will be value-initialized
(87.2/125). These rules are slightly complicated, but their essentials are:

o If an object is of a class type that defines one or more constructors, then the
appropriate constructor completely controls initialization of the objects of that class.

o If an object is of built-in type, then value-initializing it sets it to zero, and default-
initializing it gives it an undefined value.

e Otherwise, the object can be only of a class type that does not define any
constructors. In that case, value- or default-initializing the object value- or default-
initializes each of its data members. This initialization process will be recursive if any
of the data members is of a class type with its own constructor.

As it stands, our St udent _i nf o class is in this third category: It is a class type, but we
do not explicitly say how to construct St udent i nf o objects. So, if we define a local

St udent _i nf o variable, then the n and honewor k members will be automatically
initialized to the empty st ri ng and vect or respectively, because they are class objects
with constructors. In contrast, default-initializing m dt er mand f i nal will give them

undefined values, meaning they will hold whatever garbage happens to be in memory
when the object is created.

Given our simple operations, this behavior may appear harmless: None of our operations
uses the value of m dt er mor f i nal without first initializing the object by calling r ead,
which assigns values to these members. However, it is normally good practice to ensure
that every data member has a sensible value at all times. For example, it is possible that
later we (or a subseguent maintainer of our code) will add operations that examine these



data members. If we don't initialize them in the constructor, then these new operations
might cause future failures. Moreover, as we'll see in 11.3.5/201, even though we do not
explicitly use m dt er mor f i nal , there are synthesized operations on the class that
could do so. Any use other than writing to an undefined value is illegal (83.1/38), and so,
strictly speaking, we must initialize these values.

In practice, we'll want to define two constructors: The first constructor takes no
arguments and creates an empty St udent i nf o object; the second takes a reference to
an input stream and initializes the object by reading a student record from that stream.
This strategy allows our users to write code such as

Student _info s; /1 an enpty Student _info
Student _info s2(cin); /1 initialize s2 by reading fromcin

Constructors are distinguished from other member functions in two ways: They have the
same name as the name of the class itself, and they have no return type. Constructors
are similar to other functions in that we can define multiple versions of constructors that
differ in terms of the number or type of their arguments. With this knowledge, we might
update our class to add our two constructors:

class Student_info {

public:
St udent _i nfo() /1 construct an enpty Student _info object
Student _info(std::istream); /1 construct one by reading a stream

/1 as before

}s

9.5.1 The default constructor

The constructor that takes no arguments is known as the default constructor. Its job is
normally to ensure that its object's data members are properly initialized. In the case of
St udent _i nf o objects, we want to initialize the data to indicate that we haven't yet
read a record: We'll want the honewor K member to be an empty vect or , the n member
to be an empty st ri ng, and the m dt er mand fi nal members to be initialized to zero:

Student _info::Student_info(): mdterm(OQ, final (0) { }

The constructor definition uses some new syntax. Between the : and the { is a sequence
of constructor initializers, which tell the compiler to initialize the given members with
the values that appear between the corresponding parentheses. Therefore, this particular
default constructor works by explicitly setting the m dt er mand f i nal grades to 0. Other
than that, the constructor does no overt work: The body of the function is empty. As we
shall see, n and honewor k are implicitly initialized.

Understanding constructor initializers is crucial to understanding how to create and
initialize objects. When we create a new class object, several steps happen in sequence:

1. The implementation allocates memory to hold the object.



2. It initializes the object, as directed by the constructor's initializer list.
3. It executes the constructor body.

The implementation initializes every data member of every object, regardless of whether
the constructor initializer list mentions those members. The constructor body may change
these initial values subsequently, but the initialization happens before the constructor
body begins execution. It is usually better to give a member an initial value explicitly,
rather than assigning to it in the body of the constructor. By initializing rather than
assigning a value, we avoid doing the same work twice.

We said that constructors exist to ensure that objects are created with their data
members in a sensible state. In general, this design goal means that every constructor
should initialize every data member. The need to give members a value is especially
critical for members of built-in type. If the constructor fails to initialize such members,
objects declared at local scope will be initialized with garbage, which is almost never
correct.

We can now understand why we said that the St udent i nf o default constructor did no
other "overt" work. Although we explicitly initialized only m dt er mand f i nal , the other
data members are initialized implicitly. Specifically, n is initialized by the st ri ng default
constructor, and hormewor K is initialized by the vect or default constructor.

9.5.2 Constructors with arguments

Our second St udent _i nf o constructor is even easier:
Student _info::Student_info(istream& is) { read(is); }

This constructor delegates the real work to the r ead function. The constructor has no
explicit initializer, so the homewor k and n members will be initialized by the default
constructors for vect or and st ri ng respectively. The m dt er mand f i nal members
will have explicit initial values only if the object is being value-initialized. This lack of
initialization doesn't matter, because read immediately gives these variables new values.
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9.6 Using the Student_info class

Our new St udent _i nf o class is now quite different from the original St udent i nfo
structure from Chapter 4. Not surprisingly, using the class is different from using the
original structure. After all, our objective was to prevent users from being able to change
our data values, which we accomplished by making them pri vat e. Instead, we intend
for users to write their programs in terms of the interface provided by our class. As an
example, we can rewrite our original mai n program from 84.5/70, which wrote the final
grades for the students in a formatted report, to use this version of the class:

int main()

{
vect or <St udent _i nf o> students;
St udent _info record,;
string::size_type maxlen = 0O;

/'l read and store the data

while (record.read(cin)) { /1 changed
max|l en = max(nmaxl en, record.name().size()) // changed
student s. push_back(record);

}

/1 al phabetize the student records
sort (students. begin(), students.end(), conpare);

/1 wite the nanes and grades

for (vector<Student info> :size type i = O;
i != students.size(); ++i) {
cout << students[i].nanme() /'l changed
<< string(maxlen + 1 - students[i].nane.size(), ' ");
try {
doubl e final _grade = students[i].grade(); /'l changed

streansi ze prec = cout. precision();
cout << setprecision(3) << final _grade
<< setprecision(prec) << endl
} catch (domain_error e) {
cout << e.what() << endl;
}
}

return O;

The changes here are to the calls of nane, read, and gr ade. So, for example, the first
whi | e loop now says

while (record.read(cin)) {



instead of

while (read(cin, record)) {

Our revised version calls the member r ead of the object r ecor d. The earlier version
called the global r ead function, passing it r ecor d as an explicit parameter. Both calls
have the same effect: The object r ecor d will be assigned values read from ci n.
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9.7 Detalls

User-defined types can be defined as either st r uct s or cl asses. The only difference
is in the default protection that applies to members defined before the first protection
label: Members defined after struct are publ i ¢; those defined after class are pri vat e.

Protection labels control access to members of a class type: publ i ¢ members are
generally accessible; pri vat e members are accessible only to members of the class.
Protection labels can appear in any order and multiple times within a class.

Member functions: Types may define member functions as well as data. Member
functions are implicitly called on behalf of a specific object. References to member data or
functions from within a member function are implicitly bound to that object.

Member functions can be defined inside or outside the class definition. Defining a member
function inside the class asks the implementation to expand calls to it inline, thus avoiding
function call overhead. Outside the class, the name of the function must be qualified to
indicate that it is from the class scope: class-name::member-name refers to the member
member-name from the class class-name.

Member functions can be defined as const by inserting the const keyword after the
parameter list. Such members may not change the state of the object on which they are
invoked. Only const member functions may be called for const objects.

Constructors are special member functions that define how objects of the type are
initialized. Constructors have the same name as the class and have no return value. A
class can define multiple constructors as long as they differ in the number or types of
their arguments. It is good practice for every constructor to ensure that every data
member has a sensible value on exit from the constructor.

Constructor initializer list: A constructor initializer is a comma-separated list of
member- name (value) pairs. Each member-name is initialized from the associated value.
Data members that are not explicitly initialized are implicitly initialized.

The order in which members are initialized is determined by the order of declaration in
the class, so care must be taken when using one class member to initialize another. It is
safer practice to avoid such interdependence by assigning values to these members inside
the constructor body and not initializing them in the constructor initializer.

Exercises

9-0. Compile, execute, and test the programs in this chapter.

9-1. Reimplement the St udent _i nf o class so that it calculates the final gr ade when
reading the student's record, and stores that grade in the object. Reimplement the gr ade
function to use this precomputed value.

9-2. If we define the nane function as a plain, nonconst member function, what other
functions in our system must change and why?



9-3. Our gr ade function was written to throw an exception if a user tried to calculate a
grade for a St udent i nf o object whose values had not yet been read. Users who care
are expected to catch this exception. Write a program that triggers the exception but does
not catch it. Write a program that catches the exception.

9-4. Rewrite your program from the previous exercise to use the val i d function, thereby
avoiding the exception altogether.

9-5. Write a class and associated functions to generate grades for students who take the
course for pass/fail credit. Assume that only the midterm and final grades matter, and
that a student passes with an average exam score greater than 60. The report should list
the students in alphabetical order, and indicate P or F as the grade.

9-6. Rewrite the grading program for the pass/fail students so that the report shows all
the students who passed, followed by all the students who failed.

9-7. The r ead_hwfunction 84.1.3/57 solves a general problem (reading a sequence of
values into a vect or ) even though its name suggests that it should be part of the
implementation of St udent i nf 0. Of course, we could change its name—but suppose,
instead, that you wanted to integrate it with the rest of the St udent _i nf o code, in
order to clarify that it was not intended for public access despite its apparent generality?
How would you do so?
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Managing memory and low-level data structures

Until now, we have been storing data either in variables or in containers, such as
vect or, that come from the standard library. The reason for this strategy is that the
standard- library facilities are usually more flexible and easier to use than the facilities
that are part of the core language.

Once you know how to use the library, the logical next step is to understand how it works.
The key to this understanding turns out to involve core-language programming tools and
techniques that come in handy in other contexts as well. We use the term low- level to
refer to these ideas because they underlie the standard library and because they
correspond closely to the way typical computer hardware works. For these reasons, they
tend to be harder to use, and are more dangerous, but they sometimes can be more
efficient—provided that you understand them thoroughly—than are the related ideas in
the standard library. Because no library can solve all problems, many C++ programs wind
up using low-level techniques from time to time.

This chapter departs from our usual style of presenting problems before their solutions,
because the tools that we are going to present work at a low enough level that it is hard
to use any one tool by itself to solve useful problems. Instead, we are going to begin by
presenting two related ideas: arrays and pointers. Once we have done so, we'll show how
those ideas combine with new-expressions and del et e-expressions to allow a form of
dynamic memory allocation that programmers can control more directly than they can
control the automatic memory management offered by library classes such as vect or
and | i st.

Once we understand how arrays and pointers work, we will explore, in Chapter 11, how

the library uses these facilities to implement its containers.
=
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10.1 Pointers and arrays

An array is a kind of container, similar to a vect or but less powerful. A pointer is a kind
of random-access iterator that is essential for accessing elements of arrays, and has other
uses as well. Pointers and arrays are among the most primitive data structures in C and
C++. They are virtually inseparable from one another, in the sense that it is impossible to
do anything useful with an array without using pointers, and pointers become much more
useful in the presence of arrays.

Because these two notions are so closely intertwined, we shall explain them both before
trying to solve significant problems with either. It is easier to explain pointers without
understanding arrays than to explain arrays without understanding pointers, so we shall
discuss pointers first.

10.1.1 Pointers

A pointer is a value that represents the address of an object. Every distinct object has a
unique address, which denotes the part of the computer's memory that contains the
object. If you can access an object, you can obtain its address, and vice versa. For
example, if X is an object, then &X is the address of that object, and if p is the address of
an object, then * p is the object itself. The & in & is an address operator , and is
distinct from the use of & to define reference types (84.1.2/54). The * is a dereference
operator , which works analogously to the way * works when applied to any other
iterator (85.2.2/81). If p contains the address of X , we also say that p is a pointer that
points to x. It is common to represent such a state of affairs with a diagram such as

P x

As with other built-in types, a local variable that is a pointer has no meaningful value until
we give it one. Programmers frequently use the value O to initialize pointers, because
converting O to a pointer yields a value that is guaranteed to be distinct from a pointer to
any object. Moreover, the constant O is the only integer value that can be converted to a
pointer type. The resulting value, often called a null pointer , is often useful in
comparisons.

As with all C++ values, pointers have types. The address of an object of type T has type
"pointer to T ,” written as T* in definitions and similar contexts.

Suppose that x is an object of type | nt , defined as

int x;

and we want to define p to have a type that will allow p to contain the address of X . We
do so by saying that the type of p is "pointer to | nt ," which we say implicitly by defining



*p to have type i nt
int *p; /'l *p has type int

Here * p is a declarator , which is the part of a definition that defines a single variable.
Even though the * and the p are part of a single declarator, most C++ programmers
write this definition as

int* p; /1 p has type int*

to emphasize the notion that p has a particular type (i.e., i nt * ). These two usages are
equivalent because spaces around the * are neutral. However, the latter usage conceals a
pitfall that is so important that it deserves special attention:

int* p, q; /1 What does this definition nean?

defines p as an object of type "pointer to i nt " and g as an object of type i nt . This
example is easier to understand if we view it this way:

int *p, q; /'l *p and g have type int
or, for that matter, this way:
int (*p), q; /1 (*p) and q have type int
Still better, we can make our intentions crystal clear by writing

int* p; /'l *p has type int
int q; /1 g has type int

We now know enough to write a simple program that uses pointers:

int main()

{

int x = 5;

/1l p points to X
int* p = &x;
cout << "x = " << x << endl;

/'l change the value of x through p
*p:6;

cout << "X = " << X << endl;



return O;

The output of this program will be

Immediately after we have defined p , the state of our variables is

P X

It should be no surprise that X is 5 when we execute the first output expression. The next
statement changes the value of X to 6 by executing *p = 6 . Remember, once p
contains the address of X, *p and X are two different ways of referring to the same
object. Thus, the X is 6 when the second output expression is executed.

It may be useful to think of a pointer to an object as an iterator that refers to the only
element of a "container” that contains that object and nothing else.

10.1.2 Pointers to functions

In 86.2.2/113, we saw a program that passed a function as an argument to another
function, and noted that there was slightly more going on there than met the eye. The
truth is that functions are not objects, and there is no way to copy or assign them, or to
pass them as arguments directly. In particular, there is no way for a program to create or
modify a function—only the compiler can do that. All that a program can ever do with a
function is call it or take its address.

Nevertheless, we can call a function with another function as an argument, as we did
when we passed nmedi an_anal ysi s as an argument to w i t e_anal ysi s in
86.2.2/112. What happens is that the compiler quietly translates such calls so as to use
pointers to functions instead of using functions directly. Pointers to functions behave
similarly to any other pointers. Once you have dereferenced such a pointer, however, all
you can do with the resulting function is call it—or take the function's address yet again.

Declarators for pointers to functions resemble other declarators. For example, just as we
wrote

int *p;
to say that *p has type i nt , thereby implying that p is a pointer, we might write

int (*fp)(int);



to say that if we dereference f p , and call it with an i nt argument, the result has type
i nt . By implication, f p is a pointer to a function that takes an i nt argument and
returns an i nt result.

Because all that you can do with a function is to take its address or call it, any use of a
function that is not a call is assumed to be taking its address, even without an explicit & .
Similarly, you can call a pointer to a function without dereferencing the pointer explicitly.
So, for example, if we have a function whose type matches f p , such as

int next(int n)

{
}

return n + 1;

then we can make f p point to next by writing either of the following two statements:

/'l these two statenents are equival ent
fp = &next;
fp = next;

Similarly, if we have an i nt variable named i , we can use f p to call next , and thereby
increment i , by writing either

/'l these two statenents are equival ent
o= (*fp)(i);
o= fp(i);

Finally, if we write a function that looks like it takes another function as a parameter, the
compiler quietly translates the parameter to be a pointer to a function instead. So, for
example, in the wi t e_anal ysi s function in 86.2.2/113, the parameter that we wrote
as

doubl e anal ysi s(const vector<Student _i nf0>&)

could equivalently have been written as

doubl e (*anal ysi s) (const vector<Student _i nf 0>&)

However, this automatic translation does not apply to return values from functions. If we
wanted to write a function that returned a function pointer, of the same type as the
parameter tow it e _anal ysi s, then we would have to say explicitly that the function
returns a pointer. One way to do so is to begin by using at ypedef to define, say,

anal ysi s_f p as the name of the type of an appropriate pointer:



typedef double (*analysis_fp)(const vector<Student info>&);

Then we can use that type to declare our function:

/1l get_analysis_ptr returns a pointer to an analysis function
anal ysis _fp get_analysis_ptr();

The alternative

doubl e (*get_analysis _ptr())(const vector<Student _info>&);

is arcane. In effect, we are saying that if you call get _anal ysis_ptr() , and
dereference the result, what you get is a function that takes a const

vect or <St udent _i nf 0>& and returns a doubl e . Fortunately, functions that return
pointers to functions are rare! We use this syntax nowhere else in this book, but we
explain it in more detail in 8A.1/295. Pointers to functions are most commonly used as
arguments to other functions. As an example, here is a sample implementation of the
find_if library function:

tenpl ate<cl ass In, class Pred>
In find_if(In begin, In end, Pred f)

{
while (begin !'= end && !f(*begin))
++begi n;
return begin;
}

In this example, Pr ed can potentially be any type at all, as long as f (*begi n) has a
meaningful value. Suppose we have a predicate function, such as

bool is_negative(int n)

{
}

return n < 0;

and we use fi nd_i f to locate the first negative element in a vect or <i nt > named Vv :

vector<int>: :iterator i = find_if(v.begin(), v.end(), is_negative);

We are able to write i S_negat i ve instead of & S_negat i ve only because the name of
a function turns into a pointer to the function automatically. Similarly, the implementation
of find if is permitted to call f (*beg) instead of (*f) (*beg) only because calling a
function pointer automatically calls the function to which it points.

10.1.3 Arrays



An array is a kind of container that is part of the core language rather than part of the
standard library. Every array contains a sequence of one or more objects of the same
type. The number of elements in the array must be known at compile time, which
requirement implies that arrays cannot grow or shrink dynamically the way library
containers do.

Because arrays are not class types, they have no members. In particular, they do not
have the si ze_t ype member to name an appropriate type to deal with the size of an
array. Instead, the <cst ddef > header defines size_t, which is a more general type. The
implementation defines si ze_t as the appropriate unsi gned type large enough to hold
the size of any object. Thus, we can (and should) use Si ze_t to refer to the size of an
array, similarly to the way we use Si ze_t ype to deal with the size of a container.

For example, a three-dimensional geometry program might represent a point this way:

doubl e coords[ 3];

knowing that the number of dimensions in physical space is unlikely to change any time
soon. A more experienced programmer might represent the point this way:

const size t NDim= 3;
doubl e coords[ NDi m ;

taking advantage, for documentation purposes, of the fact that the value of NDi mis
known at compilation time (because it is a const si ze t that is initialized from a
constant). Using NDi minstead of 3 distinguishes the 3 that represents the number of
dimensions from a 3 that represents, say, the number of sides in a triangle.

No matter how we define an array, there is always a fundamental relationship between
arrays and pointers: Whenever we use the name of an array as a value, that name
represents a pointer to the initial element of the array. We have defined coor ds as an
array, so using coor ds as a value gives us the address of the array's initial element. As
with any other pointer, we can dereference it with the * operator to get the object to
which it points, so that executing

*coords = 1.5;

sets the initial element of coor ds to 1. 5.

10.1.4 Pointer arithmetic

We now know how to define arrays, and how to obtain the address of the initial element
of an array. What about the other elements? Recall that in 10.1/169 we said that a
pointer was a kind of iterator. More specifically, a pointer is a random-access iterator. This
fact gives us a second fundamental property of arrays: If p points to the mth element of
an array, then p + n points to the (m + n) th element of the array and (p - n)
points to the (M - n) th element—assuming, of course, that these elements exist.



Continuing our example, and noting that, as usual, the initial element of coor ds has
number 0, we see that coord + 1 is the address of element nhumber 1 of the coor ds
array (i.e., the element after the initial element), and coor ds + 2 is the address of
element number 2, which is also the last element because we defined coor ds to have
three elements.

What about coor ds + 3 ? That value represents the address of where element number
3 would be in the coor ds array if the element existed—but the element doesn't exist.

Nevertheless, coor ds + 3 is a valid pointer, even though it doesn't point to an element.
Analogous with vect or and st ri ng iterators, adding n to the address of the initial
element of an n -element array yields an address that is not guaranteed to be the address
of any object, but it is one that we can use for comparisons. Moreover, the rules that
relatep, p + n,and p - n are valid even if one or more of those expressions yields a
value that is one (but not more than one) past the end of an array.

So, for example, we can copy the contents of coor ds into a vect or by writing

vect or <doubl e> v;
copy(coords, coords + NDim back_inserter(v));

where, as before, NDi mis just a fancy way of spelling 3. In this example, coor ds +
NDi mdoes not point to an element, but it is a valid off-the-end iterator, and passing it as
the second argument to copy presents no difficulty.

As another example, because we can construct a vect or from two iterators, we could
have constructed v directly as a copy of the elements in coor ds by writing

vect or <doubl e> v(coords, coords + NDi n);

In other words, suppose that a is an n -element array, thatVv is avect or , and that we
want to apply standard-library algorithms to elements of a . Then, wherever we might use
v. begi n() and v. end() to give standard-library algorithms access to elements of v ,
we should use a and a + n as arguments when we wish to apply these algorithms to the
elements of a .

If p and g are pointers to elements of the same array, then p - ( is an integer that
represents the distance in elements between p and g . More precisely, p - (q is defined
sothat (p - Q) + q isequaltop .Because p - ( might be negative, it has a signed
integer type. Whether that type is i nt or | ong depends on the implementation, so the
library provides a synonym, named ptrdi ff _t , to represent the appropriate type. Like
size_ t ,theptrdiff _t type is defined in the <cst ddef > header.

We saw in 88.2.7/150 that there is no guarantee of being able to compute an iterator that
refers to a point before the beginning of a container. Analogously, it is never legitimate to
compute an address that falls before the beginning of an array. In other words, if a is an
n -element array, then a+i isvalidifandonly if 0 = i = n, and a+i refers to an
elementofaifandonly if 0 = i < n (but notifi and n are equal).



10.1.5 Indexing

We said in 810.1/169 that pointers are random-access iterators for arrays. Therefore, like
all random-access iterators, they support indexing. Specifically, if p points to the mth
element of an array, p[ n] is the m+n th element of the array—not the address of the
element, but the element itself.

Recall from 810.1.3/174 that the name of an array is the address of the initial element of
the array. This fact, together with the definition of p[ n] , implies that if a is an array,

a[ n] is the n th element of the array. More formally, if p is a pointer and n is an integer,
then p[ n] is equivalentto *(p + n) .

In most languages, the behavior of indexing is fundamental and obvious. In C++, this
behavior is not a direct property of arrays. Rather, it is a corollary to the properties of
array names and pointers, and the fact that pointers supply the operations defined for
random-access iterators.

10.1.6 Array initialization

Arrays have an important property that the standard-library containers do not share:
There is a convenient syntax for giving an initial value to each element of an array.
Moreover, using this syntax often lets us avoid having to state the size of the array
explicitly.

For example, if we were writing a program that deals with dates, we might like to know
how many days are in each month. One way to do so would be the following:

const int nonth_lengths[] = {
31, 28, 31, 30, 31, 30, /1 we will deal elsewhere with |eap years
31, 31, 30, 31, 30, 31

b

Here, we have given an initial value to each element that corresponds to the length of a
month, with January being month O and December being month 11. Now, we can use
nont h_| engt hs[i] to refer to the length of month i.

Note that we did not say explicitly how many elements the nont h_| engt hs array has.
Because we initialized it explicitly, the compiler will count elements for us—a task to
which it is much better suited than we.
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10.2 String literals revisited

We have finally learned enough to understand the true meaning of string literals: A string
literal is really an array of const char with one more element than the number of
characters in the literal. That extra character is a null character (i.e., ' \ 0' ) that the
compiler automatically appends to the rest of the characters. In other words, if we define

const char hello[] ={ '"H, e, "I, "I', "o, "\0" };

then the variable hel | 0 has exactly the same meaning as the string literal "Hello",
except, of course, that the variable and the literal are two distinct objects and, therefore,
have different addresses.

The reason that the compiler inserts the null character is to allow the programmer to
locate the end of the literal given only the address of its initial character. The null
character acts as an end marker, so that the programmer can know where the string
ends. There is a library function in <cst ri ng> called st r | en, which tells us how many
characters are in a string literal or other null-terminated array of characters, not counting
the null at the end. The st r| en function might be implemented as follows:

/'l Exanple inplenmentation of standard-Ilibrary function
size_t strlen(const char* p)

{
size_t size = 0;
while (*p++ I'= "\0")
++si ze;
return size;
}

Recall from 810.1.3/174 that Si ze_t is an unsigned integral type that is appropriate to
contain the size of any array, which makes it the appropriate type for Si ze. The strl en
function counts characters in the array denoted by p up to but not including the null.
Because the variable hel | 0 has the same meaning as the string literal "Hel | o",

string s(hello);

will define a st ri ng variable named S that contains a copy of the characters stored in
hel | 0, just as

string s("Hello");

defines a st ri ng variable named s that contains a copy of the characters in "Hello".
Moreover, because we can construct a St ri ng from two iterators, we can also write



string s(hello, hello + strlen(hello));

Here, using the name of the array hel | 0 yields a pointer to the initial character of the
hel | o array, and hel | 0 + strlen(hell 0) is a pointer to the '\ 0' that is at the end
of the array which is also one character past the 0 of hel | 0. Because pointers are
iterators, we can construct a st ri ng from two pointers, similar to what we did in
86.1.1/103, where we created a new St r i ng from two iterators. In both cases, the first
iterator refers to the initial character of the sequence that we wish to use to initialize the
string that we are constructing, and the second iterator refers to one past the last

character.
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10.3 Initializing arrays of character pointers

We said in 810.2/176 that a string literal is just a convenient way of writing the address
of the initial character of a null-terminated sequence of characters. We said in
810.1.6/176 that we can initialize the elements of an array by giving a sequence of
appropriate values, enclosed in curly braces, as an initializer. By combining these two
facts, we learn that we can initialize an array of character pointers by giving a sequence
of string literals.

This claim is quite a mouthful. To make it concrete, suppose that we wish to convert
numeric grades to letter grades according to the following rule:

If the grade is at |east 97 94 90 87 84 80 77 74 70 60
then the letter grade is At A A- B+ B B- C+ C C D

Here is a program that does the conversion:

string letter_grade(doubl e grade)

{
/'l range posts for numeric grades
static const double nunbers[] = {
97, 94, 90, 87, 84, 80, 77, 74, 70, 60, O
1
/1 nanes for the letter grades
static const char* const letters[] = {
"AFTO"AY, A, "B+, "B', "B-", "C, "C', "C", "D, "F"
b
/1 conpute the nunber of grades given the size of the array
/1 and the size of a single elenent
static const size_t ngrades = sizeof (nunbers)/sizeof (*nunbers);
/1 given a nuneric grade, find and return the associated |etter grade
for (size_t i = 0; i < ngrades; ++i) {
if (grade >= nunbers[i])
return letters[i];
}
return "2\ 2\ ?";
}

The definition of nunber s uses the keyword st at i ¢ , which we saw in 86.1.3/107. In
the present context, it tells the compiler to initialize the | et t er s and nunber s arrays
only once, no later than the first time each array is used. Without the st ati ¢ , the
compiler would have initialized the array for each call, which would have slowed the
program needlessly. We have said that the array elements are const because we do not
intend to change them—which is what allows us to get away with initializing the array

o



only once.

The | ett er s array is an array of constant pointers to const char . In this case, each
element points to the initial element of its respective letter-grade string literal.

The definition of ngr ades introduces a new keyword, si zeof , which we use to
determine how many elements the nunber s array has without having to count the
elements ourselves. If € is an expression, then si zeof (e) returns a si ze_t value that
tells us how much memory an object of the type of € consumes. It does so without
actually evaluating the expression, which is possible because it does not need to evaluate
the expression in order to determine its type, and because all objects of a given type
occupy the same amount of storage.

The si zeof operator reports its result in bytes , which are storage units whose exact
nature varies from one implementation to another. The only guarantees about bytes are
that a byte contains at least eight bits, every object occupies at least one byte, and that a
char occupies exactly one byte.

Of course, we want to determine how many elements the nunber s array has, not how
many bytes it occupies. To do so, we divide the size of the entire array by the size of a
single element. Recall from §10.1.3/174 that because nunber s is an array, * nunber s is
an element of the array. It happens to be the initial element, but the particular element is
irrelevant in this context because all elements are the same size. What is relevant is that
si zeof (*nunber s) is the size of a single element of the nunber s array, so that

si zeof (nunber s)/ si zeof (* nunber s) is the number of elements in the array.

Once we have established our tables, determining the letter grade is simplicity itself. We
look sequentially at the elements of nunber s until we find that gr ade is greater than or
equal to one of them. When we find the relevant element of nunber s , we return the
corresponding element of | et t er s . This element is a pointer, but we have already seen
in 810.2/176 that we can convert a character pointer toa stri ng .

If we cannot find an appropriate letter grade, it means that our user gave us a negative
numeric grade, in which case we return a nonsense letter grade. The \ characters are
there because, as we explain in more detail in 8A.2.1.4/302, C++ programs should not
contain two or more consecutive question marks. We must, therefore, use "?\ ?\ ? " to
represent ??? in a program.
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10.4 Arguments to main

Now that we understand pointers and character arrays, we can understand how to pass
arguments to the mai n function. Most operating systems provide a way to pass a
sequence of character strings to mai n as an argument, if the mai n function is willing to
accept them. The way the author of nmai n signals such willingness is by giving mai n two
parameters: an i nt and a pointer to a pointer to char. Like any parameters, these can
have arbitrary names, but programmers often call them ar gc and ar gv . The value of

ar gv is a pointer to the initial element of an array of pointers, one for each argument.
The value of ar gc is the number of pointers in the array of which ar gv points to the
initial element. The initial element of that array always represents the name by which the
program is called, so ar gc is always at least 1. The arguments, if any, occupy subsequent

elements of the array.

As an example, this program writes its arguments, if any, with spaces between them:

int main(int argc, char** argv)

{
/1l if there are argunments, wite them
if (argc > 1) {

int i; /'l declare i outside the for because we need it after the | oop f
for (i = 1; i < argc-1; ++i) /'l wite all but the last entry and
cout << argv[i] << " "; /'l argv[i] is a char*
cout << argv[i] << endl; /1 wite the last entry but not a sj
}
return O,

If we compile this program and put the resulting executable in a file called say, then by
asking the system to execute

say Hello, world

we will cause our program to write
Hell o, world

In this case, ar gc will be 3, and the three elements of ar gv will be pointers to the initial
characters of arrays initialized with say, Hel | o, and world respectively. We can
visualize the value of ar gv this way:



argv

Y0

Y0

\O
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10.5 Reading and writing files

The programs in this book use only ci n and cout for their input and output. Larger
applications, however, often need to work with multiple files, both for input and output.
C++ offers a wide variety of facilities for doing so, of which we will discuss only a few.

10.5.1 The standard error stream

It is often useful for a program to be able to comment about what it is doing in a way that
is not part of its regular output. Such comments might notify the user about error
conditions, or might constitute a log of events that the program considers significant.

To make such comments easy to distinguish from ordinary output, the C++ library
defines a standard error stream, in addition to the standard input and output streams.
This stream is often merged with the standard output, but most systems provide a way to
separate them.

To write to the standard error stream, C++ programs can use either cerr or cl og .
These output streams are both attached to the same destination. The difference between
them is how they handle buffering (81.1/11).

The cl og stream, as its name suggests, is intended for logging purposes. Accordingly, it
has the same buffering properties as cout : It saves characters and writes them when
the system decides that it is appropriate to do so. The cerr stream, on the other hand,
always writes its output immediately. This strategy guarantees that the output will
become visible as soon as possible, but it imposes what might be substantial overhead.
Therefore, to write an urgent complaint, you should use cerr ; to produce a running
commentary about what the program is doing, you should use cl og .

10.5.2 Dealing with multiple input and output files

The standard input, output, and error streams might or might not be associated with files.
For example, a window system might run C++ programs with these streams connected to
a window associated with the program, and might use completely different facilities to do
so than it would to access disk files.

For this reason, the objects that the C++ standard library uses for file input and output
have different types than the objects that it uses to denote the standard input and output
streams. If you wish to work with an input or output file, you must create an object of
type | f st r eamor ofstream respectively. This requirement may seem to cause needless
difficulty. After all, we have seen that the library's input and output facilities are all
defined in terms of types i st r eamand ost r eam. Does the library have another set of
definitions for i f St r eamand of stream?

Fortunately, the answer is no. As we shall see in Chapter 13, it is possible to say that one
type is similar enough to another that one can stand in for the other. The standard library
says exactly that, by defining i f st r eamto be a kind of i st r eamand of st r eamto be a
kind of 0st r eam. As a result, it is possible to use an i f St r eamwherever the library
expects an | St r eamand an of st r eamwherever the library expects an ost r eam. The



definitions of both of these classes appear in header <f st r eane .

When we define an i f st r eamor of st r eamobject, we might expect to have to supply,
in the form of a st ri ng , the name of the file that we wish to use. In fact, we are
required to supply, not a st ri ng , but rather a pointer to the initial element of a null-
terminated character array. One reason for this curious requirement is to give programs
the option of using the input-output library without using the st r i ng facilities. Another
reason is historical: The input-output library predates the st ri ng class by several years.
A third reason is that this requirement makes it easier to interface with operating-system
input-output facilities, which typically use such pointers to communicate. Whatever the
reasons, the fact is that programs that deal with files must ultimately express the files’
names as pointers to null-terminated character arrays.

As an example, here is a program that copies a file named i n to a file named out

int main()

{
ifstreaminfile("in");
of streamoutfile("out");
string s;
while (getline(infile, s))

outfile << s << endl

return O;

}

This program takes advantage of the fact that a string literal is effectively a pointer to the
initial character of a null-terminated array. If we don't want to have to give the name of
the file as a literal, the best alternative is to store the file name in a St ri ng and then use
the c_str member function that we will describe in 812.6/224. So, for example, if fi |l e
is a st ri ng variable that contains the name of a file that we want to read, we can create
an i f st r eamobject that will read it by defining it as

ifstreaminfile(file.c_str());

As a final example, here is a program that produces, on its standard output, a copy of the
contents of all the files whose names are given as arguments to main:

int main(int argc, char **argv)
{
int fail _count = 0;
/1 for each file in the input Iist
for (int i =1; i < argc; ++i) {
ifstreamin(argv[i]);

/1 if it exists, wite its contents, otherw se generate an error nessage
if (in) {

string s;

while (getline(in, s))



cout << s << endl

} else {
cerr << "cannot open file " << argv[i] << endl
++fai |l _count;

}
}

return fail _count;

For each argument given to main (810.4/179), the program creates an | f St r eamobject
to read the file by that name. If the object appears f al se when used as a condition, that
means that the file does not exist, or that it cannot be read for some reason. Accordingly,
the program complains on cerr , and keeps a count of how many failures it had. If the
program created the i f St r eamobject successfully, it reads the file, one line at a time,
into s, and writes the contents of each line on the standard output.

When the program returns control to the system, it passes back the number of files that it
was unable to read. As usual, a return value of zero indicates success, which in this case

will indicate that we were able to read all the files.
=S



<o =D

10.6 Three kinds of memory management

So far, we have seen two distinct kinds of memory management, although we have not
discussed them explicitly. The first kind is usually called automatic memory
management, and is associated with local variables: A local variable occupies memory
that the system allocates when it encounters the variable's definition during execution.
The system automatically deallocates that memory at the end of the block that contains
the definition.

Once a variable has been deallocated, any pointers to it become invalid. It is the
programmer’s responsibility to avoid using such invalid pointers. For example,

/'l this function deliberately yields an invalid pointer.
/1 it is intended as a negative exanpl e—don't do this!
int* invalid _pointer()
{ .

int x;

return &; // instant disaster!

This function returns the address of the local variable X . Unfortunately, when the function
returns, doing so ends execution of the block that contains the definition of X , which
deallocates X . The pointer that &x created is now invalid, but the function tries to return
it anyway. What happens at this poi nt is anybody's guess. In particular, C++
implementations are not required to diagnose the error—you get what you get.

If we want to return the address of a variable such as X , one way to do so is to use the
other kind of memory management, by asking for X to be statically allocated:

/1 This function is conpletely legitinate.
int* pointer_to_static()

{

static int x;
return &x;

By saying that X is st ati ¢ , we are saying that we want to allocate it once, and only
once, at some point before the first time that poi nter _to_stati c is ever called, and
that we do not want to deallocate it as long as our program runs. There is nothing wrong
with returning the address of a St at i ¢ variable; the pointer will be valid as long as the
program runs, and it will be irrelevant afterward.

However, st at i ¢ allocation has the potential disadvantage that every call to

poi nter to_stati c will return a pointer to the same object! Suppose we want to
define a function such that each time we call it, we get a pointer to a brand new object,
which stays around until we decide that we no longer want it. To do so, we use dynamic



allocation, which we request by using the new and delete keywords.
10.6.1 Allocating and deallocating an object

If T is the type of an object, new T is an expression that allocates an object of type T ,
which is default-initialized, and yields a pointer to this (unnamed) newly allocated object.
It is possible to give a specific value to use when initializing the object by executing new
T (args). The object stays around until the program either ends or executes del ete p
(whichever happens first), where p is (a copy of) the pointer returned by new. In order to
del et e a pointer, the pointer must point to an object that was allocated by new, or be
equal to zero. Deleting a zero pointer has no effect. As an example,

int* p = new int(42);

will allocate an unnamed new object of type i nt , initialize the object to 42, and cause p
to point to that object. We can affect the value of the object by executing statements
such as

++*p; /'l pis now 43

after which the object has the value 43. When we're done with the object, we can execute

del ete p;

after which the space occupied by * p is freed and p becomes an invalid pointer, with a
value that we can no longer use until we have assigned a new value to it.

As another example, we might write a function that allocates an i nt object, initializes it,
and returns a pointer to it:

int* pointer_to_dynamni c()

{

}

return new int(0);

which imposes on its caller the responsibility of freeing the object at an appropriate time.
10.6.2 Allocating and deallocating an array

If T is a type and n is a non-negative integral value, new T[ n] allocates an array of n
objects of type T and returns a pointer (which has type T* ) to the initial element of the
array. Each object is default-initialized, meaning that if T is a built-in type and the array
is allocated at local scope, then the objects are uninitialized. If T is a class type, then
each element is initialized by running its default constructor.

When T is a class type, there are two important implications of this initialization process:



First, if the class doesn't allow default-initialization, then the compiler will reject the
program. Second, each of the n elements in the array is initialized, which can be a
substantial execution overhead. In Chapter 11, we'll see that the standard library
provides a more flexible mechanism for dynamically allocating arrays. It is often
preferable to use that mechanism, rather than new, when dynamically allocating an array.

Although every ordinary array is required to have at least one element, it is possible to
allocate an "array" with no elements by executing new T[ n] with n equal to zero. In this
case, new has a little trouble returning a pointer to the initial element—because there isn't
one. What it does instead is return a valid off-the-end pointer, which we can later use as
an argument to del et e[ ] , and which we can think of as being a pointer to where the
initial element would be if it existed.

The point of this curious behavior is to permit programs such as

™ p = new T[n];
vector<T> v(p, p + n);
delete[] p;

to work even if n is zero. The fact that p doesn't point to an element when n is zero is
irrelevant; all that matters is that p and p + n are pointers that can legitimately be
compared with each other and found to be equal. In all cases, the vect or will have n
elements. It is a great convenience for such programs to work properly even when n is
zero.

Note the use of del et e[ ] in this example. The brackets are necessary to tell the system
to deallocate an entire array, rather than a single element. An array allocated by new |
stays around until the program ends or until the program executes del ete[] p , where
p is (a copy of) the pointer that new| | yielded. Before deallocating the array, the system
destroys each element, in reverse order.

As an example, here is a function that takes a pointer to the initial character of a null-
terminated character array such as a string literal, copies all the characters in the array
(including the null character at the end) into a newly allocated array, and returns a
pointer to the initial element of the new array:

char* duplicate_chars(const char* p) {
/'l allocate enough space; renenber to add one for the nul
size_t length = strlen(p) + 1;
char* result = new char[l ength];

/'l copy into our newmy allocated space and return pointer to first el enent
copy(p, p + length, result);
return result;

Recall from 810.2/176 that st r | en returns the number of characters in a null-terminated
array, excluding the null character at the end. We therefore add 1 to the result of str | en
to account for the null, and allocate that many characters. Because pointers are iterators,
we can use the copy algorithm to copy characters from the array denoted by p into the



array denoted by r esul t . Because | engt h includes the null character at the end of the
array, the call to copy copies that character as well as the ones before it.

As before, this function imposes on its caller the obligation to free the memory that it
allocated. In general, finding an opportune time to free dynamically allocated memory is
far from easy. We shall discuss techniques for automating this task in 811.3.4/200.
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10.7 Details

Pointers are random-access iterators that hold the addresses of objects. For example:

p = &s Mekeg point to S.

*p = s2 Dereferences p and assigns a new value to the object to which p points.

vector<string> (*sp)(const string& = split;
Defines sp as a function pointer that points to the spl i t function.

i nt nuns[ 100];
Defines nuns as an array of 100 i nt s.
int* bn = numns;
Defines bn as a pointer to the first element of the array nuns.

int* en = nuns + 100;
Defines en as a pointer to (one past) the last element of the array nuns.

Pointers can point at single objects, arrays of objects, or functions. When a pointer refers
to a function, its value may be used only to call the function.

Arrays are fixed-size, built-in containers whose iterators are pointers. Uses of the name
of an array are automatically converted to a pointer to the initial element of the array. A
string literal is a null-terminated array of characters. Indexing an array is defined in terms
of pointer operations: For every array a and an index n, a[ n] is the same as *(a +

n) . If a is an array with n elements, then the range [ 2, a + n) represents all the
elements of a. Arrays can be initialized when they are defined:

string days[] = { "Mon", "Tues", "Wed", "Thu", "Fri", "Sat", "Sun" };

The implementation infers the size of days from the number of initializers.

The main function may (optionally) take two arguments. The first argument, an i nt ,
says how many character arrays are stored in the second argument, which is a char ** .
The second argument to Mai N is sometimes written as

char* argv]]

which is equivalent to char ** . This syntax is legal only in parameter lists.
Input-Output:

cerr
Standard error stream. Output is not buffered.



cl og
Standard error intended for logging. Output is buffered.

i fstrean(cp)

Input stream bound to the file named by the char * cp. Supports the operations on
i streans.

of stream (cp)

Output stream bound to the file named by the char * cp. Supports the operations on
ost reans.

Input and output file streams are defined in <i f st r ean®.
Memory management:

new T

Allocates and default-initializes a new object of type T and returns a pointer to the
object.

new T( args)
Allocates and initializes a new object of type T using ar gs to initialize the object.
Returns a pointer to the object.

delete p

Destroys the object to which p points and frees the memory used to hold *p. The
pointer must point at an object that was dynamically allocated.

new T[ n]

Allocates and default-initializes an array of n new objects of type T. Returns a pointer to
the initial element in the array.

delete[] p

Destroys the objects in the array to which p points and frees the memory used to hold
the array. The pointer must point to the initial element of an array that was dynamically
allocated.

Exercises

10-0. Compile, execute, and test the programs in this chapter.
10-1. Rewrite the student-grading program from 89.6/166 to generate letter grades.

10-2. Rewrite the nmedi an function from §8.1.1/140 so that we can call it with either a
vect or or a built-in array. The function should allow containers of any arithmetic type.

10-3. Write a test program to verify that the nedi an function operates correctly. Ensure
that calling medi an does not change the order of the elements in the container.

10-4. Write a class that implements a |l i st that holds st ri ngs.

10-5. Write a bidirectional iterator for your St ri ng_| i st class.



10-6. Test the class by rewriting the spl i t function to put its output into a

String list.
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Defining abstract data types

In Chapter 9, we learned something about the basic language features required to define
new types. However, the St udent i nf o type that we defined in that chapter did not
specify what should happen when objects of type St udent i nf 0 are copied, assigned,
or destroyed. As we'll see in this chapter, the class author also controls all these aspects
of an object's behavior. What may be surprising is how essential the correct definition of
these operations is for creating a type that is intuitive and easy to use.

Because we've used vect or s extensively, we'll build a similar class to further our
understanding of how to design and implement classes. The implementation that we
present will be greatly simplified in terms of which operations we provide and our
attention to efficiency. Because it is a stripped-down version of the standard-library

vect or class, we'll call our class Vec to avoid confusing it with the library class. Although
we are largely concerned with how to copy, assign, and destroy objects of class Vec, we
will find it useful to start by implementing some simpler member functions. Once we have
completed these other functions, we will come back and look at how we can control

copying, assigning, and destroying class objects.
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11.1 The Vec class

When we design a class, we normally start by specifying the interface that we want to
provide. One way to determine the right interface is to look at the kind of programs we
want our users to be able to write. Because we want to implement a useful subset of the
standard vect or class, a good place to start is to look at how we've used vect or s:

/'l construct a vector
vect or <St udent _i nf o> vs; /'l enpty vector
vect or <doubl e> v(100); /1l vector with 100 el enents

/'l obtain the nanmes of the types used by the vector
vect or <Student _i nfo>::const _iterator b, e;
vect or<Student i nfo>::size type i = 0;

/'l use size and the index operator to | ook at each elenment in the vector
for (i =0; i !'= vs.size(); ++i)

cout << vs[i].nane();
/'l return iterators positioned on the first and one past the |ast elenent
b = vs.begin(); e = vs.end();

Of course, this list of operations is but a subset of what the standard vect or class
provides—but by implementing this subset, we can understand the language facilities

necessary to support much of the vect or interface.
=
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11.2 Implementing the Vec class

Having determined our operations, we next need to think about how to represent a Vec .

The easiest implementation decision is that we need to define a template class . We
want to allow users to use Vec s to hold a variety of types. The template facility that we
described in 88.1.1/140 for functions also applies to classes. That facility let us write one
definition of a template function, and use that template to create versions that could be
run on a variety of types. Similarly, we can define a template class, and then use that
class to create a family of types that differ only with respect to the types used in the
template parameter list. We've already used such types, including vect or , i st , and
map .

As with template functions, when we define a template class, we have to signal that the
class is a template, and list the type parameters that will be used in the class definition:

tenmpl ate <class T> class Vec {

publi c:
/'l interface
private:

/1 inplementation

}

This code says that Vec is a template class, with one type parameter named T . As with
other class types, we can assume that there will be publ i ¢ and pri vat e parts that
define the interface and implementation respectively.

The next question we must resolve is what data we will store. Presumably we'll need
some storage to hold the elements in the Vec , and we'll want to keep track of the
number of elements that the Vec contains. The most obvious choice is to hold the
elements in a dynamically allocated array.

What information about the array do we need to store? We intend to implement the
begi n, end , and si ze functions. This intention suggests that we might store the
address of the initial element, one past the address of the last element, and the number
of elements. However, we do not need to store all three of these items, because we can
compute any of them from the other two. Therefore, we'll make the arbitrary decision to
store only pointers to the first and (one past) the last element of the array, and to
compute the Si ze as needed. We envision a data structure that looks like this:



Vec
data — elements of the Vec object
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With these implementation decisions made, we can update our Vec class:

tenpl ate <class T> class Vec {

public:

/'l interface
private:

T* dat a; /'l first elenment in the Vec

T™ limt; /'l one past the last elenent in the Vec
b

This class definition says that Vec is a template type, and that it takes a single type
parameter. In the body of the class definition, we'll call that type T . Whenever we use T ,
the compiler will replace it with whatever type the user names when creating a Vec . So
for example, if we write

Vec<i nt > v;

this definition will cause the compiler to instantiate (88.1.2/142) a version of the Vec
class in which it replaces each reference to T by i nt . The code that the compiler
generates for that class will resolve expressions that involve T as if they had been written
using I nt . Thus, because we used the type parameter T in the declaration of dat a and
[imt ,the type of these pointers depends on the type of the objects that the Vec will
hold.

This type is not known until the definition of a Vec is instantiated. Once we say that we
want a Vec<i nt > , the types of dat a and | i m t are known: They will be i nt * for this
instance of Vec . Similarly, if we also used Vec<stri ng> , then the compiler would
generate a second, different instantiation of VVec that bound T to stri ng , thereby giving
dataand | i mt the type stri ng* in that instantiation.

11.2.1 Memory allocation

Because our class will allocate its array dynamically (810.6.2/184), we might expect that
we should allocate space for our Vec by using new T[ n] , where n is the number of
elements we want to allocate. However, remember that not only does new T[ n] allocate
space, but it also initializes the elements by running the default constructor for T . If we
were to use new T[ n] , then we would be imposing a requirement on T : Users could
create a Vec<T> only if T has a default constructor. The standard vect or class imposes
no such restriction. Because we want to emulate standard vect or s, we don't want to



impose this restriction either.

It turns out that the library provides a memory allocation class that offers more detailed
control over memory allocation. This class will suit our needs exactly, if we use it instead
of new and del et e . The class lets us allocate raw memory, and then—in a separate
step—build objects in that memory. Rather than diving right into the details of that class,
we will assume that eventually we shall have to write some utility functions that will
manage the memory for us. For now, we'll assume that these functions exist, and we'll
use them in completing the Vec class. As we use them, we'll get a better picture of just
what we would like them to do, so that when it's time to implement them, We will know
just what it is that we need to implement.

These new utility members will be part of the pri vat e implementation of our class. They
will be responsible for allocating and deallocating the memory that we need, and for
initializing and destroying the elements stored in the Vec . Thus, these functions will
manage our pointers—data and | i m t . Only these memory management functions will
give new values to these data members. The publ i ¢ members of Vec will read dat a
and 1i mi t , but will not change them.

When the publ i ¢ members need to do something, such as constructing a new Vec that
needs to change the value of data or | i m t , they will call an appropriate memory-
management function to do so. This strategy will let us partition our work: One set of
members will provide the interface to our user, and another set will deal with the
implementation details.

We'll come back to fill in the details of these utility functions in 11.5/203.
11.2.2 Constructors

We know that we must define two constructors:

Vec<Student _info> vs; [/ the default constructor
Vec<doubl e> vs(100); /'l constructor taking a size

The standard vect or also provides a closely related third constructor, which takes a size
and an initial value to use to initialize the elements of the vect or , and initializes all the
elements to copies of that value. This constructor is similar to the one that takes a size
alone, so we may as well implement this third constructor too.

The role of any constructor is to ensure that the object is correctly initialized. For Vec
objects, we need to initialize dat a and | i m t . Doing so involves allocating space to hold
the elements of the Vec and initializing those elements to an appropriate value. In the
case of the default constructor, we want to create an empty Vec , so we need not allocate
any space. For the constructors that take a size, we will allocate the given amount of
storage. If the user gives us an initial value as well as a size, we'll use that value to
initialize all the elements that we allocated. If the user gives us just a size, then we'll use
the default constructor for T to obtain a value to use in initializing the elements. For now,
we'll forward to our as yet unwritten memory-management functions the job of initializing
dataand | inmt , and the related work of allocating and initializing the elements:



tenmpl ate <class T> class Vec {

publi c:
Vec() { create(); }
explicit Vec(size type n, const T& val = T()) { create(n, val); }

/1l remaining interface

private:
T* dat a;
T limt;
b

The default constructor, which is the one that takes no arguments, needs to indicate that
the Vec is empty (i.e., that it has no elements). It does so by calling a member called

cr eat e , that we'll have to write. When we return from cr eat e , we intend for both
dataand|imt to be set to zero.

Our second constructor uses a keyword that we have not yet seen, explicit, which we will
explain shortly. First, let's understand what the constructor does. Note that it uses a
default argument (87.3/127) for the second parameter. Thus, the constructor effectively
defines two constructors: One takes a single argument of type Si ze_t ype ; the other
takes a Si ze_t ype and a const T& . In both cases we call a version of Cr eat e that
takes a size and a value. We'll assume that this function, which we’ll write in 811.5/203,
will allocate enough memory to hold n objects of type T , and will give those elements the
initial value specified by val . Our users will have supplied that value explicitly, or else
the default constructor for T will have generated it using the rules outlined in 89.5/164 for
value-initialization.

Now let's understand a bit about the use of expl i ci t . This keyword makes sense only
in the definition of a constructor that takes a single argument. When we say that a
constructor is explicit, we're saying that the compiler will use the constructor only in
contexts in which the user expressly invokes the constructor, and not otherwise:

Vec<int> vi (100); /1 ok, explicitly construct the Vec from an int
Vec<int> vi = 100; /1 error: inplicitly construct the Vec (811.3.3/199) and cc

Use of expl i cit can be crucial in other contexts in which a constructor might be used,
so we will discuss it further in 12.2/213. For consistency with the standard vect or
class, we have made this constructor explicit even though none of our subsequent
examples in this chapter relies on this fact.

11.2.3 Type definitions

Following the convention used by the standard template classes, we want to provide type
names that our users can use, and that will hide the implementation details of how we
implement our class. Specifically, we need to provide t ypedef s for the const and
nonconst iterator types, and for the type that we use to denote the size of a Vec .

It turns out that the library containers also define another type, named val ue_t ype,
that is a synonym for type of the objects that the container stores. Looking ahead, we will



want to add push_back to class Vec , so that users can dynamically grow their Vec
objects. If we also define val ue_t ype , then users will be able to use back i nserter
(which depends on both push_back and val ue_t ype ) to generate an output iterator
that can grow the Vec .

The only hard part of defining these types is deciding what types to choose. As we've
seen, iterators are objects that navigate among the objects in a container and let us
examine their values. Often iterators are themselves of class type. For example, consider
a class that implements a linked list. A logical strategy for such a class would be to model
a list as a set of nodes, where each node contains a value and a pointer to the next node
in the list. The iterator for such a class would contain a pointer to one of these nodes and
would implement the ++ operator to follow the pointer to the next node in the list. Such
an iterator would have to be implemented as a class type.

Because we used an array to hold the elements of a Vec , we can use plain pointers as
our Vec iterator type. Each such pointer will point into the underlying dat a array. As we
learned in 10.1/169, pointers support all the random-access-iterator operations. By
using a pointer as our underlying iterator type, we will provide full random-access
properties, which is consistent with the standard vect or class.

What about the other types? The type of val ue_t ype is obvious: It must be T . But,
what about the type that represents the size? We know that si ze_t is big enough to
hold the number of elements in any array. Because we are storing Vec s in an array, we
can use Si ze_t as the underlying type for Vec: : si ze_t ype . These decisions give us a
class that now looks like

tenpl ate <class T> class Vec {

public:
typedef T* iterator; /1 added
typedef const T* const_iterator; /1 added
typedef size_ t size_ type; /1 added
typedef T val ue_type; /1 added
Vec() { create(); }
explicit Vec(size type n, const T& val = T()) { create(n, val); }
/1 remaining interface

private:
iterator data; /'l changed
iterator limt; /'l changed

}s

In addition to adding the appropriate t ypedef s, we've also updated the class to use our
new types. By using the same names inside the class that we defined with our t ypedef
declarations, we make our code more readable and ensure the code will not get out of
sync if we subsequently change one of these types.

11.2.4 Index and size

We said that our users should be able to call si ze to find out how many elements are in
the Vec and to use the index operator to access the elements in the Vec . For example,



for (i =0; i !'= vs.size(); ++i)
cout << vs[i].nane();

From this usage we can see that the si ze function should be a member of class Vec ,
and that we'll need to define what it means to use the subscript operator, [] , on a Vec .
The Si ze function is easiest: It takes no argument and should return the number of
elements in the Vec as a Vec: : si ze_t ype . Before we define the index operation, we
need to know a bit more about how overloaded operators work.

We define an overloaded operator much as we define any other function: It has a name,
takes arguments, and specifies a return type.

We form the name of an overloaded operator by appending the operator symbol to the
word operator. Thus, the function we need to define will be called operator|[] .

The kind of operator—whether it is a unary or binary operator—is part of what determines
how many parameters the corresponding function has. It the operator is a function that is
not a member, then the function has as many arguments as the operator has operands.
The first argument is bound to the left operand; the second is bound to the right operand.
If the operator is defined as a member function, then its left operand is implicitly bound to
the object on which the operator is invoked. Member operator functions, therefore, take
one less argument than the operator indicates.

In general, operator functions may be member or nonmember functions. However, the
index operator is one of a handful of operations that must be member functions. When
our user writes an expression such as vs[i ] , that expression will call the member
named oper at or[] of vs , passing i as its argument.

We know that the operand must be an integral type large enough to denote the last
element in the largest possible Vec , and that this type is Vec: : si ze_t ype . What
remains is to decide what type the index operator should return.

If we give it a bit of thought, we'll conclude that we should return a reference to the
element stored in the Vec . Doing so will allow users to write through the index as well as
read from it. Although our sample program uses the index only to read a value from vs ,
it is reasonable to expect that users will also want write access to the elements. With this
analysis complete, we can update our class appropriately:

tenpl ate <class T> class Vec {
public:
typedef T* iterator;
typedef const T* const _iterator;
typedef size_ t size_type;
typedef T val ue_type;

Vec() { create(); }
explicit Vec(size type n, const T& val = T()) { create(n, val); }

/1 new operations: size and index
size_type size() const { return limt - data; }

T& operator[](size_type i) { return data[i]; }



const T& operator[](size_type i) const { return data[i]; }
private:

iterator data;

iterator limt;

}s

The si ze function calculates the number of elements in the Vec by subtracting the
pointers that delimit the array that holds our values. Remember from §10.1.4/175 that
subtracting two pointers yields the number of elements apart the locations are to which
the pointers refer (a value of type pt rdi ff _t ). Returning that value from the si ze
function converts it to Si ze_t ype , the function's return type, which is a synonym for
Si ze t (810.1.3/174). Taking the si ze of a Vec doesn't change the Vec , so we
declare si ze as a const member function. Doing so lets us take the Si ze of a const
Vec .

The index operator finds the corresponding position in the underlying array and returns a
reference to the element. By returning a reference, we allow the user to use the index
operation to change the values that are stored in the Vec . This ability to write to the
element implies that we need two versions: one for const Vec objects, the other for
nonconst objects of type Vec . Note that the const version returns a reference to
const . Doing so ensures that users may use the index only to read the Vec , not to
write to it. It is worth noting that we still return a reference, rather than returning a
value, for consistency with the standard vect or . The reason to return a reference is
that if the objects stored in the container are large, it is more efficient to avoid copying
them.

It may be surprising that we can overload the index operator, because it appears that
both argument lists are the same; each appears to take a single parameter of type

Si ze_t ype . However, every member function, including each of these operators, takes
an implicit parameter, which is the object on which it operates. Because the operations
differ regarding whether that object is const , we can overload the operation.

11.2.5 Operations that return iterators

Next, we need to consider the functions that return iterators. Our specification called for
us to implement the begi n and end operations, which return an iterator positioned at
the beginning and one past the end of the Vec respectively:

tenpl ate <class T> class Vec {

publi c:
typedef T* iterator;
typedef const T* const _iterator;
typedef size t size_ type;
typedef T val ue_type;

Vec() { create(); }
explicit Vec(size type n, const T& val = T()) { create(n, val); }

T& operator[](size_type i) { return data[i]; }
const T& operator[](size_type i) const { return datal[i]; }



size_type size() const { return limt - data; }

/! new functions to return iterators

iterator begin() { return data; } /1 added

const _iterator begin() const { return data; } /1 added

iterator end() { return limt; } /1 added

const iterator end() const { return limt; } /1 added
private:

iterator data;
iterator limt;

}s

We offer two versions of the begi n and end operations, which are overloaded based on
whether the Vec is const . The const versions return const iterator s, soour
users will be able to read but not modify the Vec elements through the iterator.

At this point, our Vec class is still pretty basic, but the essentials are in place. In fact, if
we add only a few more operations, such as push_back and cl ear , we could use this
class instead of the standard vect or for all the examples in this book. Unfortunately,
though, our Vec class fails to meet the vect or specification in some critically important
ways, which we must now address.
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11.3 Copy control

In the introduction to this chapter, we said that the class author controls what happens
when objects are created, copied, assigned, and destroyed. We've explained how to
create objects, but not how to control what happens when they are copied, assigned, or
destroyed. As we'll see, if we fail to define these operations, the compiler will synthesize
definitions for us. These synthesized operations are sometimes exactly what we need. The
rest of the time, the synthesized operations can lead to counterintuitive behavior, and
even to run-time failures.

C++ is the only language in widespread use that gives the programmer this level of
control over an object's behavior. Not surprisingly, getting these operations correct is
essential in building useful data types.

11.3.1 Copy constructor

Passing an object by value to a function, or returning an object by value from a function,
implicitly copies the object. For example,

vector<int> vi
doubl e d;
d = nmedian(vi); /'l copy vi into the paranmeter in medi an

string line;
vector<string> words = split(line); /'l copy the return fromsplit into words

Similarly, we can explicitly copy an object by using it to initialize another object:

vect or <Student _i nf o> vs;
vect or<Student _info> v2 = vs; [/ copy vs into v2

Both explicit and implicit copies are controlled by a special constructor called the copy
constructor . Like other constructors, the copy constructor is a member function with the
same name as the name of the class. Because it exists to initialize a new object as a copy
of an existing object of the same type, it follows that the copy constructor takes a single
argument that has the same type as the class itself. Because we are defining what it
means to make a copy, including making copies of function arguments, this is one case
when it is essential that the parameter be a reference type! Furthermore, copying an
object should not change the object being copied from, so the constructor takes a const
reference to the object from which to copy:

tenpl ate <class T> class Vec {

public:
Vec (const Vec& v); /'l copy constructor
/'l as before

}s



Having declared the copy constructor, we have to figure out what it should do. In general,
copy constructors "copy" each data element from an existing object into the new object.
We say "copy" because sometimes copying involves more than just copying the contents
of a data element. For example, in our Vec class, we have two data elements, both of
which are pointers. If we copy the values of the pointers, then the original and the copy
will both point to the same underlying data. For example, assume that v is a Vec , and
that we want to copy V into V2 . If we copied the pointers, then what we'd have is

data S— container elements — data
1imit —v L |1imit

Clearly, any change made to an element of one "copy" would result in changing the value
of the element of the other "copy" as well. That is, if we assigned a value to v[ 0] , doing
so would also change v2[ 0] . Is this behavior what we want?

As with other operations, we can answer this question by seeing what the standard

vect or does. Recall the discussion in 84.1.1/53, in which we noted that we needed to
pass the vect or to the nedi an function by value so that the vect or would be copied.
Making a copy ensured that changes made inside medi an would not propagate out of the
function. This analysis, and the behavior that we observe when we run the nedi an
function, indicates that the standard vect or class does not share the same underlying
storage once a copy is made. Instead, it arranges that each copy of a vect or is
independent, so that changes to one are not reflected in the other:

v V2

data — ‘ container elements data — [ cotitainer elemerits
limit —n\j limit —\J

Evidently, when we copy a Vec , we'll need to allocate new space and copy the contents
from the source into the newly allocated destination. As before, we'll assume that one of
our utility functions will handle the allocation and copy so that the copy constructor can
forward its work to that function:

tenmpl ate <class T> class Vec {

publi c:
Vec(const Vec& v) { create(v.begin(), v.end()); }
/1 as before

}s

When we get around to writing it, the function will be yet another version of cr eat e —



this one taking a pair of iterators (i.e., pointers) and initializing the elements being
created from the elements in the range bounded by those pointers.

11.3.2 Assignment

Just as a class definition specifies what happens when objects of that class are copied, the
class definition also controls the behavior of the assignment operator . Although a class
may define several instances of the assignment operator—overloaded, as usual, by
differing types for its argument—the version that takes a const reference to the class
itself is special: It defines what it means to assign one value of the class type to another.
This version is typically called "the assignment operator,” even if the class defines several
other versions of the oper at or = function. The assignment operator, like the index
operator, must be a member of the class. As with any other operator, the assignment
operator has a return value, and so it must define a return type. For consistency with the
built-in assignment operators, we return a reference to the left-hand side:

tenpl ate <class T> class Vec {
public:
Vec& operat or=(const Vecg&)
/'l as before

}s

Assignment differs from the copy constructor in that assignment always involves
obliterating an existing value (the left-hand side) and replacing it with a new value (the
right- hand side). When we make a copy, we are creating a new object for the first time,
so there is no preexisting object to deallocate. Like the copy constructor, assignment
usually involves assigning each of the data values. Data members that are pointers
present the same issues for assignment as they did for copying. We'll want assignment to
ensure that each object has its own copy of the data from the right-hand side.

There's one last detail to consider before writing the code, and that is self-assignment. It
is possible that a user might wind up assigning an object to itself. As we shall see, it is
crucial that assignment operators deal correctly with self-assignment:

tenpl ate <class T>
Vec<T>& Vec<T>::operator=(const Vec& rhs)

{
/'l check for self-assignnent
if (&hs !'=1this) {
/'l free the array in the |left-hand side
uncreate();
/'l copy elenents fromthe right-hand to the |eft-hand side
create(rhs. begin(), rhs.end());
}
return *this;
}

This function uses a couple of new concepts, which we'll need to explain.



First is the syntax that we use to define a template member function outside the class
header. As with any template, we begin by signaling to the compiler that we are defining
a template, and naming the template parameters. Next comes the return type, which in
this case is Vec<T>& . If we compare this definition with the corresponding declaration in
the header file, we'll see that we said the function returned a Vec& . We did not explicitly
name the type parameter in the return type. As a bit of syntactic sugar, the language
allows us to omit the type parameters when we are within the scope of the template.
Thus, inside the header file, we need not repeat <T> because the template parameter is
implicit. When we name the return type, we are outside the scope of the class, so we
must explicitly state the template parameters, if any. Similarly, the name of the function
is Vec<T>::operator=, not simply Vec: : oper at or = . However, once we have
specified that it is a member of Vec<T> that we are defining, we need no longer repeat
the template qualifiers. Hence, the argument is simply const Vec&, although we could
have written the redundant const Vec<T>& .

The other new aspect of this function is the use of a new keyword, this. The t hi s
keyword is valid only inside a member function, where it denotes a pointer to the object
on which the member function is operating. For example, inside Vec: : oper at or =, the
type of t hi s is Vec* , because t hi s is a pointer to the Vec object of which oper at or =
is a member. For a binary operator, such as assignment, t hi s is bound to the left-hand
operand. Ordinarily, t hi s is used when we need to refer to the object itself, as we do
here both in the initial if test and in the return.

We use t hi s to determine whether the right- and left-hand sides of the assignment refer
to the same object. If they do, then they will have the same address. As we saw in
8§10.1.1/170, & hs yields a pointer that is the address of r hs . We explicitly test for self-
assignment by comparing that pointer and t hi s , which points to the left-hand side. If
the objects are the same, then there's nothing to do in the assignment operator, and we
immediately fall through to the r et ur n statement. If the objects are different, we need
to free the old space and assign new values to each data element, copying the contents
from the right-hand side to the newly allocated array. Evidently, we will need to write
another of our utility functions, uncr eat e , which will destroy the elements that had
been in this Vec , and will free the storage that it had consumed. Once we call uncr eat e
to obliterate the old values, we can use the version of Cr eat e that copies from an
existing Vec to allocate new space and copy the values from the right-hand to the left-
hand side.

It is crucially important that assignment operators correctly handle self-assignment, which
we did here by explicitly checking whether the left- and right-hand operands are the same
object. To see the importance, consider what would happen if we were to remove this test
from our assignment operator. In that case, we would always uncr eat e the existing
array from the left-hand operand, destroying the elements and returning the space that
had been used. However, if the two operands were the same object, then the right
operand would refer to this same space. Had we used the elements from the right
operand to create a new array for the left operand, the result would have been a disaster:
When we freed the space held by the left operand, we would also have freed the space for
the right-hand object. When cr eat e attempted to copy the elements from r hs , those
elements would have been destroyed and the memory returned to the system.

Although it is most common to handle self-assignment through a direct check, such as we
did here, it is not universal, nor is it always the best approach. The important point is to
handle self-assignment correctly. How to do so is a matter of tactics.



The last interesting bit is the r et ur n statement, which dereferences t hi s to obtain the
object to which it points. We then return a reference to that object. As usual in returning
a reference, it is crucial that the object to which the reference refers persist after the
function has returned. Returning a reference to a local object ensures disaster: The
referenced object will have gone away when the function returns, resulting in a reference
to garbage.

In the case of the assignment operator, we are returning a reference to the object that is
the left-hand side of the expression. That object exists outside the scope of the
assignment operator and hence is guaranteed to be around even after the function
returns.

11.3.3 Assignment is not initialization

Experience leads us to believe that the difference between assignment and initialization is
one of the trickier aspects of learning C++ well. Many programming languages, C notably
among them, do not expose the distinction, so programmers often are unaware of the
difference. The fact that the = symbol can be involved in both initialization and
assignment can make the distinction harder to grasp. When we use = to give an initial
value to a variable, we are invoking the copy constructor. When we use it in an
assignment expression, we're calling oper at or = . Class authors must be attuned to the
difference in order to implement the right semantics.

The key difference stems from two observations: Assignment (Oper at or =) always
obliterates a previous value; initialization never does so. Rather, initialization involves
creating a new object and giving it a value at the same time. Initialization happens

In variable declarations

For function parameters on entry to a function

For the return value of a function on return from the function
In constructor initializers

Assignment happens only when using the = operator in an expression. For example:

string url_ch = "~ /?2: @&$-_.+1*" ()," /1 initialization
string spaces(url _ch.size(), ' ") ; /1 initialization
string vy; /1 initialization
y = url_ch; /'l assi gnnent

The first declaration creates a new object. Therefore, we know that we are initializing that
object, and hence that we will be invoking a constructor. The syntax

string url_ch = "~ /?2: @&$-_.+*"(),"
says to create a St ri ng from the const char* that represents the string literal " ~; / ?
C@&$- . +!*'()," . Todo so, the compiler will call the st ri ng constructor that takes

aconst char* . That constructor can construct ur | _ch directly from the string literal,
or it can construct an unnamed temporary variable from the string literal, and then call
the copy constructor to construct url _ch as a copy of that temporary variable.



The second declaration shows another form of initialization: giving one or more
constructor arguments directly. The compiler will call whichever constructor is most
appropriate for the number of arguments and their types. In this example, it will use the
st ri ng constructor that takes two arguments. The first argument says how many
characters the variable spaces is to have; the second tells what value to give each of
those characters. The effect will be to define Spaces as having the same number of
characters as url _ch , with all of the characters being blank.

The third declaration is easier: We're invoking the default constructor to create an empty
string . The last statement is not a declaration at all. Instead, it is using the = operator
as part of an expression; hence, it is an assignment. That assignment will be
accomplished by running the st ri ng assignment operator.

A slightly more complicated example involves function arguments and return values. For
example, assume that line holds a line of input, and we call spl it from 6.1.1/103:

vector<string> split(const string&; // function declaration
vector<string> v; /1l initialization

v = split(line); /1 on entry, initialization of split's paranmeter fromlii
/1 on exit, both initialization of the return val ue
/1 and assignnent to v

The declaration of spl i t is interesting because it defines a return type that is a class
type. Assigning a class type return value from a function is a two-step process: First, the
copy constructor is run to copy the return value into a temporary at the call site. Then the
assignment operator is run to assign the value of that temporary to the left-hand
operand. The distinction between initialization and assignment is important because each
one causes different operations to run:

e Constructors always control initialization.
e The oper at or = member function always controls assignment.

11.3.4 Destructor

We must still provide one more operation, which defines what happens when a Vec object
is destroyed. An object that is created in a local scope is destroyed as soon as it goes out
of scope; a dynamically allocated object is destroyed when we del et e a pointer to the
object. For example, consider the spl i t function from £6.1.1/103:

vector<string> split(const string& str) {
vector<string> ret;
/'l split str into words and store in ret
return ret;

When we return from spl i t , the local variable r et goes out of scope and is destroyed.

Just as with copy and assignment, it is up to the class to say what happens when objects
are destroyed. Like constructors, which say how to create objects, there is a special



member function, called a destructor , that controls what happens when objects of the
type are destroyed. Destructors have the same name as the name of the class prefixed by
a tilde(~ ). Destructors take no arguments and have no return value.

The work of the destructor is to do any cleanup that should be done whenever an object
goes away. Typically, this cleanup involves releasing resources, such as memory, that the
constructor has allocated:

tenpl ate <class T> class Vec {
public:

~Vec() { uncreate(); }

/'l as before

}s

For Vec s, we allocate memory in the constructors, and so we must free it in the
destructor. This job is similar to what the assignment operator does to obliterate the old
left-hand side. Not surprisingly, we can call the same utility function from the destructor,
with the aim of destroying the elements and freeing the space that they occupied.

11.3.5 Default operations

Some classes, such as the St udent i nf o types that we defined in Chapters 4 and 9, do
not explicitly define a copy constructor, assignment operator, or destructor. A logical
question is: What happens when objects of such types are created, copied, assigned, and
destroyed? The answer is that if the class author does not specify these operations, the
compiler synthesizes default versions of the unspecified operations.

The default versions are defined to operate recursively—copying, assigning, or destroying
each data element according to the appropriate rules for the type of that element.
Members that are of class type are copied, assigned, or destroyed by calling the copy
constructor, assignment operator, or destructor for the data element. Members that are of
built-in type are copied or assigned by copying or assigning their value. The destructor for
built-in types has no work to do—even if the type is a pointer. In particular, destroying a
pointer through the default destructor does not free the space at which the pointer points.

Now we can understand how the default St udent i nf 0 operations execute. For
example, the copy constructor copies four data elements. To do so, it invokes the stri ng
and vect or copy constructors to copy the nane and homewor k members respectively. It
copies the two doubl e values, m dt er mand fi nal , directly.

Finally, as we saw in 89.5/164, there is a default for the default constructor. If the class
defines no constructors at all, then the compiler will synthesize the default constructor,
which is the constructor that has no parameters. The synthesized default constructor
recursively initializes each data member in the same way as the object itself is initialized:
If the context requires default-initialization, it will default-initialize the data members; if
the context requires value-initialization, it will value-initialize the data members.

It is important to note that if a class defines any constructor explicitly, even a copy
constructor, then the compiler will not synthesize a default constructor for that class.
Default constructors are essential in several contexts: One such context is in the
synthesized default constructor itself. In order to be used as a data member of a class
that relies on the synthesized default constructor, the data type must itself provide a



default constructor. Therefore, it is usually a good idea to give a class a default
constructor, either explicitly, as we did in Chapter 9, or implicitly, as we did in Chapter 4.

11.3.6 The rule of three

Classes that manage resources such as memory require close attention to copy control. In
general, the default operations will not suffice for such classes. Failure to control every
copy can confuse users of the class and often will lead to run-time errors.

Consider our Vec class, but pretend that we did not define the copy constructor,
assignment operator, or destructor. As we saw in 811.3.1/195, at best we will surprise
our users. Users of Vec will almost surely expect that once they've copied one Vec into
another, the two objects will be distinct. They will expect that operations on one Vec will
not have any effect on the data held by the other.

Even worse, though, is that if we do not define a destructor, then the default destructor
will be used. That destructor will destroy the pointer, but destroying a pointer does not
free the space to which it points. The result will be a memory leak: The space consumed
by Vec s will never be reclaimed.

If we fix the leak by providing a destructor, but we do not also add the copy constructor
and assignment operator, then we set things up so that a crash is likely. In such a flawed
implementation, it would be possible for two Vec s to share the same underlying storage,
as we illustrated in the first diagram in 811.3.1/196. When one of those objects is
destroyed, the destructor will destroy that shared storage. Any subsequent reference
through the undestroyed copy will lead to disaster.

Classes that allocate resources in their constructors require that every copy deal correctly
with those resources. Such classes almost surely need a destructor to free the resources.
If the class needs a destructor, it almost surely needs a copy constructor, as well as an
assignment operator. Copying or assigning objects of classes that allocate resources
usually allocates those resources in the same way that creating an object from scratch
does. To control every copy of objects of class T , you need

T::T(); one or nore constructors, perhaps with argunents
T::~T() t he destructor

T:.:T(const T&) t he copy constructor

T::operator=(const T&) t he assi gnnent operator

Once we have defined these operations, the compiler will invoke them whenever an object
of our type is created, copied, assighed, or destroyed. Remember that objects may be
created, copied, or destroyed implicitly. Whether implicitly or explicitly, the compiler will
invoke the appropriate operation.

Because the copy constructor, destructor, and assignment operator are so tightly coupled,
the relationship among them has become known as the rule of three : If your class
needs a destructor, it probably needs a copy constructor and an assignment operator too.
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11.4 Dynamic Vecs

Before we implement our memory management functions, we should realize that our Vec
s are inferior to standard vect or s in an important way: We do not provide a
push_back operation, and so our Vec s are of fixed size. Remember that push_back
pushes its argument onto the back of the vect or and, in the process, increases the size
of the vect or by one element.

We could add a push_back function that allocated new space to hold one more element
than the current Vec holds. We'd have to copy the existing elements into this new space,
constructing a new last element from the argument to push_back . We can see that this
strategy would be expensive if our users made many calls to push_back .

There is a classic approach to solving a problem such as this one: Allocate more storage
than we need. Only when we exhaust the preallocated storage will we go back for more.
For simplicity, whenever push_back needs to get more space, we'll allocate twice as
much storage as we currently use. So, if we create a Vec with 100 elements, and then
call push_back for the first time, it will allocate enough space to hold 200 elements. It
will copy the existing 100 elements into the first half of the newly allocated space and
construct a new, last element at the end of that sequence. The next 99 calls to
push_back will be satisfied without having to go back for more memory.

This strategy implies that we'll need to change how we keep track of the array that holds
our elements. We'll still need to keep track of the first element, but now we'll need two
"end" pointers. One will point (one past) the last constructed element, which,
equivalently, is a pointer to the first available element. The other pointer will point (one
past) the last allocated element. So, our Vec objects will now look like

Veac

data| — initialized elements uninitialized storage |
avail —M
limit —-k

Fortunately, only push_back and our memory management functions, which we have
not yet written, will need to know about this new member. Moreover, push_back itself is
pretty simple; it forwards the hard work to two of our memory-management functions,
named gr owand unchecked_append , which we shall eventually have to write.

tenpl ate <class T> class Vec {

public:
voi d push_back(const T& val) {
if (avail == limt) /'l get space if needed
grow();

unchecked_append(val) ; /'l append the new el enent



}

private:
iterator data; /'l as before, pointer to the first element in the Vec
iterator avail; /1 pointer to (one past) the last constructed el ement
iterator limt; /1 now points to (one past) the last avail able el enent
/1 rest of the class interface and inplenentation as before
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11.5 Flexible memory management

When we wrote our Vec class, we noted that we did not want to use the built-in new and
del et e operations to manage our memory. The reason is that if we relied on these
operations, our Vec would be more restrictive than the standard vect or . The new
operator does too much for our purposes: It both allocates and initializes memory. When
used to allocate an array of type T, it needs the default constructor for T. This approach
prevents us from offering our users as much flexibility as we would like to offer.

Using new would also be unduly expensive. If we use new, it always initializes every
element of a T array by using T: : T() . If we wanted to initialize the Vec elements
ourselves, we would have to initialize each element twice—once by new, and again to
install the value that our user supplied. Even worse, consider the allocation strategy that
we propose to use for push_back. This strategy implies that we'll double the size of the
Vec each time we need to get more storage. We have no reason to want the extra
elements initialized. They'll be used only by push_back, which will use the space only
when we have a new element to construct in that space. If we used new to allocate the
underlying array, these elements would be initialized regardless of whether we ever use
them.

Instead of using the built-in new and del et e operators, we can do better by using
standard-library facilities designed to support flexible memory management. The core
language itself does not have any notion of memory allocation, because the properties of
memory are too variable to wire into the language itself.

For example, modern computers have many kinds of memory. There may be many
different speeds of memory on the machine. There may be memory with special
properties, such as graphical buffers or shared memory. There may be memory that is
persistent across power failures. Because users might want to allocate any of these (or
other) kinds of memory, it is best left to the library to specify how we allocate and
manage memory. The standard library isn't required to support all these kinds of memory
either. However, by offering a library facility to manage memory, the standard also offers
a uniform interface to memory managers, even if those managers themselves are tied to
specific implementations. As with the decision to make input-output a library rather than
a language facility, the decision to make memory management part of the library gives us
greater flexibility in using these different kinds of memory.

The <menor y> header provides a class, called al | ocat or <T>, that allocates a block of
uninitialized memory that is intended to contain objects of type T, and returns a pointer to
the initial element of that memory. Such pointers are dangerous, because their type
suggests that they point to objects, but the memory doesn't really contain those objects
yet. The library also provides a way to construct objects in that memory, and to destroy
the objects again—all without deallocating the memory itself. It is up to the programmer
using the al | ocat or class to keep track of which space holds constructed objects and
which space is still uninitialized.

The interesting part of the al | ocat or class, for our purposes, comprises four member
functions and two associated nonmember functions:



tenpl ate<cl ass T> class allocator {
public:
T* allocate(size_ t);
voi d deal | ocate(T*, size t);
void construct(T*, const T& ;
voi d destroy(T*);

/1
s

tenpl ate<class Qut, class T> void uninitialized fill(Qut, Qut, const T&);
tenpl ate<class In, class Qut> Qut uninitialized_copy(ln, In, Qut);

The al | ocat e member allocates typed but uninitialized storage sufficient to hold the
requested number of elements. By typed storage, we mean that it will be used to hold
values of type T, and that we will use pointers of type T* to address it. By uninitialized
storage, we mean that the memory is raw storage, and no objects have yet been
constructed in it. The deal | ocat e member frees this uninitialized storage. It takes a
pointer to storage that was allocated by al | ocat e, and a size that indicates how many
elements were allocated. The const ruct and dest r oy members construct or destroy a
single object in this uninitialized space. We call const r uct, passing it a pointer into
space that was allocated by al | ocat e, and a value to copy into that space. The

dest r oy function runs the destructor for T on the element indicated by its argument.

The two companion functions that we need are named uni niti al i zed _copy and
uninitialized fill.These functions initialize elements in space that is allocated by
all ocate. Theuninitialized fill function fills this uninitialized space with the
specified value. When the function completes, each of the elements in the range specified
by the first two arguments will be a newly constructed copy of the value specified in the
third argument. The uni niti al i zed_copy function operates like the library copy
function, in that it copies values from a sequence specified by its first two arguments into
a target sequence denoted by its third argument. Like uninitialized fill, it
assumes that the target range contains raw storage, rather than elements that already
hold values, and it constructs new objects in that memory.

As with any template, the actual type bound to T will be instantiated at compile time. This
instantiation will generate an appropriate al | ocat or class for each type that uses the
class. In order to obtain an al | ocat or of the right type, we'll add to our Vec<T> class
an al | ocat or <T> member that will know how to allocate objects of type T. By adding
this member, and using its associated library functions, we can provide the same kind of
efficient, flexible memory management as the standard vect or class provides.

11.5.1 The final Vec class

Our complete Vec class, including declarations but not definitions for the memory
management functions, now looks like

tenpl ate <class T> class Vec {
public:
typedef T* iterator;



typedef const T* const_iterator;
typedef size_ t size_type;
typedef T val ue_type

Vec() { create(); }
explicit Vec(size type n, const T& t = T()) { create(n, t); }

Vec(const Vec& v) { create(v.begin(), v.end()); }
Vec& operat or =(const Vecg&); /1 as defined in 811.3.2/196
~Vec() { uncreate(); }

T& operator[](size_type i) { return data[i]; }
const T& operator[](size_type i) const { return data[i]; }

voi d push_back(const T& t) {

if (avail == 1limt)
grow();
unchecked_append(t);
}
size_type size() const { return avail - data; }

iterator begin() { return data; }
const _iterator begin() const { return data; }

iterator end() { return avail; }
const_iterator end() const { return avail; }
private:
iterator data; // first elenent in the Vec
iterator avail; // (one past) the last elenment in the Vec

iterator limt; // (one past) the allocated nmenory

/1 facilities for nmenory allocation
al | ocat or<T> al | oc; /1l object to handle nenory allocation

/1 allocate and initialize the underlying array
void create() ;

voi d create(size type, const T&);

voi d create(const _iterator, const_iterator);

/'l destroy the elenents in the array and free the nenory
voi d uncreate();

/1 support functions for push_back

voi d grow();
voi d unchecked_append(const T&)

};

All that remains is to implement the pri vat e members that handle memory allocation.
As we write these members, our program will be easier to understand if we remember
that whenever we have a valid Vec object, four things are always true:

1. dat a points at our initial data element, if we have any, and is zero otherwise.
2. data <= avail <=1limt.



3. Elements have been constructed in the range [dat a, avai | ).
4. Elements have not been constructed in the range [avai | , [imt).

We shall call these conditions the class invariant. Much as we did with loop invariants in
82.3.2/20, we intend to establish the class invariant as soon as we construct an object of
that class. If we do so, and we ensure that none of our member functions falsifies the
class invariant, we can be assured that the invariant will always be true.

Note that none of the publ i ¢ members is capable of falsifying the invariant, because the
only way to do so would be to change the value of dat a, avai |l , or| i m t, and none of
those member functions does so.

We shall begin by looking at the various Ccr eat e functions, which are responsible for
allocating memory, initializing elements in that memory, and setting the pointers
appropriately. In each case, we initialize whatever memory is allocated and so, after
running cr eat e, the pointers | i m t and avai | are always equal: The last constructed
element is the same as the last allocated element. You should verify for yourself that the
class invariant is true after we have executed any of the following functions:

tenplate <class T> void Vec<T>::create()

{
}

data = avail =1limt = 0;

tenplate <class T> void Vec<T>::create(size_type n, const T& val)

{

data = alloc.allocate(n);

l[imt = avail = data + n;
uninitialized fill(data, limt, val);
}
tenpl ate <class T>
voi d Vec<T>::create(const _iterator i, const _iterator j)
{
data = alloc.allocate(j - i);
limt = avail = uninitialized copy(i, j, data);
}

The version of cr eat e that takes no arguments creates an empty Vec, so its job is to
ensure that the pointers start out with zero values.

The version that takes a size and a value uses the size to al | ocat e the appropriate
amount of memory. The al | ocat e member of class al | ocat or <T> allocates enough
memory to hold the specified number of objects of type T. Thus, al | oc. al | ocat e(n)
allocates enough space to hold n objects. The al | ocat e function returns a pointer to the
initial element, which we store in dat a. The memory returned by al | ocat e is
uninitialized, so we arrange to initialize it by calling uni niti ali zed fill, which copies
its third argument into the sequence of uninitialized elements specified by its first two
arguments. When the function completes, it will have constructed new elements in the
space obtained by al | ocat e and will have initialized each of these elements to val .

The final version of Cr eat € operates similarly to the other two, except that it calls



uninitialized_copy to initialize the space obtained from al | ocat e. That function
copies elements from the sequence denoted by its first two arguments into a target
sequence of uninitialized elements denoted by its third argument. It returns a pointer to
(one past) the last element that it initialized, which is exactly the value that we need for
[imt and avail .

The uncr eat e member has to undo what the cr eat e members did: It must run the
destructors on the elements, and return the space that the Vec used:

tenpl ate <class T> void Vec<T>::uncreate()

{
if (data) {
/'l destroy (in reverse order) the elenents that were constructed
iterator it = avail
while (it !'= data)
al l oc. destroy(--it);
/'l return all the space that was all ocated
al l oc. deal | ocate(data, linmt - data);
}
/1 reset pointers to indicate that the Vec is enpty again
data = limt = avail = 0
}

If dat a is zero, there's no work to do. If we were using del et e, we might not bother to
compare dat a to zero, knowing that executing del et e on a zero pointer is harmless.
However, unlike del et e, the al | oc. deal | ocat e function requires a nonzero pointer,
even if no memory is being freed. Therefore, we must check whether dat a is zero.

If we have work to do, we march the iterator i t through the constructed elements of the
Vec, calling dest r oy to destroy each element. We go backward through the Vec to
match the behavior of del et e[ | , which destroys elements in reverse order. Once we've
destroyed the elements, we free all the space in the call to deal | ocat e. This function
takes a pointer to the first element of the memory to free, and an integral value that
indicates how many elements of type T are to be freed. Because we want to return all the
space that was allocated, we deal | ocat e the space between dataand | i nit.

What's left is to implement the members used by push_back:

tenpl ate <class T> void Vec<T>::grow)

{
/1 when growi ng, allocate twi ce as nuch space as currently in use
size_type new size = max(2 * (limt - data), ptrdiff_t(1));

/1 allocate new space and copy existing elenents to the new space
iterator new data = alloc.all ocate(new size);
iterator new avail = uninitialized _copy(data, avail, new data);

/1 return the old space
uncreate();



/1 reset pointers to point to the newy allocated space
data = new dat a;

avail = new_ avail;

[imt = data + new si ze;

}

/'l assunes avail points at allocated, but uninitialized space
tenpl ate <class T> void Vec<T>::unchecked_append(const T& val)

{
}

al l oc. construct (avail ++, val);

The job of gr owis to al | ocat e enough space to hold at least another element. It
allocates more than it needs, so that subsequent calls to push_back can use the excess,
avoiding the overhead of frequent memory allocations. In 811.4/202, we said that our
strategy would be to double the amount of space for each new allocation. Of course, the
Vec might currently be empty, so we cater to this possibility by allocating the max of one
element and twice the existing space. Remembering from 88.1.3/142 that the two
arguments to max must have exactly the same type, we explicitly construct an object
with value 1 of type ptrdi ff _t, which we know from §10.1.4/175 is the type of | i mi t
- data.

We start by remembering in new_si ze how many elements we will allocate. We

al | ocat e the appropriate space, and then calluni niti al i zed _copy to copy the
elements from the current space into the newly allocated space. We then return the old
memory, and destroy the elements there by calling uncr eat e. Finally, we reset the
pointers so that dat a points to the first element in the newly allocated array, | i m t
points to (one past) the last constructed element in the Vec, and avai | points to (one
past) the last allocated but as yet uninitialized element.

Note that it is essential that we save the values returned by al | ocat e and
uninitialized copy. The reason is that if we used those values immediately to reset
dataand | i m t, then the subsequent calls to uncr eat e would destroy and free the
memory that we just allocated, rather than getting rid of the old space!

The unchecked_append function builds an element in the first location after the
constructed elements. It assumes that avai | points at space that was allocated, but has
not yet been used to hold a constructed element. Because we call unchecked append
only immediately after a previous call to gr ow, we know that this call is safe.
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11.6 Details

Template classes can be formed using the template facility described in £8.1.1/140:

tenpl ate <cl ass type-paranmeter [, class type-paraneter]... >
class class-nanme { ... } ;

creates a template class named cl ass- nane that depends on the given type
parameters. These type-parameter names may be used inside the template wherever a
type is required. In the scope of the class, the template class may be referred to without
gualification; outside the class scope, ¢l ass- nane must be qualified with the type
parameters:

tenpl ate <class T>
Vec<T>& Vec<T>::operator=(const Vec& { ... }

Users specify the actual types when creating objects of template types: Vec<i nt > causes
the implementation to instantiate a version of Vec binding the type parameter to i nt .

Copy control: In general, classes control what happens when objects are created,
copied, assigned, or destroyed. Constructors are invoked as a side effect of creating or
copying objects; the assignment operator is invoked in expressions involving assignment;
and the destructor is run automatically when objects are destroyed or go out of scope.

Classes that allocate resources in a constructor almost invariably must define the copy
constructor, the assignment operator, and the destructor. When we write an assignment
operator, it is essential for us to check for self-assignment. For consistency with the built-
in assignment operators, it is good practice to return a reference to the left-hand
operand.

Synthesized operations: If a class defines no constructors, the compiler will synthesize
the default constructor. If the class does not explicitly define them, the compiler will
synthesize the copy constructor, assignment operator, and/or destructor. The synthesized
operations are defined recursively: Each synthesized operator recursively applies the
appropriate operation for the data members of the class.

Overloaded operators are defined by defining a function named oper at or op, where
op is the operator being defined. At least one parameter must be of class type. When an
operator function is a member of a class, its left-hand operand (if it is a binary operator)
or its only operand (if it is a unary operator) is bound to the object on which it is invoked.
The index operator and the assignment operator must be class members.

Exercises

11-0. Compile, execute, and test the programs in this chapter.



11-1. The St udent i nf o structure that we defined in Chapter 9 did not define a copy
constructor, assignment operator, or destructor. Why not?

11-2. That structure did define a default constructor. Why?
11-3. What does the synthesized assignment operator for St udent i nf o0 objects do?
11-4. How many members does the synthesized St udent i nf o destructor destroy?

11-5. Instrument the St udent _i nf 0 class to count how often objects are created,
copied, assigned, and destroyed. Use this instrumented class to execute the student
record programs from Chapter 6. Using the instrumented St udent i nf o class will let
you see how many copies the library algorithms are doing. Comparing the number of
copies will let you estimate what proportion of the cost differences we saw are accounted
for by the use of each library class. Do this instrumentation and analysis.

11-6. Add an operation to remove an element from a Vec and another to empty the
entire Vec. These should behave analogously to the er ase and cl ear operations on
vectors.

11-7. Once you've added er ase and cl ear to Vec, you can use that class instead of
vect or in most of the earlier programs in this book. Rewrite the St udent i nf o
programs from Chapter 9 and the programs that work with character pictures from
Chapter 5 to use VecCs instead of vect or s.

11-8. Write a simplified version of the standard | i st class and its associated iterator.

11-9. The gr owfunction in 811.5.1/208 doubles the amount of memory each time it
needs more. Estimate the efficiency gains of this strategy. Once you've predicted how
much of a difference it makes, change the gr ow function appropriately and measure the
difference.
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Making class objects act like values

Objects of built-in types generally behave like values: Whenever we copy an object of
such a type, the original and the copy have the same value but are otherwise
independent. Subsequent changes to one object do not affect the other. We can create
objects of these types, pass them to and from functions, copy them, or assign them to
other objects.

For most of the built-in types, the language also defines a rich set of operators and
provides automatic conversions between logically similar types. For example, if we add an
i nt and a doubl e, the compiler automatically converts the i nt into a doubl e.

When we define our own classes, we control the extent to which the resulting objects
behave like values. We saw in Chapters 9 and 11 that the class author controls what
happens when objects are created, copied, assigned, and destroyed. By defining copying
and assignment appropriately, the class author can arrange for objects of that class to act
like values. That is, the class author can arrange for each object to have state that is
independent of any other object. Our Vec and St udent i nf o classes are examples of
types that act like values.

In this chapter, we shall see that the class author can also control conversions and related
operations on class objects, thereby providing classes whose objects behave even more
similarly to objects of built-in types. The standard-library st ri ng class is a good example
of such a type because of its rich set of operators and support for automatic conversions.
Accordingly, in this chapter, we will define a simplified version of st ri ng, called St r,
much as we defined a simplified version of vect or in Chapter 11. We will focus on the
operators and conversions that let us write expressions involving st ri ngs. In this
chapter, we will not concern ourselves with efficiency. Instead, in Chapter 14, we will
revisit St r to understand techniques for managing more efficiently the storage associated
with each St r object.

We do not need to worry much about the implementation details of our St r class,
because we did most of the work already when we implemented the Vec class.
Accordingly, most of the discussion in this chapter will revolve around how to design an

appropriate interface to our class.
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12.1 A simple string class

Let's start by defining a St r class that lets us create objects that behave approximately
as we would like:

class Str {
public:
t ypedef Vec<char>::size_type size_type;

/1 default constructor; create an enpty Str

str() {}

/1 create a Str containing n copies of ¢
Str(size_type n, char c): data(n, c) { }

/1 create a Str froma null-termnated array of char
Str(const char* cp) {

std::copy(cp, cp + std::strlen(cp), std::back_inserter(data));
}

/1l create a Str fromthe range denoted by iterators b and e
tenplate<class In> Str(ln b, In e) {

std::copy(b, e, std::back_ inserter(data));
}

private:
Vec<char > dat a;

}s

Our class delegates the work of managing its data to the Vec class that we wrote in
Chapter 11. That class is almost good enough to support our St r ; it lacks only the cl ear
function that Chapter 11 had left as an exercise.

The St r class has four constructors, each of which arranges to create dat a as an
appropriately initialized Vec object.

The default constructor for St r implicitly invokes the Vec default constructor to create an
empty St r . Note that because our class has other constructors, we must explicitly define
the default constructor, even though it does exactly what the synthesized default
constructor would have done. The other three constructors take values, which we use to
construct or initialize dat a.

The constructor that takes a size and a character uses the corresponding Vec constructor
to construct dat a. It has no further work to do, so the constructor body is empty.

The last two constructors are similar to each other. Their constructor initializers are
empty, which means that dat a is implicitly initialized as an empty Vec. Each constructor
asks copy to append the supplied characters to the initially empty dat a. For example, the
constructor that takes a const char* uses st rl en to determine the length of the



string. From this length, it computes two iterators that denote the input characters, and
asks copy and back i nsert er to append those characters to dat a. Thus, the
constructor will cause dat a to contain copies of the characters in the array denoted by

cp.

The most interesting constructor is the final one, which takes two iterators and creates a
new St r that contains a copy of the characters in the given sequence. Like the previous
constructor, it relies on copy and back i nserter to append the values in the range of
[ b, e) todat a. What's interesting about this constructor is that it is itself a template
function. Because it is a template, it effectively defines a family of constructors that can
be instantiated for different types of iterators. For example, this constructor could be used
to create a St r from an array of characters, or from a Vec<char >.

It is important to note that the class does not define a copy constructor, assignment
operator, or destructor. Why not?

The answer is that the defaults work. The St r class itself does no memory allocation. It
can leave the details of memory management to the synthesized operations, which call
the corresponding Vec operations. One way to see that the defaults work is to note that
the St r class does not need a destructor. Indeed, if it had one, there would be no work
for it to do. In general, a class that needs no destructor doesn't need an explicit copy

constructor or assignment operator either (811.3.6/201).
[rort 3
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12.2 Automatic conversions

So far, we have defined a set of constructors and implicitly defined copying, assignment,
and destruction. These operations give St r valuelike behavior: When we copy a St r
object the original and the copy will be independent of each other. Our next problem is to
think about conversions. Values of built-in type can often be converted automatically from
one type to another. For example, we can initialize a doubl e from an i nt , and we can
also assign an i nt to a doubl e :

double d = 10; // convert 10 to double and use the converted value to initialize
doubl e d2;
d2 = 10; /'l convert 10 to double and assign the converted value to d

In the case of our St r class, we have defined how to construct a St r from a const
char* , so we can write

Str s("hello"); /'l construct s

This definition constructs s by explicitly asking for the constructor that takes a const
char * argument. We would also like to be able to write

Str t = "hello"; /1 initialize t
s = "hello"; /1 assign a new value to s

Remember from 811.3.3/199 that the = symbol has two different meanings in this last
example. The first statement definest , so the = indicates initialization. This form of
initialization always requires the copy constructor, which takes a const Str & as its
argument. The second statement is an expression statement, not a declaration, so the =
is an assignment operator. The only assignment operator that is relevant for St r objects
is the one that the compiler defined for us, which also expects a const Str & as its
argument. In other words, each statement in this second example uses a string literal,
which has type const char* , where aconst Str & is expected.

We might think, therefore, that we need to give class St r an additional assignment
operator with a parameter of type const char* , and figure out how to overload the
copy constructor. Fortunately, it turns out that we do not need to do so, because there is
already a constructor that takes a const char* , and that constructor also acts as a
user-defined conversion . User-defined conversions say how to transform to and from
objects of class type. As with built-in conversions, the compiler will apply user-defined
conversions to convert a value into the type that is needed.

A class can define conversions in two ways: It can convert from other types to its type, or
from its type to other types. We'll discuss this second form of conversion in 812.5/222.
The more common conversion defines how to convert other types to the type that we are



defining. We do so by defining a constructor with a single argument.

Our St r class already has such a constructor, namely the one that takes a const

char * . Therefore, the compiler will use this constructor when an object of type St r is
needed and an object of type const char * is available. The assignment of a const
char* to a Str is exactly such a situation. When we write s = "hel | 0" ; what really
happens is that the compiler uses the St r (const char*) constructor to create an
unnamed local temporary of type St r from the string literal. It then calls the
(synthesized) assignment operator of class St r to assign this temporary to s.

<E
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12.3 Str operations

If we think about the kind of code we've written that used st ri ngs, we can see that we
used several operators:

cin >> s /1 use the input operator to read a string

cout <<'s /1 use the output operator to wite a string

s[i] /1 use the index operator to access a character

sl + s2 /1 use the addition operator to concatenate two strings

All these are binary operators, so that if we define them as functions, each function will
have two parameters, one of which may be implicit if the function is a member. As we
saw in 811.2.4/192, names for overloaded operators are formed by appending the
operator symbol to the word oper at or . Hence, oper at or >> is the name of the function
that overloads the input operator, oper at or [ | names the index operation, and so on.

We may as well start with the index operator, because in 11.2.4/192, we've already

seen how to implement this operation, and we know that it must be a member of the
class:

class Str {

public:

/1 constructors as before

char& operator[](size_type i) { return data[i]; }

const char& operator[](size_type i) const { return data[i]; }
private:

Vec<char > dat a;

}s

The index operators just forward their work to the corresponding Vec operations. It is
worth noting that, as we did for class Vec, we define two versions of the index
operator—one that can operate on const objects and the other that cannot. By returning
a reference to the character, the nonconst version gives write access to the character
that it returns. The const version returns a reference to a const char, thereby
preventing the user from writing to the underlying character. We return const char &
instead of a plain char for consistency with the standard st ri ng class.

What about the other operators? The most interesting problem in defining these functions
is deciding whether these operations should be members of the St r class. It turns out
that answering this question involves different issues for each of these kinds of operators.
We will address input-output operators first; then, in 12.3.3/218, we'll look at the
concatenation operator.

12.3.1 Input-output operators



In 89.2.2/159, we had to decide whether compare should be a member of

St udent _i nf 0. We suggested that one way to decide was to ask whether the operation
affects the state of the object. The input operator certainly changes its object's state.
After all, we use the input operator to read a new value into a preexisting object.
Accordingly, we might think that we should make the input operator a member of the St r
class. However, doing so won't work as we might expect.

To see why, we have to remember (811.2.4/192) how the operands of an expression are
bound to the parameters of the overloaded operator function. For a binary operation, the
left operand is always bound to the first parameter, and the right operand is bound to the
second. In the case of member operator functions, the first parameter (the left operand)

is always the one that is passed implicitly to the member function. Thus,

cin >> s;

is equivalent to

ci n. operator>>(s);

which calls the overloaded >> operator defined for the object ci n. This behavior implies
that the >> operator must be a member of class | st r eam

Of course, we do not own the definition of i St r eam so we cannot add this operation to
it. If instead we make oper at or >> a member of St r , then our users would have to
invoke the operation on behalf of a St r :

S. operator>>(cin);

or, equivalently,

s >> cin;

which would flout the conventions used throughout the library. Therefore, we can
conclude that the input—and, by analogy, the output—operator must be a nonmember.

We can now update our St r class appropriately, by adding declarations for the input and
output operators to St r . h:

std::istream& operator>>(std::istream& Str&); /'l added
std::ostrean& operator<<(std::ostream& const Stré&) ; /| added

The output operator is easy to write: It will iterate through the St r , writing a single
character at a time:

ostream& operator<<(ostrean& os, const Stré& s)



for (Str::size_ type i = 0; i !'= s.size(); ++i)
os << s[i];
return os;

The only catch is that this usage forces us to give St r a size function:

class Str {

public:
size_type size() const { return data.size(); }
/'l as before

}s

Despite the simple form of the output operator, we should understand it thoroughly. Each
time through the loop, we invoke the Str: : operat or[] to fetch a character to write.
That operator, in turn, calls Vec: : oper at or [ ] to obtain the actual value from the
underlying vect or . Similarly, each time through the loop, we determine the size of our
St r object by calling s. si ze() , which calls the size member of the underlying Vec
object to determine that object's size.

12.3.2 Friends

The input operator isn't much harder to write than the output operator. It needs to read
and remember characters from the input stream. Each time we call the input operator, it
should read and discard any leading whitespace, and then read and remember characters
until it hits whitespace or end-of-file. Our input operator is a bit simplified—it ignores
some subtleties of the input-output library that are beyond the scope of this book—but it
does what we need done:

/1 this code won't conpile quite yet
i stream& operator>>(istream& is, Str& s)
{
/1 obliterate existing val ue(s)
s.data.clear();

/1 read and discard | eadi ng whitespace
char c;
while (is.get(c) && isspace(c))
; /1 nothing to do, except testing the condition

/1 if still sonething to read, do so until next whitespace character
if(is) {
do s. data. push_back(c); /'l compile error!, data is private

while (is.get(c) & !'isspace(c));
/1 if we read whitespace, then put it back on the stream
if (is)

i s.unget();



return is;

First we'll explain this function; then we'll explain why it doesn't compile.

We start by discarding any previous value that dat a might have, because reading into a
St r should obliterate whatever data were present. Next we need to read characters, one
at a time, from the given stream, until we encounter a character that is not white- space.
Because we need to be able to detect whether we just read a whitespace character, we
use the get function on the input stream. Unlike the overloaded >> operators, which
ignore whitespace, the get function reads and returns whatever character is next in the
stream, including whitespace. Therefore, the whi | € loop reads characters until it finds
one that is not whitespace, or it runs out of input. If the character we read was white-
space, then there is nothing to do but read again, so the body of the whi | e is empty.

The if test checks whether we exited the whi | € because we read a nonwhitespace
character or because we ran out of input. If the former, we want to read characters until
we hit whitespace again, appending each character that we read to dat a. We do so in the
next statement, which is a do whi | e loop (87.4.4/136) that arranges to append to dat a
the character that we had already read in the previous whi | € loop, and then continues
reading until we run out of input or hit a whitespace character. Each time it reads a
nonwhitespace character, it uses push_back to append that character to dat a.

We could fall out of the do whi | e either because we can no longer read from i s, or
because we encountered a whitespace character. If the latter, we have read one character
too many, which we put back onto the input stream by calling i s. unget () . The unget
function undoes the most recent get by backspacing the input stream by one character.
After the call to unget , the stream behaves as if the previous get had never been done.

As the comments indicate, this code fails to compile. The problem is that oper at or >> is
not a member of class St r, so it cannot access the dat a member of S. We faced a
similar problem in 89.3.1/161, when the conpar e function needed access to the nane
member from St udent i nf o objects. We solved that problem by adding an accessor
function. In this case, giving read access to dat a isn't enough: The input operator needs
to be able to write dat a, not just read it. The input operator is a part of our general St r
abstraction, so giving it write access to dat a is fine. On the other hand, we do not want
all users to have write access to dat a, so we cannot solve our problem by adding a

publ i ¢ member that would let oper at or >> (and therefore any user) write to dat a.

Rather than adding a (publ i ¢) access function, we can say that the input operator is a
friend of class St r. A fri end has the same access rights as a member. By making the
input operator a friend, we can allow it, along with our member functions, to access the
pri vat e members of class Str :

class Str {
friend std::istream& operator>>(std::istreami, Stré&);
/'l as before

}s

We've added a f ri end declaration to class St r . This declaration says that the version of



oper at or >> that takes an i st r ean®& and a St r & may access the pri vat e members of
St r . Once we have added this declaration to St r , our input operator will compile.

A fri end declaration may appear at any point in the class definition: It makes no
difference whether it follows a pri vat e or publ i ¢ label. Because a friend function has
special access privileges, it is part of the interface to the class. Therefore, it makes sense
to group f ri end declarations at the beginning of the class definition, near the publ i c
interface for the class.

12.3.3 Other binary operators

What remains of our work on the St r class is to implement the + operator. Before we can
do so, we must make several decisions: Should the operator be a member? What are its
operands' types? What type should it return? As we shall see, these questions turn out to
have subtle implications.

For now, let's make some initial guesses about the answers. First, we know that we want
to be able to concatenate values that are of type St r . Second, we can observe that
concatenation does not change the value of either operand. These facts suggest that
there is no particular reason to decide to make the operator a member function. Finally,
we know that we want to be able to chain several concatenations into a single expression
in order to allow expressions such as

sl + s2 + s3

where s1, s2, and s3 all have type St r . This usage suggests that the operator should
returna Str.

These decisions imply that we should implement concatenation as a nonmember:

Str operator+(const Str& const Str&)

Before we launch into implementation, a bit of thought might suggest that if we offer
oper at or +, we might want to provide our users with oper at or += as well. That is, we'd
like to let our users assign to S the value obtained by concatenating s and S1 in either of
these forms:

s = s + sl;
s += sl;

It turns out that the most convenient way to implement oper at or + is to implement
oper at or += first. Unlike the simple concatenation operator, the compound version
changes its left operand, so we make it a member of the St r class. After adding
definitions for the new concatenation operations, our final St r class looks like this:

class Str {
/'l input operator inplemented in 812.3.2/216



friend std::istrean& operator>>(std::istreang, Stré&);
publi c:
Stré& operator+=(const Str& s) {
std::copy(s.data.begin(), s.data.end(),
std:: back_inserter(data));
return *this;

}

/1 as before
t ypedef Vec<char>::size type size_ type;
str() { }
Str(size_type n, char c): data(n, c) { }
Str(const char* cp) {
std::copy(cp, cp + std::strlen(cp), std::back_inserter(data));

}

tenplate<class In> Str(ln i, Inj) {
std::copy(i, j, std::back_ inserter(data));

}

char & operator[](size_type i) { return dataf[i]; }
const char& operator[](size_type i) const { return datal[i]; }
size_type size() const { return data.size(); }

private:
Vec<char > dat a;

}s

/'l output operator inplemented in 8§12.3:2/216
std::ostream& operator<<(std::ostream& const Str&);

Str operator+(const Str& const Stré&);

Because we use a Vec for our underlying storage, implementing oper at or += is trivial:
We call copy to append a copy of the right operand to the Vec that is the left operand. As
usual for assignment, we return a reference to the left object as our result. Now we can
implement oper at or + in terms of oper at or +=:

Str operator+(const Str& s, const Str& t) {
Str r = s;
r+=t;
return r;

Recall that concatenation is a nonmember function that will create a new St r . We create
this new St r by initializing a local variable named r to be a copy of S. That initialization
uses the St r copy constructor. Next, we invoke the += operator on r to concatenate t ,
and then we return r (again through an implicit call to the copy constructor) as the result.

12.3.4 Mixed-type expressions

We have defined the concatenation oper at or to take operands of type const Str &.
What about expressions that involve character pointers? For example, what if we wanted



to use our St r class to implement the program from §1.2/12? That program contained
code that looked like

const std::string greeting = "Hello, + name + "I";

where nane is a st ri ng. Analogously, we'd like to be able to write

const Str greeting = "Hello, " + name + "!";

where namnme is now a St r .
We know that the + operator is left-associative, which means that evaluating this

expression is equivalent to evaluating

"Hello, " + nane

and applying the + operator to the result and
equivalent to

. In other words, the expression is

("Hello, " + nane) + "I"

By breaking down the expression into its components, we can see that we have two
different forms of +. In one case, we pass a string literal as the first operand and a St r

as the second. In the other, the left operand is a St r obtained as the result of a
concatenation, and the right operand is a string literal. Thus, in each case we are calling +
onaconst char* and a Str in some order.

In 812.3.3/218, we defined + with arguments of type St r, not const char*. However,
we know from &12.2/213 that by defining a constructor that takes a const char*, we
also defined a conversion operator from const char* to St r. Evidently, our St r class
handles these expressions already. In each case, the compiler will convert the const
char* argument to type St r, and then it will invoke oper at or +.

It is important to understand the implications of conversion operations. For example,

Str greeting = "Hello, " + nane + "!";

gives gr eet i ng the same value as if we had written

Str tenpl('Hello, "); /1l Str::Str(const char*)
Str tenp2 = tenpl + nane; /'l operator*(const Str& const Str&)
Str temp3("!'") [l Str::Str(const char¥*)

Str greeting = tenp2 + tenp3; /|l operator*(const Stré& const Str&)



Seeing all these temporaries, we can imagine that this approach might be expensive. In
practice, because of the perceived cost of generating temporaries, commercial St ri ng
library implementations often take the more tedious route of defining specific versions of
the concatenation operator for every combination of operands, rather than relying on
automatic conversions.

12.3.5 Designing binary operators

It is important to appreciate the role of conversions in the design of binary operators. If a
class supports conversions, then it is usually good practice to define binary operators as
nonmember functions. By doing so, we preserve symmetry between the operands.

If an operator is a member of a class, then that operator's left operand cannot be the
result of an automatic conversion. The reason for this restriction is so that when a
programmer writes an expression such as X + Yy, the compiler does not have to examine
every type in the entire program to discover whether it is possible to convert X to a type
that has a member named oper at or +. Because of the restriction, the compiler (and the
programmer) has to look only at nonmember oper at or + functions and at oper at or +
functions that are members of the class of X.

The left operand of a nonmember operator, and the right operand of any operator, follow
the same rules as any ordinary function argument: The operand can be of any type that
can be converted to the parameter type. If we make the binary operator a member
function, we have introduced an asymmetry with respect to its operands: The right
operand can be the result of an automatic conversion, but the left operand cannot. Such
asymmetries are fine for intrinsically asymmetric operators such as +=, but in the context
of symmetric operands, they are confusing and error prone. It is almost always desirable
to treat both operands of such operators equivalently, which we can arrange only by
making the operator a nonmember function.

In the case of the assignment versions of binary operators, we want to constrain the left
operand to be of the class type. Otherwise, what would happen? If we allowed
conversions for the left operand, then we might convert that operand to the class type
and assign a new value to the resulting temporary. Because that value would be a
temporary object, once we completed the assignment we would have no way to access
the object to which we had just assigned! Therefore, like the assignment operator itself,
all of the compound- assignment operators should be members of the class.
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12.4 Some conversions are hazardous

Recall that in 811.2.2/190, we defined as expl i ci t the constructor that took a size.
Now t hat we know that constructors that take a single argument define conversions, we
can understand what happens when we make a constructor expl i ci t : Doing so tells the
compiler to use that constructor only to construct objects explicitly. The compiler will not
use an expl i ci t constructor to create objects implicitly by converting operands in
expressions or function calls.

To understand why expl i ci t constructors might be useful, let's assume that we did not
declare the Vec constructor as expl i ci t . Then we could implicitly build a Vec of a
given size. We could use this implicit conversion when calling a function, such as our

f r ame function from §5.8.1/93. Recall that that function takes a single parameter of type
const vector<string>&, and produces a character picture that puts a frame around
the input vect or . Suppose that f r ane used Vec instead of vect or , that we had not
given Vec an expl i cit constructor, and that we were to execute

Vec<string> p = franme(42);

What would happen? What should happen? More important, how could a user figure out
what will happen?

In this case, what would happen is that the user would get a framed picture with 42
empty rows. Was this behavior what the user intended? Isn't it more likely that the user
thought that the program would put a frame around the value 42? This kind of call is,
more likely than not, a mistake, and so our Vec class—and, for that matter, the standard
vect or class—makes the constructor that takes an integer value explicit.

In general, it is useful to make expl i ci t the constructors that define the structure of
the object being constructed, rather than its contents. Those constructors whose
arguments become part of the object usually should not be explicit.

As an example, the st ri ng and St r classes have constructors that take a single const
char* and are not expl i ci t . Each constructor uses its const char* argument to
initialize the value of its object. Because the argument determines the value of the
resulting object, it is sensible to allow automatic conversions from a const char* in
expressions or function calls.

On the other hand, the vect or and Vec constructors that take a single argument of type
Vec: :si ze_type are expl i cit. These constructors use their argument value to
determine how many elements to allocate. The constructor argument determines the

structure of the object, but not its value.
=
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12.5 Conversion operators

In 812.2/213, we saw that some constructors also define conversions. Class authors can
also define explicit conversion operators, which say how to convert an object from its

type to a target type. Conversion operators must be defined as members of a class. The

name of a conversion operator is oper at or followed by the target type name. Thus, if a
class has a member called oper at or doubl e, that member says how to create a value
of type doubl e from a value of the class type. For example,

class Student _info {
publi c:
oper at or doubl e();
/1

}s

would say how to create a doubl e from a St udent _i nf 0 object. The meaning of this
conversion would depend on the definition of the operator, which might be to convert the
object to its corresponding final grade. The compiler would use this conversion operator
any time we had an object of type St udent i nf o but needed an object of type doubl e.
So, for example, if vS were a vect or <St udent _i nf 0>, we could calculate the average
grade of all students as follows:

vect or <Student _i nf o> vs;
[l fill up vs

double d = 0;
for (int i =0; i !=vs.size(); ++i)

d += vs[i]; /1l vs[i] is automatically converted to double
cout << "Average grade: " << d / vs.size() << endl

Conversion operators are most often useful when converting from a class type to a built-
in type, but they can also be useful when converting to another class type for which we
do not own the code. In either case, we cannot add a constructor to the target type, so
we can define the conversion operator only as part of the class that we own.

In fact, we use this kind of conversion operator every time we write a loop that implicitly
tests the value of an | St r eam As we discussed in 83.1.1/39, we can use an | St r eam
object where a condition is expected:

if (cin > x) { /*...% }

which we saw was equivalent to



cin >> Xx;
if (cin) { /*...* }

We can now understand what happens in this expression.

As we know, the | f tests a condition, which is an expression that yields a truth value.
The precise type of such a truth value is bool . Using a value of any arithmetic or pointer
type automatically converts the value to type bool , so we can use values of these types
as the expression in a condition. Of course, | 0St r eamis neither a pointer nor an
arithmetic type. However, the standard library defines a conversion from type | st r eam
to void™>, which is a pointer to voi d. It does so by defining i st r eam : oper at or

voi d*, which tests various status flags to determine whether the i st r eamis valid, and
returns either O or an implementation-defined nonzero voi d* value to indicate the state
of the stream.

We have not previously used the voi d* type. We said in 86.2.2/114 that the voi d type
could be used only in a few ways—the basis for a pointer being one of them. A pointer to
voi d is sometimes called a universal pointer, because it is a pointer that can point to any
type of object. Of course, you cannot dereference the pointer, because the type of the
object to yield isn't known. But one thing that can be done with a voi d* is to convert it
to bool , which is exactly how it is used in this context.

The reason that class i st r eamdefines oper at or voi d* rather than oper at or bool
is to allow the compiler to detect the following erroneous usage:

int x;
cin << X; /1 we should have witten cin >> Xx;

If class | st r eamwere to define oper at or bool , this expression would use

i stream : operator bool toconvert ci n to bool , and then convert the resulting
bool value to i nt, shift that value left by a number of bits equal to the value of X, and
throw the result away! By defining a conversion to voi d*, rather than to an arithmetic
type, the standard library still allows an | st r eamto be used as a condition, but prevents
it from being used as an arithmetic value.
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12.6 Conversions and memory management

Many C++ programs interface to systems written in C or assembly language that use
null-terminated arrays of characters to hold string data. As we saw in 10.5.2/180, the
C++ standard library itself uses this convention to obtain the names of input and output
files. Because of this convention, we might conclude that our St r class should provide a
conversion from St r to a null-terminated array of characters. If we did so, then our users
could (automatically) pass St r s to functions that operate on null-terminated arrays.
Unfortunately, as we shall see, doing so is fraught with memory-management pitfalls.

Assuming that we wanted to provide a conversion from St r to char * , we'd probably
want to provide both const and nonconst versions:

class Str {

publi c:
/1 plausible, but problematic conversion operations
operator char*(); /1 added
operator const char*() const; /1 added

/1 as before
private:
Vec<char > dat a;

s
With this rewrite, St r users could write code such as

Str S
/1
ifstreamin(s); /'l wishful thinking: convert s and then open the stream naned

The only problem is that these conversions are almost impossible to implement well. We
can't just return dat a , most obviously because it's the wrong type: dat a is a

Vec<char >, and we need an array of char . More subtly, even if the types matched,
returning dat a would violate class St r 's encapsulation: A user who obtained a pointer to
dat a could use that pointer to change the value of the st ri ng . Just as bad, consider
what happens when the St r is destroyed. If the user tries to use the pointer after the

St r object no longer exists, then the pointer will point to memory that has been returned
to the system and is no longer valid.

We can solve the encapsulation problem by providing only a conversion to const char*
, but doing so does not prevent a user from destroying the St r and then using the
pointer. We can solve this second problem by allocating new space for a copy of the
characters from dat a , and returning a pointer to this newly allocated space. The user
would then have to manage this space, freeing it when it is no longer needed.

As it turns out, this design won't work either. Conversions may happen implicitly, in which



case the user has no pointer to destroy! Look again at

Str s;
ifstreamis(s); [l inplicit conversion—-how can we free the array?

If the St r class had the proposed conversion, then when we passed S to the i f st ream
constructor, we would implicitly convert the St r to the const char* that the
constructor expects. This conversion would allocate new space to hold a copy of the value
of S . However, there is no explicit pointer to this space, and so the user cannot free it.
Clearly, a design that mandates memory leaks cannot be right.

When we design a class, we want to avoid letting users trip up by writing innocuous-
looking code that gets them in trouble. Before the C++ standard was finished, many
library vendors offered various kinds of st ri ng s. Some surely provided implicit
conversions to character arrays, but did so in a way that allowed users to make one or
both of the potential errors outlined earlier.

The standard st ri ng library takes a different approach: It lets users get a copy of the
st ring in a character array, but makes them do so explicitly. The standard st ri ng
class provides three member functions for getting a char array from a stri ng . The first,
c_str() , copies the contents of the st ri ng into a null-terminated char array. The

st ri ng class owns the array, and the user is expected not to del et e the pointer. Data
in the array are ephemeral, and will be valid only until the next call of a member function
that might change the st ri ng . Users are expected either to use the pointer immediately
or to copy the data into storage that they will manage. The second function, dat a() , is
like c_str () , except that it returns an array that is not null terminated. Finally, the
copy function takes a char * and an integer as arguments, and copies as many
characters as indicated by the integer into space pointed to by the char * , which space
the user must allocate and free. We leave the implementation of these functions as an
exercise.

Note that both c_str and dat a share the pitfalls of the implicit conversion to const
char * . On the other hand, because users must request the conversion explicitly, they
are more likely to know about the functions that they call. This knowledge should include
the pitfalls inherent in retaining a copy of the pointer. If the library allowed implicit
conversions, it would be easier for users to stumble into these problems. They might not
even be aware that they had caused a conversion to take place, so they might be less
likely to understand why things failed when they did.
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12.7 Details

Conversions are defined by nonexpl i ci t constructors that take a single argument, or
by defining a conversion operator of the form oper at or type-nane(), where t ype-
nanme names the type to which the class type can be converted. Conversion operators
must be members. If two classes define conversions to each other's types, ambiguities
can result.

friend declarations can occur anywhere within the class definition, and allow the fri end
to access pri vat e members of the class granting f r i endship.

tenpl at e<cl ass T>

class Thing {
friend std::istream& operator>>(std::istream& Thingg&);
/1

}s

As we will see in 813.4.2/246, classes can also be named as f ri ends.

Template functions as members: A class may have template functions as members.
The class itself might or might not be a template. A class that has a template member
function effectively has an unbounded family of member functions with the same name.
Template member functions are declared and defined as are any other template functions.

string operations

s.c_str()

Yields a const char* that points to a null-terminated array. The data in the array are
valid only until the next st ri ng operation that might modify S. The user may not

del et e the pointer and should not hold a copy of it because the contents pointed to
have a limited lifetime.

s. dat a()
Similar to s. ¢c_str (), but the array is not null terminated.

s.copy(p, n)

Copies up to an integral number n of characters from S into space pointed to by the
character pointer p. The user is responsible for ensuring that p points at space that is
sufficient to hold n characters.

Exercises

12-0. Compile, execute, and test the programs in this chapter.

12-1. Reimplement the St r class, but choose an implementation strategy that requires
that the class manage the storage itself. For example, you might store an array of char
and a length. Consider what implications this change in design has for copy control. Also



consider the cost of using Vec, (e.g., in storage overhead).
12-2. Implement the c_st r, dat a, and copy functions.

12-3. Define the relational operators for St r . In doing so, you will want to know that the
<cst ri ng> header defines a function called st r cnp, which compares two character
pointers. The function returns a negative integer if the null-terminated character array
denoted by the first pointer is less than the second, zero if the two strings are equal, or a
positive value if the first string is greater than the second.

12-4. Define the equality and inequality operators for St r .

12-5. Implement concatenation for St r so as not to rely on conversions from const
char*.

12-6. Give St r an operation that will let us implicitly use a St r object as a condition.
The test should fail if the St r is empty, and should succeed otherwise.

12-7. The standard st ri ng class provides random-access iterators to manipulate the
st ri ng's characters. Add iterators and the iterator operations begin and end to your St r
class.

12-8. Add the get | i ne function to the St r class.

12-9. Use class ostream i t er at or to reimplement the St r output operator. Why
didn't we ask you to reimplement the input operator using class i st ream it erat or ?

12-10. Having seenin 812.1/212 how St r defined a constructor that takes a pair of
iterators, we can imagine that such a constructor would be useful in class Vec. Add this
constructor to Vec, and reimplement St r to use the Vec constructor instead of calling

copy.

12-11. If you add the operations listed in these exercises, then you can use this St r
class in all the examples in this book. Reimplement the operations on character pictures
from Chapter 5 and the spl i t functions from §5.6/87 and 86.1.1/103.

12-12. Define the i nsert function that takes two iterators for the Vec and St r classes.

12-13. Provide an assi gn function that could be used to assign the values in an array to
a Vec.

12-14. Write a program to initialize a Vec from a stri ng.

12-15. The r ead_hwfunction from 84.1.3/57 checked the stream from which it read to
determine whether the function had hit end-of-file, or had encountered an invalid input.
Our St r input operator does no such check. Why? Will it leave the stream in an invalid
state?
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Using inheritance and dynamic binding

The last several chapters have explored how we can build our own data types. This ability
is one of the foundations of object-oriented programming (OOP). This chapter will begin a
look at the the other key components of OOP—inheritance and dynamic binding.

In Chapter 9, we described a small class intended to encapsulate the operations used to
solve the grading problem from Chapter 4. This chapter will revisit that problem. This
time, we'll assume that there's a change in specification: Students can take the course for
undergraduate or graduate credit. Obtaining graduate credit requires that the students do
some extra work. We'll assume that in addition to the homework and exams that all
students must complete, graduate students also have to write a thesis. As we'll see, this
change in problem specification lends itself to an object-oriented solution, which we’ll use
to explore the language features that C++ offers to support OOP.

Our objective is to write new classes that will mirror these new requirements. We'd also
like our previous solution to the grading problem, from 89.6/166, to continue to work.
That is, we'd like classes that allow us to generate the final grade report by reading a file
of grade records and writing a formatted report using the original code.
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13.1 Inheritance

In our grading problem we know that a record for graduate credit is the same as for
undergraduate credit, except that it has additional properties related to the thesis. Such
contexts are natural places for inheritance . Inheritance is one of the cornerstones of
OOP. The basic idea is that we can often think of one class as being just like another,
except for some extensions. In this problem, all students must complete the homework
and exams, but some must also do at hesi s . What we'd like is to define two classes:
one to represent the core requirements and the other to represent the requirements for
graduate credit.

We mostly know how to write the first of these classes: It is similar to our previous

St udent _i nf o class, which we'll rename Cor e for reasons that will become fully
apparent in 13.4/243. For now, what's useful to know is that Cor e no longer represents
all kinds of students, but only those students who meet the core requirements for the
course.

We'd like to reserve St udent i nf 0 as a nane that denotes any kind of student. In
addition to its name change, we'll add a private utility function to our Cor e class to read
the portion of a student's record that all students have in common:

class Core {

public:
Core();
Core(std::istrean®);
std::string nane() const;
std::istream& read(std::istream);
doubl e grade() const;

private:
std::istream& read_comon(std::istreant);
std::string n;
double midterm final;
std::vect or<doubl e> honewor k;

b
Class G ad will capture the extra requirements for obtaining graduate credit:

class Gad: public Core {
public:
Grad();
Grad(std::istrean®);
doubl e grade() const;
std::istream& read(std::istream);
private:
doubl e thesis;

}s



This definition says that we're defining a new type named G ad , which is derived from
or inherits from Cor e , or, equivalently, that Cor € is a base class of G ad . Because
G ad inherits from Cor e , every member of Cor € is also a member of G ad —except for
the constructors, the assignment operator, and destructor. The G ad class can add
members of its own, as we do here with the data member t hesi s and the constructors
for G- ad . It can redefine members from the base class, as we do with the gr ade and

r ead functions. However, a derived class cannot delete any of the base class' members.

The use of publ i ¢ in publ i ¢ Cor e says that the fact that G- ad inherits from Cor e is
part of its interface, rather than part of its implementation. That is, G ad inherits the
publ i c interface to Cor e , which becomes part of the publ i ¢ interface to G- ad . The
publ i ¢ members of Cor e are effectively publ i ¢ members of G ad . For example, if we
have a G ad object, we can call its nane member function to obtain the student's name,
even though G ad does not define its own nane function.

The G ad class differs from the Cor e class in that it keeps track of a grade for the thesis,
and uses a different algorithm for calculating the final grade. Thus, G ad objects will have
five data elements. Four of them are inherited from Cor e ; the fifth is a doubl e value
named t hesi s . It will have two constructors and four member functions, two of which
redefine the corresponding members of Cor e , and the nane and r ead_conmon
functions, which it inherits from Cor e .

13.1.1 Protection revisited

As it stands, all four data elements and the r ead _conmon function in Cor e are
inaccessible to member functions in G- ad . We said that the members of Cor e were
privat e . Only the class and its friends may access pri vat e members. Unfortunately,
in order to write the G ad versions of the gr ade and r ead functions, we need access to
some of these pri vat e members. We can fix this problem by rewriting the Cor e class
using a protection label that we have not seen before:

class Core {
public:
Core() ;
Core(std::istrean®);
std::string nanme() const;
doubl e grade() const;
std::istream& read(std::istream);
pr ot ect ed:
std::istream& read_comon(std::istreant);
double mdterm final;
st d: : vect or <doubl e> honmewor k;
private:
std::string n;

}s

We still say that n is pri vat e , but now the r ead_conmon function and the m dt erm
final , and honewor k data members are protected. The pr ot ect ed label gives
derived classes, such as G ad , access to the pr ot ect ed members of their constituent
base-class objects, but keeps these elements inaccessible to users of the classes.



Because n is a private member of Cor e , only the members and fri end s of class Cor e
may access N . G- ad has no special access to n ; it can access n only through publ i c
member functions of Cor e .

The read, nane , and gr ade functions are publ i ¢ members of Cor e , and as such
they are available to all users of class Cor e —including classes derived from Cor e .

13.1.2 Operations

To complete our classes, we need to implement four constructors: the default constructor
and the constructor that takes an i st r eam, once for each class. We must also
implement six operations: the nane and r ead _conmon operations in class Cor e , and
the r ead and gr ade functions for both classes. We'll see how to write the constructors in
813.1.3/231.

Before writing our code, we need to think a bit about how student records will be
structured. As before, we'll want to accommodate a variable number of homework
assignments, so those grades must come at the end of each record. Therefore, we'll
assume that our records will consist of a student’'s name followed by the midterm and
final exam grades. If the record is for undergraduate credit, then the homework grades
will follow immediately. If the record is for graduate credit, then the thesis grade will
follow the final exam, but precede the homework grades.

With this information, we know how to write the operations on Cor e :

string Core::nane() const { return n; }

doubl e Core::grade() const
{

}

return ::grade(mdterm final, honework);

i stream& Core::read_common(istream& in)

{
/1 read and store the student's nanme and exam grades
in > n > mdterm>> final
return in;
}
i stream& Core::read(istream& in)
{
read_comon(in);
read_hw(in, homework);
return in;
}

The Gr ad: : r ead function is similar, but reads the t hesi s before callingread _hw:

i stream& Grad::read(istream& in)
{

read_comon(in);



in >> thesis;
read_hw(in, homeworKk);
return in;

Note that in the definition of Gr ad: : r ead , we can refer to elements from the base class
without any special notation, because these elements are also members of G- ad . If we
wanted to be explicit about the fact that the members were inherited from Cor e , we
could use the scope operator to do so:

i stream& Grad::read(istream& in)

{
Core: :read_conmmon(in);
in >> thesis;
read_hw(in, Core::hormework);
return in;
}

Of course, the t hesi s member is unqualified because that member is a part of G- ad and
not a part of Cor e . We could have written G- ad: : t hesi s, but not Core: :thesi s .

The gr ade function changes to account for the effect of t hesi s . Our policy is that the
student receives the lesser of the grade obtained on the t hesi s and the grade that
would have been obtained if we just counted the exams and homework scores:

doubl e Grad::grade() const
{

}

return nmn(Core::grade(), thesis);

Here we want to call the gr ade function in the base class in order to calculate the score
independently from the t hesi s grade. In this case, the use of the scope operator is
essential. Had we written

return mn(grade(), thesis);

we would have (recursively) called the G ad version of gr ade , leading to disaster.

We use the m n function from <al gor i t hn> to determine which grade to return. The
m n function operates like Max except that it returns the smaller of its two operands. As
with max , those operands must be of exactly the same type.

13.1.3 Inheritance and constructors

Before we write the constructors for Cor € and G ad , we need to understand how the
implementation creates objects of a derived type. As with any class type, the

implementation begins by allocating space for the object. Next, it runs the appropriate
constructor to initialize the object. The fact that the object is of a derived type adds an



extra step to the construction process in order to construct the base-class part of the
object. Derived objects are constructed by

« Allocating space for the entire object (base-class members as well as derived
members)

Calling the base-class constructor to initialize the base-class part(s) of the object
Initializing the members of the derived class as directed by the constructor initializer
Executing the body of the derived-class constructor, if any

The only new part is how we select which base-class constructor to run. Not surprisingly,
we use the constructor initializer to specify the base-class constructor that we want. The
derived-class constructor initializer names its base class followed by a (possibly empty)
list of arguments. These arguments are the initial values to use in constructing the base-
class part; they serve to select the base-class constructor to run in order to initialize the
base. If the initializer does not specify which base-class constructor to run, then the base-
class default constructor is used to build the base-part of the object.

class Core {

publi c:
/'l default constructor for Core
Core(): mdterm(©O, final(0) { }

/1 build a Core froman istream
Core(std::istream& is) { read(is); }
/1

}

class Gad: public Core {

public:
/1 both constructors inplicitly use Core::Core() to initialize the base part
Gad(): thesis(0) { }

Grad(std::istream& is) { read(is); }
/1
};

The constructors for Cor e are identical to the ones in 9.5.1/165 and 89.5.2/166: They
specify how to make a Cor e from nothing or from an i St r eam. The constructors for

G ad say how to create a G ad from these same values, that is, either from no argument
or from an i streanm& . It is worth noting that there is no requirement that the derived-
class constructors take the same argument(s) as the constructors for the base class.

The default constructor for G ad says that to make a G- ad from nothing, the
implementation should construct its Cor e part and set the t hesi s member to 0. As it
stands, most of this work is implicit: First, because the constructor initializer is empty, we
implicitly invoke the default constructor for Cor e to initialize the m dt erm fi nal ,
homewor k , and nane members. In the same fashion, the Cor e default constructor
implicitly initializes nane and homewor k through their default constructors, and explicitly
initializes only m dt er mand f i nal . The only explicit action that the default G- ad
constructor takes is to initialize the t hesi S member. Once this is done, there is no other
work for the constructor to do, so the function body is empty.



We make a Gr ad from an | st r eamin much the same way that we make a Cor e from an
i st r eam—namely, by calling the r ead member. Before doing so, though, we first
(implicitly) invoke the base-class default constructor to initialize the base part of the
object. Then, because this constructor is a member of class G ad , the r ead that is called
is G ad: : read . We don't bother to initialize t hesi s because the r ead function reads a
value into t hesi s from is.

It is important to understand how derived-class objects are constructed. Executing
Gad g;

causes the system to allocate enough space to hold G- ad 's five data elements, run the
Cor e default constructor to initialize the data members in the Cor e part of g , and then
run the default constructor for Gr ad . Similarly, if we execute

Grad g(cin);

then after allocating an appropriate amount of space, the implementation will run the
Cor e default constructor, followed by the G- ad: : Grad(i st ream&) constructor to read
values into the nane, mdterm final, thesis, and honewor k members.
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13.2 Polymorphism and virtual functions

We have not yet completely reimplemented the original St udent i nf o abstraction. That
abstraction relied on a nonmember function to support part of its interface: It used the
conpar e function to compare two student records. This function is used by sort to
arrange records in alphabetical order.

Our new comparison function is identical to the one we wrote in 89.3.1/162 except for the

change in type name:

bool conpare(const Core& cl, const Core& c2)
{

}

return cl.name() < c2.nane();

We compare two student records by comparing their names. We delegate the real work to
the st ri ng library < operator. What is interesting about this code is that we can use it to
compare both Cor e records and G ad records, or even to compare a Cor e record with a
G ad record:

Grad g(cin); /'l read a Grad record

Grad g2(cin); /'l read a Grad record

Core c(cin); /'l read a Core record

Core c2(cin); /'l read a Core record

compare(g, g2); /'l conmpare two Grad records

conmpare(c, c2); /'l conmpare two Core records

conpare(g, c); /'l conpare Grad record with a Core record

In each of these calls to conpar e , the nane member of class Cor e will be run to
determine the value to return from conpar e . Obviously, this is the right member to call
for class Cor e , but what about for G ad ? When we defined class G ad , we said that it
is inherited from Cor e , and we did not redefine the nane function. Thus, when we
invoke g. nane() for a G ad object g , we are invoking the name member that it
inherited from Cor e . That function operates the same way on a G ad as it does on a
Cor e : It fetches the underlying n field from the Cor e part of the object.

The reason that we can pass a G ad object to a function expecting a Cor e& is that we
said that G ad is inherited from Cor e , so every G ad object has a Cor e part:



Il

midterm

Core part .
final Grad object

homework

thesis

Because every & ad object has a Cor e part, we can bind conpar e 's reference
parameters to the Cor e portions of G ad objects, exactly as we can bind them to plain
Cor e objects. Similarly, we could have defined conpar e to operate on pointers to Cor e
or on objects of type Cor e (as opposed to a reference to Cor e ). In either case, we could
still call the function on behalf of a G- ad object. If the function took pointers, we could
pass a pointer to G- ad . The compiler would convert the G ad* to a Cor e* , and would
bind the pointer to the Cor e part of the G ad object. If the function took a Cor e object,
then what would be passed is just the Cor e portion of the object. There can be striking
differences in behavior, depending on whether we pass an object itself, or a reference or
pointer to the object—as we shall now see.

13.2.1 Obtaining a value without knowing the object's type

Our conpar e function does the right thing when we call it with a G ad object as an
argument because the namne function is shared by both G- ad and Cor e objects. What if
we wanted to conpar e students, not on the basis of their names, but on the basis of
their final grades? For example, instead of producing a listing of final grades sorted by
name, we might need to produce a listing sorted by final grade.

As a first cut at solving this problem, we'd write a function that is similar to conpar e :

bool conpare_grades(const Core& cl1, const Core& c2)

{
}

return cl.grade() < c2.grade();

The only difference is that here we're invoking the gr ade function rather than the nane
function. This difference turns out to be significant!

The difference is that G- ad redefines the meaning of the gr ade function, and we have
done nothing to distinguish between these two versions of gr ade . When we execute the
conpar e_gr ades function, it will execute the Cor e: : gr ade member, just as conpar e
executes Cor e: : nane . In this case, if we are operating on a G ad object, then the
version from Cor e gives the wrong answer, because the gr ade functions in Cor e and
G ad behave differently from each other. For G ad objects, we must run G- ad: : gr ade
in order to account for the t hesi s .

What we need is a way for conpar e_gr ades to invoke the right gr ade function,



depending on the actual type of object that we pass: If c1 or c2 refers to a G ad object,
then we want the G- ad version of gr ade ; if the object is of type Cor e , then we want
the one from Cor e . We want to make that decision at run time. That is, we want the
system to run the right function based on the actual type of the objects passed to the
function, which is known only at run time.

To support this kind of run-time selection, C++ provides virtual functions:

class Core {

public:
virtual double grade() const; /1 virtual added
/1

}s

We now say that gr ade is a vi rt ual function. When we call conpar e_gr ades , the
implementation will determine the version of gr ade to execute by looking at the actual
types of the objects to which the references c1 and c2 are bound. That is, it will
determine which function to run by inspecting each object that we passed as an argument
to conpar e_gr ades . If the argument is a G ad object, it will run the G- ad: : gr ade
function; if the argument is a Cor e object, it will run the Cor e: : gr ade function.

The vi rt ual keyword may be used only inside the class definition. If the functions are
defined separately from their declarations, we do not repeat vi r t ual in the definitions.
Thus, the definition of Cor e: : gr ade() need not change. Similarly, the fact that a
function is vi r t ual is inherited, so we need not repeat the vi rt ual designation on the
declaration of gr ade within the G ad class. We do have to recompile our code with the
new Cor e class definition. Once we have done so, then because the base-class version is
vi rtual , we get the behavior that we need.

13.2.2 Dynamic binding

This run-time selection of the vi rt ual function to execute is relevant only when the
function is called through a reference or a pointer. If we call a vi rt ual function on
behalf of an object (as opposed to through a reference or pointer), then we know the
exact type of the object at compile time. The type of an object is fixed: It is what it is,
and does not vary at run time. In contrast, a reference or pointer to a base-class object
may refer or point to a base-class object, or to an object of a type derived from the base
class, meaning that the type of the reference or pointer and the type of the object to
which a reference or pointer is bound may differ at run time. It is in this case that the

vi rt ual mechanism makes a difference.

For example, assume we rewrote conpar e_gr ades as follows:
/'l incorrect inplenmentation!
bool conpare_grades(Core cl, Core c2)
{

}

return cl.grade() < c2.grade();



In this version, we say that our parameters are objects, not references to objects. In this
case, we always know the type of objects represented by c1 and c2 : They are Cor e
objects. We can still call this function on behalf of a G- ad object, but the fact that the
argument had type G ad is immaterial. In this case, what happens is that what we pass is
the base part of the object. The G ad object will be cut down to its Cor e part, and a
copy of that portion of the G ad object will be passed to the conpar e_gr ades function.
Because we said that the parameters are Cor e objects, the calls to gr ade are statically
bound —they are bound at compile time—to Cor e: : gr ade .

This distinction between dynamic binding and static binding is essential to
understanding how C++ supports OOP. The phrase dynamic binding captures the notion
that functions may be bound at run time, as opposed to static bindings that happen at
compile time. If we call a vi rt ual function on behalf of an object, the call is statically
bound— that is, it is bound at compile time—because there is no possibility that the
object will have a different type during execution than it does during compilation. In
contrast, if we call avi rt ual function through a pointer or a reference, then the function
is dynamically bound—that is, bound at run time. At run time, the version of the

vi rtual function to use will depend on the type of the object to which the reference or
pointer is bound:

Core c;

Gad g;

Core* p;

Core& r = g;

c.grade(); /1 statically bound to Core::grade()

g. grade(); /1 statically bound to G ad::grade()

p- >grade(); /1 dynamical ly bound, depending on the type of the object to which
r.grade(); /1 dynamnically bound, depending on the type of the object to which

The first two calls can be statically bound: We know that ¢ is a Cor e object, and that at
run time, ¢ will still be a Cor e object. Therefore, the compiler can statically resolve this
call, even though gr ade is a vi rt ual function. In the third and fourth calls, however,
we can't know the type of the object to which p or r refers until run time: They might be
Cor e or G ad objects. Hence, the decision as to which function to run in these cases
must be delayed until run time. The implementation makes that decision based on the
type of the object to which p points or to which r refers.

The fact that we can use a derived type where a pointer or reference to the base is
expected is an example of a key concept in OOP called polymorphism . This word, from
the Greek polymorphos, meaning "of many forms," was already in use in English in the
mid-nineteenth century. In a programming context, it refers to the ability of one type to
stand in for many types. C++ supports polymorphism through the dynamic-binding
properties of vi rt ual functions. When we call a vi rt ual through a pointer or
reference, we make a polymorphic call. The type of the reference (or pointer) is fixed, but
the type of the object to which it refers (or points) can be the type of the reference (or
pointer) or any type derived from it. Thus, we can potentially call one of many functions
through a single type.

One final note about vi rt ual functions: These functions must be defined, regardless of
whether the program calls them. Nonvirtual functions may be declared but not defined, as



long as the program does not call them. Many compilers generate mysterious error
messages for classes that fail to define one or more vi rt ual functions. If your program
evokes a message from the compiler that you do not understand, and that message says
that something is undefined, you should verify that you have defined all of your vi rt ual
functions. You are likely to find that the error goes away when you do so.

13.2.3 Recap

Before we continue, it is probably worth summarizing where we are, and making one
slight additional change: We'll make the r ead function vi rt ual as well. We'd like to be
able to have the choice of which r ead function to run depend on the type of the object on
which it is invoked. With that final change, let's look at our classes:

class Core {

public:
Core(): mdterm(O, final (0) { }
Core(std::istream& is) { read(is); }

std::string nanme() const;

/'l as defined in 813.1.2/230
virtual std::istrean& read(std::istrean®);
virtual doubl e grade() const;

pr ot ect ed:
/'l accessible to derived cl asses
std::istream& read_comon(std::istreant);
double mdterm final
st d:: vect or<doubl e> honewor k;

private:
/1 accessible only to Core
std::string n;

}s

class Grad: public Core {

public:
Grad(): thesis(0) { }
Grad(std::istream& is) { read(is); }

/1 as defined in 813.1.2/230; Note: grade and read are virtual by inheritance
doubl e grade() const;
std::istream& read(std::istream);
private:
doubl e thesi s;

b
bool conpare(const Core& const Core&)
We have defined two classes to encapsulate our two kinds of students. The first class,

Cor e , represents students meeting the core requirements for the course. Our second
class inherits from Cor e , adding the requirements for completing a thesis. We can create



Cor e or G ad objects in two ways. The default constructor creates a properly initialized,
empty object; the other constructor takes an i st r eam& and reads initial values from the
specified stream. The operations let us read into an object, resetting its values, and let us
fetch the student's name or final grade. Note that in this version, we have made both the
gr ade and r ead functions vi rt ual . Finally, our interface includes a global, nonmember
conpar e function that compares two objects by comparing students' names.
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13.3 Using inheritance to solve our problem

Now that we have classes that model our different kinds of students, we would like to use
these classes to solve the grading problem from §9.6/166. That program read a file that
contained student grade records, computed the final grade for each student, and wrote a
formatted report in alphabetical order by student name. We'd like to solve the same
problem, but do so for a file that contains records for both kinds of students.

Before solving the whole problem, we'll solve two simpler problems: We will write
programs that can read files that consist entirely of one kind of record or the other. Both
of these programs will look just like our original except for the type declarations:

int main()

{
vect or <Cor e> students; /'l read and process Core records
Core record;
string::size_type maxlen = O;

/'l read and store the data

while (record.read(cin)) {
max|l en = max(nmaxl en, record. nanme().size());
student s. push_back(record);

}

/1 al phabetize the student records
sort (students. begin(), students.end(), conpare);

/1 wite the nanmes and grades

for (vector<Core>::size_type i = 0; i != students.size(); ++i) {
cout << students[i].nane()
<< string(maxlen + 1 - students[i].nane.size(), ' ");
try {

doubl e final _grade = students[i].grade(); // Core::grade
streansi ze prec = cout.precision();
cout << setprecision(3) << final_grade

<< setprecision(prec) << endl;
} catch (domain_error e) {

cout << e.what() << endl;
}
}

return O;

We can write the same program to handle Gr ad records by changing the type definitions:

int main()
{
vect or<Grad> students; /1 different type in the vector
Grad record,; /1 different type into which to read



string::size_type maxlen = 0O;

/'l read and store the data

while (record.read(cin)) { /1l read from G ad, not Core
maxl en = max(nmaxl en, record. nanme().size());
st udent s. push_back(record);

}

/'l al phabeti ze the student records
sort (students. begin(), students.end(), conpare);

/1 wite the nanes and grades

for (vector<Gad>::size_type i = 0; i != students.size(); ++i) {
cout << students[i].nane()
<< string(mexlen + 1 - students[i].nane.size(), ' ');
try {

doubl e final _grade = students[i].grade(); // G ad::grade
streansi ze prec = cout. precision();
cout << setprecision(3) << final_grade
<< setprecision(prec) << endl;
} catch (domain_error e) {
cout << e.what() << endl;

}
}

return O;

Of course, the functions that are run in each instance depend on the type of r ecord ,
and on the type of the objects contained in the vect or . For example, the expression

record. read(cin)

calls Core: : read or G ad: : read , depending on the type of r ecord . It is worth
noting that this call is statically bound: The dependence on the type of r ecor d has
nothing to do with the vi rt ual nature of the r ead function. We are invoking the
function on behalf of an object, not a pointer or reference to an object. Thus, r ecord is
either a Cor e or a G ad , depending on which version of the program is being run.
However, once we define r ecor d , its type is fixed, and so the call to

record. read(cin) is likewise bound at compile time. Similarly, the gr ade function
that we call when generating output,

students[i].grade()

will be statically bound to the one from class Cor e when we run the first program, and to
the one from G ad when we run the second program.

In both versions of the program, the uses of nane() refer to the (nonvirtual) version
defined in class Cor e . That function is inherited by G- ad , so that when we run it for a
G ad object, we are still running the version that we defined in Cor e . The conpar e
function that we pass to sort operates on references to Cor e . When the version of the



program that operates on G- ad records runs, it will conpar e the Cor e parts.

Obviously, it is tedious to write separate versions of our program. What we really want to
do is to write a single version that can handle either Cor e or G ad objects.

In order to write a single function that can r ead a file of either Cor e records or G ad
records, we need to look closely at the code, and identify those places where the type of
the record matters. In order to write a single version of the program, we will have to
eliminate these type dependencies:

e The definition of the vect or in which we store the elements as we read them
e The definition of the local temporary into which we read the records

The r ead function

e The gr ade function

The remaining code is either type independent (the code to sort the vect or or to
iterate through it) or it is invariant between the G- ad and Cor e versions (such as the
name and conpar e functions). Because we defined the gr ade and r ead functions as
virtuals, we have already solved the last two parts of our problem.

It turns out that the first two subproblems—what type to use for the local temporary and
what type to store in the container—can be handled by the same strategy. It also turns
out that there are two different approaches to solving these subproblems. The first
approach is straightforward, so we'll look at it in the next section. The other solution
represents a common, important C++ programming idiom, which we'll cover in
813.4/243.

13.3.1 Containers of (virtually) unknown type

The problem that we need to solve is to relax the type dependencies in the following:

vect or <Cor e> students; /'l must hold Core objects, not polynorphic types
Core record; /1l Core object, not a type derived from Core

The type dependencies in this code should be fairly clear. When we define r ecord , we
say exactly what type of object r ecor d is: It is a Cor e , because that's what we said it
was. Similarly, when we define students, we say that it is a vect or that holds objects of
type Cor e . We'll have more to say about such containers in 13.6.1/249, but for now
what's important is to realize that when we define a vect or <Cor e> , we are saying that
each object in the vect or will be a Cor e object—not an object of a type derived from
Core.

When we outlined the type dependencies in our two programs, we noted that we'd solved
half the type issues because r ead and gr ade were vi rt ual functions. The other half of
the problem is that, as written, our programs make statically bound calls to these

vi rtual s. In order to invoke the dynamic behavior that we need, we need to call r ead
and gr ade through a pointer or reference to Cor e . That way, the type of the object
bound can differ from the type of the pointer or reference. This observation leads us to a
solution to all four subproblems: We can write the program to manage pointers instead of
objects. We can have a vect or <Cor e* > , and we can define r ecor d to be a pointer as
well. In this way, we can obtain the dynamic behavior we need, while eliminating the type



dependence involved in the definitions of the vect or and our local temporary.
Unfortunately, as we shall see, this solution pushes a lot of complexity onto our users. For
example, the obvious try at a solution doesn't work at all:

int main()
{
vect or <Cor e*> students;
Core* record;
whil e (record->read(cin)) { /1 crash!
Il
}
}

The trouble with this program is that it fails horribly, because we never caused r ecor d to
point to an object!

We can fix this problem, but only by requiring that our users actively manage the space
consumed by the objects that they read from the file. Our users will also have to be able
to detect what kind of records the program is reading. We'll assume that each record will
contain an indicator to distinguish the kind of record that it contains: Records for graduate
students will start with a G, and those for an undergraduate will start with a U .

Before we rewrite the program to use pointers, there is one more problem that we must
solve: How do we sort avect or of pointers? The easy answer is that we'll need a new
comparison function that takes two pointers to Cor e objects. The tricky part is that we
cannot name this function conpar e . Recall that in 8.1.3/142 we discussed various
subtleties in getting the right types for values that we pass as template arguments. For
similar reasons, we cannot pass an overloaded function name as a template argument. If
we did so, the compiler would have no way to determine which version of the function we
wanted. Evidently, we'll need to write a comparison function that will give us a non-
overloaded name to pass to sort

bool conpare_Core_ptrs(const Core* cpl, const Core* cp2)
{

}

return conpare(*cpl, *cp2);

Having written a specialized comparison function, we can now rewrite the program:

/1 this code al nbst works; see 813.3.2/242

int main()

{
vect or <Cor e*> students; /'l store pointers, not objects
Cor e* record; /'l tenporary mnmust be a pointer as well
char ch;

string::size_type maxlen = 0O;

/!l read and store the data
while (cin >> ch) {



}

if (ch =='U)

record = new Core; /1l allocate a Core object
el se

record = new G ad; /1 allocate a Grad object
record->read(cin); /1 virtual cal

maxl en = max (mexlen, record->name().size()); // dereference
student s. push_back(record);

/1 pass the version of conpare that works on pointers
sort (students. begin(), students.end(), conpare_Core_ptrs);

/1 wite the nanes and grades

for

(vector<Core*>::size_type i = 0;
i != students.size(); ++i) {
/'l students[i] is a pointer that we dereference to call the functions
cout << students[i]->nane()
<< string(maxlen + 1 - students[i]->nane.size(), ' ');

try {

doubl e final _grade = students[i]->grade();

streansi ze prec = cout. precision();

cout << setprecision(3) << final _grade

<< setprecision(prec) << endl

} catch (domain_error e) {

cout << e.what() << endl;

}

del ete students[i]; /'l free the object allocated when readi ng
}
return O,

We have noted in comments the many differences between this code and our original.
These changes all result from the fact that we must manipulate pointers and not objects.

The whi | e loop changes to read the first character from the input, which we
subsequently test to determine which kind of record we are about to read. Once we know
what kind of object we need, we allocate an object of the appropriate type, and use that
object to r ead from the standard input. The r ead function is vi rt ual , so the right
version will be called, depending on whether r ecor d points to a G- ad or a Cor e object.
In both cases, r ead will give the object the values from the next input r ecor d . Note
that we must remember to dereference r ecor d , which is a pointer, to access r ead . The
code to calculate the length of the longest name also changes to dereference the pointer,
but otherwise the next few lines of code are unchanged.

When we get to the loop that does output, we have to remember t hat student s[i ]
yields a pointer. Once we have fetched st udent s[i ] , we have a pointer that must itself
be dereferenced to get at the underlying object. As with the call to r ead , the call to
grade isavirtual call, so the right version of gr ade is automatically invoked to
calculate the gr ade , including a thesis if the object is a G ad and not otherwise. The
final change is to remember to return to the implementation the space that the object
consumed, which we do by calling del et e on the pointer that st udent s[i] contains.

13.3.2 Virtual destructors



Our program almost works. The only problem occurs when we del et e the objects, as we
do inside the output loop. When we allocated these objects, we allocated both G- ad and
Cor e objects, but we stored pointers to these objects as Cor e* , and not as G ad*
pointers. Thus, when we del et e them, we are deleting a pointer to Cor e , and never a
pointer to G ad , even if the pointer actually points to a G- ad object. Fortunately, this
problem is easily fixed.

When we call del et e on a pointer, two things happen: The destructor is run on the
object, and the space that held the object is freed. When the program del et e s the
pointer in st udent s[i] , it could be pointing at either a Cor e object or a G ad object.
Neither Cor e nor G ad explicitly defined a destructor, which means that when the

del et e runs, it will invoke the synthesized destructor and then return the space that the
object consumed. The synthesized destructor will run the destructor for each data
element in the class. But when the del et e is executed, which destructor should the
system run? Should the destructor destroy the members of a Cor e or a G ad ? And when
the space is freed, how much space should be returned—enough to hold a Cor e or a

G ad?

These questions sound like the kind that the vi rt ual mechanism can resolve—and
indeed it can. In order to have a vi rt ual destructor, the class must have a destructor,
which we can then make vi rt ual

class Core {
public:

virtual ~Core() { }
/'l as before

}s

Now when we execute del et e st udent s[i ] , the destructor that will be run will
depend on the type of object to which st udent s[i ] actually points. Similarly, the type
of the memory that we return to the system will be determined by the type to which
student s[i] actually points.

Note that the body of the destructor is empty. The only work needed to destroy a Cor e is
to destroy its members, and the system does this work automatically. Empty, vi r t ual
destructors are not uncommon. A Vi rt ual destructor is needed any time it is possible
that an object of derived type is destroyed through a pointer to base. If there is no other
reason for the destructor to be defined, then that destructor has no work to do and should
be empty.

There is no need to update the G ad class to add a destructor. As with all vi rt ual
functions, the fact that the destructor is vi rt ual is inherited. Because neither class has
any explicit work to do in order to destroy objects, there is no need to redefine the
destructor in the derived class. Because the derived class inherits the vi rt ual property
of its base-class destructor, all we have to do is recompile the program.
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13.4 A simple handle class

Although the approach that we have just seen is straightforward, it has problems: The
program has acquired a lot of extra complexity related to managing the pointers, and has
added several pitfalls that could lead to bugs. Our users have to remember to allocate
space for the records as they read them, and to remember to free that space when they
no longer need the data. The code is constantly dereferencing the pointers to get at the
underlying objects. Nevertheless, we have solved the problem of writing a program that
can read a file that contains both kinds of records intermixed.

What we'd like to do is find a way to preserve the good properties of our simpler
programs that dealt with either Cor e objects or G ad objects, and eliminate the
problems inherent in our new solution, which can process both kinds of records. It turns
out that there is a common programming technique, known as a handle class, that will
let us do so.

Our code became cluttered when we realized that we needed to be able to deal with
objects whose type we could not know until run time. We knew that each object would be
either a Cor e, or something derived from Cor e. Our solution used pointers, because we
could allocate a pointer to Cor e and then make that pointer point to either a Cor e or a
G ad object. The trouble with our solution is that it imposed error-prone bookkeeping on
our users. We can't eliminate that bookkeeping, but we can hide it from our users by
writing a new class that will encapsulate the pointer to Cor e:

class Student_info {

public:
/'l constructors and copy contro
Student _info(): cp(0) { }
Student _info(std::istream& is): cp(0) { read(is); }
St udent _i nfo(const Student _i nfo&)
St udent _i nf o& operat or =(const Student _i nfo&)
~Student _info() { delete cp; }

/1 operations
std::istream& read(std::istream);

std::string name() const {
if (cp) return cp->nane();
el se throw std::runtime_error("uninitialized Student");

doubl e grade() const {
if (cp) return cp->grade();
el se throw std::runtinme_error("uninitialized Student");
}
static bool conpare(const Student _info& sl
const Student _info& s2) {
return sl.nane() < s2.name(); }

private:
Core* cp;



}s

The idea here is that a St udent _i nf 0 object can represent either a Cor e or a G ad. In
that sense, it will act like a pointer. However, users of St udent i nf o do not have to
worry about allocating the underlying object to which the St udent i nf 0 is bound. The
class will take care of these tedious and error-prone aspects of our programs.

Each St udent _i nf o object will hold a pointer, called cp, that points to an object that
has either type Cor e or a type derived from Cor e. As we'll see in 813.4.1/245, in the
r ead function we'll allocate the object to which cp points. Therefore, both constructors
initialize cp to 0, indicating that the St udent _i nf 0 object is as yet unbound. In the
constructor that takes an i st r eam we call the St udent i nf o: : r ead function. That
function will allocate a new object of the appropriate type, and will give that object the
value that it reads from the indicated i St r eam

We know from the rule of three (811.3.6/201) that we will need a copy constructor,
assignment operator, and destructor to manage the pointer. The work that the destructor
must do is easy: It just has to destroy the object that the constructors allocated. Because
we gave Cor e a virtual destructor in 813.3.2/242, the destructor for St udent _i nf o will
operate correctly whether the object being destroyed is a G- ad object or a Cor e object.
We'll define the copy constructor and assignment operator in 813.4.2/246.

Because users will write programs in terms of St udent i nf 0 objects rather than Cor e
or G ad objects, the St udent _i nf o class must provide the same interface as the Cor e
class. For both nane and gr ade, there is nothing special for St udent _i nf o to do, and
so these functions forward their work to the underlying Cor e or G- ad object to which cp
points.

However, cp could be 0. It will be O if a user creates a St udent _i nf o object using the
default constructor, and then does not read into it. If Cp is 0, we can't just forward the
calls to the underlying object. Instead, we'll throw arunti me_err or to indicate that a
problem has occurred.

It is important to remember that the Cor e: : gr ade function is virtual, which means that
when we call it through cp, the version that is called at run time will depend on the type
of object to which cp points. For example, if Cp points to a G ad object, then we'll run
the G ad::grade operation.

The only other function in the interface is the conpar e operation, which turns out to
have a couple of interesting properties. First, recall that for the Cor e classes, conpar e
was a global, nonmember function, whereas here, we implement it as a static member
function. Static member functions differ from ordinary member functions in that they do
not operate on an object of the class type. Unlike other member functions, they are
associated with the class, not with a particular object. As such, they cannot access the
nonst at I ¢ data members of objects of the class: There is no object associated with the
function, so there are no members to use.

For our purposes, St at i ¢ member functions have one significant advantage: Their
names are within the scope of their class. So, when we say that conpareisastatic
member we are defining a function named St udent i nf o: : conpar e. Because the
function has a qualified name, it does not overload the conpar e that we used to compare



Cor e objects. Thus, our users will be able to call sort, passing
St udent _i nf o: : conpar e, and the compiler can know which function they want.

The other interesting thing about this function is its implementation. The function uses the
St udent i nf 0: : nane function to get at the names stored in the records. It is worth
thinking about what is happening here. The call to St udent _i nf o: : nane will call

Cor e: : nane if cp is set. If cp is O, then name will t hr ow an exception, which
propagates out to conpar e's caller. Because conpar e uses the publ i ¢ interface to

St udent _i nf o, that function doesn't need to check cp directly. As with other user-level
code, it passes that problem along to the St udent i nf o class.

13.4.1 Reading the handle

The r ead function has three responsibilities: It must free the object, if any, to which this
handle is bound. It must then decide what kind of object we are about to r ead, and it
must allocate the right kind of object, which it can initialize from the stream it was given:

i stream& Student _info::read(istream& is) {

del ete cp; /1 delete previous object, if any
char ch;
is >> ch; /1 get record type
if (ch="U) {
cp = new Core(is);
} else {
cp = new Grad(is);
}
return is;

The r ead function starts by freeing the existing object (if any) to which the handle object
was previously bound. We do not need to check whether cp is O before calling del et e,
because the language guarantees that it is harmless to del et e a pointer with value 0.
Having freed the old value, we are ready to read the new one. We start by reading and
testing the first character on the line. Based on that character, we create an object of the
approprlate type, initializing that object by running the appropriate constructor that takes
an i st ream These constructors call their own r ead functions to read values from the
input stream into the newly created object. After the object is constructed, we store the
pointer to it in Cp. To finish up, we return the stream that we were given.

13.4.2 Copying handle objects

The copy constructor and assignment operator are necessary to manage the Cor e
pointer. The constructor allocates this pointer as a side effect of calling r ead. When we
copy a St udent _i nf o, we will want to allocate a new object and initialize it with the
values from the object from which we are copying. However, there is a snag: What kind
of object are we copying? There is no obvious way to know whether the St udent i nfo
object that we're copying points to a Cor e object or an object of a type derived from



Cor e.

The way we solve this problem is to give Cor e and its derived classes a new Vi rt ual
function. That function creates a new object that holds copies of the values in the original:

class Core {
friend class Student info;

prot ect ed:
virtual Core* clone() const { return new Core(*this); }
/'l as before

}s

The cl one function does exactly what we described, in a surprisingly succinct fashion.
We allocate a new Cor e object and use Cor e's copy constructor to give that new object
the appropriate values. Remember that the Cor e class did not explicitly define a copy
constructor. Nonetheless, we know from 811.3.5/201 that one exists: The compiler
synthesized a default copy constructor, which copies each member from the existing
Cor e object into the newly created one.

Because we created the cl one function as an artifact of our implementation, we did not
add it to the public interface of Cor e. The fact that cl one is pr ot ect ed means that we
must nominate St udent _infoasafriend of Core, so that St udent _i nf o objects
can access the cl one function. Class friendship is similar to the f r i end functions that
we saw in 812.3.2/216. There, we learned that f r i end functions have access to the
privat e and pr ot ect ed members of the class. Naming a class as af ri end has the
same effect as making all of the members of that class friends. That is, by adding

friend class Student info;

to the definition of Cor e, we are saying that all the member functions in St udent _i nfo
may access all the pri vat e and pr ot ect ed members of class Cor e.

Having added the vi rt ual function cl one to the base class, we have to remember to
redefine the function in the derived class, so that when we cl one a derived object, we
will allocate a new G ad object:

class Grad {

prot ect ed:
G ad* clone() const { return new Grad(*this); }
/1 as before

}s

As with Cor e: : cl one, we allocate a new object as a copy of *t hi s, but here we return
a Grad* rather than a Cor e*. Ordinarily, when a derived class redefines a function from
the base class, it does so exactly: the parameter list and the return type are identical.

However, if the base-class function returns a pointer (or reference) to a base class, then
the derived-class function can return a pointer (or reference) to a corresponding derived



class.

We do not need to nominate St udent _infoasafriend of G ad, even though
friendship is not inherited, because our St udent _i nf o class never refers to

Gr ad: : cl one directly; it does so only through vi rt ual calls to Cor e: : cl one, which it
can access by virtue of its f r i endship with Cor e.

With these changes in place, we can now implement copying and assignment:

Student _i nfo:: Student _i nfo(const Student_info& s) : cp(0)
{

}

Student _i nfo& Student _i nfo::operator=(const Student_info& s)

{

if (s.cp) cp = s.cp->clone();

if (& !=this) {
delete cp
if (s.cp)
cp = s.cp->clone();
el se
cp = 0;
}

return *this;

In the copy constructor, we initialize the pointer cp to 0, and conditionally call cl one if
there is something there to cl one. If not, cp will remain equal to 0, indicating that the
handle is unbound. Similarly, the assignment operator calls cl one conditionally. Of
course, we have other work to do in the assignment operator before calling cl one. First
we must guard against self-assignment, by testing whether the addresses of our two
operands are the same. If we are assigning different objects, then we must free the
object to which cp currently points before making Cp point to the newly created object.

Neither the copy constructor nor the assignment operator does anything special if cp is O,
because it is perfectly legitimate to copy or assign an unbound handle.
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13.5 Using the handle class

Having finished the handle class, we can now use it to allow our initial program from
89.6/166 to work with but one change:

int main()

{
vect or <St udent _i nf o> students;
St udent _info record,;
string::size_type maxlen = 0O;

/1 read and store the data

while (record.read(cin)) {
maxl en = max(maxl en, record. name().size());
student s. push_back(record);

}

/1 al phabetize the student records
sort (students. begin(), students.end(), Student_info::conpare);

/1 wite the nanes and grades
for (vector<Student _info>::size type i = O;
i !'= students.size(); ++i) {
cout << students[i].nane()
<< string(mexlen + 1 - students[i].nane.size(), ' ');
try {
doubl e final _grade = students[i].grade();
streansi ze prec = cout. precision();
cout << setprecision(3) << final_grade
<< setprecision(prec) << endl;
} catch (domain_error e) {
cout << e.what() << endl;
}
}

return O;

The input loop now reads and processes two kinds of records. One kind of record
represents a student who is completing only the core requirements for the course; the
other kind represents a student who wants graduate credit. The loop works because the
r ead function for St udent _i nf o reads either kind of record. That function first reads
the character that says what kind of record we're about to read, and then allocates an
object of the appropriate type, initializing the object from the input stream. It constructs
the underlying Cor e or G ad object by r eading the data, and stores a pointer to the
newly created object in r ecor d. We copy the St udent i nf o object into the vect or ,
which copies the object as a side effect of running the St udent i nf o copy constructor.

The next step is to sort the data, which we do by invoking sor t , passing it the
St udent _i nf o: : conpar e function. That function calls the base-class hane function to



compare the names in the objects.

The output loop remains unchanged. On each trip through the loop, st udent s i |
denotes a St udent i nf 0 object. That object contains a pointer to an object that is
either a Cor e or a Gr ad. When we call the gr ade function for St udent _i nf o, that
function will use the pointer to call the (vi rtual ) grade function on the underlying
object. The type of object to which the handle points will determine which version to call
at runtime.

Finally, the objects that were allocated inside the r ead for the St udent _i nf o function
will be automatically freed when we exit mai n. On exiting mai n, the vect or will be
destroyed. The destructor for vect or will destroy each element in st udent s, which will
cause the destructor for St udent i nf o to be run. When that destructor runs, it will

del et e each of the objects allocated in r ead.
[ 3
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13.6 Subtleties

Although the ideas behind inheritance and dynamic binding are powerful, they can appear
mysterious, at least at first. Now that we've seen examples that use these ideas, let's look
at some of the associated subtleties that often cause trouble.

13.6.1 Inheritance and containers

In section 813.3.1/239, we noted that when we say that we want to store Cor e objects in
a container, we're saying that the container will hold Cor e objects and nothing but Cor e
objects. This assertion might have been surprising: It might seem that we should be able
to store Cor e objects or objects der i ved from Cor e in the container. However, if we
think about our own implementation of Vec from Chapter 11, we know that at some
point, the Vec has to allocate storage for the objects that it contains. When we allocate
that storage, we say which exact type to allocate. There is no vi rt ual -like mechanism
that determines what kind of object is needed and allocates enough space to hold that
object.

What may be more surprising is what would happen if we persisted in defining a
vect or <Cor e> into which we intended to place either Cor e objects or G- ad objects.
The answer is that we could do so, but the results would probably be a surprise; for
example

vect or <Cor e> students;
Grad g(cin); /'l read a Grad
st udent s. push_back(g); /| store the Core part(!) of g in students

We are allowed to store the G- ad object in st udent s , because we can use a G ad
object wherever a reference to a Cor e object is required. The push_back function takes
a reference to the vect or 's element type, so we can pass g to push_back . However,
when we put the object into st udent s , only the Cor e portion of g is copied! As in
813.2.2/235, this behavior is actually what we asked for, although it can be
surprising—especially when encountered for the first time. What will happen is that
push_back will expect that it was given a Cor e object, and will construct a Cor e
element, copying only the Cor e parts of the object, ignoring whatever is specific to the
G ad class .

13.6.2 Which function do you want?

It is important to realize that when a base- and der i ved -class function have the same
name, but they don't match exactly in number and types of parameters, they behave as if
they were completely unrelated functions. For example, we might add to our hierarchy an
accessor function that we could use to change a student's final exam-grade. For Cor e
students, this function should set only the fi nal grade; for G ad students, the function
should take two parameters, the second one being used to set the thesis:



voi d Core::regrade(double d) { final = d; }
void G ad::regrade(double dl, double d2) { final = di; thesis = d2; }

If r is a reference to a Cor e , then

r.regrade(100); /'l ok, call Core::regrade
r.regrade(100, 100); /1l conpile error, Core::regrade takes a single argunent

This second call is an error even if r refers to an object of type Grad . The type of r is a
reference to Cor e , and the version of r egr ade in Cor e takes one value of type doubl e
. What may be more surprising is what happens if r is a reference to a G ad :

r.regrade(100); /1 conpile error, Grad::regrade takes two argunents
r.regrade(100, 100); /1 ok, call Gad::regrade

Now when we look for a function to call, r is a G ad . The r egr ade function that applies
to G ad objects takes two arguments. Even though there is a base-class version that
takes a single argument, that version is effectively hidden by the existence of r egr ade in
the deri ved class. If we want to run the version from the base class, we must call it
explicitly:

r.Core::regrade(100); /1 ok, call Core::regrade

If we want to use r egr ade as a vi rtual function, we must give it the same interface in
the base and der i ved classes, which we can do by giving the Cor e version an extra,
unused parameter with a default argument:

virtual void Core::regrade(double d, double = 0) { final =d; }

<o e
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13.7 Details

Inheritance allows us to model classes that are similar to one another with exceptions:

cl ass base {

publi c:

/1 conmon interface
prot ect ed:

/1 inplenentation nmenbers accessible to derived cl asses
private:

/1 inplenentation accessible to only the base class

}s

/'l public interface of base is part of the interface for derived
class derived: public base { ... };

Classes that derive from the base class may redefine operations from the base class and
may add members of their own. Classes can also inherit pri vat ely:

class priv_derived: private base { ... };

which is rare and normally is used for implementation convenience only.

An object of a (publ i cly) deri ved type can be used where an object, reference, or
pointer to a base class object is expected.

Derivation chains can be several layers deep:

class derived2: public derived { ... };

Objects of type deri ved2 have a deri ved part, which in turn has a base part. Thus,
deri ved2 objects have the properties of der i ved and base class objects.

Derived-class objects are constructed by allocating enough space for the entire object,
constructing the base-class part(s), and then constructing the deri ved class. Which
derived constructor is run depends, as usual, on the arguments used in creating the
derived-class object. That constructor, through its constructor-initializer list, can pass
arguments to be used when constructing its immediate base class. If the constructor
initializer does not explicitly initialize its base, then the base's default constructor is run.

Dynamic binding refers to the ability to select at run time which function to run based
on the actual type of the object on which the function is called. Dynamic binding is in
effect for calls to vi rt ual functions made through a pointer or a reference. The fact that
a function is vi rt ual is inherited, and need not be repeated in the derived classes.



Derived classes are not required to redefine their vi rt ual functions. If a class does not
redefine a vi rt ual , then it inherits the nearest definition for that function. However, any
vi rtual functions that the class does contain must be defined. It is often a source of
mysterious error messages from compilers to declare but not define a vi rt ual function.

Overriding: A derived-class member function overrides a function with the same name in
the base class if the two functions have the same number and types of parameters and
both (or neither) are const . In that case, the return types must also match, except that
as in 813.4.2/246, if the base-class function returns a pointer (or reference) to a class,
the derived-class function can return a pointer (or reference) to a derived class. If the
argument lists don't match, the base- and derived-class functions are effectively
unrelated.

vi rt ual destructors: If a pointer to the base class is used to del et e an object that
might actually be a derived-class object, then the base class needs a vi rt ual
destructor. If the class has no other need for a destructor, then the vi r t ual destructor
still must be defined and should be empty:

cl ass base {
publi c:
virtual -~base(){ }

}s

As with any other function, the vi rt ual nature of the destructor is inherited by the
derived classes, and there is no need to redefine the destructor in the derived classes.

Constructors and Vi rt ual functions: While an object is under construction, its type is
the type of the class that is being constructed—even if the object is part of a derived-class
object. Thus, calls to vi rt ual functions from inside a constructor are statically bound to

the version for the type being constructed.

Class friendship: A class can designate another as its f r i end; doing so grants
friendship to all the member functions of the other class. Friendship is neither inherited
nor transitive; friends of friends and classes derived from friends have no special
privileges.

Static members exist as members of the class, rather than as an instance in each object
of the class. Therefore, the t hi S keyword is not available in a st at i ¢ member function.
Such functions may access only st at i ¢ data members. There is a single instance of each
st at i ¢ data member for the entire class, which must be initialized, usually in the source
file that implements the class member functions. Because the member is initialized
outside the class definition, you must fully qualify the name when you initialize it:

val ue-type cl ass-nane::static-nmenber-nane = val ue;

says that the st at i ¢ member named st at i c- menber - nanme from the class cl ass-
nane has type val ue-t ype and is given the initial value val ue.

Exercises



13-0. Compile, execute, and test the programs in this chapter.

13-1. Annotate the Cor e and G ad constructors to write the constructor's name and
argument list when the constructor is executed. For example, you should add a statement
such as

cerr << "@Gad::Gad(istream&)" << endl;

to the Gr ad constructor taking an i St r eam& parameter. Then write a small program that
exercises each constructor. Predict beforehand what the output will be. Revise your
program and predictions until your predictions match what is actually written.

13-2. Given the Cor e and G ad classes defined in this chapter, indicate which function is
called for each of these invocations:

Core* pl = new Core;
Core* p2 = new Grad;
Core sl1,
Grad s2;

pl->grade();
pl->name();

p2->grade();
p2- >name() ;

sl.grade();
sl. name();

s2. nanme();
s2.grade();

Check whether you are correct by adding output statements to the nanme and gr ade
functions that indicate which function is being executed.

13-3. The class that we built in Chapter 9 included a val i d member that allowed users
to check whether the object held values for a student record or not. Add that functionality
to the inheritance-based system of classes.

13-4. Add to these classes a function that will map a numeric grade to a letter grade
according to the grading policy outlined in 10.3/177.

13-5. Write a predicate to check whether a particular student met all the relevant
requirements. That is, check whether a student did all the homework, and if a graduate
student, whether the student wrote a thesis.

13-6. Add a class to the system to represent students taking the course for pass/fail
credit. Assume that such students need not do the homework, but might do so. If they
do, the homework should participate in determining whether they passed or failed,
according to the normal formula. If they did no homework, then the grade is the average
of their midterm and final grades. A passing grade is 60 or higher.



13-7. Add a class to the system to represent students auditing the course.

13-8. Write a program to generate a grade report that can handle all four kinds of
students.

13-9. Describe what would happen if the assignment operator in 813.4.2/247 failed to

check for self-assignment.
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Managing memory (almost) automatically

When we built our Student_info handl| e class in Chapter 13, we combined two separable
abstractions. Not only was that class an interface to the operations on student records,
but it also managed a pointer to an implementation object. Combining two independent
abstractions into a single class is often a sign of weak design.

What we'd like is to be able to define a class that is similar to St udent _i nf 0, but that is
strictly an interface class. Such interface classes are common in C++, especially when
they interface to an inheritance hierarchy. We will arrange for our interface class to
delegate the implementation details to another class, which behaves like a pointer but
also manages the underlying memory. Once we have separated the interface class from
the pointerlike class, we should be able to use a single pointerlike class with multiple
interface classes.

As we'll see, we can also use classes such as these to improve the performance of
programs that manage memory often. By arranging for several pointerlike objects to refer
to a single underlying object where appropriate, we can avoid copying objects
unnecessarily.

Much of this chapter revolves around the answer to a single question: What does it mean
to copy an object? At first glance, this question seems to have an obvious answer: A copy
is a distinct object that has all the properties of the original object. However, the moment
it becomes possible for one object to refer to another, the question becomes more
complicated: If an object X refers to an object y, does copying X cause Yy to be copied
too?

Sometimes the answer to this latter question is obvious: If y is a member of X, the
answer must be yes, and if X is nothing more than a pointer that happens to point to y,
the answer is no. In this chapter we'll define three different versions of our pointerlike
class, each of which differs from the others in how it defines copying.

These questions about copying, and the very idea of a pointerlike class, are fairly abstract
notions. Because we will implement these abstractions, it is not surprising that this
chapter is by far the most abstract in the book. As a result, it is likely to require—and

repay—careful study.
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14.1 Handles that copy their objects

Let's think again about the grading problem that we solved in Chapter 13. In solving that
problem, we needed to store and process a collection of objects representing different
types of students. These objects were of one of two types related by inheritance, with the
possibility of more types being added later. Our first solution, in 813.3.1/239, used
pointers to let us store a mixed collection of objects. Each of these pointers might point to
a Cor e object, or to an object of a type derived from Cor e . User code was responsible
for allocating the objects dynamically, and for remembering to free them. The program
was cluttered with details related to managing the pointers, and was generally tricky.

The problem is that a pointer is a primitive, low-level data structure. Programming with
pointers is notoriously error prone. Many of the problems with pointers arise because
pointers are independent of the objects to which they point, leading to pitfalls:

e Copying a pointer does not copy the corresponding object, leading to surprises if two
pointers inadvertently point to the same object.

e Destroying a pointer does not destroy its object, leading to memory leaks.

o Deleting an object without destroying a pointer to it leads to a dangling pointer,
which causes undefined behavior if the program uses the pointer.

e Creating a pointer without initializing it leaves the pointer unbound, which also
causes undefined behavior if the program uses it.

In 813.5/247, we solved the grading problem again, this time using the St udent i nfo
handle class. Because this class managed the pointers, our users' code dealt with

St udent _i nf o objects, rather than with pointers. However, the St udent i nf o class
was intimately tied to the Cor e hierarchy: It contained operations that mirrored those in
the public interface of the Cor e classes.

What we want to do now is to separate these abstractions. We'll still use St udent i nfo
to provide the interface, but it will rely on another class to manage the "handle." That is,
this other class will manage the pointers to the implementation objects. The behavior of

this new type can and will be independent of the type of the objects to which the handle

can be attached.

14.1.1 A generic handle class

Because we want our class to be independent of the type of object that it manages, we
already know that our class must be a template. Because we want it to encapsulate the
handle behavior, we will call it Handl e . The properties that our class will provide are:

A Handl e is a value that refers to an object.

e We can copy a Handl e object.

e We can test a Handl e object to determine whether it is bound to another object.

» We can use a Handl e to trigger polymorphic behavior when it points to an object of
a class that belongs to an inheritance hierarchy. That is, if we call a vi r t ual
function through our class, we want the implementation to choose the function to
run dynamically, just as if we'd called the function through a real pointer.



Our Handl e will have a restricted interface: Once you attach a Handl e to an object, the
Handl e class will take over memory management for that object. Users should attach
only one Handl e to any object, after which they should not access the object directly
through a pointer; all access should be through the Handl e . These restrictions will allow
Handl e s to avoid the problems inherent in built-in pointers. When we copy a Handl e
object, we'll make a new copy of the object, so that each Handl e points to its own copy.
When we destroy a Handl e , it will destroy the associated object, and doing so will be
the only straightforward way to free the object. We'll allow users to create unbound
Handl es , but we will throw an exception if the user attempts to access the object to
which an unbound Handl e refers (or, more accurately, doesn't refer). Users who want to
avoid the exception can test to see whether the Handl e is bound.

These properties are like the ones that we implemented in the St udent i nf o class. The
St udent _i nf o copy constructor and assignment operator called cl one to copy the
associated Cor e object. The St udent _i nf o0 destructor destroyed the Cor e object as
well. The operations that used the underlying object checked before doing so to ensure
that the St udent i nf o was bound to a real object. What we want is a class that
encapsulates this behavior, but that we can use to manage an object of any type:

tenpl ate <class T> class Handl e {
public:
Handl e(): p(0) { }
Handl e(const Handl e& s): p(0) { if (s.p) p = s.p->clone(); }
Handl e& operat or=(const Handl e&)
~Handl e() { delete p; }

Handl e(T* t): p(t) { }

operator bool () const { return p; }
T& operator*() const;
T* operator->() const;

private:
™ p;
s

The Handl e class is a template class, so that we can create Handl es that refer to any
type. Each Handl e<T> object holds a pointer to an object; the other operations manage
this pointer. Aside from variable-name changes, the first four functions are identical to
their versions in St udent i nf o . The default constructor sets the pointer to zero to
indicate that the Handl e is unbound. The copy constructor (conditionally) calls the
associated object's cl one function to create a new copy of the object. The Handl e
destructor frees the object. The assignment oper at or , like the copy constructor,
(conditionally) calls cl one to create a new copy of the object:

tenpl at e<cl ass T>
Handl e<T>& Handl e<T>: : oper at or =(const Handl e& rhs)
{
if (&hs !'=this) {
del ete p;
p =rhs.p ? rhs.p->clone() : O;



}

return *this;

The assignment oper at or , as usual, starts by checking for self-assignment, doing
nothing if the test succeeds. If the test fails, we continue by freeing the object that we
had been managing, and then making a copy of the right-hand object. The statement that
does the copy uses the conditional operator (§3.2.2/45) to decide whether it's safe to call
cl one . Ifrhs. p is set, we call r hs. p- >cl one and assign the resulting pointer to p .
Otherwise, we set p to 0.

Because Handl e models pointer behavior, we need a way to bind the pointer to an actual
object, which we do in the constructor that takes a T* . That constructor remembers the
pointer that it was given, thus binding the Handl e to the object to which t points. For
example, if we define

Handl e<Cor e> student (new G ad);

we construct a Handl e object named student that contains a Cor e* pointer, which we
initialize to point to the object of type G ad that we just created:

Handle<Core> Grad

P student data

Finally, we define three oper at or functions. The first of these, oper at or bool () lets
users test the value of a Handl e in a condition. The operation returns t r ue if the

Handl e is bound to an object, and f al se otherwise. The other two define oper at or *
and oper at or - >, which give access to the object bound to the Handl e :

tenpl ate <class T>
T& Handl e<T>:: operator*() const
{
it (p)
return *p;
throw runtinme_error("unbound Handl e");

}

tenpl ate <class T>
T* Handl e<T>:: operator->() const
{
it (p)
return p;
throw runtinme_error("unbound Handl e");

Applying the built-in unary * operator to a pointer yields the object to which the pointer
points. Here we define our own * |, so that * of a Handl e object yields the value that



results from applying the built-in * operator to the pointer member of that Handl e
object. Given our st udent object, *st udent will yield the result of applying * to

st udent . p (assuming we could access the p member). In other words, the result of
*st udent will be a reference to the G ad object that we created when we initialized
student .

The - > operator is a bit more complicated. Superficially, - > looks like a binary operator,
but in fact it behaves differently from ordinary binary operators. Like the scope or dot
operators, the - > operator is used to access a member whose name appears in its right
operand from an object named by its left operand. Because names are not expressions,
we have no direct access to the name that our user requested. Instead, the language
requires that we define - > to return a value that can be treated as a pointer. When we
define oper at or - >, we are saying that if X is a value of type that defines oper at or - >
then

X- >y

is equivalent to

(x.operator->())->y

In this case, oper at or - > returns the pointer that its object holds. So for st udent ,

student - >y

is equivalent to
(student.operator->())->y

which, because of the way we defined oper at or - >, is equivalent to

st udent . p->y

(ignoring the fact that protection would not ordinarily allow us to access st udent . p
directly). Thus, the - > operator has the effect of forwarding calls made through a Handl e
object to the underlying pointer that is a member of the Handl e object.

One of our objectives was for Handl e to preserve the polymorphic behavior associated
with built-in pointers. Having seen the definitions of oper at or * and oper at or - >, we
can see that we have reached our goal. These operations yield either a reference or a
pointer, through which we obtain dynamic binding. For example, if we execute st udent -
>gr ade() , we're calling gr ade through the p pointer inside st udent . The particular
version of gr ade that is run depends on the type of the object to which p points.
Assuming that st udent still points to the G ad object with which it was initialized, this



call would be to Gr ad: : gr ade . Similarly, because oper at or * yields a reference, if we
evaluate ( *st udent ). grade() , then we are calling gr ade through a reference, and
so the implementation will decide which particular function to call at run time.

14.1.2 Using a generic handle

We could use Handl e s to rewrite the pointer-based grading program from £13.3.1/241:

int main()
{
vect or < Handl e<Core> > students; /'l changed type
Handl e<Cor e> record; /'l changed type
char ch;
string::size type maxlen = O;
/'l read and store the data
while (cin >> ch) {
if (ch=="U)
record = new Core; /1 allocate a Core object
el se
record = new G ad; /1 allocate a Grad object
record->read(cin); // Handle<T>::-> then virtual call to read
maxl en = max(maxl en, record->nane().size()); // Handl e<T>::->
students. push_back(record);
}
/'l conpare nust be rewitten to work on const Handl e<Core>&
sort(students. begin(), students.end(), conpare_Core_handl es);
/1 wite the nanes and grades
for (vector< Handl e<Core> >::size type i = 0;
i = students.size(); ++i) {
/1 students[i] is a Handl e, which we dereference to call the functions
cout << students[i]->nane()
<< string(maxlen + 1 - students[i]->nane.size(), ' ');
try {
doubl e final _grade = students[i]->grade();
streansi ze prec = cout. precision();
cout << setprecision(3) << final_grade
<< setprecision(prec) << endl
} catch (donmain_error e) {
cout << e.what() << endl;
}
/1 no del ete statenent
}
return O;
}

This program stores Handl e<Cor e> objects instead of Cor e* objects and so, as we did
in 813.3.1/240, we'll need to write a non-overloaded comparison operation that operates
on const Handl e<Cor e>& that we can pass to sort . We leave the implementation as
an exercise, but assume that it is named conpar e_Cor e_handl es .



The only other differences are in the output loop. Dereferencing st udent s[ i ] yields a
Handl e , which has an oper at or - > that we use to access the nane and gr ade
functions through the underlying Cor e* . For example, st udent s[ i ] - >gr ade() uses
the overloaded - >, so it effectively calls st udent s[ 1] . p- >gr ade() . Because gr ade
is vi rtual , we'll run the version that is appropriate to the type of the object to which
student s[i]. p points. Moreover, because Handl e takes care of memory management
for us, we no longer need to del et e the objects to which the elements of st udent s
refer.

More important, we can also reimplement St udent i nf o, which can now become a
pure interface class, delegating the work of managing pointers to Handl e :

class Student _info {
publi c:
Student _info() { }
Student _info(std::istream& is) { read(is); }
/'l no copy, assign, or destructor: they're no |onger needed

std::istreanm& read(std::istrean®);

std::string nanme() const {

if (cp)
return cp->nane();
else throw runtine_error("uninitialized Student");

}

doubl e grade() const {
if (cp) return cp->grade();
else throw runtine_error("uninitialized Student");

}

static bool conpare(const Student info& si,
const Student _info& s2) {
return sl.nanme() < s2.nane();

}

private:
Handl e<Cor e> cp;

}s

In this version of St udent _i nf o, cp is a Handl e<Cor e> rather than a Cor e* .
Therefore, we no longer need to implement the copy-control functions, because the
Handl e manages the underlying object. The other constructors operate as before. The
name and gr ade functions look the same, but their execution relies on the conversion to
bool , which is invoked in the test on cp and in the overloaded oper at or - > from the
Handl e class, which is used to get at the functions on the underlying objects.

To complete our reimplementation, we need to write the r ead function:

i stream& Student _info::read(istrean& is)

{

char ch;
is >> ch; /'l get record type



/'l allocate new object of the appropriate type
/1 use Handl e<T>(T*) to build a Handl e<Core> fromthe pointer to that object
/1 call Handl e<T>::operator= to assign the Handl e<Core> to the |eft-hand sid¢

if (ch ==U)

cp = new Core(is);
el se

cp = new Grad(is);
return is;

This code looks like the earlier St udent i nf 0: : r ead function, but its execution is quite
different. Most obviously, the del et e statement is gone, because the assignment to cp
will free the object if appropriate. To understand this code, we need to trace through it
carefully. For example, when we execute new Core(i s) , we get a Cor e* object, which
we implicitly convert to a Handl e<Cor e> using the Handl e( T*) constructor. That
Handl e value is then assigned to cp using the Handl e assignment operator, which
automatically del et e s the object, if any, to which the Hand| e previously referred. This
assignment constructs and destroys an extra copy of the Cor e object that we created, a
copy that we will now see how to avoid.

<o
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14.2 Reference-counted handles

At this point, we have achieved our goal of separating the work of managing pointers
from our interface class. We can use Handl es to implement a wide variety of interface
classes, none of which would have to worry about memory management. However, our
Handl e class still has the problem that copying or assigning objects copies the underlying
data, even when it does not need to do so. The reason being that Handl e always copies
the object to which the Handl e is bound.

In general, we would like to be able to decide whether we want to make such copies. For
example, we might want objects that are copies of one another to share their underlying
information. Such classes do not need or want valuelike behavior. Other classes may not
have any way of changing state once an object is created. In such cases, there is no
reason to copy the underlying object. Copying such objects would waste time and space.
To support these kinds of classes, we'd like a kind of Handl e that does not copy the
underlying object when the Handl e itself is copied. Of course, if we allow multiple

Handl es to be bound to the same underlying object, we'll still need to free that object at
some point. The obvious point at which to free the object is when the last Hand| e that
points to it goes away.

To this end, we will use a reference count, which is an object that keeps track of how
many objects refer to another object. Each target object will have a reference count
associated with it. We will arrange to increment the reference count each time we create
a new handle that refers to our target object, and to decrement the reference count each
time a referring object goes away. When the last referring object goes away, the
reference count will become zero. At that point we'll know that it is safe to destroy the
target object.

This technique can save a lot of unneeded memory management and copying of data.
We'll first build a new class, called Ref _handl e, which will show how to add reference
counts to our Handl e class. Then, in the next two sections, we'll explore how reference
counting can help us define classes that behave like values while sharing representations.

To add reference counting to a class, we have to allocate a counter, and change the
operations that create, copy, and destroy the objects so that they update the counter
appropriately. Each object to which we have a Ref _handl e will have a reference count
associated with it. The only question is where to store the counter. In general, we don't
own the source code for the types from which we want to make Ref_handles, so we can't
just add the counter to the object class type itself. Instead, we'll add another pointer to
our Ref _handl e class to keep track of the count. Each object to which we have attached
a Ref _handl e will also have an associated reference count that tracks how many copies
we have made of that object:

tenpl ate <class T> class Ref _handle {
publi c:

/'l manage reference count as well as pointer
Ref _handle(): refptr(new size t(1)), p(0) { }



Ref _handl e(T* t): refptr(new size t(1)), p(t) { }
Ref _handl e(const Ref _handl e& h): refptr(h.refptr), p(h.p)
{

}

++*refptr;

Ref _handl e& operat or=(const Ref _handl e&) ;
~Ref _handl e();

/'l as before
operator bool () const { return p; }
T& operator*() const
{
if (p)
return *p;
throw std::runtinme_error("unbound Ref_ handl e");

}

T* operator->() const {
if (p)

return p;
throw std::runtinme_error("unbound Ref_ handl e");
}
private:
™ p;
size_t* refptr; /1 added

}

We have added a second data member to our Ref _handl e class, and updated the
constructors to initialize that new member. The default constructor and the constructor
that takes a T* create new Ref _handl e objects, so they allocate a new reference count
(of type si ze_t ) and set the value of that counter to 1. The copy constructor doesn't
create a new object. Instead, it copies the pointers from the Ref _handl e<T> object that
it was passed, and increments the reference count to indicate that there is one more
pointer to the T object than there was previously. Thus, the new Ref handl e<T> object
points to the same T object, and to the same reference count, as the Ref _handl e<T>
object from which we copy. So, for example, if X is a Ref _handl e<T> object, and we
create Y as a copy of X, then the situation looks like this:

Ref handle<T> T RBef handle<T>
p = data members of T = D
refptr ~ |~ refptr

\ siz e_t /
reference count

The assignment operator also manipulates the reference count instead of copying the
underlying object:




tenpl at e<cl ass T>
Ref _handl e<T>& Ref _handl e<T>:: operat or=(const Ref handl e& rhs)
{

++*rhs.refptr;
/'l free the left-hand side, destroying pointers if appropriate
if (--*refptr == 0) {

delete refptr;

del ete p;

}

/1 copy in values fromthe right-hand side
refptr = rhs.refptr;

p = rhs.p;

return *this;

As always, it is important to protect against self-assignment, which we do by
incrementing the reference count of the right-hand side before decrementing the
reference count of the left-hand side. If both operands refer to the same object, the net
effect will be to leave the reference count unchanged, while ensuring that it will not reach
zero unintentionally.

If the reference count goes to zero when we decrement it, then the left operand is the last
Ref handl e bound to the underlying object. Because we are about to obliterate the
value of the left operand, we are about to del et e the last reference to that object.
Therefore, we must del et e the object, and its corresponding reference count before we
overwrite the values inref ptr and p. We del et e both p and r ef pt r because both
were dynamically allocated objects; thus, we must free them to avoid a memory leak.

Having del et ed the pointers, if needed, we then copy the values from the right-hand
side into the left-hand side and, as usual, return a reference to the left operand.

The destructor, like the assignment operator, checks whether the Ref _handl| e object
being destroyed is the last one bound to its T object. If so, the destructor deletes the
objects to which the pointers point:

tenpl at e<cl ass T> Ref _handl e<T>:: ~Ref _handl e()

{
if (--*refptr == 0) {
delete refptr;
del ete p;

This version of Ref _hand| e works well for classes that can share state between copies of
different objects, but what about classes, such as St udent i nf o, that want to provide
valuelike behavior? For example, if we used the Ref _handl e class to implement

St udent _i nf 0, then after executing, say,

Student _info s1(cin); /] initialize s1 fromthe standard input
Student _info s2 = s1; /1 "copy" that value into s2



the two objects s1 and s2 would refer to the same underlying object, even though it
might appear that S2 is a copy of s1. If we do anything to change the value of one of
these objects, we change the value of the other as well.

Our original Handl e class defined in 814.1.1/255 provided valuelike behavior because it
always copied the associated object by calling cl one. It should be easy to see that our
new Ref handl e class never calls cl one at all. Because Ref _handl| e never calls

cl one, handles of this type never copy the objects to which they are attached. On the
other hand, this version of Ref _handl| e certainly has the advantage of avoiding needless
copying of data. The trouble is that it does so by avoiding all copying, needless or not.

What can we do?
[rort 3
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14.3 Handles that let you decide when to share data

So far, we have seen two possible definitions for our generic handle class. The first
version always copies the underlying object; the second never does so. A more useful
kind of handle is one that lets the program that uses it decide when it wants to copy the
target object and when it doesn't. Such a handle class preserves the performance of

Ref handl e, and allows the class author to provide the valuelike behavior of Handl es.
Such a handle will preserve the useful properties of built-in pointers, but avoids many of
the pitfalls. Thus, we'll call this final handle class Pt r , to capture the notion that it is a
useful substitute for built-in pointers. In general, our Pt r class will copy the object if we
are about to change its contents, but only if there is another handle attached to the same
object. Fortunately, the reference count gives us a way to tell whether our handle is the
only one attached to its object.

The fundamentals of our Pt r class are the same as the Ref _handl e class that we
developed in 814.2/260. All we need to do is to add one more member function to that
class to give control to the user:

tenpl ate<cl ass T> class Ptr {
publi c:
/'l new nenber to copy the object conditionally when needed
voi d make_uni que() {
if (*refptr '=1) {
--*refptr;
refptr = new size_t(1);
p=p? p->lone() : O;

}

/'l the rest of the class |ooks |ike Ref _handl e except for its nane
Ptr(): refptr(new size t(l1)), p(0) { }

Ptr(T* t): refptr(new size t(l)), p(t) { }

Ptr(const Ptr& h): refptr(h.refptr), p(h.p) { ++*refptr; }

Ptr& operator=(const Ptr& ; /1 inplemented anal ogously to 8§14.2/261

~Ptr(); /1 inplemented anal ogously to 8§14.2/262

operator bool () const { return p; }

T& operator*() const;, /1 inplemented anal ogously to 814.2/261

T* operator->() const; /1 inmplemented anal ogously to 814.2/261
private:

™ p;

size_ t* refptr;

}s

This new make_uni que member does just what we want: If the reference count is 1, it
does nothing; otherwise, it uses the cl one member of the object to which the handle is
bound to make a copy of that object, and sets p to point to the copy. If the reference



count is not 1, there must be at least one other Pt r that refers to the original object. We
therefore decrement the reference count associated with the original (which might reduce
it to 1 but not to 0). We then create a new reference count for our handle, and for others
that might be created in the future as copies of it. Because so far there is only one Pt r
attached to the copy that we're makings we initialize the counter to 1. Before calling

cl one, we check whether the pointer to the object from which we're copying is bound to
an actual object. If so, we call the cl one function to copy that object. When we're done,
we'll know that this Pt r is the only one that is attached to the object to which p points.
That object is either the same one as before (if the original reference count was one) or a
copy of it (if the reference count was greater than one).

We can use this latest revision of Pt r in the handle-based St udent i nf o
implementation in 814.1.2/258. When we do, we'll discover that we don't need to change
this implementation of St udent i nf o at all, because none of our operations changes
the value of the object without also replacing it. The only St udent i nf 0 operation that
changes the value is the read function, but that function always assigns a newly created
value to its Pt r member. When it does so, the Pt r assignment operator will either free
the old value or keep it around, depending on whether there are other objects that refer
to the old value. In either case, the object into which we read will have a new Pt r object
and will, therefore, be the only user of that object. If our users write code such as

Student _info si1;

read(cin, sl); /1 give sl a value
Student _info s2 = s1,; /1 copy that value into s2
read(cin, s2); /1 read into s2; changes only s2 and not sl

then the value of S2 is reset in the r ead call, but the value of s1 is unchanged.

On the other hand, had we added the vi rt ual version of the r egr ade function
described in 813.6.2/249 to the Cor e hierarchy, and given St udent I nfo a
corresponding interface function, then that function would need to change to call
make_uni que:

voi d Student _info::regrade(double final, double thesis)

{
/'l get our own copy before changing the object
cp. make_uni que();
if (cp)
cp->regrade(final, thesis);
el se throw run_tinme_error("regrade of unknown student");
}

<< =
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14.4 An improvement on controllable handles

Useful as our controllable handle might be, it doesn't quite do all we want. For example,
suppose we want to use it to reimplement the St r class from Chapter 12. As we saw in
812.3.4/219, we implicitly copy a lot of characters to form the new St r s that result from
concatenating two existing St r objects. By reference-counting the St r class, we might
think that we can avoid at least some of these copies:

/'l does this version work?
class Str {
friend std::istream& operator>>(std::istream& Str&)
public:
Str& operator+=(const Stré& s) {
dat a. make_uni que();
std:: copy(s.data->begin(), s.data->end(),
std::back_inserter(*data));
return *this;

}

/1 interface as before
t ypedef Vec<char>::size type size_type

/'l reinmplenment constructors to create Ptrs
Str(): data(new Vec<char>) { }
Str(const char* cp): data(new Vec<char>) {
std::copy(cp, cp + std::strlen(cp),
std:: back_inserter(*data));

}

Str(size_type n, char c): data(new Vec<char>(n, c)) { }

tenpl ate<class In> Str(ln i, In j): data(new Vec<char>) {
std::copy(i, j, std::back_inserter(*data));

}

/1 call make_uni que as necessary
char & operator[](size_type i) {
dat a. make_uni que();
return (*data)[i];
}
const char& operator[](size_type i) const { return (*data)[i]; }
size_type size() const { return data->size(); }
private:
/] store a Ptr to a vector
Ptr< Vec<char> > dat a;
b
/1 as inplenmented in 812.3.2/216 and §12. 3. 3/219
std::ostream& operator<<(std::ostream& const Str&);
Str operator+(const Str& const Str&);



We have preserved the interface to St r , but we have fundamentally changed the
implementation. Instead of holding a vect or directly in each St r object, we store a Pt r
to the vect or . This design allows multiple St r s to share the same underlying character
data. The constructors initialize this Pt r by allocating a new vect or initialized with the
appropriate values. The code for the operations that read, but do not change, dat a are
unchanged from our previous version. Of course, these operations now operate on a Pt r

, SO there is an indirection through the pointer stored in the Pt r to get at the underlying
characters that make up the St r . The interesting operations are the ones that change
the St r , such as the input operator, the compound concatenation operator, and the
nonconst version of the subscript operator.

For example, look at the implementation of St r: : oper at or += . It wants to append data
to the underlying vect or , so it calls dat a. make_uni que() . Once it has done so, the
St r object has its own copy of the underlying data, which it can modify freely.

14.4.1 Copying types that we can't control

Unfortunately, the definition of nake_uni que has a serious problem:

tenpl at e<cl ass T>
voi d Ptr<T>::make_uni que()

{
if (*refptr '=1) {
--*refptr;
refptr = new size_t(1);
p=p ? p->lone() : O; /'l here is the problem
}
}

Look at the call to p- >cl one . Because we are using a Pt r < vect or <char> >, this
call will try to call the cl one function that is a member of vect or <char > .
Unfortunately, no such function exists!

Yet the cl one function has to be a member of the class to which we are attaching a Pt r

, because only in that way can it be a vi rt ual function. In other words, making cl one a
member is critically important to making it possible for Pt r to work across all members of
an inheritance hierarchy; yet doing so is impossible, because we can't change the
definition of the Vec class. That class is designed to implement a subset of the interface
to the standard vect or class. If we add a cl one member, we'll no longer have a subset
because we'll have added a member that vect or does not have. What can we do?

Solutions to tough problems such as this one often involve what we jokingly call the
fundamental theorem of software engineering: All problems can be solved by introducing
an extra level of indirection. The problem is that we are trying to call a member function
that does not exist, and we have no way to cause the member function to exist. The
solution, then, is not to call the member function directly but to define an intermediary
global function that we can both call and create. We will still call this new function cl one

tenpl ate<cl ass T> T* cl one(const T* tp)

{



return tp->clone();

and change our make_uni que member to call it

tenpl at e<cl ass T>
voi d Ptr<T>::make_uni que()

{
if (*refptr 1= 1) {
--*refptr;
refptr = new size_t(1);
p =p ? clone(p): O; /1l call the global (not nenber) version of clone
}
}

It should be clear that introducing this intermediary function does not change the
behavior of make_uni que . It still calls cl one , which still calls the cl one member of
the object that is being copied. However, make_uni que now works through a level of
indirection:

It calls the nonmember cl one function, which in turn calls the cl one member for the
object to which p points. For classes such as St udent i nf o that define cl one , this
indirection buys us nothing. But for classes such as St r that hold Pt r s to types that do
not provide a cl one function, the indirection is exactly what we need to make the whole
thing work. For these latter types, we can define yet another intermediary function:

/'l the key to nmaking Ptr< Vec<char> > work
t enpl at e<>
Vec<char >* cl one(const Vec<char>* vp)

{
}

return new Vec<char>(*vp);

The use of t enpl at e<> at the beginning of this function indicates that the function is a
template specialization . Such specializations define a particular version of a template
function for the specific argument type. By defining this specialization, we are saying that
cl one behaves differently when we give it a pointer to a Vec<char > than it behaves
when we give it any other pointer type. When we pass cl one a Vec<char >* argument,
the compiler will use this specialized version of cl one . When we pass other types of
pointers, it will instantiate the general template form of cl one , which calls the member
cl one for the pointer that it was passed. Our specialized version uses the Vec<char >
copy constructor to construct a new Vec<char > from the one that we gave it. It is true
that this specialization of cl one does not offer virtual behavior, but we do not need it to
do so because there are no classes derived from Vec .

What we have done, then, is to moderate our reliance on the cl one member by
recognizing that the member might not exist. By introducing the extra indirection, we
have made it possible to specialize the cl one template to do whatever is appropriate to
copy an object of a particular class, be it to use a cl one member, to call a copy



constructor, or something else entirely. In the absence of a specialization, the Pt r class
will use the cl one member, but it will do so only if there is a call to make_uni que . In
other words

e If you use Pt r <T> but you don't use Pt r <T>: : make_uni que , then it doesn't
matter whether T: : cl one is defined.

e If you use Pt r<T>:: nmake_uni que, and T: : cl one is defined, make_uni que will
use T: : cl one .

e If you use Pt r<T>:: nake_uni que , and you don't want to use T: : cl one
(perhaps because it doesn't exist), you can specialize cl one<T> to do whatever you
want.

The extra indirection has made it possible to control the behavior of Pt r in great detail.
All that remains is the hard part—deciding what you wanted to do in the first place.

14.4.2 When is a copy necessary?

One last part of this example is worth reviewing in detail. Look back at the definitions of
the two versions of oper at or[] . One of them calls dat a. make_uni que ; the other
doesn't. Why the difference?

The difference relates to whether the function is a const member. The second version of
operator[] isaconst member function, which means that it promises not to change
the contents of the object. It keeps this promise by returning a const char & to its
caller. Therefore, there is no harm in sharing its underlying Vec<char > object with other
St r objects. After all, the user can't use the value obtained to change the value of the
Str .

In contrast, the first version of oper at or [ ] returns a char & , which means that a user
could use this return value to change the contents of the St r . If the user does so, we
want to limit the change to this St r and not propagate the change to any other Str s
that might happen to share the underlying Vec . We defend against the possibility of
changing the value of any other St r objects by calling nake_uni que on the Pt r before
returning a reference to a character of the Vec .

<o
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14.5 Details

Template specializations look like the template definitions that they are specializing,
but they omit one or more of the type parameters, replacing them with specific types
instead. The myriad uses of template specializations are beyond the scope of this book,
but you should know that they exist, and that they are useful for making decisions about
types during compilation.

Exercises

14-0. Compile, execute, and test the programs in this chapter.
14-1. Implement the comparison operation that operates on Pt r <Cor e>.
14-2. Implement and test the student grading program using Pt r <Cor e> objects.

14-3. Implement the St udent i nf o class to use the final version of Pt r , and use that
version to implement the grading program from §13.5/247.

14-4. Reimplement the St r class to use the final version of Pt r .

14-5. Test the reimplemented St r class by recompiling and rerunning programs that use
Str, such as the version of spl i t and the picture operations that use a Vec<St r >.

14-6. The Pt r class really solves two problems: maintaining reference counts, and
allocating and deallocating objects. Define a class that does reference counting and

nothing else; then use that class to reimplement the Pt r class.
=
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15

Revisiting character pictures

Inheritance is most useful in modeling large, complex systems, which are well beyond the
scope of any introductory book. One of the reasons that we are so fond of the character-
picture example that we introduced in 85.8/91 is that such pictures lend themselves to an
object-oriented solution, yet we can implement them in only a few hundred lines of code.
We have used this example for many years, refining our code and simplifying the
presentation. In reviewing the example for this book, we were able to remove nearly half
the code by using the standard library and our generic handle class from Chapter 14.

In 85.8/91, we wrote several functions that represented a character picture as a

vect or <stri ng>, a strategy that entailed copying characters whenever we constructed
a new picture. Copying all those characters wastes time and space. For example, if we
were to concatenate two copies of a picture, we would then store three copies of each
character: one for the original, and one for each side of the newly concatenated picture.

Even more important, the solution in 85.8/91 discards all structural information about the
pictures. We have no idea how a given picture was formed. It might have been the initial
input from our user, or it might have been created by applying one or more operations to
simpler pictures. Some potentially useful operations require preserving a picture’s
structure. For example, if we want to be able to change the frame characters in a picture,
we can do so only if we know which components of a picture were framed and which ones
were not. We cannot look only for instances of the frame characters, because these
characters might, coincidentally, have been part of an initial input picture.

As we'll see in this chapter, by using inheritance and our generic handle class, we will be
able to preserve the structural information inherent in a picture, while at the same time
reducing the space consumption of our system dramatically.

<< =
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15.1 Design

We are trying to solve two distinct problems. One is a design problem—we'd like to keep
structural information about how a picture was created. The other is an implementation
problem—we want to store fewer copies of the same data. Both problems result from our
decision to store a picture as a vect or <st ri ng>, so we must revisit that decision.

We can solve the implementation problem by managing our data with the Pt r class that
we developed in Chapter 14. That class will let us store the actual character data in a
single object, and then arrange for multiple pictures to share that same object. For
example, if we f r anme a given picture, we will no longer have to copy the characters of
the picture that we're framing. Instead, class Pt r will manage a reference count
associated with the data, which will indicate how many other pictures are using those
data.

The design problem is harder to solve. Each picture that we create has a structure, which
we want to retain. We form a picture either from an initial collection of characters, or
through one of three operations: f r ane, to produce a framed picture; and hcat or vcat,
to create pictures that are concatenated horizontally or vertically.

In other words, we have four similar kinds of pictures. Despite their similarity, we create
them differently, and we would like to keep track of the differences.

15.1.1 Using inheritance to model the structure

Our problem is a perfect match for inheritance: We have various kinds of data structures
that are similar to one another, but that differ in ways that we sometimes want to take
into account. Each of our data structures is a kind of picture, which implies that
inheritance is a sensible way to represent these data structures. We can define a common
base class that models the common properties of every kind of picture, and then derive
from that base class a separate class for each specific kind of picture that we want to
support.

We'll call the derived classes St ri ng_Pi ¢, for pictures created from strings that our user
gives us; Frame_Pi c, for a picture created by framing another picture; and HCat _Pi ¢
and VCat _Pi c, for pictures that are the result of concatenating two other pictures
horizontally or vertically respectively. By relating these classes through inheritance, we
can use Vi rt ual functions to write code that doesn't always need to know the precise
kind of picture on which it is operating. That way, our users can still use any of our
operations without knowing which kind of picture is being manipulated. We will derive
each of these classes from a common base class, which we shall call Pi ¢c_base, resulting
in the following inheritance hierarchy:



The next question to resolve is whether to make the inheritance hierarchy visible to our
users. There seems to be little reason to do so. None of our operations deals with specific
kinds of pictures; instead, they all deal with the abstract notion of a picture. So, there is
no need to expose the hierarchy. Moreover, because we intend to use a reference-
counting strategy, our users will find it more convenient if we hide the inheritance and
associated reference counting.

Instead of making our users deal directly with Pi ¢_base and its associated derived
classes, we'll define a picture-specific interface class. Our users will access that class,
freeing them from having to be aware of any of our implementation’s details. In
particular, using an interface class will hide the inheritance hierarchy, along with the fact
that our class relies on Pt r . Apparently, then we'll need to define six classes: the
interface class, the base class for our inheritance hierarchy, and the four derived classes.
Wwe'll call the interface class Pi ct ur e. Internally, Pi ct ur e will use a Pt r to manage its
data.

What kind of Pt r ? That is, what type of objects will the Pt r manage? It will manage our
implementation class, Pi ¢_base. Thus, class Pi ct ur e will have a single data member,
which will have type Pt r <Pi c_base>.

We said that we intend to conceal our use of Pi c_base and its related hierarchy, so that
users will manipulate these objects only indirectly through class Pi ct ur e, and will not
access any of these classes directly. It turns out that the most straightforward way to
hide these classes is to rely on the normal protection mechanisms. By giving these classes
an empty publ i ¢ interface, we can let the compiler enforce our decision that all
interactions with our pictures will be through class Pi ct ur e.

To make these decisions concrete, let's write code that captures what we know so far:

/'l private classes for use in the inplenmentation only
class Pic_base { };

class String Pic: public Pic_base { };
class Frane_Pic: public Pic_base { };
class VCat _Pic: public Pic_base { };
class HCat _Pic: public Pic_base { };

/'l public interface class and operations
class Picture {
public:
Pi cture(const std::vector<std::string>& =
std::vector<std::string>());
private:
Pt r<Pi c_base> p;



}s

Each Pi ct ur e object will hold a (pri vat e) Pt r <Pi c_base> object. Class Pi c_base is
the common base class for the four classes that will represent our four kinds of pictures.
The Pt r class will manage the reference counts to allow us to share the underlying

Pi c_base objects. We will implement each operation on a Pi ct ur e by forwarding that
operation through the Pt r to the underlying derived-class object. We haven't thought yet
about what these operations will be, so for now we've left the bodies of Pi ¢_base and its
derived classes empty.

So far, the Pi ct ur e class is pretty simple: The only operation is to create a Pi ct ur e
from a vect or of stri ngs. We use a default argument (§7.3/127) to make that vect or
optional. If a user constructs a Pi ct ur e with no argument, then the compiler will supply
vector <string>() as an argument automatically, which yields a vect or <stri ng>
with no elements. Therefore, the effect of the default argument is to allow us to use a
definition such as

Picture p; /1 an enpty Picture

to create a Pi ct ur e with no rows.

Next, we need to think about how to represent our other Pi ct ur e operations. We know
that we want to implement f r ane, hcat, and vcat . What we must decide is how to do
so, and whether these operations should be members of class Pi ct ur e. The operations
do not change the state of the Pi ct ur e on which they operate, so there is no strong
reason to make them members. Moreover, there is a strong reason not to do so: As we
saw in 812.3.5/220, by making them nonmembers we can allow conversions.

For example, because the Pi ct ur e constructor that we have already written is not
explicit, users will be able to write

vector<string> vs;
Picture p = vs;

and the implementation will convert vs into a Pi ct ur e for us. If we wish to allow this
behavior—and we do—then we should also allow users to write expressions such as
frame(vs). If f rame were a member, then users would not be able to write the
seemingly equivalent vs. f r anme( ) . Remember that conversions are not applied to the
left operand of the . operator, so this call would be interpreted as invoking the
(nonexistent) f r ame member of vs.

Moreover, we believe that our users will find it convenient to use an expression syntax to
build up complicated pictures. We consider it clearer to write,

hcat (frame(p), p)

than to write



p. frame(). hcat (p)

because the first example reflects the symmetry of hcat 's arguments and the second
example conceals it.

In addition to the functions that let us build Pi ct ur es, we will want to define an output
operator that can write the contents of a Pi ct ur e. These decisions let us flesh out the
rest of our interface design:

Picture frane(const Pictureg&);

Picture hcat(const Picture& const Picture&);

Picture vcat(const Picture& const Picture&);
std::ostrean& operator<<(std::ostrean& const Picture&);

15.1.2 The Pic_base class

The next step in our design is to fill in the details of the Pi ¢_base hierarchy. If we look
back at our initial implementation, we'll see that we used the vect or <stri ng>: : si ze
function to determine how many strings were in a given picture, and we wrote a separate
wi dt h function (85.8/91), which proved useful in padding the output. When we think
about how we will display a picture, we see that we are likely to need to be able to
perform these same operations on our classes that are derived from Pi ¢_base. These
operations will need to be vi rt ual , so that we can ask any kind of Pi ¢c_base how many
rows it has and how wide its widest row is. Furthermore, because our users will use the
output operator to write the contents of a particular Pi ¢_base, we can infer that we'll
need another vi rt ual function to display a given Pi ¢c_base on a given ost r eam

The only one of these operations that needs significant insight is di spl ay. It is easy to
decide that one of the parameters to di spl ay should be the stream on which to write its
output, but figuring out what other parameters di spl ay might take requires that we
think carefully about how it will operate. When we write a Pi ct ur e, that Pi ct ur e will
comprise one or more component parts, each of which is an object of a class derived from
Pi c_base. If we think about writing a horizontally concatenated picture, it will be
apparent that each row of the output from a single Pi ct ur e might involve writing the
corresponding row for more than one subpicture. In particular, we cannot write the entire
contents of one subpicture, and then the entire contents of the other. Instead, we have to
write the contents of each subpicture a row at a time, interleaved with the corresponding
rows of the other subpictures. We can conclude, therefore, that the di spl ay function
needs a parameter that says which row to write.

Similarly, when we di spl ay the left-hand part of a horizontally concatenated picture,
we'll need to tell the corresponding subpicture to pad each row to use the full wi dt h() of
itself on each line. We'll also need to tell a picture that is contained within a Frane_ Pi c
to pad to its widest extent. On the other hand, if we're displaying a Pi ct ur e that
contains only a St ri ng_Pi ¢, or a vertically concatenated Pi ct ur e composed only of
String_Pi cs, then padding the output results only in writing a lot of unneeded trailing
blanks. So, as an optimization, we'll pass di spl ay a third argument that indicates
whether to pad the output.



These observations lead us to decide that the di spl ay function will take three
arguments: the stream on which to generate the output, the number of the row to write,
and a bool that will indicate whether to pad the picture to its full Wi dt h. With these
decisions, we can fill in the details of the Pi c_base family of classes:

class Pic_base {
/1 no public interface
typedef std::vector<std::string>: :size_type ht_sz;
typedef std::string::size_type wd_sz;

virtual wd_sz width() const = O;
virtual ht_sz height() const = 0;
virtual void display(std::ostream& ht_sz, bool) const = O;

}s

We start by defining shorthand names for the si ze_t ypes that we'll need in our
implementation. Thinking ahead, we can see that the underlying data will still be a
vect or<string>, so the si ze_t ype member of vect or <st ri ng> will be the right
type to represent the height of a picture, and the one from st ri ng will be the one we
need for the width. We'll abbreviate these types as ht sz and wd_ Sz respectively.

The other task is to define our vi rt ual functions for the base class, which you'll notice
take a new form: In each case we say = 0 where the body would appear. This syntax
indicates our intention that there be no other definition of this vi rt ual function. Why did
we define these functions this way?

To answer this question, let's begin by thinking about what the definitions would look like
if we tried to write them. In our design, Pi c_base exists only to act as the common base
class for our concrete picture classes. We will create objects of these concrete types as a
result of executing one of the Pi ct ur e operations, or in response to a user's creating a
Pi ct ure from avect or <st ri ng>. None of these operations directly creates or
manipulates Pi c_base objects. If there are never any Pi ¢c_base objects, then what
would it mean to take the hei ght or wi dt h of a Pi ¢_base object (as opposed to doing
so for an object of a type derived from Pi ¢_base)? These operations are needed only for
the derived classes, in which there always will be a concrete picture. For a Pi ¢_base
itself, there is nothing of which to take the hei ght or wi dt h.

Instead of forcing us to concoct an arbitrary definition for these operations, the C++
language lets us say that there will be no definition for a given vi rt ual function. As a
side effect of declining to implement the vi rt ual function, we also promise that there
will never be objects of the associated type. There may still be objects of types derived
from this type, but there are no objects of its exact type.

The way that we specify that we don't intend to implement a vi rt ual function is to say
= 0, as we did on hei ght , wi dt h, and di spl ay. Doing so makes it a pure virtual
function. By giving a class even a single pure Vi rt ual function, we are also implicitly
specifying that there will never be objects of that class. Such classes are called abstract
base classes, because they exist only to capture an abstract interface for an inheritance
hierarchy. They are purely abstract: There are no objects of the base class itself. Once we
give a class any pure Vi rt ual s, the compiler will enforce our design by preventing us
from creating any objects of an abstract class.



15.1.3 The derived classes

As with vi rt ual itself, the fact that a function is a pure vi rt ual is inherited. If a
derived class defines all of its inherited pure vi rt ual functions, it becomes a concrete
class, and we can create objects of that class. However, if the derived class fails to define
even a single pure vi rt ual function that it inherits, then the abstract nature is also
inherited. In this case the derived class is itself abstract, and we will not be able to create
objects of the derived class. Because each of our derived classes is intended to model a
concrete class, we know that we have to redefine all of the virtuals in each of the derived
classes.

The only other things we have to think about right now are what data each of our derived
classes will contain, and the associated question of how we will construct objects of each
type. We designed these classes to model the structure of how a picture was formed. The
type of the picture object tells us how it was created: A Stri ng_Pi c is created from
character data that a user supplied to us; a Frane_Pi ¢ results from running f r ane on
another Pi ct ur e, and so on. In addition to knowing how an object was created, we also
need to store the object(s) from which it was created. For a St ri ng_Pi ¢, we'll need to
remember the characters that the user gave us, which we can do in a vect or <stri ng>.
We create a Fr ame_Pi ¢ by framing another Pi ct ur e, so we'll need to store the

Pi ct ur e that was f r aned. Similarly, we create HCat _Pi cs and VCat _Pi cs by
combining two other Pi ct ur es. These classes will store the Pi ct ur es used in creating
the resultant new object.

Before settling on a design that stores Pictures in the Pi ¢_base derived classes, we
should think through the implications of this design a bit more deeply. Class Pi ct ur e is
an interface class intended for use by our users. As such, it captures the interface to our
problem domain but not the implementation. Specifically, it does not have hei ght

wi dt h, or di spl ay operations. If we think a bit about how these functions might be
implemented, we’ll see that we'll need access to the corresponding operations on the

Pi ct ur e(s) stored in each of the derived types. For example, to calculate hei ght of a
VCat Pi c, we need to add the heights of the two Pictures from which it was formed.
Similarly, we'll obtain the wi dt h by finding the maximum of the wi dt hs of the two
component Pictures.

An implication of storing a Pi ct ur e in each of the derived classes is that we'll have to
give class Pi ct ur e functions that duplicate the Pi ¢_base operations. Doing so obscures
our initial design intent, which was that class Pi ct ur e should be concerned with
interface not implementation. We can maintain our design by realizing that what we need
in the derived classes is not an interface object but an implementation object. This
realization implies that instead of storing a Pi ct ur e, we should store a

Pt r <Pi c_base>. This design keeps a clean separation between interface and
implementation, while still maintaining our intention to reference count our
implementation objects to avoid unnecessary data duplication.

Although our design is clean, enough indirection is involved that a picture may help:
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Here we assume that we are generating three Pi ct ur es. The first Pi ct ur e represents a
St ring_Pi c object that holds the data that we got from the user. The second one
represents a Fr anme_Pi ¢ object that we constructed by calling f r ane on the initial

Pi ct ur e. Finally, we construct a Pi ct ur e that represents the output of vcat run on the
two previous Pi ct ur es. Each Pi ct ur e has a single data member, which is a

Pt r<Pi ¢_base>. That Pt r points to an object of the appropriate Pi c_base derived
type. Each such object, in turn, contains either the vect or that holds a copy of the data
we got from the user, or one or two Pt r s that point to the Pi c_base objects used to
create the Pi ct ur e. Not shown in this diagram are the reference counts associated with
the Pt r objects, because we assume that the Pt r class is doing its job, and we can
ignore the details of that job.

What's different from what we did in Chapter 5 is that only St ri ng_Pi ¢ contains any
characters. The others hold one or two Pt r s. Therefore, we won't copy any characters
when we create f or v. Instead, the Pt r will be yet another reference to the Pt r s in the
Pi ct ur es that are used in creating a new Pi ct ur e, and the Pt r class will take care of
the reference counting for us. So, when we call f r ame( pi c) , the effect is to create a
new Fr ane_Pi ¢ object, and to point its Pt r at the same St ri ng_Pi ¢ that is stored in
pi c. Similarly, the VCat _Pi ¢ contains two Pt r s pointing to the Fr ane_Pi ¢ and the

St ri ng_Pi c respectively. We will not destroy any of these Pi ¢_base objects; doing so
is the responsibility of the Pt r class. It will arrange to destroy each Pi ¢c_base object
when the last Pt r that refers to each object has gone away.

At this point, we should capture these design decisions in code. We know what data each
object will contain, and we know what our operations will be:

class Pic_base {



/'l no public interface
typedef std::vector<std::string>::size type ht _sz;
typedef std::string::size type wd_sz;

/1 this class is an abstract base cl ass

virtual wd_sz width() const = O;

virtual ht_sz height() const = O;

virtual void display(std::ostream& ht_sz, bool) const = O;

}s

class Frane_Pic: public Pic_base {
/1 no public interface
Pt r<Pi c_base> p;
Frame_Pi c(const Ptr<Pic_base>& pic): p(pic) { }

wd_sz width() const;
ht sz height() const;
voi d display(std::ostream& ht_sz, bool) const;

}s

Here we say that Fr ane_Pi ¢ inherits from Pi ¢_base, and declare our intention to
define class-specific versions of each of the three vi rt ual s from that base class. Thus,
Frame_Pi ¢ will not be an abstract class, and we will be able to create Fr ane_Pi c
objects. It is worth noting that we have declared these Vi rt ual s in the pri vat e section
of the class. Doing so lets the compiler enforce our design decision that only class

Pi ct ur e and operations on Pi ct ur es can access the Pi ¢_base hierarchy. Of course,
because these vi rt ual s are pri vat e, we may need to revisit the class definition to
include f r i end declarations for class Pi ct ur e, or the associated operations, as needed.

The Frane_Pi ¢ constructor needs only to copy the Pt r from the object that is being
framed, which it does in the constructor initializer. The constructor body is empty,
because there is no other work to do.

Continuing with our other derived classes, the concatenation classes will operate similarly
to Frane_Pi c: Each class will need to remember its two constituent pictures. How they
were concatenated, vertically or horizontally, will be implicit in the type itself:

class VCat_Pic: public Pic_base {
Pt r<Pi c_base> top, bottom
VCat _Pic(const Ptr<Pic_base>& t, const Ptr<Pic_base>& b):
top(t), bottom(b) { }

wd_sz wi dth() const;
ht _sz height() const;
voi d display(std::ostream& ht_sz, bool) const;

}

class HCat _Pic: public Pic_base {
Ptr<Pi c_base> left, right;
HCat _Pic(const Ptr<Pic_base>& |, const Ptr<Pic_base>& r):
left(l), right(r) { }

wd_sz width() const;



ht sz height() const;
voi d display(std::ostrean®, ht_sz, bool) const;

}s

The St ri ng_Pi ¢ class differs slightly from the others in that it stores a copy of the
vect or <char > that contains the picture's data:

class String_Pic: public Pic_base {
std::vector<std::string> data;
String_Pic(const std::vector<std::string>& v): data(v) { }

wd_sz width() const;
ht sz height() const;
voi d display(std::ostrean®, ht_sz, bool) const;

}s

We still copy the underlying characters from our user's vect or parameter v into our own
member, which is called dat a. This is the only place in our entire program that copies
characters. Everywhere else, we copy only Pt r <Pi ¢_base> objects, which copies
pointers and manipulates reference counts.

15.1.4 Copy control

Perhaps the most interesting aspect of our design is what isn't here. There are no copy
constructors, assignment operators, or destructors. Why?

The reason is that the synthesized defaults work. The vect or class takes care of
managing the space for the initial copy of the characters that our user gives us as part of
creating a new Pi ct ur e. If we copy or assign two Pi ct ur es that refer to
String_Pics, or we destroy a Pi ct ur e, then the Pt r operations will do the right thing
to manage the Pi ct ur e objects, and arrange to delete the underlying St ri ng_Pi c at
the right time. More generally, the Pt r class takes care of copying, assigning, and
destroying the Pt r members in the other Pi ¢_base classes—and in class Pi ct ur e

itself.
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15.2 Implementation

At this point we have a pretty good design of both our interface and the implementation.
The Pi ct ur e class and the associated operations on Pi ct ur es will manage the user
interface. The Pi ct ur e constructor and the operations will create objects of one of the
types derived from Pi ¢_base. wWe'll use Pt r <Pi c_base> to manage the underlying
space, thus avoiding extraneous copies of the data. It is now time to implement the
interface operations and each of the derived classes.

15.2.1 Implementing the user interface

We'll start by implementing the interface class and operations. What we know so far is

class Picture {
publi c:
Pi cture(const std::vector<std::string>& =
std::vector<std::string>());
private:
Pt r<Pi c_base> p;

}s

Picture frane(const Pictureg&);

Pi cture hcat (const Picture& const Picture&);

Pi cture vcat (const Picture& const Picture&);
std::ostrean& operator<<(std::ostrean® const Picture&);

Let's think first about the operations that create new Pi ct ur es. Each of these operations
creates an object of an appropriate class derived from Pi ¢ _base. That object will copy
the Pt r from the Pi ct ur e(s) on which the operation executes. We will bind a Pi ct ur e
to this newly created Pi c_base object, and return that Pi ct ur e. For example, if p is a
Pi cture, then f rane(p) should create a new Frane_Pi ¢ that is attached to the

Pi c_base from p. It will then generate a new Pi Ct ur e that is attached to the new
Franme_ Pi c. Let's start here:

Picture frame(const Picture& pic) {
Pi c_base* ret = new Frame_Pi c(pic.p);
/1 what do we return?

We start by defining a local pointer to Pi ¢_base, which we initialize by creating a new
Frame_Pi ¢ that copies the underlying Pt r inside pi c. There are now two problems. The
easy one is that the Fr ane_Pi ¢ constructor is pri vat e. As we saw in 815.1.3/276,
each of the Pi ¢c_base classes is a hidden class. We don't want users to know about these
classes, and so we defined only private operations to let the compiler enforce this design
decision. We can solve this problem by making the f r ane operation a f ri end of class
Frame_Pi c.



The other problem is more subtle: We have created a new object of type Fr ane_Pi ¢, but
what we need is an object of type Pi ct ur e. More generally, we can imagine that hcat ,
vcat , and other functions that we might subsequently write will generate objects of other
types derived from Pi ¢_base, and that they will do so in contexts in which we really
want objects of type Pi ct ur e. The point is that f r ane and related operations return

Pi ct ur es, not Pi c_bases. Fortunately, we know from §12.2/213 that we can convert
one type to another if we provide an appropriate constructor. In this case, the appropriate
constructor is one that constructs a Pi ct ur e from a Pi ¢c_base*:

class Picture {
Pt r<Pi c_base> p;
Pi cture(Pic_base* ptr): p(ptr) { }
/'l as before

}s

Our constructor initializes p with the pointer to Pi ¢_base that we were given. Remember
that class Pt r has a constructor that takes a T*, which in this case is a Pi ¢_base*. The
initializer p( pt r) invokes this Ptr: : Ptr ( T*) constructor, passing it pt r . Once we
have this Pi ct ur e constructor, we can complete the f r ane operation:

Picture frame(const Picture& pic)

{
}

return new Frame_Pic(pic.p);

We've eliminated the local Pi ¢_base object because we don't need it. Instead, we create
a new Fr ane_Pi c object, the address of which is automatically converted to a Pi ct ur e,
which we return from the function. Completely understanding this little function requires a
good grasp of the subtleties involved when using automatic conversions and copy
constructors. The single statement in this function has the same effect as

/'l create the new Frane Pic
Pi c_base* tenpl = new Frane_Pic(pic.p);

/'l construct a Picture froma Pic_base*
Picture tenmp2(tenpl);

/'l return the Picture, which will invoke the Picture copy constructor
return tenp2;

Like f r ane, the concatenation functions rely on our new Pi ct ur e constructor:

Picture hcat(const Picture& |, const Picture& r)

{
}

return new HCat _Pic(l.p, r.p);



Picture vcat(const Picture& t, const Picture& b)

{
}

return new VCat _Pic(t.p, b.p);

In each case, we construct an object of the appropriate type, bind a Pt r <Pi ¢_base> to
it, construct a Pi ct ur e from the Pt r <Pi c_base>, and return a copy of that Pi ct ur e.
Of course, for these functions to compile, we'll need to add the appropriate fri end
declarations to the HCat _Pi ¢ and VCat _Pi ¢ classes.

To construct a Pi ct ur e from avect or <stri ng>, we adopt the same strategy that we
used for the other kinds of pictures:

Picture::Picture(const vector<string>& v):
p(new String_Pic(v)) { }

Again, we create a new St ri ng_Pi ¢ object, but this time we use it directly to initialize p,
instead of returning it. Of course, we will have to remember to make Pi cture afri end
of St ri ng_Pi c, so that it can access the St ri ng_Pi ¢ constructor.

It is important to realize how this constructor differs from the f r ane, hcat , and vcat
functions. Each of these other functions is defined to return a Pi ct ur e, and in each one
we use a pointer to a class derived from Pi ¢_base in the r et ur n statement. Therefore,
we implicitly used the Pi ct ur e (Pi ¢c_base*) constructor to create a Pi ct ur e to return.
In the Pi ct ur e constructor that we've just written, we are still creating a pointer to a
class derived from Pi c_base—in this case, class St ri ng_Pi c—but now we're using this
pointer to initialize member p, which has type Pt r <Pi ¢_base>. Doing so uses the

Ptr (T*) constructor in class Pi c_base, not the Pi ct ure (Pi c_base*) constructor,
because we're constructing a Pt r <Pi ¢_base>, not a Pi ct ur e.

To complete the implementation of our interface functions, we must define the output

operator. This operation is also straightforward: We need to iterate through the
underlying Pi ¢c_base, and call di spl ay to write each line of the output:

ostream& oper at or<<(ostream& os, const Picture& picture)

{
const Pic_base::ht_sz ht = picture.p->height();
for (Pic_base::ht_sz i =0; i !'= ht; ++i) {
pi cture. p->di splay(os, i, false);
0s << endl;
}
return os;
b

We initialize ht by calling the (vi rt ual ) hei ght function for the underlying Pi ¢_base,
so that we do not have to recompute the height each time through the loop. Remember
that p is actually a Pt r <Pi ¢_base>, and that Pt r has overloaded - > to implement
references through the Pt r as references through the pointer that the Pt r contains. We
iterate ht times through the underlying Pi ¢c_base, each time calling the (vi rt ual )



di spl ay function, asking it to write the current r ow. The third argument (f al se)
indicates that di spl ay need not pad the output. If we need padding to write one of the
interior Pi ct ur es, the inner di spl ay functions will indicate that padding is needed. At
this stage, we can't yet tell if padding is necessary. We write endl to end each line of
output, and when we're done, we return 0S.

As with the other operations that we have implemented, we will have to remember to add
afriend declaration to class Pi c_base to allow oper at or << to access its di spl ay
and hei ght members.

15.2.2 The String_Pic class

Having completed the interface class and operations, we can turn our attention to the
derived classes. We'll start with String Pi c:

class String_Pic: public Pic_base {
friend class Picture;
std::vector<std::string> data;
String _Pic(const std::vector<std::string>& v): data(v) { }

ht sz height() const { return data.size(); }
wd_sz width() const;
voi d display(std::ostream& ht_sz, bool) const;

}s

We have implemented the hei ght function, but otherwise the St ri ng_Pi ¢ class is
unchanged from the one that we described in 15.1.3/277. The hei ght function is
trivial: It forwards the request to the Si ze member of vect or .

To determine the wi dt h of a St ri ng_Pi ¢, we need to look at each element in data to

see which is the longest:

Pic_base::wd_sz String Pic::width() const {
Pic_base::wd_sz n = 0;

for (Pic_base::ht sz i =0; i !'= data.size(); ++i)
n = max(n, data[i].size());
return n;

Except for the type names, this function looks like the original wi dt h function from
85.8/91.Becausea St ri ng_Pi ¢ holds avect or <st ri ng>, we should not be surprised
at this similarity.

The di spl ay function is more complicated. It has to iterate through the underlying
vect or, writing the st ri ng associated with the requested r ow number.

What about padding? Note that this function might be called directly from the output
operator, as would happen if the Pi ct ur e we were writing pointed to a Stri ng_Pi c—
or it might be called indirectly, as part of writing a larger Pi ct ur e of which this
String_Pic is a part. In the latter case, the di spl ay function may be asked to pad the



output to make each row fill the same size in the overall output. The amount of padding
will vary for each st ri ng, and will be whatever is needed to consume as many spaces in
the output as the number needed for the longest st ri ng. In other words, we'll need to
pad from the length of this st ri ng to the wi dt h() of this Stri ng_Pi c. A bit of
forethought should convince us that we're likely to need to pad other pictures too. For
now, we'll assume that we have a pad function that takes an output stream and the start
and (one past) the end positions to pad with blanks. We'll implement this function
shortly.

Another complexity arises from the fact that the row number passed to di spl ay may
exceed the hei ght of this St ri ng_Pi c. One way in which this situation could happen is
if the St ri ng_Pi c is part of a horizontally concatenated Pi ct ur e in which one side is
shorter than the other. Our Pi ct ur es line up at the top border, but they may be of
different heights. Thus, we will need to check whether the r ow we're asked to write is in
range. With this analysis complete, we can now write the code:

void String_Pic::display(ostrean& os, ht_sz row, bool do_pad) const

{
wd_sz start = O;

/1 wite the rowif we're still in range
if (row < height()) {

0s << data[row];

start = data[row].size();

}

/1 pad the output if necessary
if (do_pad)
pad(os, start, width());

We first check whether the r ow we were asked to write is in range—that is, whether r ow
is less than the hei ght () of this Stri ng_Pi c. If so, then we write it and set st art to
indicate how many characters we wrote in the process. Regardless of whether we wrote a
row, we check whether we are supposed to pad the output. If so, we pad from st art to
the overall Wi dt h() of this St ri ng_Pi c. If the row is out of range, then st art is 0, so
we write an entire r ow of blanks.

15.2.3 Padding the output

We can now think about our padding function. Because we want to access this function
from each of the derived classes, we'll define the pad operation as a function member of
Pi c_base that is both st at i ¢ and pr ot ect ed:

class Pic_base {
/'l as before
pr ot ect ed:
static void pad(std::ostream& os, wd_sz beg, wd_sz end) {
while (beg !'= end) {
0os << " ",



++beg;

}s

This function takes an 0St r eamon which to write blanks, and two values that control
how many blanks to write. When a di spl ay function needs to call pad, it will pass the
current column number and one past the last column number that needs to be filled in by
the current di spl ay operation. The pad function will fill this range with blanks.

Note the use of the st at i ¢ keyword on the declaration of pad. As we saw in §13.4/244,
this use of st at i ¢ indicates that pad is a static member function. Such functions differ
from an ordinary member function in that they are not associated with an object of the
class type.

It may also be surprising that we can define a member function for an abstract base
class. After all, if there can be no objects of the base class, why should there be member
functions? However, remember that each derived object contains a base-class part. Each
derived class also inherits any member functions defined in the base. Thus, a base-class
function will execute on the base-class portion of a derived object. In this particular case,
the function that we are defining is a st at i ¢ member, so the question of access to
members of the base is moot. But it is important to realize that abstract classes may
define data members, and (ordinary) member functions, as well as st at i ¢ ones. These
functions will access the base-class objects that are part of derived objects.

Static members (both functions and static data members, which we can also define) are
useful in that they let us minimize the names that are defined globally. Our pad function
is a good example. We can imagine many abstractions that have the notion of padding. In
this book we talked about padding in the context of writing a formatted report of student
grades, as well as in the context of writing Pi ct ur es. If the Pi ct ur e class were to
define pad as a global function, then we would not also be able to define a pad function
for St udent _i nf 0, or vice versa. By making pad a st at i c member, we allow for the
fact that other abstractions in our program might have the notion of padding. As long as
each class defines what pad means only in the context of the class, these mutually
independent notions of padding can coexist within our program.

15.2.4 The VCat_Pic class

Implementing the concatenation classes is not hard. We'll start with VCat _Pi c:

class VCat _Pic: public Pic_base {
friend Picture vcat(const Picture& const Picture&)
Ptr<Pi c_base> top, bottom
VCat _Pic(const Ptr<Pic_base>& t, const Ptr<Pic_base>& b):
top(t), bottom(b) { }

wd_sz width() const
{ return std::max(top->wi dth(), bottom>width()); }
ht sz hei ght () const
{ return top->height() + bottom >height(); }
voi d display(std::ostrean®&, ht_sz, bool) const;



We added the appropriate f r i end declaration for the vcat operation, and implemented
the hei ght and wi dt h functions inline. If a picture is concatenated vertically, its

hei ght is the sum of its two components' heights, and the Wi dt h is the greater of the
two components' widths.

The di spl ay function is not much harder:

void VCat _Pic::display(ostream& os, ht_sz row, bool do_pad) const
{

wd sz w = 0;
if (row < top->height()) {
/1l we are in the top subpicture
t op- >di spl ay(os, row, do_pad);
w = top->w dth();
} else if (row < height()) {
/1 we are in the bottom subpicture
bott om >di spl ay(os, row - top->height(), do_pad);
w = bottom >wi dt h();

}
i f (do_pad)
pad(os, w, w dth());

First, we define a variable w, which will contain the width of the current row, in case we
need it for padding. Next, we check whether we're in the top component, by testing r ow
against the hei ght () of the top picture. If we're in that range, then we invoke di spl ay
to write the top component, passing the bool that we were given to indicate whether to
pad the output. Remember, di spl ay is vi rtual , so this call will invoke whatever the
appropriate di spl ay function is for the kind of Pi ¢_base to which top actually refers.
Once we've written the given r ow, we remember its W dt h in w.

If we're not in t op, we might be in bott om If we get to this el se test, then we know
that r ow is greater than t op- >hei ght (), so we now check whether r ow is within the
overall range of this picture. If so, it must be in the bot t ompicture. As we did for t op,
we call di spl ay on bot t omto write the picture, offsetting the r ow number to adjust for
having already written as many rows as are in t Op. Having written the row from the

bot t ompicture, we remember its width. If we're out of range, W remains O.

When we're done writing the row, we check whether padding is needed. If so, we pad
from the width that we remembered in w to the full width of our own picture.

15.2.5 The HCat_Pic class

Not surprisingly, the HCat _Pi ¢ class looks a lot like VCat _Pi c:

class HCat _Pic: public Pic_base {
friend Picture hcat(const Picture& const Picture&);
Ptr<Pi c_base> left, right;
HCat _Pic(const Ptr<Pic_base>& |, const Ptr<Pic_base>& r):



left(l), right(r) { }

wd_sz width() const { return left->width() + right->width(); }
ht sz hei ght() const

{ return std::max(left->height(), right->height()); }
voi d display(std::ostrean®, ht_sz, bool) const;

}s

Because we're concatenating two pictures side by side, this time the Wi dt h is the sum of
the components' Wi dt hs, and the hei ght is the greater of the two hei ght s. Here, the
di spl ay function is simpler than the corresponding one from VCat _Pi ¢, because we
delegate managing whether the row is in range to the component pictures:

voi d HCat Pic::display(ostream& os, ht_sz row, bool do_pad) const

{
| eft->di splay(os, row, do_pad || row < right->height());
ri ght->display(os, row, do_pad);

First we write the requested r ow from | ef t by calling di spl ay, asking it to write the
given r ow. We pad this row if we were asked to pad our own output, or if we're on a row
that is within the range of the right-hand picture (in which case we must pad each row of
the left-hand picture to ensure that the corresponding row of the right-hand picture
begins at the right place in the output line). If the row is out of range for | ef t , then the
di spl ay function executed on | ef t will deal with that problem. Similarly, we delegate
writing the requested row from ri ght to the di spl ay function on ri ght . This time we
pass along the do_pad value that we were given, because there is no reason to force
padding on the right-hand side.

15.2.6 The Frame_Pic class

The only derived class we have | ef t to implement is Fr ane_Pi c:

class Frame_Pic: public Pic_base {
friend Picture frane(const Picture&);
Pt r<Pi c_base> p;
Frame_Pi c(const Ptr<Pic_base>& pic): p(pic) { }

wd_sz width() const { return p->width() + 4, }
ht sz height() const { return p->height() + 4; }
voi d display(std::ostrean®&, ht_sz, bool) const;

}s

The hei ght and wi dt h operations forward their calculations to the picture that was
framed. We add 4 to these values, to account for the borders and the space that
separates the border from the interior, framed picture. The di spl ay function is tedious
but not hard:



void Frane_Pic::display(ostrean& os, ht_sz row, bool do_pad) const

{
if (row >= height()) {
/'l out of range

if (do_pad)
pad(os, 0, width());
} else {

if (row==0 || row == height() - 1) {
/1 top or bottomrow
0S << string(width(), "*');

} elseif (row==1 || row == height() - 2) {
/1 second fromtop or bottomrow

0S << "*";
pad(os, 1, width() - 1);
0S << "*";
} else {
/1 interior row
0s << "* ",
p->di spl ay(os, row - 2, true);
0s << " *"y

First we check whether the requested row is in range; if not and we’'re being asked to
pad, we do so, filling the entire row with blanks. If we're in range, there are three cases:
We're writing the top or bottom border, we're writing the mostly blank line that separates
the border from the interior picture, or we're writing a row from the interior picture.

We know that we're dealing with the top or bottom border if the r ow number is O or

hei ght () - 1. In this case, we write a row that consists entirely of asterisks to form
the border. If we're one row in from the border, then we want to write an asterisk,
followed by the appropriate number of blanks, followed by another asterisk. Finally, we
might be in an interior row of the picture. In this case, we want to write that row of the
border, which is an asterisk followed by a blank, and then the interior picture, followed by
another blank and asterisk for the right-hand border. We write the interior picture by
calling di spl ay, offsetting the row value to account for the border that we have already
written. In the call to di spl ay, we indicate that the interior picture should pad the
output so that when we write the right-hand border, it will be straight.

15.2.7 Don't forget friends

The only work that remains is to add the appropriate f r i end declarations to Pi ct ure
and Pi c_base. We've already noted that we need to add a f ri end declaration to class
Pi ct ur e for each of the Pi ct ur e operations. After all, these operations all use the Pt r
inside Pi ct ur e, and need permission to access that member. What may be less obvious
is the collection of f ri ends that we need to add to class Pi ¢_base:

/] forward declaration, described in 8§15.3/288
class Picture;

class Pic_base {



friend std::ostream& operator<<(std::ostreamf const Pictureg&)
friend class Frane_Pic;

friend class HCat _Pic;

friend class VCat_Pic;

friend class String_Pic

/'l no public interface
typedef std::vector<std::string>::size type ht _sz;
typedef std::string::size type wd_sz;

/1 this class is an abstract base cl ass

virtual wd_sz width() const = O;

virtual ht_sz height() const = 0;

virtual void display(std::ostream& ht_sz, bool) const = O;

pr ot ect ed:
static void pad(std::ostream& os, wd_sz, wd_sz);

}s

class Picture {
friend std::ostream& operator<<(std::ostream& const Picture&);
friend Picture frame(const Pictureg&);
friend Picture hcat(const Picture& const Pictureg&);
friend Picture vcat(const Picture& const Picture&);

public:
Picture(const std::vector<std::string>& =
std::vector<std::string>());

private:
Picture(Pic_base* ptr): p(ptr) { }
Pt r<Pi c_base> p;

}

/1 operations on Pictures

Picture frame(const Picture&);

Pi cture hcat(const Picture& const Pictured&);

Picture vcat(const Picture& const Pictured&);
std::ostream& operator<<(std::ostream& const Picture&);

The first f r i end declaration in Pi ¢_base should be easy to understand. The output
operator invokes both the hei ght () and di spl ay() functions, so it must be granted
access to these members. What may be more surprising is the f r i end declarations for
the classes that inherit from Pi ¢_base. Don't they have access to the members of

Pi c_base through inheritance? Yes they do, in principle, but except for pad, all of the
members of Pi ¢_base are pri vat e. Why didn't we just make these other members

pr ot ect ed, as we did with the pad function? The answer is that it wouldn't have solved
the problem.

A member of a derived class (such as Fr ane_Pi ¢) can access the pr ot ect ed members
of the base-class parts of objects of its own class (such as Fr ane_Pi ¢), or of other
classes derived from it, but it cannot access the pr ot ect ed members of base-class
objects that stand alone—that is, that are not part of a derived-class object. Therefore,
member functions of class Fr ane_Pi ¢, which is derived from class Pi ¢_base, can



access pr ot ect ed members of the Pi ¢c_base parts of Fr ane_Pi ¢ objects, or objects of
classes derived from Fr ane_Pi ¢, but they cannot access pr ot ect ed members of stand-
alone Pi c_base objects directly.

One might think that this restriction would be irrelevant to our program. After all, class

Pi c_base is an abstract base class, so there can be no stand-alone objects of that class.
However, the access rules apply to any attempt to access a member of what appears to
be a stand-alone Pi ¢c_base object, even if at run time the object is of a derived class.
For example, consider the hei ght function in class Frane_Pi c:

ht _sz Franme_Pic::height() const { return p->height() + 4; }

This function uses the expression p- >hei ght () , which implicitly calls the oper at or - >
member of class Pt r (814.3/263) to obtain a pointer. This pointer has type Pi ¢_base*;
we dereference it to access the hei ght member of the corresponding object. Because
the pointer's type is Pi ¢c_base*, the compiler will check protection as if we were trying
to access a member of a Pi ¢_base object, even though the actual object will be of a
type derived from Pi ¢_base. Therefore, even if we made hei ght a pr ot ect ed
member, we would still have to include f r i end declarations to allow this access. Each of
the derived classes in our hierarchy turns out to require f r i end declaration for similar
reasons.

This rule may be surprising, but its logic is straightforward: If the language granted
derived objects access to the pr ot ect ed members of a base-class object, then it would
be trivial to subvert the protection mechanisms. If we needed access to a pr ot ect ed
member of a class, we could define a new class that inherited from the class that we
wanted to access. Then we could define the operation that needed access to the

pr ot ect ed member as a member of that newly derived class. By doing so, we could
override the original class designer's protection strategy. For this reason, pr ot ect ed
access is restricted to members of the base-class part of a derived-class object, and does

not allow direct access to the members of base-class objects.
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15.3 Details

Abstract base classes have one or more pure Vi rt ual functions:

cl ass Node {
virtual Node* clone() const = 0;

}s

says that cl one is a pure vi rt ual function, and, by implication, that Node is an
abstract base class. It is not possible to create objects of an abstract class. A class can be
made abstract through inheritance: If the class fails to redefine even a single inherited
pure Vi rt ual , then the derived class is also abstract.

Forward declarations: The requirement to define names before using them (&0.8/6)
causes trouble in writing families of classes that refer to one another. To avoid this
trouble, you can declare just the name of the class by writing

cl ass cl ass-nane;

thereby saying that cl ass- nane names a class, but not describing the class itself.

We used such a forward declaration for class Pi ct ur e in 815.2.7/286. The Pi ct ur e
class contains a member of type Pt r <Pi ¢_base>, and the Pi ¢c_base class has a

fri end declaration for oper at or << that uses the type const Pi ct ur e& Therefore,
these two classes refer to each other.

Such mutual type dependencies can yield programs that are impossible to implement. For
example:

cl ass Yang; /1 forward decl aration
class Yin { Yang vy; };

class Yang {
Yin vy,
b

Here, we have said that every Yi n object contains a Yang object, which contains a Yi n
object, and so on. Implementing such types would require infinite memory.

The mutual dependency in our picture classes does not cause such problems, because
class Pi ct ur e does not contain a member of type Pi ¢_base directly. Instead, it has a
member of type Pt r <Pi ¢c_base>, which contains a Pi ¢_base*. Using pointers in this
way avoids infinitely nested objects.



Moreover, in the case of a pointer (or reference), the compiler does not actually need to
know the details of the type until operations are invoked through the pointer (or
reference). Because the declaration of oper at or << uses the const Pi ct ur e& type
only to declare a parameter type, the compiler needs to know only that the name

Pi ct ur e names a type. The details of that type aren't needed until we define

oper at or <<.

Exercises

15-0. Compile, execute, and test the programs in this chapter.

15-1. Test your system by writing a program that executes

Picture p = // some initial starting picture
Picture q = frame(p);

Picture r = hcat(p, q) ;

Picture s = vcat(q, r);

cout << frane(hcat(s, vcat(r, Qq))) << endl;

15-2. Reimplement the Fr ane_Pi ¢ class so that the frame uses three different
characters: one for the corners, another for the top and bottom borders, and a third for
the side borders.

15-3. Give users the option to specify what characters to use for these border characters.

15-4. Add an operation to r ef r ame a Pi ct ur e, which changes the frame characters.
The operation should change all of the frames in the interior picture.

15-5. Reimplement HCat _Pi ¢ so that when pictures of a different size are concatenated,
the shorter one is centered in the space consumed by the longer one. That is, if we
horizontally concatenate two pictures, one of which is four lines long and the other is two
lines long, the first and last rows of the output picture will be blank on the side of the
shorter picture. What can we now conclude about the necessity of the tests between r ow
and O.

15-6. The Vec and st r classes that we developed in Chapters 11 and 12 are powerful
enough to be used to implement Pi ct ur es. Reimplement the material in this chapter to
use Vec<str > instead of vect or <st ri ng>, and test your implementation.
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16

Where do we go from here?

We have come to the end of the main part of our book. This ending may seem premature:
There are still significant parts of the language, and large parts of the library, that we
have not described. However, we have chosen to stop at this point for two important
reasons.

The first reason is that we have already presented tools that you can use to solve a wide
range of programming problems. We believe that your best strategy at this point is to
practice using these tools on your own problems before you learn about any more new
tools. It might even be a good idea to begin by rereading this entire book, doing all the
exercises that you didn't do the first time around.

If you are looking for ideas about programming style or technique, we recommend our
previous book, Ruminations on C++ (Addison-Wesley, 1997), which contains a mixture of
stylistic essays and programming examples.

The second reason is that once you have written enough programs that use the material
that we have covered so far, you will no longer need the detailed tutorial style that we
have adopted in this book. Instead, you will have gained enough C++ programming
experience that you will be able to take advantage of books that contain more detailed

information, and less explanation, than this one.
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16.1 Use the abstractions you have

There is an old story about a visitor who has become lost in New York, with tickets in
hand to a piano recital. Stopping a passerby, the visitor asks, "Excuse me. Can you tell
me how to get to Carnegie Hall?" The answer: "Practice!"

It is important to understand—thoroughly—how to use the abstractions that you have
available before you try to learn about new ones. The abstractions that you have include
the ones from the standard library, and others that you may have had to create as you
solve programming problems. By combining ideas from the standard library, which we can
apply to a wide variety of problems, with ideas that solve problems in a particular
application domain, we can write useful programs with surprisingly little effort. In
particular, if we design our own abstractions well, we should be able to use them to solve
problems that we had not considered when we designed them.

We can find an example of this ideal in the classes that we wrote in Chapter 13 to store
student grades and in Chapter 15 to generate character pictures. We have used the
character-picture classes in a variety of forms for years. In contrast, we wrote the
student-record classes from scratch for this book. Only when we were thinking about
what to say in this chapter did we realize that we could combine these two abstractions in
a particularly nice way.

The combination uses character pictures to write a histogram of students' grades. The
point, of course, is that such a visual display lets us see anomalies much more quickly
than does a mere table of numbers. The basic idea is to convert each final grade into a
st ri ng of = symbols whose length is proportional to the grade. For example, with
appropriate input, we might generate the following output:

khkkhkhkhkhkhkhkrhkrhrhkxdxdxdxdxdrdxdxdx

* *
*  Janes === *
* Kevi n —————————=——————— *
* Lynn ——————————————=——— *
* Mar yKat @ =—=======—=—======= *
*  Pat ——==—=—=—=—==—==== *
*  Paul —————————————=————=— *
* Rhi a —————————=———=—=—— *
* Sar ah ———————————————=—=—=—= %
* *
hokkkhkkkkkhhhhhhhhhkhkkkhkkkkkkkkkk*

From this histogram, it is immediately obvious that Pat is having trouble keeping up with
the course.

What is nice about this example is how small it is, and how directly the solution mirrors
the problem:

Pi cture histogran(const vector<Student info>& students) {



Pi cture nanes;
Picture grades;

/1 for each student
for (vector<Student info>: :const iterator it = students. begin();
it = students.end(); ++it) {

/'l create vertically concatenated pictures of the nanmes and grades
nanes = vcat (nanmes, vector<string>(1l, it->name()));
grades = vcat (grades,

vector<string>(1, " " + string(it->grade() / 5, '=")));

}

/1 horizontally concatenate the name and grade pictures to conbine them
return hcat (nanmes, grades);

Our hi st ogr amfunction takes a (const reference to a) vect or of St udent _i nfo
objects, each of which represents a student. From these records, we will create two

Pi ct ur es, one of which, nanes, contains all the students' names; the other, gr ades,
contains a row that corresponds to each student's final grade. When we've processed
every student, we horizontally concatenate the two pictures, lining up each student with
the corresponding grade. Because each picture is conceptually a rectangle, this horizontal
concatenation automatically accounts for the different lengths of the students' names.

The main program builds up the vect or , in familiar fashion, by reading a file of student
records. When it's done, it calls hi st ogr amto generate the Pi ct ur e, frames it, and
then uses the output operator to write it:

int main()

{
vect or <St udent i nfo> students;
Student _info s;

/1 read the nanmes and grades
while (s.read(cin))
student s. push_back(s);

/1 put the students in al phabetical order
sort(students. begin(), students.end(), Student _info::conpare);

/1 wite the nanes and hi stograns
cout << frame(histogranm(students)) << endl
return O;

The most important new idea in this example is that it contains no new ideas! What made
it easy was being so familiar with the ideas that we have already covered that we can
combine them in ways that we had not anticipated. This kind of familiarity comes only

with practice.
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16.2 Learn more

Eventually, you are going to need to know more details about the language and library.
For that matter, our ideal of learning nothing new until you understand thoroughly
everything that we have presented so far—like most ideals—is probably not entirely
attainable in practice. At some point, you are going to encounter a question about C++
that this book does not answer, so you will need to turn elsewhere for advice.

For this purpose, two books stand out. The first, Bjarne Stroustrup’'s The C++
Programming Language, Third Edition (Addison-Wesley, 1998), is the most complete
single source of information about C++. It covers the entire language and library, and
tells you everything you need to know—and probably more—about all aspects of both.
The second, Matthew Austern's Generic Programming and the STL (Addison-Wesley,
1999), discusses the standard library’s algorithms and data structures in much more
detail than either our book or Stroustrup's. Moreover, it is authoritative, because although
Austern was not the original author or implementer of this part of the library—that honor
goes to Alex Stepanov—he has been working closely with Stepanov for the past several
years, and is one of the main driving forces behind the further evolution of that library.

Together, this book, Ruminations on C++, and the books by Stroustrup and Austern
comprise well over 2,000 pages. We are, therefore, reluctant to recommend any
additional reading. However, if your appetite is truly voracious, we suggest that you visit
http://www.accu.org. There, you will find reviews of more than 2,000 books, many of
which are related to C++. They also have the good taste to give their highest
recommendations to Ruminations on C++ and the books by Stroustrup and Austern.

As you look for reading material, keep in mind that books on the shelf do not make you a
better programmer. Ultimately, the only way to improve your programming is to write
programs. Have fun!

Exercises

16-0. Compile, execute, and test the programs in this chapter.

16-1. Write a self-reproducing program. Such a program is one that does no input, and
that, when run, writes a copy of its own source text on the standard output stream.
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Appendix A

Language details

This appendix serves two purposes: It includes some additional low-level details, and it
summarizes in one place the expressions and statements of the language, including some
that we have not used elsewhere in this book. The low-level material relates primarily to
the complexities of C++'s declarator syntax, and the details of the built-in arithmetic
types, both of which the language inherits from the C programming language. These
details are not necessary for understanding the programs in this book, and indeed are not
necessary to writing good C++ programs. However, there are many programs that do
require knowledge of these details, so it may be useful to review them.

In this appendix we describe syntax as follows: const ant - wi dt h symbols stand for
themselves, italic words stand for syntactic categories,... means zero or more repetitions
of the item that immediately precedes it, and phrases enclosed in italic brackets [ ] are
optional. Moreover, we use italic curly braces { } for grouping, and | to show
alternatives. For example,

declaration-stnt: decl-specifiers [ declarator [ initializer ]] [, declarator

means that a decl arati on- st m consists of decl - speci fi ers , followed by zero or
more decl ar at or s , each optionally followed by aninitializer , followed by a
semicolon.
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A.1 Declarations

Declarations can be hard to understand, especially if they declare several names with
different types or deal with functions that return pointers to functions. For example, in
810.1.1/171, we saw that

int* p, q;

defines p as an object of type "pointer to i Nt " and g as an object of type i nt , and in
810.1.2/173, we saw that

doubl e (*get_analysis_ptr())(const vector<Student _info>&);

declares get _anal ysi s_ptr as a function, with no arguments, that returns a pointer to
a function with a const vect or <St udent _i nf 0>& argument that returns doubl e .
You can clarify such declarations by rewriting them, for example, as

int* p;
int q;

and

/1 define analysis _fp as a nane for the type of a function that takes a
/'l const vector<Student _info>& argunment and returns a double

typedef double (*analysis_fp)(const vector<Student _info>&);

analysis_fp get_analysis_ptr();

Unfortunately, that strategy won't save you from having to read confusing declarations in
other people's programs.

In general, a declaration looks like

decl aration-stnt: decl-specifiers [ declarator [ initializer ]] [, declarator [

It declares a name for each of its decl ar at or s . These names are meaningful from
where they are declared to the end of the declaration's scope. Some declarations are also
definitions. Names may be declared multiple times but must be defined only once. A
declaration is a definition if it allocates storage or defines a class or function body.

C++ inherits its declaration syntax from C. The key to understanding declarations is to
realize that each declaration consists of two parts: a sequence of decl - speci fi ers

that collectively specify a type and other attributes of what is being declared, followed



zero or more decl ar at or s (each of which can optionally have an associated
initializer ).Each declarator ascribes to a name a type that depends on the
specifiers and on the form of the declarator.

The first step in understanding any declaration is to locate the boundary between the
specifiers and the declarators. Doing so is surprisingly simple: All the specifiers are
keywords or names of types, so the specifiers end just before the first symbol that isn't
one of those. For example, in

const char * const * const * cp;

the first symbol that is neither a keyword nor the name of a type is * , so the specifiers
are const char , and the (only) declarator is * const * const * cp.

As another example, consider the arcane declaration from £10.1.2/173:

doubl e (*get_analysis_ptr())(const vector<Student info>&)

The boundary here is easy to find: doubl e names a type, and the open parenthesis that
follows it is neither a keyword nor the name of a type. Therefore, the decl - speci fiers
part is just doubl e , and the declarator is the rest of the declaration, not including the
semicolon.

A.1.1 Specifiers

We can divide the decl - speci fi er s into three broad categories: type specifiers,
storage-class specifiers, and miscellaneous specifiers:

decl -specifiers: {type-specifier | storage-class-specifier | other-decl-specifier

However, this division serves only to aid understanding, because there is no
corresponding division in declarations themselves: decl - speci fi er s can appear in any

order.
Type specifiers determine the type that underlies any declaration. We discuss the built-
in types themselves in 8A.2/299.

type-specifier: char | wehar_t | bool | short | int | long | signed

unsigned | float | double | void | type-nane | const | volatile
type-nanme: class-nane | enum nane | typedef-nane
The const specifier says that objects of the type may not be modified, vol ati | e tells

the compiler that the variable may change in ways outside the definition of the language
and that aggressive optimizations should be avoided.



Note that const can appear both as part of the specifiers, thus modifying the type, and
as part of the declarator, specifying a const pointer. There is never any ambiguity
because a const that is part of a declarator always follows a * .

Storage-class specifiers determine the location and lifetime of a variable:

storage-cl ass-specifiers: register | static | extern | nutable

The r egi st er specifier suggests that the compiler should try to optimize performance by
putting the object into a register if possible.

Ordinarily, local variables are destroyed on exit from the block in which they were
declared; st at i ¢ variables are preserved across entry and exit from a scope.

The ext er n specifier indicates that the current declaration is not a definition, implying
that there is a corresponding definition elsewhere.

The mut abl e storage class is used only for class dat a- menber s , and allows those
dat a- menber s to be modified even if they are members of const objects.

Other declaration specifiers define properties that are not related to types:

ot her-decl -specifier: friend | inline | virtual | typedef

The f ri end specifier (812.3.2/216 and §13.4.2/246) overrides protection.

i nl i ne is a specifier for function definitions and is a hint to the compiler to lay the code
down inline if possible. The definition of the function must be in scope when the call is to
be expanded, so it is usually a good idea to put the body of an inline function into the
same header that declares the function.

The vi rtual specifier (813.2.1/234) may be used only with member functions, and
denotes a function for which calls can be dynamically bound.

The t ypedef specifier (83.2.2/43) defines a synonym for a type.
A.1.2 Declarators

A declaration declares one entity for each declarator, giving that entity a name, and
implicitly giving the entity the storage class, type, and other attributes as specified by the
specifiers. The specifiers and declarator together determine whether the name names an
object, array, pointer, reference, or function. For example,

int *x, f();

declares that X is a pointer to i nt and f is a function returning i nt . It is the declarators
*x and f () that make the distinction between the types of x and f



declarator: [ * [ const ] | &]... direct-declarator

direct-declarator: declarator-id | ( declarator ) |
direct-declarator ( paraneter-declaration-list ) |
direct-declarator [ constant-expression ]

A declarator-idisanidentifier , possibly qualified:

declarator-id: [ nested-nanme-specifier ] identifier

nest ed- nane-specifier: { class-or-nanmespace-nane ::}...

If a declarator is a di r ect - decl ar at or that consists only of a decl arator-id , then
it specifies that the identifier being declared has the properties implied by the decl -
speci fi ers , without further modification. For example, in the declaration

int n;

the declarator is n , which is a di r ect - decl ar at or that consists only of a
decl arat or-id , so by implication, n has type i nt .

If a declarator has one of the other possible forms, then you can determine the type of
the identifier as follows: First, let T be the type implied by the decl-specifiers, ignoring
non- type properties such asfri end or stati c , and let D be the declarator. Then
repeat the following steps until you have reduced D to a decl ar at or-i d , at which
point T is the type you seek:

1. If D has the form (D1 ), then replace D with D1 .

2. If Dhas the form* D1 or* const D1, replace T with "pointer to T " or "constant
pointer to T " (not "pointer to constant T "), depending on whether the const is
present. Then replace D with D1 .

3. If D has the form D1 (parameter-declaration-list), replace T with "function returning
T " with arguments as defined by the parameter-declaration-list, and replace D with
D1 .

4. If D has the form D1 [constant-expression ], then replace T with "array of T " that
has the number of elements given by the constant-expression, and replace D with D1

5. Finally, if the declarator has the form & D1 , then replace T with "reference to T "
and D with D1 .

As an example, consider the declaration
int *f();

We start with T and D being i nt and *f () , so D has the form *D1 , where D1 is f () .



You might think that D could have either of the forms D1() or * D1 . However, if D had
form D1() , then D1 would have to be *f , and D1 would also have to be a direct-
declarator (because the grammar at the beginning of this section allows only a direct-
declarator to precede ()). If we look at the definition of direct-declarator, however, we see
that it cannot contain a * . Therefore, D can only be *f () , which has the form * D1 ,
where Dis f () .

Now that we have determined that D1 is f () , we know that we must replace T with
"pointer to T , " which is "pointer to i nt , " and replace D with f () .

We have not yet reduced D to a declarator-id, so we must repeat the process. This time,
D1 can only be f, so we replace T with "function returning T," which is "function returning
pointer to i nt with no arguments,” and we replace D with f .

At this point we have reduced D to a declarator-id, so we're done. We have determined
that the declaration

int *f();

declares f to have type "function with no arguments returning pointer toi nt . " As
another example, the declaration

int* p, q;

has two declarators, *p and q . For each declarator, T is i nt . For the first declarator, D
is *p , so we transform T to "pointer to i nt ," and D to p . The declaration, therefore,
gives p the type "pointer to i nt ."

We analyze the second declarator independently, with T again being i nt and D being q .
At this point it should be obvious that the declaration gives ( the type i nt .

Finally, let's analyze the arcane example from §10.1.2/173:

doubl e (*get _analysis_ptr())(const vector<Student info>&);

The analysis proceeds in the following five stages:

1. T: double D: (*get _analysis _ptr()) (const
vect or <St udent _i nf 0>&)
2. T: function returning doubl e with const vect or <St udent i nf 0>& argument
D (*get _analysis _ptr())

3. T: function returning doubl e ... (asbefore) D *get _analysis _ptr()
4. T: pointer to function returning doubl e.. D: get_analysis_ptr()
5. T: function returning pointer to function returning doubl e.. D

get _anal ysis _ptr

In other words, we learn that get _anal ysi s_ptr is a function that returns a pointer to
a function that returns a doubl e result, and takes a const vect or <St udent _i nf 0>&



as its argument. We leave unwinding const vect or <St udent i nf 0>& as an exercise.
Fortunately, few function declarations are this confusing; most of them look like

decl arator: declarator-id ( paraneter-declaration-list )

By far the most common difficult case is a function that returns a pointer to function.
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A.2 Types

Types pervade C++ programs. Every object, expression, and function has a type, and the
type of an entity determines its behavior. With a single exception (the type of an object
within an inheritance hierarchy that is accessed through a pointer or reference), the type
of every entity is known at compile time.

In C++, types can be thought of as ways of structuring and accessing memory as well as
ways of defining operations that can be performed on objects of the type. That is, types
specify both properties of data and operations on that data.

Although this book concentrates on using and building higher-level data structures, it is
important to understand the primitive types used to build them. These primitive types
represent common abstractions that are close to the hardware, such as numbers (integral
and floating point), characters (including wide characters for international character sets),
truth values, and machine addresses (pointers, references, and arrays). Literals, also
often called constants, represent integer, floating-point, Boolean, character, or string
values. This section reviews and expands on facilities related to the built-in types.

A.2.1 Integral types

C++ inherits from C a bewildering variety of integral types, including integers, Boolean,
and character types. Because C++ is intended to be able to run efficiently on a wide
variety of hardware, it leaves many of the details of its fundamental types up to the
implementation rather than defining those types precisely.

A.2.1.1 Integer

There are three distinct signed integer types and three distinct unsigned integer types:

short int i nt | ong int
unsi gned short int unsi gned int unsi gned long int

The short and | ong types can be abbreviated by dropping the keyword i nt . The
keywords, if there are more than one, can appear in any order.

Each of these types is capable of representing any integer within an implementation-
defined range. Each type but the first must offer a range at least as generous as that of
the type that precedes it. The ranges for short i nt and i nt must be at least +32767
(=(2%5 -1)), and the range for | ong i nt must be at least 2147483647 (=(23! -1)).

Every signed integral type has a corresponding unsigned type. Every unsigned type
represents integers modulo 2", where n depends on the type and the implementation.
Analogous to the signed types, the n that corresponds to every unsigned type except
unsi gned char must be at least as large as the n for the preceding type. Moreover,
every unsigned type must be capable of holding every non-negative value in the range of
the corresponding signed type, and each signed type is required to have the same



internal representation as the corresponding unsigned type for the values that they have
in common. It follows from these requirements that the four unsigned types must have an
extra bit that corresponds to signed types' sign bits, meaning that the unsigned types
must correspond to values of n that are at least 8, 16, 16, and 32 respectively.

Compilers are allowed to use either one's- or two's-complement representation for the
sighed types.

The standard library defines a type called si ze_t that is a synonym for one of the
unsigned types. It is guaranteed to be large enough to hold the size of the largest
possible object, including arrays. Its type is defined in the system header <cst ddef >.

Integer literals: An integer literal is a sequence of digits, optionally preceded by a base
indicator, and optionally followed by a size indicator. Pedantically speaking, integer literals
do not have signs, so that - 3 is an expression, not a literal.

If the literal begins with Ox or 0X, then the integer is represented in hexadecimal, and the
"digits" can include any of AaBbCcDdEeFf as well as the usual decimal digits. If the
literal begins with a O that is not followed by X or X, then the integer is represented in
octal, and the "digits" can include only 01234567.

The size indicator isu, |, ul, orl u, in either upper- or lowercase. If itis| u or ul ,
then the literal has type unsi gned | ong. If it is u, then the literal has type unsi gned if
the value will fit; otherwise, it has type unsi gned | ong. Ifiitis | , then the literal has
type | ong if the value will fit; otherwise, it has type unsi gned | ong.

If there is a base indicator but no size indicator, then the type is the first of I nt ,
unsi gned, | ong, and unsi gned | ong into which the value will fit. If there is neither
a size nor a base indicator, then the type is i nt if the value will fit, and | ong otherwise.

These rules imply that the type of an integer literal often depends on the implementation.
Fortunately, integer literals in well-written programs tend to be small, so these details
don't matter most of the time. Nevertheless, we have mentioned them in case you need
to refer back to them.

A.2.1.2 Boolean

Expressions that are treated as conditions have type bool . The possible values of type
bool aretrue andf al se. It is possible to use a number or a pointer as a truth value.
In such contexts, zero is considered f al se, and any other value is considered t r ue.
When a bool value is used as a number, f al se is treated as 0 and t rue as 1.

Boolean literals: The only Boolean literals are t r ue and f al se, each of which has type
bool , with the obvious meaning.

A.2.1.3 Character

In C++, characters are just tiny integers. In particular, they can be used in arithmetic
expressions in the same way as integers.

As is the case with integers, characters can be signed or not, so there are distinct
si gned char and unsi gned char types. Every implementation's range for si gned



char is required to be able to contain every character in the machine's basic character
set, as well as being at least 127 (%=(27 -1)).

In addition, there is a plain char type, which, although it is a distinct type, is required to
have the same representation as one of the other two types. It is up to the
implementation to determine which of those types it should be. As usual, the choice is
intended to reflect which representation is most natural for the machine.

There is also a "wide character"” type, called wchar _t, which must contain at least 16
bits, and is intended to be used for representing characters in languages such as
Japanese, which have many more characters than the Latin alphabet provides. The
wchar t type is required to behave the same way as one of the other integral types. The
particular other type involved depends on the implementation and is normally chosen to
yield the most efficient representation.

Character literals: A character literal, of which ' a' is an example, is typically a single
character surrounded by single quotes. It has type char, which, as we know from
8A.2.1.3/301, is really a kind of integer. Every implementation defines a correspondence
between characters, such as a, and their integral values. Most programs have no reason
to depend on that correspondence, because programmers can write literals such as ' a'
to mean "the integer that corresponds to the character a." Because the correspondence
varies from one implementation to another, programmers should not depend on
arithmetic properties of characters. For example, there is no assurance that' a' +1 is
equal to ' b' . Digits, however, are guaranteed to have contiguous values. For example,
"3" + 1lisalways equal to' 4' (but not necessarily equal to 4).

String literals, A string literal, of which "Hel | o, wor | d! " is an example, is a
sequence of zero or more characters surrounded by double quotes. The type of a string
literal is const char *. The compiler inserts a null character at the end of every string
literal.

Two string literals that are separated only by whitespace are automatically concatenated
to form a longer string literal. This behavior allows string literals that span more than a
single line to be written more conveniently.

A.2.1.4 Character representations

We said that a character literal is typically a single character surrounded by single quotes,
and that a string literal is typically a sequence of characters surrounded by double quotes.
The reason for the "typically” is that there are some exceptions to the general rule. These
exceptions apply equally to character literals and string literals:

e To represent a quote of the same kind that began the literal, you must precede it by
another backslash, asin'\'', or"the \ quotes\"", to make it clear that the
quote does not end the literal. For convenience, you can precede the other kind of
guote by a backslash as well, asin '\ "' .

» To represent a backslash, you must precede it by a backslash, asin'\\ "', so that
the compiler will not think that the backslash is there to give special meaning to the
character following it.

e There are rules having to do with international character sets, which are beyond the
scope of this book, but which affect the meaning of programs with two or more

consecutive question marks in their text. To make it possible to avoid consecutive



guestion marks, C++ allows \ ? to represent a question mark, so that you can write
literals such as " What ?\ ?" without consecutive question marks.

e A number of control characters, which affect output in various ways, have printable
representations inside literals: newline (\ n), horizontal tab (\ t), vertical tab (\ v),
backspace (\ b), carriage return (\ r), form feed (\ f), and alert (\ a). Their actual
effect when written on an output device depends on the implementation.

o If you really need a character with a particular internal representation, you can
represent it as \x followed by hexadecimal digits (in upper- or lowercase), or by \
followed by up to three octal digits. So, for example, ' \ x20' and ' \ 40" both
represent the character whose internal representation is decimal 32 (20 in hex, 40 in
octal). On implementations based on the ASCII character set, this character is the
same as ' '. The most common use of this representation—and the only one you wiill
see in many programs—is that ' \ 0" is the character whose value is zero.

A.2.2 Floating point

C++ has three floating-point types, called f | oat, doubl e, and | ong doubl e in order
of nondecreasing precision. The implementation is allowed to implement f | oat with the
same precision as doubl e, or doubl e with the same precision as | ong doubl e. Every
implementation is required to offer at least six significant (decimal) digits in the f | oat
type and ten in the doubl e and | ong doubl e types. Most implementations offer only
six significant digits for f | oat and fifteen for doubl e.

Floating-point literals: A floating-point literal is a nonempty sequence of digits with an
exponent at the end, a decimal point somewhere in it, or both. Like integer literals,
floating-point literals do not begin with a sign; - 3. 1 is an expression, not a literal. The
decimal point may be at the beginning, middle, or end of the sequence of digits, or it may
be omitted entirely if there is an exponent. The exponent is € or E, followed by an
optional sign, and one or more digits. The exponent is always interpreted in decimal.

For example, 312E5 and 31200000. represent the same number, but 31200000 is an
integer literal, not a floating-point literal. As another example, 1. 2E- 3 represents the
same number as . 0012 or, for that matter, 0. 000012e+2.

Floating-point literals normally have type doubl e. If you want a literal to have type
fl oat, you can append f or F; if you want it to have type | ong doubl e, you can
append | or L.

A.2.3 Constant expressions

A constant-expression is an expression of integral type with a value that is known at
compile time. The operands in a constant-expression can contain only literals,
enumerators, const variables, or st at | ¢ data members of integral type that are
initialized from constant-expressions or Si zeof expressions. The expressions may not
contain functions, class objects, pointers, or references and are not allowed to use
assignment, increment, decrement, function-call, or comma operators.

A constant-expression can appear wherever a constant is is expected. Examples include
dimensions in array declarations (§10.1.3/174), labels in swi t ch statements (8A.4/309),
and initializers for enumerators (8A.2.5/305).



A.2.4 Conversions

Conversions happen as needed to bring the operands of each operator to a common type.
When there is a choice, conversions that preserve information are preferred over those
that lose information. Moreover, conversion to unsigned types is preferred to conversion
to signed types, all arithmetic on short integers or characters implies conversion to i nt
or longer, and floating-point arithmetic implies conversion to doubl e or longer.

The simplest conversions are promotions. Promotions allow values of a smaller type (e.g.,
char) to be promoted to a larger, related type (e.g., i nt); they preserve the sign of the
initial value. Integral promotions convert values of char, signed char, unsigned
char, short, and unsi gned short toi nt, if the values will fit, and to unsi gned

i nt otherwise. Wide characters and enumeration types (8A.2.5/305) are promoted to the
smallest i nt that can represent all the values in the underlying type. The types i nt ,
unsi gned int, |ong, and unsi gned | ong are tried in order, bool is promoted to

i nt,andfl oat is promoted to doubl e.

Conversion of an integral type to a floating-point type preserves as much precision as can
be represented on the machine hardware.

Converting a larger signed value (e.g., | ong) to a shorter value (e.g., short) is
implementation defined. Converting a larger unsigned value to a shorter value is modulo
2", where n is the number of bits in the shorter type. Converting a floating-point value to
an integral type truncates by discarding the fractional part. The behavior is undefined if
the truncated value doesn't fit.

Pointers, integral types, and floating-point values can be converted to bool . If the value
is 0 then the resulting bool is f al se, otherwise, itis t r ue, bool s can be converted to
the other types; t r ue is converted as a value of 1 and f al se as 0.

A constant-expression (8A.2.3/303) that evaluates to O may be converted to a pointer.

Any pointer can be converted to a voi d*. Also, a pointer to nonconst can be converted
to a pointer to const —similarly for a nonconst reference. A pointer or reference to an
object of a type that was publicly derived may be converted to a pointer or reference to
any of its base classes.

Arithmetic conversions: Because the operands can be integral or floating point, and
signhed or unsigned, it can be a little tricky to figure out the type of the result of an
arithmetic operation. The rules for doing so are called the usual arithmetic
conversions, and work as follows:

o If either operand is floating point, the result is floating point, with the precision of
the most precise operand.

» Otherwise, if either operand is unsi gned | ong, then so is the result.

« Otherwise, if one operand is | ong i nt and the other is unsigned (any unsigned
type but unsi gned | ong, which would force the result to be unsi gned | ong by
the previous rule), then the result depends on the implementation: If the range of
| ong i nt contains the range of unsi gned i nt, then the resultis | ong i nt ;
otherwise, it is unsi gned i nt.

« Otherwise, if either operand is | ong i nt, the resultis| ong int.

» Otherwise, the operands must both be signed integers of i nt type or shorter, and
the result is i nt .



One consequence of these rules is that the result of an arithmetic operation is never
short or char, either signed or unsigned. All arithmetic is done only on i nt or wider

types.
A.2.5 Enumerated types

An enumerated type specifies a set of integral values. Objects of the type may take on
only values specified by the type:

enum enum nane {
enunerator [ , enunerator |

}s

enum-names are type-names and can be used where a type-name is expected.

Variables of the enum-name type can have values only from the list of enumerators:

enunerator: identifier [ = constant-expression ]

Unless specified, the values of enumerated types correspond to consecutive integers,
starting from zero. It is also possible to state explicit values for the enumerators. The
initializers must have integral (8A.2.1/300) type, and a value that the compiler can
determine during compilation (8A.2.3/303). If a value of an enumerated type is used in a
context that requires an integer, the value will be converted automatically.

A.2.6 Overloading

More than one function can have the same name, provided that the functions differ in
type or number of parameters.

Calling an overloaded function implies a compile-time check to determine which of the set
of overloaded functions should be called. The function to call is determined by comparing
the actual arguments at the call with the types of the formal parameters. The function
that best matches the actual arguments is selected. To be the best match, a function
must be a better match than the others on one or more arguments and no worse in any
argument.

The best match for any particular argument is defined as follows:

¢ An exact match (the argument types are identical) is best.

e A match using promotions (8A.2.4/303) is better than a match using built-in
conversions, which is better than a match using conversions defined by a class type
(812.2/213and §12.5/222).

It is an error if there is more than one function that best matches the call.
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A.3 Expressions

C++ inherits a rich expression syntax from C, to which it adds operator overloading
(8A.3.1/308). Operator overloading allows program authors to define the argument and
return types and meaning of operators, but not their precedence, valence (number of
operands), or associativity, nor the meaning of built-in operators on operands of built-in
types. In this section we will describe—with a few additions—the operators as they apply
to built-in types.

Every operator yields a value, the type of which depends on the types of its operands. In
general, if the operands have the same type, that is the type of the result. Otherwise,
standard conversions are performed to bring the types to a common type (8A.2.4/303).

An lvalue is a value that denotes a nontemporary object, hence it has an address. Certain
operations are valid only for Ivalues, and some operations yield lvalues. Every expression
yields a value; some expressions also yield lvalues.

Only three operators guarantee the order of evaluation for their operands:

&& Theright operand is evaluated only if the leftoperandis t r ue .
[ ] The right operand is evaluated only if the left operandis f al se .
? Only one expression after the condition will be evaluated. The expression after

the ? is evaluated if the condition is t r ue ; otherwise, the expression after the : is
evaluated. The result is the expression that was evaluated; it is an Ivalue if both
expressions were lvalues of the same type.

For the other operators, aside from precedence rules, order of evaluation is not
guaranteed. That is, the compiler is permitted to evaluate operands in any order.
Parentheses can be used to override the default precedence, but explicit temporaries are
required to control the order of evaluation completely.

Each operator has a specified precedence and associativity. In the following table, we
summarize all the operators in order by precedence. When several operators are grouped
together, they share the same precedence and associativity. Each grouping introduces a
new level of precedence. This table expands the one first presented in Chapter 2 and
includes all the operators:

C::m

The member mfrom class C

N::m

The member mfrom namespace N .

m

The name mat global scope.

terminal Identifier or literal constant; identifiers are lvalues, literals are not

x[y]
The element in object X indexed by Yy . Yields an Ivalue.

X->y
The member y of the object pointed to by X . Yields an Ivalue.
X.y



The member y of object X . Yields an Ivalue if X is an lvalue.
f(args)

Call function f passing args as argument(s).

X++

Increments the lvalue X . Yields the original value of X .

X__

Decrements the lvalue X . Yields the original value of X .

*
X
Dereferences the pointer X . Yields the object pointed to as an Ivalue.
&X
The address of the object X . Yields a pointer.
-X
Unary minus. May be applied only to expressions of numeric type.
X
Logical negation. If X is zero, then ! X ist rue , otherwise f al se .
~X
Ones complement of X . X must be an integral type.

++X

Increments the lvalue X . Yields the incremented value as an lvalue.
--X

Decrements the lvalue X . Yields the decremented value as an Ivalue.
sizeof(e)

The number of bytes, as a Si ze_t , consumed by expression € .
sizeof(T)

The number of bytes, as a Si ze_t , consumed by objects of type T .
T(args )

Constructs a T object from args.

new T

Allocates a new, default-initialized object of type T .

new T(args)

Allocates a new object of type T initialized by args.

new T[n]

Allocates an array of n default-initialized objects of type T .
delete p

Frees object pointed to by p .

delete [] p

Frees the array of objects pointed to by p .

X*y

Product of X and y .

x/ly

Quotient of X and y . If both operands are integers,

the implementation chooses whether to round toward O or -8.
X % vy

X - ((x/1y)*y).

X +y
Sum of X and y , if both operands are numeric.
If one operand is a pointer and the other is integral,



yields a pointer to a position y elements after X .

X-Yy

Result of subtracting y from X if operands are numeric.

If X and y are pointers, yields the distance, in elements, between them.

X >>y
For integral X and y, X shifted right by y bits; y must be non-negative.
If X isani stream, reads from X into y and returns Ivalue X .

X<<y

For integral X and y, X shifted left by y bits; y must be non-negative.
If X is an oSt r eam, writes y into X and returns Ivalue X .

X relop y

Relational operators yield a bool indicating the truth of the relation.
The operators (<, >, <=, and >=) have their obvious meanings.
If X and y are pointers, they must point to the same object or array.

X ==

Yields a bool indicating whether X equals y .
X1l=y

Yields a bool indicating whether X is not equal to y .
X&Yy

Bitwise and. X and y must be integral.

XNy

Bitwise exclusive or. X and y must be integral.
x|y

Bitwise or. X and y must be integral.

X && y

Yields a bool indicating whether both X andy are tr ue .
Evaluates y only if X istrue .

x1ly
Yields a bool indicating whether either X ory istrue .

Evaluates y only if X is f al se .

X=y
Assigns the value of y to X . Yields X as its (lvalue) result.

X Op=Yy

Compound assignment operators. Equivalentto X = X 0op vy,
where op is an arithmetic, bitwise, or shift operator.

X?yl:y2

Yields y1 if X istrue ; y2 otherwise.

Only one of y1 or y2 is evaluated.

y1 and y2 must be of the same type.

If y1 and y2 are Ivalues, the result is an Ivalue.
The operator is right-associative.

throw x
Signal an error by throwing value X .
The type of X determines which handler will catch the error.

X,y



Evaluates X , discards the result, then evaluates y . Yields y .

A.3.1 Operators

Most of the built-in operators may be overloaded. The throw, scope, dot, and conditional
operator (the ? . operator) may not be overloaded. All of the other operators may be.
811.2.4/192 describes how to define an overloaded operator.

The postfix increment/decrement operator is distinguished from the prefix version by
being defined as taking a dummy, unused parameter. That is, to overload the postfix
operators, we write

cl ass Nunmber {
public:
Nunber operator++(int) { /* function-body */ }
Nunmber operator--(int) { /* function-body */ }
b

The most commonly overloaded operators include the assignment and index operator, the
shift operators used to do input-output with 0st r eams and i st r eams, and the
operators used to implement iterators summarized in 8B.2.5/317.

<o
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A.4 Statements

Like most programming languages, C++ distinguishes between declarations, expressions,
and statements. In appropriate contexts, declarations and statements can be nested
within other declarations and statements, but neither can be nested inside an expression.
Every statement ultimately appears inside the definition of a function, where it forms part
of what happens when that function is called.

Unless otherwise specified, the statements that constitute a function are executed in the
order in which they appear. Exceptions include loops; calls to functions; the got o,

br eak, and cont i nue statements; and the t ry and t hr ow statements associated with
exception handling.

Statements are written in free form. Beginning a new line in midstatement does not affect
the statement's meaning. Most statements end with semicolons—the main exception is
the block (which begins with { and ends with }) .

Null statement; has no effect when executed.

e;
Expression statement; evaluates e for its side effects.

{}

Statement block; executes statements in the block in sequence. Declarations in the
block persist (only) until closing brace.

if (condition) statenmentl
Evaluates condi t i on and executes st at ement | if condi ti onistrue.

if (condition) statenentl el se statenent?2

Evaluates the condi t i on and executes st at enent 1 if condi ti onis true; otherwise
executes St at enent 2. Each el se is associated with the nearest unmatched if.

whil e (condition) statenent
Tests condi t i on and executes st at enent so long as condi ti onistrue.

do statenent while (condition) ;

Executes St at enent and then tests condi t i on. Continues executing st at enent
until condi tionisfal se,

for (init-stnt condition; expression) statenent

Executes i ni t - st nt once on entry to the loop and then tests condi ti on. If

condi tionistrue, executes st at ement and then executes expr essi on. Continues
testing condi ti on, followed by st at enent and expr essi on, until condi ti on is
fal se. Ifinit-stn is a declaration, then the scope of the variable is the for

st at enent itself.



sw tch (expression) statenent

In practice, st at enent is almost always a block that includes labeled statements with
labels of the form

case val ue

where each value must be a distinct integral constant expression (8A.2.3/303). In
addition, the label

defaul t:

may appear, but no more than once. Executing a SW t ch statement evaluates

expr essi on and jumps to the case label whose value matches it. If there is no match,
control passes to the def aul t : label, if any, or to the point immediately after the entire
SW t ch statement. Because case labels are just labels, control will flow from one to the
next unless the programmer takes explicit action to prevent it from doing so. The usual
such action is to use a br eak statement before each case label after the first.

br eak;

Jumps to the point immediately after the end of the nearest enclosing whi |l e, for,
do, or swi t ch statement.

conti nue;

Jumps back to the beginning of the next iteration (including the test) in the nearest
enclosing f or, whi | e, or do statement.

goto | abel;

Behaves similarly to such statements in other languages. The target of a got 0 is a label,
which is an identifier followed by a colon. Labels can have the same names as other
entities without ambiguity. The scope of a label is the entire function in which it appears,
which implies that it is possible to jump from outside a block to inside it. However, such
a jump cannot bypass the initialization of a variable.

try { statenents } catch (paraneter-1) { statenents-1 }
[ catch (parameter-2) {statenents-2}]...

Executes code in st at enent s that might throw an exception, which should be handled
by the one or more catch clauses that follow. The cat ch clause handles exceptions
whose thrown value is of similar type to the type of par anet er - n by executing code in
st at enent s- n. Similar here means that the thrown value has the same type as the
parameter or a type derived from the parameter's type. If the cat ch has the form
catch (...), then the clause catches any otherwise uncaught exception. If there is no
appropriate cat ch that matches the type of the exception, then the exception
propagates out of the function to the nearest enclosing t r y. If there is no appropriate

t ry, then the program terminates.

t hrow expression ;
Terminates the program or transfers control to a cat ch clause of a t ry statement
whose execution is in progress. Passes expr essi on whose type determines which
cat ch clause can handle the exception. If no appropriate t r y statement is currently



being executed, the program terminates. Exceptions are often class objects, and are

usually thrown in one function and caught in another.
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Appendix B

Library summary

The standard library is a major contribution to the standardization of C++. Throughout
this book, we have relied on the library to write succinct, idiomatic C++ programs. This
chapter reviews the library facilities that we used, and describes some generally useful
facilities that we did not have occasion to use. Each section presents a library class or
family of related classes by showing and explaining how to use the relevant facilities.

In general, the standard library introduces names into namespace st d. Programs that
use standard-library facilities must therefore either prefix such names by st d: : or make
them generally available with usi ng-declarations. In this appendix, we will not explicitly
mention the need to do so. Accordingly, for example, we shall refer to cout rather than
tostd::cout.

Our examples generally assume the following meanings for the names shown:

n
A variable or expression that yields a value of any of the integral types

t
A value of type T

S
A string value

cp
A pointer to the initial element of a null-terminated character array

C
A char value

P

A predicate, which is a function that returns bool or a value convertible to bool

oS

An output stream
IS

An input stream

strm
An input or output stream



b

An iterator that denotes the beginning of a sequence

e
An iterator that denotes (one past) the end of a sequence

d

An iterator that denotes a destination
it

An iterator that denotes an element
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B.1 Input-output

Objects of classes | st ream ostream i f st ream and of st r eamdenote sequential
streams, with an object being bound to a single stream at any one time. Objects of these
types cannot be copied or assigned; therefore, the only way to pass a stream to or from a
function is through a pointer or a reference.

Fundamentals

#i ncl ude <i ostreanp
Declares input-output classes and associated operations.

cout
cerr
cl og

Objects of type 0Sst r eambound to the standard output (cout ) and error (cerr,
cl og) streams. Output to cout and cl og is buffered by default; output to cerr is
unbuffered by default.

cin
An object of type i st r eambound to the standard input stream.

Reading and writing

is >> t

Conventionally, reads a value from i S into t after skipping whitespace. The input must
be in a form suitable for conversion to the type of t, which must be a nonconst Ivalue.
Unsuitable input causes the request to fail, leaving i S in failure state until a call is made
toi s. cl ear (). The library defines the input operator for the built-in types and
string; class authors are encouraged to follow suit.

0s <<t

Conventionally, sends the value of t to 0S in a format appropriate to the type of t . The
library defines << for built-in types and st ri ng; class authors are encouraged to follow
Suit.

is.get(c)
Reads the next character, even if it is a whitespace character, from i S into C.

i s.unget ()

Backs up the stream i S by one character. Useful when we want to read until we hit a
particular character, and then want to leave that character on the stream for subsequent
processing. Only one character of pushback memory is guaranteed.

Iterators

#i nclude <iterator>
Declares input and output stream iterators.



istreamiterator<T> in(is);
Defines i N as an input iterator that reads values of type T from i S.

ostream.iterator<T> out(0s, const char* sep = "");

Defines out as an output iterator that writes values of type T on the stream 0S, writing
Sep as separator value after each element. By default, the separator is a null string, but
it can be a string literal (810.2/176) or a pointer to a null-terminated array of
characters.

File streams

#i ncl ude <fstreanr
Declares facilities for input-output to streams that are attached to files.

ifstreamis(cp);

Defines i s and attaches it to the file named (in an implementation- dependent manner)
by cp. Class | f stream is derived from i st r eam

of stream os(cp);

Defines 0S and attaches it to the file named by cp. Class of st r eamis derived from
ostream

Controlling output format

#i ncl ude <i os>

Defines the st r eansi ze type, which is a signed integral type that is appropriate to
represent the sizes of input-output buffers.

0s.w dt h()
0os. w dt h(n)

Returns the width (as a st r eansi ze) previously associated with 0S. Sets the width to
n if given. The next item written on that stream will be padded on the left to the
stream’s width, after which the width will be reset to O.

0S. preci sion()

0S. preci sion(n)
Returns the precision (as a St r eansi ze) previously associated with 0S. Sets the
precision to n if given. Subsequent floating-point values written on that stream will
appear with the given number of significant digits.

Manipulators

#i ncl ude <i omani p>
Declares manipulators other than endl , which is declared in <i ost r eanp.

0s << endl
Ends the current output line and flushes the stream associated with 0S.

0s << flush
Flushes the stream associated with 0S.



0S << setprecision(n)
0s << setw(n)

Equivalent to 0s. preci si on(n) and os. w dt h( n) respectively.

Errors and end-of-file

strm bad()

Returns a bool indicating whether the last operation on st r mfailed as a result of
invalid data.

strmclear()

Attempts to reset St r mso that it can be used after an invalid operation. Throws
i os::failure if st r mcannot be reset.

strm eof ()
Returns a bool indicating whether st r mhas hit end-of-file.

strmfail ()

Returns a bool indicating whether the last operation on st r mfailed as a result of
hardware or other system-level problems.

strm good()
Returns a bool indicating whether the last operation on St r msucceeded.
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B.2 Containers and iterators

This book covers the sequential containers vect or and | i st, the associative container
map, and class st ri ng, which shares many container properties. All containers that
provide a particular operation use similar interfaces for the operation. We summarize the
common operations, followed by operations peculiar to specific containers.

Programmers who want to use sequential containers should use vect or , unless there is a
reason to do otherwise. The most common such reason is a desire to insert or delete
many elements other than at the end of the container, an operation that the | i st class
supports much more efficiently than the vect or class does.

B.2.1 Common container operations

All containers and the st ri ng class offer the following interface:

contai ner<T>::iterator

An iterator type associated with cont ai ner <T>, objects of which type may be used to
change the values stored in the container.

contai ner<T>::const _iterator

An iterator type associated with cont ai ner <T>, objects of which type may be used to
read, but not to modify, the values stored in the container.

contai ner<T>::reverse_iterator
cont ai ner<T>::const _reverse_ iterator

Iterator types that access the container's elements in reverse order.

cont ai ner<T>: :size_type
An unsigned integral type with room for the size of the largest container.

cont ai ner<T>::val ue_type
The type of the container elements.

c. begi n()

c.end()
Iterators that denote the first element, if any, and one past the last element of C. Both
of these functions yield values that have c's const _iterator oriterator type,
depending on whether C is const .

c.rbegin()
c.rend()

Iterators (of C's const _reverse_iterator orreverse_iterator type, depending
on whether C is const ) that access C's elements in reverse order.

cont ai ner<T> c;



Defines C as an empty cont ai ner, with c. si ze() ==

cont ai ner<T> c2(c);

Defines c2 as a cont ai ner, with c2. si ze() == c.size().Eachelementofc?2isa
copy of the corresponding element of C.

c =c2
Replaces C's elements with copies of C2's elements. Returns C as an lvalue.

c.size()
The number of elements in C.

c.enpty()
Returns t r ue if ¢ is empty, f al se otherwise.

c.clear()
Empties the container Cc. Equivalent to c. erase(c. begi n(), c.end()) . After the
Operation completes, c. si ze() == 0. Returns voi d.

B.2.2 Sequential containers

In addition to the common container operations, St r i ng and the sequential containers
(vector and | i st) also support the following operations:

cont ai ner<T> c(n, t);
Defines ¢ to have n elements, each of which is a copy of t .

cont ai ner<T> c(b, e);

Defines € and initializes it with a copy of the elements in the sequence denoted by the
input iterators b and e.

c.insert(it, t)

c.insert(it, n, t)

c.insert(it, b, e)
Inserts elements into ¢ immediately before it. If ¢ is avect or or string, the
operation invalidates all iterators that refer to or after the insertion point and may cause
reallocation, invalidating all iterators into C. Note that for vect or and st ri ng, this
operation may be slow if i t is far from the end. The first form of i nsert inserts a copy
of t , and returns an iterator that refers to the newly inserted element. The second form
inserts N copies of t , and returns voi d. The third form inserts copies of the elements in
the sequence denoted by the input iterators b and e, and returns voi d. The iterators b
and e must not refer to elements of C.

c.erase(it)
c.erase(b, e)

Removes the element denoted by i t, or the elements in the range [ b, e), from c,
invalidating all iterators referring to erased elements. If c is a vect or or stri ng, then
all iterators referring to elements after the erasure are also invalidated. Returns an
iterator that refers to the position immediately after the erasure. Note that er ase on a



vect or orstring is slow if the erasure is far from the end of the container.

c.assign(b, e)
Replaces C's elements with the elements in the sequence denoted by the input iterators
b and e.

c.front()
Returns a reference to the first element of C. Undefined if C is empty.

c. back()
Returns a reference to the last element of Cc. Undefined if C is empty.

c. push_back(t)
Appends a copy of t to C, increasing the size of C by one. Returns voi d.

c. pop_back()
Removes the last element from c. Returns voi d. Undefined if Cc is empty.

inserter(c, it)
Returns an output iterator that inserts values into C starting immediately before the
position denoted by i t . Declared in <i t er at or >.

back _inserter(c)

Returns an output iterator that can append new values to the end of ¢ by calling
c. push_back. Declared in <i t er at or >.

B.2.3 Additional sequential operations

Some operations are supported only on those containers for which the operations can be
done efficiently. These include the following:

c[n]
A reference to the nth element of ¢, where the initial element has position 0. The
reference is const if ¢ is const, and nonconst otherwise. Undefined if n is out of
range. Valid only for vect or and stri ng.

c. push_front(t)

Inserts a copy of t at the beginning of C, increasing the size of ¢ by one. Returns voi d.
Not valid for st ri ng or vect or .

c. pop_front()

Removes the first element from c. Returns voi d. Undefined if ¢ is empty. Valid only for
list.

front _inserter(c)

Returns an output iterator that can insert new values at the front of C by calling
c. push_front. Declared in <i t er at or >.

B.2.4 Associative containers



Associative containers are optimized for fast access based on a key. In addition to the
general container operations outlined in 813.2.1/314, associative containers also provide
the following:

cont ai ner<T>:: key_type

The type of the cont ai ner's key. An associative container with keys of type K and
elements of type V has a val ue_t ype of pai r<const K, V>, notV.

cont ai ner<T> c(cnp);

Defines C as an empty associative container that uses the predicate cnp to order the
elements.

container c(b, e, cnp);

Defines C as an associative container, initialized with a copy of the values in the
sequence denoted by the input iterators b and e, that uses cnp to order the elements.

c.insert(b, e)

Inserts elements into ¢ from the sequence denoted by the input iterators b and e. The
map container inserts only those elements whose keys are not already in C.

c.erase(it)
Removes the element denoted by the iterator it from c. Returns voi d.

c.erase(b, e)
Removes elements in the range [ b, €) from c. Returns voi d.

c. erase(k)
Removes all elements with key k from c. Returns the number removed.

c. find(k)
Returns an iterator referring to the element with key equal to k. Returns c. end() if no
such element exists.

B.2.5 Iterators

The standard library relies heavily on iterators to make its algorithms data-structure
independent. lterators are an abstraction of pointers, in that they provide operations that
allow access to container elements analogous to what pointers allow on array elements.

The standard algorithms are written to assume that iterators meet requirements that the
library classifies into iterator categories. Every library algorithm that uses iterators of a
particular category can work with every library- or user-defined class that provides
iterators that fall into that category.

e Output: It is possible to use the iterator to advance through the container one
element at a time, and to write each element visited once and only once. Example:
Class ostream i t er at or is an output iterator; and the copy algorithm requires
only the output-iterator properties for its third argument.

o Input: It is possible to use the iterator to advance through the container one
element at a time, and to read each element as often as needed before advancing to
the next element. Example: Class i st ream i t er at or is an input iterator, and the



copy algorithm requires only input-iterator properties for its first two arguments.

e Forward: It is possible to use the iterator to advance through the container one
element at a time, to revisit elements to which previously remembered iterators
refer, and to read or write each element as often as needed. Example: r epl ace is
an algorithm that requires forward-iterator properties.

o Bidirectional: It is possible to use the iterator to move through the container one
element at a time, either forward or backward. Example: | i St and nmap provide

bidirectional iterators, and reverse is an algorithm that requires bidirectional
iterators.

e Random access: It is possible to move through the container using all the
operations supported by pointers. Example: vect or, st ri ng, and built-in arrays
support random-access iterators. The sort algorithm requires random-access
iterators.

All iterator categories support testing for (in)equality. Random-access iterators support all
the relational operations.

Iterator categories can be thought of as cumulative, in the sense that every forward
iterator is also an input iterator and an output iterator, every bidirectional iterator is also
a forward iterator, and every random-access iterator is also a bidirectional iterator. Thus,
any algorithm that accepts any iterator type as an argument will accept a random-access
iterator. Class ostream i t er at or and the insert iterator adaptors provide output
iterators, and thus can be used only by algorithms that require only output-iterator
operations.

All iterators support the following operations:
++p
p++

Advances p to the next position in the container. ++p returns p as an lvalue after
advancing it; p++ returns a copy of p's previous value.

*
Y
The element to which p refers. For output iterators, * p may be used only as the left
operand of =, and each distinct value of p may be used in this way only once. For input
iterators, * p may be used only for reading; and the act of incrementing p invalidates all
copies that might have been made of p's previous value. For all other iterator types, *p
yields a reference to the value stored in the container element to which p refers, and p
remains valid as long as the element to which p refers continues to exist.

p == p2
Yields t r ue if p is equal to p2; f al se otherwise.

p = p2
Yields t r ue if p is not equal to p2; f al se otherwise.

All iterators other than output iterators also support

p->X
Equivalent to ( *p) . x

Bidirectional and random-access iterators also support decrement operations:



--p

p_ -
Advances p backward to refer to the previous element, - - p returns p as an lvalue after
advancing it; p- - returns a copy of p's previous value.

Random-access iterators provide all of the "pointer” operations, including the following:

p+n
If n >= 0, then the result is an iterator that refers to a point n positions beyond p. The
operation is undefined if fewer than n - 1 elements follow the element denoted by p. If
n < 0, then the result is an iterator that refers to the element - n positions before the
element denoted by p. The operation is undefined unless this element is within range of
the container.

n+p
Equivalent top + n.

p - n
Equivalentto p + (-n).

p2 - p
Defined only if p and p2 refer to positions in the same container. If p2 >= p, yields the
number of elements in the range [ p, p2) . Otherwise, yields the negation of the
number of elements in the range [ p2, p). The result hastypeptrdi ff _t
(8§10.1.4/175).

p[ n]
Equivalent to*(p + n).

p < p2

t r ue if p denotes an earlier position in the container than that denoted by p2.
Undefined if p and p2 do not refer to positions in the same container.

p <= p2
Equivalentto (p < p2) || (p == p2).

p > p2
Equivalent to p2 < p.

p >= p2
Equivalent to p2 <= p.

B.2.6 vector
The vect or class provides dynamically allocated, type-independent arrays, and supports

random-access iterators. In addition to the common sequential-container operations
(8B.2.1/314and 8B.2.2/315), vect or also supports the following:

#i ncl ude <vect or >



Declares the vect or class and associated operations.

v.reserve(n)

Reallocates v so that it can grow to accommodate at least n elements without further
reallocation.

v.resize(n)

Reallocates v to hold n elements. Invalidates all iterators referring to elements of v.
Preserves the first N elements. If the new size is less than the old, excess elements are
destroyed. If the new size is greater than the old, new elements are value-initialized
(89.5/164).

B.2.7 list

The | i st class provides dynamically allocated, type-independent, doubly linked lists, and
supports bidirectional iterators (unlike vect or , which supports random-access iterators).
In addition to the general operations on sequential containers (8B.2.1/314 and
8§B.2.2/315), | i st also supports the following:

#i nclude <list>
Declares the | i st class and associated operations.

| .splice(it, 1|2)
Inserts all the elements of | 2 into | immediately before the position denoted by i t, and
removes those elements from | 2. Invalidates all iterators and references into | 2. After

completion, | . si ze() is the sum of the original sizes of | and | 2, and | 2. si ze() ==
0. Returns voi d.

.splice(it, 12, it2)

.splice(it, 12, b, e)

Inserts the element denoted by i t 2, or the elements in the sequence denoted by [ b,
e), into | immediately before the position denoted by i t , and removes those elements
from | 2. The element denoted by i t 2, or the elements in the range [ b, €), must be
entirely within | 2. Invalidates iterators and references to the spliced elements. Returns
voi d.

.renmove(t)

.renove_if(p)

Removes from | all elements with value equal to t , or for which the predicate p yields
true. Returns voi d.

| .sort(cnp)
| .sort()

Sorts | using <, or the predicate cnp if supplied, to compare elements.

B.2.8 string

The st ri ng class provides variable-length character strings and random-access iterators
to access their characters. Although St ri ngs aren't true containers, they support the
container operations shown previously (8B.2.1/314 and §B.2.2/315) and can be used with



the algorithms (8B.3/321). In addition, the st ri ng class also supports the following:

#i ncl ude <string>
Declares the st ri ng class and associated operations.

string s(cp);
Defines S as a St ri ng initialized to a copy of the characters denoted by cp.

0S << S
Writes the characters in S onto 0S. Returns a reference to 0S.

is >> s

Reads a word from | S into S, obliterating S's previous contents. Returns a reference to
I S. Words are delimited by a whitespace (space, tab, newline).

getline(is, s)
Reads the input stream | S up to and including the next newline, and stores the

characters read, excluding the newline, in S, obliterating S's previous contents. Returns
areferenceto i s.

S += s2
Appends s2 to S and returns a reference to S.

S + s2
Returns the result of concatenating S and S2.

s relop s2

Returns a bool indicating whether the relational operation is t r ue. The st ri ng library
defines all the relational and equality operators: <, <=, >, >= == and! =. Two

st ri ngs are equal if their respective elements are equal. If one St ri ng is a prefix of
the other, then the shorter is less than the longer. Otherwise, the result is determined
by comparing the first pair of respective characters at which the st r i ngs differ.

Ss.substr(n, n2)

Returns a new St ri ng that holds n2 characters copied from s, starting at position n.
Undefined if n > s. si ze() . Copies characters in the range from n to the end of s if n
+ N2 is greater than s. si ze() .

s.c_str()

Yields a const pointer to a null-terminated character array that contains a copy of the
characters in S. The array persists only until the next nonconst member function is
called on s.

s.data()
Like c_str, but the array is not null terminated

s.copy(cp, n)
Copies up to the first n characters, without null termination, from S into a user-supplied
character array denoted by cp. It is the caller's responsibility to ensure that there is
room for at least N characters.



B.2.9 pair

Class pai r <K, V> provides an abstraction for a pair of values of type K and V
respectively. The operations on pai r <K, V> include the following:

#i nclude <utility>
Declares the pai r class and associated operations.

X. first
The first element of the pai r named X.

X. second
The second element of the pai r named X.

pai r<K, V> x(k, v);
Defines X as a new pai r composed of elements with types K and V, and values k and

Vv, so that X. first has type K and X. second has type V. Note that to declare a pai r
explicitly, you must know the types of its members.

make_pair(k, V)
Generates a new pai r <K, V> with element values k and v. Note that it is not
necessary to know the types of k and v to use this form.

B.2.10 map

Class map provides dynamically allocated, type-independent associative arrays. It uses
pai r as an auxiliary class to store the (name, value) pairs that are the map's elements.
Iterators are bidirectional. Each nap holds values of type V associated with keys of type
const K. Accordingly, the value stored in an element of a map can be changed, but the
key cannot be changed. In addition to the general container operations (8B.2.1/314) and
those on associative containers (8B.2.4/316), nap also supports the following:

#i ncl ude <map>
Declares the nap class and associated operations.

map<K, V, P> n(cnp);
Defines mas a new, empty nmap, which holds values of type V associated with keys of
type const K, and uses predicate cnp of type P to compare elements when inserting
them into the map.

i k]
Yields a reference to the value in mat the position indexed by K. If no such element
exists, then a value-initialized element (89.5/164) of type V is inserted into the map.
Because evaluating n{ k] can potentially change ms contents, mmust not be const .

m i nsert (nmake_pair(k, v))

Inserts value Vv into mat the position indicated by the key k. If a value already exists
with key k, then the associated value is not changed. Returns a pai r <map<K,
V>::iterator, bool>withafirst component that refers to the element with the



given key, and a second component that indicates whether a new element was
inserted. Note that make_pai r generates a pai r <K, V>, which is converted by insert
to a pai r<const K, V>.

m fi nd(k)
Returns an iterator referring to the element, if any, with key k. Returns m end() if no
such element exists.

*it
Yields a pai r <const K, V>, which contains the key, and the value with which that

key is associated, at the position denoted by it. Accordingly, i t - >f i r st has type
const K, and represents the key, and i t - >second has type V and represents the

corresponding value.
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B.3 Algorithms

The standard library includes many generic algorithms, which are written to operate on
iterators, thereby gaining independence from the particular data structures on which they
operate and the types stored therein. Note that associative containers have iterators that
refer to compound types such as pai r <const K, V>. Therefore, using these algorithms
with associative containers requires careful thought.

Most algorithms operate on sequences delimited by pairs of iterators in which the first
iterator denotes the first element in the sequence and the second denotes one past the
last element. Except as noted, all algorithms are defined in the <al gor it hnm> header.

#i ncl ude <al gorithnp
Includes declarations for generic algorithms.

accunul ate(b, e, t)

accunul ate(b, e, t, f)
Defined in the <nuner i c> header. Creates a temporary object obj with the same type
and value as t . For each input iterator i t in the range [ b, e€), evaluates ob = obj +
*I't orobj = f(obj, *it), depending on which form of accunul at e was called.
The result is a copy of 0bj . Note that because + may be overloaded, even the first form
of accurmul at e may operate on types other than the built-in arithmetic types. For
example, we can use accumul at e to concatenate all the stri ngs in a container.

bi nary_search(b, e, t)

Returns a bool indicating whether the value t is in the (sorted) sequence delimited by
the forward iterators b and e.

copy(b, e, d)
Copies the values in the sequence denoted by the input iterators b and e into the
destination indicated by output iterator d. The function assumes that enough space

exists in the destination to hold the values being copied. Returns a value that denotes a
position one past the last destination element.

equal (b, e, b2)

equal (b, e, b2, p)
Returns a bool indicating whether the elements in the sequence denoted by the input
iterators b and e are equal to the elements in a sequence of the same size beginning at
the input iterator b2. Uses the predicate p for the test, or the == operator if p is not
supplied.

fill(b, e, t)
Sets the elements in the sequence denoted by the input iterators b and e to the value t .
Returns voi d.

find(b, e, t)
find_if(b, e, p)



Returns an iterator denoting the first occurrence of the value t , or for which the
predicate p is t r ue (if p is supplied), in the sequence denoted by the input iterators b
and e. Returns € if no such element exists.

exi cographi cal _conpare(b, e, b2, e2)

exi cographi cal _conpare(b, e, b2, e2, p)

Returns a bool indicating whether the sequence of elements in the range [ b, €) is
less than the sequence of elements in the range [ b2, e2), using the predicate p for
element comparisons, or the < operator if p is not supplied. If one of the sequences is a
prefix of the other, then the shorter sequence is considered to be less than the other.
Otherwise, the result is determined by comparing the first pair of respective elements at
which the sequences differ. Iterators b, e, b2, and e2 need only be input iterators.

max(tl, t2)

mn(tl, t2)
Returns the larger (for max) or smaller (for m n) of t 1 and t 2, both of which must be of
the same type.

max_el enent (b, e)

m n_el enent (b, e)
Returns an iterator denoting the largest (smallest) element in the sequence denoted by
the forward iterators b and e.

partition(b, e, p)

stable partition(b, e, p)
Partitions the sequence denoted by the bidirectional iterators b and e so that elements
for which the predicate p is t r ue are at the front of the container. Returns an iterator to
the first element for which the predicate is f al se, or e if the predicate ist r ue for all
elements. The st abl e_partiti on function maintains the input order among the
elements in each partition.

renmove(b, e, t)

remove i f(b, e, p)
Rearranges the elements in the sequence denoted by the forward iterators b and e so
that elements whose values do not match t , or for which the predicate p returns f al se
(if p is supplied), are coalesced at the beginning of the associated sequence. Returns an
iterator one past the unremoved elements.

renove_copy(b, e, d, t)
remove _copy if(b, e, d, p)

Like r enove, but it puts a copy of the elements that do not match t , or for which the
predicate p is f al se, (if p is supplied), into the destination denoted by the output
iterator d. Returns a value one past the last destination element. The destination is
assumed to be large enough to hold the values copied. The elements in the sequence
denoted by the iterators b and e are not moved. Thus, b and e need only be input
iterators.

repl ace(b, e, t1, t2)
repl ace_copy(b, e, d, t1, t2)

Replaces each element with value t 1 by the value t 2 in the sequence denoted by the



forward iterators b and e. Returns voi d. The second form copies the elements,
replacing t 1 with t 2, into the sequence denoted by the output iterator d and returns a
value one past the last destination element. For the copy version b and e need only be
input iterators.

reverse(b, e)

reverse _copy(b, e, d)
The first form reverses the elements in the sequence denoted by the bidirectional
iterators b and e by swapping pairs of elements, and returns voi d. The second form
stores the reversed sequence in the destination starting at the output iterator d, and

returns a value one past the last destination element. As usual, the destination must
have enough room to hold the values in the sequence.

search(b, e, b2, e2)

search(b, e, b2, e2, p)
Returns a forward iterator positioned on the first occurrence, in the sequence denoted
by the forward iterators b and e, of the subsequence denoted by the forward iterators
b2 and e2. Uses the predicate p for the test, or the == operator if p is not supplied.

transformb, e, d, f)
transformb, e, b2, d, f)

If b2 is not supplied, f must take one argument; t r ansf or mcalls the function f on the
elements in the sequence denoted by the input iterators b and e. If b2 is supplied, f
must take two arguments, which are taken pairwise from the sequence denoted by b
and e and the sequence of the same length beginning at the input iterator b2. In either
case, t r ansf or mputs the sequence of results from the function into the destination
denoted by the output iterator d, and returns a value one past the last destination
element. As usual, the destination is assumed to be large enough to hold the generated
elements. Note that d is permitted to be equal to b or b2 (if supplied), in which case the
result replaces the given input sequence.

sort(b, e)

sort(b, e, p)
stable_sort(b, e)
stabl e _sort(b, e, p)

Sorts, in place, the sequence defined by the random-access iterators b and e. Uses the
predicate p for the test, or the < operator if p is not supplied. The st abl e_sort
functions maintain the input order among equal elements.

uni que(b, e)

uni que(b, e, p)
Rearranges the sequence delimited by the forward iterators b and e so that the first
instance of each subsequence of consecutive equal elements is moved to the beginning
of the container. Returns an iterator positioned on the first element that should not be
considered as part of the result (or e if all consecutive pairs of input elements are
unequal). Uses the predicate p for the test, or == if p is not supplied.

uni que_copy(b, e, d, p)

Copies the sequence delimited by input iterators b and e into the sequence beginning at
the position denoted by the output iterator d, eliminating any adjacent duplicates in the



process. Returns d after incrementing it by the number of elements copied. As usual,
assumes d is large enough to hold the elements. Uses the predicate p for the test, or ==

if p is not supplied.
[rort 3
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