
Ihrig

Shelve in
Web Development/JavaScript

User level:
Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Node.js for Developers
Since its creation in 2009, Node.js has grown into a powerful and increasingly
 popular asynchronous-development framework for creating highly-scalable network
 applications using JavaScript. Respected companies such as Dow Jones and LinkedIn
are among the many organizations to have seen Node’s potential and adopted it into
their businesses.

Pro Node.js for Developers provides a comprehensive guide to this exciting new
technology. We introduce you to Node – what it is, why it matters and how to set it
up – before diving deeply into the key concepts and APIs that underpin its operation.

Building upon your existing JavaScript skills you’ll be shown how to use Node.js to
build both Web- and Network-based applications, to deal with data sources, capture
events and deal with child processes to create robust applications that will work well in
a wide range of circumstances.

Once you’ve mastered these skills we’ll go further, teaching you more advanced
software engineering skills that will give your code a professional edge. You’ll learn
how to create easily reusable modules that will save you time through code reuse,
to log and debug your applications quickly and effectively and to write code that will
scale easily and reliably as the demand for your application grows

What You’ll Learn:

• Install, configure and deploy Node.js apps effectively
• Understand the Node.js asynchronous programming model in detail
• Create both web and network-based Node.js applications with ease
• Learn to work effectively with varied data sources and file types
• Discover advanced software engineering concepts that will save you time

and promote code reuse

RELATED

2586057814309

ISBN 978-1-4302-5860-5
54999

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author�� xix

About the Technical Reviewer�� xxi

Acknowledgments�� xxiii

Introduction��� xxv

Chapter 1: Getting Started■■ ��1

Chapter 2: The Node Module System■■ ��9

Chapter 3: The Node Programming Model■■ ��29

Chapter 4: Events and Timers■■ ���45

Chapter 5: The Command Line Interface■■ ��59

Chapter 6: The File System■■ ���77

Chapter 7: Streams■■ ���95

Chapter 8: Binary Data■■ ���109

Chapter 9: Executing Code■■ ���129

Chapter 10: Network Programming■■ ��147

Chapter 11: HTTP■■ ��167

Chapter 12: The Express Framework■■ ���189

■ Contents at a Glance

vi

Chapter 13: The Real-Time Web■■ ���205

Chapter 14: Databases■■ ���217

Chapter 15: Logging, Debugging, and Testing■■ ��233

Chapter 16: Application Scaling■■ ���249

Appendix A: JavaScript Object Notation■■ ���263

Index��271

xxv

Introduction

Since its creation in 2009, Node.js has grown into a powerful and increasingly popular asynchronous development
framework, used for creating highly scalable JavaScript applications. Respected companies such as Dow Jones,
LinkedIn, and Walmart are among the many organizations to have seen Node’s potential and adopted it into their
businesses.

Pro Node.js for Developers provides a comprehensive guide to this exciting young technology. You will be
introduced to Node at a high level before diving deeply into the key concepts and APIs that underpin its operation.
Building upon your existing JavaScript skills, you’ll be shown how to use Node.js to build both web- and network-based
applications, to deal with various data sources, capture and generate events, spawn and control child processes, and
much more.

Once you’ve mastered these skills, you’ll learn more advanced software engineering skills that will give your code
a professional edge. You’ll learn how to create easily reusable code modules, debug and test your applications quickly
and effectively, and scale your code from a single thread to the cloud as demand for your application increases.

1

Chapter 1

Getting Started

JavaScript was initially named Mocha when it was developed at Netscape in 1995 by Brendan Eich. In September 1995,
beta releases of Netscape Navigator 2.0 were shipped with Mocha, which had been renamed LiveScript. By December 1995
LiveScript, after another renaming, had become JavaScript, the current name. Around that time Netscape was working
closely with Sun, the company responsible for creating the Java programming language. The choice of the name
JavaScript caused a lot of speculation. Many people thought that Netscape was trying to piggyback on the hot name
Java, a buzzword at the time. Unfortunately, the naming choice caused a lot of confusion, as many automatically
assumed that the two languages were related somehow. In reality they have very little in common.

Despite the confusion, JavaScript became a very successful client-side scripting language. In response to
JavaScript’s success, Microsoft created its own implementation, named JScript, and released it with Internet
Explorer 3.0 in August 1996. In November 1996 Netscape submitted JavaScript for standardization to Ecma
International, an international standards organization. In June 1997 JavaScript became the standard ECMA-262.

Over the years, JavaScript has remained the de facto standard for client-side development. However, the server
space was a completely different story. For the most part, the server realm has belonged to languages such as PHP
and Java. A number of projects have implemented JavaScript as a server language, but none of them were particularly
successful. Two major hurdles blocked JavaScript’s widespread adoption on the server. The first was its reputation.
JavaScript has long been viewed as a toy language, suitable only for amateurs. The second hurdle was JavaScript’s
poor performance compared with that of some other languages.

However, JavaScript had one big thing going for it. The Web was undergoing unprecedented growth, and the
browser wars were raging. As the only language supported by every major browser, JavaScript engines began receiving
attention from Google, Apple, and other companies. All of that attention led to huge improvements in JavaScript
performance. Suddenly JavaScript wasn’t lagging anymore.

The development community took note of JavaScript’s newfound power and began creating interesting
applications. In 2009 Ryan Dahl created Node.js, a framework primarily used to create highly scalable servers for
web applications. Node.js, or simply Node, is written in C++ and JavaScript. To drive Node, Dahl tapped into the
power of Google’s V8 JavaScript engine (V8 is the engine inside Google Chrome, the most popular browser in
existence). Using V8, developers can write full-blown applications in JavaScript - applications that would normally
be written in a language like C or Java. Thus, with the invention of Node, JavaScript finally became a bona fide
server-side language.

The Node Execution Model
In addition to speed, Node brought an unconventional execution model to the table. To understand how Node is
different, we should compare it with Apache, the popular web server in the Linux, Apache, MySQL, and PHP (LAMP)
software stack. First, Apache processes only HTTP requests, leaving application logic to be implemented in a language
such as PHP or Java. Node removes a layer of complexity by combining server and application logic in one place.
Some developers have criticized this model for eliminating the traditional separation of concerns employed in the
LAMP stack. However, this approach also gives Node unprecedented flexibility as a server.

Chapter 1 ■ Getting Started

2

Node also differs from many other servers in its use of concurrency. A server like Apache maintains a pool of
threads for handling client connections. This approach lacks scalability because threads are fairly resource-intensive.
Additionally, a busy server quickly consumes all of the available threads; as a result, more threads, which are expensive
to create and tear down, are spawned. Node, on the other hand, executes within a single thread. While this may seem
like a bad idea, in practice it works well because of the way most server applications work. Normally, a server receives
a client request, then performs some high-latency I/O operation such as a file read or database query. During this time
the server blocks, waiting for the I/O operation to complete. Instead of sitting idle, the server could be handling more
requests or doing other useful work.

In traditional servers, it’s acceptable for a thread to do nothing while blocking on an I/O operation. However,
Node has only one thread, and blocking it causes the entire server to hang. To mitigate this problem, Node uses
nonblocking I/O almost exclusively. For example, if Node needs to perform a database query, it simply issues the
query and then processes something else. When the query finally returns, it triggers an asynchronous callback
function that is responsible for processing the query’s results. A pseudocode example of this process is shown
in Listing 1-1.

Listing 1-1.  Pseudocode Example of a Nonblocking Database Query

var sql = "SELECT * FROM table";
 
database.query(sql, function(results) {
 // process the results
});
// do something else instead of waiting
 

Node’s nonblocking, asynchronous execution model provides extremely scalable server solutions with minimal
overhead. Many high-profile companies, including Microsoft, LinkedIn, Yahoo!, and the retail giant Walmart have
taken notice of Node and begun implementing projects with it. For example, LinkedIn migrated its entire mobile stack
to Node and “went from running 15 servers with 15 instances (virtual servers) on each physical machine, to just four
instances that can handle double the traffic.” Node has also received significant media recognition, such as winning
the 2012 InfoWorld Technology of the Year Award.

Installing Node
The first step to getting started with Node is installation. This section will help you get Node up and running on
your Ubuntu, OS X, or Windows machine. The simplest way to install Node is via the Install button on the Node
home page, http://nodejs.org, shown in Figure 1-1. This will download the binaries or installer appropriate for
your operating system.

http://nodejs.org/

Chapter 1 ■ Getting Started

3

You can also browse all of the platforms’ binaries, installers, and source code at http://nodejs.org/download.
Windows users will most likely want to download the Windows Installer (.msi file), while Mac users should opt for the
Mac OS X Installer (.pkg file). Linux and SunOS users can download binaries, but it is probably simpler to install using
a package manager.

Installing via Package Managers
For instructions on installing Node via your operating system’s package manager, go to
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager. This page contains
instructions for Windows, OS X, and Linux. Again, Windows and Mac users should use the previously discussed
installers. As far as Linux is concerned, instructions are available for Gentoo, Debian, Linux Mint, Ubuntu,
openSUSE, SLE, Red Hat, Fedora, Arch Linux, FreeBSD, and OpenBSD.

Ubuntu users can install Node and all requisite software using the Advanced Packaging Tool (APT) commands
shown in Listing 1-2. These steps also install npm, Node’s package management software (covered in Chapter 2).

Listing 1-2.  Installing Node Using Ubuntu’s Package Manager

$ sudo apt-get install python-software-properties python g++ make
$ sudo add-apt-repository ppa:chris-lea/node.js
$ sudo apt-get update
$ sudo apt-get install nodejs npm
 

If the add-apt-repository command fails, install the software-properties-common package using the
command shown in Listing 1-3.

Listing 1-3.  Installing the Software-Properties-Common Package

$ sudo apt-get install software-properties-common
 

Figure 1-1.  Installing Node from the project home page

http://nodejs.org/download
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Chapter 1 ■ Getting Started

4

Building from Source
If you want to contribute to Node’s C++ core, or simply experiment with its functionality, you will need to compile
the project’s source code. You can obtain the source code from the download page, or from the project’s GitHub
repository, https://github.com/joyent/node. Once the code is downloaded, extract it from the archive if applicable.
Prior to building Node, Ubuntu users need to install Python and other build tools; use the command shown in
Listing 1-4. When installing Python, be sure to install version 2.7, not the newer Python 3.

Listing 1-4.  Installing Prerequisite Software Packages on Ubuntu

$ sudo apt-get install python-software-properties python g++ make
 

Ubuntu and OS X users can build Node by issuing the commands shown in Listing 1-5 from within the source
code directory. Note that the full path to the source code directory should not contain any spaces.

Listing 1-5.  Installing Node from Source on Ubuntu and OS X

./configure
make
sudo make install
 

On Windows, you need to install Visual C++ and Python 2.7 in order to build Node. Visual C++ can be
downloaded for free from Microsoft with Visual Studio Express. Python is also available free of charge at
www.python.org/. To compile Node, issue the command shown in Listing 1-6.

Listing 1-6.  Installing Node from Source on Windows

> vcbuild.bat release

Final Installation Steps
No matter which installation route you decided on, by this point Node should be ready to use. To verify that
everything is set up correctly, open a new terminal window, and run the node executable (see Listing 1-7).
The -v flag causes Node to print the installed version and then exit. In this example, version 0.10.18 of Node
is installed.

Listing 1-7.  Checking the Version of Node from the Command Line

$ node -v
v0.10.18
 

You should also verify that npm is installed (see Listing 1-8).

Listing 1-8.  Checking the Version of npm from the Command Line

$ npm -v
1.3.8
 

A final installation note: it’s likely that you’ll need to install Python and a C++ compiler on your machine even if
you didn’t install Node from source. Doing this ensures that native modules written in C++ can be compiled and run
with your Node installation. On Windows, this involves installing Microsoft’s Visual C++ compiler (see the previous
section, “Building from Source”). For any other operating system, the build essentials should include the necessary
compiler.

https://github.com/joyent/node
http://www.python.org/

Chapter 1 ■ Getting Started

5

The Read-Eval-Print-Loop
Node provides an interactive shell, known as the Read-Eval-Print-Loop, or REPL. The REPL reads input from the
user, evaluates the input as JavaScript code, prints the result, and then waits for more input. The REPL is useful
for debugging and for experimenting with small snippets of JavaScript code. To start the REPL, launch Node with
no command line arguments. You then see the REPL command prompt, the > character. From the prompt, begin
entering arbitrary JavaScript code.

Listing 1-9 shows how to start the REPL and input code. In this example, a variable, named foo, is created with
the string value "Hello World!". On the third line, the REPL prints "undefined" because the variable declaration
statement returns no value. Next, the statement foo; causes the value of foo to be inspected. As expected, the REPL
returns the string "Hello World!". Finally, the value of foo is printed to the terminal using the console.log() function.
After foo is printed, the REPL displays "undefined" again, because console.log() returns no value.

Listing 1-9.  Starting the REPL and Inputting JavaScript Code

$ node
> var foo = "Hello World!";
undefined
> foo;
'Hello World!'
> console.log(foo);
Hello World!
undefined
 

You can also enter multiline expressions in the REPL. For example, a for loop has been entered into the REPL
in Listing 1-10. The ... is used by the REPL to indicate a multiline expression in progress. Note that ... is displayed
by the REPL, not typed by the user.

Listing 1-10.  An Example of Executing a Multiline Expression in the REPL

> for (var i = 0; i < 3; i++) {
... console.log(i);
... }
0
1
2
undefined

REPL Features
The REPL has a number of features that increase usability, the most useful of which is the ability to browse previously
issued commands using the up and down arrow keys. To terminate any command and return to a blank prompt, type
Control+C. Pressing Control+C twice from a blank line causes the REPL to terminate. You can quit the REPL at any
time by pressing Control+D. You can use the Tab key to see a list of possible completions to the current command.
If there is only one possible option, Node automatically inserts it. The list includes keywords, functions, and variables.
For example, Listing 1-11 shows the completion options when t is entered at the prompt.

Chapter 1 ■ Getting Started

6

Listing 1-11.  Autocomplete Options Shown by Typing t Followed by Tab

> t
this throw true try
typeof tls tty toLocaleString
toString
 

The REPL also provides a special variable, _ (underscore), that always contains the result of the last expression.
Listing 1-12 shows several example uses of _. First, an array of strings is created, causing _ to reference the array. The
pop() method is then used to remove the last element of the array, baz. Finally, the length of baz
is accessed, causing _ to become 3.

Listing 1-12.  Example Uses of the _ Variable

> ["foo", "bar", "baz"]
['foo', 'bar', 'baz']
> _.pop();
'baz'
> _.length
3
> _
3

REPL Commands
.help
The .help command displays all of the available REPL commands. Listing 1-13 shows the output of running the
.help command.

Listing 1-13.  Output of the .help REPL Command

> .help
.break Sometimes you get stuck, this gets you out
.clear Alias for .break
.exit Exit the repl
.help Show repl options
.load Load JS from a file into the REPL session
.save Save all evaluated commands in this REPL session to a file

.exit
The .exit command terminates the REPL. This command is equivalent to pressing Control+D.

.break
The .break command, used to bail out of a multiline expression, is useful if you make a mistake or simply choose
not to complete the expression. Listing 1-14 shows an example of using the .break command to terminate a for loop
prior to completion. Notice that the normal > prompt is shown after the .break command.

Chapter 1 ■ GettinG Started

7

Listing 1-14. Terminating a Multiline Expression Using the .break Command

> for (var i = 0; i < 10; i++) {
... .break
>

.save filename
The .save command saves the current REPL session to the file specified in filename. If the file does not exist, it is
created. If the file does exist, the existing file is overwritten. REPL commands and output are not saved. Listing 1-15
shows an example use of the .save command. In this example, the current session is saved to the file repl-test.js.
The resulting contents of repl-test.js are shown in Listing 1-16. Notice that the file does not contain the REPL
prompt or output or the .save command.

Listing 1-15. Saving the Current REPL Session Using the .save Command

> var foo = [1, 2, 3];
undefined
> foo.forEach(function(value) {
... console.log(value);
... });
1
2
3
undefined
> .save repl-test.js
Session saved to:repl-test.js

Listing 1-16. The Contents of repl-test.js Generated by the .save Command

var foo = [1, 2, 3];
foo.forEach(function(value) {
console.log(value);
});

.load filename
The .load command executes the JavaScript file specified in filename. The file is executed as if each line were typed
directly into the REPL. Listing 1-17 shows the output of loading the file repl-test.js from Listing 1-16.

Listing 1-17. The result of executing repl-test.js, using the .load command

> .load repl-test.js
> var foo = [1, 2, 3];
undefined
> foo.forEach(function(value) {
... console.log(value);
... });
1
2
3
undefined

Chapter 1 ■ Getting Started

8

.clear
Similar to .break, .clear can be used to terminate multiline expressions. .clear is also used to reset the REPL’s
context object. At this point, you don’t need to understand the details, but Listing 1-18 shows a Node program that
embeds a REPL. In other words, running this program actually invokes an instance of the REPL. Additionally,
you can define a custom execution environment for the REPL. In this case, the embedded REPL has a defined
variable, foo, that holds the string "Hello REPL". Calling .clear from within the embedded REPL resets the
context and deletes foo.

Listing 1-18.  Embedding a REPL Within Another Node Program

var repl = require("repl");
 
repl.start({}).context.foo = "Hello REPL";

Executing Node Programs
Although the REPL environment is useful, it is seldom used in production systems. Instead, programs are written
as one or more JavaScript files and then interpreted by Node. The simplest Node program is shown in Listing 1-19.
The example simply prints the string "Hello World!" to the console.

Listing 1-19.  Source Code for the Node Hello World! Program

console.log("Hello World!");
 

Copy the code in Listing 1-19 into a new file, and save it as hello.js. Next, open a terminal window, and execute
hello.js (see Listing 1-20). Note that Node does not require you to specify the .js file extension. If the input file is not
found and no file extension is provided, Node will try adding the extensions .js, .json, and .node. Node interprets
.js files as JavaScript source code and files with a .json extension as JavaScript Object Notation (JSON) files. Files
with a .node extension are treated as compiled add-on modules.

Listing 1-20.  Executing a Node Program from the Command Line

$ node hello.js

Note■■   JSON is a plain text standard for data interchange. This book assumes that the reader is already familiar with
JSON. However, if you need an introduction or refresher, JSON is covered in Appendix A.

Summary
Congratulations! You have officially taken the first steps toward developing Node applications. This chapter has given
you a high-level introduction to Node and guided you through the installation process. You have even written some
Node code using the REPL. The remainder of this book builds on this chapter, covering the most important aspects
of Node development. Node is best known for creating scalable web servers, so of course that feature is covered.
However, you’ll also learn much more, including file system programming, streaming data, application scaling,
and Node’s module system.

9

Chapter 2

The Node Module System

As a developer, you can solve many complex problems using the core Node functionality. However, one of Node’s true
strengths is its developer community and abundance of third-party modules. Keeping track of all of these modules
is Node’s package manager, npm. The npm FAQ page jokingly states that npm is not an acronym for “Node package
manager” and instead is a recursive backronym abbreviation for “npm is not an acronym.” Regardless of its meaning,
npm is a command line tool that, since Node version 0.6.3, comes bundled with the Node environment.

What npm does—and does very well—is manage Node modules and their dependencies. At the time of writing,
there were over 47,000 packages in the official registry. You can browse all of the available packages at the registry’s
site, https://npmjs.org/. In addition to each individual module, the site shows various rankings, including which
modules are the most popular and which are depended upon the most. If you’d rather get your hands dirty on the
command line, you can search the registry using the npm search command, which lets you search for packages
based on one or more keywords. For example, npm search can be used to locate all the modules containing the word
database in the name or description (see Listing 2-1). The first time you run this command, expect to experience a
short delay as npm builds a local index.

Listing 2-1.  Using npm search to Locate Modules in the npm Registry

$ npm search database 

Installing Packages
In order to use a module, you must install it on your machine. This is normally as simple as downloading a few
JavaScript source files (some modules require downloading or compiling binaries as well). To install a package,
type npm install, followed by the package name. For example, the commander module provides methods for
implementing command line interfaces. To install the latest version of commander, issue the command shown in
Listing 2-2.

Listing 2-2.  Installing the Latest Version of the commander Package Using npm

$ npm install commander
 

If you’re not interested in installing the latest version of a package, you can specify a version number. Node
modules follow a major.minor.patch versioning scheme. For example, to install commander version 1.0.0, use the
command shown in Listing 2-3. The @ character is used to separate the package name from the version.

Listing 2-3.  Installing Version 1.0.0 of commander

$ npm install commander@1.0.0
 

https://npmjs.org/

Chapter 2 ■ The Node Module System

10

Changes to the major version number can indicate that a module has changed in a non-backwards-compatible
way (known as a breaking change). Even changes to the minor version can accidentally introduce breaking changes.
Therefore, you’ll typically want to install the latest patch of a certain release—a scenario that npm supports with the
x wildcard. The command shown in Listing 2-4 installs the latest patch of version 1.0 of commander. (Note that the x
wildcard can also be used in place of the major and minor revisions.)

Listing 2-4.  Installing the Latest Patch of commander 1.0

$ npm install commander@1.0.x
 

You can also select versions using relational version range descriptors. Relational version range descriptors select
the most recent version that matches a given set of criteria. The various relational version range descriptors supported
by npm are listed in Table 2-1.

Table 2-1.  Relational Version Range Descriptors

Relational Version Range Descriptor Version Criteria

=version Exactly matches version.

>version Greater than version.

>=version Greater than or equal to version.

<version Less than version.

<=version Less than or equal to version.

~version Greater than or equal to version, but less than the next major version.

* Newest version available.

“” Newest version available.

version
1
 – version

2
Greater than or equal to version

1
, and less than or equal to version

2
.

range
1
 || range

2
Matches versions specified by either range

1
 and range

2
.

Based on Table 2-1, all of the commands in Listing 2-5 are valid npm commands.

Listing 2-5.  Various npm install Commands Using Relational Version Range Descriptors

$ npm install commander@"=1.1.0"
$ npm install commander@">1.0.0"
$ npm install commander@"~1.1.0"
$ npm install commander@"*"
$ npm install commander@""
$ npm install commander@">=1.0.0 <1.1.0"
$ npm install commander@"1.0.0 - 1.1.0"
$ npm install commander@"<=1.0.0 || >=1.1.0"

Installing from URLs
In addition, npm allows packages to be installed directly from git URLs. These URLs must take on one of the forms
shown in Listing 2-6. In the listing, commit-ish represents a tag, SHA, or branch that can be supplied as an argument
to git checkout. Note that the links in the example do not point to any specific git projects.

Chapter 2 ■ The Node Module System

11

Note■■  Y ou do not need to understand git and GitHub to use Node. However, most Node modules use the GitHub
ecosystem for source control and bug tracking. Although GitHub and its use are well outside the scope of this book, it is
highly advisable to become familiar with it.

Listing 2-6.  git URL Formats Supported by npm

git://github.com/user/project.git#commit-ish
git+ssh://user@hostname:project.git#commit-ish
git+ssh://user@hostname/project.git#commit-ish
git+http://user@hostname/project/blah.git#commit-ish
git+https://user@hostname/project/blah.git#commit-ish
 

Packages can also be installed from tarball URLs. For example, to install the master branch of a GitHub repository,
use the syntax shown in Listing 2-7. Though this URL does not point to an actual repository, you can experiment by
downloading the commander module: https://github.com/visionmedia/commander.js/tarball/master.

Listing 2-7.  Installing a Tarball from a GitHub Repository

$ npm install https://github.com/user/project/tarball/master

Package Locations
When packages are installed, they are saved somewhere on your local machine. Typically, this location is a
subdirectory named node_modules within your current directory. To determine the location, use the command npm
root. You can also view all the installed modules using the npm ls command. After installing the commander module,
you can verify that it exists using npm ls. For the purposes of this example, install version 1.3.2. Listing 2-8 shows
that commander version 1.3.2 is installed. Also, notice that a module named keypress is installed. The tree structure
indicates that commander depends on the keypress module. Since npm is able to recognize this dependency,
it automatically installs any required modules.

Listing 2-8.  Listing All of the Currently Installed Packages Using npm ls

$ npm ls
/home/colin/npm-test
└─┬ commander@1.3.2
 └── keypress@0.1.0
 

You can also see the installed modules by browsing the node_modules subdirectory. In this example, commander
is installed in node_modules/commander, and keypress is installed in node_modules/commander/node_modules/
keypress. If keypress had any dependencies, they would be installed in yet another node_modules subdirectory
under the keypress directory.

Global Packages
Packages, as described thus far, are libraries that are included in your program. Referred to as local packages, these must
be installed in every project using them. Another type of package, known as a global package, needs to be installed
in only one location. Although global packages typically do not include code libraries, they can. As a rule of thumb,
global packages normally contain command line tools, which should be included in the PATH environment variable.

http://git//github.com/user/project.git#commit-ish
http://user@hostname/project/blah.git#commit-ish
https://user@hostname/project/blah.git#commit-ish
https://github.com/visionmedia/commander.js/tarball/master
https://github.com/user/project/tarball/master

Chapter 2 ■ The Node Module System

12

To install a package globally, simply issue npm install with the -g or --global option. In fact, you can process
global packages by adding the -g option to most npm commands. For example, you can view the installed global
packages by issuing the command npm ls -g. You can also locate the global node_modules folder using the
npm root -g command.

Linking Packages
Using npm, you can create links to local packages. When you link to a package, it can be referenced as if it were a global
package. This is especially useful if you are developing a module and want another project to reference your local
copy of the module. Linking is also useful if you want to deploy your module without publishing it to the public
npm registry.

Package linking is a two-step process. The first step, creating the link, is done by changing to the directory of the
project you want to make linkable. Listing 2-9 shows how to create a link to your module, assuming that your module
is located in foo-module. After executing the npm link command, verify that the link was created using npm ls -g.

Listing 2-9.  Creating a Link Using npm link

$ cd foo-module
$ npm link
 

The second step in module linking, actually referencing the link, is very similar to a package installation.
First, change to the directory of the project that will import the linked module. Next, issue another npm link command.
However, this time you must also specify the linked module’s name. An example of this procedure is shown in
Listing 2-10. In the example, the foo-module link from Listing 2-9 is referenced from a second module, bar-module.

Listing 2-10.  Referencing an Existing Link Using npm link

$ cd bar-module
$ npm link foo-module

Unlinking Packages
The process for removing linked modules is very similar to the process for creating them. To remove a linked module
from an application, use the npm unlink command, followed by the name. Listing 2-11 shows the command for
removing the linked foo-module from bar-module.

Listing 2-11.  Removing a Reference to a Link Using npm unlink

$ cd bar-module
$ npm unlink foo-module
 

Similarly, to remove a link from your system, change to the linked module’s directory, and issue the npm unlink
command. Listing 2-12 shows how to remove the foo-module link.

Listing 2-12.  Removing a Linked Module Using npm unlink

$ cd foo-module
$ npm unlink

Chapter 2 ■ The Node Module System

13

Updating Packages
Since any package that is actively developed eventually releases a new version, your copy will become outdated.
To determine if your copy is out of date, run npm outdated in your project directory (see Listing 2-13). In the example,
which assumes that an outdated version 1.0.0 of commander is installed, npm indicates that the latest version is 2.0.0
but that your copy is only 1.0.0. Listing 2-13 checks all of the local packages. You can check individual packages by
specifying their names, and you can process global packages by specifying the -g option.

Listing 2-13.  Displaying Outdated Packages Using npm outdated

$ npm outdated
npm http GET https://registry.npmjs.org/commander
npm http 304 https://registry.npmjs.org/commander
commander@2.0.0 node_modules/commander current=1.0.0
 

To update any outdated local packages, use the npm update command. Much like outdated, update works on all
local packages by default. Again, you can target individual modules by specifying their names. You can also update
global packages using the -g option. In Listing 2-14, npm updates itself using the -g option.

Listing 2-14.  Updating npm Using npm update

$ npm update npm -g

Uninstalling Packages
To remove a package, use either the npm uninstall or npm rm command (the two commands can be used
interchangeably), and specify one or more packages to be removed. You can also remove global packages by providing
the -g option. Listing 2-15 shows how to remove the commander module using npm rm.

Listing 2-15.  Uninstalling commander Using npm rm

$ npm rm commander

The require() Function
As shown in the previous section, Node packages are managed using npm. However, to import modules into your
programs, the require() function is used. require() accepts a single argument, a string specifying the module to
load. If the specified module path exists, require() returns an object that can be used to interface with the module.
If the module cannot be located an exception is thrown. Listing 2-16 shows how the commander module is imported
into a program using the require() function.

Listing 2-16.  Using the require() Function

var commander = require("commander")

Core Modules
Core modules are modules compiled into the Node binary. They are given the highest precedence by require(),
meaning that in the event of a module-naming conflict, the core module is loaded. For example, Node contains a core
module named http, which, as the name implies, provides features for working with the Hypertext Transfer Protocol
(HTTP). No matter what, a call to require("http") will always load the core http module. As a side note, the core
modules are located in the lib directory of the Node source code.

https://registry.npmjs.org/commander
https://registry.npmjs.org/commander

Chapter 2 ■ The Node Module System

14

File Modules
File modules are non-core modules loaded from the file system. They can be specified using absolute paths, relative
paths, or from the node_modules directory. Module names that begin with a slash (/) are treated as absolute paths.
For example, in Listing 2-17, a file module, foo, is loaded using an absolute path.

Listing 2-17.  A File Module Import Using an Absolute Path

require("/some/path/foo"); 

Caution■■   Some operating systems such as Windows use a case-insensitive file system. This allows you to write
require("commander"), require("COMMANDER"), or require("CoMmAnDeR"). However, on a case-sensitive file system
such as Linux, the last two calls would fail. Therefore, you should assume case sensitivity, no matter what operating
system you're using.

Node also supports Windows-style file paths. On Windows, Node allows the slash and backslash characters
(/ and \) to be used interchangeably. For the sake of consistency, and to avoid escaping the backslash character, this
book primarily uses Unix-style paths. However, be aware that all the paths shown in Listing 2-18 are valid on Windows.

Listing 2-18.  Example Module Paths Valid on Windows

require("/some/path/foo");
require("C:/some/path/foo");
require("C:\\some\\path\\foo");
require("\\some/path\\foo");
 

Module paths that begin with one or two dots (. or ..) are interpreted as relative paths—that is, they are
considered relative to the file that called require(). Listing 2-19 shows three examples of relative module paths.
In the first example, foo is loaded from the same directory as the calling script. In the second, foo is located in the
calling script’s parent directory. In the third, foo is located in a subdirectory, sub, of the calling script’s directory.

Listing 2-19.  Example Module Imports Using Relative Paths

require("./foo");
require("../foo");
require("./sub/foo");
 

If a module path does not correspond to a core module, an absolute path, or a relative path, then Node
begins searching in node_modules folders. Node begins with the calling script’s parent directory and appends
/node_modules. If the module is not found, Node moves one level up the directory tree, appends /node_modules, and
searches again. This pattern is repeated until the module is located or the root of the directory structure is reached.
The example in Listing 2-20 assumes that a project is located in /some/path and shows the various node_modules
directories that would be searched, in order.

Listing 2-20.  Example of the Search Order of node_modules Directories

/some/path/node_modules
/some/node_modules
/node_modules

Chapter 2 ■ The Node Module System

15

File Extension Processing
If require() does not find an exact match, it attempts to add .js, .json, and .node file extensions. As mentioned in
Chapter 1, .js files are interpreted as JavaScript source code, .json files are parsed as JSON source, and .node files are
treated as compiled add-on modules. If Node is still unable to find a match, an error is thrown.

It is also possible to programmatically add support for additional file extensions using the built-in require.extensions
object. Initially, this object contains three keys, .js, .json, and .node. Each key maps to a function that defines
how require() imports files of that type. By extending require.extensions, you can customize the behavior of
require(). For example, Listing 2-21 extends require.extensions such that .javascript files are treated as .js files.

Listing 2-21.  Extending the require.extensions Object to Support Additional File Types

require.extensions[".javascript"] = require.extensions[".js"];

You can even add custom handlers. In Listing 2-22, .javascript files cause require() to print data about the
imported file to the console.

Listing 2-22.  Adding a Custom Handler to the require.extensions Object

require.extensions[".javascript"] = function() {
 console.log(arguments);
}; 

Caution■■  T hough this feature has recently been deprecated, the module system API is locked, so require.extensions
is unlikely to ever disappear completely. The official documentation recommends wrapping non-JavaScript modules in
another Node program or compiling them to JavaScript a priori.

Resolving a Module Location
If you are interested only in learning where a package is located, use the require.resolve() function, which uses
the same mechanism as require() to locate modules. However, instead of actually loading the module, resolve()
only returns the path to the module. If the module name passed to resolve() is a core module, the module’s name
is returned. If the module is a file module, resolve() returns the module’s file name. If the Node cannot locate the
specified module, an error is thrown. The example in Listing 2-23 shows usage of resolve() in the REPL environment.

Listing 2-23.  Locating the http Module Using require.resolve()

> require.resolve("http");
'http'

Module Caching
A file module that is loaded successfully is cached in the require.cache object. Subsequent imports of the same
module return the cached object. One caveat is that the resolved module path must be exactly the same. This is so
because a module is cached by its resolved path. Therefore, caching becomes a function of both the imported module
and the calling script. Let’s say your program depends on two modules, foo and bar. The first module, foo, has no
dependencies, but bar depends on foo. The resulting dependency hierarchy is shown in Listing 2-24. Assuming
that foo resides in the node_modules directory, it is loaded twice. The first load occurs when foo is resolved to the
your-project/node_modules/foo directory. The second load occurs when foo is referenced from bar and resolves to
your-project/node_modules/foo/node_modules.

Chapter 2 ■ The Node Module System

16

Listing 2-24.  A Dependence Hierarchy Where foo Is Referenced Multiple Times

your-project
├── foo@1.0.0
└─┬ bar@2.0.0
 └── foo@1.0.0

The package.json File
In an earlier section you saw that npm recognizes dependencies between packages and installs modules accordingly.
But how does npm understand the concept of module dependencies? As it turns out, all of the relevant information is
stored in a configuration file named package.json, which must be located in your project’s root directory. As the file
extension implies, the file must contain valid JSON data. Technically, you do not need to provide a package.json,
but your code will essentially be inaccessible to npm without one.

The JSON data in package.json is expected to adhere to a certain schema. Minimally, you must specify a name
and version for your package. Without these fields, npm will be unable to process your package. The simplest
package.json file possible is shown in Listing 2-25. The package’s name is specified by the name field. The name
should uniquely identify your package in the npm registry. By using npm, the name becomes part of a URL, a command
line argument, and a directory name. Therefore, names cannot begin with a dot or an underscore and cannot include
spaces or any other non-URL-safe characters. Best practice also dictates that names be short and descriptive and not
contain “js” or “node”, as these are implied. Also, if you plan to release your package to the general public, verify that
the name is available in the npm registry.

Listing 2-25.  A Minimal package.json File

{
 "name": "package-name",
 "version": "0.0.0"
}
 

A package’s version is specified in the version field. The version, when combined with the name, provides a truly
unique identifier for a package. The version number specifies the major release, minor release, and patch number,
separated by dots (npm allows versions to begin with a v character). You can also specify a build number by appending
a tag to the patch number. There are two types of tags, prerelease and postrelease. Postrelease tags increase the
version number, while prerelease tags decrease it. A postrelease tag is a hyphen followed by a number. All other tags
are prerelease tags. The example in Listing 2-26 shows version tagging in action. Several tagged versions and an
untagged version (0.1.2) are listed in descending order.

Listing 2-26.  Several Tagged Versions and One Untagged Version Listed in Descending Order

0.1.2-7
0.1.2-7-beta
0.1.2-6
0.1.2
0.1.2beta

m

17

Description and Keywords
The description field is used to provide a textual description of your package. Similarly, use the keywords field to
provide an array of keywords to further describe your package. Keywords and a description help people discover
your package because they are searched by the npm search command. Listing 2-27 shows a package.json excerpt
containing description and keywords fields.

Listing 2-27. Specifying a Description and Keywords in the package.json File

"description": "This is a description of the module",
"keywords": [
 "foo",
 "bar",
 "baz"
]

Author and Contributors
The primary author of a project is specified in the author field. This field can contain only one entry. However, a
second field, contributors, can contain an array of people who contributed to the project. There are two ways to
specify a person. The first is as an object containing name, email, and url fields. An example of this syntax is shown in
Listing 2-28. The example specifies a single primary author and two additional contributors.

Listing 2-28. Specifying an Author and Contributors in the package.json File

"author": {
 "name": "Colin Ihrig",
 "email": "colin@domain.com",
 "url": "http://www.cjihrig.com"
},
"contributors": [
 {
 "name": "Jim Contributor",
 "email": "jim@domain.com",
 "url": "http://www.domain.com"
 },
 {
 "name": "Sue Contributor",
 "email": "sue@domain.com",
 "url": "http://www.domain.com"
 }
]

Alternatively, the objects representing people can be written as strings. In a string, a person is specified by name,
then by an email address inside angle brackets, followed by a URL inside parentheses. The objects syntax shown in
Listing 2-28 has been rewritten in Listing 2-29 using strings.

http://colin@domain.com/
http://www.cjihrig.com/
http://jim@domain.com/
http://www.domain.com/
http://sue@domain.com/
http://www.domain.com/

Chapter 2 ■ The Node Module System

18

Listing 2-29.  Specifying an Author and Contributors as Strings Instead of Objects

"author": "Colin Ihrig <colin@domain.com> (http://www.cjihrig.com)",
"contributors": [
 "Jim Contributor <jim@domain.com> (http://www.domain.com)",
 "Sue Contributor <sue@domain.com> (http://www.domain.com)"
]

The Main Entry Point
Since packages can consist of many files, Node needs some way of identifying its main entry point. Like most other
configuration options, this is handled in the package.json file. In the main field you can tell Node which file to load
when your module is imported using require(). Let’s assume that your module is named foo, but its main entry
point is located in a file named bar.js, which is located in the src subdirectory. Your package.json file should
contain the main field shown in Listing 2-30.

Listing 2-30.  Specifying the Package’s Main Entry Point

"main": "./src/bar.js"

The preferGlobal Setting
Some packages are meant to be installed globally, but there is no way to actually enforce this intention. However,
you can at least generate a warning if the user installs your module locally by including the preferGlobal field and
setting it to true. Again, this will not actually prevent the user from performing a local install.

Dependencies
Package dependencies are specified in the dependencies field of the package.json file. This field is an object
that maps package names to version strings. The version string can be any version expression understood by npm,
including git and tarball URLs. Listing 2-31 shows an example of a dependencies field for a package depending only
on commander.

Listing 2-31.  A Simple dependencies Field

"dependencies": {
 "commander": "1.1.x"
}
 

Notice that commander’s version string uses the x wildcard in Listing 2-31. It is generally considered best practice
to use this syntax when specifying module dependencies because major and minor version updates can signify
incompatible changes, while patch changes normally just represent bug fixes. It is good to keep up with package
updates, but do so only after thorough testing. For example, if the version string used in Listing 2-31 were >=1.1.0,
then bugs could mysteriously appear in your program after updating to version 1.2.0. To automatically update the
dependencies field as you install new packages, append the --save flag to the npm install command. So, to add
commander to the package.json file during installation, issue the command npm install commander --save.

http://colin@domain.com/
http://www.cjihrig.com/
http://jim@domain.com/
http://www.domain.com/
http://sue@domain.com/
http://www.domain.com/

Chapter 2 ■ The Node Module System

19

Developmental Dependencies
Many packages have dependencies that are used only for testing and development. These packages should not be
included in the dependencies field. Instead, place them in the separate devDependencies field. For example, the
mocha package is a popular testing framework commonly used in the Node community. Packages using mocha for
testing should list it in the devDependencies field, as shown in Listing 2-32.

Listing 2-32.  Listing mocha as a Developmental Dependency

"devDependencies": {
 "mocha": "~1.8.1"
}
 

Developmental dependencies can also be automatically added to the package.json file. To do so, append the
--save-dev flag to the npm install command. An example of this is the command npm install mocha --save-dev.

Optional Dependencies
Optional dependencies are packages you want to use but can live without—for example, a module that improves
cryptography performance. If it’s available, by all means use it. If for whatever reason it’s not available, your
application can fall back on a slower alternative. Normally, npm will fail if a dependency is not available. With optional
dependencies, npm will proceed despite their absence. Much as with devDependencies, optional dependencies are
listed in a separate optionalDependencies field. Optional dependencies can also be automatically added to the
package.json file during installation by specifying the --save-optional flag to npm install.

If you choose to use optional dependencies, your program must still account for the case where the package
is not present. This is done by wrapping references to the module inside try...catch and if statements. In the
example in Listing 2-33, commander is assumed to be an optional dependency. Since the require() function throws
an exception if commander is not present, it is wrapped in a try...catch statement. Later in the program, check that
commander has a defined value before using it.

Listing 2-33.  Using Defensive Programming when Referencing an Optional Dependency

var commander;
 
try {
 commander = require("commander");
} catch (exception) {
 commander = null;
}
 
if (commander) {
 // do something with commander
}

Engines
The engines field is used to specify the versions of node and npm that your module works with. Engine versioning
is similar to the scheme used for dependencies. Best practices differ, however, depending on whether you are
developing a stand-alone application or a reusable module. Applications should use conservative versioning to
ensure that new releases of dependencies do not introduce errors. Reusable modules, on the other hand, should use
aggressive versioning to ensure that, whenever possible, they work with the latest versions of Node. The example in
Listing 2-34 includes an engines field. In the example, the node field uses aggressive versioning, always opting for the
latest version. Meanwhile, the npm version string is conservative, allowing only patch updates.

Chapter 2 ■ The Node Module System

20

Listing 2-34.  Defining Supported Engine Versions in the package.json File

"engines": {
 "node": ">=0.10.12",
 "npm": "1.2.x"
}

Scripts
The scripts field, when present, contains a mapping of npm commands to script commands. The script commands,
which can be any executable commands, are run in an external shell process. Two of the most common commands
are start and test. The start command launches your application, and test runs one or more of your application’s
test scripts. In the example in Listing 2-35, the start command causes node to execute the file server.js. The test
command echoes that no tests are specified. In a real application, test would likely invoke mocha or some other
testing framework.

Listing 2-35.  Specifying a scripts Field in the package.json File

"scripts": {
 "start": "node server.js",
 "test": "echo \"Error: no test specified\" && exit 1"
} 

Caution■■  D o your best to avoid using platform specific commands whenever possible. For example, using a Makefile
is common practice on Unix systems, but Windows has no make command.

To execute the start and test commands, simply pass the command name to npm. Listing 2-36, based on the
scripts field in Listing 2-35, shows the output of the test command. You can see from the output that npm treats an
exit code other than zero as an error and aborts the command.

Listing 2-36.  Launching the npm test Command

$ npm test
 
> example@0.0.0 test /home/node/example
> echo "Error: no test specified" && exit 1
 
\"Error: no test specified\"
npm ERR! Test failed. See above for more details.
npm ERR! not ok code 0
 

Note that you cannot simply add arbitrary commands and call them from npm. For example, issuing the
command npm foo will not work, even if you have defined foo in the scripts field. There are also commands that
act as hooks and are executed when certain events occur. For example, the install and postinstall commands
are executed after your package is installed using npm install. The scripts field (see Listing 2-37) uses these
commands to display messages after package installation. For a complete listing of available script commands,
issue the command npm help scripts.

Chapter 2 ■ The Node Module System

21

Listing 2-37.  Some npm Hooks

"scripts": {
 "install": "echo \"Thank you for installing!\"",
 "postinstall": "echo \"You're welcome!\""
}

Additional Fields
A number of other fields are commonly found in the package.json file. For example, you can list your project’s home
page in the homepage field, the software license type in the license field, and the repository where your project’s
source code lives in the repository field. The repository field is especially useful if you plan to publish you module
to the npm registry, as your module's npm page will contain a link to your repository. Additionally, by including a
repository field, users can quickly navigate to the repository using the command npm repo module-name
(where module-name is the npm name of your module).

You can even add your own application-specific fields as long as there are no naming conflicts. For more
information on the package.json file, issue the command npm help json.

Generating a package.json File
While the syntax of a package.json file is not terribly complex, it can be tedious and error prone. The hardest part can
be remembering your package’s dependencies and their versions. To help mitigate this problem, Node provides npm
init, a command line wizard that prompts you for the values of key fields and automatically generates a package.json
file. If you already have a package.json file, npm init maintains all of its information, adding only new information.

As an example, assume that you have a project directory named foo-module. Inside that directory is foo.js, the
main entry point of your module. Your module has only one dependency, commander, that has been installed during
the course of development. Additionally, you have a test script, test.js, which exercises your module. Now comes the
time to create the package.json file. Issue the command npm init, and step through the wizard shown in Listing 2-38.

Listing 2-38.  Using npm init to Generate a package.json File

$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sane defaults.
 
See `npm help json` for definitive documentation on these fields
and exactly what they do.
 
Use `npm install <pkg> --save` afterwards to install a package and
save it as a dependency in the package.json file.
 
Press ^C at any time to quit.
name: (foo-module)
version: (0.0.0) 1.0.0
description: An awesome new Node module.
entry point: (foo.js)
test command: test.js
git repository:
keywords: node, awesome, foo
author: Colin Ihrig <cjihrig@domain.com>
license: (BSD)
About to write to /home/colin/foo-module/package.json:
 

http://cjihrig@domain.com/

Chapter 2 ■ The Node Module System

22

{
 "name": "foo-module",
 "version": "1.0.0",
 "description": "An awesome new Node module.",
 "main": "foo.js",
 "dependencies": {
 "commander": "~1.1.1"
 },
 "devDependencies": {},
 "scripts": {
 "test": "test.js"
 },
 "repository": "",
 "keywords": [
 "node",
 "awesome",
 "foo"
],
 "author": "Colin Ihrig <cjihrig@domain.com>",
 "license": "BSD"
}
  
Is this ok? (yes)
npm WARN package.json foo-module@1.0.0 No README.md file found!
 

Notice that some values, including the name, foo-module, are parenthesized. These values are npm guesses. You
can accept them by pressing the Enter key. If you want to use your own values, simply type them in before pressing
Enter. For some fields, such as description, npm will not offer a guess. In these cases, you can either provide a value
or leave the field blank, as shown in the git repository field. At the end of the wizard, npm displays the generated
JSON data. At this point either accept the proposed data and generate the package.json file, or abort the entire process.

Finally, npm provides a warning message that no README.md file was found. README.md is an optional, yet
recommended, file providing documentation on your module. The .md file extension indicates that the file contains
Markdown data. Markdown, a type of markup language that is easily converted to HTML yet easier to read than
HTML, is a natural fit for Node documentation because GitHub is capable of displaying Markdown and most
Node projects are hosted on GitHub. It is good general practice to always include a README.md file in your project’s
root directory. If present, the file name is specified in the package.json file using the readmeFilename field. The
example in Listing 2-39 shows a Markdown file. The same Markdown, as rendered on GitHub, is shown in Figure 2-1.
Additional information on Markdown syntax is widely available online.

http://cjihrig@domain.com/

Chapter 2 ■ The Node Module System

23

Listing 2-39.  Using Markdown Syntax

#Level One Heading
This test is *italicized*, while this text is **bold**.
 
##Level Two Heading
By combining the two, this text is ***bold and italicized***. 

A Complete Example
This is probably a good time to look at a complete example of a Node program that includes a dependency. In this
example, we’ll create a Hello World style program that prints colored text to the console. In order to create colored
text, the program will import a third party module named colors. The source code for the example program is shown
in Listing 2-40. Add the source code to a file named colors-test.js and save it. The first line of code imports the
colors module using the require() function. The second line prints the message "Hello Node!" to the console.
The .rainbow appended to the console message causes the characters in the string to print in a variety of colors.

Listing 2-40.  Using the colors Module to Print Rainbow Text

var colors = require("colors");
 
console.log("Hello Node!".rainbow);
 

Since colors is not a core module, you need to install it before running the program. To do so, issue the
command npm install colors. After the installation completes, execute the program by issuing the command node
colors-test. You should see a colorful message printed to the console. If you’re part of a team, other people will need
to run your code. For a program this small, only having one dependency, your teammates could simply check your
code out of source control and install colors. However, this approach isn’t really feasible for large programs with tens
or even hundreds of dependencies. If you ever want anyone else to run your nontrivial programs, you’re going to have
to provide a package.json file. To generate package.json, run npm init. Execute the wizard step by step, entering
values as needed. (An example package.json file for this project is shown in Listing 2-41.) Your program can now be
installed with only your source code, the package.json file, and npm.

Figure 2-1.  The Markdown from Listing 2-39 rendered on GitHub

Chapter 2 ■ The Node Module System

24

Listing 2-41.  The package.json file for the Rainbow Text Program

{
 "name": "colors-test",
 "version": "1.0.0",
 "description": "An example program using the colors module.",
 "main": "colors-test.js",
 "dependencies": {
 "colors": "~0.6.0-1"
 },
 "devDependencies": {},
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "repository": "",
 "keywords": [
 "colors",
 "example"
],
 "author": "Colin Ihrig <cjihrig@domain.com>",
 "license": "BSD"
} 

Note■■   Many developers do not check the node_modules folder into source control. As this folder can be regenerated
using npm, excluding it can save space in source control. However, application developers should consider committing
their node_modules folder to avoid mysterious bugs that can arise if dependencies introduce incompatible changes.
Unfortunately, this can introduce problems when the application is loaded on a different machine or operating system.
An alternative is to use the npm shrinkwrap utility to lock down exact module versions which are known to work.
shrinkwrap not only locks down the versions for top level dependencies, but also for all of their dependencies
(which can't be accomplished via the package.json file). Instead of checking node_modules into source control, simply
run npm shrinkwrap, and check in the resulting npm-shrinkwrap.json file (in the same directory as package.json).
Module developers, on the other hand, should not commit their dependencies or use shrinkwrap. Instead, they should
work to ensure that their code is as compatible as possible across versions.

Module Authoring
So far, this chapter has focused on working with existing modules. This section explains how modules actually come
into existence. In Node, modules and files have a one to one correspondence. That means that a file is a module that
can be imported into other files using require(). To demonstrate this concept create two files, foo.js and bar.js, in
the same directory. The contents of foo.js are shown in Listing 2-42. This file imports the second file, bar.js, whose
contents are shown in Listing 2-43. Inside of foo.js, the return value from require() is saved in the variable bar,
which is printed to the console.

http://cjihrig@domain.com/

Chapter 2 ■ The Node Module System

25

Listing 2-42.  The Contents of foo.js, which Imports the File bar.js

var bar = require("./bar");
 
console.log(bar);
 

Inside of bar.js, a function named bar() is defined. The module contains two print statements, one at the
module level, and another in the bar() function.

Listing 2-43.  The Contents of bar.js, which is Imported in Listing 2-42

function bar() {
 console.log("Inside of bar() function");
}
 
console.log("Inside of bar module");
 

To run the example, issue the command node foo.js. The resulting output is shown in Listing 2-44. The call to
require() in foo.js imports bar.js, which causes the first message to be printed. Next, the bar variable is printed,
displaying an empty object. Based on this example, there are two questions that need to be answered. First, what
exactly is the empty object? Second, how can the bar() function be invoked from outside of bar.js.

Listing 2-44.  The Output from Running the Code in Listing 2-42

$ node foo.js
Inside of bar module
{}

The module Object
Node provides a free variable, module, in every file which represents the current module. module is an object which
contains a property named exports, that defaults to an empty object. The value of exports is returned by the
require() function, and defines a module's public interface. Since exports was never modified in Listing 2-43,
this explains the empty object seen in Listing 2-44.

To make the bar() function available outside of bar.js, we have two choices. First, bar could be assigned to
module.exports inside of bar.js (as shown in Listing 2-45). Notice that the exports object has been overwritten with
a function.

Listing 2-45.  Rewriting bar.js to Export bar()

module.exports = function bar() {
 console.log("Inside of bar() function");
}
 
console.log("Inside of bar module");
 

foo.js can then access the bar() function as shown in Listing 2-46. Since the bar variable now points to a
function, it can be invoked directly.

Chapter 2 ■ The Node Module System

26

Listing 2-46.  Rewriting foo.js to Access bar() from Listing 2-45

var bar = require("./bar");
 
console.log(bar);
bar();
 

The drawback to this approach is that the bar module cannot export anything but the bar() function. The second
option is to simply attach the bar() function to the existing exports object, as shown in Listing 2-47. This technique
allows the module to export an arbitrary number of methods and properties. To accommodate this change, foo.js
would access the bar() function as bar.bar().

Listing 2-47.  Exporting bar() by Augmenting the Existing exports Object

module.exports.bar = function bar() {
 console.log("Inside of bar() function");
}
 
console.log("Inside of bar module");
 

The module object provides several other properties which are less commonly used. These properties are
summarized in Table 2-2.

Table 2-2.  Additional Properties of the module Object

Property Description

id An identifier for the module. Typically this is the fully resolved filename of the module.

filename The fully resolved filename of the module.

loaded A Boolean value representing the module's state. If the module has finished loading, this will be true.
Otherwise, it will be false.

parent An object representing the module that loaded the current module.

children An array of objects representing the modules imported by the current module.

Publishing to npm
In order to publish your modules to npm, you must first create a npm user account. Listing 2-48 illustrates the
commands required to set up a npm account. The first three commands are used to associate your personal
information. The last command, npm adduser, will prompt you for a username and create a npm account
(assuming the username is available). Once an account is created, the user's published modules can be viewed at
https://npmjs.org/~username.

Listing 2-48.  Creating a npm User Account

npm set init.author.name "John Doe"
npm set init.author.email "john@domain.com"
npm set init.author.url "http://www.johnspage.com"
npm adduser
 

https://npmjs.org/~username
http://john@domain.com/
http://www.johnspage.com/

m

27

After setting up an npm account, you must create a package.json file for your module. The process for doing this
has already been covered in this chapter. Finally, issue the command npm publish to create a npm entry based on the
package.json file.

Summary
This chapter has covered a lot of material—and it needed to. A big part of developing Node applications is working
with npm and third-party packages. From this chapter you should have gotten a good grasp on npm, the require()
function, the package.json file, and module authoring. Although the entire package system cannot be covered
comprehensively in a single chapter, you now should know enough to work through the rest of this book. Fill in any
gaps in your knowledge by reading the documentation online.

29

Chapter 3

The Node Programming Model

Before trying to write any meaningful Node applications, it’s important to understand what’s going on under the
hood. Probably the most important thing to understand is that JavaScript—and Node by extension—is single
threaded. This means that Node applications can do exactly one thing at a time. However, JavaScript can give the
illusion of being multithreaded through the use of an event loop. The event loop is used to schedule tasks in Node’s
event-driven programming model. Each time an event occurs, it is placed in Node’s event queue. In each iteration
of the event loop, a single event is dequeued and processed. If, during processing, this event creates any additional
events, they are simply added to the end of the queue. When the event is completely handled, control is returned to
the event loop, and another event is processed.

The example in Listing 3-1 illustrates how the event loop allows multiple tasks to appear to execute in parallel.
In this example, setInterval() is used to create two periodic tasks which each run once per second. The first task is
a function displaying the string foo, while the second task displays bar. When the application is run, setInterval()
causes each function to run approximately once every 1,000 milliseconds. The result is that foo and bar are printed
once per second. Remember, to execute a Node program, just type "node", followed by the program’s file name.

Listing 3-1.  An Example Application Giving the Illusion of Multithreaded Execution

setInterval(function() {
 console.log("foo");
}, 1000);
 
setInterval(function() {
 console.log("bar");
}, 1000);
 

Based on the code in Listing 3-1, JavaScript appears to be doing multiple things at once. Unfortunately, it is all
too easy to verify its true single-threaded nature. In Listing 3-2, an infinite loop has been introduced into one of the
repeating functions. The infinite loop prevents the first function from ever returning. Therefore, control is never
passed back to the event loop, preventing anything else from executing. If the code were truly multithreaded,
bar would continue to be printed to the console even though the other function was stuck in an infinite loop.

Listing 3-2.  Exploiting Node’s Single-Threaded Nature by Introducing an Infinite Loop

setInterval(function() {
 console.log("foo");
 
 while (true) {
 }
}, 1000);
 

Chapter 3 ■ The Node Programming Model

30

setInterval(function() {
 console.log("bar");
}, 1000);

Asynchronous Programming
Another important aspect of the Node programming model is the fact that almost everything is done asynchronously.
Asynchronicity is so common that many synchronous functions contain the string sync in their name to avoid
confusion. Under Node’s paradigm, sometimes referred to as continuation-passing style (CPS) programming,
asynchronous functions take an extra argument, a function that is called after the asynchronous code has finished
executing. This additional argument is referred to as a continuation or, more commonly, a callback function.

An example of an asynchronous function call is shown in Listing 3-3. This code reads a file from the file system
and prints the contents to the screen. Accessing the file system will be revisited later in the book, but for now,
this example should be simple enough to understand. The core fs module, imported on the first line, is used for
 working with the file system. The readFile() method works asynchronously, reading in the file foo.txt using
UTF-8 encoding. Once the file is read, the anonymous callback function is invoked. The callback function takes
two parameters, error and data, which represent any error conditions and the contents of the file, respectively.

Listing 3-3.  An Example of Asynchronous File Reading

var fs = require("fs");
 
fs.readFile("foo.txt", "utf8", function(error, data) {
 if (error) {
 throw error;
 }
 
 console.log(data);
});
 
console.log("Reading file...");
 

This short example illustrates two important conventions for Node developers. First, if a method takes a callback
function as an argument, it should be the final argument. Second, if a method takes an error as an argument, it should
be the first argument. These are not rules of the language but generally agreed upon calling conventions in the Node
developer community.

When this program is executed, it demonstrates another important aspect of asynchronous programming.
To test the example program, save the source code in a file named file-reader.js. Next, create a second file,
foo.txt, in the same directory as the Node script. For simplicity, just add the word "foo" to the file, and save it.
Listing 3-4 shows the output of running the example program. Notice that the message Reading file... is displayed
before the contents of the file, despite the fact that the message is not printed until the last line of code.

Listing 3-4.  Console Output of the File Reader Example Program

$ node file-reader.js
Reading file...
foo
 

When readFile() is invoked, it makes a nonblocking I/O call to the file system. The fact that the I/O is
nonblocking means that Node does not wait for the file system to return the data. Instead, Node continues to the next
statement, which happens to be a console.log() call. Eventually, the file system returns with the contents of foo.txt.

Chapter 3 ■ The Node Programming Model

31

When this happens, the readFile() callback function is invoked, and the file contents are displayed. This behavior
appears to contradict the fact that Node programs are single threaded, but you must keep in mind that the file system
is not a part of Node.

Callback Hell
The CPS syntax used in Node can easily lead to a situation known as callback hell. Callback hell occurs when callbacks
are nested within other callbacks several levels deep. This can lead to code that is confusing and difficult to read
and maintain. Callback hell is sometimes referred to as the Pyramid of Doom, its name coming from the pyramidal
structure the code takes on.

As an example, let’s revisit the file reader program from Listing 3-3. If we were to access a file that didn’t exist,
an exception would be thrown, and the program would crash. To make the program sturdier, first check that the file
exists and that it is actually a file (not a directory or some other structure). The modified program is shown in
Listing 3-5. Notice that the program now contains calls to fs.exists() and fs.stat(), as well as the original call
to readFile(). With all of these utilizing callback functions, the level of code indentation increases. Couple this with
the indentation from structures like if statements, and you see how callback hell can become a problem in complex
Node applications.

Listing 3-5.  A File Reader Program with Callback Hell Beginning to Creep In

var fs = require("fs");
var fileName = "foo.txt";
 
fs.exists(fileName, function(exists) {
 if (exists) {
 fs.stat(fileName, function(error, stats) {
 if (error) {
 throw error;
 }
 
 if (stats.isFile()) {
 fs.readFile(fileName, "utf8", function(error, data) {
 if (error) {
 throw error;
 }
 
 console.log(data);
 });
 }
 });
 }
});
 

Later in this chapter, you’ll learn about async, a module that can help prevent callback hell. However, you can
also avoid the problem by using small named functions as callbacks, instead of nested anonymous functions. For
example, Listing 3-6 refactors Listing 3-5 to use named functions. Notice that references to the named functions
cbExists(), cbStat(), cbReadFile() have replaced the anonymous callback functions. The downside is that the
code is slightly longer and might be harder to follow. For such a small application, this is probably overkill, but for
large applications it can be essential to the overall software architecture.

Chapter 3 ■ The Node Programming Model

32

Listing 3-6.  The File Reader Example Refactored to Prevent Callback Hell

var fs = require("fs");
var fileName = "foo.txt";
 
function cbReadFile(error, data) {
 if (error) {
 throw error;
 }
 
 console.log(data);
}
 
function cbStat(error, stats) {
 if (error) {
 throw error;
 }
 
 if (stats.isFile()) {
 fs.readFile(fileName, "utf8", cbReadFile);
 }
}
 
function cbExists(exists) {
 if (exists) {
 fs.stat(fileName, cbStat);
 }
}
 
fs.exists(fileName, cbExists);

Exception Handling
Asynchronous code also has major implications for exception handling. In synchronous JavaScript code,
try ... catch ... finally statements are used to handle errors. However, Node’s callback-driven nature
allows functions to execute outside the error-handling code in which they are defined. For example, Listing 3-7 adds
traditional error handling to the file reader example from Listing 3-3. Additionally, the name of the file to read has
been hard-coded to the empty string. Therefore, when readFile() is called, it is unable to read the file and populates
the error argument of the callback function. The callback function then throws the error. Intuitively, one assumes
that the catch clause will handle the thrown error. However, by the time the callback function is executed,
the try ... catch statement is no longer a part of the call stack, and the exception is left uncaught.

Listing 3-7.  An Incorrect Attempt at Asynchronous Error Handling

var fs = require("fs");
 
try {
 fs.readFile("", "utf8", function(error, data) {
 if (error) {
 throw error;
 }
 

Chapter 3 ■ The Node Programming Model

33

 console.log(data);
 });
} catch (exception) {
 console.log("The exception was caught!")
}
 

Synchronous exceptions can still be handled with try...catch...finally statements, but you will find that they
are relatively useless in Node. The majority of Node exceptions are of the asynchronous variety, and can be handled
in a number of ways. For starters, all functions that take an error argument should be sure to check it—at least the
example in Listing 3-7 does that right. In the example, the exception has been detected, but is then immediately
thrown again. Of course, in a real application, you would want to handle the error, not throw it.

The second way to process asynchronous exceptions is to set up a global event handler for the process’s
uncaughtException event. Node provides a global object, named process, that interacts with the Node process. When
an unhandled exception bubbles all the way back to the event loop, an uncaughtException error is created. This
exception can be handled using the process object’s on() method. Listing 3-8 shows an example of a global exception
handler.

Listing 3-8.  An Example of Global Exception Handler

var fs = require("fs");
 
fs.readFile("", "utf8", function(error, data) {
 if (error) {
 throw error;
 }
 
 console.log(data);
});
 
process.on("uncaughtException", function(error) {
 console.log("The exception was caught!")
});
 

While global exception handlers are useful for preventing crashes, they should not be used to recover from errors.
When not properly handled, an exception leaves your application in an indeterminate state. Attempting to move on
from such a state can bring additional errors. If your program does include a global exception handler, use it only to
gracefully terminate the program.

Domains
A domain is the preferred mechanism for handling asynchronous errors in Node. Domains, a relatively new feature
(introduced in version 0.8), allow multiple I/O operations to be grouped into a single unit. When a timer, event emitter
(covered in Chapter 4), or callback function registered with a domain creates an error, the domain is notified so the
error can be handled appropriately.

The example in Listing 3-9 shows how domains are used to handle exceptions. On the second line of the
example, the domain module is imported, and a new domain is created. The domain’s run() method is then used to
execute the supplied function. Within the context of run(), all new timers, event emitters, and callback methods are
implicitly registered with the domain. When an error is thrown, it triggers the domain’s error handler. Of course, if the
handler function is not defined, the exception proceeds to crash the program. Finally, when the domain is no longer
needed, its dispose() method is called.

Chapter 3 ■ The Node Programming Model

34

Listing 3-9.  Exception Handling Using Domains

var fs = require("fs");
var domain = require("domain").create();
 
domain.run(function() {
 fs.readFile("", "utf8", function(error, data) {
 if (error) {
 throw error;
 }
 
 console.log(data);
 domain.dispose();
 });
});
 
domain.on("error", function(error) {
 console.log("The exception was caught!")
}); 

Explicit Binding
As previously mentioned, timers, event emitters, and callback functions created in the context of run() are implicitly
registered with the corresponding domain. However, if you create multiple domains, you can explicitly bind to
another domain, even in the context of run(). For example, Listing 3-10 creates two domains, d1 and d2. Within d1’s
run() method, an asynchronous timer that throws an error is created. Because the exception occurs in d1’s run()
callback, the exception is normally handled by d1. However, the timer is explicitly registered with d2 using its add()
method. Therefore, when the exception is thrown, d2’s error handler is triggered.

Listing 3-10.  An Example of a Bound Callback Function Using Domains

var domain = require("domain");
var d1 = domain.create();
var d2 = domain.create();
 
d1.run(function() {
 d2.add(setTimeout(function() {
 throw new Error("test error");
 }, 1));
});
 
d2.on("error", function(error) {
 console.log("Caught by d2");
});
 
d1.on("error", function(error) {
 console.log("Caught by d1")
});
 

As we’ve just seen, add() is used to explicitly bind timers to a domain. This also works for event emitters.
A similar method, remove(), removes a timer or event emitter from a domain. Listing 3-11 shows how remove()
is used to unbind a timer. One very important thing to note is that removing the timer variable from d2 does not

Chapter 3 ■ The Node Programming Model

35

automatically bind it to d1. Instead, the exception thrown by the timer’s callback function does not get caught,
and the program crashes.

Listing 3-11.  Using remove() to Unbind a Timer from a Domain

var domain = require("domain");
var d1 = domain.create();
var d2 = domain.create();
 
d1.run(function() {
 var timer = setTimeout(function() {
 throw new Error("test error");
 }, 1);
 
 d2.add(timer);
 d2.remove(timer);
});
 
d2.on("error", function(error) {
 console.log("Caught by d2");
});
 
d1.on("error", function(error) {
 console.log("Caught by d1")
}); 

Note■■  E ach domain has an array property, members, that contains all the timers and event emitters explicitly added
to the domain.

Domains also provide a bind() method that can be used to explicitly register a callback function with the
domain. This is useful because it allows a function to be bound to a domain without immediately executing the
function, as run() would. The bind() method takes a callback function as its only argument. The function returned
is a registered wrapper around the original callback. As with the run() method, exceptions are handled through the
domain’s error handler. Listing 3-12 revisits the file reader example using the domain bind() method to handle errors
associated with the readFile() callback function.

Listing 3-12.  An Example of a Bound Callback Function Using Domains

var fs = require("fs");
var domain = require("domain").create();
 
fs.readFile("", "utf8", domain.bind(function(error, data) {
 if (error) {
 throw error;
 }
 
 console.log(data);
 domain.dispose();
}));
 

Chapter 3 ■ The Node Programming Model

36

domain.on("error", function(error) {
 console.log("The exception was caught!")
});
 

There is another method, intercept(), that is nearly identical to bind(). In addition to catching any thrown
exceptions, intercept() also detects any Error objects passed as the first argument of the callback function.
This eliminates the need to check for any errors passed to the callback function. For example, Listing 3-13 rewrites
Listing 3-12 using the intercept() method. The two examples behave identically, but notice that in 3-13 the callback
no longer has an error argument. We’ve also eliminated the if statement used to detect the error argument.

Listing 3-13.  Error Handling Using the Domain intercept() Method

var fs = require("fs");
var domain = require("domain").create();
 
fs.readFile("", "utf8", domain.intercept(function(data) {
 console.log(data);
 domain.dispose();
}));
 
domain.on("error", function(error) {
 console.log("The exception was caught!")
});

The async Module
async is a third party, open source module which is extremely useful for managing asynchronous control flow. At the
time of writing, async was the second-most-depended-upon module in the npm registry. Although it was originally
developed for Node applications, async can also be used on the client side, as the module is supported by many
popular browsers, including Chrome, Firefox, and Internet Explorer. Developers can provide one or more functions,
and using the async module, define how they will be executed—whether in series or with a specified degree of
parallelism. Given the module’s popularity, flexibility, and power, async is the first third party module thoroughly
explored in this book.

Executing in Series
One of the most challenging aspects of asynchronous development is enforcing the order in which functions execute
while maintaining readable code. However, with async, enforcing serial execution is simply a matter of using the
series() method. As its first argument, series() takes an array or object containing functions that are to be executed
in order. Each function takes a callback as an argument. Following Node conventions, the first argument to each
callback function is an error object, or null, if there is no error. The callback functions also accept an optional second
argument representing the return value. Invoking the callback function causes series() to move on to the next
function. However, if any functions pass an error to their callback, then none of the remaining functions are executed.

The series() method also accepts an optional second argument, a callback that is invoked after all of the
functions have completed. This final callback accepts two arguments, an error and an array or object containing the
results from the functions. If any functions pass an error to their callback, control is immediately passed to the final
callback function.

Listing 3-14 contains three timer tasks, each of which populates an element of the results array. In this example,
task 1 takes 300 milliseconds to complete, task 2 takes 200 milliseconds, and task 3 takes 100 milliseconds. Assuming
that we would like the tasks to run in order, the code would need to be restructured so that task 3 is invoked from task 2,

Chapter 3 ■ The Node Programming Model

37

which in turn is invoked from task 1. Additionally, we have no way of knowing when all of the tasks are completed and
the results are ready.

Listing 3-14.  An Example of Timer Tasks Executing with No Established Control Flow

var results = [];
 
setTimeout(function() {
 console.log("Task 1");
 results[0] = 1;
}, 300);
 
setTimeout(function() {
 console.log("Task 2");
 results[1] = 2;
}, 200);
 
setTimeout(function() {
 console.log("Task 3");
 results[2] = 3;
}, 100);
 

Listing 3-15 shows the results of running the previous example. Notice that the tasks do not execute in the proper
order and there is no way to verify the results returned from the tasks.

Listing 3-15.  Console Output Verifying That the Tasks Execute Out of Order

$ node timer-tasks
Task 3
Task 2
Task 1
 

Listing 3-16 shows how we can use async’s series() method to solve all of the problems associated with control
flow without significantly complicating the code. The first line imports the async module, which, as you learned in
Chapter 2, can be installed using the command npm install async. Next, a call to series() is made, with an array
of functions containing the original timer tasks wrapped inside anonymous functions. Inside each task the desired
return value is passed as the second argument of the callback function. The call to series() also includes a final
callback function, which solves the problem of not knowing when all of the results are ready.

Listing 3-16.  An Example of Executing Functions in Series Using Async

var async = require("async");
 
async.series([
 function(callback) {
 setTimeout(function() {
 console.log("Task 1");
 callback(null, 1);
 }, 300);
 },

Chapter 3 ■ the Node programmiNg model

38

 function(callback) {
 setTimeout(function() {
 console.log("Task 2");
 callback(null, 2);
 }, 200);
 },
 function(callback) {
 setTimeout(function() {
 console.log("Task 3");
 callback(null, 3);
 }, 100);
 }
], function(error, results) {
 console.log(results);
});

Listing 3-17 shows the console output of Listing 3-16, which verifies that the three tasks are executed in the
designated order. Additionally, the final callback provides a mechanism for inspecting the results. In this case,
the results are formatted as an array, because the task functions were passed in an array. Had the tasks been passed
using an object, the results would also be formatted as an object.

Listing 3-17. Console Output of Code in Listing 3-16

$ node async-series
Task 1
Task 2
Task 3
[1, 2, 3]

Handling Errors
As previously mentioned, if any functions pass an error to their callback function, execution is immediately
short-circuited to the final callback function. In Listing 3-18, an error has been intentionally introduced in the
first task. Also, the third task has been removed for brevity, and the final callback now checks for errors.

Listing 3-18. The Series Example Has Been Modified to Include an Error

var async = require("async");

async.series([
 function(callback) {
 setTimeout(function() {
 console.log("Task 1");
 callback(new Error("Problem in Task 1"), 1);
 }, 200);
 },
 function(callback) {
 setTimeout(function() {
 console.log("Task 2");
 callback(null, 2);
 }, 100);
 }

Chapter 3 ■ The Node Programming Model

39

], function(error, results) {
 if (error) {
 console.log(error.toString());
 } else {
 console.log(results);
 }
});
 

The resulting output after introducing an error is shown in Listing 3-19. Notice that the error in the first task
prevents the second task from ever executing at all.

Listing 3-19.  Console Output in the Presence of an Error

$ node async-series-error
Task 1
Error: Problem in Task 1

Executing in Parallel
The async module can also execute multiple functions in parallel using the parallel() method. Of course, JavaScript
is still single threaded, so your code won’t actually execute in parallel. The parallel() method behaves exactly like
series(), except that async does not wait for one function to return before invoking the next, giving the illusion of
parallelism. Listing 3-20 shows an example of executing the same three tasks using parallel(). This example also
passes the tasks in using an object, since you’ve already seen the array syntax in the previous examples.

Listing 3-20.  Executing Three Tasks in Parallel Using Async

var async = require("async");
 
async.parallel({
 one: function(callback) {
 setTimeout(function() {
 console.log("Task 1");
 callback(null, 1);
 }, 300);
 },
 two: function(callback) {
 setTimeout(function() {
 console.log("Task 2");
 callback(null, 2);
 }, 200);
 },
 three: function(callback) {
 setTimeout(function() {
 console.log("Task 3");
 callback(null, 3);
 }, 100);
 }
}, function(error, results) {
 console.log(results);
});
 

Chapter 3 ■ The Node Programming Model

40

Listing 3-21 shows the output from Listing 3-20. In this case, the tasks executed out of program order.
Also, notice that the final line of output, which displays the task results, is an object, not an array.

Listing 3-21.  Console Output from Executing Tasks in Parallel

$ node async-parallel
Task 3
Task 2
Task 1
{ three: 3, two: 2, one: 1 }

Limiting Parallelism
The parallel() method attempts to execute all of the functions passed to it as soon as possible. A similar method,
parallelLimit(), behaves exactly like parallel(), except that you can place an upper bound on the number of tasks
executed in parallel. Listing 3-22 shows an example use of the parallelLimit() method. In this case, the parallelism
limit is set to two, using an additional argument before the final callback. It should be noted that parallelLimit()
does not execute functions in discrete batches of n. Instead, the function simply ensures that there are never more
than n functions executing at once.

Listing 3-22.  Executing Three Tasks in Parallel, with a Maximum Parallelism of Two

var async = require("async");
 
async.parallelLimit({
 one: function(callback) {
 setTimeout(function() {
 console.log("Task 1");
 callback(null, 1);
 }, 300);
 },
 two: function(callback) {
 setTimeout(function() {
 console.log("Task 2");
 callback(null, 2);
 }, 200);
 },
 three: function(callback) {
 setTimeout(function() {
 console.log("Task 3");
 callback(null, 3);
 }, 100);
 }
}, 2, function(error, results) {
 console.log(results);
});
 

Listing 3-23 shows the resulting output from Listing 3-22. Notice that tasks 1 and 2 are completed before the third
task, even though its timer has the smallest delay. This indicates that task 3 does not begin executing until one of the
first two tasks completes.

Chapter 3 ■ The Node Programming Model

41

Listing 3-23.  The Output from Running the Code in Listing 3-22

$ node parallel-limit.js
Task 2
Task 1
Task 3
{ two: 2, one: 1, three: 3 }

The Waterfall Model
The waterfall model is a serial model that is useful when the tasks are dependent on the results of previously
completed tasks. Waterfalls can also be thought of as assembly lines, where each task performs some part of a larger
task. Waterfalls are created using the async method waterfall(). Setting up a waterfall is very similar to using
series() or parallel(). However, there are a few key differences. First, the list of functions constituting the waterfall
can only be stored in an array (object notation is not supported). The second key difference is that only the results of
the last task are passed to the final callback function. The third difference is that the task functions can take additional
arguments provided by the previous task.

Listing 3-24 shows an example of a waterfall. It uses the Pythagorean theorem to compute the length of a
triangle’s hypotenuse. The Pythagorean theorem states that for right triangles, the squared length of the hypotenuse is
equal to the sum of the squares of the other two sides. The theorem is commonly written as a2 + b2 = c2, where c is the
length of the hypotenuse. In Listing 3-24, the problem has been broken down into three tasks using the waterfall()
method. The first task creates two random numbers to act as the values a and b. These values are passed to the task’s
callback function, which in turn makes them the first two arguments to the second task. The second task computes
the sum of the squares of a and b and passes this value to the third task. The third task computes the square root of the
value passed to it. This value, the length of the hypotenuse, is passed to the final callback function, where it is printed
to the console.

Listing 3-24.  A Waterfall That Computes the Length of a Right Triangle’s Hypotenuse

var async = require("async");
 
async.waterfall([
 function(callback) {
 callback(null, Math.random(), Math.random());
 },
 function(a, b, callback) {
 callback(null, a * a + b * b);
 },
 function(cc, callback) {
 callback(null, Math.sqrt(cc));
 }
], function(error, c) {
 console.log(c);
});
 

The Queue Model
async also supports task queues using the queue() method. Unlike the previous execution models, which execute a
number of functions passed in as arguments, the queue model allows you to dynamically add tasks at any point during
execution. Queues are useful for solving producer-consumer type problems. Because JavaScript is single threaded,
you can safely ignore the potential concurrency problems that normally arise with producer-consumer problems.

Chapter 3 ■ The Node Programming Model

42

Listing 3-25 shows the basic initialization of an async queue. The queue object is created using the queue()
method, which takes a task-handling function as an input argument. The task handler takes two arguments,
a user-defined task and a callback function that should be called with an error argument once the task is processed.
In this example, no error has occurred, so the callback function is invoked, with null as its argument. The queue()
method also takes an argument specifying the queue’s level of parallelism, similar to the parallelLimit() method.
The queue shown in Listing 3-25 can process up to four tasks at once.

Listing 3-25.  Initialization of an async Queue

var async = require("async");
var queue = async.queue(function(task, callback) {
 // process the task argument
 console.log(task);
 callback(null);
}, 4);
 

Once the queue is set up, begin adding tasks to it using its push() and unshift() methods. Like the array
methods of the same names, unshift() and push() add tasks to the beginning and end of the queue, respectively.
Both methods can add a single task to the queue or, by passing in an array, multiple tasks. Both methods also accept
an optional callback function; if present, it is invoked with an error argument after each task is completed.

In Listing 3-26, an interval is used to add a new task to the end of the queue from the previous example every
200 milliseconds. In this example, each task is just an object with a numeric id field. However, a task can actually
be any data, as dictated by your application. The optional callback argument has been included in this example.
In this case, the callback function simply prints a message stating that a task has been completed.

Listing 3-26.  An Example of Adding Tasks to an async Queue

var i = 0;
 
setInterval(function() {
 queue.push({
 id: i
 }, function(error) {
 console.log("Finished a task");
 });
 i++;
}, 200);

Additional Queue Methods and Properties
At any point, you can determine the number of elements in the queue by using the length() method. You can also
control the queue’s level of parallelism using the concurrency property. For example, if the queue length exceeds
a threshold, you can increase the number of concurrent tasks using the code shown in Listing 3-27.

Listing 3-27.  Updating a Queue’s Concurrency Based on Its Load

if (queue.length() > threshold) {
 queue.concurrency = 8;
}
 

Chapter 3 ■ The Node Programming Model

43

Queues also support a number of callback functions, which are triggered on certain events. These callback
functions are saturated(), empty(), and drain(). The saturated() function is triggered any time the queue’s length
becomes equal to its concurrency, empty() is called any time the last task is removed from the queue, and drain()
is called when the last task has been completely processed. An example of each function is shown in Listing 3-28.

Listing 3-28.  Example of Use of saturated(), empty(), and drain()

queue.saturated = function() {
 console.log("Queue is saturated");
};
 
queue.empty = function() {
 console.log("Queue is empty");
};
 
queue.drain = function() {
 console.log("Queue is drained");
};

Repeating Methods
The async module also provides other methods that repeatedly call a function until some condition is met. The most
basic of these is whilst(), whose behavior resembles that of a while loop. Listing 3-29 demonstrates how whilst()
is used to implement an asynchronous while loop. The whilst() method takes three functions as arguments.
The first is a synchronous truth test, which takes no arguments, and is checked before each iteration. The second
function passed to whilst() is executed each time the truth test returns true. This function takes a callback as its only
argument and can be thought of as the loop body. The loop body’s callback function takes an optional error as its only
argument, which has been set to null in this example. The third argument of whilst() is executed once the truth test
returns false, and acts as a final callback function. This function also takes an optional error as its only argument.

Listing 3-29.  A Simple Loop Implementation Using whilst()

var async = require("async");
var i = 0;
 
async.whilst(function() {
 return i < 5;
}, function(callback) {
 setTimeout(function() {
 console.log("i = " + i);
 i++;
 callback(null);
 }, 1000);
}, function(error) {
 console.log("Done!");
});
 

Chapter 3 ■ The Node Programming Model

44

Repeating Variations
The async module provides three additional methods for implementing asynchronous loop-like structures.
These methods are doWhilst(), until(), and doUntil(), and they behave almost exactly like whilst(). The first,
doWhilst(), is the asynchronous equivalent of a do-while loop, and until() is the inverse of whilst(), executing
until the truth test returns true. Similarly, doUntil() is the inverse of doWhilst(), executing as long as the truth test
returns false. The signatures for these methods are shown in Listing 3-30. Notice that the body argument comes
before the test for doWhilst() and doUntil().

Listing 3-30.  Method Signatures of doWhilst(), until(), and doUntil()

async.doWhilst(body, test, callback)
async.until(test, body, callback)
async.doUntil(body, test, callback)
 

Additional async Functionality
async provides a number of other utility functions in addition to the ones already covered. For example, async
provides memoize() and unmemoize() methods for implementing memoization. The module also provides series and
parallel versions of many common methods used for dealing with collections. Some of these methods are each(),
map(), filter(), reduce(), some(), and every(). A complete listing of the methods provided by async, as well as
reference code, is available on the module’s GitHub page: https://github.com/caolan/async.

Note■■  M emoization is a programming technique that attempts to increase performance by caching a function’s
previously computed results. When a memoized function is called, its input arguments are mapped to the output
in a software cache. The next time the function is called with the same inputs, the cached value is returned instead
of the function executing again.

Summary
This chapter has begun the exploration of the Node programming model. Reading the chapter should have left you
with a better understanding of the concepts of asynchronous programming and nonblocking I/O. If you are still
unsure, go back and read the chapter again. If you plan to do any serious Node development, understanding these
concepts is absolutely essential. Exception handling, also covered here, could have probably been put off until later,
but as asynchronous error handling can be a tricky subject, it’s best to get it on the table as soon as possible.

This chapter has also introduced async, one of the most popular Node modules in existence. An extremely
powerful tool in any Node developer’s toolbox, async also works in the browser, making it an asset to front-end
developers as well. Just about any execution pattern can be abstracted using the models provided by async.
Additionally, models can be nested inside others. For example, you can create a set of functions that execute
in parallel, with each function containing a nested waterfall.

https://github.com/caolan/async

45

Chapter 4

Events and Timers

The previous chapter introduced Node's event-driven programming model. This chapter takes a more in-depth
look at events and event handling. A solid understanding of event handling will allow you to create sophisticated,
event-driven applications, such as web servers. This chapter introduces event emitters—objects used to create new
events. After learning how to create events, the chapter turns to event handling. Finally, the chapter wraps up with a
discussion of timers and function scheduling in Node.

Event Emitters
In Node, objects that generate events are called event emitters. Creating an event emitter is as simple as importing
the events core module and instantiating an EventEmitter object. The EventEmitter instance can then create new
events using its emit() method. An example which creates an event emitter is shown in Listing 4-1. In this example,
the event emitter creates a foo event.

Listing 4-1.  An Example of a Simple Event Emitter

var events = require("events");
var emitter = new events.EventEmitter();
 
emitter.emit("foo");
 

Event names can be any valid string, but camelCase naming is used by convention. For example, an event
created to indicate that a new user was added to the system would likely be named userAdded or something similar.

Often, events need to provide additional information beyond the event name. For example, when a key is
pressed, the event also specifies which key is typed. To support this functionality, the emit() method can accept
an arbitrary number of optional arguments after the event name. Returning to the example of creating a new user,
Listing 4-2 shows how additional arguments are passed to emit(). This example assumes that some I/O (likely a
database transaction) operation is performed, which creates a new user. Once the I/O operation is complete,
the event emitter, emitter, creates a new userAdded event and passes in the user’s username and password.

Listing 4-2.  An Example of Passing Arguments to an Emitted Event

var events = require("events");
var emitter = new events.EventEmitter();
var username = "colin";
var password = "password";
 
// add the user
// then emit an event
emitter.emit("userAdded", username, password); 

Chapter 4 ■ Events and Timers

46

Listening for Events
In the example in Listing 4-2, an event emitter was used to create an event. Unfortunately, an event is rather pointless
if no one is listening for it. In Node, event listeners are attached to event emitters using the on() and addListener()
methods. The two methods can be used interchangeably. Both methods take an event name and handler function
as arguments. When an event of the specified type is emitted, the corresponding handler functions are invoked.
For example, in Listing 4-3, a userAdded event handler is attached to emitter using the on() method. Next, emitter
emits a userAdded event, causing the handler to be invoked. The output from this example is shown in Listing 4-4.

Listing 4-3.  Setting Up an Event Listener Using on()

var events = require("events");
var emitter = new events.EventEmitter();
 
var username = "colin";
var password = "password";
 
// an event listener
emitter.on("userAdded", function(username, password) {
 console.log("Added user " + username);
});
 
// add the user
// then emit an event
emitter.emit("userAdded", username, password);

Note■■  A n event listener can detect only those events that occur after the listener is attached. That is, a listener is not
capable of detecting past events. Therefore, as Listing 4-3 shows, be sure to attach a listener before emitting events.

Listing 4-4.  The Output from Running the Code in Listing 4-3

$ node user-event-emitter.js
Added user colin

One-Time Event Listeners
Sometimes you may be interested in reacting to an event only the first time it occurs. In these situations you can use
the once() method. once() is used exactly like on() and addListener(). However, the listener attached using once( )
is executed a maximum of one time and then removed. Listing 4-5 shows an example use of the once() method.
In this example, once() is used to listen for foo events. The emit() method is then used to create two foo events.
However, because the event listener was registered using once(), only the first foo event is handled. Had the event
listener been registered using on() or addListener(), both foo events would have been handled. The output of
running the example is shown in Listing 4-6.

Listing 4-5.  An Example of a One-Time Event Listener Using once()

var events = require("events");
var emitter = new events.EventEmitter();
 
emitter.once("foo", function() {
 console.log("In foo handler");
});
 

Chapter 4 ■ Events and Timers

47

emitter.emit("foo");
emitter.emit("foo");
 
Listing 4-6.  The Output from Running the Code in Listing 4-5

$ node once-test.js
In foo handler

Inspecting Event Listeners
At any point in its lifetime, an event emitter can have zero or more listeners attached to it. The listeners for each event
type can be inspected in several ways. If you are interested in only determining the number of attached listeners,
then look no further than the EventEmitter.listenerCount() method. This method takes an EventEmitter instance
and an event name as arguments and returns the number of attached listeners. For example, in Listing 4-7 an event
emitter is created, and two uninteresting foo event handlers are attached. The last line of the example displays
the number of foo handlers attached to the emitter by calling EventEmitter.listenerCount(). In this case, the
example outputs the number 2. Notice that the listenerCount() call is attached to the EventEmitter class, and not
a specific instance. Many languages refer to this as a static method. However, the Node documentation identifies
listenerCount() as a class method, and so this book follows suit.

Listing 4-7.  Determining the Number of Listeners Using EventEmitter.listenerCount()

var events = require("events");
var EventEmitter = events.EventEmitter;
// get the EventEmitter constructor from the events module
var emitter = new EventEmitter();
 
emitter.on("foo", function() {});
emitter.on("foo", function() {});
console.log(EventEmitter.listenerCount(emitter, "foo"));
 

If getting the number of handlers attached to an event emitter is not enough, the listeners() method can
be used to retrieve an array of event handler functions. This array provides the number of handlers via the length
property, as well as the actual functions invoked when an event occurs. With that said, modifying the array returned
by listeners() does not affect the handlers maintained by the event emitter object.

Listing 4-8 provides an example use of the listeners() method. In this example, a foo event handler is added to
an event emitter. listeners() is then used to retrieve the array of event handlers. The array forEach() method
is then used to iterate over the event handlers, invoking each one along the way. Since the event handler in this
example does not take any arguments and does not alter the program state, the call to forEach() essentially
replicates the functionality of emitter.emit("foo").

Listing 4-8.  An Example That Iterates Over Event Handlers via the listeners() Method

var events = require("events");
var EventEmitter = events.EventEmitter;
var emitter = new EventEmitter();
 
emitter.on("foo", function() { console.log("In foo handler"); });
emitter.listeners("foo").forEach(function(handler) {
 handler();
});
 

Chapter 4 ■ events and timers

48

The newListener Event
Each time a new event handler is registered, the event emitter emits a newListener event. This event is used to detect
new event handlers. You typically use newListener when you need to allocate resources or perform some action for
each new event handler. A newListener event is handled just like any other. The handler expects two arguments:
the event name as a string and the handler function. For example, in Listing 4-9 a foo event handler is attached to an event
emitter. Behind the scenes, the emitter emits a newListener event, causing the newListener event handler to be invoked.

Listing 4-9. Adding a newListener Event Handler

var events = require("events");
var emitter = new events.EventEmitter();

emitter.on("newListener", function(eventName, listener) {
 console.log("Added listener for " + eventName + " events");
});

emitter.on("foo", function() {});

It is important to remember that the newListener event exists when creating your own events. Listing 4-10 shows
what can happen if you forget. In this example, the developer has created a custom newListener event handler that
expects to be passed a Date object. When a newListener event is emitted, everything works as expected. However,
when a seemingly unrelated foo event handler is created, an exception is thrown because the built-in newListener
event is emitted with the string foo as its first argument. Since Date objects have a getTime() method but strings
do not, a TypeError is thrown.

Listing 4-10. An Invalid Handler for newListener Events

var events = require("events");
var emitter = new events.EventEmitter();

emitter.on("newListener", function(date) {
 console.log(date.getTime());
});

emitter.emit("newListener", new Date());
emitter.on("foo", function() {});

Removing Event Listeners
An event listener can be removed after it’s been attached to an event emitter. For example, to reset an event emitter to
some initial state in which it has no listeners, the simplest approach is to use the removeAllListeners() method. This
method can be called with no arguments, in which case all event listeners are removed. Alternatively, passing in an
event name causes the handlers for the named event to be removed. The syntax of removeAllListeners() is shown in
Listing 4-11.

Listing 4-11. Syntax of the removeAllListeners() Method

emitter.removeAllListeners([eventName])

If removeAllListeners() is too coarse-grained for your needs, turn to the removeListener() method. This
method is used to remove individual event listeners, and takes two arguments—the name of the event and the
handler function to remove. Listing 4-12 shows an example use of removeListener(). In this case, a foo event listener

Chapter 4 ■ Events and Timers

49

is added to an event emitter, then immediately removed. When the event is emitted, nothing happens because there
are no attached listeners. Notice that the removeListener() usage is identical to that of the on() and addListener()
methods, although they perform inverse operations.

Listing 4-12.  Removing an Event Handler Using removeListener()

var events = require("events");
var emitter = new events.EventEmitter();
 
function handler() {
 console.log("In foo handler");
}
 
emitter.on("foo", handler);
emitter.removeListener("foo", handler);
emitter.emit("foo");
 

If you plan to use removeListener(), avoid anonymous handler functions. By their very nature, anonymous
functions are not bound to a named reference. If an anonymous event handler is created, a second identical
anonymous function will not successfully remove the handler. This is so because two distinct Function objects
are not considered equivalent unless they point to the same location in memory. Therefore, the example shown
in Listing 4-13 will not remove an event listener.

Listing 4-13.  An Incorrect Use of removeListener() with Anonymous Functions

var events = require("events");
var emitter = new events.EventEmitter();
 
emitter.on("foo", function() {
 console.log("foo handler");
});
emitter.removeListener("foo", function() {
 console.log("foo handler");
});
emitter.emit("foo");
 

Detecting Potential Memory Leaks
Typically, a single event emitter will require just a handful of event listeners. So, if an application programmatically
adds event listeners to an event emitter, and suddenly that emitter has a few hundred event listeners, that could
indicate some type of logic error, which could result in a memory leak. An example of this would be a loop that adds
event listeners. If the loop contained a logic error, a large number of event handlers could be created, consuming
unnecessary memory. By default, Node prints a warning message if more than ten listeners are added for any single
event. This threshold can be controlled using the setMaxListeners() method. This method takes an integer as its
only argument. By setting this value to 0, the event emitter will accept unlimited listeners without printing a warning
message. Note that program semantics are not affected by setMaxListeners() (it only causes a warning message to
be printed). Instead, it simply provides a useful debugging mechanism. The usage for setMaxListeners() is shown
in Listing 4-14.

Listing 4-14.  Syntax of the setMaxListeners() Method

emitter.setMaxListeners(n)

Chapter 4 ■ Events and Timers

50

Inheriting from Event Emitters
All of the examples thus far have explicitly concerned the managing of EventEmitter instances. As an alternative,
you can create custom objects that inherit from EventEmitter and include additional application-specific logic.
Listing 4-15 shows how this is done. The first line imports the familiar EventEmitter constructor. The second
line imports the util core module. As the name implies, util provides a number of useful utility functions.
The inherits() method, which is of particular interest in this example, takes two arguments, both of which are
constructor functions. inherits() causes the first constructor to inherit the prototype methods from the second.
In this example, the custom User constructor inherits from EventEmitter. Inside the User constructor, the EventEmitter
constructor is called. Additionally, a single method, addUser(), is defined which emits userAdded events.

Listing 4-15.  Creating an Object That Extends EventEmitter

var EventEmitter = require("events").EventEmitter;
var util = require("util");
 
function UserEventEmitter() {
 EventEmitter.call(this);
 
 this.addUser = function(username, password) {
 // add the user
 // then emit an event
 this.emit("userAdded", username, password);
 };
};
 
util.inherits(UserEventEmitter, EventEmitter); 

Note■■   JavaScript employs a type of inheritance known as prototypal inheritance, which differs from classical
inheritance—the sort used in a language such as Java. In prototypal inheritance, there are no classes. Instead,
objects act as prototypes for other objects.

Listing 4-16 shows how the custom User event emitter is used. For the purposes of this example, assume that the
User constructor is defined in the same file—although theoretically it could be defined elsewhere and imported using
the require() function. In this example, a new User is instantiated. Next, a userAdded event listener is added. Then the
addUser() method is called to simulate the creation of a new user. Since addUser() emits a userAdded event, the event
handler gets invoked. Also, notice the print statement on the final line of the example. This statement checks whether the
user variable is an instance of EventEmitter. Since User inherits from EventEmitter, this will evaluate to true.

Listing 4-16.  Using a Custom Event Emitter

var user = new UserEventEmitter();
var username = "colin";
var password = "password";
 
user.on("userAdded", function(username, password) {
 console.log("Added user " + username);
});
 
user.addUser(username, password)
console.log(user instanceof EventEmitter);

Chapter 4 ■ Events and Timers

51

Using Events to Avoid Callback Hell
Chapter 3 explored a number of ways to avoid callback hell, one of which is using the async module. Event emitters
offer another elegant method for avoiding the Pyramid of Doom. As an example, let's use Listing 4-17 to revisit the
file reader application from Listing 3-5.

Listing 4-17.  A File Reader Program with Callback Hell Beginning to Creep In

var fs = require("fs");
var fileName = "foo.txt";
 
fs.exists(fileName, function(exists) {
 if (exists) {
 fs.stat(fileName, function(error, stats) {
 if (error) {
 throw error;
 }
 
 if (stats.isFile()) {
 fs.readFile(fileName, "utf8", function(error, data) {
 if (error) {
 throw error;
 }
 
 console.log(data);
 });
 }
 });
 }
});
 

Listing 4-18 shows how to rewrite the file reader application using event emitters. In this example, a FileReader
object that encapsulates all of the file reading functionality is created. The EventEmitter constructor and the util
module are required to set up the event emitter inheritance. Additionally, the fs module is needed to get access
to the file system.

Inside the FileReader constructor, the first thing you'll notice is that this is aliased to the private _self variable.
This is done to maintain a reference to the FileReader object inside the asynchronous file system callback functions.
Inside these callbacks, the this variable does not refer to the FileReader. This means that the emit() method is not
accessible via the this keyword in these callbacks.

Other than the _self variable, the code is fairly straightforward. The exists() method is used to check whether
the file exists. If it does, a stats event is emitted. The stats listener is then triggered, calling the stat() method.
If the file is a normal file and no errors occur, then a read event is emitted. The read event triggers the read listener,
which attempts to read and print the contents of the file.

Listing 4-18.  Refactoring the File Reader Application Using Event Emitters

var EventEmitter = require("events").EventEmitter;
var util = require("util");
var fs = require("fs");
 

Chapter 4 ■ Events and Timers

52

function FileReader(fileName) {
 var _self = this;
 
 EventEmitter.call(_self);
 
 _self.on("stats", function() {
 fs.stat(fileName, function(error, stats) {
 if (!error && stats.isFile()) {
 _self.emit("read");
 }
 });
 });
 
 _self.on("read", function() {
 fs.readFile(fileName, "utf8", function(error, data) {
 if (!error && data) {
 console.log(data);
 }
 });
 });
 
 fs.exists(fileName, function(exists) {
 if (exists) {
 _self.emit("stats");
 }
 });
};
 
util.inherits(FileReader, EventEmitter);
 
var reader = new FileReader("foo.txt");

Timers and Scheduling
As all of the familiar JavaScript functions for handling timers and intervals are available in Node as globals, you don't
need to import them using require(). The setTimeout() function is used to schedule a one-time callback function to
execute at some time in the future. The arguments to setTimeout() are the callback function to execute, the amount
of time (in milliseconds) to wait before executing it, and zero or more arguments to pass to the callback function.
Listing 4-19 shows how setTimeout() is used to schedule a callback function to execute after a one second delay.
In this example, the callback function takes two arguments, foo and bar, which are populated by the final two
arguments to setTimeout().

Note■■  R emember that JavaScript time (computer time in general, actually) is not 100% accurate, and so callback
functions are highly unlikely to execute exactly when specified. And because JavaScript is single threaded, a long-running
task can completely throw off timing.

Chapter 4 ■ Events and Timers

53

Listing 4-19.  Creating a Timer That Executes After a Delay of One Second

setTimeout(function(foo, bar) {
 console.log(foo + " " + bar);
}, 1000, "foo", "bar");
 

The setTimeout() function also returns a timeout identifier that can be used to cancel the timer before the
callback function is executed. Timers are canceled by passing the timeout identifier to the clearTimeout() function.
Listing 4-20 shows a timer being canceled prior to execution. In this example the timer is canceled immediately after
it is created. However, in a real application, a timer is typically canceled based on some event occurring.

Listing 4-20.  Canceling a Timer Using the clearTimeout() Function

var timeoutId = setTimeout(function() {
 console.log("In timeout function");
}, 1000);
 
clearTimeout(timeoutId);

Intervals
In essence, an interval is a timer that repeats periodically. The respective functions for creating and canceling an
interval are setInterval() and clearInterval(). Like setTimeout(), setInterval() accepts a callback function,
a delay, and optional callback arguments. It also returns an interval identifier that can be passed to clearInterval()
in order to cancel the interval. Listing 4-21 demonstrates how intervals are created and canceled using setInterval()
and clearInterval().

Listing 4-21.  An example of Creating and Canceling an Interval

var intervalId = setInterval(function() {
 console.log("In interval function");
}, 1000);
 
clearInterval(intervalId);

The ref() and unref() Methods
A timer or interval that is the only item remaining in the event loop will prevent the program from terminating.
However, this behavior can be programmatically altered using the ref() and unref() methods of a timer or interval
identifier. Calling the unref() method allows the program to exit if the timer/interval is the only item left in the
event loop. For example, in Listing 4-22 an interval is the only item scheduled in the event loop following the call to
setInterval(). However, because unref() is called on the interval, the program terminates.

Listing 4-22.  An example of an Interval That Does Not Keep the Program Alive

var intervalId = setInterval(function() {
 console.log("In interval function");
}, 1000);
 
intervalId.unref();
 

If unref() has been called on a timer or interval but you wish to revert to the default behavior, the ref() method
can be called. The usage of ref() is shown in Listing 4-23.

Chapter 4 ■ Events and Timers

54

Listing 4-23.  Usage of the ref() Method

timer.ref()

Immediates
Immediates are used to schedule a callback function for immediate execution. This allows a function to be scheduled
after the currently executing function. Immediates are created using the setImmediate() function, which takes a
callback and optional callback arguments as its arguments. Unlike setTimeout() and setInterval(), setImmediate()
does not accept a delay argument, as the delay is assumed to be zero. Immediates can also be cancelled using the
clearImmediate() function. An example of creating and canceling an immediate is shown in Listing 4-24.

Listing 4-24.  An Example of Creating and Canceling an Immediate

var immediateId = setImmediate(function() {
 console.log("In immediate function");
});
 
clearImmediate(immediateId);

Splitting Up Long-Running Tasks
Anyone familiar with JavaScript development in the browser has no doubt encountered a situation where a long-running
piece of code makes the user interface unresponsive. This behavior is an artifact of JavaScript's single-threaded nature.
For example, the compute() function in Listing 4-25 contains a long-running loop simulating computationally intensive
code that, even with an empty loop body, will cause a noticeable lag in an application’s response time.

Listing 4-25.  A Synthetic Computationally Intensive Function

function compute() {
 for (var i = 0; i < 1000000000; i++) {
 // perform some computation
 }
}
 
compute();
console.log("Finished compute()");
 

In the browser world, a common solution to this problem is to split up computationally expensive code into
smaller chunks using setTimeout(). The same technique works in Node as well, however, the preferred solution is
setImmediate(). Listing 4-26 shows how the computationally intensive code can be broken into smaller pieces using
setImmediate(). In this example, one iteration is processed each time compute() is invoked. This process allows
other code to run while still adding iterations of compute() to the event loop. Note, however, that execution will be
significantly slower than with the original code, because each function invocation handles only one loop iteration.
A better balance of performance and responsiveness can be achieved by performing more work per function call.
For example, setImmediate() could be called after every 10,000 iterations. The best approach will be dependent
on your application's needs.

Listing 4-26.  Breaking Up Computationally Intensive Code Using setImmediate()

var i = 0;
 
function compute() {
 if (i < 1000000000) {

Chapter 4 ■ Events and Timers

55

 // perform some computation
 i++;
 setImmediate(compute);
 }
}
 
compute();
console.log("compute() still working…");

Scheduling with process.nextTick()
Node's process object contains a method named nextTick() which provides an efficient scheduling mechanism
which is similar to an immediate. nextTick() takes a callback function as its only argument, and invokes the callback
on the next iteration of the event loop, referred to as a tick. Since the callback function is scheduled for the next tick,
nextTick()does not require a delay argument. According to the official Node documentation, nextTick() is also
more efficient than, and thus preferred over, a similar call to setTimeout(fn, 0). Listing 4-27 shows an example of
function scheduling using nextTick().

Listing 4-27.  Scheduling a Function Using process.nextTick()

process.nextTick(function() {
 console.log("Executing tick n+1");
});
 
console.log("Executing nth tick");

Caution■■  I n older versions of Node, process.nextTick() was the preferred tool for breaking up computationally
intensive code. However, recursive calls to nextTick() are now discouraged; setImmediate() should be used instead.

Unfortunately, there is no way to pass arguments to the callback function. Luckily, this limitation can easily be
overcome by creating a function that binds any desired arguments. For example, the code in Listing 4-28 will not work
as expected, because there is no way to pass arguments to the callback function. However, the code in Listing 4-29 will
work, because the function,s arguments are bound before being passed to nextTick().

Listing 4-28.  An Incorrect Attempt at Passing Arguments to process.nextTick()

process.nextTick(function(f, b) {
 console.log(f + " " + b);
});
// prints "undefined undefined"

Listing 4-29.  Passing a Function with Bound Arguments to process.nextTick()

function getFunction(f, b) {
 return function myNextTick() {
 console.log(f + " " + b);
 };
}
 
process.nextTick(getFunction("foo", "bar"));
// prints "foo bar" 

Chapter 4 ■ Events and Timers

56

Implementing Asynchronous Callback Functions
process.nextTick() is often used to create functions that accept an asynchronous callback function as the final
argument. Without using nextTick(), a callback function is not truly asynchronous, and it behaves like a normal
(synchronous) function call. Synchronous callback functions can lead to starvation by preventing other tasks
in the event loop from executing. They can also cause confusion for those using your code if they are expecting
asynchronous behavior.

Listing 4-30 shows a simple function that adds two numbers and then passes their sum to a callback function.
Node's calling conventions dictate that the callback function should execute asynchronously. Therefore, one would
expect the code to print The sum is: followed by the actual sum, 5. However, the callback function is not called
asynchronously using nextTick(). Therefore, the sum is actually printed first, as Listing 4-31 shows. To avoid
confusion, the function might more appropriately be named addSync().

Listing 4-30.  An example of a Synchronous Callback Function

function add(x, y, cb) {
 cb(x + y);
}
 
add(2, 3, console.log);
console.log("The sum is:");

Listing 4-31.  Output of Running the Code in Listing 4-30

$ node sync-callback.js
5
The sum is:
 

Luckily, transforming a synchronous callback function into an asynchronous one is fairly straightforward,
as shown in Listing 4-32. In this example, the callback function is passed to nextTick(). Also, notice that having the
callback function wrapped inside an anonymous function allows the values of x and y to pass through nextTick().
These simple changes cause the program to behave as originally expected. Listing 4-33 shows the resulting
correct output.

Listing 4-32.  A Proper Asynchronous Callback Function Using process.nextTick()

function add(x, y, cb) {
 process.nextTick(function() {
 cb(x + y);
 });
}
 
add(2, 3, console.log);
console.log("The sum is:");

Listing 4-33.  Output of Running the Asynchronous Code in Listing 4-32

$ node async-callback.js
The sum is:
5
 

Chapter 4 ■ Events and Timers

57

Maintaining Consistent Behavior
Any nontrivial function is likely to have multiple control flow paths. It is important that all of these paths be uniformly
asynchronous or uniformly synchronous. In other words, a function should not behave asynchronously for one set
of inputs, but synchronously for another. Additionally, you must ensure that the callback function is invoked only
once. This is a common source of problems, as many developers assume that invoking a callback function causes
the current function to return. In reality, the function continues to execute once the callback function returns.
An extremely simple fix for this problem is to return every time nextTick() is called.

Consider the function in Listing 4-34, which determines whether a number is negative or not. If the n argument
is less than 0, true is passed to the callback function. Otherwise, false is passed. Unfortunately, this example suffers
from two major problems. The first is that the true callback behaves asynchronously, while the false callback
is synchronous. The second is that when n is negative, the callback function is executed twice, once at the end
of isNegative() and a second time when the nextTick() callback is executed.

Listing 4-34.  An Inconsistent Implementation of a Callback Function

function isNegative(n, cb) {
 if (n < 0) {
 process.nextTick(function() {
 cb(true);
 });
 }
 
 cb(false);
}
 

Listing 4-35 shows a correct implementation of the same function (notice that both invocations of the callback
function are now asynchronous). Additionally, both calls to nextTick() cause isNegative() to return, ensuring that
the callback function can be invoked only once.

Listing 4-35.  A Consistent Implementation of the Callback Function from Listing 4-34

function isNegative(n, cb) {
 if (n < 0) {
 return process.nextTick(function() {
 cb(true);
 });
 }
 
 return process.nextTick(function() {
 cb(false);
 });
}
 

Of course, this is a contrived example. The code can be greatly simplified, as Listing 4-36 shows.

Listing 4-36.  A Simplified Version of the Code in Listing 4-35

function isNegative(n, cb) {
 process.nextTick(function() {
 cb(n < 0);
 });
}
 

Chapter 4 ■ events and timers

58

Summary
This chapter has explored events, timers, and scheduling control in the Node.js world. Together, this chapter and
the previous one should give you a solid grasp of Node fundamentals. Taking this understanding as a base, the
remainder of this book focuses on exploring the various Node APIs and creating exciting applications with them.
The next chapter shows you how to create command line interfaces—the first step toward building real-world
Node applications.

59

Chapter 5

The Command Line Interface

The first four chapters showed you the fundamentals of Node development. Starting with this chapter, the book
shifts directions and begins focusing on the various APIs and modules used to create Node applications. This
chapter focuses specifically on creating command line interfaces (CLI) for interacting with users. First, you will learn
command line basics with Node’s built-in APIs. From there, you can expand upon the basics using the commander
module, which you may remember from several npm examples in Chapter 2.

Command Line Arguments
Command line arguments constitute one of the most fundamental ways of providing input to computer programs.
In Node applications, command line arguments are made accessible via the argv array property of the global
process object. Listing 5-1 shows how argv, like any other array, can be iterated over using the forEach() method.

Listing 5-1.  An Example of Iterating over the argv Array 

process.argv.forEach(function(arg, index) {
 console.log("argv[" + index + "] = " + arg);
});
 

To inspect the actual values held in argv, save the code from Listing 5-1 in a new JavaScript source file named
argv-test.js. Next, run the code, and observe the output (see Listing 5-2). Notice that four arguments are passed
to our Node program: -foo, 3, --bar=4, and -baz. However, based on the program’s output, there are six elements in
argv. No matter what combination of command line arguments you provide, argv always contains an additional two
elements at the beginning of the array. This is because the first two elements of argv are always node (the name of
the executable) and the path to the JavaScript source file. The remainder of the argv array is composed of the actual
command line arguments.

Listing 5-2.  Output from Running the Code in Listing 5-1 

$ node argv-test.js -foo 3 --bar=4 -baz
argv[0] = node
argv[1] = /home/colin/argv-test.js
argv[2] = -foo
argv[3] = 3
argv[4] = --bar=4
argv[5] = -baz 

Chapter 5 ■ The Command Line Interface

60

Parsing Argument Values
Based on the command line in Listing 5-2, we appear to be trying to pass in three arguments: foo, bar, and baz.
However, each of the three arguments works differently. The value of foo comes from the argument that follows it
(we assume it is an integer). In this case, the value of foo is 3. Unlike foo, the value of bar, 4, is encoded in the same
argument, following an equal sign. Meanwhile, baz is a Boolean argument. Its value is true if the argument is provided
and false otherwise. Unfortunately, by simply examining the values in argv, none of these semantics are captured.

To extract the correct command line argument values, we can develop a custom parser (see Listing 5-3). In the
example, the parseArgs() function is responsible for parsing the command line, extracting values, and returning
an object that maps each argument to its proper value. This function works by looping over each element in argv,
checking for recognized argument names. If the argument is foo, then an integer is parsed from the following
argument. The loop variable, i, is also incremented to save time, as it is unnecessary to execute the loop body for the
value of foo. If the argument is determined to be baz, we simply assign the value true. To extract the value of bar,
a regular expression is used. If the string --bar= is followed by a series of one or more numbers, then those numbers are
parsed into an integer value. Finally, all of the arguments are returned via the args object and printed to the console.

Listing 5-3.  A Command Line Parser for the Example in Listing 5-2 

function parseArgs() {
 var argv = process.argv;
 var args = {
 baz: false
 };
 
 for (var i = 0, len = argv.length; i < len; i++) {
 var arg = argv[i];
 var match;
 
 if (arg === "-foo") {
 args.foo = parseInt(argv[++i]);
 } else if (arg === "-baz") {
 args.baz = true;
 } else if (match = arg.match(/--bar=(\d+)/)) {
 args.bar = parseInt(match[1]);
 }
 }
 
 return args;
}
 
var args = parseArgs();
 
console.log(args);
 

Listing 5-4 shows the output from running the code in Listing 5-3. As you see, all of the arguments have been
properly extracted. But what happens when the user input is malformed? Listing 5-5 shows the output of running the
same program with different arguments. In this case, baz is misspelled as az, and the user has forgotten to provide a
value for foo.

Chapter 5 ■ The Command Line Interface

61

Listing 5-4.  The Result of Running the Code in Listing 5-3 

$ node argv-parser.js -foo 3 --bar=4 -baz
{ foo: 3, bar: 4, baz: true } 

Listing 5-5.  The Output Resulting from Malformed User Input 

$ node argv-parser.js -foo -az --bar=4
{ foo: NaN, bar: 4 }
 

In the output of Listing 5-5, notice that baz is completely missing and foo has a value of NaN (Not-A-Number),
because the parser is attempting to convert -az to an integer. Since baz has not been passed in from the command
line, ideally its value will be false. Similarly, foo and bar should have some default value in order to handle cases like
this. Prepopulating the args object in parseArgs() won’t prevent foo from getting set to NaN in this case.

Instead, we can post-process args using a sanitize() function (see Listing 5-6). This function checks the value
of each argument and assigns it an appropriate value if it doesn’t already have one. In this example, JavaScript’s
built-in isFinite() method is used to ensure that foo and bar are valid integers. Since baz is a Boolean, the code
simply checks if it is not equal to true, and sets it to false if so. This ensures that baz is actually set to Boolean
false—not left as undefined, which is a different falsy value. Note that the parseArgs() code is not included in this
example as it has not changed.

Listing 5-6.  A sanitize() Function That Assigns Default Values to Arguments 

function sanitize(args) {
 if (!isFinite(args.foo)) {
 args.foo = 0;
 }
 
 if (!isFinite(args.bar)) {
 args.bar = 0;
 }
 
 if (args.baz !== true) {
 args.baz = false;
 }
 
 return args;
}
 
var args = sanitize(parseArgs());
 
console.log(args); 

Command Line Arguments in commander
If the amount of work required to implement simple command line parsing seems like a bit much to you, rest
assured you are not alone. Luckily, a module like commander makes command line parsing simple. A third-party
module, commander is used to simplify such common CLI tasks as argument parsing and reading user input.
To install commander, use the command npm install commander. To accommodate command line argument parsing,
commander provides the option() and parse() methods. Each call to option() registers a valid command line
argument with commander. Once all possible arguments are registered using option(), the parse() method is used to
extract argument values from the command line.

Chapter 5 ■ The Command Line Interface

62

It’s probably simplest to use an example to show how commander’s command line argument system works.
In Listing 5-7, commander is configured to accept three arguments: --foo, --bar, and --baz. The --foo argument can also
be specified using -f. This is considered the argument’s short version. All commander arguments must have a short and
long name. The short name should be a single dash followed by one letter, and the long name should have two dashes
preceding the name.

Listing 5-7.  An Example Command Line Parser Using commander 

var commander = require("commander");
 
commander
 .option("-f, --foo <i>", "Integer value for foo", parseInt, 0)
 .option("-b, --bar [j]", "Integer value for bar", parseInt, 0)
 .option("-z, --baz", "Boolean argument baz")
 .parse(process.argv);
 
console.log(commander.foo);
console.log(commander.bar);
console.log(commander.baz);
 

Notice the <i> and [j] following --foo and --bar. These are values that are expected to follow the argument.
When angle brackets are used, as with --foo, the additional value must be specified, or an error is thrown. The square
brackets used with --bar indicate that the additional value is optional. --baz is considered a Boolean argument
because it does not take any additional arguments. Following the argument string is the description string. These
strings are human-readable and are used for displaying help, which is covered momentarily.

The next thing to point out is that the --foo and --bar options also refer to parseInt() and the number 0 (zero).
parseInt() is passed as an optional argument that is used to parse the additional argument. In this case, the values of
--foo and --bar are evaluated as integers. Finally, if no value is provided for --foo or --bar, they are set to 0.

Once all the options are registered, parse() is called to process the command line. Technically, any array can be
passed to parse(), but passing in process.argv makes the most sense. After parsing, the values of the arguments are
available according to their long names, as shown in the three print statements.

Automatically Generated Help
commander automatically generates a --help (or -h) argument based on the option configuration. Listing 5-8 shows
the automatically generated help from the previous example.

Listing 5-8.  Automatically Generated help for the Code in Listing 5-7 

$ node commander-test.js --help
 
 Usage: commander-test.js [options]
 
 Options:
 
 -h, --help output usage information
 -f, --foo <i> Integer value for foo
 -b, --bar [j] Integer value for bar
 -z, --baz Boolean argument baz
 

Chapter 5 ■ The Command Line Interface

63

There are also two methods that can be used to display the help: help() and outputHelp(). The only difference
between them is that help() causes the program to exit, while outputHelp() does not. Normally, you call help() and
then exit if invalid arguments are provided. However, you can call outputHelp() if you want to just display the help
menu and continue executing for some reason. The use of these two methods is shown in Listing 5-9.

Listing 5-9.  Use of the commander help Methods 

commander.help()
commander.outputHelp() 

The Standard Streams
By default, Node applications are connected to three data streams—stdin, stdout, and stderr—that provide input
and output capabilities. If you are familiar with C/C++, Java, or any of a host of other languages, you have undoubtedly
encountered these standard streams before. This section explores each one in detail.

Standard Input
The stdin stream (short for “standard input”) is a readable stream providing input to programs. By default, stdin
receives data from the terminal window used to launch the application, and is commonly used to accept input from
the user at runtime. However, stdin can also receive its data from a file or another program.

From within a Node application, stdin is a property of the global process object. However, when an application
starts, stdin is in a paused state—that is, no data can be read from it. For data to be read, the stream must be
unpaused using the resume() method (see Listing 5-10), which takes no arguments and provides no return value.

Listing 5-10.  Usage of stdin.resume() 

process.stdin.resume()
 

In addition to unpausing the stdin stream, resume() prevents an application from terminating, as it will be in
a state of waiting for input. However, stdin can be paused again, using the pause() method, to allow the program to
exit. Listing 5-11 shows the usage of pause().

Listing 5-11.  Usage of stdin.pause() 

process.stdin.pause()
 

After calling resume(), your program can read data from stdin. However, you need to set up a data event handler
to read the data yourself. The arrival of new data on stdin triggers a data event. The data event handler takes a single
argument, the data received. In Listing 5-12, which shows how data is read from stdin using data events, the user is
prompted for his/her name. resume() is then called in order to activate the stdin stream. Once the name is entered
and the user presses Return, the data event handler—added using the once() method (covered in Chapter 4)—is
called. The event handler then acknowledges the user and pauses stdin. Notice that inside the event handler, the
data argument is converted to a string. This is done because data is passed in as a Buffer object. Buffers are used to
handle raw binary data in Node applications. (This topic is covered in more detail in Chapter 8.)

Chapter 5 ■ The Command Line Interface

64

Listing 5-12.  An Example of Reading Data from stdin 

process.stdin.once("data", function(data) {
 var response = data.toString();
 
 console.log("You said your name is " + response);
 process.stdin.pause();
});
 
console.log("What is your name?");
process.stdin.resume();
 

You can avoid having to convert the data to a string each time data is read by specifying the character encoding
of the stdin stream a priori. To do so, use the setEncoding() method of stdin. As Table 5-1 shows, Node supports
a number of different character encodings. When dealing with string data, it is advisable to set the encoding to utf8
(UTF-8). Listing 5-13 shows how Listing 5-12 can be rewritten using setEncoding().

Table 5-1.  The Various String Encoding Types Supported by Node

Encoding Type Description

utf8 Multibyte-encoded Unicode characters. UTF-8 encoding is used by many web pages, and is
used to represent string data in Node.

ascii Seven-bit American Standard Code for Information Interchange (ASCII) encoding.

utf16le Little endian–encoded Unicode characters. Each character is two or four bytes.

ucs2 This is simply an alias for utf16le encoding.

base64 Base64 string encoding. Base64 is commonly used in URL encoding, e-mail, and similar
applications.

binary Allows binary data to be encoded as a string using only the first eight bits of each character.
This coding is now deprecated, in favor of the Buffer object, and will be removed in future
versions of Node.

hex Encodes each byte as two hexadecimal characters.

Listing 5-13.  Reading from stdin After Setting the Character Encoding Type 

process.stdin.once("data", function(data) {
 console.log("You said your name is " + data);
 process.stdin.pause();
});
 
console.log("What is your name?");
process.stdin.setEncoding("utf8");
process.stdin.resume(); 

4

Chapter 5 ■ The Command Line Interface

65

Reading From stdin Using commander
The commander module also provides several useful methods for reading data from stdin. The most basic of these is
prompt(), which displays some message or question to the user and then reads in the response. The response is then
passed as a string to a callback function for processing. Listing 5-14 shows how the example from Listing 5-13 can be
rewritten using prompt().

Listing 5-14.  Reading from stdin Using commander’s prompt() Method 

var commander = require("commander");
 
commander.prompt("What is your name? ", function(name) {
 console.log("You said your name is " + name);
 process.stdin.pause();
}); 

confirm()
The confirm() method is similar to prompt() but is used to parse a Boolean response. If the user enters y, yes, true,
or ok, the callback is invoked with its argument set to true. Otherwise, the callback is invoked with its argument set to
false. An example use of the confirm() method is shown in Listing 5-15, and Listing 5-16 shows sample output from
the example.

Listing 5-15.  Parsing a Boolean Response Using commander’s confirm() Method 

var commander = require("commander");
 
commander.confirm("Continue? ", function(proceed) {
 console.log("Your response was " + proceed);
 process.stdin.pause();
}); 

Listing 5-16.  Sample Output from Running the Code in Listing 5-15 

$ node confirm-example.js
Continue? yes
Your response was true 

password()
Another special case of prompt() is the password() method, which is used to get sensitive user input without having
it displayed in the terminal window. As the method name implies, its biggest use case is prompting the user for a
password. An example using password() is shown in Listing 5-17.

Listing 5-17.  Prompting for a Password Using the password() Method 

var commander = require("commander");
 
commander.password("Password: ", function(password) {
 console.log("I know your password! It's " + password);
 process.stdin.pause();
});
 

Chapter 5 ■ The Command Line Interface

66

By default, password() does not echo information back to the terminal. However, an optional mask string, which
is echoed back to the user for every character entered, can be provided. Listing 5-18 shows an example. In it, the mask
string is simply the asterisk character (*).

Listing 5-18.  Prompting for a Password Using a Mask Character 

var commander = require("commander");
 
commander.password("Password: ", "*", function(password) {
 console.log("I know your password! It's " + password);
 process.stdin.pause();
}); 

choose()
The choose() function is useful for creating text-based menus. Taking an array of options as its first argument,
choose() allows users to select an option from a list. The second argument is a callback invoked with the array index
of the selected option. Listing 5-19 shows an example that uses choose().

Listing 5-19.  Displaying a Text Menu Using choose() 

var commander = require("commander");
var list = ["foo", "bar", "baz"];
 
commander.choose(list, function(index) {
 console.log("You selected " + list[index]);
 process.stdin.pause();
});
 

Listing 5-20 shows sample output from running the previous example. One thing to note is that the menu item
count begins at 1, while arrays are indexed from 0. Taking this into account, choose() passes the correct zero-based
array index to the callback function.

Listing 5-20.  Example Output from Listing 5-19 

$ node choose-example.js
 1) foo
 2) bar
 3) baz
 : 2
You selected bar 

Standard Output
Standard output, or stdout, is a writable stream to which programs should direct their output. By default, Node
applications direct output to the terminal window that launched the application. The most direct way to write data to
stdout is via the process.stdout.write() method. The usage of write() is shown in Listing 5-21. The first argument
to write() is the data string to be written. The second argument is optional; it is used to specify the data’s character
encoding, which defaults to utf8 (UTF-8) encoding. write() supports all of the encoding types specified in Table 5-1.
The final argument to write() is an optional callback function. It is executed once the data is successfully written to
stdout. No arguments are passed to the callback function.

Chapter 5 ■ The Command Line Interface

67

Listing 5-21.  Use of the stdout.write() Method 

process.stdout.write(data, [encoding], [callback]) 

Note■■   process.stdout.write() can also accept a Buffer as its first argument.

console.log()
After reading about stdout.write(), you might be curious how it relates to the already discussed console.log()
method. Actually, console.log() is just a wrapper that calls stdout.write() under the hood. Listing 5-22 shows
the source code for console.log(). This code is taken directly from the file https://github.com/joyent/node/
blob/master/lib/console.js in Node’s official GitHub repo. As you see, log() makes a call to _stdout.write().
Examining the entire source file shows that _stdout is simply a reference to stdout.

Listing 5-22.  Source Code of console.log() 

Console.prototype.log = function() { this._stdout.write(util.format.apply(this, arguments) + '\n');
};
 

Also, notice that the call to write() invokes the util.format() method. The util object is a reference to the core
util module. The format() method is used for creating formatted strings based on the arguments passed to it. As
its first argument, format() takes a format string containing zero or more placeholders. A placeholder is a character
sequence in the format string that is expected to be replaced by a different value in the returned string. Following the
format string, format() expects an additional argument for each placeholder. format() supports four placeholders,
described in Table 5-2.

Table 5-2.  The Various Placeholders Supported by util.format().

Placeholder Replacement

%s String data. An argument is consumed and passed to the String() constructor.

%d Integer or floating-point numeric data. An argument is consumed and passed to the Number()
constructor.

%j JSON data. An argument is consumed and passed to JSON.stringify().

%% A single percent sign (%) character. This does not consume any arguments.

Several examples of util.format() are shown in Listing 5-23, with the resulting output shown in Listing 5-24.
These examples show how data are substituted using various placeholders. The first three examples substitute a string
using the string, number, and JSON placeholders. Notice that the number placeholder is replaced by NaN. This is
because the string held in the name variable cannot be converted to an actual number. In the fourth example, the JSON
placeholder is used, but no corresponding argument is passed to format(). The result is simply that no substitution
occurs, and the %j is included in the result. In the fifth example, format() is passed one more argument than it can
handle. format() handles additional arguments by converting them to strings and appending them to the result
string, with a space character as a separator. In the sixth example, multiple placeholders are used as expected. Finally,
in the seventh example, no format string is provided at all. In this case, the arguments are converted to strings and
concatenated, with a space character delimiter.

https://github.com/joyent/node/blob/master/lib/console.js
https://github.com/joyent/node/blob/master/lib/console.js

Chapter 5 ■ the Command Line interfaCe

68

Listing 5-23. Several Examples Using util.format()

var util = require("util");
var name = "Colin";
var age = 100;
var format1 = util.format("Hi, my name is %s", name);
var format2 = util.format("Hi, my name is %d", name);
var format3 = util.format("Hi, my name is %j", name);
var format4 = util.format("Hi, my name is %j");
var format5 = util.format("Hi, my name is %j", name, name);
var format6 = util.format("I'm %s, and I'm %d years old", name, age);
var format7 = util.format(name, age);

console.log(format1);
console.log(format2);
console.log(format3);
console.log(format4);
console.log(format5);
console.log(format6);
console.log(format7);

Listing 5-24. Output from Running the Code in Listing 5-23

$ node format.js
Hi, my name is Colin
Hi, my name is NaN
Hi, my name is "Colin"
Hi, my name is %j
Hi, my name is "Colin" Colin
I'm Colin, and I'm 100 years old
Colin 100

Note A anyone familiar with C/C++, php, or any of a slew of other languages will recognize the behavior of
util.format(), as it provides formatting similar to the printf() function.

Other Printing Functions
Node also provides several less popular functions for printing to stdout. For example, the util module defines the
log() method. The log() method accepts a single string as an argument and prints it to stdout with a timestamp.
Listing 5-25 shows an example of log() in action. The resulting output is shown in Listing 5-26.

Listing 5-25. An Example of util.log()

var util = require("util");

util.log("baz");

Chapter 5 ■ The Command Line Interface

69

Listing 5-26.  Output from Running the Code in Listing 5-25 

$ node util-log-method.js
17 Mar 15:08:29 - baz
 

The console object also provides two additional printing methods, info() and dir(). The info() method is
simply an alias to console.log(). console.dir() takes an object as its only argument. The object is stringified using
the util.inspect() method and then printed to stdout. util.inspect() is the same method used to stringify extra
arguments to util.format() without corresponding placeholders. inspect(), a powerful method for stringifying
data, is covered below.

util.inspect()
util.inspect() is used to convert objects into nicely formatted strings. While its true power comes from its ability
to be customized, we begin by looking at its default behavior. Listing 5-27 shows an example that uses inspect() to
stringify an object, obj. The resulting string is shown in Listing 5-28.

Listing 5-27.  An Example That Uses the util.inspect() Method 

var util = require("util");
var obj = {
 foo: {
 bar: {
 baz: {
 baff: false,
 beff: "string value",
 biff: null
 },
 boff: []
 }
 }
};
 
console.log(util.inspect(obj)); 

Listing 5-28.  The String Created by util.inspect() in Listing 5-27 

{ foo: { bar: { baz: [Object], boff: [] } } }
 

Notice that foo and bar are completely stringified, but baz only displays the string [Object]. That’s because,
by default, inspect() only recurses through two levels while formatting the object. This behavior can be changed,
though, by using the optional second argument to inspect(). This argument is an object that specifies configuration
options to inspect(). If you’re interested in increasing the depth of recursion, set the depth option. It can be set to
null to force inspect() to recurse over the entire object. Examples of this and of the resulting string are shown in
Listings 5-29 and 5-30.

Chapter 5 ■ The Command Line Interface

70

Listing 5-29.  Calling util.inspect() with Full Recursion Enabled 

var util = require("util");
var obj = {
 foo: {
 bar: {
 baz: {
 baff: false,
 beff: "string value",
 biff: null
 },
 boff: []
 }
 }
};
 
console.log(util.inspect(obj, {
 depth: null
})); 

Listing 5-30.  The Output from Running the Code in Listing 5-29 

$ node inspect-recursion.js
{ foo:
 { bar:
 { baz: { baff: false, beff: 'string value', biff: null },
 boff: [] } } }
 

The options argument supports several other options—showHidden, colors, and customInspect. showHidden
and colors default to false, while customInspect defaults to true. When showHidden is set to true, inspect() prints
all of an object’s properties, including the non-enumerable ones. Setting colors to true causes the resulting string to
be styled with ANSI color codes. When customInspect is set to true, objects can define their own inspect() methods,
which are called to return a string used in the stringification process. In the example of this, shown in Listing 5-31, a
custom inspect() method has been added to the top-level object. This custom method returns a string that hides all
of the child objects. The resulting output is shown in Listing 5-32.

Note■■  N ot all of a method’s properties are created equal. In JavaScript, it is possible to create non-enumerable
properties, which will not show up when an object is iterated over in a for...in loop. By setting the showHidden option,
inspect() will include non-enumerable properties in its output.

Listing 5-31.  Calling util.inspect() with a Custom inspect() Method 

var util = require("util");
var obj = {
 foo: {
 bar: {
 baz: {
 baff: false,

Chapter 5 ■ The Command Line Interface

71

 beff: "string value",
 biff: null
 },
 boff: []
 }
 },
 inspect: function() {
 return "{Where'd everything go?}";
 }
};
 
console.log(util.inspect(obj)); 

Listing 5-32.  The Result of the Custom inspect() Method in Listing 5-31 

$ node inspect-custom.js
{Where'd everything go?} 

Standard Error
The standard error stream, stderr, is an output stream similar to stdout. However, stderr is used for displaying error
and warning messages. While stderr and stdout are similar, stderr is a separate entity, and so you cannot access it
using a stdout function like console.log(). Luckily, Node provides a number of functions specifically for accessing
stderr. The most direct access route to stderr is via its write() method. The usage of write(), shown in Listing 5-33,
is identical to the write() method of stdout.

Listing 5-33.  Use of the stderr write() Method 

process.stderr.write(data, [encoding], [callback])
 

The console object also provides two methods, error() and warn(), for writing to stderr. console.warn()
behaves exactly like console.log() and simply acts as a wrapper around process.stderr.write(). The error()
method is simply an alias for warn(). Listing 5-34 shows the source code for warn() and error().

Listing 5-34.  Source Code of console.warn() and console.error() 

Console.prototype.warn = function() {
 this._stderr.write(util.format.apply(this, arguments) + '\n');
}; 

Console.prototype.error = Console.prototype.warn;

console.trace()
The console object also provides a useful debugging method, named trace(), which creates and prints a stack trace
to stderr without crashing the program. If you’ve ever encountered an error (I’m sure you have by now), then you’ve
seen the stack trace printed when your program crashed. trace() accomplishes the same thing without the error
and crash. Listing 5-35 shows an example using trace(), with its output shown in Listing 5-36. In the example a stack
trace, named test-trace, is created within the function baz(), which is called from bar(), which in turn is called
from foo(). Notice that these functions are the top three entries in the stack trace. The remaining functions in the
stack trace are calls made by the Node framework.

Chapter 5 ■ The Command Line Interface

72

Listing 5-35.  Generating an Example Stack Trace Using console.trace() 

(function foo() {
 (function bar() {
 (function baz() {
 console.trace("test-trace");
 })();
 })();
})(); 

Listing 5-36.  Output from Running the Example in Listing 5-35 

$ node stack-trace.js
Trace: test-trace
 at baz (/home/colin/stack-trace.js:4:15)
 at bar (/home/colin/stack-trace.js:5:7)
 at foo (/home/colin/stack-trace.js:6:5)
 at Object.<anonymous> (/home/colin/stack-trace.js:7:3)
 at Module._compile (module.js:456:26)
 at Object.Module._extensions..js (module.js:474:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 at Function.Module.runMain (module.js:497:10)
 at startup (node.js:119:16) 

Note■■  T he arguments passed to console.trace() are forwarded to util.format(). Therefore, the stack trace name
can be created using a format string.

Separating stderr and stdout
It is common but not required for stderr to be directed to the same destination as stdout. By default, Node’s stdout
and stderr are both directed to the terminal window in which the process is run. However, it is possible to redirect
one stream or both. The code in Listing 5-37 can be used to easily demonstrate this concept. The example code prints
one message to stdout using console.log() and a second message to stderr using console.error().

Listing 5-37.  An Example Application That Prints to Both stdout and stderr 

console.log("foo");
console.error("bar");
 

When the code in Listing 5-37 is run normally, both messages are printed to the terminal window. The output is
shown in Listing 5-38.

Listing 5-38.  Console Output When Running the Code in Listing 5-37 

$ node stdout-and-stderr.js
foo
bar
 

Chapter 5 ■ The Command Line Interface

73

The same code is executed again in Listing 5-39. However, this time stdout is redirected to the file output.txt
using the > operator. Note that redirection has no effect on the stderr stream. The result is that bar, which is sent to
stderr, is printed in the terminal window, while foo is not.

Listing 5-39.  Console Output from the Code in Listing 5-39 When stdout Is Redirected 

$ node stdout-and-stderr.js > output.txt
bar 

Note■■  A s you’ve probably noticed by now, the console methods are synchronous. This behavior—the default when
the underlying stream’s destination is a file or terminal window—avoids lost messages due to program crash or exit.
There is more about streams and how they can be piped in Chapter 7, but for now, just know that the console methods
behave asynchronously when the underlying stream is piped.

The TTY Interface
As you’ve already seen, the standard streams are configured to work with a terminal window by default. To
accommodate this configuration, Node provides an API for inspecting the state of the terminal window. Because the
streams can be redirected, all standard streams provide an isTTY property that is true if the stream is associated with
a terminal window. Listing 5-40 shows how these properties are accessed for each of the streams. By default, isTTY is
true for stdin, stdout, and stderr, as Listing 5-41 shows.

Listing 5-40.  An Example That Checks Whether Each Standard Stream Is Connected to a Terminal 

console.warn("stdin = " + process.stdin.isTTY);
console.warn("stdout = " + process.stdout.isTTY);
console.warn("stderr = " + process.stderr.isTTY); 

Listing 5-41.  Output from Listing 5-40 Under Default Conditions 

$ node is-tty.js
stdin = true
stdout = true
stderr = true
 

Listing 5-42 demonstrates how these values change when stdout is redirected to a file. Notice that the source
code uses console.warn() instead of console.log(). This is done intentionally, so that stdout can be redirected
while still providing console output. As you would expect, the value of isTTY is no longer true for stdout. However,
notice that isTTY is, not false, but simply undefined, the implication being that isTTY is not a property of all streams,
just of those associated with a terminal.

Listing 5-42.  Output from Listing 5-40 with a Redirected stdout Stream 

$ node is-tty.js > output.txt
stdin = true
stdout = undefined
stderr = true 

Chapter 5 ■ The Command Line Interface

74

Determining the Terminal Size
A terminal window's size, particularly the number of columns, can greatly affect the readability of a program’s output.
Therefore, some applications may need to tailor their output based on the terminal size. Assuming that stdout or
stderr or both are associated with a terminal window, it is possible to determine the number of rows and columns
in the terminal. This information is available via the stream’s rows and columns properties, respectively. You can also
retrieve the terminal dimensions as an array using the stream’s getWindowSize() method. Listing 5-43 shows how the
terminal dimensions are determined, and Listing 5-44 shows the resulting output.

Listing 5-43.  Programmatically Determining the Size of a Terminal Window 

var columns = process.stdout.columns;
var rows = process.stdout.rows;
 
console.log("Size: " + columns + "x" + rows); 

Listing 5-44.  Output from Running the Code in Listing 5-43 

$ node tty-size.js
Size: 80x24

Note■■  D etermining the terminal size is not possible using stdin, as terminal dimensions are associated only with
writable TTY streams.

If your program’s output is dependent on the size of the terminal, what happens if a user resizes the window
at runtime? Luckily, writable TTY streams provide a resize event that is triggered any time the terminal window is
resized. The example in Listing 5-45 defines a function, size(), that prints out the current terminal dimensions. When
launched, the program first checks whether stdout is connected to a terminal window. If it is not, an error message
is displayed, and the program terminates with an error code by calling the process.exit() method. If the program is
run in a terminal window, it displays the current size of the window by calling size(). The same function is then used
as a resize event handler. Finally, process.stdin.resume() is called to prevent the program from terminating while
you test it.

Listing 5-45.  An Example That Monitors the Terminal Size 

function size() {
 var columns = process.stdout.columns;
 var rows = process.stdout.rows;
 
 console.log("Size: " + columns + "x" + rows);
}
 
if (!process.stdout.isTTY) {
 console.error("Not using a terminal window!");
 process.exit(-1);
}
 
size();
process.stdout.on("resize", size);
process.stdin.resume();
 

Chapter 5 ■ The Command Line Interface

75

Signal Events
Signals are asynchronous event notifications sent to a specific process or thread. They are used to provide a limited
form of interprocess communication on POSIX-compliant operating systems. (If you’re developing for Windows, you
might want to skip this section.) A full list of all signals and their meaning is beyond the scope of this book, but the
information is readily available on the Internet.

As an example, if you press Ctrl+C while a terminal program is running, an interrupt signal, SIGINT, is sent to
that program. In Node applications, signals are processed by a default handler unless a custom handler is provided.
When the default handler receives a SIGINT signal, it causes the program to terminate. To override this behavior, add
a SIGINT event handler to the process object, as shown in Listing 5-46.

Listing 5-46.  Adding a SIGINT Signal Event Handler 

process.on("SIGINT", function() {
 console.log("Got a SIGINT signal");
}); 

Note■■  I f you include the event handler from Listing 5-46 in your application, you will be unable to terminate the
program using Ctrl+C. However, you can still stop the program using Ctrl+D.

User Environment Variables
Environment variables are operating system–level variables accessible by processes executing on the system.
For example, many operating systems define a TEMP or TMP environment variable that specifies a directory used
to hold temporary files. Accessing environment variables in Node is very straightforward. The process object has
an object property, env, that contains the user environment. The env object can be interacted with just like any
other object. Listing 5-47 shows how the env object is referenced. In this example, the PATH variable is displayed.
Then an additional Unix-style directory is added to the beginning of the PATH. Finally, the freshly updated PATH is
displayed. Listing 5-48 shows the output from this example. Note, however, that depending on your current system
configuration, your own output may differ greatly.

Listing 5-47.  An Example of Working with User Environment Variables 

console.log("Original: " + process.env.PATH);
process.env.PATH = "/some/path:" + process.env.PATH;
console.log("Updated: " + process.env.PATH); 

Listing 5-48.  Example Output from Running the Code in Listing 5-47 

$ node env-example.js
Original: /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
Updated: /some/path:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
 

Environment variables are commonly used to configure different modes of execution in an application.
For example, a program might support two modes of execution, development and production. In development
mode, debugging information might be printed to the console, while in production mode it might be logged to a file
or disabled completely. To enable development mode, simply set an environment variable, which can be accessed

Chapter 5 ■ The Command Line Interface

76

from within the application. Listing 5-49 demonstrates how this concept works. In the example, the presence of the
DEVELOPMENT environment variable is used to define the Boolean variable devMode, which then controls the condition
of the if statement. Note that the !! (bang bang) notation is used to force conversion of any value to a Boolean.

Listing 5-49.  An example of Implementing Development Mode Using Environment Variables 

var devMode = !!process.env.DEVELOPMENT;
 
if (devMode) {
 console.log("Some useful debugging information");
}
 

Listing 5-50 shows one way to execute the previous example in development mode. Notice how defining the
environment variable at the same command prompt that Node is launched from allows for quick one-off tests, free of
the hassle of actually defining an environment variable. (However, that would work as well.)

Listing 5-50.  Running the Example from Listing 5-51 in Development Mode 

$ DEVELOPMENT=1 node dev-mode.js
Some useful debugging information 

Summary
This chapter has introduced the basics of command line interface programming in Node. A few of the examples
have even shown actual code from the Node core. You should now have a grasp of such fundamental concepts as
command line arguments, the standard streams, signal handlers, and environment variables. These concepts bring
together some material already covered (such as event handlers) and some (such as streams) to be covered later in
this book.

This chapter has also exposed you to the basics of the commander module. At the time of writing, commander is
the sixth most depended upon module in the npm registry. However, there are other, similar CLI modules you may
be interested in exploring. The most prominent of these is the optimist module (optimist was created by James
Halliday—a.k.a. substack—a prominent member of the Node community). You are encouraged to browse the npm
repository and experiment with other modules to find the one that best suits your needs.

77

Chapter 6

The File System

For many JavaScript developers, access to the file system has been difficult to achieve. The reasoning has always
been—rightfully so—that giving a Web script access to the file system was too much of a security risk. However,
Node doesn’t typically execute arbitrary scripts from dark corners of the Internet. As a full-blown server-side
language, Node has all of the same rights and responsibilities that languages like PHP, Python, and Java do. Thus, for
JavaScript developers, the file system is a reality that doesn’t depend on vendor-specific implementations or hacks.
This chapter shows how the file system can be just another tool in the Node developer’s toolbox.

Relevant Paths
Every Node application contains a number of variables that provide insight as to where in the file system Node
is working. The simplest of these variables are __filename and __dirname. The first variable, __filename, is the
absolute path of the currently executing file. Similarly, __dirname is the absolute path to the directory containing the
currently executing file. The example in Listing 6-1 shows the usage of __filename and __dirname. Notice that both
can be accessed without importing any modules. When this example is executed from the directory /home/colin, the
resulting output is shown in Listing 6-2.

Listing 6-1.  Using the __filename and __dirname Variables

console.log("This file is " + __filename);
console.log("It's located in " + __dirname); 

Listing 6-2.  Output from Running the Code in Listing 6-1

$ node file-paths.js
This file is /home/colin/file-paths.js
It's located in /home/colin 

Note■■   The values of __filename and __dirname depend on the file that references them. Therefore, their values
can be different even within a single Node application—as, for example, might happen when __filename is referenced
from two different modules in an application.

ChapTer 6 ■ The File SySTem

78

The Current Working Directory
An application’s current working directory is the file system directory that the application refers to when creating
relative paths. An example of this is the pwd command, which returns a shell’s current working directory. In a Node
application, the current working directory is available via the cwd() method of the process object. An example using
the cwd() method is shown in Listing 6-3. The resulting output is shown in Listing 6-4.

Listing 6-3. Using the process.cwd() Method

console.log("The current working directory is " + process.cwd());

Listing 6-4. Output from Running the Code in Listing 6-3

$ node cwd-example.js
The current working directory is /home/colin

Changing the Current Working Directory
During the course of execution, an application can change its current working directory. In a shell, this is accomplished
with the cd command. The process object provides a method, named chdir(), that accomplishes the same task by
taking a string argument representing the directory name to change to. This method executes synchronously and
throws an exception if the directory change fails for any reason (say, if the target directory does not exist).

An example, shown in Listing 6-5, that uses the chdir() method displays the current working directory and
then attempts to change to the root directory, /. If an error occurs, it is caught and then printed to stderr. Finally, the
updated working directory is displayed.

Listing 6-5. Changing the Current Working Directory Using process.chdir()

console.log("The current working directory is " + process.cwd());

try {
 process.chdir("/");
} catch (exception) {
 console.error("chdir error: " + exception.message);
}

console.log("The current working directory is now " + process.cwd());

Listing 6-6 shows a successful execution of the code in Listing 6-5. Next, try changing the path in chdir() to some
nonexistent path, and run the example again. Listing 6-7 shows a failed example, one that tries to change chdir() to /
foo. Notice how the current working directory remains unchanged after the failure.

Listing 6-6. A Successful Run of the Process in Listing 6-5

$ node chdir-example.js
The current working directory is /home/colin
The current working directory is now /

Listing 6-7. A Failed Run of the Process in Listing 6-5

$ node chdir-example.js
The current working directory is /home/colin
chdir error: ENOENT, no such file or directory
The current working directory is now /home/colin

Chapter 6 ■ The File System

79

Locating the node Executable
The path to the node executable is also available via the process object. Specifically, the executable path is in
the process.execPath property. Listing 6-8 shows an example displaying the node executable path, and the
corresponding output is shown in Listing 6-9. Note that your own path may differ based on the operating system or
the Node installation path you have in place.

Listing 6-8.  Displaying the Value of the process.execPath

console.log(process.execPath); 

Listing 6-9.  The Output from Listing 6-8

$ node exec-path-example.js
/usr/local/bin/node

The path Module
The path module is a core module that provides a number of utility methods for working with file paths. While the
path module works with file paths, many of its methods only perform simple string transformations without actually
accessing the file system. Listing 6-10 shows how the path module is included in a Node application.

Listing 6-10.  Importing the path Module into a Node Application

var path = require("path");

Cross-Platform Differences
Dealing with paths across multiple operating systems can be a bit of a pain. Much of it stems from the fact that
Windows uses a backslash (\) to separate the parts of a file path, while other operating systems use a forward slash
(/). Windows versions of Node can handle forward slashes effectively, but most native Windows applications cannot.
Luckily, this detail can be abstracted away using the path.sep property. This property holds the file separator of the
current operating system. This is \\ (remember, backslashes must be escaped) in Windows but / elsewhere. Listing 6-11
shows how path.sep, in conjunction with the array join() method, can be used to create platform-specific file paths.

Listing 6-11.  Creating Cross-Platform Directories Using path.sep and join()

var path = require("path");
var directories = ["foo", "bar", "baz"];
var directory = directories.join(path.sep);
 
console.log(directory); 

Note■■   Windows uses a single backslash as its path separator. However, backslashes must be escaped inside of
JavaScript string literals. That is why path.sep returns \\ in Windows.

The resulting output for non-Windows systems is shown in Listing 6-12. Later in this chapter how to actually
perform file system operations on directories is explained, but for now we’ll just display the directory path.

Chapter 6 ■ The File System

80

Listing 6-12.  Output from Running the Code in Listing 6-11

$ node sep-join-example.js
foo/bar/baz
 

Another major difference between Windows and every other platform is the character that separates directories
in the PATH environment variable. Windows uses a semicolon (;), but all other systems use a colon (:). The path
module’s delimiter property is used to abstract this away. Listing 6-13 uses the delimiter property to split the PATH
environment variable and print each individual directory.

Listing 6-13.  A Cross-Platform Example That Splits the PATH Environment Variable

var path = require("path");
 
process.env.PATH.split(path.delimiter).forEach(function(dir) {
 console.log(dir);
});

Extracting Path Components
The path module also provides easy access to several key path components. Specifically, path’s extname(),
basename(), and dirname() methods return a path’s file extension, file name, and directory name, respectively. The
extname() method finds the last period (.) in a path and returns it and all subsequent characters as the extension. If a
path contains no periods, the empty string is returned. Listing 6-14 shows how extname() is used.

Listing 6-14.  Use of the path.extname() Method

var path = require("path");
var fileName = "/foo/bar/baz.txt";
var extension = path.extname(fileName);
 
console.log(extension);
// extension is .txt
 

The basename() method returns the last nonempty part of a path. If the path corresponds to a file, basename()
returns the full file name, including the extension. An example of this is shown in Listing 6-15. You can also retrieve
the file name without the extension by passing the result of extname() as the second argument to basename().
Listing 6-16 shows an example of this.

Listing 6-15.  Extracting the Full File Name from a Path using path.basename()

var path = require("path");
var fileName = "/foo/bar/baz.txt";
var file = path.basename(fileName);
 
console.log(file);
// file is baz.txt
 

Chapter 6 ■ The File System

81

Listing 6-16.  Extracting the File Name Minus the Extension from a Path using path.basename()

var path = require("path");
var fileName = "/foo/bar/baz.txt";
var extension = path.extname(fileName);
var file = path.basename(fileName, extension);
 
console.log(file);
// file is baz
 

The dirname() method returns the directory portion of a path. Listing 6-17 shows the use of dirname().

Listing 6-17.  Extracting the Directory Name from a Path using path.dirname()

var path = require("path");
var fileName = "/foo/bar/baz.txt";
var dirName = path.dirname(fileName);
 
console.log(dirName);
// dirName is /foo/bar

Path Normalization
Paths can become overly complicated and confusing if "." and ".." parts are mixed in. This is likely to happen if
paths are passed in as command line arguments from a user. For example, a user issuing the cd command to change
directories often provides relative paths. In turn, the path module provides a normalize() method to simplify these
paths. In the example in Listing 6-18, a fairly convoluted path is normalized. After following several parent and current
directory references, the resulting path is simply /baz.

Listing 6-18.  Achieving Path Normalization Using path.normalize()

var path = require("path");
var dirName = "/foo/bar/.././bar/../../baz";
var normalized = path.normalize(dirName);
 
console.log(normalized);
// normalized is /baz
 

The path module also has a join() method. Operating on an arbitrary number of strings, join() takes these
strings and creates a single normalized path. In the example in Listing 6-19, which shows how join() can be used to
normalize the path from Listing 6-18, the input path has been split into several strings. Note that join() would work
exactly like normalize() if a single string were passed in.

Listing 6-19.  Achieving Path Normalization Using path.join()

var path = require("path");
var normalized = path.join("/foo/bar", ".././bar", "../..", "/baz");
 
console.log(normalized);
// normalized is /baz

Chapter 6 ■ The File System

82

Resolving a Relative Path Between Directories
The path.relative() method, which can be used to determine the relative path from one directory to another, takes
two strings as its arguments. The first argument represents the starting point of the calculation, while the second
corresponds to the end point. In the example in Listing 6-20 showing the use of relative(), a relative path from /
foo/bar to /baz/biff is calculated. Based on this directory structure, a relative path moves up two levels to the root
directory before traversing /baz/biff.

Listing 6-20.  Determining a Relative Path using path.relative()

var path = require("path");
var from = "/foo/bar";
var to = "/baz/biff";
var relative = path.relative(from, to);
 
console.log(relative);
// relative is ../../baz/biff

The fs Module
Node applications perform file I/O via the fs module, a core module whose methods provide wrappers around
standard file system operations. Listing 6-21 shows how the file system module is imported into a Node application.
You may recall this module from Chapter 3, where a file reader program was implemented.

Listing 6-21.  Importing the fs Module into a Node Application

var fs = require("fs");
 

One thing especially noteworthy about the fs module is its proliferation of synchronous methods. More
specifically, nearly all file system methods have asynchronous and synchronous versions. The synchronous ones can
be identified by the use of the Sync suffix. The asynchronous version of each method takes a callback function as its
final argument. In earlier versions of Node, many of the asynchronous fs methods allowed you to omit the callback
function. However, according to the official documentation, as of Node 0.12, omitting the callback function will cause
an exception.

As you have seen, asynchronous methods are at the heart of Node’s programming model. Use of asynchronous
programming allows Node to appear highly parallel while in fact it is single threaded. Careless use of even a single
synchronous method has the potential to bring an entire application to a halt (see Chapter 3 if you need a refresher).
So why are nearly half of all file system methods synchronous?

As it happens, many applications access the file system for configuration data. This is generally done during
configuration at startup. In cases like this, it is often much simpler to synchronously read a configuration file without
worrying about maximizing performance. Additionally, Node can be used to create simple utility programs, similar
to shell scripts. These scripts can likely get away with synchronous behavior. As a general rule, code that can be called
multiple times simultaneously should be asynchronous. While synchronous methods are at your disposable as a
developer, use them with extreme caution.

Determining if a File Exists
The exists() and existsSync() methods are used to determine if a given path exists. Both methods take a path string
as an argument. If the synchronous version is used, a Boolean value representing the path’s existence is returned. If the
asynchronous version is used, the same Boolean value is passed as an argument to the callback function.

Chapter 6 ■ The File System

83

Listing 6-22 checks for the existence of the root directory using both existsSync() and exists(). When the
exists() callback function is invoked, the results of both methods are compared. Of course, both methods should
return the same value. Assuming equivalence, the path is printed out, followed by the Boolean value representing
its existence.

Listing 6-22.  Checking for a File’s Existence Using exists() and existsSync()

var fs = require("fs");
var path = "/";
var existsSync = fs.existsSync(path);
 
fs.exists(path, function(exists) {
 if (exists !== existsSync) {
 console.error("Something is wrong!");
 } else {
 console.log(path + " exists: " + exists);
 }
});

Retrieving File Statistics
The fs module provides a collection of functions for reading file statistics. These functions are stat(), lstat(), and
fstat(). Of course, these methods also have synchronous equivalents—statSync(), lstatSync(), and fstatSync().
The most basic form of these methods, stat(), takes a path string and callback function as arguments. The callback
function is invoked with two arguments as well. The first represents any error that occurs. The second is an fs.Stats
object that contains the actual file statistics. Before exploring the fs.Stats object, let’s take a look at an example that
uses the stat() method. In Listing 6-23, stat() is used to collect information on the file foo.js, which we assume to
exist. If an exception occurs (say, if the file did not exist), error information is printed to stderr. Otherwise, the Stats
object is printed.

Listing 6-23.  The fs.stat() Method in Use

var fs = require("fs");
var path = "foo.js";
 
fs.stat(path, function(error, stats) {
 if (error) {
 console.error("stat error: " + error.message);
 } else {
 console.log(stats);
 }
});
 

Listing 6-24 shows sample output from a successful run. Table 6-1 contains an explanation of the various
fs.Stats object properties shown in that listing. Note that your output will likely be different, especially if you use
Windows. In fact, in Windows, some properties will not be present at all.

Chapter 6 ■ The File System

84

Listing 6-24.  Sample Output from the Code in Listing 6-23

$ node stat-example.js
{ dev: 16777218,
 mode: 33188,
 nlink: 1,
 uid: 501,
 gid: 20,
 rdev: 0,
 blksize: 4096,
 ino: 2935040,
 size: 75,
 blocks: 8,
 atime: Sun Apr 28 2013 12:55:17 GMT-0400 (EDT),
 mtime: Sun Apr 28 2013 12:55:17 GMT-0400 (EDT),
 ctime: Sun Apr 28 2013 12:55:17 GMT-0400 (EDT) } 

Table 6-1.  Explanation of the Various fs.Stats Object Properties

Property Description

dev ID of the device containing the file.

mode The file's protection.

nlink The number of hard links to the file.

uid User ID of the file’s owner.

gid Group ID of the file’s owner.

rdev The device ID, if the file is a special file.

blksize The block size for file system I/O.

ino The file’s inode number. An inode is a file system data structure that stores information about a file.

size The file’s total size in bytes.

blocks The number of blocks allocated for the file.

atime Date object representing the file’s last access time.

mtime Date object representing the file’s last modification time.

ctime Date object representing the last time the file’s inode was changed.

The fs.Stats object also has several methods that help identify the type of file in question (see Table 6-2). These
methods are synchronous, they take no arguments, and they return a Boolean value. For example, the isFile()
method returns true for normal files, but isDirectory() returns true for directories.

Chapter 6 ■ The File System

85

Other stats() Variations
The lstat() and fstat() variations behave almost identically to stat(). The only difference with lstat() is that if
the path argument is a symbolic link, the fs.Stats object corresponds to the link itself, not the file it refers to. With
fstat(), the only difference is that the first argument is a file descriptor instead of a string. File descriptors are used
to communicate with open files (more detail follows shortly). Of course, statSync(), lstatSync(), and fstatSync()
behave like their asynchronous counterparts. Since the synchronous methods do not have callback functions, the
fs.Stats objects are returned directly.

Opening Files
Files are opened using the open() and openSync() methods. The first argument to both of these methods is a string
representing the file name to be opened. The second is a flags string denoting how the file should be opened
(for reading, writing, etc.). Table 6-3 summarizes the various ways Node lets you open files.

Table 6-2.  Explanation of the Various fs.Stats Methods

Method Description

isFile() Indicates whether a file is a normal file.

isDirectory() Indicates whether a file is a directory.

isBlockDevice() Indicates whether a file is a block device file. This includes devices like hard disks,
CD-ROMs, and flash drives.

isCharacterDevice() Indicates whether a file is a character device file. This includes devices like keyboards.

isSymbolicLink() Indicates whether a file is a symbolic link. This is valid only when using lstat() and
lstatSync().

isFIFO() Indicates whether a file is a FIFO special file.

isSocket() Indicates whether a file is a socket.

Table 6-3.  Breakdown of the Various Flags Available to open() and openSync()

Flags Description

r Open for reading. An exception occurs if the file does not exist.

r+ Open for reading and writing. An exception occurs if the file does not exist.

rs Open for reading in synchronous mode. This instructs the operating system to bypass the system cache.
This is mostly used for opening files on NFS mounts. This does not make open() a synchronous method.

rs+ Open for reading and writing in synchronous mode.

w Open for writing. If the file does not exist, it is created. If the file already exists, it is truncated.

wx Similar to the w flag, but the file is opened in exclusive mode. Exclusive mode ensures that the file is
newly created.

w+ Open for reading and writing. If the file does not exist, it is created. If the file already exists, it is truncated.

wx+ Similar to the w+ flag, but the file is opened in exclusive mode.

(continued)

Chapter 6 ■ The File System

86

The third argument, an optional one, to open() and openSync() specifies the mode. The mode defaults to "0666".
The asynchronous open() method takes a callback function as its fourth argument. As an argument, the callback
function takes an error and the file descriptor of the opened file. A file descriptor is a construct used to interface with
open files. The file descriptor, whether passed to the callback function or returned by openSync(), can be passed to
other functions to perform such file operations as reads and writes. The example in Listing 6-25, which uses open()
to open the file /dev/null, was chosen because any writes to it are simply discarded. Note that this file does not exist
in Windows. However, you can change the value of path on the second line to point to a different file. It is advisable to
use a file path that does not currently exist, as the contents of an existing file, as in this example, are overwritten.

Listing 6-25.  Opening /dev/null Using open()

var fs = require("fs");
var path = "/dev/null";
 
fs.open(path, "w+", function(error, fd) {
 if (error) {
 console.error("open error: " + error.message);
 } else {
 console.log("Successfully opened " + path);
 }
});

Reading Data from Files
The read() and readSync() methods are used to read data from an open file. These methods take a number of
arguments, so using an example will probably make working through them easier (see Listing 6-26). The example—which
reads data from a file, foo.txt, in the application’s directory (for simplicity’s sake, error handling code has been
omitted)—starts with a call to stat(). It must do so because the file’s size is going to be needed later. Next, the file is
opened using open(). This step is required to obtain a file descriptor. After the file is opened, a data buffer, one large
enough to hold the entire file, is initialized.

Listing 6-26.  Reading from a File Using read()

var fs = require("fs");
var path = __dirname + "/foo.txt";
 
fs.stat(path, function(error, stats) {
 fs.open(path, "r", function(error, fd) {
 var buffer = new Buffer(stats.size);
 

Flags Description

a Open for appending. If the file does not exist, it is created.

ax Similar to the a flag, but the file is opened in exclusive mode.

a+ Open for reading and appending. If the file does not exist, it is created.

ax+ Similar to the a+ flag, but the file is opened in exclusive mode.

Table 6-3.  (continued)

Chapter 6 ■ The File System

87

 fs.read(fd, buffer, 0, buffer.length, null, function(error, bytesRead, buffer) {
 var data = buffer.toString("utf8");
 
 console.log(data);
 });
 });
});
 

Next comes the actual call to read(). The first argument is the file descriptor provided by open(). The second is
the buffer to be used to hold the data read from the file. The third is the offset within the buffer where the data will be
placed (in this example the offset is zero, corresponding to the beginning of the buffer). The fourth argument is the
number of bytes to read (in this example the entire contents of the file are read). The fifth is an integer specifying the
position in the file to begin reading from. If the value is null, the read begins at the current file position, which is set to
the beginning of the file when it is initially opened and updated with each read.

If this was a call to readSync(), it would return the number of bytes that were successfully read from the file.
The asynchronous read() function takes as its final argument a callback function, which in turn takes an error object,
the number of bytes read, and the buffer as arguments. Inside the callback function, the raw data buffer is converted
to a UTF-8 string and then printed to the console.

Note■■   This example reads an entire file in one call to read(). If the file is significantly large, memory consumption
could be a problem. In this case, your application should initialize a smaller buffer and read the file in smaller chunks
using a loop.

The readFile() and readFileSync() Methods
The readFile() and readFileSync() methods offer a more concise way to read data from files. Taking a file name
as an argument, they read the entire contents of a file automatically, without file descriptors, buffers, or other
annoyances. Listing 6-27 shows the code from Listing 6-26 rewritten using readFile(). Notice that the second
argument to readFile() specifies that the data should be returned as a UTF-8 string. If this argument is omitted or
null, the raw buffer is returned.

Listing 6-27.  Reading an Entire File Using readFile()

var fs = require("fs");
var path = __dirname + "/foo.txt";
 
fs.readFile(path, "utf8", function(error, data) {
 if (error) {
 console.error("read error: " + error.message);
 } else {
 console.log(data);
 }
});

Writing Data to Files
Writing data to a file is similar to reading data. The methods used to write to a file are write() and writeSync(). In
the example in Listing 6-28, using the write() method, a file named foo.txt is opened for writing. Also created is a
buffer that holds the data to be written to file. Next, write() is used to actually write the data to file. The first argument

ChapTer 6 ■ The File SySTem

88

to write() is the file descriptor provided by open(). The second is the buffer containing the data to be written. The
third and fourth arguments correspond to the offset of the buffer to begin writing and the number of bytes to write.
The fifth is an integer representing the position in the file where writing is to begin. If this argument is null, the data
is written to the current file position, and writeFileSync() returns the number of bytes successfully written to file.
On the other hand, write() takes a callback function with three arguments: an exception object, the number of bytes
written, and the buffer object.

Listing 6-28. Writing Data to a File Using write()

var fs = require("fs");
var path = __dirname + "/foo.txt";
var data = "Lorem ipsum dolor sit amet";

fs.open(path, "w", function(error, fd) {
 var buffer = new Buffer(data);

 fs.write(fd, buffer, 0, buffer.length, null, function(error, written, buffer) {
 if (error) {
 console.error("write error: " + error.message);
 } else {
 console.log("Successfully wrote " + written + " bytes.");
 }
 });
});

The writeFile() and writeFileSync() Methods
The methods writeFile() and writeFileSync() provide shortcuts for write() and writeSync(). The example in
Listing 6-29 shows the use of writeFile(), which takes a file path and the data to write as its first two arguments.
With an optional third argument you can specify encoding (which defaults to UTF-8) and other options. The callback
function to writeFile() takes an error object as its only argument.

Listing 6-29. Writing to a File Using writeFile()

var fs = require("fs");
var path = __dirname + "/foo.txt";
var data = "Lorem ipsum dolor sit amet";

fs.writeFile(path, data, function(error) {
 if (error) {
 console.error("write error: " + error.message);
 } else {
 console.log("Successfully wrote " + path);
 }
});

Two other methods, appendFile() and appendFileSync(), are used to append data to an existing file without
overwriting existing data. If the file does not yet exist, it is created. These methods are used exactly like writeFile()
and writeFileSync().

Chapter 6 ■ The File System

89

Closing Files
As a general programming rule of thumb, always close anything you open. In Node applications, files are closed using the
close() and closeSync() methods. Both take a file descriptor as an argument. In the asynchronous version, a callback
function is expected as the second argument. The callback function’s only argument is used to indicate a possible error.
In the example in Listing 6-30, a file is opened using open() and then immediately closed using close().

Listing 6-30.  Opening and Then Closing a File with open() and close()

var fs = require("fs");
var path = "/dev/null";
 
fs.open(path, "w+", function(error, fd) {
 if (error) {
 console.error("open error: " + error.message);
 } else {
 fs.close(fd, function(error) {
 if (error) {
 console.error("close error: " + error.message);
 }
 });
 }
}); 

Note■■  I t is not necessary to close files opened using methods like readFile() and writeFile(). These methods
handle everything internally. Also, they do not provide a file descriptor to pass to close().

Renaming Files
To rename a file, use the rename() or renameSync() methods. The first argument to these methods is the current
name of the file to be renamed. As you might guess, the second is the desired new name for the file. The callback
function for rename() takes only one argument, representing a possible exception. The example in Listing 6-31
renames a file named foo.txt as bar.txt.

Listing 6-31.  Renaming a File Using rename()

var fs = require("fs");
var oldPath = __dirname + "/foo.txt";
var newPath = __dirname + "/bar.txt";
 
fs.rename(oldPath, newPath, function(error) {
 if (error) {
 console.error("rename error: " + error.message);
 } else {
 console.log("Successfully renamed the file!");
 }
});

Chapter 6 ■ The File System

90

Deleting Files
Files are deleted using the unlink() and unlinkSync() methods, which take a file path as an argument. The
asynchronous version also takes a callback function as an argument. The callback function takes only an argument
representing a possible exception. In the example in Listing 6-32, showing use of the unlink() method, the
application attempts to delete a file named foo.txt located in the same directory.

Listing 6-32.  Deleting a File Using the fs.unlink() Method

var fs = require("fs");
var path = __dirname + "/foo.txt";
 
fs.unlink(path, function(error) {
 if (error) {
 console.error("unlink error: " + error.message);
 }
});

Creating Directories
New directories are created with the mkdir() and mkdirSync() methods. The first argument to mkdir() is the path
of the directory to create. As mkdir() creates only the final-level directory, mkdir() cannot be used to build an entire
hierarchy of directories in a single call. This method also takes an optional second argument, which specifies the
directory’s permission and defaults to "0777". The asynchronous version also takes a callback function, one whose
only argument is a possible exception. Listing 6-33 provides an example that uses mkdir() to create the directory tree
foo/bar in the application’s directory.

Listing 6-33.  Creating Several Directories Using mkdir()

var fs = require("fs");
var path = __dirname + "/foo";
 
fs.mkdir(path, function(error) {
 if (error) {
 console.error("mkdir error: " + error.message);
 } else {
 path += "/bar";
 fs.mkdir(path, function(error) {
 if (error) {
 console.error("mkdir error: " + error.message);
 } else {
 console.log("Successfully built " + path);
 }
 });
 }
});

Chapter 6 ■ The File System

91

Reading the Contents of a Directory
The readdir() and readdirSync() methods are used to obtain the contents of a given directory. The directory path
to read is passed in as an argument. The readdirSync() method returns an array of strings containing the files and
subdirectories in the directory, whereas readdir() passes an error and the same array of files to a callback function.
Listing 6-34 shows use of readdir() in reading the contents of the process’s current working directory. Note that the
array provided by readdir() and readdirSync() does not contain the directories "." and "..".

Listing 6-34.  Reading the Contents of a Directory Using readdir()

var fs = require("fs");
var path = process.cwd();
 
fs.readdir(path, function(error, files) {
 files.forEach(function(file) {
 console.log(file);
 });
});

Removing Directories
You can also delete directories using the rmdir() and rmdirSync() methods. The directory path to remove is passed
as the first argument to each method. The second argument to rmdir() is a callback function that takes a potential
exception as its only argument. The example in Listing 6-35 uses rmdir().

Listing 6-35.  Deleting a Directory Using rmdir()

var fs = require("fs");
var path = __dirname + "/foo";
 
fs.rmdir(path, function(error) {
 if (error) {
 console.error("rmdir error: " + error.message);
 }
});
 

If you attempt to delete a nonempty directory, an error occurs. Removing such a directory takes a bit more work.
The code in Listing 6-36 shows one way to implement an rmdir() function that works on nonempty directories.
Before removing a nonempty directory, we first have to make it empty. To do so, remove all the files in the directory
and recursively remove any subdirectories.

Listing 6-36.  Implementing Recursive rmdir() Functionality

var fs = require("fs");
var path = __dirname + "/foo";
 
function rmdir(path) {
 if (fs.existsSync(path)) {
 fs.readdirSync(path).forEach(function(file) {
 var f = path + "/" + file;
 var stats = fs.statSync(f);
 

Chapter 6 ■ The File System

92

 if (stats.isDirectory()) {
 rmdir(f);
 } else {
 fs.unlinkSync(f);
 }
 });
 
 fs.rmdirSync(path);
 }
}
 
// now call the recursive rmdir() function
rmdir(path);
 

All of the function calls in Listing 6-36 being synchronous greatly simplifies the code and makes the
algorithm easier to understand. However, synchronous functions are not the Node way. Listing 6-37 shows the
same functionality implemented using asynchronous calls. The first thing to notice about this example is that the
async module has been included. Thus, we can focus on the actual algorithm, as async takes care of taming the
asynchronous function calls.

Listing 6-37.  An Asynchronous Implementation of the Recursive rmdir()

var async = require("async");
var fs = require("fs");
var path = __dirname + "/foo";
 
function rmdir(path, callback) {
 // first check if the path exists
 fs.exists(path, function(exists) {
 if (!exists) {
 return callback(new Error(path + " does not exist"));
 }
 
 fs.readdir(path, function(error, files) {
 if (error) {
 return callback(error);
 }
 
 // loop over the files returned by readdir()
 async.each(files, function(file, cb) {
 var f = path + "/" + file;
 
 fs.stat(f, function(error, stats) {
 if (error) {
 return cb(error);
 }
 

Chapter 6 ■ The File System

93

 if (stats.isDirectory()) {
 // recursively call rmdir() on the directory
 rmdir(f, cb);
 } else {
 // delete the file
 fs.unlink(f, cb);
 }
 });
 }, function(error) {
 if (error) {
 return callback(error);
 }
 
 // the directory is now empty, so delete it
 fs.rmdir(path, callback);
 });
 });
 });
}
 
// now call the recursive rmdir() function
rmdir(path, function(error) {
 if (error) {
 console.error("rmdir error: " + error.message);
 } else {
 console.log("Successfully removed " + path);
 }
});

Watching Files
The fs module lets your applications watch specific files for modifications. This is accomplished using the watch()
method. The first argument to watch() is the path to the file to watch. The optional second argument is an object.
If present, this object should contain a Boolean property named persistent. If persistent is true (the default), the
application continues running as long as at least one file is watched. The third argument to watch() is an optional
callback function that is triggered each time the target file is modified.

If present, the callback function accepts two arguments. The first, the type of watch event, will be either change or
rename. The callback function’s second argument is the name of the file being watched.

In the example in Listing 6-38 showing the watch() method in action, a file named foo.txt is watched
persistently. That is, the application does not terminate unless the program is killed or the watched file is deleted.
Whenever foo.txt is modified, an event is fired and handled by the callback function. If the file is deleted, a rename
event is fired and handled, and the program exits.

Chapter 6 ■ The File System

94

Listing 6-38.  Watching a File Using the watch() Method

var fs = require("fs");
var path = __dirname + "/foo.txt";
 
fs.watch(path, {
 persistent: true
}, function(event, filename) {
 if (event === "rename") {
 console.log("The file was renamed/deleted.");
 } else if (event === "change") {
 console.log("The file was changed.");
 }
});
 

The watch() method also returns an object of type fs.FSWatcher. If the optional callback function is omitted, the
FSWatcher can be used to handle events (via the familiar event-handling syntax covered in Chapter 4). Listing 6-39 shows
an example that uses an FSWatcher to handle file-watching events. Also, notice the close() method, which is used to
instruct the FSWatcher to stop watching the file in question. Therefore, this example handles only one file-change event.

Listing 6-39.  Watching a File Using the Alternative watch() Syntax

var fs = require("fs");
var path = __dirname + "/foo.txt";
var watcher;
 
watcher = fs.watch(path);
watcher.on("change", function(event, filename) {
 if (event === "rename") {
 console.log("The file was renamed/deleted.");
 } else if (event === "change") {
 console.log("The file was changed.");
 }
 
 watcher.close();
}); 

Note■■   Node’s official documentation lists watch() as unstable because it depends on the underlying file system and
is not implemented with 100 percent consistency across platforms. For example, the filename argument of the watch()
callback function is not available in all systems.

Summary
This chapter has introduced Node’s file system APIs. Working effectively with the file system is a key factor in any
legitimate application. Without access to the file system, an application cannot accomplish tasks such as reading
configuration files, creating output files, and writing to error logs. Many file system tasks in Node are handled using
the fs module, and so the chapter has covered the most important methods that fs provides. However, there are a
number of other methods this chapter has not covered, methods that allow you to accomplish such tasks as changing
file ownership and permissions. Readers are referred to the full documentation (http://nodejs.org/api/fs.html)
for a listing of all possible methods.

http://nodejs.org/api/fs.html

95

Chapter 7

Streams

Node makes extensive use of streams as a data transfer mechanism—for example, for reading and writing files and
transmitting data over network sockets. Chapter 5 has already shown you the standard streams—stdin, stdout, and
stderr. This chapter, which explores Node’s streams API in greater detail, presents the different types of streams, how
they work, and their various applications. But before starting, you should be aware that the streams API, while an
important part of the Node core, is listed as unstable in the official documentation.

What Are Streams?
Streams are a mechanism for transferring data between two points. In terms of behavior, a simple garden hose provides a
good analogy. When you need to water your lawn, you use a hose to connect a water supply to a sprinkler. When you turn
the water on, it flows through the hose to the sprinkler. It is then up to the sprinkler to distribute the water.

Streams are conceptually very similar. Compare watering the lawn to a call to console.log(), for example.
In this case, a Node application acts as the water supply. When console.log() is called, the water is turned on, and
information flows through the standard output stream. At this point, Node is no longer concerned with what happens
to the data. The stdout stream delivers the data to its destination. In this case, the destination (the sprinkler) could be
almost anything—a terminal window, a file, another program.

Working with Streams
Node supports several types of streams, all of which inherit from EventEmitter. Each type of stream behaves slightly
differently. To work with the various types of streams, first import the stream core module (see Listing 7-1).

Listing 7-1.  Importing the stream Module

var Stream = require("stream");
 

Importing the stream module returns a reference to the Stream constructor. The constructor can then be used to
instantiate new streams, as shown in Listing 7-2.

Listing 7-2.  Creating a New Stream Using the stream Module

var Stream = require("stream");
var stream = new Stream(); 

Readable Streams
Readable streams are sources of data. A typical readable stream is a file that has been opened for reading. The simplest
way to create a readable stream is to assign the stream’s readable property to true and then emit data, end, close, and
error events. The following sections explore how these events are used.

Chapter 7 ■ Streams

96

data Events
You use a data event to indicate that a new piece of stream data, referred to as a chunk, is available. For each data
event emitted, the handler is passed the actual data chunk. Many applications emit the data chunk as a binary Buffer.
This is what the official documentation specifies, although technically any data can be emitted. For consistency, it is
recommended that data events use a Buffer. The example in Listing 7-3 emits a data event, with the chunk specified
as a Buffer.

Listing 7-3.  Creating a Readable Stream And Emitting a data Event

var Stream = require("stream");
var stream = new Stream();
 
stream.readable = true;
stream.emit("data", new Buffer("foo"));

The end Event
Once a stream sends all of its data, it should emit a single end event. Once the end event is emitted, no further data
events should be emitted. The end event does not include any accompanying data. The example in Listing 7-4 creates
a readable stream that sends data once a second for five seconds using an interval. Date comparisons are used to
determine when five seconds have elapsed. At that point, an end event is emitted, and the interval is cleared.

Listing 7-4.  A Readable Stream That Emits Several data Events Followed by an end Event

var Stream = require("stream");
var stream = new Stream();
var duration = 5 * 1000; // 5 seconds
var end = Date.now() + duration;
var interval;
 
stream.readable = true;
interval = setInterval(function() {
 var now = Date.now();
 
 console.log("Emitting a data event");
 stream.emit("data", new Buffer("foo"));
 
 if (now >= end) {
 console.log("Emitting an end event");
 stream.emit("end");
 clearInterval(interval);
 }
}, 1000); 

Note■■  T he Date.now() method returns the current date and time specified as the number of milliseconds that have
elapsed since January 1, 1970, 00:00:00 UTC.

Chapter 7 ■ Streams

97

The close Event
The close event is used to indicate that the underlying source of the stream data has been closed. For example, streams
that read data from a file emit a close event when the file descriptor is closed. Not all readable streams emit a close
event. Therefore, if you implement your own readable stream, you are not required to emit this event. If present, the
close event contains no additional arguments. An example of a close event is shown in Listing 7-5.

Listing 7-5.  Emitting a close Event

var Stream = require("stream");
var stream = new Stream();
 
stream.readable = true;
stream.emit("close"); 

error Events
error events are used to indicate that a problem occurred with the data stream. For example, streams that read from
files emit an error event if the backing file does not exist. The error event handler is passed an Error object with
details explaining the problem. The example in Listing 7-6 emits an error event.

Listing 7-6.  Emitting an error Event

var Stream = require("stream");
var stream = new Stream();
 
stream.readable = true;
stream.emit("error", new Error("Something went wrong!")); 

Controlling Readable Streams
To pause readable streams, use the pause() method. When in a paused state, a readable stream ceases to emit data
events (Chapter 5 covered pause() in the context of stdin). An example use of pause() is shown in Listing 7-7.

Listing 7-7.  Calling pause() on stdin

process.stdin.pause();

By default, stdin is in the paused state (see Chapter 5). In order to read data from stdin or any other paused
stream, first unpause it using the resume() method. The example in Listing 7-8 shows the usage of resume(). After
calling resume(), data arriving via stdin will cause data events to be emitted.

Listing 7-8.  Calling resume() on stdin

process.stdin.resume();

Writable Streams
Just as readable streams are sources of data, writable streams are destinations for data. To create a writable stream,
set a stream’s writable property to true, and define methods named write() and end(). The following sections
describe these methods, as well as the other features of writable streams.

s

98

The write() Method
The write() method is responsible for writing a chunk of data to the stream. The data chunk is passed to write() as
a Buffer or a string. If the chunk is a string, the optional second argument can be used to specify the encoding. If no
encoding is specified, UTF-8 will be used by default. As an optional final argument, write() also accepts a callback
function. If present, the callback function is invoked once the chunk is successfully written.

The write() method also returns a Boolean value indicating whether the chunk was flushed to the underlying
resource. If true is returned, the data has been flushed, and the stream can accept more. If false is returned, the data
is still queued and waiting to be written. Returning false also notifies the data source to stop sending data until the
writable stream emits a drain event.

The example in Listing 7-9 shows a call to stdout’s write() method. The call to write() passes in a string. Since
the text is UTF-8, the encoding argument is omitted. The callback function thus becomes the second argument.

Listing 7-9. A Call to stdout’s write() Method

var success = process.stdout.write("foo\n", function() {
 console.log("Data was successfully written!");
});
 console.log("success = " + success);

In the resulting output (see Listing 7-10), notice the order in which the print statements execute. The call to
write() completes, causing the callback function to be scheduled in the event loop. However, execution returns from
write() and then continues on, to print out the value of success. At this point, as the callback function is the only
item left in the event loop, it is executed, causing the final print statement to be run.

Listing 7-10. The Resulting Output from Running the Code in Listing 7-9

$ node write.js
foo
success = true
Data was successfully written!

The end() Method
The end() method, used to signal the end of the data stream, can be called without any arguments. However, it can
also be called with the same arguments as write(). This is a convenient shortcut for situations where write() needs
to be called only once, followed by end().

The drain Event
When write() returns false, the stream’s data source should send no more data. The drain event is used to alert the
source that the writable stream, having processed all its data, can begin receiving data again. The drain event does
not include any accompanying data.

The finish Event
When end() is called and no more data is to be written, the stream emits a finish event. It too, provides no
additional data. Unlike drain, which can potentially be emitted many times, finish can be used to detect the end
of the stream.

Chapter 7 ■ Streams

99

The close and error Events
Like readable streams, writable streams have close and error events that behave in the same fashion.

An Example of a Writable Stream
Let’s look now at a very simple custom writable stream. Custom streams are useful in situations where you want to use
the streams API in a situation that is not supported out of the box by Node. In the code in Listing 7-11, adapted from
James Halliday’s example (https://github.com/substack/stream-handbook), the stream counts the number of bytes
that it processes. Each time the write() method is called, the total byte count increases by the number of bytes in the
buffer. When end() is called, it checks whether a buffer has been passed in. If it has, the buffer is passed to write().
The stream is then shut down by setting the writable property to false and emitting a finish event. Finally, the total
number of bytes processed by the stream is displayed.

Listing 7-11.  A Custom Writable Stream That Counts the Bytes It Processes

var Stream = require("stream");
var stream = new Stream();
var bytes = 0;
 
stream.writable = true;
 
stream.write = function(buffer) {
 bytes += buffer.length;
};
 
stream.end = function(buffer) {
 if (buffer) {
 stream.write(buffer);
 }
 
 stream.writable = false;
 stream.emit("finish");
 console.log(bytes + " bytes written");
};

Pipes
Let’s return to the garden hose analogy. What if your hose wasn’t long enough to reach from the water supply to
your lawn? You might take multiple hoses and connect them. In a similar fashion, data streams can also be chained
together in order to accomplish a bigger task. For example, assume we have two programs, Program A and Program
B. Program A, whose code is shown in Listing 7-12, generates a random single-digit integer (0–9) once a second and
outputs it to stdout. Program B, shown in Listing 7-13, reads an arbitrary number of integers from stdin and outputs
a running sum to stdout. All you need now is a hose to connect the two programs.

Listing 7-12.  A Random Single-Digit Integer Generator

setInterval(function() {
 var random = Math.floor(Math.random() * 10);
 
 console.log(random);
}, 1000); 

https://github.com/substack/stream-handbook

Chapter 7 ■ Streams

100

Listing 7-13.  An Application That Sums Numbers Read from stdin

var sum = 0;
 
process.stdin.on("data", function(data) {
 var number = parseInt(data.toString(), 10);
 
 if (isFinite(number)) {
 sum += number;
 }
 
 console.log(sum);
});
 
process.stdin.resume();

Note■■   Math.random() returns a pseudo-random floating-point number between 0 (inclusive) and 1 (exclusive).
Multiplying this value by 10, as shown in Listing 7-12, gives a random floating-point number between 0 (inclusive) and
10 (exclusive). Math.floor() returns the largest integer that is less than the argument passed in. Therefore, Listing 7-12
generates a random integer between 0 (inclusive) and 9 (inclusive).

These metaphorical hoses are called pipes. If you’ve done any shell programming, you have undoubtedly
come across pipes. They allow an output stream from one process to feed directly into the input stream of another.
In shell programming, the pipe operator, |, implements pipes. Listing 7-14 shows how to use a pipe to connect the
two example programs from the command line. In the example, the output from Program A is piped to the input of
Program B. When you run this command, you will see a stream of numbers, representing the value of the sum variable
in Program B, print to the console at a rate of one per second.

Listing 7-14.  Piping Output from One Program to Another

$ node Program-A.js | node Program-B.js

The pipe() Method
Within Node applications, streams can be piped together using the pipe() method, which takes two arguments: a
required writable stream that acts as the destination for the data and an optional object used to pass in options. In the
simple example in Listing 7-15, a pipe is created from stdin to stdout. When this program is run, it listens for input
from the user. When the Enter key is pressed, any data typed by the user echoes back to stdout.

Listing 7-15.  Piping stdin to stdout Using the pipe() Method

process.stdin.pipe(process.stdout);
 

The optional second argument to pipe() is an object that can hold a single Boolean property, end. If end is true
(the default behavior), the destination stream is closed when the source stream emits its end event. If end is set to
false, however, the destination stream stays open, and so additional data can be written to the destination stream
without the need to reopen it.

Chapter 7 ■ Streams

101

Note■■  T he standard streams behave synchronously when associated with a file or terminal window. For example,
a write to stdout will block the rest of the program. However, when they are piped, they behave asynchronously, just like
any other stream. Additionally, the writable standard streams, stdout and stderr, cannot be closed until the process
terminates, regardless of the value of the end option.

Back to the Writable Stream Example
When Listing 7-11 introduced a custom writable stream, you weren’t able to see it do anything. Now that you have
learned about pipes, that example stream can be fed some data. Listing 7-16 shows how this is done. The final three
lines are particularly noteworthy. First, a pipe with the same source and destination is created. Next, the stream emits
a data event followed by an end event.

Listing 7-16.  Piping Data to the Custom Writable Stream from Listing 7-11

var Stream = require("stream");
var stream = new Stream();
var bytes = 0;
 
stream.writable = true;
 
stream.write = function(buffer) {
 bytes += buffer.length;
};
 
stream.end = function(buffer) {
 if (buffer) {
 stream.write(buffer);
 }
 
 stream.writable = false;
 stream.emit("finish");
 console.log(bytes + " bytes written");
};
 
stream.pipe(stream);
stream.emit("data", new Buffer("foo"));
stream.emit("end");
 

These events trigger the write() and end() methods of the writable stream. The resulting output is shown in
Listing 7-17.

Listing 7-17.  The Resulting Output from Running the Code in Listing 7-16

$ node custom-stream.js
3 bytes written

w

Chapter 7 ■ Streams

102

File Streams
In Chapter 6 you saw how to read from and write to files using the fs module’s readFile() and writeFile() methods,
as well as their synchronous counterparts. These methods are extremely convenient but have the potential to cause
memory issues in your applications. As a refresher, take the example of readFile() shown in Listing 7-18, where a file
named foo.txt is read asynchronously. Once the read is complete, the callback function is invoked, and the contents
of the file are printed to the console.

Listing 7-18.  Reading a File Using fs.readFile()

var fs = require("fs");
 
fs.readFile(__dirname + "/foo.txt", function(error, data) {
 console.log(data);
});
 

To understand the problem, assume that your application is a web server that receives hundreds or thousands
of connections every second. Assume too that all the files being served are, for whatever reason, significantly large
and that readFile() is used to read the files from disk into memory on every request before returning the data to the
clients. When readFile() is invoked, it buffers the entire contents of the file before invoking its callback function.
Since your busy server is buffering many large files simultaneously, memory consumption can spike.

So how can all this nastiness be avoided? As it turns out, the file system module provides methods for reading
and writing files as streams. These methods, createReadStream() and createWriteStream(), however, unlike most
other fs methods, have no synchronous equivalent. Thus, Chapter 6 intentionally skipped over them until the reader
had a more thorough introduction to streams.

createReadStream()
As the name implies, createReadStream() is used to open a file as a readable stream. In its simplest form,
createReadStream() takes a file name as an argument and returns a readable stream of the type ReadStream. Since
the ReadStream type, defined in the fs module, inherits from the standard readable stream, it can be used in the same
fashion.

The example in Listing 7-19 shows createReadStream() reading the contents of a file. The data event handler
is used to print out chunks of data as they come through the stream. Since a file can consist of multiple chunks,
process.stdout.write() is used to display the chunks. If console.log() was used and the file was more than one
chunk large, the output would contain extra line breaks not present in the original file. When the end event is received,
console.log() is used to simply print one trailing new line to the output.

Listing 7-19.  Reading a File Using fs.createReadStream()

var fs = require("fs");
var stream;
 
stream = fs.createReadStream(__dirname + "/foo.txt");
 
stream.on("data", function(data) {
 var chunk = data.toString();
 
 process.stdout.write(chunk);
});
 

Chapter 7 ■ Streams

103

stream.on("end", function() {
 console.log();
});()

The ReadStream’s open Event
As previously mentioned, the ReadStream type inherits from the base readable stream. This means that the
ReadStream can augment the base stream’s behavior. The open event is a perfect example of this. When the file name
passed to createReadStream() is successfully opened, the stream emits an open event. The open event’s handler
function is invoked with a single parameter, the file descriptor used by the stream. By getting a handle on the file
descriptor, createReadStream() can be used in conjunction with other file system methods that work with such file
descriptors as fstat(), read(), write(), and close(). In the example in Listing 7-20, when an open event handler is
invoked, the file descriptor is passed to fstat() to display the file’s statistics.

Listing 7-20.  Calling fstat() Using a File Descriptor from the open Event Handler

var fs = require("fs");
var stream;
 
stream = fs.createReadStream(__dirname + "/foo.txt");
 
stream.on("open", function(fd) {
 fs.fstat(fd, function(error, stats) {
 if (error) {
 console.error("fstat error: " + error.message);
 } else {
 console.log(stats);
 }
 });
});

The options Argument
The optional second argument that createReadStream() takes is named options. If present, this argument is an
object whose properties allow you to modify the behavior of createReadStream(). The various properties supported
by the options argument are described in Table 7-1.

Table 7-1.  Description of the Properties Supported by the options Argument

Property Name Description

fd An existing file descriptor. This defaults to null. If a value is provided, it is not necessary to specify
a file name as the first argument to createReadStream().

encoding Specifies the character encoding of the stream. Defaults to null. The supported encoding types
are described in Table 5-1.

autoClose If true, the file is automatically closed when an error or end event is emitted. If false, the file is
not closed. Defaults to true.

flags flags argument passed to open(). See Table 6-3 for a list of available values. Defaults to "r".

(continued)

Chapter 7 ■ Streams

104

In the example in Listing 7-21, which utilizes the options argument of createReadStream(), a file descriptor
returned by open() is passed to createReadStream(). Since an existing file descriptor is being used, null, instead
of a file name, is passed as the first argument to createReadStream(). The example also uses the start and end
options to skip the file’s first and last bytes. The fstat() method is used to determine the file size in order to set end
appropriately. The example also includes a number of checks for errors. For example, the code will not work properly
if a directory is used instead of a normal file.

Listing 7-21.  Utilizing the options Argument of createReadStream()

var fs = require("fs");
 
fs.open(__dirname + "/foo.txt", "r", function(error, fd) {
 if (error) {
 return console.error("open error: " + error.message);
 }
 
 fs.fstat(fd, function(error, stats) {
 var stream;
 var size;
 
 if (error) {
 return console.error("fstat error: " + error.message);
 } else if (!stats.isFile()) {
 return console.error("files only please");
 } else if ((size = stats.size) < 3) {
 return console.error("file must be at least three bytes long");
 }
 
 stream = fs.createReadStream(null, {
 fd: fd,
 start: 1,
 end: size - 2
 });
 
 stream.on("data", function(data) {
 var chunk = data.toString();
 
 process.stdout.write(chunk);
 });
 

Table 7-1.  (continued)

Property Name Description

mode The mode argument passed to open(). Defaults to "0666".

start The byte index within the file (inclusive) to begin reading. Defaults to zero (the beginning of the file).

end The byte index within the file (inclusive) to stop reading. This can only be used if start is also
specified. Defaults to Infinity (the end of the file).

Chapter 7 ■ Streams

105

 stream.on("end", function() {
 console.log();
 });
 });
});

createWriteStream()
To create a writable stream associated with a file, use createWriteStream(). Much like createReadStream(),
createWriteStream() takes a file path as its first argument and an optional options object as its second, and returns
an instance of WriteStream, a data type defined in the fs module that inherits from the base writable stream type.

The example in Listing 7-22, shows how data can be piped to a writable file stream created with
createWriteStream(). In this example, a readable file stream is created which pulls data from foo.txt. The data is
then piped through a writable stream to a file named bar.txt.

Listing 7-22.  Piping a Readable File Stream to a Writable File Stream

var fs = require("fs");
var readStream = fs.createReadStream(__dirname + "/foo.txt");
var writeStream = fs.createWriteStream(__dirname + "/bar.txt");
 
readStream.pipe(writeStream);
 

The options argument to createWriteStream() is slightly different from the one used by createReadStream().
Table 7-2 describes the various properties that the options object passed to createWriteStream() can include.

Table 7-2.  The Properties Supported by the options Argument to createWriteStream()

Property Name Description

fd An existing file descriptor. This defaults to null. If a value is provided, it is not necessary to specify
a file name as the first argument to createWriteStream().

flags flags argument passed to open(). See Table 6-3 for a list of available values. Defaults to "w".

encoding Specifies the character encoding of the stream. Defaults to null.

mode The mode argument passed to open(). Defaults to "0666".

start The byte index within the file (inclusive) to begin writing. Defaults to zero (the beginning of the file).

The WriteStream’s open Event
The WriteStream type also implements its own open event, which is emitted when the destination file is successfully
opened. The open event’s handler accepts the file descriptor as its sole argument. An example open event handler for a
writable file stream is shown in Listing 7-23. This example simply prints out the integer representing the file descriptor
of the open file.

Listing 7-23.  An open Event Handler for a Writable File Stream

var fs = require("fs");
var stream = fs.createWriteStream(__dirname + "/foo.txt");
 
stream.on("open", function(fd) {
 console.log("File descriptor: " + fd);
});

Chapter 7 ■ Streams

106

The bytesWritten Property
The WriteStream type keeps track of the number of bytes written to the underlying stream. This count is available
via the stream’s bytesWritten property. Listing 7-24 shows how bytesWritten is used. Returning to the example in
Listing 7-22, the contents of a file are read using a readable stream and then piped to another file using a writable
stream. However, Listing 7-24 includes a handler for the writable stream’s finish event. When the finish event is
emitted, this handler is invoked, and the number of bytes that have been written to the file are displayed.

Listing 7-24.  Using the WriteStream’s bytesWritten Property

var fs = require("fs");
var readStream = fs.createReadStream(__dirname + "/foo.txt");
var writeStream = fs.createWriteStream(__dirname + "/bar.txt");
 
readStream.pipe(writeStream);
 
writeStream.on("finish", function() {
 console.log(writeStream.bytesWritten);
}); 

Compression Using the zlib Module
Compression is the process of encoding information using fewer bits than its original representation does. Compression
is useful because it allows data to be stored or transmitted using fewer bytes. When the data needs to be retrieved, it is
simply uncompressed to its original state. Compression is used extensively in web servers to improve response time by
reducing the number of bytes sent over the network. However, it should be noted that compression is not free, and can
increase response times. Compression is also commonly used to reduce file sizes when archiving data.

Node’s core zlib module provides compression and decompression APIs that are implemented using streams.
Because the zlib module is based on streams, it allows easy compression and decompression of data using pipes.
Specifically, zlib provides bindings for compression using Gzip, Deflate, and DeflateRaw as well as decompression
using Gunzip, Inflate, and InflateRaw. As all three of these schemes provide the same interface, switching between
them is just a matter of changing method names.

The example in Listing 7-25, which uses Gzip to compress a file, begins by importing the fs and zlib modules.
Next, the zlib.creatGzip() method is used to create a Gzip compression stream. The data source, input.txt, is used to
create a readable file stream. Similarly, a writable file stream is created to output the compressed data to input.txt.gz.
The listing’s final line performs the actual compression by reading the uncompressed data and piping it through the Gzip
compressor. The compressed data is then piped to the output file.

Listing 7-25.  Compressing a File Using Gzip Compression

var fs = require("fs");
var zlib = require("zlib");
var gzip = zlib.createGzip();
var input = fs.createReadStream("input.txt");
var output = fs.createWriteStream("input.txt.gz");
 
input.pipe(gzip).pipe(output); 

To test the compression application, simply create input.txt, and store 100 A characters in it (the file’s size
should be 100 bytes). Next, run the Gzip compressor. The file input.txt.gz should be created with a file size of 24 bytes.
Of course, the size of the compressed file depends on a few things. The first factor is the size of the uncompressed data.

Chapter 7 ■ Streams

107

However, the compression’s effectiveness also depends on the number of repeating patterns in the original data. Our
example achieved excellent compression because all the characters in the file were the same. By replacing a single A
with a B, the compressed file size jumps from 24 to 28 bytes, even though the source data is the same size.

The compressed data may be smaller, but it isn’t particularly useful. To work with the compressed data, we need
to decompress it. A sample Gzip decompression application is shown in Listing 7-26. The zlib.createGunzip()
method creates a stream that performs the decompression. The input.txt.gz file from Listing 7-25 is used as the
readable stream, which is piped through the Gunzip stream. The decompressed data is then piped to a new output
file, output.txt.

Listing 7-26.  Decompressing a Gzip Compressed File Using Gunzip

var fs = require("fs");
var zlib = require("zlib");
var gunzip = zlib.createGunzip();
var input = fs.createReadStream("input.txt.gz");
var output = fs.createWriteStream("output.txt");
 
input.pipe(gunzip).pipe(output);

Deflate/Inflate and DeflateRaw/InflateRaw
The Deflate compression scheme can be used as an alternative to Gzip. The DeflateRaw scheme is similar to Deflate,
but omits the zlib header that is present in Deflate. As previously mentioned, the usage for these schemes are the
same as for Gzip. The methods used to create Deflate and DeflateRaw streams are zlib.createDeflate() and
zlib.createDeflateRaw(). Similarly, zlib.createInflate() and zlib.createInflateRaw() are used to create the
corresponding decompression streams. An additional method, zlib.createUnzip(), is used in the same way, and it
can decompress both Gzip and Deflate compressed data by automatically detecting the compression scheme.

Convenience Methods
All of the previously mentioned stream types have a corresponding convenience method for one-step compression/
decompression of a string or Buffer. These methods are gzip(), gunzip(), deflate(), inflate(), deflateRaw(),
inflateRaw(), and unzip(). Each of them takes a Buffer or string as its first argument and a callback function as
its second. The callback function takes an error condition as its first argument and the result of the compression/
decompression (as a Buffer) as its second. Listing 7-27 shows how deflate() and unzip() are used to compress and
decompress a string. After compression and decompression, the data is printed to the console. If everything works
properly, the same string stored in the data variable is displayed.

Listing 7-27.  Compression and Decompression Using the Convenience Methods

var zlib = require("zlib");
var data = "This is some data to compress!";
 
zlib.deflate(data, function(error, compressed) {
 if (error) {
 return console.error("Could not compress data!");
 }
 

s

108

 zlib.unzip(compressed, function(error, decompressed) {
 if (error) {
 return console.error("Could not decompress data!");
 }

 console.log(decompressed.toString());
 });
});

Summary
This chapter has introduced the concept of data streams. You have seen how to create your own streams and how to use
existing stream APIs, such as file streams. The coming chapters show streams in the context of network programming.
You will also learn how to spawn and control child processes, which expose their own standard streams.

109

Chapter 8

Binary Data

Up to this point, we have only studied applications that process textual data. Often, however, applications must work
with binary data rather than text in order to save space and time. Additionally, some application data, such as images
and audio, are inherently binary. As web applications increase in sophistication, the use of binary data is becoming
more popular, even in the browser. Thus, this chapter’s focus shifts to applications that handle pure binary data.
It examines what binary data is and how it is handled in the JavaScript standard, as well as features unique to Node.

An Overview of Binary Data
So what exactly is binary data? If you were thinking, “on a computer, all data is binary data,” you would be correct.
At the most basic level, just about every piece of data on a computer is stored in binary form—as a series of ones and
zeros representing binary numbers and Boolean logic values. However, when the term “binary data” is used in the
context of programming languages, it refers to data containing no additional abstractions or structure. For example,
consider the simple JSON object shown in Listing 8-1. This object is considered JSON because it adheres to a certain
syntax. The braces, quotation marks, and colon are all necessary in order for it to be a valid JSON object.

Listing 8-1.  A Simple JSON Object

{"foo": "bar"}
 

You could also view the example as simply a series of characters. In this case, the braces suddenly lose semantic
importance. Instead of marking the beginning and end of a JSON object, the braces are simply two more characters in a string.
Replacing them with any other characters would make no difference. Ultimately, you have a string containing 14 characters
that just so happen to conform to JSON syntax. However, the data is still being interpreted as text, not as true binary data.

In dealing with text, pieces of data are defined in terms of characters. For example, the string in Listing 8-1 is 14
characters long. In dealing with binary data, one speaks of bytes, or octets. For bytes to be interpreted as text, some
type of character encoding must be used. Depending on the type of encoding, there may or may not be one-to-one
mapping of characters to bytes.

Note■■   An octet is an 8-bit piece of data. The term byte is also commonly used to describe 8-bit data. However,
historically the byte has not always been 8 bits. This book assumes the common 8-bit definition of byte and uses the
term interchangeably with octet.

Node supports a number of character encodings but normally defaults to UTF-8. UTF-8 is a variable-width
encoding that is backward-compatible with ASCII, but it can also represent all Unicode characters. Since UTF-8
encoding is variable-width, some characters are represented using a single byte, but many are not. More specifically,
a single UTF-8 character can require between 1 and 4 bytes.

Chapter 8 ■ Binary Data

110

Listing 8-2 shows the string from Listing 8-1 represented as binary data. Since they consist of long strings of
ones (1) and zeros (0), binary data is often displayed using hexadecimal notation, in which each digit represents
4 bits. Therefore, each pair of hex digits represents an octet. In this example, each textual character is UTF-8 encoded
as a single byte. Therefore, Listing 8-2 contains 14 bytes. By examining the value of each byte, you can begin to see a
pattern in the mapping to characters. For example, the byte value 22 occurs four times—where the quotation marks
are located in Listing 8-1. The value 6f, corresponding to the "oo" in "foo", also occurs two times in a row.

Listing 8-2.  The String in Listing 8-1 Represented As Binary Data Written in Hexadecimal

7b 22 66 6f 6f 22 3a 20 22 62 61 72 22 7d
 

In the last example, each text character conveniently mapped to a single byte. However, this may not always
happen. For example, consider the snowman Unicode character (see Listing 8-3), which although rarely used, is
perfectly valid string data in JavaScript. Listing 8-4 shows the binary representation of the snowman. Notice that
3 bytes are required to represent this single character in UTF-8 encoding.

Listing 8-3.  The Snowman Unicode Character

☃
 

Listing 8-4.  The Snowman Character Represented As Binary Data

e2 98 83

Endianness
Another subject that sometimes arises when dealing with binary data is endianness. Endianness refers to the way a given
machine stores data in memory, and comes into play when storing multibyte data such as integers and floating-point
numbers. The two most common types of endianness are big-endian and little-endian. A big-endian machine stores a
data item’s most significant byte first. In this case, “first” refers to the lowest memory address. A little-endian machine,
on the other hand, stores the least significant byte in the lowest memory address. To illustrate the difference between
big-endian and little-endian storage, let’s examine how the number 1 is stored in each scheme. Figure 8-1 shows the
number 1 encoded as a 32-bit unsigned integer. The most significant and least significant bytes are labeled for your
convenience. Since the data’s length is 32 bits, 4 bytes are required to store the data in memory.

This is the most
significant byte

This is the least
significant byte

Figure 8-1.  The number 1, encoded as a 32-bit unsigned integer, shown in hexadecimal

Chapter 8 ■ Binary Data

111

Figure 8-2 shows how the data is stored on a big-endian machine, while Figure 8-3 shows the same data
represented in little-endian format. Notice that the byte containing 01 swaps sides from one representation to the
other. The labels 0x00000000 and 0xFFFFFFFF denote the ascending addresses of the memory space.

Figure 8-2.  The number 1, as it is stored in memory on a big-endian machine

Figure 8-3.  The number 1, as it is stored in memory on a little-endian machine

After examining Figures 8-2 and 8-3, you can see why understanding endianness matters. If a number stored in
one endianness is interpreted in the other, the results will be completely wrong. To illustrate this point, let’s return
to the example of the number 1. Assume that the data has been written to a file on a machine that uses little-endian
storage. What if that file were moved to another machine and read as big-endian data? As it turns out, the number
00 00 00 01 would be interpreted as 01 00 00 00. If you do the math, this turns out to be 224, or 16,777,216—a
difference of nearly 17 million!

Determining Endianness
The os core module provides a method, endianness(), that, as the name implies, is used to determine the endianness
of the current machine. The endianness() method takes no arguments and returns a string indicating the machine’s
endianness. If the machine employs big-endian storage, endianness() returns the string "BE". Conversely, if little-endian
is used, "LE" is returned. The example in Listing 8-5 calls endianness() and prints the result to the console.

Listing 8-5.  Determining a Machine’s Endianness Using the os.endianness() Method

var os = require("os");
 
console.log(os.endianness());

The Typed Array Specification
Before looking at the Node-specific way of handling binary data, let’s look at JavaScript’s standard binary data handlers,
known as the typed array specification. This name comes from the fact that, unlike normal JavaScript variables, a binary
data array has a specific data type that does not change. Because the typed array specification is part of the JavaScript
language, the material in this section is applicable in the browser (if supported), as well as in Node. Most modern browsers
at least partially support binary data, but which browsers support which features are details beyond the scope of this book.

Chapter 8 ■ Binary Data

112

ArrayBuffers
JavaScript’s binary data API consists of two parts, a buffer and a view. The buffer, implemented using the ArrayBuffer
data type, is a generic container holding an array of bytes. As ArrayBuffers are fixed-length structures, once created,
they cannot be resized. It is also advisable not to work directly with the contents of an ArrayBuffer. Instead, create a
view to manipulate the ArrayBuffer’s contents (the topic of views is revisited shortly).

An ArrayBuffer is created by calling the ArrayBuffer() constructor. The constructor function takes a single
argument, an integer representing the number of bytes in the ArrayBuffer. The example in Listing 8-6 creates a new
ArrayBuffer that can hold a total of 1,024 bytes.

Listing 8-6.  Creating a 1,024-Byte ArrayBuffer

var buffer = new ArrayBuffer(1024);
 

Working with an existing ArrayBuffer is very similar to working with a normal array. Individual bytes are read
and written using array subscript notation. However, since an ArrayBuffer cannot be resized, writing to a nonexistent
index does not change the underlying data structure. Instead, the write does not occur and fails silently. In the
example in Listing 8-7, showing an attempt to write past the end of an ArrayBuffer, an empty 4-byte ArrayBuffer
is initialized. Next, a value is written to each byte, including a write past the end of the ArrayBuffer. Finally, the
ArrayBuffer is printed to the console.

Listing 8-7.  Writing Values to an ArrayBuffer and Printing the Result

var foo = new ArrayBuffer(4);
 
foo[0] = 0;
foo[1] = 1;
foo[2] = 2;
foo[3] = 3;
// this assignment will fail silently
foo[4] = 4;
console.log(foo);
 

Listing 8-8 shows the output resulting from Listing 8-7. Notice that although the code wrote past the end of the
buffer, the written value is not present in the output. The failed write also did not generate any exceptions.

Listing 8-8.  The Results of Running the Code in Listing 8-7

$ node array-buffer-write.js
{ '0': 0,
 '1': 1,
 '2': 2,
 '3': 3,
 slice: [Function: slice],
 byteLength: 4 }
 

Chapter 8 ■ Binary Data

113

In the previous output, you may have noticed the byteLength property, which denotes the size of the
ArrayBuffer in bytes. This value is assigned when the ArrayBuffer is created and cannot be changed. Like a normal
array’s length property, byteLength is useful for looping over the contents of an ArrayBuffer. Listing 8-9 shows how
the byteLength property is used in a for loop to display the contents of an ArrayBuffer.

Listing 8-9.  Looping over an ArrayBuffer Using the byteLength Property

var foo = new ArrayBuffer(4);
 
foo[0] = 0;
foo[1] = 1;
foo[2] = 2;
foo[3] = 3;
 
for (var i = 0, len = foo.byteLength; i < len; i++) {
 console.log(foo[i]);
}

slice()
You can extract a new ArrayBuffer from an existing one using the slice() method. The slice() method takes two
arguments, which specify the starting position (inclusive) and ending position (exclusive) of the range to copy. The
ending index can be omitted. If it is not specified, the slice span goes from the start index to the end of the ArrayBuffer.
Both indexes can be negative as well. A negative index is used to calculate a position from the end of the ArrayBuffer
as opposed to the beginning. Listing 8-10 shows several examples that slice the same two bytes from an ArrayBuffer. The
first two examples use explicit start and end indexes, while the third omits the end index. Finally, the fourth example
creates a slice using a negative starting index.

Listing 8-10.  Creating a New ArrayBuffer Using the slice() Method

var foo = new ArrayBuffer(4);
 
foo[0] = 0;
foo[1] = 1;
foo[2] = 2;
foo[3] = 3;
 
console.log(foo.slice(2, 4));
console.log(foo.slice(2, foo.byteLength));
console.log(foo.slice(2));
console.log(foo.slice(-2));
// returns [2, 3]
 

It is important to note that the new ArrayBuffer returned by slice() is just a copy of the original data. Therefore,
if the buffer returned by slice() is modified, the original data is not changed (see the example in Listing 8-11).

Chapter 8 ■ Binary Data

114

Listing 8-11.  Creating a New ArrayBuffer Using the slice() Method

var foo = new ArrayBuffer(4);
var bar;
 
foo[0] = 0;
foo[1] = 1;
foo[2] = 2;
foo[3] = 3;
 
// Create a copy of foo and modify it
bar = foo.slice(0);
bar[0] = 0xc;
 
console.log(foo);
console.log(bar);
 

In Listing 8-11, an ArrayBuffer named foo is created and populated with data. Next, the entire contents of foo
are copied into bar using slice(). Then the hex value 0xc (binary 12) is written to the first position in bar. Finally,
both foo and bar are printed to the console. Listing 8-12 shows the resulting output. Notice that the two ArrayBuffers
are identical, except for the first byte. The value 0xc, which was written to bar, did not propagate to foo.

Listing 8-12.  The Output from Running the Code in Listing 8-11

$ node array-buffer-slice.js
{ '0': 0,
 '1': 1,
 '2': 2,
 '3': 3,
 slice: [Function: slice],
 byteLength: 4 }
{ '0': 12,
 '1': 1,
 '2': 2,
 '3': 3,
 slice: [Function: slice],
 byteLength: 4 }

ArrayBuffer Views
Working directly with arrays of bytes is both tedious and error prone. By adding a layer of abstraction to an
ArrayBuffer, views give the illusion of more traditional data types. For example, instead of working with an 8-byte
ArrayBuffer, you can use a view to make the data appear as an array of two 4-byte integers, each 32 bits long, for a
total of 64 bits, or 8 bytes. Table 8-1 lists the various types of views as well as the size in bytes of each array element.
So in our example scenario, we would want either an Int32Array or an Uint32Array view, depending on whether our
application required signed or unsigned numbers.

Chapter 8 ■ Binary Data

115

Note■■   Though the Uint8Array and Uint8ClampedArray are very similar, there is a key difference in the way values
outside the 0–255 range are treated. The Uint8Array simply looks at the least significant 8 bits in determining a value. Thus,
255, 256, and 257 are interpreted as 255, 0, and 1, respectively. On the other hand, the Uint8ClampedArray interprets any
value greater than 255 as 255 and any value less than 0 as 0. That is to say, 255, 256, and 257 are all interpreted as 255.

The example in Listing 8-13 shows how views are used in practice. In this case, a view consisting of two 32-bit
unsigned integers is created based on an 8-byte ArrayBuffer. Next, two integers are written to the view, and the view
is displayed.

Listing 8-13.  An Example Using the Uint32Array View

var buf = new ArrayBuffer(8);
var view = new Uint32Array(buf);
 
view[0] = 100;
view[1] = 256;
 
console.log(view);
 

Listing 8-14 shows the resulting output. Its first two lines show the two values, 100 and 256, written to the view.
Following the array values is the BYTES_PER_ELEMENT property. This read-only property, included in each type of view,
represents the number of raw bytes in each array element. Following the BYTES_PER_ELEMENT property is a collection
of methods to be revisited shortly.

Listing 8-14.  Output from Running the Code in Listing 8-13

$ node array-buffer-view.js
{ '0': 100,
 '1': 256,
 BYTES_PER_ELEMENT: 4,

Table 8-1.  Description of JavaScript’s Various ArrayBuffer Views

View Type Element Size (Bytes) Description

Int8Array 1 Array of 8-bit signed integers.

Uint8Array 1 Array of 8-bit unsigned integers.

Uint8ClampedArray 1 Array of 8-bit unsigned integers. Values are clamped to be in the
0–255 range.

Int16Array 2 Array of 16-bit signed integers.

Uint16Array 2 Array of 16-bit unsigned integers.

Int32Array 4 Array of 32-bit signed integers.

Uint32Array 4 Array of 32-bit unsigned integers.

Float32Array 4 Array of 32-bit IEEE floating point numbers.

Float64Array 8 Array of 64-bit IEEE floating-point numbers.

Chapter 8 ■ Binary Data

116

 get: [Function: get],
 set: [Function: set],
 slice: [Function: slice],
 subarray: [Function: subarray],
 buffer:
 { '0': 100,
 '1': 0,
 '2': 0,
 '3': 0,
 '4': 0,
 '5': 1,
 '6': 0,
 '7': 0,
 slice: [Function: slice],
 byteLength: 8 },
 length: 2,
 byteOffset: 0,
 byteLength: 8 }
 

Notice that the underlying ArrayBuffer is also displayed as the buffer property. Examine the value of each byte
in the ArrayBuffer, and you will see its correspondence with the value stored in the view. In this example, bytes 0
through 3 correspond with the value 100, and bytes 4 through 7 represent the value 256.

Note■■   As a reminder, 256 is equivalent to 28, meaning that it cannot be represented in a single byte. A single unsigned
byte can hold a maximum of 255. Therefore, the hex representation of 256 is 01 00.

This brings up another important aspect of views. Unlike the ArrayBuffer slice() method, which returns a new
copy of data, views manipulate the original data directly. So modifying the values of a view changes the contents of the
ArrayBuffer, and vice versa. Also, two views having the same ArrayBuffer can accidentally (or intentionally) change
each other’s values. The example shown in Listing 8-15, where a 4-byte ArrayBuffer is shared by a Uint32Array view
and a Uint8Array view, begins by writing 100 to the Uint32Array, then printing the value. Then the Uint8Array writes
the value 1 to its second byte (effectively writing the value 256). The data from the Uint32Array is then printed again.

Listing 8-15.  Views Interacting with Each Other

var buf = new ArrayBuffer(4);
var view1 = new Uint32Array(buf);
var view2 = new Uint8Array(buf);
 
// write to view1 and print the value
view1[0] = 100;
console.log("Uint32 = " + view1[0]);
 
// write to view2 and print view1's value
view2[1] = 1;
console.log("Uint32 = " + view1[0]);
 

Chapter 8 ■ Binary Data

117

Listing 8-16 shows the output from Listing 8-15. As expected, the first print statement displays the value 100.
However, by the time the second print statement occurs, the value has increased to 356. In the example this behavior
is expected. However, in more complex applications you must be cautious when creating multiple views of the same
data.

Listing 8-16.  The Output from Running the Code in Listing 8-15

$ node view-overwrite.js
Uint32 = 100
Uint32 = 356

A Note on View Sizing
Views must be sized such that each element can be fully composed from data in the ArrayBuffer. That is, a view
can only be constructed from data whose length in bytes is a multiple of the view’s BYTES_PER_ELEMENT property.
For example, a 4-byte ArrayBuffer can be used to construct an Int32Array view holding a single integer. However,
the same 4-byte buffer cannot be used to construct a Float64Array view whose elements are 8 bytes long.

Constructor Information
Each type of view has four constructors. One form, which you’ve already seen, takes an ArrayBuffer as its first
argument. This constructor function can also optionally specify both a starting byte offset in the ArrayBuffer and
the view’s length. The byte offset defaults to 0 and must be a multiple of BYTES_PER_ELEMENT, or else a RangeError
exception is thrown. If omitted, the length will try to consume the entire ArrayBuffer, starting at the byte offset. These
arguments, if specified, allow the view to be based on a piece of the ArrayBuffer instead of the entire thing. This is
especially useful if the ArrayBuffer length is not an exact multiple of the view’s BYTES_PER_ELEMENT.

In the example in Listing 8-17, which shows how a view can be constructed from a buffer whose size is not an
exact multiple of BYTES_PER_ELEMENT, an Int32Array view is built on a 5-byte ArrayBuffer. The byte offset of 0 indicates
that the view should begin at the first byte of the ArrayBuffer. Meanwhile, the length argument specifies that the view
should contain a single integer. Without these arguments, it would not be possible to construct the view from this
ArrayBuffer. Also, notice that the example contains a write to the byte at buf[4]. Since the view uses only the first
four bytes, this write to the fifth byte does not alter the data in the view.

Listing 8-17.  Building a View Based on Part of an ArrayBuffer

var buf = new ArrayBuffer(5);
var view = new Int32Array(buf, 0, 1);
 
view[0] = 256;
buf[4] = 5;
console.log(view[0]);

Creating an Empty View
The second constructor is used to create an empty view of a predefined length, n. This form of the constructor also
creates a new ArrayBuffer big enough to accommodate n view elements. For example, the code in Listing 8-18 creates
an empty Float32Array view that holds two floating-point numbers. Behind the scenes the constructor also creates
an 8-byte ArrayBuffer to hold the floats. During construction, all the bytes in the ArrayBuffer are initialized to 0.

ata

118

Listing 8-18. Creating an Empty Float32Array View

var view = new Float32Array(2);

Creating a View from Data Values
The third form of constructor accepts an array of values that are used to populate the view data. The values in the
array are converted to the appropriate data type and then stored in the view. The constructor also creates a new
ArrayBuffer to hold the values. Listing 8-19 shows an example that creates a Uint16Array view populated with the
values 1, 2, and 3.

Listing 8-19. Creating a Uint16Array View from an Array Containing Three Values

var view = new Uint16Array([1, 2, 3]);

Creating a View from Another View
The fourth version of the constructor is very similar to the third. The only difference is that instead of passing in a
standard array, this version accepts another view as its only argument. The newly created view also instantiates its own
backing ArrayBuffer—that is, the underlying data is not shared. Listing 8-20 shows how this version of the constructor
is used in practice. In this example, a 4-byte ArrayBuffer is used to create an Int8Array view containing four numbers.
The Int8Array view is then used to create a new Uint32Array view. The Uint32Array also contains four numbers,
corresponding to the data in the Int8Array view. However, its underlying ArrayBuffer is 16 bytes long instead of 4.
Of course, because the two views have different ArrayBuffers, updating one view does not affect the other.

Listing 8-20. Creating a Uint32Array View from an Int8Array View

var buf = new ArrayBuffer(4);
var view1 = new Int8Array(buf);
var view2 = new Uint32Array(view1);

console.log(buf.byteLength); // 4
console.log(view1.byteLength); // 4
console.log(view2.byteLength); // 16

View Properties
You’ve already seen that a view’s ArrayBuffer can be accessed via the buffer property and that the BYTES_PER_ELEMENT
property represents the number of bytes per view element. Views also have two properties, byteLength and length,
related to the data size, and a byteOffset property indicating the first byte of a buffer used by the view.

byteLength
The byteLength property represents the view’s data size in bytes. This value is not necessarily equal to the byteLength
property of the underlying ArrayBuffer. In the example of this case, shown in Listing 8-21, an Int16Array view is
built from a 10-byte ArrayBuffer. However, because the Int16Array constructor specifies that it is to contain only two
integers, its byteLength property is 4, while the ArrayBuffer’s byteLength is 10.

Chapter 8 ■ Binary Data

119

Listing 8-21.  Differing byteLengths of a View and Its ArrayBuffer

var buf = new ArrayBuffer(10);
var view = new Int16Array(buf, 0, 2);
 
console.log(buf.byteLength);
console.log(view.byteLength);

length
The length property, which works like that of a standard array, indicates the number of data elements in the view.
This property is useful for looping over the view’s data, as shown in Listing 8-22.

Listing 8-22.  Looping over View Data Using the length Property

var view = new Int32Array([5, 10]);
 
for (var i = 0, len = view.length; i < len; i++) {
 console.log(view[i]);
}

byteOffset
The byteOffset property specifies the offset into the ArrayBuffer corresponding to the first byte used by the view.
This value is always 0, unless an offset was passed in as the second argument to the constructor (see Listing 8-17).
The byteOffset can be used in conjunction with the byteLength property to loop over the bytes of the underlying
ArrayBuffer. In the example in Listing 8-23, which shows how only the bytes used by a view can be looped over using
byteOffset and byteLength, the source ArrayBuffer is 10 bytes long, but the view only uses bytes 4 through 7.

Listing 8-23.  Looping over the Utilized Subset of Bytes in an ArrayBuffer

var buf = new ArrayBuffer(10);
var view = new Int16Array(buf, 4, 2);
var len = view.byteOffset + view.byteLength;
 
view[0] = 100;
view[1] = 256;
 
for (var i = view.byteOffset; i < len; i++) {
 console.log(buf[i]);
}

get()
The get() method is used to retrieve the data value at a given index in the view. However, as you’ve already seen, the
same task can be accomplished using array index notation, which requires fewer characters. If you elect to use get()
for whatever reason, an example of its usage is shown in Listing 8-24.

Chapter 8 ■ Binary Data

120

Listing 8-24.  Using the View get() Method

var view = new Uint8ClampedArray([5]);
 
console.log(view.get(0));
// could also use view[0]

set()
set() is used to assign one or more values in the view. To assign a single value, pass the index to write, followed by
the value to write as an argument to set() (you can also accomplish this using array index notation). An example
assigning the value 3.14 to the fourth view element is shown in Listing 8-25.

Listing 8-25.  Assigning a Single Value Using set()

var view = new Float64Array(4);
 
view.set(3, 3.14);
// could also use view[3] = 3.14
 

In order to assign multiple values, set() also accepts arrays and views as its first argument. Optionally use
this form of set() to provide a second argument that specifies the offset to begin writing values. If this offset is not
included, set() begins writing values at the first index. In Listing 8-26, set() is used to populate all four elements of
an Int32Array.

Listing 8-26.  Assigning Multiple Values Using set()

var view = new Int32Array(4);
 
view.set([1, 2, 3, 4], 0);
 

There are two important things to know about this version of set(). First, an exception is thrown if you attempt
to write past the end of the view. In the example in Listing 8-26, if the second argument had been larger than 0, the
four-element boundary would have been exceeded, resulting in an error. Second, note that because set() accepts
a view as its first argument, the argument’s ArrayBuffer might possibly be shared with the calling object. If the
source and destination are the same, Node must intelligently copy the data such that bytes are not overwritten before
they’ve had a chance to be copied. Listing 8-27 is an example of a scenario where two Int8Array views have the same
ArrayBuffer. The second view, view2, is also smaller, representing the first half of the larger view, view1. When the
call to set() occurs, 0 is assigned to view1[1], and 1 is assigned to view1[2]. Since view1[1] is part of the source
(as well as the destination in this operation), you need to ensure that the original value is copied before it is overwritten.

Listing 8-27.  Showing Where a Single ArrayBuffer Is Shared in set()

var buf = new ArrayBuffer(4);
var view1 = new Int8Array(buf);
var view2 = new Int8Array(buf, 0, 2);
 
view1[0] = 0;
view1[1] = 1;
view1[2] = 2;
view1[3] = 3;
view1.set(view2, 1);
console.log(view1.buffer);
 

Chapter 8 ■ Binary Data

121

According to the specification, “setting the values takes place as if all the data is first copied into a temporary
buffer that does not overlap either of the arrays, and then the data from the temporary buffer is copied into the current
array.” Essentially, this means that Node takes care of everything for you. To verify this, the resulting output from the
previous example is shown in Listing 8-28. Notice that bytes 1 and 2 hold the correct values of 0 and 1.

Listing 8-28.  The Output from Running the Code in Listing 8-27

$ node view-set-overlap.js
{ '0': 0,
 '1': 0,
 '2': 1,
 '3': 3,
 slice: [Function: slice],
 byteLength: 4 }

subarray()
subarray(), which returns a new view of the data type that relies on the same ArrayBuffer, takes two arguments.
The first argument specifies the first index to be referenced in the new view. The second, which is optional, represents
the last index to be referenced in the new view. If the ending index is omitted, the new view’s span goes from the start
index to the end of the original view. Either index can be negative, meaning that the offset is computed from the end
of the data array. Note that the new view returned by subarray() has the same ArrayBuffer as the original view.
Listing 8-29 shows how subarray() is used to create several identical Uint8ClampedArray views making up a subset of
another.

Listing 8-29.  Using subarray() to Create New Views from an Existing One

var view1 = new Uint8ClampedArray([1, 2, 3, 4, 5]);
var view2 = view1.subarray(3, view1.length);
var view3 = view1.subarray(3);
var view4 = view1.subarray(-2);

Node Buffers
Node provides its own Buffer data type for working with binary data. This is the preferred method of processing
binary data in Node because it is slightly more efficient than typed arrays. Up to this point, you have encountered a
number of methods that work with Buffer objects—for example, the fs module’s read() and write() methods. This
section explores in detail how Buffers work, including their compatibility with the typed array specification.

The Buffer Constructor
Buffer objects are created using one of the three Buffer() constructor functions. The Buffer constructor is global,
meaning that it can be called without requiring any modules. Once a Buffer is created, it cannot be resized. The first
form of the Buffer() constructor creates an empty Buffer of a given number of bytes. The example in Listing 8-30,
which creates an empty 4-byte Buffer, also demonstrates that individual bytes within the Buffer can be accessed
using array subscript notation.

Chapter 8 ■ Binary Data

122

Listing 8-30.  Creating a 4-Byte Buffer and Accessing Individual Bytes

var buf = new Buffer(4);
 
buf[0] = 0;
buf[1] = 1;
 
console.log(buf);
 

Listing 8-31 shows the stringified version of the Buffer. The first two bytes in the Buffer hold the values 00 and 01,
which were individually assigned in the code. Notice that the final two bytes also have values, although they were never
assigned. These are actually the values already in memory when the program ran (if you run this code, the values you
see will likely differ), indicating that the Buffer() constructor does not initialize the memory it reserves to 0. This is
done intentionally—to save time when requesting a large amount of memory (recall that the ArrayBuffer constructor
initializes its buffer to 0). As ArrayBuffers are commonly used in web browsers, leaving the memory uninitialized could
be a security hazard—you probably wouldn’t want arbitrary web sites to read the contents of your computer’s memory.
Since the Buffer type is specific to Node, it isn’t subject to the same security risks.

Listing 8-31.  The Output Resulting from Running the Code in Listing 8-30

$ node buffer-constructor-1.js
<Buffer 00 01 05 02>
 

The second form of the Buffer() constructor accepts an array of bytes as its only argument. The resulting Buffer
is populated with the values stored in the array. An example of this form of the constructor is shown in Listing 8-32.

Listing 8-32.  Creating a Buffer from an Array of Octets

var buf = new Buffer([1, 2, 3, 4]);
 

The final version of the constructor is used to create a Buffer from string data. The code in Listing 8-33 shows
how a Buffer is created from the string "foo".

Listing 8-33.  Creating a Buffer from a String

var buf = new Buffer("foo");
 

Earlier in this chapter, you learned that in order to convert from binary data to text, a character encoding must
be specified. When a string is passed as the first argument to Buffer(), a second optional argument can be used to
specify the encoding type. In Listing 8-33, no encoding is explicitly set, so UTF-8 is used by default. Table 8-2 breaks
down the various character encodings supported by Node. (The astute reader might recognize this table from
Chapter 5. However, it is worth repeating the information at this point in the book.)

Chapter 8 ■ Binary Data

123

Stringification Methods
Buffers can be stringified in two ways. The first uses the toString() method, which attempts to interpret the contents
of the Buffer as string data. The toString() method accepts three arguments, all optional. They specify the character
encoding and the starting and ending indexes of the Buffer to stringify. If unspecified, the entire Buffer is stringified
using UTF-8 encoding. The example in Listing 8-34 stringifies an entire Buffer using toString().

Listing 8-34.  Using the Buffer.toString() Method

var buf = new Buffer("foo");
 
console.log(buf.toString());
 

The second stringification method, toJSON(), returns the Buffer data as a JSON array of bytes. You get a similar
result by calling JSON.stringify() on the Buffer object. Listing 8-35 shows an example of the toJSON() method.

Listing 8-35.  Using the Buffer.toJSON() Method

var buf = new Buffer("foo");
 
console.log(buf.toJSON());
console.log(JSON.stringify(buf));

Buffer.isEncoding()
The isEncoding() method is a class method (i.e., a specific instance is not needed to invoke it) that accepts a string
as its only argument and returns a Boolean indicating whether the input is a valid encoding type. Listing 8-36 shows
two examples of isEncoding(). The first tests the string "utf8" and displays true. The second, however, prints false
because "foo" is not a valid character encoding.

Listing 8-36.  Two Examples of the Buffer.isEncoding() Class Method

console.log(Buffer.isEncoding("utf8"));
console.log(Buffer.isEncoding("foo"));

Table 8-2.  The Various String Encoding Types Supported by Node

Encoding Type Description

utf8 Multibyte encoded Unicode characters. UTF-8 encoding is used by many web pages and to
represent string data in Node.

ascii 7-bit American Standard Code for Information Interchange (ASCII) encoding.

utf16le Little-endian-encoded Unicode characters. Each character is 2 or 4 bytes.

ucs2 This is simply an alias for utf16le encoding.

base64 Base64 string encoding. Base64 is commonly used in URL encoding, e-mail, and similar
applications.

binary Allows binary data to be encoded as string using only the first 8 bits of each character. As this is
deprecated in favor of the Buffer object, it will be removed in future versions of Node.

hex Encodes each byte as two hexadecimal characters.

Chapter 8 ■ Binary Data

124

Buffer.isBuffer()
The class method isBuffer() is used to determine whether a piece of data is a Buffer object. It is used in the same
fashion as the Array.isArray() method. Listing 8-37 shows an example use of isBuffer(). This example prints true
because the buf variable is, in fact, a Buffer.

Listing 8-37.  The Buffer.isBuffer() Class Method

var buf = new Buffer(1);
 
console.log(Buffer.isBuffer(buf));

Buffer.byteLength() and length
The byteLength() class method is used to calculate the number of bytes in a given string. This method also accepts
an optional second argument to specify the string’s encoding type. This method is useful for calculating byte
lengths without actually instantiating a Buffer instance. However, if you have already constructed a Buffer, its
length property serves the same purpose. In the example in Listing 8-38, which shows byteLength() and length,
byteLength() is used to calculate the byte length of the string "foo" with UTF-8 encoding. Next, an actual Buffer is
constructed from the same string. The Buffer’s length property is then used to inspect the byte length.

Listing 8-38.  Buffer.byteLength() and the length Property

var byteLength = Buffer.byteLength("foo");
var length = (new Buffer("foo")).length;
 
console.log(byteLength);
console.log(length);

fill()
There are a number of ways to write data to a Buffer. The appropriate method can depend on several factors,
including the type of data and its endianness. The simplest method, fill(), which writes the same value to all or
part of a Buffer, takes three arguments—the value to write, an optional offset to start filling, and an optional offset
to stop filling. As with the other writing methods, the starting offset defaults to 0, and the ending offset defaults to the
end of the Buffer. Since a Buffer is not set to zero by default, fill() is useful for initializing a Buffer to a value. The
example in Listing 8-39 shows how all the memory in a Buffer can be zeroed out.

Listing 8-39.  Zeroing Out the Memory in a Buffer Using fill()

var buf = new Buffer(1024);
 
buf.fill(0);

write()
To write a string to a Buffer, use the write() method. It accepts the following four arguments.

The string to write.•	

The offset to begin writing. This is optional and defaults to index 0.•	

Chapter 8 ■ Binary Data

125

Table 8-3.  The Collection of Methods Used for Writing Numeric Data to a Buffer

Method Name Description

writeUInt8() Writes an unsigned 8-bit integer.

writeInt8() Writes a signed 8-bit integer.

writeUInt16LE() Writes an unsigned 16-bit integer using little-endian format.

writeUInt16BE() Writes an unsigned 16-bit integer using big-endian format.

writeInt16LE() Writes a signed 16-bit integer using little-endian format.

writeInt16BE() Writes a signed 16-bit integer using big-endian format.

writeUInt32LE() Writes an unsigned 32-bit integer using little-endian format.

writeUInt32BE() Writes an unsigned 32-bit integer using big-endian format.

writeInt32LE() Writes a signed 32-bit integer using little-endian format.

writeInt32BE() Writes a signed 32-bit integer using big-endian format.

writeFloatLE() Writes a 32-bit floating-point number using little-endian format.

writeFloatBE() Writes a 32-bit floating-point number using big-endian format.

writeDoubleLE() Writes a 64-bit floating-point number using little-endian format.

writeDoubleBE() Writes a 64-bit floating-point number using big-endian format.

The number of bytes to write. If not specified, the entire string is written. However, if the •	
Buffer lacks space for the entire string, it is truncated.

The character encoding of the string. If omitted, this defaults to UTF-8.•	

The example in Listing 8-40 fills a 9-byte Buffer with three copies of the string "foo". As the first write starts at
the beginning of the Buffer, an offset is not required. However, the second and third writes require an offset value.
In the third, the string length is included though it is not necessary.

Listing 8-40.  Several Writes to the Same Buffer Using write()

var buf = new Buffer(9);
var data = "foo";
 
buf.write(data);
buf.write(data, 3);
buf.write(data, 6, data.length);

Writing Numeric Data
There is a collection of methods used to write numeric data to a Buffer, each method being used to write a specific
type of number. This is analogous to the various typed array views, each of which stores a different type of data.
Table 8-3 lists the methods used to write numbers.

Chapter 8 ■ Binary Data

126

All the methods in Table 8-3 take three arguments—the data to write, the offset in the Buffer to write the data,
and an optional flag to turn off validation checking. If the validation flag is set to false (the default), an exception is
thrown if the value is too large or the data overflows the Buffer. If this flag is set to true, large values are truncated,
and overflow writes fail silently. In the example using writeDoubleLE() in Listing 8-41, the value 3.14 is written to the
first 8 bytes of a Buffer, with no validation checking.

Listing 8-41.  Using writeDoubleLE()

var buf = new Buffer(16);
 
buf.writeDoubleLE(3.14, 0, true);

Reading Numeric Data
Reading numeric data from a Buffer, like writing, also requires a collection of methods. Table 8-4 lists various
methods used for reading data. Notice the one-to-one correspondence with the write methods in Table 8-3.

Table 8-4.  The Collection of Methods Used for Reading Numeric Data from a Buffer

Method Name Description

readUInt8() Reads an unsigned 8-bit integer.

readInt8() Reads a signed 8-bit integer.

readUInt16LE() Reads an unsigned 16-bit integer using little-endian format.

readUInt16BE() Reads an unsigned 16-bit integer using big-endian format.

readInt16LE() Reads a signed 16-bit integer using little-endian format.

readInt16BE() Reads a signed 16-bit integer using big-endian format.

readUInt32LE() Reads an unsigned 32-bit integer using little-endian format.

readUInt32BE() Reads an unsigned 32-bit integer using big-endian format.

readInt32LE() Reads a signed 32-bit integer using little-endian format.

readInt32BE() Reads a signed 32-bit integer using big-endian format.

readFloatLE() Reads a 32-bit floating-point number using little-endian format.

readFloatBE() Reads a 32-bit floating-point number using big-endian format.

readDoubleLE() Reads a 64-bit floating-point number using little-endian format.

readDoubleBE() Reads a 64-bit floating-point number using big-endian format.

All the numeric read methods take two arguments. The first is the offset in the Buffer to read the data from. The
optional second argument is used to disable validation checking. If it is false (the default), an exception is thrown
if the offset exceeds the Buffer size. If the flag is true, no validation occurs, and the returned data might be invalid.
Listing 8-42 shows how a 64-bit floating-point number is written to a buffer and then read back using readDoubleLE().

Chapter 8 ■ Binary Data

127

Listing 8-42.  Writing and Reading Numeric Data

var buf = new Buffer(8);
var value;
 
buf.writeDoubleLE(3.14, 0);
value = buf.readDoubleLE(0);

slice()
The slice() method returns a new Buffer that shares memory with the original Buffer. In other words, updates
to the new Buffer affect the original, and vice versa. The slice() method takes two optional arguments, representing
the starting and ending indexes to slice. The indexes can also be negative, meaning that they are relative to the end
of the Buffer. Listing 8-43 shows how slice() is used to extract the first half of a 4-byte Buffer.

Listing 8-43.  Using slice() to Create a New Buffer

var buf1 = new Buffer(4);
var buf2 = buf1.slice(0, 2);

copy()
The copy() method is used to copy data from one Buffer to another. The first argument to copy() is the destination
Buffer. The second, if present, represents the starting index in the target to copy. The third and fourth arguments,
if present, are the starting and ending indexes in the source Buffer to copy. An example that copies the full contents
of one Buffer to another is shown in Listing 8-44.

Listing 8-44.  Copying the Contents of One Buffer to Another Using copy()

var buf1 = new Buffer([1, 2, 3, 4]);
var buf2 = new Buffer(4);
 
buf1.copy(buf2, 0, 0, buf1.length);

Buffer.concat()
The concat() class method allows concatenation of multiple Buffers into a single larger Buffer. The first argument to
concat() is an array of Buffer objects to be concatenated. If no Buffers are provided, concat() returns a zero-length
Buffer. If a single Buffer is provided, a reference to that Buffer is returned. If multiple Buffers are provided, a new
Buffer is created. Listing 8-45 provides an example that concatenates two Buffer objects.

Listing 8-45.  Concatenating Two Buffer Objects

var buf1 = new Buffer([1, 2]);
var buf2 = new Buffer([3, 4]);
var buf = Buffer.concat([buf1, buf2]);
 
console.log(buf);

ata

128

Typed Array Compatibility
Buffers are compatible with typed array views. When a view is constructed from a Buffer, the contents of the Buffer
are cloned into a new ArrayBuffer. The cloned ArrayBuffer does not share memory with the original Buffer. In the
example in Listing 8-46, which creates a view from a Buffer, a 4-byte Buffer is cloned into a 16-byte ArrayBuffer,
which backs a Uint32Array view. Notice that the Buffer is initialized to all 0s prior to creating the view. Without doing
so, the view would contain arbitrary data.

Listing 8-46. Creating a View from a Buffer

var buf = new Buffer(4);
var view;

buf.fill(0);
view = new Uint32Array(buf);
console.log(buf);
console.log(view);

It is also worth pointing out that while a view can be constructed from a Buffer, ArrayBuffers cannot be.
A Buffer also cannot be constructed from an ArrayBuffer. A Buffer can be constructed from a view, but be cautious
when doing so, as the views are likely to contain data that will not transfer well. In the simple example in Listing 8-47
illustrating this point, the integer 257, when moved from a Uint32Array view to a Buffer, becomes the byte value 1.

Listing 8-47. Data Loss when Constructing a Buffer from a View

var view = new Uint32Array([257]);
var buf = new Buffer(view);

console.log(buf);

Summary
A lot of material has been covered in this chapter. Starting with an overview of binary data, you were exposed to topics
including character encoding and endianness at a high level. From there, the chapter progressed into the typed array
specification. Hopefully, you found this material useful. After all, it is part of the JavaScript language and can be used
in the browser as well as in Node. After presenting ArrayBuffers and views, the chapter moved on to Node’s Buffer
data type and, finally, looked at how the Buffer type works with typed arrays.

129

Chapter 9

Executing Code

This chapter’s concern is the execution of untrusted code. In this case, “untrusted” refers to code that is not part of
your application or imported modules but can still be executed. This chapter’s specific focus is on two main use cases
for running untrusted code. The first involves executing applications and scripts by spawning child processes. This
use case allows Node applications to behave like a shell script, orchestrating multiple utility programs to achieve
a larger goal. The second use case concerns the execution of JavaScript source code. While this scenario is not as
common as process spawning, it is supported in the Node core and should be understood as an alternative to eval().

The child_process Module
The child_process core module, used to spawn and interact with child processes, provides several methods for
running those processes, with each method providing different levels of control and implementation complexity.
This section explains how each method works and indicates the trade-offs associated with each.

exec()
The exec() method is perhaps the simplest way to launch a child process. The exec() method takes a command
(e.g., one issued from the command line) as its first argument. When exec() is invoked, a new shell—cmd.exe in
Windows, /bin/sh otherwise—is launched and used to execute the command string. Additional configuration
options can be passed to exec() via an optional second argument. This argument, if present, should be an object
containing one or more of the properties shown in Table 9-1.

Chapter 9 ■ Executing Code

130

The final argument to exec() is a callback function called after the child process terminates. This function is
invoked with three arguments. Following Node convention, the first argument is any error condition. On success,
this argument is null. If an error is present, the argument is an instance of Error. The second and third arguments
are the buffered stdout and stderr data from the child process. Since the callback is invoked after the child process
terminates, the stdout and stderr arguments are not streams, but rather strings containing the data that passed
through the streams while the child was executing. stdout and stderr can each hold a total of maxBuffer bytes.
Listing 9-1 shows an example use of exec() that executes the ls command (Windows users would substitute dir) to
display the contents of the root directory (note that the example does not utilize the configuration options argument).
An equivalent example, one that does pass in configuration options, is shown in Listing 9-2. In the second example,
the directory to list is no longer specified in the actual command string. However, the cwd option is used to set the
working directory to the root directory. Though the output from Listings 9-1 and 9-2 should be the same, they will
depend on the contents of your local machine.

Listing 9-1.  Displaying the Output of a Process Using exec()

var cp = require("child_process");
 
cp.exec("ls -l /", function(error, stdout, stderr) {
 if (error) {
 console.error(error.toString());
 } else if (stderr !== "") {
 console.error(stderr);
 } else {
 console.log(stdout);
 }
});
 

Table 9-1.  The Configuration Options Supported by exec()

Property Description

cwd The value used to set the child process’s working directory.

env env should be an object whose key-value pairs specify the child process’s environment. This
object is equivalent to process.env in the child. If not specified, the child process inherits its
environment from the parent process.

encoding The character encoding used by the child process’s stdout and stderr streams. It defaults to utf8
(UTF-8)

timeout The property used to terminate the child process after a certain amount of time. If this value
is greater than 0, the process is killed after timeout milliseconds. Otherwise the process runs
indefinitely. The property defaults to 0.

maxBuffer The maximum amount of data that can be buffered in the child process’s stdout or stderr
stream. It defaults to 200 KB. If this value is exceeded by either stream, the child process is killed.

killSignal The signal used to terminate the child process. It is sent to the child process if, for example,
a time-out occurs or if the maximum buffer size is exceeded. It defaults to SIGTERM.

Chapter 9 ■ Executing Code

131

Listing 9-2.  A Display Equivalent to Listing 9-1 (with Configuration Options)

var cp = require("child_process");
 
cp.exec("ls -l", {
 cwd: "/"
}, function(error, stdout, stderr) {
 if (error) {
 console.error(error.toString());
 } else if (stderr !== "") {
 console.error(stderr);
 } else {
 console.log(stdout);
 }
});

execFile()
The execFile() method is similar to exec(), with two slight differences. The primary one is that execFile() does
not spawn a new shell. Instead, execFile() directly executes the file passed to it, making execFile() slightly less
resource intensive than exec(). The second difference is that the first argument to execFile() is the name of the file
to execute, with no additional arguments. Listing 9-3 shows how the ls command would be invoked to display the
contents of the current working directory.

Listing 9-3.  Executing a File with No Additional Arguments Using execFile()

var cp = require("child_process");
 
cp.execFile("ls", function(error, stdout, stderr) {
 if (error) {
 console.error(error.toString());
 } else if (stderr !== "") {
 console.error(stderr);
 } else {
 console.log(stdout);
 }
});

Warning■■   Because execFile() does not spawn a new shell, Windows users cannot make it issue a command
such as dir. In Windows, dir is a built-in feature of the shell. Additionally, execFile() cannot be used to run .cmd and
.bat files, which rely on the shell. You can, however, use execFile() to run .exe files.

If you need to pass additional arguments to the command, specify an array of arguments as the second argument
to execFile(). Listing 9-4 shows how this is accomplished. In this example, the ls command is executed again.
However, this time the -l flag and / are also passed in to display the contents of the root directory.

Chapter 9 ■ Executing Code

132

Listing 9-4.  Passing Arguments to the File Executed by execFile()

var cp = require("child_process");
 
cp.execFile("ls", ["-l", "/"], function(error, stdout, stderr) {
 if (error) {
 console.error(error.toString());
 } else if (stderr !== "") {
 console.error(stderr);
 } else {
 console.log(stdout);
 }
});
 

The third argument—or second, if no command arguments are passed in—to execFile() is an optional
configuration object. As execFile() supports the same options as exec(), an explanation of the supported properties
can be obtained from Table 9-1. The example in Listing 9-5, which uses the cwd option of the configuration object, is
semantically equivalent to the code in Listing 9-4.

Listing 9-5.  An Equivalent to Listing 9-4 That Utilizes the cwd Option

var cp = require("child_process");
 
cp.execFile("ls", ["-l"], {
 cwd: "/"
}, function(error, stdout, stderr) {
 if (error) {
 console.error(error.toString());
 } else if (stderr !== "") {
 console.error(stderr);
 } else {
 console.log(stdout);
 }
});
 

Note■■   Behind the scenes, exec() invokes execFile(), with your operating system’s shell as the file argument. The
command to execute is then passed to execFile() in the array argument.

spawn()
The exec() and execFile() methods are simple, and they work well when you just need to issue a command and
capture its output. However, some applications require more complex interactions. That is where spawn(), the most
powerful and flexible abstraction that Node provides for working with child processes, comes into play (from the
developer’s perspective it also requires the most work). spawn() is also called by execFile()—and by extension,
exec()—as well as fork() (which is covered later in this chapter).

spawn() takes a maximum of three arguments. The first, the command to execute, should be the path to the
executable only. It should not contain any arguments to the command. To pass arguments to the command, use the
optional second argument. If present, it should be an array of values to pass to the command. The third and final
argument, also optional, is used to pass options to spawn() itself. Table 9-2 lists the options supported by spawn().

Chapter 9 ■ Executing Code

133

The stdio Option
The stdio option is used to configure the stdin, stdout, and stderr streams of the child process. This option can be
a three-item array or one of the following strings: "ignore", "pipe", and "inherit". Before the string arguments can
be explained, you must first understand the array form. If stdio is an array, the first element sets the file descriptor for
the child process’s stdin stream. Similarly, the second and third elements set the file descriptors for the child’s stdout
and stderr streams, respectively. Table 9-3 enumerates the possible values for each array element.

Table 9-2.  A Listing of the Options Supported by spawn()

Property Description

cwd The value used to set the child process’s working directory.

env env should be an object whose key-value pairs specify the child process’s environment.
This object is equivalent to process.env in the child. If not specified, the child process inherits
its environment from the parent process.

stdio Either an array or a string used to configure the child process’s standard streams. This argument is
covered below.

detached A Boolean specifying if the child process will be a process group leader. If true, the child can
continue executing even if the parent terminates. This defaults to false.

uid This number, representing the user identity to run the process as, allows programs to be run as
another user and to temporarily elevate privileges. It defaults to null, causing the child to be run
as the current user.

gid A number used to set the process’s group identity. It defaults to null, with the value to be set
based on the current user.

Table 9-3.  The Possible Values for stdio Array Entries

Value Description

"pipe" Creates a pipe between the child process and the parent process. spawn() returns a
ChildProcess object (explained in more detail later). The parent can access the child’s
standard streams via the ChildProcess object’s stdin, stdout, and stderr streams.

"ipc" Creates an interprocess communication (IPC) channel between child and parent that can
be used to pass messages and file descriptors. A child process can have, at most, one IPC file
descriptor. (IPC channels are covered in more detail in a later section.)

"ignore" Causes the child’s corresponding stream to simply be ignored.

A stream object A readable or writable stream that can be shared with the child process. The stream’s
underlying file descriptor is duplicated in the child process. For example, the parent could
set up a child process to read commands from a file stream.

A positive integer Corresponds to a file descriptor currently open in the parent process that is shared with the
child process.

null or undefined Use the default values of 0, 1, and 2 for stdin, stdout, and stderr, respectively.

Chapter 9 ■ Executing Code

134

If stdio is a string, it can be "ignore", "pipe", or "inherit". These values are shorthand for certain array
configurations. The meaning of each value is shown in Table 9-4.

Table 9-4.  A Translation of Each stdio String Value

String Value

"ignore" ["ignore", "ignore", "ignore"]

"pipe" ["pipe", "pipe", "pipe"]

"inherit" [process.stdin, process.stdout, process.stderr] or [0, 1, 2]

The ChildProcess Class
spawn() does not accept callback functions like exec() and execFile(). Instead, it returns a ChildProcess object.
The ChildProcess class inherits from EventEmitter and is used to interact with the spawned child process.
ChildProcess objects provide three stream objects, stdin, stdout, and stderr, representing the standard streams of
the underlying child process. The example in Listing 9-6 uses spawn() to run the ls command in the root directory.
The child process is then set up to inherit its standard streams from the parent process. Because the child’s standard
streams are hooked up to the parent’s streams, the child output is printed to the console. Since our only real interest is
in the output of the ls command, the stdio option could also have been set up using the array ["ignore",
process.stdout, "ignore"].

Listing 9-6.  Executing a Command Using spawn()

var cp = require("child_process");
var child = cp.spawn("ls", ["-l"], {
 cwd: "/",
 stdio: "inherit"
});

Note■■   For a refresher on working with the standard streams, revisit Chapters 5 and 7. This chapter focuses on
material not covered earlier.

In the last example, the child process’s stdout stream was essentially managed by using the stdio property’s
"inherit" value. However, the stream could also have been explicitly controlled. The example in Listing 9-7 taps
directly into the child’s stdout stream and its data event handler.

Listing 9-7.  An Alternative Implementation of Listing 9-6

var cp = require("child_process");
var child = cp.spawn("ls", ["-l", "/"]);
 
child.stdout.on("data", function(data) {
 process.stdout.write(data.toString());
});

Chapter 9 ■ Executing Code

135

The error Event
A ChildProcess object emits an error event when the child cannot be spawned or killed, or when sending it an IPC
message has failed. The generic format of a ChildProcess error event handler is shown in Listing 9-8.

Listing 9-8.  A ChildProcess error Event Handler

var cp = require("child_process");
var child = cp.spawn("ls");
 
child.on("error", function(error) {
 // process error here
 console.error(error.toString());
});

The exit Event
When the child process terminates, the ChildProcess object emits an exit event. The exit event handler is passed
two arguments. The first is the exit code of the process if it is terminated by the parent (if the process is not terminated
by the parent, the code argument is null). The second is the signal used to kill the process. If the child isn’t
terminated by a signal from the parent process, this is also null. Listing 9-9 shows a generic exit event handler.

Listing 9-9.  A ChildProcess exit Event Handler

var cp = require("child_process");
var child = cp.spawn("ls");
 
child.on("exit", function(code, signal) {
 console.log("exit code: " + code);
 console.log("exit signal: " + signal);
});

The close Event
The close event is emitted when the standard streams of a child process are closed. This is distinct from the exit
event because it is possible for multiple processes to share the same streams. Like the exit event, close also provides
the exit code and signal as arguments to the event handler. A generic close event handler is shown in Listing 9-10.

Listing 9-10.  A ChildProcess close Event Handler

var cp = require("child_process");
var child = cp.spawn("ls");
 
child.on("close", function(code, signal) {
 console.log("exit code: " + code);
 console.log("exit signal: " + signal);
});

Chapter 9 ■ Executing Code

136

The pid Property
A ChildProcess’s pid property is used to obtain the child’s process identifier. Listing 9-11 shows how the pid property
is accessed.

Listing 9-11.  Accessing a Child Process’s pid Property

var cp = require("child_process");
var child = cp.spawn("ls");
 
console.log(child.pid);

kill()
kill() is used to send a signal to a child process. This signal to the child is the only argument to kill(). If no
argument is provided, kill() sends the SIGTERM signal in an attempt to kill the child process. In the example in
Listing 9-12, which calls kill(), an exit event handler is also included to display the terminating signal.

Listing 9-12.  Sending a Signal to a Child Process Using kill()

var cp = require("child_process");
var child = cp.spawn("cat");
 
child.on("exit", function(code, signal) {
 console.log("Killed using " + signal);
});
 
child.kill("SIGTERM");

fork()
fork(), a special case of spawn(), is used to create Node processes (see Listing 9-13). The modulePath argument is
the path to the Node module that is run in the child process. The optional second argument is an array used to pass
arguments to the child process. The final argument is an optional object used to pass options to fork(). The options
that fork() supports are shown in Table 9-5.

Listing 9-13.  Using the child_process.fork() Method

child_process.fork(modulePath, [args], [options])
 

Table 9-5.  The Options Supported by fork()

Option Description

cwd Value used to set the child process’s working directory.

env env should be an object whose key-value pairs specify the child process’s environment. The object
is equivalent to process.env in the child. If not specified, the child process inherits its environment
from the parent process.

encoding The character encoding used by the child process. It defaults to "utf8" (UTF-8).

Chapter 9 ■ Executing Code

137

Note■■  T he process returned by fork() is a new instance of Node, containing a complete instance of V8. Take care not
to create too many of these processes, as they consume considerable resources.

The ChildProcess object returned by fork() comes equipped with a built-in IPC channel that allows the
different Node processes to communicate via JSON messages. The child process’s standard streams are also
associated with the parent process’s by default.

To demonstrate how fork() works, two test applications are needed. The first application (see Listing 9-14)
represents the child module to be executed. The module simply prints the arguments passed to it, its environment,
and its working directory. Save this code in a file named child.js.

Listing 9-14.  A Child Module

console.log("argv: " + process.argv);
console.log("env: " + JSON.stringify(process.env, null, 2));
console.log("cwd: " + process.cwd());
 

Listing 9-15 shows the corresponding parent process. This code forks a new instance of Node, which runs the
child module from Listing 9-14. The call to fork() passes a -foo argument to the child. It also sets the child’s working
directory to / and provides a custom environment. When the application is run, the print statements from the child
process are displayed on the parent process’s console.

Listing 9-15.  The Parent for the Child Module Shown in Listing 9-14

var cp = require("child_process");
var child;
 
child = cp.fork(__dirname + "/child", ["-foo"], {
 cwd: "/",
 env: {
 bar: "baz"
 }
});

send()
The send() method uses the built-in IPC channel to pass JSON messages between Node processes. The parent
process can send data by invoking the ChildProcess object’s send() method. The data can then be handled in the
child process by setting up a message event handler on the process object. Similarly, the child can send data to its
parent by calling the process.send() method. In the parent process, the data is received via the ChildProcess’s
message event handler.

The following example contains two Node applications that pass messages back and forth indefinitely. The
child module (see Listing 9-16) should be stored in a file named message-counter.js. The entire module is
simply the process object’s message handler. Each time a message is received, the handler displays the message
counter. Next, we verify that the parent process is still alive and the IPC channel is intact by inspecting the value
of process.connected. If the channel is connected, the counter is incremented, and the message is sent back to
the parent process.

Chapter 9 ■ exeCuting Code

138

Listing 9-16. A Child Module That Passes Messages Back to Its Parent

process.on("message", function(message) {
 console.log("child received: " + message.count);

 if (process.connected) {
 message.count++;
 process.send(message);
 }
});

Listing 9-17 shows the corresponding parent process. The parent begins by forking a child process and then
sets up two event handlers. The first handles message events from the child. The handler displays the message count
and checks whether the IPC channel is connected via the child.connected value. If it is, the handler increments the
counter and then passes the message back to the child process.

The second handler listens for the SIGINT signal. If SIGINT is received, the child is killed, and the parent process
exits. This handler has been added to permit the user to terminate both programs, which are running in an infinite
message passing loop. At the end of Listing 9-17, the message passing is started by sending a message with a count of 0
to the child. To test this program, simply run the parent process. To terminate, simply press Ctrl+C.

Listing 9-17. A Parent Module That Works in Conjunction with the Child in Listing 9-16

var cp = require("child_process");
var child = cp.fork(__dirname + "/message-counter");

child.on("message", function(message) {
 console.log("parent received: " + message.count);

 if (child.connected) {
 message.count++;
 child.send(message);
 }
});

child.on("SIGINT", function() {
 child.kill();
 process.exit();
});

child.send({
 count: 0
});

Note I if the object transmitted via send() has a property named cmd whose value is a string beginning with "NODE_",
then the message is not emitted as a message event. an example is the object {cmd: "NODE_foo"}. these are special
messages used by the node core, and cause internalMessage events to be emitted. the official documentation strongly
discourages the use of this feature, as it is subject to change without notice.

Chapter 9 ■ Executing Code

139

disconnect()
To close the IPC channel between the parent and child process, use the disconnect() method. From the parent
process, invoke the ChildProcess’s disconnect() method. From the child process, disconnect() is a method of the
process object.

disconnect() , which does not accept any arguments, causes several things to occur. First, ChildProcess.
connected and process.connected are set to false in the parent and child processes. Second, a disconnect event is
emitted in both processes. Once disconnect() is called, an attempt to send more messages will cause an error.

Listing 9-18 shows a child module consisting of only a disconnect event handler. When the parent disconnects,
the child process prints a message to the console. Store this code in a file named disconnect.js. Listing 9-19 shows
the corresponding parent process. The parent forks a child process, sets up a disconnect event handler, and then
immediately disconnects from the child. When the disconnect event is emitted by the child process, the parent also
prints a goodbye message to the console.

Listing 9-18.  A Child Module Implementing a disconnect Event Handler

process.on("disconnect", function() {
 console.log("Goodbye from the child process");
});
 

Listing 9-19.  The Parent Corresponding to the Child Shown in Listing 9-18

var cp = require("child_process");
var child = cp.fork(__dirname + "/disconnect");
 
child.on("disconnect", function() {
 console.log("Goodbye from the parent process");
});
 
child.disconnect();

The vm Module
The vm (virtual machine) core module is used to execute raw strings of JavaScript code. At first glance it appears to
be just another implementation of JavaScript’s built-in eval() function, but vm is much more powerful. For starters,
vm allows you to parse a piece of code and run it at a later time—something that cannot be done with eval(). vm also
allows you to define the context in which the code executes, making it a safer alternative to eval(). With regard to vm,
a context is a V8 data structure consisting of a global object and a set of built-in objects and functions. The context
that code is executed in can be thought of as the JavaScript environment. The remainder of this section describes the
various methods vm provides for working with contexts and executing code.

Note■■   eval(), a global function that is not associated with any object, takes a string as its only argument. This string
can contain arbitrary JavaScript code, which eval() will attempt to execute. The code executed by eval() has all of the
same privileges as the caller, as well as access to any variables currently in scope. eval() is considered a security risk
because it gives arbitrary code read/write access to your data, and should generally be avoided.

Chapter 9 ■ Executing Code

140

runInThisContext()
The runInThisContext() method allows code to execute using the same context as the rest of your application. This
method takes two arguments. The first is the code string to be executed. The optional second argument represents the
“file name” of the executed code. If present, this can be any string, as it is only a virtual file name used to improve the
readability of stack traces. Listing 9-20 is a simple example that prints to the console using runInThisContext(). The
resulting output is shown in Listing 9-21.

Listing 9-20.  Using vm.runInThisContext()

var vm = require("vm");
var code = "console.log(foo);";
 
foo = "Hello vm";
vm.runInThisContext(code);

Listing 9-21.  The Output Generated by the Code in Listing 9-20

$ node runInThisContext-hello.js
Hello vm
 

The code executed by runInThisContext() has access to the same context as your application, meaning that it
can access all globally defined data. However, the executing code does not have access to nonglobal variables. This
is probably the biggest difference between runInThisContext() and eval(). To illustrate this concept, look first at
the example in Listing 9-22, which accesses the global variable foo from within runInThisContext(). Recall that
JavaScript variables that are not declared using the var keyword automatically become global variables.

Listing 9-22.  Updating a Global Variable Within vm.runInThisContext()

var vm = require("vm");
var code = "console.log(foo); foo = 'Goodbye';";
 
foo = "Hello vm";
vm.runInThisContext(code);
console.log(foo);
 

Listing 9-23 shows the output from running the code in Listing 9-22. In this example, the variable foo initially
holds the value "Hello vm". When runInThisContext() is executed, foo is printed to the console and then assigned
the value "Goodbye". Finally, the value of foo is printed again. The assignment occurring within runInThisContext()
has persisted, and Goodbye is printed.

Listing 9-23.  The Output Resulting from the Code in Listing 9-22

$ node runInThisContext-update.js
Hello vm
Goodbye
 

As previously mentioned, runInThisContext() cannot access nonglobal variables. Listing 9-22 has been
rewritten in Listing 9-24 such that foo is now a local variable (declared using the var keyword). Also, note that an
additional parameter, specifying an optional file name, has now been passed into runInThisContext().

Chapter 9 ■ Executing Code

141

Listing 9-24.  Attempting to Access a Nonglobal Variable in vm.runInThisContext()

var vm = require("vm");
var code = "console.log(foo);";
var foo = "Hello vm";
 
vm.runInThisContext(code, "example.vm");
 

When the code in Listing 9-24 is executed, a ReferenceError occurs in the attempt to access foo. The exception
and stack trace are shown in Listing 9-25. Notice that the stack trace refers to example.vm, the file name associated
with runInThisContext().

Listing 9-25.  The Stack Trace Output from the Code in Listing 9-24

$ node runInThisContext-var.js
 
/home/colin/runInThisContext-var.js:5
vm.runInThisContext(code, "example.vm");
 ^
ReferenceError: foo is not defined
 at example.vm:1:13
 at Object.<anonymous> (/home/colin/runInThisContext-var.js:5:4)
 at Module._compile (module.js:456:26)
 at Object.Module._extensions..js (module.js:474:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 at Function.Module.runMain (module.js:497:10)
 at startup (node.js:119:16)
 at node.js:901:3
 

Listing 9-26 replaces the call to runInThisContext() with a call to eval(). The resulting output is also shown in
Listing 9-27. Based on the observed output, eval() is clearly able to access foo in the local scope.

Listing 9-26.  Successfully Accessing a Local Variable Using eval()

var vm = require("vm");
var code = "console.log(foo);";
var foo = "Hello eval";
 
eval(code);
 

Listing 9-27.  The Output Resulting from Listing 9-26

$ node runInThisContext-eval.js
Hello eval

runInNewContext()
In the previous section you saw how local variables can be protected by using runInThisContext() instead of eval().
However, because runInThisContext()works with the current context, it still gives untrusted code access to your
global data. If you need to restrict access even further, use vm’s runInNewContext() method. As its name implies,

Chapter 9 ■ Executing Code

142

runInNewContext() creates a brand new context in which the code can execute. Listing 9-28 shows the usage of
runInNewContext(). The first argument is the JavaScript string to execute. The second, optional, argument is used as
the global object in the new context. The third argument, which is also optional, is the file name shown in stack traces.

Listing 9-28.  Using vm.runInNewContext()

vm.runInNewContext(code, [sandbox], [filename])
 

The sandbox argument is used for setting global variables in the context, as well as retrieving values after
runInNewContext() has completed. Remember, with runInThisContext() we were able to modify global variables
directly, and the changes would persist. However, because runInNewContext() uses a different set of globals, the same
tricks do not apply. For example, one might expect the code in Listing 9-29 to display "Hello vm" when run, but this is
not the case.

Listing 9-29.  Attempting to Execute Code Using vm.runInNewContext()

var vm = require("vm");
var code = "console.log(foo);";
 
foo = "Hello vm";
vm.runInNewContext(code);
 

Instead of running successfully, this code crashes, with the error shown in Listing 9-30. The error occurs because
the new context does not have access to the application’s console object. It is worth pointing out that only one error
is thrown before the program crashes. However, even if console was available, a second exception would be thrown
because the global variable foo is not available in the new context.

Listing 9-30.  The ReferenceError Thrown by the Code in Listing 9-29

ReferenceError: console is not defined
 

Luckily, we can explicitly pass foo and the console object to the new context using the sandbox argument.
Listing 9-31 shows how to accomplish this. When run, this code displays "Hello vm", as expected.

Listing 9-31.  A Successful Use of vm.runInNewContext()

var vm = require("vm");
var code = "console.log(foo);";
var sandbox;
 
foo = "Hello vm";
sandbox = {
 console: console,
 foo: foo
};
vm.runInNewContext(code, sandbox);

Sandboxing Data
A nice thing about runInNewContext() is that changes made to the sandboxed data do not actually change your
application’s data. In the example shown in Listing 9-32, the global variables foo and console are passed to
runInNewContext() via a sandbox. Inside of runInNewContext(), a new variable named bar is defined, foo is printed

Chapter 9 ■ Executing Code

143

to the console, and then foo is modified. After runInNewContext() completes, foo is printed again, along with several
of the sandboxed values.

Listing 9-32.  Creating and Modifying Sandboxed Data

var vm = require("vm");
var code = "var bar = 1; console.log(foo); foo = 'Goodbye'";
var sandbox;
 
foo = "Hello vm";
sandbox = {
 console: console,
 foo: foo
};
vm.runInNewContext(code, sandbox);
console.log(foo);
console.log(sandbox.foo);
console.log(sandbox.bar);
 

Listing 9-33 shows the resulting output. The first instance of "Hello vm" comes from the print statement inside
runInNewContext(). As expected, this is the value of foo passed in through the sandbox. Next, foo is set to "Goodbye".
However, the next print statement shows the original value of foo. This is because the assignment statement inside
runInNewContext() updates the sandboxed copy of foo. The final two print statements reflect the sandboxed values
of foo ("Goodbye") and bar (1) at the end of runInNewContext().

Listing 9-33.  The Output Resulting from Listing 9-32

$ node runInNewContext-sandbox.js
Hello vm
Hello vm
Goodbye
1

runInContext()
Node allows you to create individual V8 context objects and execute code in them using the runInContext()
method. Individual contexts are created using vm’s createContext() method. runInContext() can be called with no
arguments, causing it to return a bare context. Alternatively, a sandbox object can be passed to createContext(),
which is shallow-copied to the context’s global object. The usage of createContext() is shown in Listing 9-34.

Listing 9-34.  Using vm.createContext()

vm.createContext([initSandbox])
 

Context objects returned by createContext() can then be passed as the second argument to vm’s
runInContext() method, which is nearly identical to runInNewContext(). The only difference is that the second
argument to runInContext() is a context object instead of a sandbox. Listing 9-35 shows how Listing 9-32 can be
rewritten using runInContext(). The differences are that runInContext() has replaced runInNewContext() and
context, created with createContext(), has replaced the sandbox variable. The output from running this code is the
same as what is shown in Listing 9-33.

Chapter 9 ■ Executing Code

144

Listing 9-35.  Rewriting Listing 9-34 Using vm.createContext()

var vm = require("vm");
var code = "var bar = 1; console.log(foo); foo = 'Goodbye'";
var context;
 
foo = "Hello vm";
context = vm.createContext({
 console: console,
 foo: foo
});
vm.runInContext(code, context);
console.log(foo);
console.log(context.foo);
console.log(context.bar);

createScript()
The createScript() method, used to compile a JavaScript string for future execution, is useful when you want to
execute code multiple times. The createScript() method, which returns a vm.Script object that can be executed
repeatedly without the need to reinterpret the code, accepts two arguments. The first is the code to be compiled. The
optional second argument represents the file name that will be displayed in stack traces.

The vm.Script object returned by createScript() has three methods for executing the code. These methods are
modified versions of runInThisContext(), runInNewContext(), and runInContext(). The usage of these three methods
is shown in Listing 9-36. They behave the same as the vm methods of the same names. The difference is that these
methods do not accept the JavaScript code string or file name arguments, as they are already part of the script object.

Listing 9-36.  The Script Execution Methods of the vm.Script Type

script.runInThisContext()
script.runInNewContext([sandbox])
script.runInContext(context)
 

Listing 9-37 shows an example that runs a script multiple times within a loop. In the example, a simple script is
compiled using createScript(). Next, a sandbox is created with a single value, i, that is set to 0. The script is then
executed ten times within a for loop using runInNewContext(). Each iteration increments the sandboxed value of
i. When the loop completes, the sandbox is printed. When the sandbox is displayed, the cumulative effect of the
increment operations is apparent, as the value of i is 10.

Listing 9-37.  Executing a Compiled Script Multiple Times

var vm = require("vm");
var script = vm.createScript("i++;", "example.vm");
var sandbox = {
 i: 0
 }
 
for (var i = 0; i < 10; i++) {
 script.runInNewContext(sandbox);
}
 
console.log(sandbox);
// displays {i: 10}
 

Chapter 9 ■ Executing Code

145

Summary
This chapter has shown you how to execute code in a variety of manners. Covered first was the common case where
your program needs to execute another application. In these situations, the methods in the child_process module
are used. The methods exec(), execFile(), spawn(), and fork() were examined in detail, as well as the different
levels of abstraction offered by each. Covered next was the execution of strings of JavaScript code. The vm module was
explored, and its various methods were compared with JavaScript’s native eval() function. The concept of contexts
and the various types of contexts offered by vm were also covered. Finally, you learned how to compile scripts and
execute them at a later time using the vm.Script type.

147

Chapter 10

Network Programming

Until this point, the example code provided in this book has focused on your local machine. Whether accessing
the file system, parsing command line arguments, or executing untrusted code, all examples were isolated to a
single computer. This chapter starts to explore the world outside of localhost. It covers network programming and
introduces many important topics, including sockets, client-server programming, Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), and Domain Name Service (DNS). A full explanation of all these concepts is
beyond this book’s scope, but a basic understanding of them is crucial, as they are the foundation for the material on
web applications covered in the next few chapters.

Sockets
When two applications communicate over a network, they do so using sockets. A socket is a combination of an
Internet Protocol (IP) address and a port number. An IP address is used to uniquely identify a device on a network,
which can be a small home network or the entire Internet itself. The device can be a PC, tablet, smartphone, printer,
or any other Internet-enabled device. IP addresses are 32-bit numbers formatted as four 8-bit numbers separated by
dots. Examples of IP addresses are 184.168.230.128 and 74.125.226.193. These correspond to web servers at
www.cjihrig.com and www.google.com.

Note■■   The IP addresses described here are referred to as IPv4 addresses, the most common variety. These addresses
are based on Internet Protocol version 4. Due to the growth of the Internet, it is anticipated that the number of IPv4
addresses will run out. To mitigate this problem, Internet Protocol version 6 (IPv6) was developed. IPv6 addresses are
128 bits long, meaning that more addresses can be represented. IPv6 address strings are also longer and include
hexadecimal values, with colons as separators instead of dots.

The port component of a socket is a 16-bit number used to uniquely identify a communication endpoint
on a computer. Ports allow a single computer to maintain many socket connections simultaneously. To better
understand the concept of ports, envision yourself calling someone working in a large corporate office building.
When you make the call, you need to know the office’s phone number. In this analogy, the office is a remote
computer, and its phone number is its IP address. Corporate offices provide extensions for reaching individuals.
The phone extension is analogous to the port number, and the party you are trying to reach represents a process
or thread on the remote machine. Once you enter your party’s extension and are connected, you can carry on a
conversation. Similarly, once two sockets have established a communication channel, they can begin sending
data back and forth.

http://www.cjihrig.com/
http://www.google.com/

Chapter 10 ■ Network Programming

148

It was previously mentioned that the IP address 74.125.226.193 corresponds to a web server at www.google.com.
To verify this, type http://74.125.226.193 into your browser’s address bar. Clearly this request includes the server’s
IP address, but where is the port number? As it turns out, Google’s web server accepts connections on port 80. URL
syntax allows you to explicitly identify the port to connect to by including a colon and the port number after the host.
To verify this, try connecting to http://74.125.226.193:80 (or www.google.com:80) in your browser. You should
see the Google home page once again. Now try connecting to http://74.125.226.193:81 (www.google.com:81).
Suddenly the page can no longer be found. How does a browser know to connect to port 80 when www.google.com is
typed into its address bar? To answer that question, let’s return to our telephone analogy. In the United States, how do
you know to call 911 and not 912 in an emergency? The answer: because every child in the country has been taught to
call 911 in case of an emergency. It is an agreed-upon convention in society.

On the Internet, common services follow a similar convention. The port numbers from 0 to 1023 are referred to
as the well-known ports, or reserved ports. For example, port 80 is reserved for serving HTTP traffic. Therefore, when
you navigate to a URL beginning with http://, your browser assumes that the port number is 80, unless you explicitly
state otherwise. That is why Google’s web server responded to our request on port 80, but not 81. A similar experiment
can be conducted with the HTTPS (secure HTTP) protocol. Port 443 is reserved for HTTPS traffic. If you enter the URL
http://74.125.226.193:443 in your browser’s address bar, you will encounter an error. However, if you change the
URL to https://74.125.226.193:443, you will land on the Google home page over a secure connection. Note that
you may encounter a browser warning during the navigation process. This warning can safely be ignored in this case.

If you plan to implement a common service, such as a web server, using its well-known port number is advisable.
However, there is nothing stopping you from running a web server on a nonstandard port. For example, you can run a
web server on port 8080, as long as everyone trying to connect to the server explicitly specifies port 8080 in the URLs.
Similarly, if you are creating a custom application, avoid using ports customarily used for other purposes. Before
selecting a port for your application, you may want to conduct a quick Internet search for other common services that
may conflict with it. Also, avoid using one of the reserved port numbers.

Client-Server Programming
The client-server model is a paradigm in which computational tasks are split between servers (machines that provide
resources) and clients (machines that request and consume those resources). The Web is a perfect example of the
client-server model in action. When you open a browser window and navigate to a web site, your computer acts as a
client. The resource that your computer requests and consumes is a web page. That web page is provided by a server,
which your computer connects to over the Internet using sockets. A high-level abstraction of this model is shown in
Figure 10-1.

http://www.google.com/
http://74.125.226.193/
http://74.125.226.193/
http://www.google.com/
http://74.125.226.193:81/
http://www.google.com:81/
http://www.google.com/
http://74.125.226.193:443/
https://74.125.226.193/

ChaPTer 10 ■ NeTwork ProgrammINg

149

Tip  The IP address 127.0.0.1 is used to identify the local machine, known as localhost. many client-server
applications can be tested using a single machine by having clients connect to the server running on localhost.

Note  The last section discussed well-known ports. In the client-server model, this concept generally applies only
to server applications. Since a client initiates connections to a server, the client must know which port to connect to.
a server, on the other hand, doesn’t need to worry about the port being used on the client’s side of the connection.

Transmission Control Protocol
Transmission Control Protocol, or TCP, is a communication protocol used for transmitting data over the Internet.
Internet data transfer is unreliable. When your computer sends a message onto the network, the message is first
broken up into smaller pieces known as packets, which are then sent out onto the network and begin making their
way to their destination. Because your computer does not have a direct connection to every other computer in the
world, each packet must traverse a number of intermediate machines until it finds a route to its destination. Each

Figure 10-1. The client-server model working over the Internet

Chapter 10 ■ Network Programming

150

packet can potentially take a unique route to the destination, meaning that the order of the packets’ arrival can be
different from the order they were sent in. Furthermore, the Internet is unreliable, and individual packets can be lost
or damaged along the way.

TCP helps bring reliability to the chaos that is the Internet. TCP is what is known as a connection-oriented
protocol, a term referring to the virtual connection established between machines. Two machines enter into a TCP
connection by sending small pieces of data back and forth in a defined pattern known as a handshake. At the end
of the multistep handshake, the two machines have established a connection. Using this connection, TCP enforces
ordering among packets and confirms that packets are successfully received at the destination. Additionally, among
the features TCP provides are error checking and retransmission of lost packets.

In the Node ecosystem, network programming using TCP is implemented using the net core module. Listing 10-1
shows how the net module is imported into a Node application. This module includes methods for creating both
client and server applications. The remainder of this section explores the various methods provided by net for working
with TCP.

Listing 10-1.  Importing the Net Module into an Application

var net = require("net");
 

Creating a TCP Server
TCP servers can be created easily using the createServer() method (see Listing 10-2). This method takes two
optional arguments. The first is an object containing configuration options. createServer() supports a single option,
allowHalfOpen, that defaults to false. If this option is explicitly set to true, the server leaves client connections open,
even if the client terminates them. In this situation the socket becomes nonreadable but still writable by the server.
Additionally, if allowHalfOpen is true, the connection must be explicitly closed on the server side, regardless of what
the client does. This matter is explained in more detail later, when the end() method is covered.

Listing 10-2.  Creating a TCP Server Using net.createServer()

var net = require("net");
var server = net.createServer({
 allowHalfOpen: false
}, function(socket) {
 // handle connection
});
 

The second argument to createServer() in Listing 10-2 is an event handler used to handle connections from
clients. The event handler accepts a single argument, a net.Socket object representing the socket connection to the
client. The net.Socket class is also examined in greater detail later in this chapter. Finally, createServer() returns
the newly created TCP server as a net.Server instance. The net.Server class inherits from EventEmitter and emits
socket-related events.

Listening for Connections
The server returned by createServer() cannot be accessed by clients, because it is not associated with a specific port.
To make the server accessible, it must listen for incoming client connections on a port. The listen() method, whose
use is shown in Listing 10-3, is used to bind the server to a specified port. The only required argument to listen() is
the port number to bind to. To listen on a randomly selected port, pass 0 as the port argument. (Note that doing this
should generally be avoided, as clients will not know what port to connect to.)

Chapter 10 ■ Network Programming

151

Listing 10-3.  Using the net.Server.listen() Method

server.listen(port, [host], [backlog], [callback])
 

If the host argument is omitted, the server accepts connections directed to any valid IPv4 address. To restrict the
connections that the server accepts, specify the host that the server will respond as. This feature is useful on servers
that have multiple network interfaces, as it allows an application to be scoped to an individual network. You can
experiment with this feature if your machine has only one IP address. As an example, the code in Listing 10-4 only
accepts connections directed at localhost (127.0.0.1). This allows you to create a web interface for your application
while not exposing it to remote, potentially malicious, connections.

Listing 10-4.  Code That Accepts Only localhost Connections on Port 8000

var net = require("net");
var server = net.createServer(function(socket) {
 // handle connection
});
 
server.listen(8000, "127.0.0.1");
 

A server’s backlog is a queue of client connections that have been made to the server but that have not yet been
handled. Once the backlog is full, any new incoming connections to that port are dropped. The backlog argument is
used to specify the maximum length of this queue. This value defaults to 511.

The final argument to listen() is an event handler that responds to listening events. When the server
successfully binds to a port and is listening for connections, it emits a listening event. The listening event does not
provide arguments to its handler function, but it is very useful for things like debugging and logging. For example,
the code in Listing 10-5 attempts to listen on a random port. A listening event handler is included which displays
the randomly selected port.

Listing 10-5.  A Server with a listening Event Handler

var net = require("net");
var server = net.createServer(function(socket) {
 // handle connection
});
 
server.listen(0, function() {
 var address = server.address();
 
 console.log("Listening on port " + address.port);
}); 

Note■■   The event handler for listen() is provided strictly for convenience. It is also possible to add listening
event handlers using the on() method.

Chapter 10 ■ Network Programming

152

address()
In Listing 10-5, the server’s address() method was used to display the randomly selected port. The address()
method returns an object containing the server’s bound address, address family, and port. As already shown, the
port property represents the bound port. The bound address gets its value from the host argument to listen() or
"0.0.0.0" if the host is not specified. The address family represents the type of address (IPv4, IPv6, etc.). Note that
since the values returned by address() depend on the arguments passed to listen(), this method should not be
invoked until the listening event has been emitted. In the example in Listing 10-6, which shows another use of
address(), a random port is used, along with the address ::1 (localhost in IPv6). The resulting output is shown in
Listing 10-7. Of course, because it is random, your port number is likely to be different.

Listing 10-6.  Using net.Server.address()

var net = require("net");
var server = net.createServer(function(socket) {
 // handle connection
});
 
server.listen(0, "::1", function() {
 var address = server.address();
 
 console.log(address);
});
 

Listing 10-7.  The Output Resulting from the Code in Listing 10-6

$ node server-address.js
{ address: '::1', family: 'IPv6', port: 64269 } 

Variations of listen()
The listen() method has two less commonly used signatures. The first variation allows a server to listen on an
existing server/socket that has already been bound. The new server begins accepting connections that would
otherwise have been directed at the existing server/socket. An example which creates two servers, server1 and
server2, is shown in Listing 10-8 (with sample output shown in Listing 10-9). Next, a listening event handler is set
up on server2, which calls address() and displays the results. Next, server1’s listen() method is invoked with its
own listening event handler. This handler also displays the results of address() but then tells server2 to listen on
server1’s configuration.

Listing 10-8.  Passing a Server Instance to listen()

var net = require("net");
var server1 = net.createServer();
var server2 = net.createServer(function(socket) {
 // handle connection
});
 
server2.on("listening", function() {
 console.log("server2:");
 console.log(server2.address());
});
 

Chapter 10 ■ Network Programming

153

server1.listen(0, "127.0.0.1", function() {
 console.log("server1:");
 console.log(server1.address());
 server2.listen(server1);
}); 

Listing 10-9.  The Output Resulting from Running the Code in Listing 10-8

$ node server-listen-handle.js
server1:
{ address: '127.0.0.1', family: 'IPv4', port: 53091 }
server2:
{ address: '127.0.0.1', family: 'IPv4', port: 53091 }
 

Notice that the results of address() (see Listing 10-9) are the same for both servers. You haven’t seen how to
actually process connections yet, but it is worth pointing out that connections to server1 are directed to server2
in this example. It is also worth noting that this incarnation of listen() accepts a listening event handler as an
optional second argument.

The final variation of listen() accepts a Unix socket file name or Windows named pipe as its first argument and
a listening event handler as its optional second argument. An example using a Unix socket is shown in Listing 10-10.

Listing 10-10.  Passing a Unix Socket File to listen()

var net = require("net");
var server = net.createServer(function(socket) {
 // handle connection
});
 
server.listen("/tmp/foo.sock"); 

Handling Connections
Once the server is bound and listening, it can begin accepting connections. Each time the server receives a new
connection, a connection event is emitted. In order to process incoming connections, a connection event handler
must be passed to createServer() or attached using a method such as on(). The connection handler takes a
net.Socket object as its only argument. This socket is then used to send data to and receive data from the client.
The same socket class is used to implement TCP clients, and so the full API is covered in that section. For now,
Listing 10-11 shows a server that listens on port 8000 and responds to client requests.

Listing 10-11.  A Server That Responds to Clients with a Simple Message

var net = require("net");
var server = net.createServer(function(socket) {
 socket.end("Hello and Goodbye!\n");
});
 
server.listen(8000);
 

To test the server, run the code in Listing 10-11 as you would any other Node application. Next, connect to the
server using telnet or a web browser (telnet is a command line utility used for establishing network connections
and sending/receiving data). To test the server with telnet, issue the command telnet localhost 8000 from a
terminal window. If using a web browser, simply navigate to http://localhost:8000. If everything is working properly,

http://localhost:8000/

Chapter 10 ■ Network Programming

154

the terminal or browser should display the message "Hello and Goodbye!" Listing 10-12 shows the output using
telnet. Note that the telnet application prints several additional lines that are not actually related to the server.

Listing 10-12.  The telnet Output from Connecting to the Server in Listing 10-11

$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hello and Goodbye!
Connection closed by foreign host. 

Shutting Down the Server
To terminate the server, use the close() method. Calling close() prevents the server from accepting new connections.
However, any existing connections are allowed to finish their work. Once no connections remain, the server emits a
close event. The close() method optionally accepts an event handler that handles the close event. The example in
Listing 10-13 starts up a new server and then, once it is listening, immediately shuts down. A close event handler has
also been defined using on() rather than as an argument to close().

Listing 10-13.  A Server That Listens and Then Immediately Shuts Down

var net = require("net");
var server = net.createServer();
 
server.on("close", function() {
 console.log("And now it's closed.");
});
 
server.listen(function() {
 console.log("The server is listening.");
 server.close();
}); 

ref() and unref()
Chapter 4 introduced two methods, ref() and unref(), in the context of timers and intervals. These methods are
used to prevent or allow termination of a Node application if the timer/interval is the only remaining item in the
event loop. TCP servers have equivalent methods of the same names. If a bound server is the only item left in the
event loop’s queue, calling unref() allows the program to terminate. This scenario is demonstrated in Listing 10-14.
Conversely, calling ref() restores the default behavior preventing the application from exiting if the server is the only
item remaining in the event loop.

Listing 10-14.  A Server That Immediately Shuts Down After Calling unref()

var net = require("net");
var server = net.createServer();
 
server.listen();
server.unref(); 

Chapter 10 ■ Network Programming

155

error Events
When things go wrong, net.Server instances emit error events. A commonly encountered exception is the EADDRINUSE
error, which occurs when an application attempts to use a port that is already in use by another application. Listing 10-15
shows how this type of error can be detected and handled. Once the error has been detected, your application can try
connecting to another port, wait before trying to connect to the same port again, or simply exit.

Listing 10-15.  A Handler That Detects Port-Already-In-Use Errors

server.on("error", function(error) {
 if (error.code === "EADDRINUSE") {
 console.error("Port is already in use");
 }
});
 

Another commonly encountered error is EACCES, an exception thrown when you have insufficient permissions
to bind to a port. On Unix-flavored operating systems, these errors occur when you attempt to bind to a reserved port.
For example, web servers typically require admin privileges to bind to port 80.

Creating a TCP Client
The net module provides two methods, connect() and createConnection(), that can be used interchangeably to
create TCP client sockets. These client sockets are used to connect to the server applications created in this chapter.
Throughout this book, connect() is used because its name is shorter. Just be aware that createConnection() can be
substituted for connect() in any scenario. connect() has three incarnations, the first of which is shown in Listing 10-16.

Listing 10-16.  One Use of the net.connect() Method

net.connect(port, [host], [connectListener])
 

In Listing 10-16, a TCP connection is created to the machine specified by host on the port specified by port.
If host is unspecified, the connection is made to localhost. If the connection is successfully established, the client
emits a connect event with no arguments. The optional third argument, connectListener, is an event handler that
will process the connect event. Listing 10-17 shows a client that connects to port 8000 on localhost. This client can be
tested with the server created in Listing 10-11. Begin by opening a terminal window and running the server application.
Next, open a separate terminal window and run the client application. The client displays a message upon successfully
connecting to the server. The actual data returned by the server is not displayed (more on that later).

Listing 10-17.  A Client That Connects to localhost on Port 8000

var net = require("net");
var client = net.connect(8000, "localhost", function() {
 console.log("Connection established");
});
 

The second version of connect() takes a Unix socket file name or Windows named pipe as its first argument
and an optional connect event handler as its second. Listing 10-17 has been rewritten to use a Unix socket file in
Listing 10-18. To test this client, use the modified server shown in Listing 10-19, which binds to the same socket file.

Chapter 10 ■ Network Programming

156

Listing 10-18.  A Client That Connects to the Socket File /tmp/foo.sock

var net = require("net");
var client = net.connect("/tmp/foo.sock", function() {
 console.log("Connection established");
}); 

Listing 10-19.  A Server Used to Test the Client from Listing 10-18

var net = require("net");
var server = net.createServer(function(socket) {
 socket.end("Hello and Goodbye!\n");
});
 
server.listen("/tmp/foo.sock");
 

The final version of connect() takes a configuration object and an optional connect event handler as arguments.
Table 10-1 shows the properties supported by the configuration object. Listing 10-20 rewrites Listing 10-17 to use this
form of connect(). Similarly, Listing 10-21 rewrites Listing 10-18.

Table 10-1.  List of Configuration Options Supported by connect()

Property Description

port If connecting over a TCP socket (as opposed to a Unix socket file or Windows named pipe),
this specifies the port number that the client should connect to. This is required.

host If connecting over a TCP socket, this specifies the host to connect to. If omitted, this defaults
to localhost.

localAddress The local interface to use when creating the connection. This option is useful when a single
machine has multiple network interfaces.

path If connecting to a Unix socket file or Windows named pipe, this is used to specify the path.

allowHalfOpen If true, the client does not close the connection when the server does. Instead, the
connection must be manually closed. This defaults to false.

Listing 10-20.  A Client That Connects to localhost on Port 8000

var net = require("net");
var client = net.connect({
 port: 8000,
 host: "localhost"
}, function() {
 console.log("Connection established");
}); 

Listing 10-21.  A Client That Connects to the Socket File /tmp/foo.sock

var net = require("net");
var client = net.connect({
 path: "/tmp/foo.sock"
}, function() {
 console.log("Connection established");
}); 

Chapter 10 ■ Network Programming

157

The net.Socket Class
Understanding the net.Socket class is imperative for both client and server development. On the server side, a socket
is passed to the connection event handler. On the client side, connect() returns a socket. Since the socket class uses
streams to move data, you already know some of the basics (if you need a review, revisit Chapter 7). For example,
reading data from a socket uses all of the readable stream fundamentals you’ve come to know and love, including
data events and the pause() and resume() methods. Listing 10-22 shows how simple it is to read data from a socket
using streams. This client, which works with the server from Listing 10-11, uses a data event handler to read data from
the socket and print the data to the console.

Listing 10-22.  A Client Displaying Data Read from the Server in Listing 10-11

var net = require("net");
var clientSocket = net.connect({
 port: 8000,
 host: "localhost"
});
 
clientSocket.setEncoding("utf8");
 
clientSocket.on("data", function(data) {
 process.stdout.write(data);
});
 

Writing data to a socket can also be accomplished using the stream write() method. Sockets have an additional
method, end(), that closes the connection. end() can optionally be passed data and encoding arguments similar
to write(). Thus, a socket can be written and closed using a single function call (end() is used in this fashion in
the server in Listing 10-11). Note that end() must be called at least once for the connection to close. Additionally,
attempting to write to the socket after calling end() will cause an error.

The socket class has several other events and methods that you should already recognize. For example, sockets
have ref() and unref() methods, which affect an application’s ability to terminate if the socket is the only item
remaining in the event loop. Sockets also have an address() method, which returns the bound address, port number,
and address family of a connected socket. With regard to events, a drain event is emitted when the write buffer
becomes empty, and an error event is emitted when an exception occurs.

Local and Remote Addresses
As previously mentioned, the address() method returns an object containing the local bound address, its family
type, and the port in use. There are also four properties—remoteAddress, remotePort, localAddress, and
localPort—that provide information on the remote and local end points of the socket. An example of these
properties is shown in Listing 10-23.

Listing 10-23.  An example which displays local and remote addresses and ports

var net = require("net");
var client = net.connect(8000, function() {
 console.log("Local endpoint " + client.localAddress + ":" +
 client.localPort);
 console.log("is connected to");
 console.log("Remote endpoint " + client.remoteAddress + ":" +
 client.remotePort);
});
 

Chapter 10 ■ Network Programming

158

Closing a Socket
As previously mentioned, a socket is closed using the end() method. Technically, end() only half-closes the socket. It is still
possible for the other end of the connection to continue sending data. If you need to completely shut down the socket—for
example, in the case of an error—you can use the destroy() method, which ensures that no more I/O occurs on the socket.

When the remote host calls end() or destroy(), the local side emits an end event. If the socket was created with
the allowHalfOpen option set to false (the default), the local side writes out any pending data and closes its side of
the connection as well. However, if allowHalfOpen is true, the local side must explicitly call end() or destroy(). Once
both sides of the connection are closed, a close event is emitted. If a close event handler is present, it accepts a single
Boolean argument, which is true if the socket had any transmission errors, or false otherwise.

Listing 10-24 includes a client that sets its allowHalfOpen option to true. The example also includes end and
close event handlers. Notice that the end() method is explicitly called in the end handler. If this line were not present,
the connection would not be completely closed, and the close event would never be emitted.

Listing 10-24.  A Client with end and close Event Handlers

var net = require("net");
var client = net.connect({
 port: 8000,
 host: "localhost",
 allowHalfOpen: true
});
 
client.on("end", function() {
 console.log("end handler");
 client.end();
});
 
client.on("close", function(error) {
 console.log("close handler");
 console.log("had error: " + error);
}); 

Timeouts
By default, sockets do not have a timeout. This can be bad, because if the network or remote host fails, the connection
sits idle indefinitely. However, you can define a timeout on the socket using its setTimeout() method (not to be confused
with the core JavaScript method used to create timers). This version of setTimeout() takes a timeout in milliseconds
as its first argument. If the socket is idle for this amount of time, a timeout event is emitted. A one-time timeout event
handler can optionally be passed as the second argument to setTimeout(). A timeout event does not close the socket;
you are responsible for closing it using end() or destroy(). Additionally, you can remove an existing timeout by passing
0 to setTimeout(). Listing 10-25 shows how a ten-second timeout is created on a socket. In this example, an error
message is printed and the socket is closed when a timeout occurs.

Listing 10-25.  A Client with a Ten-Second Timeout

var net = require("net");
var client = net.connect(8000, "localhost");
 
client.setTimeout(10000, function() {
 console.error("Ten second timeout elapsed");
 client.end();
}); 

ChaPTer 10 ■ NeTwork ProgrammINg

159

Sockets, Servers, and Child Processes
Chapter 9 showed how to create Node child processes using the fork() method. Data can be transferred between
these processes on an interprocess communication channel using the send() method. The data to be transmitted
is passed as the first argument to send(). Not mentioned in Chapter 9 is that the send() method takes an optional
second argument, a TCP socket or server, that allows a single network connection to be shared among multiple
processes. As you know by now, Node processes are single-threaded. Spawning multiple processes that share a single
socket allows better utilization of modern multicore hardware. This use case is revisited in more detail in Chapter 16,
when the cluster module is covered.

Listing 10-26 contains code that creates a new TCP server, forks a child process, and passes the server to the child
as a server message. The code for the child process (see Listing 10-27) should be saved in a file named child.js.
The child process detects server messages and sets up a connection handler. To verify that the socket is shared by
two processes, make a number of connections to port 8000. You will see that some of the connections respond with
"Handled by parent process" and others respond with "Handled by child process".

Listing 10-26. Passing a TCP Server to a Forked Child Process

var cp = require("child_process");
var net = require("net");
var server = net.createServer();
var child = cp.fork("child");

server.on("connection", function(socket) {
 socket.end("Handled by parent process");
});

server.listen(8000, function() {
 child.send("server", server);
});

Listing 10-27. The Code for child.js That Works with Listing 10-26

process.on("message", function(message, server) {
 if (message === "server") {
 server.on("connection", function(socket) {
 socket.end("Handled by child process");
 });
 }
});

User Datagram Protocol
The User Datagram Protocol, or UDP, is an alternative to TCP. UDP, like TCP, operates on top of IP. However, UDP does
not include many of the features that make TCP so dependable. For example, UDP does not establish a connection
during communication. It also lacks message ordering, guaranteed delivery, and retransmission of lost data. Because
there is less protocol overhead, UDP communication is typically faster and simpler than TCP. The flip side of the
coin is that UDP is only as reliable as the underlying network, and so data can easily be lost. UDP is typically useful in
applications, such as streaming audio and video, where performance is key and some data can afford to be lost.
In these applications, a few lost packets might minimally affect playback quality, but the media will still be usable.
On the other hand, UDP would not be suitable for viewing a web page, as even one dropped packet could ruin a page’s
ability to render.

Chapter 10 ■ Network Programming

160

To include UDP functionality in Node applications, use the dgram core module. Listing 10-28 shows how this
module is imported. The remainder of this section explores the various methods provided by the dgram module.

Listing 10-28.  Importing the dgram Core Module

var dgram = require("dgram"); 

Creating UDP Sockets
Both client and server sockets are created using the createSocket() method. The first argument to createSocket(),
which specifies the socket type, should be either "udp4" or "udp6" (corresponding to IPv4 and IPv6). The second
argument (optional) is a callback function used to handle message events that are emitted when data is received over
the socket. An example that creates a new UDP socket is shown in Listing 10-29. This example includes a message
event handler, which will be revisited when receiving data is covered.

Listing 10-29.  Creating a UDP Socket and message Event Handler

var dgram = require("dgram");
var socket = dgram.createSocket("udp4", function(msg, rinfo) {
 console.log("Received data");
}); 

Binding to a Port
When a socket is created, it uses a randomly assigned port number. However, server applications normally need
to listen on a predefined port. UDP sockets can listen on a specified port using the bind() method, whose usage is
shown in Listing 10-30. The port argument is the port number to bind to. The optional address argument specifies
the IP address to listen on (useful if the server has multiple network interfaces). If this is omitted, the socket listens on
all addresses. The optional callback function is a one-time listening event handler.

Listing 10-30.  Using the bind() Method

socket.bind(port, [address], [callback])
 

An example of bind() is shown in Listing 10-31. This example creates a UDP socket and binds it to port 8000.
To verify that everything worked properly, the bound address is printed to the console. Listing 10-32 shows the
resulting output.

Listing 10-31.  Binding a UDP Socket to Port 8000

var dgram = require("dgram");
var server = dgram.createSocket("udp4");
 
server.bind(8000, function() {
 console.log("bound to ");
 console.log(server.address());
});
 

Chapter 10 ■ Network Programming

161

Listing 10-32.  The Output from Running the Code in Listing 10-31

$ node udp-bind.js
bound to
{ address: '0.0.0.0', family: 'IPv4', port: 8000 } 

Receiving Data
When data is received on a UDP socket, a message event is emitted that triggers any existing message event handlers.
A message event handler takes two arguments, a Buffer representing the data and an object containing information
on the sender. In Listing 10-33, a UDP server is created that binds to port 8000. When messages are received, the
server displays the message size, the IP address and port of the remote host, and the message payload.

Listing 10-33.  A Server That Receives and Displays Messages

var dgram = require("dgram");
var server = dgram.createSocket("udp4", function(msg, rinfo) {
 console.log("received " + rinfo.size + " bytes");
 console.log("from " + rinfo.address + ":" + rinfo.port);
 console.log("message is: " + msg.toString());
});
 
server.bind(8000);
 

Next, let’s see how to send data to test the server.

Sending Data
Data is sent over a UDP socket using the send() method. Listing 10-34 shows how this method is used. The data
transmitted by send() comes from a Buffer, represented by the buffer argument. The offset argument specifies
the starting position of the relevant data in the buffer, and length specifies the number of bytes to send, starting from
the offset. Since UDP is a connectionless protocol, it is not necessary to connect to a remote machine before sending.
Therefore, the remote port and address are arguments to send(). The final argument to send() is an optional callback
function invoked after the data has been sent. The callback function takes two arguments, representing potential
errors and the number of bytes sent. Including this callback is the only way to verify that the data was actually sent.
However, UDP has no built-in mechanism for verifying that the data was received.

Listing 10-34.  Using the send() Method

socket.send(buffer, offset, length, port, address, [callback])
 

The client code in Listing 10-35 can be used in conjunction with the server from Listing 10-33. The client sends a
message to the server, which the server then displays. Notice that the client’s callback function checks for errors and
reports the number of bytes sent, then closes the connection. Once the socket is closed, a close event is emitted, and
no new message events are emitted.

Listing 10-35.  A Client That Sends Data to the Server from Listing 10-33

var dgram = require("dgram");
var client = dgram.createSocket("udp4");
var message = new Buffer("Hello UDP");
 

Chapter 10 ■ Network Programming

162

client.send(message, 0, message.length, 8000, "127.0.0.1", function(error, bytes) {
 if (error) {
 console.error("An error occurred while sending");
 } else {
 console.log("Successfully sent " + bytes + " bytes");
 }
 
 client.close();
}); 

Domain Name System
The Domain Name System (DNS) is a distributed network that, among other things, maps domain names to IP
addresses. DNS is needed because people remember names better than long strings of numbers. DNS can be thought
of as a phone book for the Internet. When you want to reach a web site, you type its domain name into the navigation
bar. Your browser then makes a DNS lookup request for that domain name. The DNS lookup then returns the
corresponding IP address for that domain, assuming it exists.

In the Node ecosystem, DNS is normally handled under the hood, meaning that the developer provides either
an IP address or a domain name, and everything just works. However, should the need arise, DNS can be accessed
directly using the dns core module. This section explores the most important methods used for DNS lookups and
reverse lookups, which map IP addresses to domain names.

Performing Lookups
The most important DNS method is likely lookup(), which takes a domain name as input and returns the first IPv4 or
IPv6 DNS record found. The lookup() method accepts an optional second argument specifying the address family to
search for. This argument defaults to null, but it can also be 4 or 6, corresponding to the IPv4 or IPv6 address family.
If the family argument is null, both IPv4 and IPv6 addresses are searched.

The final argument to lookup() is a callback function that is invoked once the DNS lookup finishes. The callback
function takes three arguments, error, address, and family. The error argument represents any exceptions that
occur. If the lookup fails for any reason, error.code is set to the string "ENOENT". The address argument is the
resulting IP address as a string, and the family argument is either 4 or 6.

In Listing 10-36, a DNS lookup of google.com is performed. Its output is shown in Listing 10-37. In this example,
the DNS lookup is limited to IPv4 addresses. Please note that because Google uses multiple IP addresses, the IP
address you observe may be different.

Listing 10-36.  Performing a DNS Lookup

var dns = require("dns");
var domain = "google.com";
 
dns.lookup(domain, 4, function(error, address, family) {
 if (error) {
 console.error("DNS lookup failed with code " + error.code);
 } else {
 console.log(domain + " -> " + address);
 }
});
 

http://google.com/
http://google.com/

Chapter 10 ■ Network Programming

163

Listing 10-37.  The Resulting Output of the Code in Listing 10-36

$ node dns-lookup.js
google.com -> 74.125.226.229 

resolve()
The lookup() method returns the first IPv4 or IPv6 DNS record found. There are other types of records, however, and
there can be multiple records of each type. To retrieve multiple DNS records of a specific type in array format, use
resolve() instead. The usage of resolve() is shown in Listing 10-38.

Listing 10-38.  Using the resolve() Method

dns.resolve(domain, [recordType], callback)
 

The domain argument is the domain name to be resolved. The optional recordType argument specifies the type
of DNS record to look up. Table 10-2 lists the various DNS record types supported by resolve(). If no recordType is
provided, resolve() looks up A records (IPv4 address records). The third argument is a callback function invoked
following the DNS lookup. A possible Error object and an array of DNS responses are passed to the callback function.

Note■■   There are also a number of methods (shown in the third column of Table 10-2) used to resolve specific types
of records. Each method behaves like resolve() but works only with a single type of record and therefore does not
require a recordType argument. For example, if you are interested in retrieving CNAME records, simply call
dns.resolveCname().

Table 10-2.  The Various DNS Record Types Supported by resolve()

Record Type Description Method

A IPv4 address records. This is the default behavior of resolve(). dns.resolve4()

AAAA IPv6 address records. dns.resolve6()

MX Mail exchange records. These records map a domain to message
transfer agents.

dns.resolveMx()

TXT Text records. These records should include human-readable text. dns.resolveTxt()

SRV Service locator records. These records map a service to a location.
These are used for mapping new protocols instead of creating
new DNS record types for each protocol.

dns.resolveSrv()

PTR Pointer records. These records are used in reverse DNS lookups. None

NS Name server records. These delegate a DNS zone to use the given
server names.

dns.resolveNs()

CNAME Canonical name records. These are used to alias one domain
to another.

dns.resolveCname()

http://google.com/

Chapter 10 ■ Network Programming

164

Listing 10-39 shows an example use of resolve() by looking up IPv6 addresses (AAAA DNS records) associated
with the domain google.com. If no errors occur, the domain and array of addresses are printed to the console.

Listing 10-39.  Using resolve() to Look Up IPv6 Addresses for google.com

var dns = require("dns");
var domain = "google.com";
 
dns.resolve(domain, "AAAA", function(error, addresses) {
 if (error) {
 console.error("DNS lookup failed with code " + error.code);
 } else {
 console.log(domain + " -> " + addresses);
 }
}); 

Reverse Lookups
A reverse DNS lookup resolves an IP address to a domain. In Node, this type of lookup is achieved using the dns
module’s reverse() method. This method takes two arguments, an IP address and a callback function. The callback
function’s arguments are error, representing potential errors, and domains, an array of domain names. In the example
using reverse(), shown in Listing 10-40, a DNS lookup is performed for www.google.com. The resulting IP address is
then used to perform a reverse DNS lookup.

Listing 10-40.  Performing a DNS Lookup, Followed by a Reverse Lookup

var dns = require("dns");
var domain = "www.google.com";
 
dns.lookup(domain, 4, function(error, address, family) {
 dns.reverse(address, function(error, domains) {
 console.log(domain + " -> " + address + " -> " + domains);
 });
}); 

Note■■   Depending on the site’s DNS configuration, the results of a reverse lookup may surprise you. If a site hasn’t set
up any PTR records, a reverse lookup may not be possible. For example, when the code in Listing 10-40 is run for
www.nodejs.org, the reverse lookup returns undefined.

Detecting Valid IP Addresses
To finish off this chapter, let’s return to the net module and examine some useful utility methods. The net module
provides three methods for identifying valid IP addresses: isIP(), isIPv4(), and isIPv6(). Each method takes a
single argument to test as input. isIP() checks whether its input is a valid IPv4 or IPv6 address. isIP() returns 4, 6, or
0 if the input is IPv4, IPv6, or invalid. isIPv4() and isIPv6() are more specific, and return true or false to indicate
whether the input is in the given address family. Listing 10-41 shows all three methods called on various input strings.
Listing 10-42 shows the results.

http://google.com/
http://google.com/
http://google.com/
http://www.google.com/
http://www.google.com/
http://www.nodejs.org/

Chapter 10 ■ Network Programming

165

Listing 10-41.  Classifying IP addresses

var net = require("net");
var input1 = "127.0.0.1";
var input2 = "fe80::1610:9fff:fee4:d63d";
var input3 = "foo";
 
function classify(input) {
 console.log("isIP('" + input + "') = " + net.isIP(input));
 console.log("isIPv4('" + input + "') = " + net.isIPv4(input));
 console.log("isIPv6('" + input + "') = " + net.isIPv6(input));
 console.log();
}
 
classify(input1);
classify(input2);
classify(input3);
 

Listing 10-42.  The Output of the Code in Listing 10-41

$ node ip-address-classification.js
isIP('127.0.0.1') = 4
isIPv4('127.0.0.1') = true
isIPv6('127.0.0.1') = false
 
isIP('fe80::1610:9fff:fee4:d63d') = 6
isIPv4('fe80::1610:9fff:fee4:d63d') = false
isIPv6('fe80::1610:9fff:fee4:d63d') = true
 
isIP('foo') = 0
isIPv4('foo') = false
isIPv6('foo') = false 

Summary
This chapter has presented a large amount of information on network programming. A lot of its content is applicable
outside the world of Node. A general knowledge of popular networking topics such as IP, TCP, UDP, and DNS will
come in handy no matter the language you develop in. Of course, this chapter’s primary focus has been network
programming as it relates to Node. By now, you should have a solid understanding of the net, dgram, and dns core
modules. However, as all the material in these modules cannot be covered in a single chapter, you are encouraged to
browse the Node documentation to see what else is possible.

The book’s next few chapters focus on creating web applications. Most people associate Node with web
servers/apps (although you should realize by now that Node can do much more). Since Web apps work primarily
with higher-level protocols (such as HTTP) that are built on top of the protocols discussed in this chapter, you need to
understand the material covered here.

167

Chapter 11

HTTP

The Hypertext Transfer Protocol, or HTTP, drives the Web. HTTP is a stateless, text-based protocol that works on top
of TCP. An encrypted version of HTTP, named HTTP Secure, or HTTPS, is also commonly used when dealing with
sensitive data. HTTP is a request-response protocol that is implemented using the client-server programming model
discussed in Chapter 10. Traditionally, a browser is used as the client in an HTTP transaction, but you’ll see that this
is not always the case. When a browser navigates to a given URL, an HTTP request is made to the server that hosts
the URL. As you learned in Chapter 10, this request is normally made on TCP port 80 (or 443 if HTTPS is in use). The
server processes the request and then responds to the client. This is how HTTP works at a very high level. This chapter
takes a deeper dive into HTTP in the Node.js world.

A Basic Server
Before we look under the hood of HTTP, let’s create a simple server application using the code in Listing 11-1. Node’s
HTTP API is implemented in the http core module, which is imported on the first line of Listing 11-1. On the following
line, the http module’s createServer() method is used to create a new instance of an HTTP server. Much like
the equivalent TCP method of the same name, the server returned by createServer() is an event emitter, and is
not bound to any specific port. On the last line of Listing 11-1, the server is bound to port 8000 using the listen()
method. The http version of listen() is also used in the same fashion as the TCP listen() method.

Listing 11-1.  A Bare Bones HTTP Server

var http = require("http");
var server = http.createServer(function(request, response) {
 response.write("Hello HTTP!");
 response.end();
});
 
server.listen(8000);
 

The function passed to createServer() is an optional request event handler that is invoked each time a new
HTTP request is received. The event handler takes two arguments, request and response. The request argument is
an instance of http.IncomingMessage, and contains information about the client’s request. The response argument,
on the other hand, is an instance of http.ServerResponse, and is used to respond to the client. The handler in
Listing 11-1 responds to all connections with a simple string of HTML using the write() and end() methods. As you
might have guessed, these methods behave like the TCP methods of the same names.

Chapter 11 ■ HTTP

168

Anatomy of an HTTP Request
Now that we have a simple HTTP server, we can begin sending requests to it. An example HTTP request is shown in
Listing 11-2. The first line of the request, referred to as the request line, specifies the request method, the requested
URL, and the protocol in use. In this example, the request method is GET, the URL is /, and the protocol is HTTP
version 1.1. The meaning of each of these will be explained shortly, but first let’s examine the rest of the example
HTTP request. Following the request line is a collection of request headers, which are used to parameterize the
request. In Listing 11-2, only the Host header has been included. This header is mandatory in HTTP 1.1, and is used
to specify the domain name and port of the server that is being requested. Although not included in this example, a
request can also include a body, which is used to pass additional information to the server.

Listing 11-2.  A Hand Crafted HTTP Request

GET / HTTP/1.1
Host: localhost:8000
 

Since HTTP is a text-based protocol, we can easily hand craft a request using telnet. Listing 11-3 shows how the
request from Listing 11-2 is made to the example server using telnet. It is important to note that HTTP requests must
be terminated with a blank line. In Listing 11-3, this blank line is shown following the Host header.

Listing 11-3.  A telnet Session Connecting to the Server in Listing 11-1

$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.1
Host: localhost:8000
 
HTTP/1.1 200 OK
Date: Sun, 21 Jul 2013 22:14:26 GMT
Connection: keep-alive
Transfer-Encoding: chunked
 
1c
Hello HTTP!
0
 

Everything following the request’s terminating blank line is part of the response sent from the server. The
response begins with a status line, which specifies the protocol, status code, and reason phrase. Again, the protocol is
HTTP 1.1. The 200 status code indicates that the request was successful, and the reason phrase is used to provide a
short description of the status code. A collection of response headers follow the status line. The server uses response
headers in the same way the client uses request headers. Following the response headers is another blank line, then
the response body. The value 1c is a hex value indicating the length of the body. In this case, the body is the HTML
string returned by the server.

Request Methods
The request line of an HTTP request begins with a request method, followed by the requested resource’s URL. The
request method, also referred to as an HTTP verb, is used to specify the action to be performed on the specified URL.
For example, in Listing 11-2, a GET request was made for the resource located at /. The purpose of the GET request is

Chapter 11 ■ HTTP

169

to view the specified resource (for example, to GET a web page to be displayed in a browser). Another common HTTP
verb is POST, which allows the client to submit data to the server. POST requests are commonly used to submit HTML
forms. Table 11-1 lists the various HTTP verbs supported by HTTP 1.1. Previously, HTTP 1.0 (which is still in use) only
supported GET, POST, and HEAD requests.

Table 11-1.  Various HTTP Request Methods

Method Description

GET Retrieves a representation of the specified resource. A GET request should not alter the state of the
server, and is essentially a read operation.

HEAD Retrieves the same data as an equivalent GET request, except the response body should be omitted.
This is useful for quickly retrieving a resource’s response headers without incurring the overhead of
transferring the entire body. An example use case for a HEAD request is simply checking if a resource
exists without downloading its entire contents.

POST Used to create new resources on the server. Typical uses of POST requests are the submission of
HTML forms and the addition of data to a database.

PUT PUT requests are similar to POST requests; however, PUTs are used to update existing resources on the
server. If the resource does not exist, the server can create it.

DELETE Used to delete a resource from a server.

TRACE Echoed back to the client. This is useful for detecting any changes made by intermediary servers.

OPTIONS Returns a list of the verbs supported for the given URL.

CONNECT Used to create a tunnel through a proxy server. The proxy will make the connection on the client’s
behalf. After the connection is established, the proxy simply forwards the TCP traffic between the
client and remote server. This technique allows encrypted HTTPS traffic to be proxied through an
unencrypted HTTP channel.

PATCH The PATCH method is similar to PUT. However, PATCH is used to make partial updates to an existing
resource. This is different from PUT, which should resubmit the entire resource during an update.

The example in Listing 11-4 displays the request line for each connection. All of the information in the
request line is accessible via the http.IncomingMessage class. Specifically, this example uses the method, url, and
httpVersion properties to re-create the request line.

Listing 11-4.  A Server that Displays the Request Line of Each Incoming Connection

var http = require("http");
var server = http.createServer(function(request, response) {
 var requestLine = request.method + " " + request.url +
 " HTTP/" + request.httpVersion;
 
 console.log(requestLine);
 response.end();
});
 
server.listen(8000);

HTTP

170

Request Headers
The collection of request headers sent from the client tells the server how to properly handle the request. You’ve
already seen an example including the Host header; however, there are many other commonly used request headers.
For example, the Accept header is used to request data in a certain format. This header is useful when a resource is
available in multiple formats (JSON, XML, HTML, and so on). In this scenario, a client could simply request a certain
data format by setting the Accept header to the proper Content-Type (application/json, application/xml, text/html,
and so on). Content-Types are discussed in more detail when response headers are covered. A non-exhaustive list of
common request headers is shown in Table 11-2.

Table 11-2. Several Common HTTP Request Headers

Header Description

Accept Specifies the Content-Types that the client is willing to accept for this request.

Accept-Encoding Provides a list of acceptable encodings. Many servers can compress data to speed up network
transmission times. This header tells the server which compression types (gzip, deflate,
and so on) the client can handle.

Cookie Small pieces of data that the server stores on the client. The Cookie header contains all of the
cookies that the client is currently storing for the server.

Content-Length The length of the request body in octets.

Host The domain and port of the server. This header is mandatory in HTTP 1.1. This header is useful
when multiple servers are hosted on the same machine.

User-Agent A string identifying the type of client. This normally contains information such as the browser
name and version and operating system.

The request headers are accessible via the headers property of the http.IncomingMessage class. Listing 11-5
provides an example that prints out the headers on each request.

Listing 11-5. A Server that Displays the Request Headers of Each Incoming Connection

var http = require("http");

http.createServer(function(request, response) {
 console.log(request.headers);
 response.end();
}).listen(8000);

Response Codes
The status line of every HTTP response includes a numeric status code, as well as a reason phrase that describes the
code. The reason phrase is simply cosmetic, while the status code is actually used by the client and, in conjunction
with the response headers, it dictates how the response is handled. Table 11-3 contains a listing of several common
(and one uncommon) HTTP response status codes and reason phrases.

Chapter 11 ■ HTTP

171

A more extensive listing of the HTTP status codes is available in the http module, via its STATUS_CODES property.
STATUS_CODES is an object that maps numeric status codes to reason phrase strings. The example in Listing 11-6
displays the reason phrase corresponding to the 404 status code.

Listing 11-6.  An Example of Using http.STATUS_CODES

var http = require("http");
 
console.log(http.STATUS_CODES[404]);
// displays "Not Found"
 

You can set the status code of a response object using its statusCode property. If you do not explicitly provide a
status code, this value defaults to 200. An example server that sets the statusCode property is shown in Listing 11-7.
If a request is made for the URL /foo, the server will respond with a 200 status code and an HTML response body.
However, if any other URL is requested, the server responds with a 404 error.

Listing 11-7.  This Example Provides Different Responses Depending on the Requested URL

var http = require("http");
 
http.createServer(function(request, response) {
 if (request.url === "/foo") {
 response.end("Hello HTTP");
 } else {
 response.statusCode = 404;
 response.end();
 }
}).listen(8000);

Table 11-3.  Several Common (and One Comical) HTTP Response Codes and Reason Phrases

Status Code and Reason Phrase Description

200 OK Indicates that the HTTP request was handled successfully.

201 Created Indicates that the request has been fulfilled, and a new resource has been
created on the server.

301 Moved Permanently The requested resource has permanently moved to a new URL. The
Location response header should contain the new URL to redirect to.

303 See Other The requested resource can be found via a GET request to the URL specified
in the Location response header.

304 Not Modified Indicates that a cached resource has not been modified. To improve
performance, a 304 response should not contain a body.

400 Bad Request Indicates that the request was malformed and could not be understood.
An example of this is a request that is missing a required parameter.

401 Unauthorized If a resource requires authentication, and the provided credentials are
refused, then the server will respond with this status code.

404 Not Found The server could not locate the requested URL.

418 I'm a Teapot This status code was introduced as an April Fools’ Day joke. Actual servers
should not return this status code.

500 Internal Server Error The server encountered an error while attempting to fulfill the request.

Chapter 11 ■ HTTP

172

Response Headers
The response headers, combined with the response status code, are used to interpret the data sent back from the
server. Some of the more commonly encountered response headers are shown in Table 11-4.

Table 11-4.  Several Common HTTP Response Headers

Header Description

Cache-Control Specifies whether a resource can be cached. If it can, this header designates the length of
time, in seconds, that it can be stored in any cache.

Content-Encoding Specifies the encoding used on the data. This allows the server to compress responses for
faster transmission over the network.

Content-Length The length of the response body in bytes.

Content-Type Specifies the MIME type of the response body. Essentially, this header tells the client how to
interpret the data.

Location When the client is redirected, the target URL is stored in this header.

Set-Cookie Creates a new cookie on the client. This cookie will be included in the Cookie header of
future requests.

Vary Used to dictate which request headers affect caching. For example, if a given resource
has more than one representation, and the Accept request header is used to differentiate
between them, then Accept should be included in the Vary header.

WWW-Authenticate If an authentication scheme is implemented for a given resource, this header is used
to identify the scheme. An example value is Basic, corresponding to HTTP Basic
authentication.

One particularly important header in Table 11-4 is Content-Type. This is because the Content-Type header
tells the client what kind of data it is dealing with. To demonstrate this point, connect to the example server from
Listing 11-1 using a browser. Figure 11-1 shows the result using Google’s Chrome browser. Additionally, Chrome’s
developer tools have been used to record the HTTP request. Notice that the HTML tags in the response are showing
up onscreen, instead of marking up the text. By examining the response, you can see that no Content-Type header has
been sent back from the server.

Chapter 11 ■ HTTP

173

Luckily, the http module provides several ways to create response headers. The simplest way is with the
response argument’s setHeader() method. This method takes two arguments, the header name and value(s). The
header name is always a string. The value should either be a string or an array of strings, if you need to create multiple
headers with the same name. In Listing 11-8, the server has been modified to return a Content-Type header. Since the
server is sending back a string of HTML, the Content-Type header should tell the client to interpret the response as
HTML. This is accomplished by setting the header’s value to the text/html MIME type.

Listing 11-8.  Setting a Content-Type Response Header Using the setHeader() Method

var http = require("http");
var server = http.createServer(function(request, response) {
 response.setHeader("Content-Type", "text/html");
 response.write("Hello HTTP!");
 response.end();
});
 
server.listen(8000); 

Note■■  R esponse headers created with setHeader() can be removed using the response.removeHeader() method.
This method takes a single argument, the name of the header to remove. You may be asking why this is important. Assume
that you have a resource that is set to be cached using a cache header. However, before the response can be sent, an error
is encountered. Since you don’t want to cache an error response, the removeHeader() method can be used to remove
the cache header.

Figure 11-1.  Connecting to the server in Listing 11-1 using Google’s Chrome browser

Chapter 11 ■ HTTP

174

Now, try connecting to the server in Listing 11-8 using a browser. This time, the word HTTP should display as
boldface text. Figure 11-2 shows the resulting page using Chrome, as well as the recorded HTTP request. Notice that
the response headers now include the Content-Type header.

The second way to write response headers is with the writeHead() method. This method takes three arguments.
The first is the status code to return. The second argument is an optional reason phrase. The final argument is an
optional object containing the response headers. Listing 11-9 shows how the server from Listing 11-8 is implemented
using writeHead() instead of setHeader().

Listing 11-9.  An Example Using the writeHead() Method

var http = require("http");
var server = http.createServer(function(request, response) {
 response.writeHead(200, {
 "Content-Type": "text/html"
 });
 response.write("Hello HTTP!");
 response.end();
});
 
server.listen(8000);
 

Please note that header information must be set before calling write() or end(). Once write() or end() is called,
Node will implicitly call writeHead() if you have not already explicitly done so. If you attempt to write the headers
again after this point, you will get a "Can't set headers after they are sent" error. Additionally, writeHead()
must be called only once per request. If you are unsure whether the headers have already been written, you can use
the response.headersSent property to find out. headersSent holds a Boolean value that is true if the headers have
already been sent, and false otherwise.

Figure 11-2.  Connecting to the server in Listing 11-8 using Chrome

Chapter 11 ■ HTTP

175

Working with Cookies
Because HTTP is a stateless protocol, it cannot directly remember details about a client’s previous interactions with
a server. For example, if you were to visit the same page 1,000 times, HTTP would treat each request as if it were
the first. Obviously, web pages can remember details about you, such as whether you are logged in. So, how is state
maintained over a stateless protocol? There are a few options. The state could be maintained on the server using a
database or a session. The alternative is to store the data on the client in a cookie. Each approach has advantages
and disadvantages. The advantage to storing data on the server is that it is less prone to tampering. The drawback is
that all of the state information consumes memory on the server. For a heavily loaded server, memory consumption
can quickly become a problem. On the flip side of the coin, maintaining state on the client using cookies is far more
scalable, yet less secure.

Tip■■  A lthough cookies are more scalable than server-stored state, you should still use them sparingly. A site’s cookies are
sent back to the server in the Cookie header of every HTTP request, including requests for images, scripts, stylesheets,
and so on. All of this data can increase network latencies. One way to mitigate this problem is to store static assets like
images on a separate domain or subdomain that doesn’t use any cookies.

In its simplest form, a cookie is just a name/value pair, separated with an equals sign. Multiple cookies are
concatenated together using a semicolon as the delimiter. An example of two Set-Cookie response headers is shown
in Listing 11-10. These cookies names are name and foo, while the values are Colin and bar, respectively. Once these
cookies are set, they will be included in future Cookie request headers, as shown in Listing 11-11.

Listing 11-10.  An Example of Two Set-Cookie Headers

Set-Cookie: name=Colin
Set-Cookie: foo=bar
 

Listing 11-11.  The Cookie Header Resulting from the Set-Cookie Headers in Listing 11-10

Cookie: name=Colin; foo=bar
 

Cookies can also be parameterized using attributes. The various cookie attributes are shown in Table 11-5. Some
of these attributes—such as Domain and Path—are given values, while others—such as Secure and HttpOnly—are
Boolean attributes whose value is either set or not set.

Chapter 11 ■ HTTP

176

An example use of setHeader() that creates two cookies with attributes is shown in Listing 11-12. In this
example, the name cookie is set to expire on January 10, 2015. This cookie is also secure, and is an HTTP-only cookie.
The foo cookie, on the other hand, uses the Max-Age attribute, and expires in one hour.

Listing 11-12.  Setting Two Cookies that Include Attributes

response.setHeader("Set-Cookie",
 ["name=Colin; Expires=Sat, 10 Jan 2015 20:00:00 GMT;\
 Domain=foo.com; HttpOnly; Secure",
 "foo=bar; Max-Age=3600"]);

Middleware
Even with the help of Node’s core modules, implementing all of the features of a stock web server is a daunting task.
Examples might include implementing HTTP Basic authentication and gzip compression. You could write all of this
code yourself, but the more popular alternative is to use middleware. Middleware are functions that process requests
in an assembly line fashion. This means that one piece of middleware initially processes an incoming request. This
middleware can either process the request completely, or perform an operation on the request and then pass it to
another piece of middleware for additional processing.

An example of middleware that performs no processing is shown in Listing 11-13. Notice that the middleware
takes three arguments, request, response, and next. request and response are the exact same objects used to
process requests that you’ve become acquainted with. next is a function that is called to invoke the next piece of
middleware. Note that next() has been included in a return statement in this example. This is not required, but it is
good practice to return when calling next() to ensure that execution does not continue when the next middleware
completes.

Listing 11-13.  An Example Middleware Function

function middleware(request, response, next) {
 return next();
}

Table 11-5.  Description of Various Cookie Attributes

Attribute Description

Domain Limits the scope of the cookie, such that it is sent to the server only on requests of the given
domain. If omitted, this defaults to the domain of the resource that set the cookie.

Path Limits the scope of the cookie to all resources contained in the provided path. If omitted, Path
defaults to /, applying to all resources.

Expires Includes the date when the cookie should be deleted and is no longer valid.

Max-Age Also specifies when the cookie should expire. However, Max-Age is specified as the number of
seconds that the cookie should persist from the time it is set.

Secure Cookies marked with the Secure flag are used only over secure connections. Browsers should send
these cookies only over a secure (HTTPS) connection, while servers should set them only when the
client makes a secure connection.

HttpOnly Cookies marked with HttpOnly can be accessed only by HTTP and HTTPS. These cookies cannot
be accessed via JavaScript in the browser, helping to mitigate cross-site scripting attacks.

http://Domain=foo.com

Chapter 11 ■ HTTP

177

Connect
Now that we’ve seen what middleware looks like, let’s build something with it. The first step is to install the Connect
module (npm install connect). Connect touts itself as “high-quality middleware for node.js.” Connect not only
allows you to build applications using your own middleware, but it also comes bundled with some very useful
middleware. There is also an abundance of freely available, third-party middleware built using Connect.

After installing Connect, create a new server containing the code shown in Listing 11-14. The first two lines
of this example import the http and connect modules. On the third line, a Connect app is initialized using the
connect module. Next, a piece of middleware is added to the app via its use() method. The body of the middleware
should look familiar, as we’ve been using it in previous examples. That is one of the beautiful things about Connect
middleware—it is built on top of the http module, and is therefore compatible with everything you’ve already
learned. Finally, an HTTP server is constructed based on the Connect app. You may recall that createServer() takes
a request event handler (function) as an argument. As it turns out, the app object returned by connect() is just a
function that can be used to handle request events.

Listing 11-14.  An Example Server Built Using Middleware

var http = require("http");
var connect = require("connect");
var app = connect();
 
app.use(function(request, response, next) {
 response.setHeader("Content-Type", "text/html");
 response.end("Hello HTTP!");
});
 
http.createServer(app).listen(8000);
 

We’ve just shown how our simple HTTP server can be re-created using middleware. However, to truly appreciate
middleware, let’s look at another example that uses multiple pieces of middleware. The server in Listing 11-15 uses
three middleware functions. The first is Connect’s built-in query() middleware. query() automatically parses the
requested URL, and augments the request object with a query object containing all of the query string parameters
and their values. The second piece of middleware is custom, and iterates over all of the parsed query string
parameters, printing each one along the way. After calling next(), control is passed to the third and final middleware,
which responds to the client. Note that the middleware are executed in the same order that they are attached
(by calling use()). In this example, query() must be called before the custom middleware. If the order is reversed,
an error will not occur, but no console output will be observed in the custom middleware.

Listing 11-15.  Chaining Together Multiple Pieces of Connect Middleware

var http = require("http");
var connect = require("connect");
var app = connect();
 
app.use(connect.query());
 
app.use(function(request, response, next) {
 var query = request.query;
 
 for (q in query) {
 console.log(q + ' = ' + query[q]);
 }
 

Chapter 11 ■ HTTP

178

 next();
});
 
app.use(function(request, response, next) {
 response.setHeader("Content-Type", "text/html");
 response.end("Hello HTTP!");
});
 
http.createServer(app).listen(8000); 

Note■■  T he query string is an optional part of a URL used to pass request-specific parameters. A question mark (?)
is used to separate the requested resource from the query string. Within the query string, individual parameters are
formatted as parameter=value. An ampersand (&) is used to separate parameter-value pairs.

Example console output from Listing 11-15 is shown in Listing 11-16. To re-create this output, simply point a
browser to http://localhost:8000?foo=bar&fizz=buzz. Notice that query() successfully extracts the two query
string parameters, foo and fizz, and their values, bar and buzz.

Listing 11-16.  Example Output After Connecting to the Server in Listing 11-15

$ node connect-query.js
foo = bar
fizz = buzz
 

query() is just one of the over 20 middleware methods that comes bundled with Connect. The bodyParser() and
cookieParser() middleware provide similar functionality for working with request bodies and cookies, respectively.
For a listing of all the middleware provided with Connect, the reader is encouraged to check out the project’s GitHub
page at https://github.com/senchalabs/connect. The Connect home page, located at http://www.senchalabs.
org/connect/, also provides links to popular third-party middleware.

Issuing HTTP Requests
In addition to creating servers, the http module also allows you to make requests using the aptly named request()
method. request() takes two arguments, options and callback. options is an object used to parameterize
the HTTP request. A description of various properties supported by options is shown in Table 11-6. The
callback argument is a function that is invoked when a response to the request is received. An instance of http.
IncomingMessage is the only argument passed to the callback function. request() also returns an instance of http.
ClientRequest, which is a writable stream.

http://hyperlink/
https://github.com/senchalabs/connect
http://www.senchalabs.org/connect/
http://www.senchalabs.org/connect/

Chapter 11 ■ HTTP

179

A client that works with our example server is shown in Listing 11-17. The client makes a GET request to
http://localhost:8000/. Several of the options passed to request() could be omitted because they are the default
values (namely, hostname, path, and method), but have been included for the sake of the example. When a response is
received, the callback function re-creates the HTTP response by printing out the status line, headers, and body. The
body is displayed as UTF-8 data using a stream data event handler. An important thing to note is the call to end() on
the final line of the example. Had this been a POST or PUT request, there would have likely been a request body created
by calling request.write(). To mark the end of the request body, even if there is none, end() is called. Had end() not
been called, the request would have never been made.

Listing 11-17.  Making an HTTP Request Using the request() Method

var http = require("http");
var request = http.request({
 hostname: "localhost",
 port: 8000,
 path: "/",
 method: "GET",
 headers: {
 "Host": "localhost:8000"
 }
}, function(response) {
 var statusCode = response.statusCode;
 var headers = response.headers;
 var statusLine = "HTTP/" + response.httpVersion + " " +
 statusCode + " " + http.STATUS_CODES[statusCode];
 
 console.log(statusLine);
 
 for (header in headers) {
 console.log(header + ": " + headers[header]);
 }
 

Table 11-6.  Various Properties Supported by the options Argument to request()

Option Description

hostname The domain or IP address to connect to. If omitted, this defaults to localhost. You can also specify
this using the host property, but hostname is preferred.

port The server port to connect to. This defaults to 80.

method The HTTP method of the request. This defaults to GET.

path The path of the resource being requested. If the request includes a query string, it should be
specified as part of the path. If omitted, this defaults to /.

headers An object containing the request headers.

auth If Basic authentication is in use, the auth property is used to generate an Authorization header.
The username and password used to authenticate should be formatted as username:password.
Setting the Authorization header in the headers field will override this option.

socketPath The UNIX socket to use. If this option is used, hostname and port should be omitted, and vice versa.

http://localhost:8000/
http://localhost:8000/

HTTP

180

 console.log();
 response.setEncoding("utf8");
 response.on("data", function(data) {
 process.stdout.write(data);
 });

 response.on("end", function() {
 console.log();
 });
});

request.end();

request() has a simpler, yet less powerful signature that takes a URL string as its first argument. Listing 11-17
has been rewritten in Listing 11-18 to use this version of request(). The drawback to this version is that the request
method and headers cannot be specified. Therefore, this example makes a GET request with no headers. Also notice
that we must still call end().

Listing 11-18. An Alternative Use of http.request()

var http = require("http");
var request = http.request("http://localhost:8000/", function(response) {
 response.setEncoding("utf8");

 response.on("data", function(data) {
 process.stdout.write(data);
 });

 response.on("end", function() {
 console.log();
 });
});

request.end();

As a convenience, the http module also provides a get() method for making GET requests, without calling end().
An example of get() is shown in Listing 11-19. It is worth pointing out that get() supports both of the argument
signatures supported by request().

Listing 11-19. An Example of http.get()

var http = require("http");

http.get("http://localhost:8000/", function(response) {
 response.setEncoding("utf8");

 response.on("data", function(data) {
 process.stdout.write(data);
 });

 response.on("end", function() {
 console.log();
 });
});

http://localhost:8000/
http://localhost:8000/

Chapter 11 ■ HTTP

181

Form Data
Thus far, we’ve only dealt with GET requests, which do not include request bodies. Now we’ll look at requests that post
data to the server. The example in Listing 11-20 makes a POST request to our example server (which will need to be
updated to handle the additional data). The first thing to note is that the querystring core module is imported on the
second line of the example. The querystring module’s stringify() method creates a query string from an object.
In this example, stringify() creates the query string foo=bar&baz=1&baz=2. It is worth pointing out that arrays, such
as baz, can be stringified, but nested objects cannot.

Listing 11-20.  An Example POST Request

var http = require("http");
var qs = require("querystring");
var body = qs.stringify({
 foo: "bar",
 baz: [1, 2]
 });
var request = http.request({
 hostname: "localhost",
 port: 8000,
 path: "/",
 method: "POST",
 headers: {
 "Host": "localhost:8000",
 "Content-Type": "application/x-www-form-urlencoded",
 "Content-Length": Buffer.byteLength(body)
 }
 }, function(response) {
 response.setEncoding("utf8");
 
 response.on("data", function(data) {
 process.stdout.write(data);
 });
 
 response.on("end", function() {
 console.log();
 });
 });
 
request.end(body);
 

The options passed to request() are the next thing to note. Obviously, the request method is set to POST,
but also notice the Content-Type and Content-Length headers. The Content-Type header signifies to the server
that the request body contains URL-encoded form data (which is generated by querystring.stringify()). The
Content-Length header tells the server how many bytes (not characters) are included in the request body. Finally, the
request body is sent to the server using end() (write() followed by end() could also be used alternatively).

Our current server will work fine with the updated client, but it has no way of processing the form data.
Listing 11-21 shows how the request body can be parsed using the familiar stream API and the querystring module.
The request stream’s data handler is used to collect the entire request body in the bodyString variable. When the end
event is emitted, the request body is parsed into an object using the querystring.parse() method. Next, each field in
the body is iterated over, and written back to the client.

Chapter 11 ■ HTTP

182

Listing 11-21.  An Example Server that Handles POST Requests

var http = require("http");
var qs = require("querystring");
var server = http.createServer(function(request, response) {
 var bodyString = "";
 
 request.setEncoding("utf8");
 
 request.on("data", function(data) {
 bodyString += data;
 });
 
 request.on("end", function() {
 var body = qs.parse(bodyString);
 
 for (var b in body) {
 response.write(b + ' = ' + body[b] + "\n");
 }
 
 response.end();
 });
});
 
server.listen(8000);
 

Now that the server has been configured to handle POST requests, we can test our client. If everything works
properly, the client should generate the output shown in Listing 11-22.

Listing 11-22.  Example Output from the POST Request Client and Server

$ node post-client.js
foo = bar
baz = 1,2
 

Processing the incoming request body isn’t terribly difficult, but it is a bit more tedious than it needs to be. To
mitigate this problem, we can turn to Connect’s bodyParser() middleware. Listing 11-23 shows how the server can
be rewritten using Connect. The bodyParser() middleware parses the incoming request body and stores the result in
request.body for future processing.

Listing 11-23.  Using Connect’s bodyParser() Middleware to Handle POST Requests

var http = require("http");
var connect = require("connect");
var app = connect();
 
app.use(connect.bodyParser());
 
app.use(function(request, response, next) {
 var body = request.body;
 

Chapter 11 ■ HTTP

183

 for (b in body) {
 response.write(b + ' = ' + body[b] + "\n");
 }
 
 response.end();
});
 
http.createServer(app).listen(8000);

Nested Objects
It was previously mentioned that querystring.stringify() does not handle nested objects. The workaround is to
define query parameters using square bracket notation, as shown in Listing 11-24. In this example, an object called
name is created with two properties, first and last.

Listing 11-24.  Passing Nested Objects to querystring.stringify()

var body = qs.stringify({
 "name[first]": "Colin",
 "name[last]": "Ihrig"
});
 

Connect’s bodyParser() middleware will interpret this request as the object shown in Listing 11-25.
Unfortunately, if you are parsing the request by hand using querystring.parse(), this trick will not work, and the
data will be stored as shown in Listing 11-26.

Listing 11-25.  Connect’s Interpretation of the Data in Listing 11-24

{
 name: {
 first: "Colin",
 last: "Ihrig"
 }
}
 

Listing 11-26.  The Data from Listing 11-24 as Parsed Using querystring.parse()

{
 "name[first]": "Colin",
 "name[last]": "Ihrig"
}

The request Module
request is a third-party module, written by Mikeal Rogers, that simplifies the process of making HTTP requests.
At the time of writing, request is the third most depended upon module in the npm registry. request’s popularity
is due to the simplistic abstraction that it provides on top of Node’s core functionality. To demonstrate request’s
simplicity, Listing 11-20 has been rewritten in Listing 11-27. Immediately you will notice that there are no streams and
no querystring module—all of that occurs under the hood in request. All of the parameters of the request are passed
in the first argument to request(). Most of these parameters will be self-explanatory at this point, but a rundown of
many common options supported by request is provided in Table 11-7.

Chapter 11 ■ HTTP

184

Listing 11-27.  An Example Use of the request Module

var request = require("request");
 
request({
 uri: "http://localhost:8000/",
 method: "POST",
 headers: {
 Host: "localhost:8000"
 },
 form: {
 foo: "bar",
 baz: [1, 2]
 }
}, function(error, response, body) {
 console.log(body);
});
 

Table 11-7.  Common Options Used with the request Module

Option Description

uri (or url) The URL being requested. This is the only required option.

method The HTTP request method. This defaults to GET.

headers The request headers to send. This defaults to an empty object.

body The request body as a string or Buffer.

form An object representation of the request body. Internally, this will set the body option to
the URL encoded string equivalent. Additionally, the Content-Type header will be set to
application/x-www-form-urlencoded; charset=utf-8.

qs An object representation of any query string parameters. Internally, this will converted to
a URL encoded query string, and appended to the requested URL.

jar A cookie jar object used to define the cookies for the request. This will be covered in more
detail later.

followRedirect If true (the default), request will automatically follow HTTP 3xx response redirects.

followAllRedirects If true, request will automatically follow HTTP 3xx response redirects, even on non-GET
requests. This defaults to false.

maxRedirects The maximum number of redirects to follow. This defaults to ten.

timeout The number of milliseconds to wait for a response before aborting the request.

The second argument to request() is a callback function that is invoked once a response is received. The first
argument to the callback is used to pass in any error information. The second argument is the complete response, and
is an instance of http.IncomingMessage. The third argument, body, is the response body.

http://localhost:8000/

Chapter 11 ■ HTTP

185

Cookies in request
Many sites require cookies in order to function properly. For example, most e-commerce sites use cookies to map
requests to shopping carts. If you were able to guess (or steal) another user’s cookies, you could manipulate their
shopping cart. Using only the Node core, you would have to set the Cookie header on every request, and examine
Set-Cookie headers on every response. request abstracts this away through the concept of a cookie jar. A cookie jar
is an object containing representations of cookies. This jar is then passed to request() instead of a Cookie header.
Once a response is received, request will take care of updating the cookie jar with any Set-Cookie headers.

An example request client that uses cookies is shown in Listing 11-28. The request.jar() method is
used to create a new empty cookie jar. Next, a new cookie named count, with a value of one, is created using the
request.cookie() method. The cookie is then added to the jar using the add() method. When the request is made, the
cookie jar is passed in via the jar option. Finally, once the response is received, the contents of the cookie jar are printed.

Listing 11-28.  An Example Request Using Cookies

var request = require("request");
var jar = request.jar();
var cookie = request.cookie("count=1");
 
jar.add(cookie);
 
request({
 url: "http://localhost:8000/",
 jar: jar
}, function(error, response, body) {
 console.log(jar);
});
 

To verify that request automagically updates the cookie jar, we’re going to create a server that updates the
cookie’s value. The example server, shown in Listing 11-29, uses Connect’s cookieParser() middleware to parse the
Cookie header and create the request.cookies object. Next, the value of the count cookie is read and converted to an
integer. Finally, a Set-Cookie response header is created with an incremented count. The client output resulting from
connecting to this server is shown in Listing 11-30.

Listing 11-29.  An Example Server that Updates a Cookie Value

var http = require("http");
var connect = require("connect");
var app = connect();
 
app.use(connect.cookieParser());
 
app.use(function(request, response, next) {
 var cookies = request.cookies;
 var count = parseInt(cookies.count, 10);
 var setCookie = "count=" + (count + 1);
 
 response.setHeader("Set-Cookie", setCookie);
 response.end();
});
 
http.createServer(app).listen(8000);
 

http://localhost:8000/

Chapter 11 ■ HTTP

186

Listing 11-30.  Output from the Cookie Example

$ node cookie-update.js
{ cookies:
 [{ str: 'count=2',
 name: 'count',
 value: '2',
 expires: Infinity,
 path: '/' }] }

HTTPS
HTTP transmits data in plaintext, making it inherently insecure. When transmitting sensitive/private data such as
social security numbers, credit card information, emails, or even instant messages, a secure protocol should be used.
Luckily, HTTP has a secure sister protocol in HTTPS. HTTPS is simply standard HTTP executed over a secure channel.
To be more specific, the channel is secured using the SSL/TLS (Secure Socket Layer / Transport Layer Security)
protocol.

Under SSL/TLS, each client and server must have a private cryptographic key. Therefore, the first thing we need
to do is create a private key. This can be done using the freely available OpenSSL utility. For more information on
obtaining OpenSSL, please visit www.openssl.org. Next, create a private key named key.pem using the command
shown in Listing 11-31. Make sure to remember where the key is saved, as you’ll need it later!

Listing 11-31.  Creating a Private Key Using OpenSSL

$ openssl genrsa -out key.pem 1024
 

In addition to a private key, each server must have a certificate, which is a public cryptographic key that has been
signed by a Certificate Authority (CA). Essentially, a certificate is a voucher that the owner of a public key is who they
say they are. Anyone can sign a certificate, so its legitimacy really depends on the reputation of the signer. Therefore,
CAs are typically trusted third parties. To obtain a certificate, you must first generate a certificate signing request.
Using OpenSSL, this can be accomplished via the command shown in Listing 11-32.

Listing 11-32.  Creating a Certificate Signing Request Using OpenSSL

$ openssl req -new -key key.pem -out request.csr
 

At this point, you would send your request.csr to a CA to be signed. However, this often comes with a fee, and
is not needed for the examples shown here. For our purposes, we can just create a self-signed certificate using the
OpenSSL command shown in Listing 11-33.

Listing 11-33.  Creating a Self-Signed Certificate Using OpenSSL

$ openssl x509 -req -in request.csr -signkey key.pem -out cert.pem
 

Using the key.pem and cert.pem files that we’ve just created, we can build a simple HTTPS server (shown in
Listing 11-34). Node provides a core https module that provides secure alternatives to many of the features included
in the http module. Notice that the https version of createServer() takes an additional argument prior to the
request event listener. This argument is used to pass in the server’s private key and certificate. If necessary, adjust the
paths to point to the location of your key and certificate. The rest of the server is identical to our old HTTP server.

http://www.openssl.org/

Chapter 11 ■ HTTP

187

Listing 11-34.  An Example HTTPS Server

var fs = require("fs");
var https = require("https");
var server = https.createServer({
 key: fs.readFileSync(__dirname + "/key.pem"),
 cert: fs.readFileSync(__dirname + "/cert.pem")
}, function(request, response) {
 response.writeHead(200, {
 "Content-Type": "text/html"
 });
 response.end("Hello HTTP!");
});
 
server.listen(8000);
 

To test our shiny new HTTPS server, we need a new client. You can just navigate to https://localhost:8000
in a browser. Ignore any warnings about an invalid/untrusted certificate, as they are due to the use of a self-signed
certificate. The https module also provides its own request() method, which is demonstrated in Listing 11-35.
Nothing special needs to be done in order to use the https request(). In fact, Listing 11-35 is identical to our HTTP
example with the exception of the first line, and the use of the https module instead of http. The first line is used to
suppress an error that is thrown because of the server’s untrusted certificate. In production code, you would want to
remove this line, and instead handle the error as needed within your application.

Listing 11-35.  An Example HTTPS Client

process.env.NODE_TLS_REJECT_UNAUTHORIZED = "0";
 
var https = require("https");
var request = https.request({
 hostname: "localhost",
 port: 8000
}, function(response) {
 response.setEncoding("utf8");
 
 response.on("data", function(data) {
 process.stdout.write(data);
 });
 
 response.on("end", function() {
 console.log();
 });
});
 
request.end(); 

Note■■   While we’re on the topic of HTTPS clients, it is worth pointing out that the request module is fully compatible
with HTTPS.

https://localhost:8000/

Chapter 11 ■ HTTP

188

Summary
This chapter has introduced a lot of material related to HTTP. While HTTP is not a terribly complicated protocol,
there are many associated concepts which must be understood in order to properly use HTTP. This chapter has
also touched on subjects like cookies and security via the HTTPS protocol. In addition to the core http, https, and
querystring modules, this chapter introduced connect and request, two of the most popular modules in the npm
registry. The next chapter is dedicated to Express, a framework for creating web applications that is built on top of
http and connect. Therefore, it is important to understand the material covered here before moving on to the
next chapter.

189

Chapter 12

The Express Framework

In Chapter 10, you learned how to create low-level TCP applications using the net module. Then, in Chapter 11,
the low-level details of TCP were abstracted away using the http module. The move to a higher level of abstraction
allowed us to do more, while writing less code. Chapter 11 also introduced the concept of middleware via the
Connect library. Middleware promotes code reuse and enables you to request processing in an assembly line fashion.
However, creating complex applications using the http and connect modules can still be a bit tedious.

The Express framework, created by TJ Holowaychuk, provides another level of abstraction on top of http
and connect. Express is based on Ruby’s Sinatra framework, and touts itself as “a minimal and flexible Node.js
web application framework, providing a robust set of features for building single and multipage, and hybrid web
applications.” Express provides convenience methods and syntactic sugar for many common tasks that would
otherwise be tedious or redundant. This chapter examines the Express framework in detail. And remember, because
Express is built on http and connect, everything you learned in Chapter 11 is applicable.

Express Routes
Before looking at what Express has to offer, let’s identify some shortcomings of http and connect. Listing 12-1
includes an example that supports three unique GET URLs, and returns a 404 for everything else. Notice that each
newly supported verb/URL combination requires an additional branch in the if statement. There is also a fair
amount of duplicated code. Some of this duplication could be eliminated by better optimizing the code, but that
would require sacrificing code readability and consistency.

Listing 12-1.  Supporting Multiple Resources Using the http Module

var http = require("http");
 
http.createServer(function(request, response) {
 if (request.url === "/" && request.method === "GET") {
 response.writeHead(200, {
 "Content-Type": "text/html"
 });
 response.end("Hello home page");
 } else if (request.url === "/foo" && request.method === "GET") {
 response.writeHead(200, {
 "Content-Type": "text/html"
 });
 response.end("Hello foo");
 } else if (request.url === "/bar" && request.method === "GET") {

Chapter 12 ■ the express Framework

190

 response.writeHead(200, {
 "Content-Type": "text/html"
 });
 response.end("Hello bar");
 } else {
 response.writeHead(404, {
 "Content-Type": "text/html"
 });
 response.end("404 Not Found");
 }
}).listen(8000);

HTTP verb and URL combinations are referred to as routes, and Express has efficient syntax for handling them.
Listing 12-2 shows how the routes from Listing 12-1 are written using Express’s syntax. First, the express module must
be installed (npm install express) and imported into the application. The http module must also be imported.
On line three of Listing 12-2, an Express app is created by calling the express() function. This app behaves like a
Connect app, and is passed to the http.createServer() method on the last line of Listing 12-2.

Listing 12-2. Rewriting the Server from Listing 12-1 Using Express

var express = require("express");
var http = require("http");
var app = express();

app.get("/", function(req, res, next) {
 res.send("Hello home page");
});

app.get("/foo", function(req, res, next) {
 res.send("Hello foo");
});

app.get("/bar", function(req, res, next) {
 res.send("Hello bar");
});

http.createServer(app).listen(8000);

Three calls to the app’s get() method are used to define the routes. The get() method defines routes for
handling GET requests. Express also defines similar methods for the other HTTP verbs (put(), post(), delete(),
and so on). All of these methods take a URL path and a sequence of middleware as arguments. The path is a string or
regular expression representing the URL that the route responds to. Note that the query string is not considered part
of the route’s URL. Also notice that we haven’t defined a 404 route, as this is the default behavior of Express when a
request does not match any defined routes.

Chapter 12 ■ The Express Framework

191

Note■■  E xpress middleware follow the same request-response-next signature as Connect. Express also augments the
request and response objects with additional methods. An example of this is the response.send() method, shown in
Listing 12-2 as res.send(). send() is used to send a response status code and/or body back to the client. If the first
argument to send() is a number, then it is treated as the status code. If a status code is not provided, Express will send
back a 200. The response body can be specified in the first or second argument, and can be a string, Buffer, array, or
object. send() also sets the Content-Type header unless you do so explicitly. If the response body is a Buffer, the Content-
Type header is also set to application/octet-stream. If the body is a string, Express will set the Content-Type header to
text/html. If the body is an array or object, then Express will send back JSON. Finally, if no body is provided, the status code’s
reason phrase is used.

Route Parameters
Assume that you are creating an e-commerce site that sells hundreds or thousands of different products, each with its
own unique product ID. You certainly would not want to specify hundreds of unique routes by hand. One option is to
create a single route, and specify the product ID as a query string argument. Although this is a perfectly valid option,
it leads to unattractive URLs. Wouldn’t it be better if the sweater’s URL looked like /products/sweater instead of
/products?productId=sweater?

As it turns out, Express routes, which can be defined as regular expressions, are very good at supporting this
scenario. Listing 12-3 shows how a route can be parameterized using a regular expression. In this example, the
product ID can be any character except a forward slash. Inside of the route’s middleware, any matched parameters
are made accessible via the req.params object.

Listing 12-3.  Parameterizing an Express Route Using a Regular Expression

var express = require("express");
var http = require("http");
var app = express();
 
app.get(/\/products\/([^\/]+)\/?$/, function(req, res, next) {
 res.send("Requested " + req.params[0]);
});
 
http.createServer(app).listen(8000);
 

For added convenience, routes can be parameterized even when the URL is described using a string. Listing 12-4
shows how this is accomplished. In this example, a named parameter, productId, is created using the colon (:)
character. Inside of the route’s middleware, this parameter is accessed by name using the req.params object.

Listing 12-4.  A Route with Named Parameters

var express = require("express");
var http = require("http");
var app = express();
 
app.get("/products/:productId", function(req, res, next) {
 res.send("Requested " + req.params.productId);
});
 
http.createServer(app).listen(8000);
 

Chapter 12 ■ The Express Framework

192

You can even define a regular expression for the parameter from within the string. Assuming that the productId
parameter can now only be made up of digits, Listing 12-5 shows how a regular expression is defined. Please note the
additional backslash on the \d character class. Because the regular expression is defined within a string constant, an
extra backslash is required as an escape character.

Listing 12-5.  Defining a Regular Expression Within a Route String

var express = require("express");
var http = require("http");
var app = express();
 
app.get("/products/:productId(\\d+)", function(req, res, next) {
 res.send("Requested " + req.params.productId);
});
 
http.createServer(app).listen(8000); 

Note■■  O ptional named parameters are followed by question marks. For example, in the previous examples, if productId
were optional, it would be written as :productId?.

Creating an Express Application
Express includes an executable script named express(1), which is used to generate a skeleton Express application.
The preferred way to run express(1) is by globally installing the express module using the command shown in
Listing 12-6. For a refresher on what it means to globally install a module, see Chapter 2.

Listing 12-6.  Globally Installing the express Module

npm install -g express
 

After globally installing Express, you can create a skeleton application anywhere on your machine by issuing the
command shown in Listing 12-7. This listing also includes the command’s output, which details the files created as
well as instructions for configuring and running the application. Note, the only thing that you actually type in this
example is express testapp.

Listing 12-7.  Creating an Application Skeleton Using express(1)

$ express testapp

 create : testapp
 create : testapp/package.json
 create : testapp/app.js
 create : testapp/public
 create : testapp/public/stylesheets
 create : testapp/public/stylesheets/style.css
 create : testapp/routes
 create : testapp/routes/index.js
 create : testapp/routes/user.js
 create : testapp/public/javascripts

Chapter 12 ■ The Express Framework

193

 create : testapp/views
 create : testapp/views/layout.jade
 create : testapp/views/index.jade
 create : testapp/public/images
 
 install dependencies:
 $ cd testapp && npm install
 
 run the app:
 $ node app
 

The skeleton Express app will be created in a new folder. In this case, the folder will be named testapp. Next, install
the app’s dependencies using the command shown in Listing 12-8.

Listing 12-8.  Installing the Skeleton App’s Dependencies

$ cd testapp && npm install
 

After npm has finished installing dependencies, we can run the skeleton program. The entry point to an
Express app is located in the file app.js. Therefore, to run testapp, issue the command node app from the project’s
root directory. You can access the test app by connecting to localhost’s port 3000. The skeleton app defines two
routes—/ and /users—both of which respond to GET requests. Figure 12-1 shows the result of connecting to the
/ route using Chrome.

Figure 12-1.  The index page returned by the skeleton app

Examining the Skeleton App
app.js is the heart of an Express app. The contents of the app.js file generated during Listing 12-7 are shown in
Listing 12-9. The file begins by importing the express, http, and path modules, as well as two project files,
/routes/index.js and /routes/user.js. The two files imported from the routes directory contain the middleware
used by the skeleton app’s routes. Following the require() statements, an Express app is created using the express()
function.

Chapter 12 ■ The Express Framework

194

Listing 12-9.  The Generated Contents of app.js

/**
 * Module dependencies.
 */
 
var express = require('express');
var routes = require('./routes');
var user = require('./routes/user');
var http = require('http');
var path = require('path');
 
var app = express();
 
// all environments
app.set('port', process.env.PORT || 3000);
app.set('views', __dirname + '/views');
app.set('view engine', 'jade');
app.use(express.favicon());
app.use(express.logger('dev'));
app.use(express.bodyParser());
app.use(express.methodOverride());
app.use(app.router);
app.use(express.static(path.join(__dirname, 'public')));
 
// development only
if ('development' == app.get('env')) {
 app.use(express.errorHandler());
}
 
app.get('/', routes.index);
app.get('/users', user.list);
 
http.createServer(app).listen(app.get('port'), function(){
 console.log('Express server listening on port ' + app.get('port'));
});
 

Note■■   If the module path passed to require() resolves to a directory, Node will look for an index file within the
directory. That is why the expression require("./routes") resolves to /routes/index.js.

Next, you’ll see three calls to the app’s set() method, which is used to define application settings. The first call
defines a setting named port, which defines the port number that the server will bind to. The port number defaults to
3000, but this value can be overridden by defining an environment variable named PORT. The next two settings, views and
view engine, are used by the Express templating system. The templating system will be revisited later in this chapter.
For now, just know that these settings use the Jade templating language to render views stored in the views directory.

Following the setting definitions are several calls to use() that define middleware used to process all requests.
Table 12-1 contains a short description of the various middleware included in the skeleton app. Many of these
functions just use the Connect middleware of the same name.

o

Chapter 12 ■ The Express Framework

195

Following the set() and use() calls, two GET routes are defined using the get() method. As previously
mentioned, the URLs for these routes are / and /users. The /users route uses a single piece of middleware stored in
the user.list variable. Looking back to the require() statements, the user variable comes from the file /routes/user,
whose contents are shown in Listing 12-10. As you can see, this route simply returns the string "respond with a
resource".

Listing 12-10.  The Generated Contents of /routes/user.js

/*
 * GET users listing.
 */
 
exports.list = function(req, res){
 res.send("respond with a resource");
};
 

The / route is more interesting. It is defined in /routes/index.js, which is shown in Listing 12-11. The code shown
here doesn’t look like it could create the page shown in Figure 12-1. The key is the render() method, which ties into the
Express templating system. This is probably a good time to explore templating, and how it is handled in Express.

Table 12-1.  Middleware Used in app.js

Middleware Description

favicon If you’ve been testing your web servers using a browser, then you may have noticed requests for
the file favicon.ico. This middleware handles such requests by serving your favicon.ico file,
or the Connect default if you do not provide one.

logger This middleware logs information about every request it receives. In dev mode, which is used
in the skeleton app, logger displays the request verb and URL, as well as the response code,
the time taken to process the request, and the size of the data returned.

bodyParser This middleware was explained in Chapter 11. It parses the request body string into an object
and attaches it to the request object as request.body.

methodOverride Some browsers only allow HTML forms to make GET and POST requests. To make other types of
requests (PUT, DELETE, and so on), the form can include an input named X-HTTP-Method-Override
whose value is the desired request type. This middleware detects this situation and sets the
request.method property accordingly.

app.router This is the Express router that’s used to map incoming requests to defined routes. If you do not
explicitly use this, Express will mount it the first time it encounters a route. However, manually
mounting the router will ensure its place in the middleware sequence.

static This middleware accepts a directory path as input. This directory is treated as the root directory
of a static file server. This is useful for serving content like images, stylesheets, and other static
resources. In the skeleton app, the static directory is public.

errorHandler As the name implies, errorHandler is middleware for processing errors. Unlike other
middleware, errorHandler accepts four arguments—error, request, response, and next.
In the skeleton app, this middleware is used only in development mode (see the development
only comment).

Chapter 12 ■ The Express Framework

196

Listing 12-11.  The Generated Contents of /routes/index.js

/*
 * GET home page.
 */
 
exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

Templating
Creating dynamic web content often involves building long strings of HTML. Doing this by hand is both tedious and
error prone. For example, it’s very easy to forget to escape characters properly inside of long string literals. Templating
engines are an alternative that greatly simplify the process by providing a skeleton document (the template) inside of
which you can embed dynamic data. There are many JavaScript-compatible templating engines in existence, with some
of the more popular options being Mustache, Handlebars, Embedded JavaScript (EJS), and Jade. Express supports all
of these templating engines, but Jade comes packaged with Express by default. This section explains how to use Jade.
Other templating engines can easily be installed and configured to work with Express, but are not covered here.

Configuring Jade is as simple as defining two settings in the app.js file. These settings are views and view engine.
The views setting specifies a directory where Express can locate the templates, also referred to as views. The view
engine specifies the view file extension to use if one is not provided. Listing 12-12 shows how these settings are applied.
In this example, the templates are located in a subdirectory named views. This directory should include a number of
Jade template files, whose file extension is .jade.

Listing 12-12.  Settings Used to Configure Jade in Express

app.set("views", __dirname + "/views");
app.set("view engine", "jade");
 

Once Express has been configured to use your favorite templating engine, you can start rendering views. This
is accomplished via the response object’s render() method. The first argument to render() is the name of the view
in your views directory. If your views directory contains subdirectories, this name can include forward slashes. The
next argument to render() is an optional argument for passing in data. This is used to embed dynamic data in an
otherwise static template. The final argument to render() is an optional callback function that is invoked once the
template has finished rendering. If the callback is omitted, Express will automatically respond to the client with the
rendered page. If the callback is included, Express will not automatically respond, and the function is invoked with a
possible error and the rendered string as arguments.

Let’s assume that you are creating a view for a user’s account page. Once the user is logged in, you want to greet
them by name. Listing 12-13 shows an example use of render() that handles this situation. This example assumes
that the template file is named home.jade, and is located in a directory named account within the views folder. The
user’s name is assumed to be Bob. In a real application, this information would likely come from a data store of some
type. The optional callback function has been included here as well. Within the callback, we check for an error. If an
error has occurred, a 500 Internal Server Error is returned. Otherwise, the rendered HTML is returned.

Chapter 12 ■ The Express Framework

197

Listing 12-13.  An Example Use of render()

res.render("account/home", {
 name: "Bob"
}, function(error, html) {
 if (error) {
 return res.send(500);
 }
 
 res.send(200, html);
});
 

Of course, in order to render a view, we need to actually create the view. So, within your views directory, create
a file named account/home.jade containing the code shown in Listing 12-14. This is a Jade template, and while an
explanation of Jade’s syntax is beyond the scope of this book, we’re going to introduce the absolute basics. The first
line is used to specify the HTML5 DOCTYPE. The second line creates the opening <html> tag. Notice that Jade doesn’t
include any angle brackets or closing tags. Instead, Jade infers these things based on code indentation.

Listing 12-14.  An Example Jade Template

doctype 5
html
 head
 title Account Home
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 h1 Welcome back #{name}
 

Next comes the document’s <head> tag. The head includes the page’s title and a link to a stylesheet. The parentheses
next to link are used to specify tag attributes. The stylesheet links to a static file, which Express is able to locate using
the static middleware.

The final two lines of Listing 12-14 define the <body> of the document. In this case, the body consists of a single
<h1> tag that welcomes the user. The value of #{name} is taken from the JSON object passed to render(). Inside of the
curly braces, nested objects and arrays can be accessed using JavaScript’s standard dot and subscript notations.

The resulting HTML string is shown in Listing 12-15. Please note that the string has been formatted for
readability. In reality, Express renders the template with no extraneous indentation and line breaks. For additional
information on Jade syntax, see the Jade home page at http://www.jade-lang.com.

Listing 12-15.  Example HTML Rendered from the Template in Listing 12-14

<!DOCTYPE html>
<html>
 <head>
 <title>Account Home</title>
 <link rel="stylesheet" href="/stylesheets/style.css">
 </head>
 <body>
 <h1>Welcome back Bob</h1>
 </body>
</html>

http://www.jade-lang.com/
http://www.jade-lang.com/
http://www.jade-lang.com/
http://www.jade-lang.com/
http://www.jade-lang.com/
http://www.jade-lang.com/
http://www.jade-lang.com/

Chapter 12 ■ The Express Framework

198

express-validator
express-validator is a useful third-party module for ensuring that user input is provided in an expected format.
express-validator creates middleware that attaches data-checking methods to the request object. An example
that uses express-validator to validate a product ID is shown in Listing 12-16. The express-validator module
is imported on the second line of the example, and then later added as middleware with use(). The middleware
attaches the assert() and validationErrors() methods to req, which are used within the route.

The assert() method takes a parameter name and error message as arguments. The parameter can be a named
URL parameter, a query string parameter, or a request body parameter. The object returned by assert() is used to
validate the parameter’s data type and/or value. Listing 12-16 demonstrates three validation methods, notEmpty(),
isAlpha(), and len(). These methods validate that the productId parameter exists and is between two and ten
letters long. As a convenience, these methods can be chained together, as shown by the second assert(). Of course,
if you omit the productId parameter completely, the route will not be matched, and the validator will never be run.
notEmpty() is more useful in validating query string parameters and form body data.

Listing 12-16.  An Example of express-validator

var express = require("express");
var validator = require("express-validator");
var http = require("http");
var app = express();
 
app.use(express.bodyParser());
app.use(validator());
 
app.get("/products/:productId", function(req, res, next) {
 var errors;
 
 req.assert("productId", "Missing product ID").notEmpty();
 req.assert("productId", "Invalid product ID").isAlpha().len(2, 10);
 errors = req.validationErrors();
 
 if (errors) {
 return res.send(errors);
 }
 
 res.send("Requested " + req.params.productId);
});
 
http.createServer(app).listen(8000);
 

After all assertions have been made, the validationErrors() method is used to retrieve any errors. If there
are no errors, null will be returned. However, if errors are detected, an array of validation errors is returned. In this
example, the array of errors is simply sent back as the response.

There are a number of other useful validation methods not shown in Listing 12-16. Some of these are isInt(),
isEmail(), isNull(), is(), and contains(). The first three of these methods verify that the input is an integer, e-mail
address, or null. The is() method takes a regular expression argument and verifies that the parameter matches it.
contains() also takes an argument, and checks if the parameter includes it.

express-validator also attaches a sanitize() method to req, which is used to clean up input. Listing 12-17
shows several examples of sanitize(). The first two examples convert the parameter’s value to a Boolean and integer,
respectively. The third example removes extraneous whitespace from the beginning and end of the parameter. The
final example replaces character entities (such as < and >) with their corresponding characters (< and >).

Chapter 12 ■ The Express Framework

199

Listing 12-17.  Examples of the express-validator sanitize() Method

req.sanitize("parameter").toBoolean()
req.sanitize("parameter").toInt()
req.sanitize("parameter").trim()
req.sanitize("parameter").entityDecode()

REST
Representational State Transfer, or REST, is an increasingly common software architecture for creating APIs. REST,
which was introduced by Roy Fielding in 2000, is not a technology in and of itself, but a set principles used to create
services. RESTful APIs are almost always implemented using HTTP, but this is not a strict requirement. The following
list enumerates a number of principles behind RESTful design.

RESTful designs should have a single base URL, and a directory-like URL structure. For •	
example, a blog API could have a base URL of /blog. Individual blog entries for a given day
could then be made accessible using a URL structure like /blog/posts/2013/03/17/.

Hypermedia as the engine of application state (HATEOAS). Clients should be able to navigate •	
the entire API using only hyperlinks provided by the server. For example, after accessing an
API’s entry point, the server should provide links that the client can use to navigate the API.

The server should not maintain any client state, such as sessions. Instead, every client request •	
should contain all of the information required to define the state. This principle increases
scalability by simplifying the server.

Server responses should declare whether they can be cached. This declaration can be •	
either explicit or implicit. When possible, a response should be cacheable, as it improves
performance and scalability.

RESTful designs should utilize the underlying protocol’s vocabulary as much as possible. For •	
example, CRUD (create, read, update, and delete) operations are implemented using HTTP’s
POST, GET, PUT, and DELETE verbs, respectively. Additionally, servers should respond with
appropriate status codes whenever possible.

An Example RESTful API
Express makes it very simple to implement RESTful applications. Over the course of the next few examples,
we are going to create a RESTful API for manipulating files on the server. An API would more commonly be used
to manipulate database entries, but we haven’t covered databases yet. Our example application is also split into a
number of files. This makes the examples more readable, but also makes the application more modular.

First, we’ll start with app.js, shown in Listing 12-18. Much of this should look familiar. However, an additional
piece of middleware has been added that defines req.store. This is the directory containing the files the application
will work with. The route declarations have also been removed, and replaced with a call to routes.mount(). mount()
is a custom function defined in the file routes.js, which takes the Express app as its only argument.

Listing 12-18.  The Contents of app.js

var express = require("express");
var routes = require("./routes");
var http = require("http");
var path = require("path");
var app = express();
var port = process.env.PORT || 8000;
 

Chapter 12 ■ the express Framework

200

app.use(express.favicon());
app.use(express.logger("dev"));
app.use(express.bodyParser());
app.use(express.methodOverride());

// define the storage area
app.use(function(req, res, next) {
 req.store = __dirname + "/store";
 next();
});

app.use(app.router);

// development only
if ("development" === app.get("env")) {
 app.use(express.errorHandler());
}

routes.mount(app);

http.createServer(app).listen(port, function() {
 console.log("Express server listening on port " + port);
});

The contents of routes.js are shown in Listing 12-19. The test app accepts four routes, one for each of the CRUD
operations. The middleware for each route is defined in its own file (create.js, read.js, update.js, and delete.js).
One thing to point out is that delete is both a HTTP verb and a JavaScript reserved word, so in some places the delete
operation is referred to as simply del.

Listing 12-19. The Contents of routes.js

var create = require("./create");
var read = require("./read");
var update = require("./update");
var del = require("./delete");

module.exports.mount = function(app) {
 app.post("/:fileName", create);
 app.get("/:fileName", read);
 app.put("/:fileName", update);
 app.delete("/:fileName", del);
};

The create operation, handled by the POST route, is found in create.js, which is shown in Listing 12-20.
Because we are performing file system operations, we begin by importing the fs module. Inside of the route
middleware, the file path and its contents are computed. The path is composed of the req.store value and
the fileName parameter. The data to write to the file comes from a POST body parameter named data. The
fs.writeFile() method is then used to create the new file. The file is created using the wx flag, which causes the
operation to fail if the file already exists. Inside of the writeFile() callback, we return either a 400 status code to
indicate that the request could not be satisfied, or a 201 to indicate that a new file was created.

Chapter 12 ■ The Express Framework

201

Listing 12-20.  The Contents of create.js

var fs = require("fs");
 
module.exports = function(req, res, next) {
 var path = req.store + "/" + req.params.fileName;
 var data = req.body.data || "";
 
 fs.writeFile(path, data, {
 flag: "wx"
 }, function(error) {
 if (error) {
 return res.send(400);
 }
 
 res.send(201);
 });
};
 

The next CRUD operation is read, which is handled by the GET route. The contents of read.js are shown
in Listing 12-21. This time, the fs.readFile() method is used to retrieve the contents of the file specified in the
fileName parameter. If the read fails for any reason, a 404 status code is returned. Otherwise, a 200 status code is
returned, along with a JSON body containing the file data. It is worth pointing out that the error argument could be
more thoroughly inspected when setting the response code. For example, if error.code equals "ENOENT" then the file
truly does not exist and the status code should be 404. All other errors could then simply return a 400.

Listing 12-21.  The Contents of read.js

var fs = require("fs");
 
module.exports = function(req, res, next) {
 var path = req.store + "/" + req.params.fileName;
 
 fs.readFile(path, {
 encoding: "utf8"
 }, function(error, data) {
 if (error) {
 return res.send(404);
 }
 
 res.send(200, {
 data: data
 });
 });
};
 

Next comes the PUT route, which implements the update operation, shown in Listing 12-22. This is very similar to
the create operation, with two small differences. First, a 200 status code is returned on a successful update instead of
a 201. Second, the file is opened with the r+ flag instead of wx. This causes the update operation to fail if the file does
not exist.

Chapter 12 ■ The Express Framework

202

Listing 12-22.  The Contents of update.js

var fs = require("fs");
 
module.exports = function(req, res, next) {
 var path = req.store + "/" + req.params.fileName;
 var data = req.body.data || "";
 
 fs.writeFile(path, data, {
 flag: "r+"
 }, function(error) {
 if (error) {
 return res.send(400);
 }
 
 res.send(200);
 });
};
 

The final CRUD operation is delete, shown in Listing 12-23. The fs.unlink() method removes the file specified
by the fileName parameter. This route returns a 400 on failure and a 200 on success.

Listing 12-23.  The Contents of delete.js

var fs = require("fs");
 
module.exports = function(req, res, next) {
 var path = req.store + "/" + req.params.fileName;
 
 fs.unlink(path, function(error) {
 if (error) {
 return res.send(400);
 }
 
 res.send(200);
 });
};

Testing the API
We can create a simple test script, shown in Listing 12-24, for exercising the API. The script uses the request module
to access all of the API routes at least once. The async module is also used to avoid callback hell. By looking at the
call to async.waterfall(), you can see that the script begins by creating a file and reading back the contents. Then,
the file is updated and read again. Finally, we delete the file and try to read it again. All of the requests work on the
same file, foo. After each request completes, the operation name and response code are displayed. For successful GET
requests, the file contents are also displayed.

Chapter 12 ■ The Express Framework

203

Listing 12-24.  A Test Script for the RESTful API

var async = require("async");
var request = require("request");
var base = "http://localhost:8000";
var file = "foo";
 
function create(callback) {
 request({
 uri: base + "/" + file,
 method: "POST",
 form: {
 data: "This is a test file!"
 }
 }, function(error, response, body) {
 console.log("create: " + response.statusCode);
 callback(error);
 });
}
 
function read(callback) {
 request({
 uri: base + "/" + file,
 json: true // get the response as a JSON object
 }, function(error, response, body) {
 console.log("read: " + response.statusCode);
 
 if (response.statusCode === 200) {
 console.log(response.body.data);
 }
 
 callback(error);
 });
}
 
function update(callback) {
 request({
 uri: base + "/" + file,
 method: "PUT",
 form: {
 data: "This file has been updated!"
 }
 }, function(error, response, body) {
 console.log("update: " + response.statusCode);
 callback(error);
 });
}
 
function del(callback) {
 request({
 uri: base + "/" + file,
 method: "DELETE"

http://localhost:8000/

Chapter 12 ■ The Express Framework

204

 }, function(error, response, body) {
 console.log("delete: " + response.statusCode);
 callback(error);
 });
}
 
async.waterfall([
 create,
 read,
 update,
 read,
 del,
 read
]);
 

The test script’s output is shown in Listing 12-25. Before running the script, be sure to create the store directory.
The create operation returns a 201, indicating that foo was successfully created on the server. When the file is read,
a 200 is returned, and the correct contents of the file are displayed. Next, the file is updated successfully and read once
more. Then, the file is successfully removed. The ensuing read operation returns a 404 because the file no longer exists.

Listing 12-25.  The Output from the Test Script in Listing 12-24

$ node rest-test.js
create: 201
read: 200
This is a test file!
update: 200
read: 200
This file has been updated!
delete: 200
read: 404

Summary
This chapter introduced the basics of the Express framework. Express provides a layer on top of Connect and HTTP,
which greatly simplifies web application design. At the time of writing, Express is the fifth most depended-upon
module in the npm registry, and has been used to build over 26,000 web apps. This makes Express extremely important
to the well rounded Node developer. And, although Express could likely be the topic of an entire book, this chapter
has touched on the most important aspects of the framework and surrounding technologies. To better understand the
framework, you’re encouraged to explore the Express documentation at http://www.expressjs.com, as well as the
source code, which is available at https://github.com/visionmedia/express.

http://www.expressjs.com/
http://www.expressjs.com/
http://www.expressjs.com/
http://www.expressjs.com/
http://www.expressjs.com/
https://github.com/visionmedia/express
https://github.com/visionmedia/express
https://github.com/visionmedia/express
https://github.com/visionmedia/express
https://github.com/visionmedia/express
https://github.com/visionmedia/express
https://github.com/visionmedia/express
https://github.com/visionmedia/express

205

Chapter 13

The Real-Time Web

As you learned in Chapter 11, HTTP is designed around a request-response model. All HTTP communications are
initiated by a client making a request to a server. The server then responds to the client with the requested data. In the
early days of the web, this model worked because web sites were static HTML pages that linked to other static HTML
pages. However, the web has evolved, and sites are no longer just static pages.

Technologies like Ajax have made the web dynamic and data-driven, and enabled a class of web applications
that rival native applications. Ajax calls still make HTTP requests, but instead of retrieving an entire document from
the server, they request only a small piece of data to update an existing page. Ajax calls are faster because they transfer
fewer bytes per request. They also improve the user experience by smoothly updating the current page instead of
forcing a full page refresh.

For everything that Ajax brings to the table, it still leaves plenty of room for improvement. First, every Ajax request
is a full-blown HTTP request. That means that if an application uses Ajax just to report information back to the server
(for example, an analytics application), the server will still waste the time to send back an empty response.

The second major limitation of Ajax is that all communications must still be initiated by the client. Client-
initiated communication, referred to as pull technology, is inefficient for applications where the client always wants
the most up-to-date information available on the server. These types of applications are much better suited to push
technology, where communication is server initiated. Examples of applications that lend themselves well to push
technology are sports tickers, chat programs, stock tickers, and social media newsfeeds. Push technology can be
spoofed in a variety of ways with Ajax requests, but these are inelegant hacks. For example, the client can make
periodic requests to the server, but this is extremely inefficient because many of the server responses are likely to
contain no updates. Another technique, known as long polling, involves the client making a request to the server.
If there is no new data, the connection is simply left open. Once data becomes available, the server sends it back to
the client and closes the connection. The client then immediately makes another request, ensuring that an open
connection is always available for push data. Long polling is also inefficient because of the repeated connections
made to the server.

In recent years, HTML5 has introduced several new browser technologies that better facilitate push technology.
The most prominent of these technologies is WebSockets. WebSockets give browsers the ability to communicate
with a server over a full-duplex communication channel. This means that the client and server can transmit
data simultaneously. Additionally, once the connection is established, WebSockets allow the client and server to
communicate directly, without sending request and response headers. Browser-based games and other real-time
applications are among the biggest beneficiaries of the performance boost that WebSockets provide.

This chapter introduces the WebSockets API, and shows how WebSockets applications are built using Node.
js. The popular WebSockets library, Socket.IO, is also covered. Socket.IO provides an abstraction layer on top of
WebSockets, in much the same way that Connect and Express are built on Node’s http module. Socket.IO also
provides real-time capabilities to older browsers that don’t support WebSockets, by falling back on techniques
such as Ajax polling. Finally, the chapter concludes by showing how Socket.IO can be integrated with the
Express server.

Chapter 13 ■ The Real-Time Web

206

The WebSockets API
Although client-side development is not the focus of this book, it is necessary to explain the WebSockets API before
creating any Node applications. This section explains how to use WebSockets in the browser. It is worth noting that
WebSockets are a relatively new feature of HTML5. Older browsers, and even some current browsers, do not support
WebSockets. To determine whether your browser supports WebSockets, consult www.caniuse.com. This site provides
information about which browsers support particular features. The examples shown in this section assume that
WebSockets are supported in your browser.

Opening a WebSocket
WebSockets are created via the WebSocket() constructor function shown in Listing 13-1. The constructor’s first
argument is the URL that the WebSocket will connect to. When a WebSocket is constructed, it immediately attempts
to connect to the supplied URL. There is no way to prevent or postpone the connection attempt. After construction,
the WebSocket’s URL is accessible via its url property. WebSocket URLs looks like the HTTP URLs that you are
accustomed to; however, WebSockets use either the ws or wss protocol. Standard WebSockets use the ws protocol, and
use port 80 by default. Secure WebSockets, on the other hand, use the wss protocol, and default to port 443.

Listing 13-1.  The WebSocket() Constructor

WebSocket(url, [protocols])
 

The constructor’s second argument, protocols, is optional. If it is specified, it should either be a string or an
array of strings. The string(s) are subprotocol names. Using subprotocols allow a single server to handle different
protocols simultaneously.

Closing WebSockets
To close a WebSocket connection, use the close() method, whose syntax is shown in Listing 13-2. close() takes two
arguments, code and reason, which are both optional. The code argument is a numeric status code, while reason
is a string describing the circumstances of the close event. The supported values of close are shown in Table 13-1.
Typically, close() is called with no arguments.

Listing 13-2.  The WebSocket close() Method

socket.close([code], [reason]) 

(continued)

Table 13-1.  Status Codes Supported by close()

Status Code(s) Description

0-999 Reserved.

1000 Normal close. This code is used when a WebSocket is closed under normal circumstances.

1001 Going away. Either a server failure occurred, or the browser is navigating away from the page.

1002 The connection closed due to a protocol error.

1003 The connection is terminated because data was received that the endpoint does not know how to
handle. An example is receiving binary data when text is expected.

1004 The connection is closed because a data frame that is too large was received.

1005 Reserved. This code indicates that no status code was provided even though one was expected.

http://www.caniuse.com/

Chapter 13 ■ The Real-Time Web

207

Checking a WebSocket’s State
A WebSocket’s state can be checked at any time via its readyState property. During its lifetime, a WebSocket can be in
one of four possible states described in Table 13-2.

Table 13-2.  The Possible Values of a WebSocket’s readyState Property

State Description

Connecting When a WebSocket is constructed, it attempts to connect to its URL. During this time it is considered
to be in the connecting state. A WebSocket in the connecting state has a readyState value of 0.

Open After a WebSocket successfully connects to its URL, it enters the open state. A WebSocket must be in
the open state in order to send and receive data over the network. A WebSocket in the open state has a
readyState value of 1.

Closing When a WebSocket is closed, it must first communicate to the remote host that it wishes to disconnect.
During this period of communication, the WebSocket is considered to be in the closing state.
A WebSocket in the closing state has a readyState value of 2.

Closed A WebSocket enters the closed state once it successfully disconnects. A WebSocket in the closed state
has a readyState value of 3.

Status Code(s) Description

1006 Reserved. This code indicates that the connection closed abnormally.

1007-1999 Reserved for future versions of the WebSocket standard.

2000-2999 Reserved for WebSocket extensions.

3000-3999 These codes should be used by libraries and frameworks, but not applications.

4000-4999 These codes are available for use by applications.

Table 13-1.  (continued)

Because it is not good programming practice to hard-code constant values, the WebSocket interface defines
static constants representing the possible readyState values. Listing 13-3 shows how these constants can be used to
evaluate the state of a connection using a switch statement.

Listing 13-3.  Determining a WebSocket’s State Using the readyState Property

switch (socket.readyState) {
 case WebSocket.CONNECTING:
 // in connecting state
 break;
 case WebSocket.OPEN:
 // in open state
 break;
 case WebSocket.CLOSING:
 // in closing state
 break;

Chapter 13 ■ The Real-Time Web

208

 case WebSocket.CLOSED:
 // in closed state
 break;
 default:
 // this never happens
 break;
}

The open Event
When a WebSocket transitions into the open state, its open event is fired. An example open event handler is shown in
Listing 13-4. An event object is the only argument passed to the event handler.

Listing 13-4.  An Example open Event Handler

socket.onopen = function(event) {
 // handle open event
};
 

WebSocket event handlers can also be created using the addEventListener() method. Listing 13-5 shows how
the same open event handler is attached using addEventListener(). This alternative syntax is preferred to onopen
because it allows multiple handlers to be attached to the same event.

Listing 13-5.  Attaching an open Event Handler Using addEventListener()

socket.addEventListener("open", function(event) {
 // handle open event
});

The message Event
When a WebSocket receives new data, a message event is fired. The received data is available via the data property of
the message event. An example message event handler is shown in Listing 13-6. In this example, addEventListener()
is used to attach the event, but onmessage could have also been used. If binary data is being received, the WebSocket’s
binaryType property should be set accordingly, before the event handler is called.

Listing 13-6.  An Example message Event Handler

socket.addEventListener("message", function(event) {
 var data = event.data;
 // process data as string, Blob, or ArrayBuffer
});

Note■■  I n addition to working with string data, WebSockets support binary data of two varieties—binary large objects
(Blobs) and ArrayBuffers. However, an individual WebSocket can work with only one of the two binary formats at a time.
When a WebSocket is created, it is initially set up to handle Blob data. The WebSocket’s binaryType property is used to
select between Blob and ArrayBuffer support. In order to work with Blob data, the WebSocket’s binaryType should be
set to "blob" before reading data. Similarly, binaryType should be set to "arraybuffer" before attempting to read an
ArrayBuffer.

Chapter 13 ■ The Real-Time Web

209

The close Event
When a WebSocket is closed, a close event is fired. The event object passed to the close handler has three properties,
named code, reason, and wasClean. The code and reason fields correspond to the arguments of the same names
passed to close(). The wasClean field is a Boolean value thast indicates whether the connection was closed cleanly.
Under normal circumstances, wasClean is true. An example close event handler is shown in Listing 13-7.

Listing 13-7.  An Example close Event Handler

socket.addEventListener("close", function(event) {
 var code = event.code;
 var reason = event.reason;
 var wasClean = event.wasClean;
 // handle close event
});

The error Event
When a WebSocket encounters a problem, an error event is fired. The event passed to the handler is a standard error
object, including name and message properties. An example WebSocket error event handler is shown in Listing 13-8.

Listing 13-8.  An Example error Event Handler

socket.addEventListener("error", function(event) {
 // handle error event
});

Sending Data
WebSockets transmit data via the send() method, which comes in three flavors—one for sending UTF-8 string data,
a second for sending an ArrayBuffer, and a third for sending Blob data. All three versions of send() take a single
argument, which represents the data to be transmitted. The syntax for send() is shown in Listing 13-9.

Listing 13-9.  Using the WebSocket’s send() Method

socket.send(data)

WebSockets in Node
WebSockets are not supported in the Node core, but luckily there are a plethora of third-party WebSocket modules
available in the npm registry. Although you are free to pick any module you want, the examples in this book use the ws
module. The reasoning behind this decision is that ws is fast, popular, well-supported, and is used in the Socket.IO
library that is covered later in this chapter.

To demonstrate how the ws module works, let’s dive head-first into an example. The code in Listing 13-10 is a
WebSocket echo server built using the ws, http, and connect modules. This server accepts HTTP and WebSocket
connections on port 8000. Connect’s static middleware allows arbitrary static content to be served from the public
subdirectory over HTTP, whereas ws handles WebSocket connections.

Chapter 13 ■ the real-time Web

210

Listing 13-10. A WebSocket Echo Server Built Using the ws, http, and connect Modules

var http = require("http");
var connect = require("connect");
var app = connect();
var WebSocketServer = require("ws").Server;
var server;
var wsServer;

app.use(connect.static("public"));
server = http.createServer(app);
wsServer = new WebSocketServer({
 server: server
});

wsServer.on("connection", function(ws) {
 ws.on("message", function(message, flags) {
 ws.send(message, flags);
 });
});

server.listen(8000);

To create the WebSocket component of the server, we must first import the ws module’s Server() constructor.
The constructor is stored in the WebSocketServer variable in Listing 13-10. Next, an instance of the WebSocket
server, wsServer, is created by calling the constructor. The HTTP server, server, is passed to the constructor, allowing
WebSockets and HTTP to coexist on the same port. Technically, a WebSocket-only server could be built without http
and connect, by passing {port: 8000} to the WebSocketServer() constructor.

When a WebSocket connection is received, the connection event handler is invoked. The handler accepts a
WebSocket instance, ws, as its only argument. The WebSocket attaches a message event handler that is used to receive
data from the client. When data is received, the message and its associated flags are simply echoed back to the client
using the WebSocket’s send() method. The message flags are used to indicate information such as whether the
message contains binary data.

A WebSocket Client
The ws module also allows for the creation of WebSockets clients. A client that works with the echo server from Listing
13-10 is shown in Listing 13-11. The client begins by importing the ws module as the variable WebSocket. On the
second line of the example, a WebSocket is constructed that connects to port 8000 of the local machine. Recall that
WebSocket clients immediately attempt to connect to the URL passed to the constructor. Therefore, instead of telling
the WebSocket to connect, we simply set up an open event handler. Once the connection is established, the open event
handler sends the string "Hello!" to the server.

Listing 13-11. A WebSocket Client that Works with the Server in Listing 13-10

var WebSocket = require("ws");
var ws = new WebSocket("ws://localhost:8000");

ws.on("open", function() {
 ws.send("Hello!");
});

Chapter 13 ■ The Real-Time Web

211

ws.on("message", function(data, flags) {
 console.log("Server says:");
 console.log(data);
 ws.close();
});
 

Once the server receives the message, it will echo it back to the client. To handle incoming data, we also have to
set up a message event handler. In Listing 13-11, the message handler displays the data to the screen and then closes
the WebSocket using close().

A HTML Client
Because the example server supports HTTP and WebSockets, we can serve HTML pages with embedded WebSocket
functionality. An example page that works with the echo server is shown in Listing 13-12. The HTML5 page contains
buttons for connecting and disconnecting from the server, as well as a text field and button for typing and sending
messages. Initially, only the Connect button is enabled. Once connected, the Connect button is disabled, and the
other controls are enabled. You can then enter some text and press the Send button. Data will then be sent to the
server, echoed back, and displayed on the page. To test this page, first save it as test.htm in the echo server’s public
subdirectory. With the server running, simply navigate to http://localhost:8000/test.htm.

Listing 13-12.  A HTML Client that Works with the Server in Listing 13-10

<!DOCTYPE html>
<html lang="en">
<head>
 <title>WebSocket Echo Client</title>
 <meta charset="UTF-8" />
 <script>
 "use strict";
 // Initialize everything when the window finishes loading
 window.addEventListener("load", function(event) {
 var status = document.getElementById("status");
 var open = document.getElementById("open");
 var close = document.getElementById("close");
 var send = document.getElementById("send");
 var text = document.getElementById("text");
 var message = document.getElementById("message");
 var socket;
 
 status.textContent = "Not Connected";
 close.disabled = true;
 send.disabled = true;
 
 // Create a new connection when the Connect button is clicked
 open.addEventListener("click", function(event) {
 open.disabled = true;
 socket = new WebSocket("ws://localhost:8000");
 
 socket.addEventListener("open", function(event) {
 close.disabled = false;
 send.disabled = false;
 status.textContent = "Connected";
 });
 

http://localhost:8000/test.htm

Chapter 13 ■ The Real-Time Web

212

 // Display messages received from the server
 socket.addEventListener("message", function(event) {
 message.textContent = "Server Says: " + event.data;
 });
 
 // Display any errors that occur
 socket.addEventListener("error", function(event) {
 message.textContent = "Error: " + event;
 });
 
 socket.addEventListener("close", function(event) {
 open.disabled = false;
 status.textContent = "Not Connected";
 });
 });
 
 // Close the connection when the Disconnect button is clicked
 close.addEventListener("click", function(event) {
 close.disabled = true;
 send.disabled = true;
 message.textContent = "";
 socket.close();
 });
 
 // Send text to the server when the Send button is clicked
 send.addEventListener("click", function(event) {
 socket.send(text.value);
 text.value = "";
 });
 });
 </script>
</head>
<body>
 Status:

 <input id="open" type="button" value="Connect" />
 <input id="close" type="button" value="Disconnect" />

 <input id="send" type="button" value="Send" />
 <input id="text" />

</body>
</html>

Examining the WebSocket Connection
You may be wondering how HTTP and WebSockets can listen on the same port at the same time. The reason is that the
initial WebSocket connection occurs over HTTP. Figure 13-1 shows what a WebSocket connection looks like through
the eyes of Chrome’s developer tools. The top portion of the image shows the actual test page from Listing 13-12. The
bottom portion of the figure shows the Chrome developer tools, and displays two recorded network requests. The first
request, test.htm, simply downloads the test page. The second request, labeled localhost, occurs when the Connect
button is pressed on the web page. This request sends WebSocket headers and an Upgrade header, which enables
future communication to occur over the WebSocket protocol. By examining the response status code and headers, you
can see that the connection successfully switches from HTTP to the WebSocket protocol.

Chapter 13 ■ The Real-Time Web

213

Socket.IO
The numerous benefits of WebSockets were explained earlier in this chapter. However, their biggest drawback is
probably their lack of browser support, especially in legacy browsers. Enter Socket.IO, a JavaScript library that touts
itself as “the cross-browser WebSocket for real-time apps.” Socket.IO adds another layer of abstraction on top of
WebSockets by providing additional features such as heartbeats and timeouts. These features, which are commonly
used in real-time applications, can be implemented using WebSockets, but are not part of the standard.

The real strength of Socket.IO is its ability to maintain the same API across older browsers that do not support
WebSockets at all. This is accomplished by falling back on older technologies such as Adobe Flash Sockets, Ajax long
polling, and JSONP polling when native WebSockets are not available. By providing fallback mechanisms, Socket.
IO can work with ancient browsers such as Internet Explorer 5.5. Its flexibility has caused it to become the fifth most
starred module in the npm registry, while being depended on by over 700 npm modules.

Creating a Socket.IO Server
Socket.IO, like ws, can easily be combined with the http module. Listing 13-13 shows another echo server that
combines HTTP and WebSockets (via Socket.IO). The third line of Listing 13-13 imports the Socket.IO module. The
Socket.IO listen() method forces Socket.IO to listen on the HTTP server, server. The value returned by listen(),
io, is then used to configure the WebSockets portion of the application.

Listing 13-13.  An Echo Server Using http, connect, and Socket.IO

var http = require("http");
var connect = require("connect");
var socketio = require("socket.io");
var app = connect();

Figure 13-1.  Examining a WebSocket connection using Chrome’s developer tools

Chapter 13 ■ The Real-Time Web

214

var server;
var io;
 
app.use(connect.static("public"));
server = http.createServer(app);
io = socketio.listen(server);
 
io.on("connection", function(socket) {
 socket.on("message", function(data) {
 socket.emit("echo", data);
 });
});
 
server.listen(8000);

A connection event handler processes incoming WebSocket connections. Much like ws, the connection handler
takes a WebSocket as its only argument. Next, notice the message event handler. This handler is invoked when new
data arrives over the WebSocket. However, unlike standard WebSockets, Socket.IO allows for arbitrarily named
events. That means that instead of listening for message events, we could have listened for, say, foo events. Regardless
of the event’s name, data that is received is passed to the event handler. The data is then echoed back to the client
by emitting an echo event. Again, the event name is arbitrary. Also, notice that data is sent using the familiar emit()
method of EventEmitter syntax.

Creating a Socket.IO Client
Socket.IO also ships with a client-side script that can be used in browser development. Listing 13-14 provides
an example page that can talk to the echo server from Listing 13-13. Place this page in the echo server’s public
subdirectory. The first thing to note is the included Socket.IO script in the document’s head. This script is handled
automatically by the server-side module, and does not need to be added to the public directory.

Listing 13-14.  A Socket.IO Client that Works with the Server in Listing 13-13

<!DOCTYPE html>
<html>
<head>
 <script src="/socket.io/socket.io.js"></script>
</head>
<body>
<body>
 <script>
 var socket = io.connect("http://localhost");
 
 socket.emit("message", "Hello!");
 socket.on("echo", function(data) {
 document.write(data);
 });
 </script>
</body>
</html>

http://localhost/

Chapter 13 ■ The Real-Time Web

215

The next thing to examine is the inline <script> tag. This is the Socket.IO application logic. When the page is
loaded, the io.connect() method is used to establish a connection to the server. Notice that the connection is made
using a HTTP URL, as opposed to the ws protocol. The emit() method is then used to send a message event to the
server. Again, the choice of event name is arbitrary, but the client and server must agree on the name. Since the server
will send back an echo event, the last thing we do is create an echo event handler that prints the received message to
the document.

Socket.IO and Express
Integrating Socket.IO and Express is very straightforward. In fact, it’s not much different than integrating Socket.IO
 with http and Connect. Listing 13-15 shows how this is accomplished. The only major difference is that Express
is imported and used to create the app variable and attach middleware instead of Connect. Just for the sake of the
example, an Express route has also been added to the existing echo server. The client page from Listing 13-14 can still
be used with this example, without modification.

Listing 13-15.  An Echo Server Built Using Socket.IO and Express

var express = require("express");
var http = require("http");
var socketio = require("socket.io");
var app = express();
var server = http.createServer(app);
var io = socketio.listen(server);
 
app.use(express.static("public"));
 
app.get("/foo", function(req, res, next) {
 res.send(200, {
 body: "Hello from foo!"
 });
});
 
io.on("connection", function(socket) {
 socket.on("message", function(data) {
 socket.emit("echo", data);
 });
});
 
server.listen(8000);

Summary
This chapter covered the concepts of the real-time web. The biggest player in this sphere is undoubtedly WebSockets.
WebSockets provide top-notch performance by providing bidirectional communication between the client and
server without the need to send HTTP headers. However, while WebSockets provide a potentially large performance
boost, they are a relatively new standard, and are not supported in legacy browsers. Therefore, this chapter has also
introduced Socket.IO, a cross-browser WebSocket module that supports older browsers by falling back on other less
efficient data transfer mechanisms. Additionally, this chapter has shown you how to integrate Socket.IO with the
other technologies that were covered in Chapters 11 and 12. In the next chapter, you learn how to access databases
and integrate them with all of the Node modules you’ve learned about thus far.

217

Chapter 14

Databases

Nearly all web applications have some type of backing data store. Typically this data store is a database of some
sort, and is used to store everything from addresses and credit card numbers to sensor readings and prescription
information. Databases provide a way of accessing large amounts of data very quickly. There are generally two types of
databases—relational databases and NoSQL databases. This chapter focuses on databases, and how they are accessed
from Node applications. More specifically, the MySQL relational database and the MongoDB NoSQL database
are explored. Please note that this chapter does not provide instructions for installing MySQL and MongoDB.
Additionally, it assumes that you are already familiar with the Structured Query Language (SQL), which is used in
conjunction with relational databases.

Relational Databases
A relational database is made up of a collection of tables. Each table holds a collection of records that are comprised of
data. Individual records in a table are referred to as rows or tuples. The data types stored in these tuples are predefined
using a schema. An example table is shown in Figure 14-1. This table holds information on individual people,
including their names, gender, social security numbers (SSN), and the cities and states in which they reside (to save
space, information such as address has been omitted).

Figure 14-1.  An example table in a relational database

The SQL CREATE statement used to create the table in Figure 14-1 is shown in Listing 14-1. This SQL command
defines the table’s schema, which all tuples must adhere to. In this case, the person’s social security number must
be eleven characters long (to accommodate dashes), their gender must be a single character, and their state of
residence must be two characters. The person’s last name, first name, and city of residence can each be up to 50
characters long.

Listing 14-1.  SQL Used to Create the Table in Figure 14-1

CREATE TABLE Person (
 SSN CHAR(11) NOT NULL,
 LastName VARCHAR(50) NOT NULL,
 FirstName VARCHAR(50) NOT NULL,

Chapter 14 ■ Databases

218

 Gender CHAR(1),
 City VARCHAR(50) NOT NULL,
 State CHAR(2) NOT NULL,
 PRIMARY KEY(SSN)
);
 

Also note that the social security number is used as the table’s primary key. The primary key is one or more fields
that ensure the uniqueness of an individual tuple within a table. Since every person should have a unique social
security number, this makes it the ideal choice for the primary key.

The SQL INSERT statements shown in Listing 14-2 are used to populate the Person table. Notice that all of the
values in each statement conform to the predefined schema. If you were to enter an invalid piece of data, or a SSN that
already exists in the table, then the database management system would reject the insertion.

Listing 14-2.   SQL Used to Populate the Table in Figure 14-1

INSERT INTO Person (SSN, LastName, FirstName, Gender, City, State)
 VALUES ('123-45-6789', 'Pluck', 'Peter', 'M', 'Pittsburgh', 'PA');
INSERT INTO Person (SSN, LastName, FirstName, Gender, City, State)
 VALUES ('234-56-7890', 'Johnson', 'John', 'M', 'San Diego', 'CA');
INSERT INTO Person (SSN, LastName, FirstName, Gender, City, State)
 VALUES ('345-67-8901', 'Doe', 'Jane', 'F', 'Las Vegas', 'NV');
INSERT INTO Person (SSN, LastName, FirstName, Gender, City, State)
 VALUES ('456-78-9012', 'Doe', 'John', 'M', 'Las Vegas', 'NV');
 

Relational databases attempt to remove redundancies by storing data in only a single place. The process of
updating and deleting data is much simpler if it needs to happen in only one location. The process of removing
redundancies, referred to as normalization, results in multiple tables that reference one another using foreign keys.
A foreign key is one or more fields that uniquely identify a tuple in a different table.

For a concrete example, let’s return to our example database. It currently has one table, Person, that stores
information on individuals. What if we wanted to also track these individuals’ cars? That information could be stored
in the Person table by creating additional columns in the schema. However, how would that handle the case in which
a single person owns more than one car? You would have to continue adding additional car fields to the table (car1,
car2, and so on), many of which would be empty (most people have one or zero cars). The better alternative is to
create a separate Vehicle table that contains car information and a foreign key that references the Person table. An
example Vehicle table is shown in Figure 14-2.

Figure 14-2.  A simplified Vehicle table

The CREATE statement used to define the Vehicle table is shown in Listing 14-3, while the INSERT statements
used to populate it are shown in Listing 14-4. Notice that the Vehicle. SSN field references the Person.SSN field. This
is a foreign key relationship, and although the fields have the same name in both tables in this example, it is not a
requirement.

Chapter 14 ■ Databases

219

Listing 14-3.  SQL Used to Create the Vehicle Table

CREATE TABLE Vehicle (
 SSN CHAR(11) NOT NULL,
 VIN INT UNSIGNED NOT NULL,
 Type VARCHAR(50) NOT NULL,
 Year INT UNSIGNED NOT NULL,
 PRIMARY KEY(VIN),
 FOREIGN KEY(SSN)
 REFERENCES Person(SSN)
);
 

Listing 14-4.  SQL Used to Populate the Vehicle Table

INSERT INTO Vehicle (SSN, VIN, Type, Year)
 VALUES ('123-45-6789', 12345, 'Jeep', 2014);
INSERT INTO Vehicle (SSN, VIN, Type, Year)
 VALUES ('234-56-7890', 67890, 'Van', 2010);
INSERT INTO Vehicle (SSN, VIN, Type, Year)
 VALUES ('345-67-8901', 54327, 'Truck', 2009);
INSERT INTO Vehicle (SSN, VIN, Type, Year)
 VALUES ('123-45-6789', 98032, 'Car', 2006);
 

One of the true strengths of relational databases is the ability to quickly query for information, even if that
information is split up across multiple tables. This is accomplished using the JOIN operation. The SQL SELECT
statement shown in Listing 14-5 uses a JOIN operation to select the name of every person who owns a vehicle in
Las Vegas. In this case there are two people from Las Vegas in the People table, but only one who owns a vehicle.
Therefore, this query will return the name Jane Doe.

Listing 14-5.  SQL Query Involving a JOIN Operation

SELECT FirstName, LastName FROM Person INNER JOIN Vehicle
 WHERE Person.SSN = Vehicle.SSN AND City = 'Las Vegas'; 

MySQL
MySQL is an extremely popular relational database management system. It is also open source, making it freely
available. It is so widely used that the M in LAMP stack stands for MySQL. It has been used on many high-profile
projects and sites such as WordPress, Wikipedia, Google, and Twitter. The MySQL examples in this chapter access the
database using the mysql third-party module, which must be installed using the command shown in Listing 14-6.

Listing 14-6.  npm Command Used to Install the mysql Module

$ npm install mysql 

Connecting to MySQL
In order to access a database, you must first establish a connection. The examples throughout this chapter assume
that MySQL is running on your local machine. To establish a connection, you should first create a connection object
using the createConnection( ) method. There are two incarnations of createConnection( ) that achieve the same end

Chapter 14 ■ Databases

220

result. The first version takes an object as its sole argument. This argument contains parameters for establishing the
connection. An example that creates a connection is shown in Listing 14-7. This example creates a connection to the
MySQL database named dbname, which is running on localhost:3306 (MySQL defaults to port 3306, so this option can
typically be omitted). The user and password options provide security by preventing the database from being accessed
arbitrarily.

Listing 14-7.   Creating a Connection to a MySQL Database

var mysql = require("mysql");
var connection = mysql.createConnection({
 "host": "localhost",
 "port": 3306,
 "user": "username",
 "password": "secret",
 "database": "dbname"
});
 

The alternative version of createConnection( ) takes a MySQL URL string as its only argument. Listing 14-8
shows how the same createConnection( ) example is rewritten to use a URL string. While this version provides a
more concise syntax, it is less readable than using an object literal.

Listing 14-8.   Creating a Connection to a MySQL Database Using a URL String

var mysql = require("mysql");
var connection =
 mysql.createConnection("mysql://username:secret@localhost:3306/dbname");
 

After a connection object has been created, the next step is to call its connect( ) method. This method takes a
single argument, a callback function that is invoked after the connection has been established. If an error occurs while
connecting, it is passed as the first and only argument to the callback function. Listing 14-9 illustrates the process of
establishing a connection.

Listing 14-9.   Using the connect( ) Method to Establish a Connection

var mysql = require("mysql");
var connection = mysql.createConnection({
 "host": "localhost",
 "port": 3306,
 "user": "username",
 "password": "secret",
 "database": "dbname"
});
 
connection.connect(function(error) {
 if (error) {
 return console.error(error);
 }
 
 // Connection successfully established
});
 

Chapter 14 ■ Databases

221

Connection Pooling
In the previous examples, a new connection would be established each time the application needed to access the
database. However, if you know ahead of time that your application will require many frequent connections to the
database, it may be more efficient to establish a pool of reusable connections. Each time a new connection is required,
the application can simply ask for one from the pool. Once the connection has fulfilled its purpose, it can be returned
to the pool for use on a future request. A connection pool is created using the createPool() method, shown in
Listing 14-10. Notice that createPool() is very similar to createConnection(). createPool() also supports some
additional options that are pool specific. These options are listed in Table 14-1.

Listing 14-10. Creating a Connection Pool Using the createPool() Method

var mysql = require("mysql");
var pool = mysql.createPool({
 "host": "localhost",
 "user": "username",
 "password": "secret",
 "database": "dbname"
});

Table 14-1. Additional Options Supported by createPool()

Option Description

createConnection The function to use when creating pool connections. This defaults to
createConnection().

connectionLimit The maximum number of connections that can be created at once. If omitted, this
defaults to 10.

queueLimit The maximum number of connection requests that can be queued by the pool. If this
value is zero (the default), then there is no limit. If a limit exists and it is exceeded, then
an error is returned from createConnection().

waitForConnections If this is true (the default), then requests are added to a queue if there are no available
connections. If this is false, then the pool will immediately call back with an error.

The pool’s getConnection() method is used to request a connection. This method takes a callback function as its
only argument. The callback function’s arguments are a possible error condition and the requested connection object.
If no error occurs, then the connection object will already be in the connected state, meaning that there is no need to
call connect(). Listing 14-11 shows how a connection is requested from a pool.

Listing 14-11. Requesting a Connection from a Pool Using the getConnection() Method

var mysql = require("mysql");
var pool = mysql.createPool({
 "host": "localhost",
 "user": "username",
 "password": "secret",
 "database": "dbname"
});

Chapter 14 ■ Databases

222

pool.getConnection(function(error, connection) {
 if (error) {
 return console.error(error);
 }
 
 // Connection available for use
}); 

Closing a Connection
A non-pooled connection can be closed using the end( ) and destroy( ) methods. The end( ) method closes the
connection gracefully, allowing any queued queries to execute. end( ) takes a callback as its only argument. Listing 14-12
shows how end( ) is used to close an opened connection.

Listing 14-12.   Opening a Connection and then Closing it Using end( )

var mysql = require("mysql");
var connection =
 mysql.createConnection("mysql://username:secret@localhost/dbname");
 
connection.connect(function(error) {
 if (error) {
 return console.error(error);
 }
 
 connection.end(function(error) {
 if (error) {
 return console.error(error);
 }
 });
});
 

The destroy( ) method, on the other hand, immediately shuts down the underlying socket, regardless of what is
going on. The usage of destroy( ) is shown in Listing 14-13.

Listing 14-13.   Usage of the connection.destroy( ) Method

connection.destroy( );
 

Pooled connections are closed using the release( ) and destroy( ) methods. release( ) does not actually
terminate the connection but simply returns it to the pool for use by another request. Alternatively, the destroy( )
method is used to terminate a connection and remove it from the pool. The next time a new connection is
requested, the pool will create a new one to replace the destroyed one. Listing 14-14 provides an example of the
release( ) method
in action.

Listing 14-14.   Releasing a Pooled Connection Using the release( ) Method

var mysql = require("mysql");
var pool = mysql.createPool({
 "host": "localhost",

Chapter 14 ■ Databases

223

 "user": "username",
 "password": "secret",
 "database": "dbname"
});
 
pool.getConnection(function(error, connection) {
 if (error) {
 return console.error(error);
 }
 
 connection.release( );
}); 

Executing Queries
You’ve learned how to open connections, and you’ve learned how to close connections. Now it’s time to learn what
goes on between the opening and closing. After connecting to the database, your application will execute one or more
queries. This is accomplished using the connection’s query( ) method. The query( ) method takes two arguments—a
SQL string to execute and a callback function. The arguments to the callback function are a possible error object and
the results of the SQL command.

Listing 14-15 shows a complete example that creates a connection pool, requests a connection, executes a SQL
query on the Person table, displays the results, and then releases the connection back to the pool. The resulting
output is shown in Listing 14-16.

Listing 14-15.  Executing a Query on the Person Table

var mysql = require("mysql");
var pool = mysql.createPool({
 "host": "localhost",
 "user": "username",
 "password": "secret",
 "database": "dbname"
});
 
pool.getConnection(function(error, connection) {
 if (error) {
 return console.error(error);
 }
 
 var sql = "SELECT * FROM Person";
 
 connection.query(sql, function(error, results) {
 if (error) {
 return console.error(error);
 }
 
 console.log(results);
 connection.release( );
 });
});
 

Chapter 14 ■ Databases

224

Listing 14-16.   The Output of the Code in Listing 14-15

$ node sql-query.js
[{ SSN: '123-45-6789',
 LastName: 'Pluck',
 FirstName: 'Peter',
 Gender: 'M',
 City: 'Pittsburgh',
 State: 'PA' },
 { SSN: '234-56-7890',
 LastName: 'Johnson',
 FirstName: 'John',
 Gender: 'M',
 City: 'San Diego',
 State: 'CA' },
 { SSN: '345-67-8901',
 LastName: 'Doe',
 FirstName: 'Jane',
 Gender: 'F',
 City: 'Las Vegas',
 State: 'NV' },
 { SSN: '456-78-9012',
 LastName: 'Doe',
 FirstName: 'John',
 Gender: 'M',
 City: 'Las Vegas',
 State: 'NV' }]
 

Notice that the results displayed in Listing 14-16 are formatted as an array of objects. That is because the executed
query was a SELECT operation. Had the operation been a different type (UPDATE, INSERT, DELETE, and so on) then the
result would have been a single object containing information about the operation. As an example, the command in
Listing 14-17 removes all of the individuals in the People table. The resulting object is shown in Listing 14-18. Notice
that the affectedRows property is set to four to indicate the number of tuples that were removed.

Listing 14-17.   SQL DELETE Command for Clearing the People Table

DELETE FROM People; 

Listing 14-18.  The Result Object from query( ) When Executing the Statement in Listing 14-17

{ fieldCount: 0,
 affectedRows: 4,
 insertId: 0,
 serverStatus: 34,
 warningCount: 0,
 message: '',
 protocol41: true,
 changedRows: 0 } 

Note■■  T he result object’s insertId property is useful when inserting rows into a table that has an auto increment
primary key.

Chapter 14 ■ Databases

225

NoSQL Databases
NoSQL databases represent the other major flavor of database. There are many types of NoSQL databases available,
with some examples being key/value stores, object stores, and document stores. Common NoSQL characteristics are
lack of schemas, simple APIs, and relaxed consistency models. The one thing that NoSQL databases have in common
is that they abandon the relational data model used by systems like MySQL in the pursuit of increased performance
and scalability.

The relational data model excels at keeping data consistent using atomic operations known as transactions.
However, maintaining data consistency comes at the cost of additional overhead. Some applications such as banking
require data to be absolutely correct. After all, a bank that loses track of its customers’ money won’t be in business
very long. However, many applications can get away with the relaxed constraints that NoSQL data stores provide. For
example, if an update doesn’t immediately show up on a social media newsfeed, it won’t be the end of the world.

MongoDB
One of the most prominent NoSQL databases used in conjunction with Node.js is MongoDB, sometimes referred
to as just Mongo. Mongo is a document-oriented database that stores data in BSON (Binary JSON) formatted
documents. Mongo’s prominent use in Node applications has given rise to the term MEAN stack. The acronym
MEAN refers to the popular software stack consisting of MongoDB, Express, AngularJS (a front-end framework used
to create single-page applications), and Node.js. Mongo has been used at many popular web companies, including
eBay, Foursquare, and Craigslist.

To access Mongo from within a Node application, a driver is required. There are a number of Mongo drivers
available, but Mongoose is among the most popular. Listing 14-19 shows the npm command used to install the
mongoose module.

Listing 14-19.   Command Used to Install the mongoose Module

$ npm install mongoose 

Connecting to MongoDB
The createConnection( ) method is used to create a new MongoDB connection. This method takes a MongoDB
URL as an input argument. An example URL, which uses the same connection parameters as the previous MySQL
examples, is shown in Listing 14-20. In this example, username, secret, localhost, and dbname correspond to the
username, password, server host, and database name, respectively.

Listing 14-20.   Connecting to MongoDB Using Mongoose

var mongoose = require("mongoose");
var connection =
 mongoose.createConnection("mongodb://username:secret@localhost/dbname"); 

Note■■  T here are multiple ways to create connections in MongoDB. The method shown in this book is believed to be
the most flexible as it works with an arbitrary number of database connections. The alternative technique is no simpler,
yet it only works with a single database connection.

Chapter 14 ■ Databases

226

Once the connection is established, the connection object emits an open event. The open event handler does not
take any arguments. An example handler is shown in Listing 14-21. Notice that the close( ) method is also used to
terminate the connection.

Listing 14-21.   An Example Connection open Event Handler

var mongoose = require("mongoose");
var connection = mongoose.createConnection("mongodb://localhost/test");
 
connection.on("open", function( ) {
 console.log("Connection established");
 connection.close( );
}); 

Schemas
MongoDB does not have a predefined schema. Mongoose helps to define the structure of a Mongo document by
defining schemas. A schema is an object that defines the structure of the data to be stored. To illustrate how schemas
work, we are going to revisit our People table from the MySQL section. Listing 14-22 shows the People table refactored
as a Mongoose Schema object. On the second line of the example, the Schema( ) constructor is imported. The
Schema( ) constructor takes a single argument, an object containing schema definitions. In this example, all of the
schema fields are of type String. Other data types supported by Schema( ) include Number, Date, Buffer, Boolean,
Mixed, Objectid, and Array.

Listing 14-22.  Creating a Schema Representing the Person Table

var mongoose = require("mongoose");
var Schema = mongoose.Schema;
var PersonSchema = new Schema({
 SSN: String,
 LastName: String,
 FirstName: String,
 Gender: String,
 City: String,
 State: String
});
 

Recall that the original Person table was referenced by a Vehicle table using a foreign key relationship. In the
world of relational databases, this was a good idea. However, in the MongoDB world, the vehicle information can be
added directly to the Person schema as an array. Listing 14-23 shows the schema for the Person-Vehicle hybrid. Note
that this approach requires no JOIN operations.

Listing 14-23.  Combining the Person and Vehicle Tables in a MongoDB Schema

var mongoose = require("mongoose");
var Schema = mongoose.Schema;
var PersonSchema = new Schema({
 SSN: String,
 LastName: String,
 FirstName: String,
 Gender: String,
 City: String,

Chapter 14 ■ Databases

227

 State: String,
 Vehicles: [{
 VIN: Number,
 Type: String,
 Year: Number
 }]
}); 

Models
To use our newly created Schema object, we must associate it with a database connection. In Mongoose terminology,
this association is referred to as a model. To create a model, use the connection object’s model( ) method. This
method takes two arguments, a string representing the model’s name, and a Schema object. Listing 14-24 shows how a
Person model is created. The example defines the Person model as a module export in order to facilitate code reuse.

Listing 14-24.  Defining a Person Model in a Reusable Manner

var mongoose = require("mongoose");
var Schema = mongoose.Schema;
var PersonSchema = new Schema({
 SSN: String,
 LastName: String,
 FirstName: String,
 Gender: String,
 City: String,
 State: String,
 Vehicles: [{
 VIN: Number,
 Type: String,
 Year: Number
 }]
});
 
module.exports = {
 getModel: function getModel(connection) {
 return connection.model("Person", PersonSchema);
 }
};
 

Because the Person model has been designed with reusability in mind, it can be easily imported into other files,
as shown in Listing 14-25. This example assumes that the model has been saved in a file named PersonModel.js.

Listing 14-25.  Importing the Person Model in Another File

var mongoose = require("mongoose");
var connection = mongoose.createConnection("mongodb://localhost/test");
var Person = require(__dirname + "/PersonModel").getModel(connection);
 

Chapter 14 ■ Databases

228

Inserting Data
Inserting data into MongoDB is a simple two-step process using Mongoose models. The first step is to instantiate
an object using a model constructor. Based on Listing 14-25, the constructor would be Person( ). After the object is
created, you can manipulate it like any other JavaScript object. To actually insert the data, call the model’s save( )
method. save( ) takes a single optional argument, a callback function that takes an error argument.

The example in Listing 14-26 creates a Person object using the model defined in Listing 14-24. Next, a custom
foo field is added to the module. Finally, the model’s save( ) method is used to insert the data into the database. One
thing to note is that when the data is saved, the foo field will not persist. The reason is that foo is not part of the model’s
schema. The model will prevent additional data from being added to the model, but it will not ensure that any missing
fields are included. For example, if the LastName field was omitted, the insertion would still go off without a hitch.

Listing 14-26.  Inserting a Person Object into MongoDB Using Mongoose

var mongoose = require("mongoose");
var connection = mongoose.createConnection("mongodb://localhost/test");
var Person = require(__dirname + "/PersonModel").getModel(connection);
 
connection.on("open", function( ) {
 var person = new Person({
 SSN: "123-45-6789",
 LastName: "Pluck",
 FirstName: "Peter",
 Gender: "M",
 City: "Pittsburgh",
 State: "PA",
 Vehicles: [
 {
 VIN: 12345,
 Type: "Jeep",
 Year: 2014
 },
 {
 VIN: 98032,
 Type: "Car",
 Year: 2006
 }
]
 });
 
 person.foo = "bar";
 person.save(function(error) {
 connection.close( );
 
 if (error) {
 return console.error(error);
 } else {
 console.log("Successfully saved!");
 }
 });
});
 

Chapter 14 ■ Databases

229

Querying Data
Models have several methods for performing queries. To retrieve data from Mongo, use the model object’s find( )
method. The first argument passed to find( ) is an object that defines the condition(s) of the query. This argument
will be revisited momentarily. The second argument to find( ) is an optional callback function. If present, the
callback function takes a possible error as its first argument, and the query results as the second argument.

The example in Listing 14-27 uses the Person model’s find( ) method to select all car owners that live in Las
Vegas. The condition object selects all Las Vegas citizens by specifying City: “Las Vegas”. To further refine the search,
we look for Vehicle arrays whose size is not equal to zero (meaning that the person owns at least one car). The results
are then displayed in the callback function, provided that no errors occur. Sample output is shown in Listing 14-28.

Listing 14-27.  Querying MongoDB for All Car Owners Living in Las Vegas

var mongoose = require("mongoose");
var connection = mongoose.createConnection("mongodb://localhost/test");
var Person = require(__dirname + "/PersonModel").getModel(connection);
 
connection.on("open", function( ) {
 Person.find({
 City: "Las Vegas",
 Vehicles: {
 $not: {$size: 0}
 }
 }, function(error, results) {
 connection.close( );
 
 if (error) {
 return console.error(error);
 }
 
 console.log(results);
 });
}); 

Listing 14-28.  Output from Running the Code in Listing 14-27

$ node mongoose-query
[{ City: 'Las Vegas',
 FirstName: 'Jane',
 Gender: 'F',
 LastName: 'Doe',
 SSN: '345-67-8901',
 State: 'NV',
 __v: 0,
 _id: 528190b19e13b00000000007,
 Vehicles:
 [{ VIN: 54327,
 Type: 'Truck',
 Year: 2009,
 _id: 528190b19e13b00000000008 }] }]
 

Chapter 14 ■ Databases

230

Query Builder Methods
If a callback function is not provided to find( ), then a query object is returned. This query object provides a query
builder interface that allows more complex queries to be constructed by chaining together function calls using helper
methods. Some of these helper functions are discussed in Table 14-2.

Table 14-2.  Various Query Builder Helper Methods

Method Description

where() Creates an additional search refinement. This is analogous to the SQL WHERE clause.

limit() Takes an integer argument specifying the maximum number of results to return.

sort() Sorts the results by some criteria. This is analogous to the SQL ORDER BY clause.

select() Returns a subset of the fields that have been selected.

exec() Executes the query and invokes a callback function.

An example query builder is shown in Listing 14-29. In this example, the find( ) method is used to select
all individuals from Las Vegas. The where( ) and equals( ) methods are then used to refine the search further to
individuals whose last name is Doe. Next, the limit( ) method is used to ensure that a maximum of 10 individuals are
selected. The sort( ) method is then used to sort the results by last name and then reverse order by first name. Next,
the select( ) method is used to extract only the first name and last name fields from the results. Finally, the query is
executed and the results are printed. This particular query will return John and Jane Doe from our example database.

Listing 14-29.  An Example of a Query Builder

var mongoose = require("mongoose");
var connection = mongoose.createConnection("mongodb://localhost/test");
var Person = require(__dirname + "/PersonModel").getModel(connection);
 
connection.on("open", function( ) {
 Person.find({
 City: "Las Vegas"
 })
 .where("LastName").equals("Doe")
 .limit(10)
 .sort("LastName -FirstName")
 .select("FirstName LastName")
 .exec(function(error, results) {
 connection.close( );
 
 if (error) {
 return console.error(error);
 }
 
 console.log(results);
 });
});
 

Chapter 14 ■ Databases

231

Updating Data
In Mongoose, data is updated using a model’s update() method. update() takes two required arguments, followed
by two optional arguments. The first argument is an object used to specify the conditions of the update. This object
behaves like the object passed to find(). The second argument to update() is an object that performs the actual update
operation. The optional third argument is another object that is used to pass in options. The options supported by
update() are summarized in Table 14-3. The final argument is an optional callback function that takes three arguments.
These arguments are an error, the number of updated Mongo documents, and the raw response returned by Mongo.

Table 14-3. The Options Supported by update()

Option Description

safe This is a Boolean that sets the value of safe mode. If this is not specified, it defaults to the value set
in the schema (true). If this is true, then any errors that occur are passed to the callback function.

upsert If this is true, the document will be created if it doesn’t exist. This defaults to false.

multi If true, multiple documents can be updated with a single operation. This defaults to false.

strict This is a Boolean that sets the strict option for the update. If strict is true, then non-schema data will
not written to the document. This defaults to false, meaning that extraneous data will not persist.

The example in Listing 14-30 performs an update operation on all people whose city of residence is Las Vegas.
The second argument updates their city of residence to be New York. The third argument sets the multi option to
true, meaning that multiple documents can be updated using a single operation. The callback function checks for
errors and then displays the number of affected documents and the response received from Mongo.

Listing 14-30. An Update that Moves All Las Vegas Citizens to New York

var mongoose = require("mongoose");
var connection = mongoose.createConnection("mongodb://localhost/test");
var Person = require(__dirname + "/PersonModel").getModel(connection);

connection.on("open", function() {
 Person.update({
 City: "Las Vegas"
 }, {
 City: "New York"
 }, {
 multi: true
 }, function(error, numberAffected, rawResponse) {
 connection.close();

 if (error) {
 return console.error(error);
 }

 console.log(numberAffected + " documents affected");
 console.log(rawResponse);
 });
});

Chapter 14 ■ Databases

232

Deleting Data
To delete data using a model, use the model’s remove( ) method. remove( ) takes two arguments. The first argument is
an object that specifies the removal criteria. This object works like the object passed to find(). The second argument
is an optional callback function that is invoked after the removal is executed. An example that removes people who
live in San Diego is shown in Listing 14-31. When this code is executed, it will display the number 1, corresponding to
the number of items removed.

Listing 14-31.  Removing Data Using a MongoDB Model

var mongoose = require("mongoose");
var connection = mongoose.createConnection("mongodb://localhost/test");
var Person = require(__dirname + "/PersonModel").getModel(connection);
 
connection.on("open", function( ) {
 Person.remove({
 City: "San Diego"
 }, function(error, response) {
 connection.close( );
 
 if (error) {
 return console.error(error);
 }
 
 console.log(response);
 });
}); 

Summary
This chapter showed you how to work with databases in Node.js. The chapter began with a look at the more
traditional relational data model. After a very brief overview of relational databases, we moved on to the MySQL
database. By introducing the mysql module, you learned how to interact with one of the most popular relational
databases in existence. Next, the chapter turned its focus to the NoSQL class of data stores. These databases have
become increasingly popular in recent years as they tend to be less complex and more performant than their
relational counterparts. Out of all of the NoSQL databases available, this chapter chose to focus on MongoDB, as it is
a part of the increasingly popular MEAN stack. To work with Mongo, we turned to the mongoose module. Of course
we couldn’t possibly cover every database (or even every detail of MySQL and Mongo) in a single chapter, but by
understanding the core concepts, you should be able to apply what you’ve learned here to other systems.

233

Chapter 15

Logging, Debugging, and Testing

Production code, in any language, must have a certain polish that is lacking in toy or academic programs. This chapter
explores the topics of logging, debugging, and testing, which will increase code quality while reducing the time required
to diagnose and fix bugs. By logging useful information and errors, you can more easily fix bugs once they appear.
A debugger is a critical tool in any programmer’s toolbelt, as it allows code to be explored with a fine-toothed comb,
inspecting variables and finding bugs. Finally, testing is the process of systematically identifying bugs in computer
programs. This chapter looks at several prominent modules and frameworks used for logging, debugging, and testing.

Logging
In Chapter 5, you learned about logging at its most basic level via the console.log() and console.error() methods.
The first thing to notice is that there are different logging methods for different types of messages. For example, in
Listing 15-1, the fs module is used to open a file named foo.txt. If the file is successfully opened, then a message is
printed to stdout using console.log(). However, if an error occurs, it is logged to stderr using console.error().

Listing 15-1.  An Example Including Error and Success Logs

var fs = require("fs");
var path = "foo.txt";
 
fs.open(path, "r", function(error, fd) {
 if (error) {
 console.error("open error: " + error.message);
 } else {
 console.log("Successfully opened " + path);
 }
});
 

The drawback to this approach is that someone must be watching the console to detect errors. Typically
though, production applications are deployed to one or more servers that are separate from the machine(s) that the
application was originally developed on. These production servers also typically sit in a server room, data center, or
on the cloud, and do not have a person monitoring a terminal window for errors. Even if someone were monitoring
the console, the errors could easily scroll off the screen and be lost forever. For these reasons, printing to the console is
generally discouraged in production environments.

Logging to a file is preferred to console logging in production environments. Unfortunately, the fs module does
not lend itself well to logging. Ideally, logging code should blend in with the application code like a console.log()
call would. However, the asynchronous nature of file operations leads to code blocks that include callback functions
and error handling. Recall that the fs module also provides synchronous equivalents for many of its methods. These
should be avoided, as they can create a major bottleneck in your application.

Chapter 15 ■ Logging, Debugging, and Testing

234

The winston Module
Node’s core modules do not provide an ideal logging solution. Luckily, the developer community has created a
number of useful third-party logging modules. Among the best is winston, an asynchronous logging library that
maintains the simplistic interface of console.log(). Listing 15-2 shows how winston is imported and used in a trivial
application. Of course, you must first npm install winston in order to use the module. Listing 15-2 demonstrates
how the winston.log() method is used. The first argument passed to log() is the logging level. By default, winston
provides the log levels info, warn, and error. The second argument to log() is the message being logged.

Listing 15-2.  Logging Different Level Messages Using winston

var winston = require("winston");
 
winston.log("info", "Hello winston!");
winston.log("warn", "Something not so good happened");
winston.log("error", "Something really bad happened");
 

The output from Listing 15-2 is shown in Listing 15-3. Notice that winston displays the log level before outputting
the message.

Listing 15-3.  The Output from Listing 15-2

$ node winston-basics.js
info: Hello winston!
warn: Something not so good happened
error: Something really bad happened
 

winston also provides convenience methods for the various log levels. These methods (info(), warn(), and
error()) are shown in Listing 15-4. The output for this code is identical to that shown in Listing 15-3.

Listing 15-4.  Rewriting Listing 15-2 Using the Log Level Methods

var winston = require("winston");
 
winston.info("Hello winston!");
winston.warn("Something not so good happened");
winston.error("Something really bad happened");
 

All of the logging methods described thus far support string formatting using util.format() placeholders.
For a refresher on util.format(), see Chapter 5. An optional callback function can be provided as the final argument
to the logging methods. Additionally, metadata can be attached to a log message by providing an argument after any
formatting placeholders. Listing 15-5 shows these features in action. In this example, if an error occurs, winston logs
a message that contains the value of the path variable. Additionally, the actual error is passed to winston as metadata.
Example output when the file foo.txt does not exist is shown in Listing 15-6.

Listing 15-5.  An Example of a Log Containing Formatting and Metadata

var winston = require("winston");
var fs = require("fs");
var path = "foo.txt";
 

Chapter 15 ■ Logging, Debugging, and Testing

235

fs.open(path, "r", function(error, fd) {
 if (error) {
 winston.error("An error occurred while opening %s.", path, error);
 } else {
 winston.info("Successfully opened %s.", path);
 }
}); 

Listing 15-6  The Resulting Output of Listing 15-5 When the File Does Not Exist

$ node winston-formatting.js
error: An error occurred while opening foo.txt. errno=34, code=ENOENT, path=foo.txt

Transports
winston makes extensive use of transports. Transports are essentially storage devices for logs. The core transport types
supported by winston are Console, File, and Http. As the name implies, the Console transport is used for logging
information to the console. The File transport is used for logging to an output file or any other writable stream. The
Http transport is used to log data to an arbitrary HTTP (or HTTPS) endpoint. By default, the winston logger uses only
the Console transport, but that can be changed. A logger can have multiple transports, or no transports at all.

Additional transports can be attached to a logger using the add() method. add() takes two arguments, a transport
type and an options object. The supported options are listed in Table 15-1. It is worth noting that the supported options
vary by transport type. Similarly, an existing transport is removed using the remove() method. The remove() method
accepts the transport type as its only argument.

Table 15-1.  The Options Supported by the winston Core Transports

Option Description

level The log level used by the transport.

silent A Boolean used to suppress output. Defaults to false.

colorize A Boolean flag used to make the output colorful. Defaults to false.

timestamp A Boolean flag that causes timestamps to be included in the output. Defaults to false.

filename The name of the file to log output to.

maxsize The maximum size (in bytes) of the log file. If the size is exceeded, a new file is created.

maxFiles The maximum number of log files to ceate when the size of the log file is exceeded.

stream The writable stream to log output to.

json A Boolean flag that, when enabled, causes data to be logged as JSON. Defaults to true.

host The remote host used for HTTP logging. Defaults to localhost.

port The remote port used for HTTP logging. Defaults to 80 or 443, depending on whether
HTTP or HTTPS is used.

path The remote URI used for HTTP logging. Defaults to /.

auth An object that, if included, should contain a username and password field. This is used
for HTTP Basic Authentication.

ssl A Boolean flag that, if enabled, causes HTTPS to be used. Defaults to false.

Chapter 15 ■ Logging, Debugging, and Testing

236

Listing 15-7 shows how transports can be removed and added to the winston logger. In this example, the default
Console transport is removed. A new Console transport, which responds only to error messages, is then added.
The new transport also turns on colorization and timestamping. Note that the remove() and add() methods can be
chained together. After winston is configured, the new settings are tested with calls to info() and error(). The output
will display a timestamped, colorized message for the call to error(), but the call to info() will not display anything,
as there is no transport for info level logging.

Listing 15-7.  Adding and Removing Transports Using winston

var winston = require("winston");
 
winston
 .remove(winston.transports.Console)
 .add(winston.transports.Console, {
 level: "error",
 colorize: true,
 timestamp: true
 });
 
winston.info("test info");
winston.error("test error");

Creating New Loggers
The default logger uses the winston object, as demonstrated in previous examples. It is also possible to create new
logger objects using the winston.Logger() constructor. The example in Listing 15-8 creates a new logger with two
transports. The first transport prints colorized output to the console. The second transport dumps errors to the file
output.log. To test the new logger, one call is made to info() and another is made to error(). Both logging calls will
be printed to the console; however, only the error is printed to the output file.

Listing 15-8.  Creating a New Logger Using winston

var winston = require("winston");
var logger = new winston.Logger({
 transports: [
 new winston.transports.Console({
 colorize: true
 }),
 new winston.transports.File({
 level: "error",
 filename: "output.log"
 })
]
});
 
logger.info("foo");
logger.error("bar");

Chapter 15 ■ Logging, Debugging, and Testing

237

Debugging
Debugging is the process of locating and fixing software bugs. A debugger is a program that helps accelerate this
process. Among other things, debuggers allow developers to step through instructions one-by-one, inspecting the
value of variables along the way. Debuggers are extremely useful for diagnosing program crashes and unexpected
values. V8 comes with a built-in debugger that can be accessed over TCP. This allows a Node application to be
debugged over a network. Unfortunately, the built-in debugger has a less than friendly command-line interface.

To access the debugger, Node must be invoked with the debug argument. Therefore, if your application were
stored in app.js, you would need to execute the command shown in Listing 15-9.

Listing 15-9.  Enabling Node’s Debugger When Running an Application

node debug app.js 

Note■■  P roviding the debug argument causes Node to launch with an interactive debugger. However, you can also
provide a --debug (notice the hyphens) option, which causes the debugger to listen for connections on port 5858.
A third option, --debug-brk, causes the debugger to listen on port 5858 while also setting a breakpoint on the first line.

You can then step through the code as you would in any other debugger. The commands used to step through
code are shown in Table 15-2.

Table 15-2.  Instruction Stepping Commands Supported by the Node Debugger

Command Description

cont or c Continues execution.

next or n Steps to the next instruction.

step or s Steps in to a function call.

out or o Steps out of a function call.

pause Pauses running code.

You likely will not want to step through your entire application. Therefore, you should also set breakpoints. The
simplest way to add breakpoints is by adding debugger statements to the source code. These statements will cause
a debugger to halt execution, but will be ignored if a debugger is not in use. The example shown in Listing 15-10 will
cause the debugger to pause before the second assignment to foo.

Listing 15-10.  An Example Application that Includes a debugger Statement

var foo = 2;
var bar = 3;
 
debugger;
foo = foo + bar;
 

Chapter 15 ■ Logging, Debugging, and Testing

238

After attaching the debugger, issue the cont or c command to continue to the debugger statement. At this point,
the value of foo is 2, and the value of bar is 3. You can confirm this by entering the repl command, which will invoke
the REPL that was covered in Chapter 1. Within the REPL, type foo or bar to inspect the variable value. Next, exit the
REPL by pressing Control+C. Issue the next (or n) command twice, to step past the second assignment statement. By
launching the REPL again, you can verify that the value has been updated to 5.

The previous example has laid out the general flow for using Node’s debugger. As previously mentioned,
the debugger isn’t exactly user friendly. Luckily, there is a third-party module called node-inspector that allows
Node’s debugger to interface with Google Chrome’s developer tools in a user-friendly way. Before diving into
 node-inspector, take a moment to review some of the other commands supported by Node’s debugger, which are
shown in Table 15-3.

Table 15-3.  Additional Commands Supported by the Node Debugger

Command Description

setBreakpoint() or sb() Sets a breakpoint on the current line. As these are functions, you can also
pass an argument to specify the line number on which to set the breakpoint.
A breakpoint can be set on a line number in a specific file using the syntax
sb("script.js", line).

clearBreakpoint() or cb() Clears a breakpoint on the current line. As when using sb(), you can pass
arguments in to clear breakpoints on specific lines.

backtrace or bt Prints the backtrace of the current execution frame.

watch(expr) Adds the expression specified by expr to the watch list.

unwatch(expr) Removes the expression specified by expr from the watch list.

watchers Lists all watchers and their values.

run Runs the script.

restart Restarts the script.

kill Kills the script.

list(n) Displays source code with n line context (n lines before and n lines after the
current line).

scripts Lists all loaded scripts.

version Displays the version of v8.

The node-inspector Module
This section does not provide a tutorial on using Chrome’s developer tools. Luckily, they are fairly self-explanatory, and
there is an abundance of content available online. This section steps you through the process of getting node-inspector
set up and running on your machine . You need to have a recent version of Chrome on your machine. You also need to
install node-inspector globally using the command shown in Listing 15-11.

Listing 15-11.  Globally Installing the node-inspector Module

npm install node-inspector -g
 

Chapter 15 ■ Logging, Debugging, and Testing

239

Next, start the application (saved in app.js) from Listing 15-10 using the command shown in Listing 15-12.
Notice that the --debug-brk flag has been used. This is because we do not want to use the interactive debugger’s
command-line interface.

Listing 15-12.  Launching an Application Using the --debug-brk Flag

$ node --debug-brk app.js
 

Next, in a separate terminal window, launch node-inspector using the command shown in Listing 15-13.

Listing 15-13.  Launching the node-inspector Application

$ node-inspector
 

After starting node-inspector, you should see some terminal output. This output will include directions to visit
a URL. The URL will most likely be the one shown in Listing 15-14. Visit this URL in Chrome. The page should look
like Figure 15-1.

Listing 15-14.  The URL to Visit While node-inspector Is Running

http://127.0.0.1:8080/debug?port=5858
 

Figure 15-1.  View of Chrome upon connecting to the link in Listing 15-14

http://127.0.0.1:8080/debug?port=5858

Chapter 15 ■ Logging, Debugging, and Testing

240

Upon opening Chrome, execution is halted at a breakpoint. Resume execution by pressing the small Play button
in the panel on the right side of the window. This will cause the application to execute until the next breakpoint is
reached, at which point Chrome will look like Figure 15-2. Notice the Scope Variables section on the right side of the
image. This section allows you to view the variables that are currently in scope, as well as their values. In Figure 15-2,
you can see that foo is equal to 2 and bar is equal to 3.

Figure 15-2.  View of Chrome stopped at a debugger statement

You can then use the controls to step in, over, and out of instructions and functions while watching the variables
update. Additionally, you can click on the Console tab to bring up an interactive console for inspecting values and
executing code.

Testing
Testing is a crucial part of the software development process. It is so important that software companies have entire
departments dedicated to testing. The goal of this section is not to provide comprehensive coverage of software
testing. There are many books dedicated to the various software testing methodologies. Instead, this section teaches
you how to write unit tests using the core assert module as well as Mocha, a flexible JavaScript testing framework.

The assert Module
assert is a core module that is used to write simple unit tests. assert provides convenience methods that compare
a computed value (called the actual value) to an expected value, and throw an exception if the results are not what
is expected. An example assertion is shown in Listing 15-15. In this example, a value is computed and stored in the
variable actual. The expected value is also stored in the expected variable. The actual and expected values are then
passed as the first and second arguments to the assert.strictEqual() method. As the method name implies, the
two values are compared using strict equality (the === operator). In this case, the assertion test is passed, so nothing
happens.

Chapter 15 ■ Logging, Debugging, anD testing

241

Listing 15-15. An Example Test Using a Strict Equals Assertion

var assert = require("assert");
var actual = 2 + 3;
var expected = 5;

assert.strictEqual(actual, expected);

Listing 15-16 examines the case where the assertion fails. In this example, the actual value is the sum of the
floating point numbers 0.1 and 0.2, while the expected value is 0.3. Basic math would lead you to believe that the
assertion will be passed. However, because of the way that floating point math works, the sum is not exactly 0.3. This
causes the assertion to fail, and the exception shown in Listing 15-17 is thrown.

Listing 15-16. An Example of a Failed Assertion

var assert = require("assert");
var actual = 0.1 + 0.2;
var expected = 0.3;

assert.strictEqual(actual, expected);

By examining the error message in Listing 15-17, you can see that the actual value contains an extremely small
amount of error. This is something that must be accounted for any time math is performed in JavaScript.

Listing 15-17. The Exception that Results from the Code in Listing 15-16

AssertionError: 0.30000000000000004 === 0.3

The basic assertion methods also take an optional third argument that is used to specify a custom error message.
Listing 15-16 has been rewritten in Listing 15-18 to include a custom message. When this code is run, you will see the
error message "AssertionError: JavaScript math is quirky".

Listing 15-18. Creating an Assertion with a Custom Error Message

var assert = require("assert");
var actual = 0.1 + 0.2;
var expected = 0.3;

assert.strictEqual(actual, expected, "JavaScript math is quirky");

In addition to strictEqual(), the assert module possesses a number of other methods that are used to create
various types of assertions. These methods, which are used like strictEqual(), are summarized in Table 15-4.

Chapter 15 ■ Logging, Debugging, and Testing

242

The throws() Method
The assert module also provides the throws() method to verify whether a given function throws an exception as
expected. An example of throws() is shown in Listing 15-19. The block argument is the function under test, and is
expected to throw an exception. If an exception is not thrown by block, the assertion will fail. The error argument will
be revisited in a moment. The optional message argument behaves in the same fashion as it does for the previously
discussed assertion methods.

Listing 15-19.  Using assert.throws()

assert.throws(block, [error], [message])
 

The optional error argument is used to verify that the correct exception was thrown. This argument can be
a constructor function, a regular expression object, or a user-defined validation function. If error is a constructor
function, then the exception object is validated using the instanceof operator. If error is a regular expression, then
validation is performed by testing for a match. If error is a non-constructor function, then the function should return
true if error is validated.

As an example, assume that you are trying to test a function that performs division. If division by zero occurs,
then the function under test should throw an exception. Otherwise, the function should return the quotient of the
division operation. Listing 15-20 shows the definition of this division function, as well as several successful assertion
tests using throws(). The bind() method creates copies of the divide() method whose numerator and denominator
arguments are bound to specific values. In each of the example test cases, the denominator is bound to zero to ensure
that an exception is thrown.

Listing 15-20.  Testing a Division Function Using assert.throws()

var assert = require("assert");
 
function divide(numerator, denominator) {
 if (!denominator) {
 throw new RangeError("Division by zero");
 }
 

Table 15-4.  Additional Assertion Methods

Method Description

equal() Performs a shallow check for equality using the == comparison operator. Using a shallow
check, two objects will not evaluate as equal unless they are, in fact, the same object.

notEqual() Performs a shallow check for non-equality using the != comparison operator.

deepEqual() Performs a deep check for equality. By using a deep check, equality is determined by
comparing the keys and values stored in an object.

notDeepEqual() Performs a deep check for inequality.

notStrictEqual() Performs a check for strict inequality using the !== comparison operator.

ok() ok()takes only two arguments—value and an optional message. This method works as
shorthand for assert.equal(true, !!value, message). In other words, this method tests
if the provided value is truthy.

assert() This function is used exactly like ok(). However, this is not a method of the assert module,
but rather the assert module itself. This function is the value returned by require("assert").

Chapter 15 ■ Logging, Debugging, and Testing

243

 return numerator / denominator;
}
 
assert.throws(divide.bind(null, 1, 0));
assert.throws(divide.bind(null, 2, 0), RangeError);
assert.throws(divide.bind(null, 3, 0), Error);
assert.throws(divide.bind(null, 4, 0), /Division by zero/);
assert.throws(divide.bind(null, 5, 0), function(error) {
 return error instanceof Error && /zero/.test(error.message);
});
 

In Listing 15-20, all of the assertions were successful. Listing 15-21 includes a number of example assertions that
would throw exceptions. The first assertion fails because the denominator is not zero, so an exception is not thrown.
The second assertion fails because a RangeError is thrown, but the TypeError constructor is provided. The third
assertion fails because the regular expression /foo/ does not match the thrown exception. The fourth assertion fails
because the validation function returns false.

Listing 15-21.  Invalid Assertions Using the assert.throws() Method

var assert = require("assert");
 
function divide(numerator, denominator) {
 if (!denominator) {
 throw new RangeError("Division by zero");
 }
 
 return numerator / denominator;
}
 
assert.throws(divide.bind(null, 1, 1));
assert.throws(divide.bind(null, 2, 0), TypeError);
assert.throws(divide.bind(null, 3, 0), /foo/);
assert.throws(divide.bind(null, 4, 0), function(error) {
 return false;
});

The doesNotThrow() Method
The inverse function of throws() is doesNotThrow(), which expects a function to not throw an exception. The
doesNotThrow() function is shown in Listing 15-22. The block argument is the function under test. If block throws
an exception then the assertion fails. The optional message argument behaves as it does in the previously discussed
assertion methods.

Listing 15-22.  Using assert.doesNotThrow()

assert.doesNotThrow(block, [message])

The ifError() Method
The ifError() method is useful for testing the first argument of callback functions that is conventionally used for
passing error conditions. Since error arguments are normally null or undefined, the ifError() method checks for
falsy values. If a truthy value is detected then the assertion fails. For example, the assertion shown in Listing 15-23
passes, while the assertion shown in Listing 15-24 fails.

w

Chapter 15 ■ Logging, Debugging, and Testing

244

Listing 15-23.  Successful Assertion Using assert.ifError()

var assert = require("assert");
 
assert.ifError(null); 

Listing 15-24.  Failed Assertion Using assert.ifError()

var assert = require("assert");
 
assert.ifError(new Error("error"));

The Mocha Testing Framework
The assert module is useful for writing small, simple unit tests. However, programs of serious complexity typically
have large test suites for validating every feature of an application. Running comprehensive test suites also aids in
regression testing—the testing of existing features to ensure that the addition of new code doesn’t break existing
code. Furthermore, as new bugs are found a unit test can be created for it and added to the test suite. In order to
manage and run a large test suite, you should turn to a testing framework. There are many testing frameworks
available, but this section focuses on Mocha. Mocha was created by TJ Holowaychuk, the creator of Express, and
touts itself as a “simple, flexible, fun JavaScript test framework for Node.js and the browser.”

Running Mocha
Mocha must be installed before it can be used. Although Mocha can be installed on a project-by-project basis, it is
simpler to install it globally using the command shown in Listing 15-25.

Listing 15-25.  Globally Installing the Mocha Framework

$ npm install -g mocha
 

By installing Mocha globally, you can launch it directly from the command line using the mocha command.
By default, mocha will attempt to execute JavaScript source files in the test subdirectory. If the test subdirectory
does not exist, it will look for a file named test.js in the current directory. Alternatively, you can specify a test file
by simply providing the file name on the command line. Listing 15-26 shows example output from running mocha
in an empty directory. The output shows the number of tests that successfully ran, and the amount of time that
they took. In this case, no tests were run, and there was one millisecond of overhead from running mocha.

Listing 15-26.  Example Output from Running mocha with no Tests

$ mocha
 
 0 passing (1ms)

Creating Tests
Mocha allows multiple tests to be defined in a single JavaScript source file. Theoretically, a project’s entire test
suite could be included in a single file. However, for the sake of clarity and simplicity, only related tests should be
placed in the same file. Individual tests are created using the it() function. it() takes two arguments, a string that
describes what the test does, and a function that implements the test’s logic. Listing 15-27 shows the simplest test

Chapter 15 ■ Logging, Debugging, and Testing

245

possible. The test doesn’t actually do anything, yet when it is run with mocha, it will be reported as a passed test.
The reason that this test passes is because it doesn’t throw an exception. In Mocha, a test is considered to have
failed if it throws an exception.

Listing 15-27.  A Trivial Mocha Test

it("An example test", function() {
});
 

Another thing worth noting about the test case in Listing 15-27 is that Mocha was never imported, yet the it()
function is available. If you were to execute this test directly in Node, you would see an error because it() is not
defined. However, by running the test through mocha, it() and other Mocha functions are brought into scope.

Creating Test Suites
Mocha groups tests together into suites using the describe() method. describe() takes two arguments. The first is a
string that provides a description of the test suite. The second argument is a function containing zero or more tests. An
example of a test suite containing two tests is shown in Listing 15-28.

Listing 15-28.  A Simple Test Suite Containing Two Tests

describe("Test Suite 1", function() {
 it("Test 1", function() {
 });
 
 it("Test 2", function() {
 });
}); 

Note■■  A lthough test suites are useful for grouping related tests together, they are not essential. If no test suites are
specified, all tests will be placed in Mocha’s preexisting, nameless global test suite.

Mocha also supports the nesting of test suites. For example, assume that you are creating tests for multiple classes
in a framework. Each class is worthy of its own test suite. However, if a class is complex enough, then you might want
to create test suites for individual pieces of functionality, such as methods. Listing 15-29 provides an example of how
you might go about structuring your test suites. Notice that the example makes use of nested suites.

Listing 15-29.  An Example of Nested Test Suites

describe("Class Test Suite", function() {
 describe("Method Test Suite", function() {
 it("Method Test 1", function() {
 });
 
 it("Method Test 2", function() {
 });
 });
});

Chapter 15 ■ Logging, Debugging, and Testing

246

Testing Asynchronous Code
Mocha also makes it extremely easy to test asynchronous code, which is absolutely necessary in order to work with
Node. To create an asynchronous test, simply pass a callback function to it(). Conventionally, this callback function
is named done(), and it is passed as an argument to the function passed to it(). When the test is finished, simply
invoke done(), as shown in Listing 15-30.

Listing 15-30.  The Mocha Test from Listing 15-27 Rewritten to be Asynchronous

it("An example asynchronous test", function(done) {
 done();
});

Defining a Failure
If a test does not yield the expected results, it is considered a failure. Mocha defines a failure as any test that throws
an exception. This makes Mocha compatible with the assert module discussed earlier in this chapter. Listing 15-31
shows an example test that exercises the string indexOf() method. This simple test verifies that indexOf() returns
-1 when the searched string is not found. Since the strings "World" and "Goodbye" are not found in the string "Hello
Mocha!", both assertions will pass. However, if the value of str were changed to "Hello World!", then the first
assertion would throw an exception, causing the test to fail.

Listing 15-31.  An Example Test with Assertions

var assert = require("assert");
 
it("Should return -1 if not found", function() {
 var str = "Hello Mocha!";
 
 assert.strictEqual(str.indexOf("World"), -1);
 assert.strictEqual(str.indexOf("Goodbye"), -1);
});
 

An example of an asynchronous test that includes an assertion is shown in Listing 15-32. In this example, the
fs.exists() method determines if a file exists. In this case, we are assuming that the file does exist, so the test will pass.

Listing 15-32.  An Asynchronous Test Including an Assertion

var assert = require("assert");
var fs = require("fs");
 
it("Should return true if file exists", function(done) {
 var filename = "foo.txt";
 
 fs.exists(filename, function(exists) {
 assert(exists);
 done();
 });
}); 

Note■■   Error objects can be passed directly to done() in asynchronous tests. Doing so causes the test to fail as if an
exception had been thrown.

Chapter 15 ■ Logging, Debugging, and Testing

247

Test Hooks
Mocha supports optional hooks that are called before and after tests are executed. These hooks are used to set up test
data before a test runs, and clean up data after the test finishes. These before/after hooks come in two flavors. The
first executes before, and the second executes after the entire test suite is run. These hooks are implemented using
the before() and after() functions. The second variety of hooks are run before and after each individual test. To
implement this type of hook, use the beforeEach() and afterEach() functions. All four of these functions take a hook
function as their only argument. If the hook executes asynchronous code, then a done() callback should be supplied
in the same manner as it would for the it() function.

Listing 15-33 demonstrates how hooks are used in Mocha test suites. This example includes all four types of
hooks. To illustrate the flow of execution, the output from running this test suite is shown in Listing 15-34. Notice that
the first and last things to execute are the hooks provided via before() and after(). Also notice that the after()
hook has been implemented using asynchronous style, even though the hook function is synchronous. Next, notice
that each individual test is run between calls to the beforeEach() and afterEach() hooks.

Listing 15-33.  A Test Suite Containing Test Hooks and Two Tests

describe("Test Suite", function() {
 before(function() {
 console.log("Setting up the test suite");
 });
 
 beforeEach(function() {
 console.log("Setting up an individual test");
 });
 
 afterEach(function() {
 console.log("Tearing down an individual test");
 });
 
 after(function(done) {
 console.log("Tearing down the test suite");
 done();
 });
 
 it("Test 1", function() {
 console.log("Running Test 1");
 });
 
 it("Test 2", function() {
 console.log("Running Test 2");
 });
}); 

Listing 15-34.  Console Output from Running the Test Suite in Listing 15-33

$ mocha
 
 Setting up the test suite
Setting up an individual test
Running Test 1
․Tearing down an individual test

Chapter 15 ■ Logging, Debugging, and Testing

248

Setting up an individual test
Running Test 2
․Tearing down an individual test
Tearing down the test suite
 
 2 passing (5ms)

Disabling Tests
Individual tests or test suites can be disabled using the skip() method. Listing 15-35 shows how individual tests are
disabled. Notice that skip() has been applied to the second test. If this collection of tests is executed using mocha,
only the first test will run. Similarly, entire test suites can be skipped using describe.skip().

Listing 15-35.  Disabling a Test Using the skip() Method

it("Test 1", function() {
 console.log("Test 1");
});
 
it.skip("Test 2", function() {
 console.log("Test 2");
});

Running a Single Test Suite
The only() method is used to run a single suite or test. This eliminates the need to comment out large groups of tests
when you want to run only one. Using only() is identical to using skip(), although the semantics are different. When
the example shown in Listing 15-36 is run, only the second test will be executed.

Listing 15-36.  Running a Single Test Using only()

it("Test 1", function() {
 console.log("Test 1");
});
 
it.only("Test 2", function() {
 console.log("Test 2");
});

Summary
This chapter introduced the topics of logging, debugging, and testing as they pertain to Node.js. All three of these
topics are critical in diagnosing and resolving bugs. Debugging and testing are important parts of the development
process because they help prevent bugs from making it into production code. Logging, on the other hand, helps track
down bugs that slip through the cracks and make it into production. By implementing logging, debugging, and testing,
you ensure that your code will have the polish necessary to move into production. The next chapter explores how
production code can be deployed and scaled.

249

Chapter 16

Application Scaling

Scaling Node.js applications can be a challenge. JavaScript’s single threaded nature prevents Node from taking
advantage of modern multi-core hardware. In order to scale effectively, Node applications must find a way to take
advantage of all of the resources at their disposal. The cluster core module serves this purpose, allowing a single
application to launch a collection of Node processes that share resources while distributing the load.

Another way to scale a Node application is to reduce the amount of work the application must complete.
A perfect example of this is a web server that serves both static and dynamic content. Because static content does not
change (or changes infrequently), a separate server, or even a content delivery network (CDN), can be used to handle
static requests, leaving Node to handle dynamic content only. The upside of this approach is twofold. First, the load
on Node’s single thread is lightened significantly. Second, static content can be funneled through a CDN or server
that is specifically optimized for static data. A common way to distribute load among multiple servers is to employ a
reverse proxy server.

Perhaps the best example of application scaling in modern computing is the cloud. Cloud computing provides
on demand application scaling, while distributing an application to multiple locations around the world. Two of the
more popular Node.js cloud-computing platforms are Heroku and Nodejitsu. Both of these platforms allow you to
deploy Node applications to the cloud, while specifying the number of processes used to handle the traffic.

This chapter explores various techniques for scaling Node applications. The chapter begins by examining the
cluster module for scaling on a single machine. From there, the chapter moves on to scaling via the use of a reverse
proxy server. Finally, the chapter concludes by showing how applications can be deployed to the cloud using Heroku
and Nodejitsu.

The cluster Module
The core cluster module allows a single application to be forked as multiple processes. These processes run
independently of one another, but can share ports in order to balance the load of incoming connections. To
demonstrate how cluster works, let’s begin by looking at a trivial HTTP server, shown in Listing 16-1. For any request,
the server displays its process ID and the requested URL before returning a 200 status code and the message "Hello
World!".

Listing 16-1.  A Very Simple Hello World HTTP Server

var http = require("http");
 
http.createServer(function(request, response) {
 console.log(process.pid + ": request for " + request.url);
 response.writeHead(200);
 response.end("Hello World!");
}).listen(8000);
 

Chapter 16 ■ Application Scaling

250

The server in Listing 16-1 will always run in a single process on a single processor core, no matter what. Given that most
modern machines have at least two processors, it would be nice if one instance of the server could run on each available
core. Note that we don’t want to run multiple instances on a single core, as doing so can adversely affect performance by
requiring constant context switching. Listing 16-2 shows exactly how this is accomplished using the cluster module.

Listing 16-2.  The Server from Listing 16-1 Implemented Using the cluster Module

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;
 
if (cluster.isMaster) {
 for (var i = 0; i < numCPUs; i++) {
 console.log("Forking child");
 cluster.fork();
 }
} else {
 http.createServer(function(request, response) {
 console.log(process.pid + ": request for " + request.url);
 response.writeHead(200);
 response.end("Hello World!");
 }).listen(8000);
}
 

Listing 16-2 imports the cluster and os core modules, as well as the http module used in the original server. The
os module’s cpus() method returns an array containing the details of each core on the current machine. This array’s
length property determines the number of cores available to the application.

The subsequent if statement, which checks the value of cluster.isMaster, is the most important thing to
understand when working with the cluster module. The master process is used to fork child processes, also referred
to as workers. The child processes are then used to implement the application’s real functionality. However, each
forked child process executes the same code as the original master process. Without this if statement, the child
processes would attempt to fork additional processes. By adding the if statement, the master process can fork a child
process for each core, while the forked processes (which execute the else branch) implement the HTTP server on the
shared port 8000.

Note■■   Just as cluster.isMaster identifies the master process, cluster.isWorker identifies a child process.

The fork() Method
The actual process forking is done using the cluster module’s fork() method. Under the hood, the
child_process.fork() method from Chapter 9 is called. This means that the master and worker processes can
communicate via the built-in IPC channel. The cluster.fork() method can be called only from the master process.
Although not shown in Listing 16-2, fork() takes an optional object as its only argument; that object represents the child
process’ environment. fork() also returns a cluster.Worker object, which can be used to interact with the child process.

When the master process attempts to fork a new worker, a fork event is emitted. Once the worker is successfully
forked, it sends an online message to the master process. After receiving this message, the master emits an online
event. The example in Listing 16-3 shows how the fork and online events are handled in a cluster application.
Notice that the event handlers have been added to the master process only. Although the handlers could have been
added to the worker processes as well, it would have been redundant as the events are emitted only in the master. You
learn how to listen for similar events in the worker processes later in the chapter.

Chapter 16 ■ appliCation SCaling

251

Listing 16-3. A cluster Example Including a fork Event Handler

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;

if (cluster.isMaster) {
 cluster.on("fork", function(worker) {
 console.log("Attempting to fork worker");
 });

 cluster.on("online", function(worker) {
 console.log("Successfully forked worker");
 });

 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
} else {
 // implement worker code
}

Changing the Default fork() Behavior
By default, calling fork() causes the current application to be forked. However, this behavior can be altered using the
cluster.setupMaster() method. setupMaster() accepts a settings object as its only argument. The possible settings
are described in Table 16-1. An example of setupMaster() is shown in Listing 16-4. In this example, the values passed
to setupMaster() are the default values, and so the default behavior is still observed.

Table 16-1. The Various Settings Supported by setupMaster()

Setting Description

exec A string representing the worker file to fork. Defaults to __filename.

args An array of string arguments passed to the worker. Defaults to the current process.argv variable,
minus the first two arguments (the node application and the script).

silent A Boolean value that defaults to false. When false, the worker’s output is sent to the master’s standard
streams. When true, the worker’s output is silenced.

Listing 16-4. A cluster Example that Uses setupMaster() to Set the Default Values

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;

if (cluster.isMaster) {
 cluster.setupMaster({
 exec: __filename,
 args: process.argv.slice(2),
 silent: false
 });

Chapter 16 ■ Application Scaling

252

 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
} else {
 // implement worker code
} 

The disconnect() Method
The disconnect() method causes all worker processes to gracefully terminate themselves. Once all of the workers
have terminated, the master process can also terminate if no other events are in the event loop. disconnect() accepts
an optional callback function as its only argument. It is called after all of the workers have died. An example that forks
and then immediately terminates workers using disconnect() is shown in Listing 16-5.

Listing 16-5.  A cluster Example that Terminates All Workers Using disconnect()

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;
 
if (cluster.isMaster) {
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
 
 cluster.disconnect(function() {
 console.log("All workers have disconnected");
 });
} else {
 // implement worker code
}
 

When a child process terminates itself, it will close its IPC channel. This causes a disconnect event to be
emitted in the master process. Once the child completely terminates, an exit event is emitted in the master.
Listing 16-6 shows how these events are handled in the master process. Both event handlers take the worker in
question as arguments. Notice that the exit handler also accepts code and signal arguments. These are the exit code
and the name of the signal that killed the process. However, these might not be set if the worker exited abnormally.
Therefore, the worker’s exit code has been obtained from the worker object itself.

Listing 16-6.  An Example that Handles disconnect and exit Events

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;
 
if (cluster.isMaster) {
 cluster.on("disconnect", function(worker) {
 console.log("Worker " + worker.id + " disconnected");
 });
 

Chapter 16 ■ Application Scaling

253

 cluster.on("exit", function(worker, code, signal) {
 var exitCode = worker.process.exitCode;
 
 console.log("Worker " + worker.id + " exited with code " + exitCode);
 });
 
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
 
 cluster.disconnect();
} else {
 // implement worker code
}
 

The exit event is extremely useful for restarting a worker following a crash. For example, in Listing 16-7 when
an exit event is emitted, the master tries to determine if a crash occurred. In this example, we assume that all worker
exits are crashes. When a crash is detected, fork() is called again to replace the crashed worker.

Listing 16-7.  An Example that Restarts Crashed Worker Processes

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;
 
if (cluster.isMaster) {
 cluster.on("exit", function(worker, code, signal) {
 // determine that a crash occurred
 var crash = true;
 
 if (crash) {
 console.log("Restarting worker");
 cluster.fork();
 }
 });
 
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
} else {
 // implement worker code
} 

The workers Object
The master process can loop over all of its workers by iterating through the workers object, a property of the cluster
module. Listing 16-8 shows how all of the forked workers are looped over using a for...in loop and the cluster.
workers object. In this example, the forked workers are immediately terminated by calling each worker’s kill()
method.

Chapter 16 ■ Application Scaling

254

Listing 16-8.  An Example that Loops Over and Kills All Forked Workers

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;
 
if (cluster.isMaster) {
 for (var i = 0; i < numCPUs; i++) {
 cluster.fork();
 }
 
 for (var id in cluster.workers) {
 console.log("Killing " + id);
 cluster.workers[id].kill();
 }
} 

Note■■   cluster.workers is available only in the master process. However, each worker process can reference its own
worker object via the cluster.worker property.

The Worker Class
The Worker class is used to interact with forked processes. In the master process, individual workers can be accessed
via cluster.workers. From individual workers, the Worker class can be referenced via cluster.worker. Each worker
process is assigned a unique ID (different from its process ID), which is available via the Worker’s id property. The
ChildProcess object created by child_process.fork() is also available via the Worker’s process property. For more
information on the ChildProcess class, see Chapter 9. The Worker class also contains a send() method, used for
interprocess communication, which is identical to ChildProcess.send() (process.send() can also be used from
within the worker process). As you’ve already seen in Listing 16-8, the Worker class also contains a kill() method,
which is used to send signals to a worker process. By default the signal name is set to the string SIGTERM, but any other
signal name can be passed in as an argument.

The Worker class also contains some of the same methods and events as the cluster module. For example, the
disconnect() method and several events are shown in Listing 16-9. This example attaches event listeners for each
individual worker, and then calls the Worker’s disconnect() method. It is worth pointing out that there are some
slight differences with these features at the Worker level. For example, the disconnect() method disconnects only the
current worker instead of all workers. Also, the event handlers do not take a Worker as an argument, as they do at the
cluster level.

Listing 16-9.  Worker-Level Events and the disconnect() Method

var http = require("http");
var cluster = require("cluster");
var numCPUs = require("os").cpus().length;
var worker;
 
if (cluster.isMaster) {
 for (var i = 0; i < numCPUs; i++) {
 worker = cluster.fork();
 

Chapter 16 ■ Application Scaling

255

 worker.on("online", function() {
 console.log("Worker " + worker.id + " is online");
 });
 
 worker.on("disconnect", function() {
 console.log("Worker " + worker.id + " disconnected");
 });
 
 worker.on("exit", function(code, signal) {
 console.log("Worker " + worker.id + " exited");
 });
 
 worker.disconnect();
 }
} else {
 // implement worker code
} 

Scaling Across Machines
Using the cluster module, you can more effectively take advantage of modern hardware. However, you are still limited
by the resources of a single machine. If your application receives significant traffic, eventually you will need to scale out
to multiple machines. This can be done using a reverse proxy server that load balances the incoming requests among
multiple servers. A reverse proxy retrieves resources from one or more servers on behalf of the client. By employing a
reverse proxy and multiple application servers, the amount of traffic that an application can handle is increased. There
are many reverse proxies available, but this section focuses on two specifically—http-proxy and nginx.

http-proxy
Nodejitsu, which we will discuss later, developed http-proxy, an open source module for implementing proxy servers
and reverse proxy servers in Node applications. http-proxy supports WebSockets and HTTPS, among other things,
and is thoroughly tested through production deployment at nodejitsu.com. Choosing http-proxy also allows you to
keep your entire server stack written in JavaScript, if you so choose.

To demonstrate a solution involving a load balancing reverse proxy, we must first create the application servers,
which are shown in Listing 16-10. The application servers are responsible for serving the content requested by
the reverse proxy. This is the same basic HTTP server from Listing 16-1, adapted to read a port number from the
command line.

Listing 16-10.  A Simple Hello World Web Server that Reads a Port from the Command Line

var http = require("http");
var port = ~~process.argv[2];
 
http.createServer(function(request, response) {
 console.log(process.pid + ": request for " + request.url);
 response.writeHead(200);
 response.end("Hello World!");
}).listen(port);
 

http://nodejitsu.com/

Chapter 16 ■ Application Scaling

256

Run two separate instances of the HTTP server, with one listening on port 8001 and the other listening on port
8002. Next, create the reverse proxy, shown in Listing 16-11. Begin by installing the http-proxy module. The first line
of Listing 16-11 imports the http-proxy module. The second line defines an array of servers that requests can be
proxied to. In a real application, this information would likely come from a configuration file, and not be hard-coded.
Next, the createServer() method, which should be familiar from working with HTTP, is used to define the behavior
of the reverse proxy. The example server proxies requests in a round-robin fashion by maintaining an array of servers.
As requests come in, they are proxied to the first server in the array. That server is then pushed to the end of the array
to allow the next server to handle a request.

Listing 16-11.  A Reverse Proxy Server Based on the http-proxy Module

var proxyServer = require("http-proxy");
var servers = [
 {
 host: "localhost",
 port: 8001
 },
 {
 host: "localhost",
 port: 8002
 }
];
 
proxyServer.createServer(function (req, res, proxy) {
 var target = servers.shift();
 
 console.log("proxying to " + JSON.stringify(target));
 proxy.proxyRequest(req, res, target);
 servers.push(target);
}).listen(8000);
 

Of course, the previous example uses only one machine. However, if you have access to multiple machines, you
can run the reverse proxy on one machine, while one or more other machines run the HTTP server(s). You might
also want to add code that handles static resources, such as images and stylesheets, in the proxy server, or even add
another server all together.

nginx
Using a Node reverse proxy is nice because it keeps your software stack in the same technology. However, in
production systems, it is more common to use nginx to handle load balancing and static content. nginx is an open
source HTTP server and reverse proxy that is extremely good at serving static data. Therefore, nginx can be used
to handle tasks such as caching and serving static files, while forwarding requests for dynamic content to the Node
server(s).

To implement load balancing, you simply need to install nginx, then add the Node servers as upstream resources
in the server configuration file. The configuration file is located at {nginx-root}/conf/nginx.conf, where {nginx-
root} is the nginx root installation directory. The entire configuration file is shown in Listing 16-12; however, we are
interested in only a few key pieces.

Chapter 16 ■ Application Scaling

257

Listing 16-12.  An nginx Configuration File with Node Servers Listed as Upstream Resources

#user nobody;
worker_processes 1;
 
#error_log logs/error.log;
#error_log logs/error.log notice;
#error_log logs/error.log info;
 
#pid logs/nginx.pid;
 
events {
 worker_connections 1024;
}
  
http {
 include mime.types;
 default_type application/octet-stream;
 
 #log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 # '$status $body_bytes_sent "$http_referer" '
 # '"$http_user_agent" "$http_x_forwarded_for"';
 
 #access_log logs/access.log main;
 
 sendfile on;
 #tcp_nopush on;
 
 #keepalive_timeout 0;
 keepalive_timeout 65;
 
 #gzip on;
 
 upstream node_app {
 server 127.0.0.1:8001;
 server 127.0.0.1:8002;
 }
 
 server {
 listen 80;
 server_name localhost;
 
 #charset koi8-r;
 
 #access_log logs/host.access.log main;
 
 location / {
 root html;
 index index.html index.htm;
 }
 

Chapter 16 ■ Application Scaling

258

 location /foo {
 proxy_redirect off;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header Host $http_host;
 proxy_set_header X-NginX-Proxy true;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_pass http://node_app;
 }
 
 #error_page 404 /404.html;
 
 # redirect server error pages to the static page /50x.html
 #
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
 
 # proxy the PHP scripts to Apache listening on 127.0.0.1:80
 #
 #location ~ \.php$ {
 # proxy_pass http://127.0.0.1;
 #}
 
 # pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000
 #
 #location ~ \.php$ {
 # root html;
 # fastcgi_pass 127.0.0.1:9000;
 # fastcgi_index index.php;
 # fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_name;
 # include fastcgi_params;
 #}
 
 # deny access to .htaccess files, if Apache's document root
 # concurs with nginx's one
 #
 #location ~ /\.ht {
 # deny all;
 #}
 }
  
 # another virtual host using mix of IP-, name-, and port-based configuration
 #
 #server {
 # listen 8000;
 # listen somename:8080;
 # server_name somename alias another.alias;
 

http://node_app/
http://127.0.0.1/

Chapter 16 ■ Application Scaling

259

 # location / {
 # root html;
 # index index.html index.htm;
 # }
 #}
 
 # HTTPS server
 #
 #server {
 # listen 443;
 # server_name localhost;
 
 # ssl on;
 # ssl_certificate cert.pem;
 # ssl_certificate_key cert.key;
 
 # ssl_session_timeout 5m;
 
 # ssl_protocols SSLv2 SSLv3 TLSv1;
 # ssl_ciphers HIGH:!aNULL:!MD5;
 # ssl_prefer_server_ciphers on;
 
 # location / {
 # root html;
 # index index.html index.htm;
 # }
 #}
 
}
 

As previously mentioned, we are interested in only a few portions of the configuration file. The first interesting
piece, which you must add to your configuration file, is shown in Listing 16-13 and defines an upstream server named
node_app, which is balanced between two IP addresses. Of course, these IP addresses will vary based on the location
of your servers.

Listing 16-13.  An Upstream Resource Named node_app that Is Balanced Between Two Servers

upstream node_app {
 server 127.0.0.1:8001;
 server 127.0.0.1:8002;
}
 

Simply defining the upstream server does not tell nginx how to use the resource. Therefore, we must define a
route using the directives shown in Listing 16-14. Using this route, any requests to /foo are proxied upstream to one of
the Node servers.

Listing 16-14.  Defining a Route that Is Reverse Proxied to Upstream Servers

location /foo {
 proxy_redirect off;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

Chapter 16 ■ Application Scaling

260

 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header Host $http_host;
 proxy_set_header X-NginX-Proxy true;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_pass http://node_app;
}
 

Installing and configuring nginx is well beyond the scope of this book. In fact, there are entire books dedicated
to nginx. This extremely brief introduction is just meant to get you pointed in the right direction. You can find more
information about nginx on the project’s home page at www.nginx.org.

Scaling in the Cloud
Computing resources are increasingly thought of as commodities. Cloud computing providers allow servers to be
spun up and torn down in seconds in order to accommodate spikes in traffic. These servers can be geographically
distributed throughout the world, and best of all, you typically pay only for the computing time you actually use. There
are a number of public cloud providers to choose from, but this section focuses specifically on Nodejitsu and Heroku.
This section introduces the basics of getting a Node application deployed using each of these platforms.

Nodejitsu
Nodejitsu, founded in April 2010, is a platform as a service (PaaS) company based out of New York City. Nodejitsu
provides a set of command-line tools that are used to deploy applications to their cloud. To begin using Nodejitsu, you
must first register for an account at www.nodejitsu.com. Although signing up is free, deploying your application is not.
Nodejitsu will provide you with a free 30-day trial, but after that you have to pay a minimum of $9 per month (at the
time of this writing) to host your application.

After signing up, you’ll need to install Nodejitsu’s command-line tool, jitsu. jitsu can be installed using the
command npm install -g jitsu. During account creation, you will receive an e-mail with instructions on creating
a jitsu account. The instructions include a command similar to the one shown in Listing 16-15. After entering the
command e-mailed to you, your account will be created, and you will be prompted to create an account password.

Listing 16-15.  Generic Command that Confirms a jitsu Account

$ jitsu users confirm username confirmation_code
 

Next, create a Node application as you normally would. For the purposes of this example, simply use the HTTP server
from Listing 16-1. To deploy your project to Nodejitsu, it must contain a package.json file. If you need a refresher on the
package.json file, see Chapter 2. Next, issue the command shown in Listing 16-16 from within your application’s directory.

Listing 16-16.  Deploying a Project Using jitsu

$ jitsu deploy
 

If your project does not contain a package.json file, jitsu will create one for you by stepping you through a short
wizard. The package.json file should include the name, version, scripts, engines, and subdomain fields. The engines
field should contain a node field to specify the required version of Node. Similarly, the scripts field should contain a
start script so that Nodejitsu knows how to initialize your application. The subdomain will be used in your application’s
URL, and must be unique. An example package.json file suitable for jitsu deployment is shown in Listing 16-17.
Notice that the subdomain shown in this example includes a username (cjihrig) to help ensure that the string is unique.

http://node_app/
http://www.nginx.org/
http://www.nodejitsu.com/

Chapter 16 ■ appliCation SCaling

261

Listing 16-17. An Example package.json File Suitable for Nodejitsu Deployment

{
 "name": "simple-server",
 "subdomain": "simpleserver.cjihrig",
 "scripts": {
 "start": "simple-server.js"
 },
 "version": "0.0.1",
 "engines": {
 "node": "0.10.x"
 }
}

If everything is configured properly and your desired subdomain is available, your application will be deployed to
Nodejitsu’s cloud. To access your application, visit http://subdomain.jit.su, where subdomain is the value found in
the package.json file.

Heroku
Heroku is a PaaS company founded in 2007 and acquired by Salesforce.com in 2010. Unlike Nodejitsu, Heroku is
not strictly dedicated to Node. It supports Ruby, Java, Scala, and Python, among other languages. In order to deploy
a Node application to Heroku, you need a Heroku user account. Signing up for Heroku is free, and unlike Nodejitsu,
Heroku offers free hosting for small, single-core applications.

Begin by installing the Heroku Toolbelt on your local machine. You can download the Toolbelt from Heroku’s site
at www.heroku.com. Once the Toolbelt is installed, log in to Heroku using the command shown in Listing 16-18. After
entering the login command, you will be prompted for your Heroku credentials, as well as an SSH key.

Listing 16-18. Logging in to Heroku from the Command Line

$ heroku login

Next, write your application as you normally would. As with Nodejitsu, your application will need a package.
json file, as Heroku will use it to install your app. One point to note is that Heroku will assign a single port number to
your application, regardless of what you specify in your code. The port number will be passed in from the command
line, and you must account for this. Listing 16-19 shows how this is accomplished. Notice that the || operator is used
to select a port if one is not specified in the environment. This allows the code to run locally as well as on Heroku.

Listing 16-19. Selecting a Port Number via an Environment Variable

var port = process.env.PORT || 8000;

Next, create a Procfile. The Procfile is a text file located in an application’s root directory that includes the
command used to start the program. Assuming that your program is stored in a file named app.js, Listing 16-20
shows an example Procfile. The web part of the Procfile denotes that the application will be attached to Heroku’s
HTTP routing stack and receive web traffic.

Listing 16-20. An Example Heroku Procfile

web: node app.js

g

http://subdomain.jit.su/
http://salesforce.com/
http://www.heroku.com/

Chapter 16 ■ Application Scaling

262

Next, add your application files, package.json, Procfile, and anything other required files to a git repository.
This is required, as Heroku uses git for deployment. A new git repository can be created using the commands shown
in Listing 16-21. This assumes that you have git installed locally.

Listing 16-21.  Commands to Create a git Repository for Your Application

$ git init
$ git add .
$ git commit -m "init"
 

The next step is to create the Heroku application. This is done using the command shown in Listing 16-22.
You will want to replace app_name with your desired application name.

Listing 16-22.  The Command Used to Create a Heroku Application

$ heroku apps:create app_name
 

The final step is to deploy your application using the git command shown in Listing 16-23. This command
pushes your code to Heroku for deployment. Once your code is deployed, you can access your application at
http://app_name.herokuapp.com, where app_name is your application’s name.

Listing 16-23.  The Command Used to Deploy a Heroku Application

$ git push heroku master 

Summary
This chapter introduced a variety of techniques for scaling Node.js applications. We began by exploring the cluster
module, which allows an application to take advantage of all of the cores that modern machines have to offer, despite
JavaScript’s single threaded nature. Next, we moved on to reverse proxy servers, which allow an application to be
scaled across multiple machines. The reverse proxies discussed in this chapter can be combined with the cluster
module to take advantage of multiple cores as well as multiple machines. Finally, the chapter concluded by exploring
Node.js in the cloud. We examined two popular PaaS providers—Nodejitsu and Heroku.

This chapter concludes our exploration of the Node.js ecosystem. We sincerely hope that you have learned a lot
by reading this book. We know that we have learned a lot by writing it. The book isn’t quite finished, though. Please
read on for a primer/refresher on JavaScript Object Notation (JSON).

http://hyperlink/

263

Appendix A

JavaScript Object Notation

JavaScript Object Notation, or JSON, is a plain-text, data-interchange format based on a subset of the third edition of
the ECMA-262 standard. JSON is used as a mechanism for serializing data structures into strings. These strings are
often sent across networks, written to output files, or used for debugging. JSON is often touted as a “fat-free alternative
to XML” because it provides the same functionality as XML, but typically requires fewer characters to do so. JSON is
also much easier to parse compared to XML. Many developers have forgone XML in favor of JSON due to its simplicity
and low overhead.

Syntactically, JSON is very similar to JavaScript’s object literal syntax. JSON objects begin with an opening
curly brace, {, and end with a closing curly brace, }. Between the curly braces are zero or more key/value pairs,
known as members. Members are delimited by commas, while colons are used to separate a member’s key from its
corresponding value. The key must be a string enclosed in double quotes. This is the biggest difference from object
literal syntax, which allows double quotes, single quotes, or no quotes at all. The format of the value depends on its
data type. Listing A-1 shows a generic JSON string.

Listing A-1.  A Generic Example of a JSON Object

{"key1": value1, "key2": value2, ..., "keyN": valueN} 

Note■■   The root of a piece of JSON is almost always an object. However, this is not an absolute requirement. The top
level can also be an array.

Supported Data Types
JSON supports many of JavaScript’s native data types. Specifically, JSON supports numbers, strings, Booleans, arrays,
objects, and null. This section covers the details associated with each of the supported data types.

Numbers
JSON numbers must not have leading zeros, and must have at least one digit following a decimal point if one is
present. Due to the restriction on leading zeros, JSON supports base-10 numbers only (octal and hexadecimal literals
both require a leading zero). If you want to include numbers in other radixes, they must be converted to base-10
first. In Listing A-2, four different JSON strings are created. All of the JSON strings define a field named foo holding
the decimal value 100. In the first string, the value of foo comes from the integer constant 100. In the second string,
foo takes its value from the base-10 variable decimal. The third string, json3, takes its value from the base-8 variable
octal, while json4 gets its value from the base-16 variable hex. All of the strings result in the same JSON string,

Appendix A ■ JavaScript Object Notation

264

despite the fact that some of the variables have a different radix. This is possible because the variables octal and hex
are implicitly converted to base-10 numbers during string concatenation.

Listing A-2.  An Example of Numbers Used in JSON Strings

var decimal = 100;
var octal = 0144; // JavaScript octals have a leading zero
var hex = 0x64; // JavaScript hex numbers begin with 0x
var json1 = "{\"foo\":100}";
var json2 = "{\"foo\":" + decimal + "}";
var json3 = "{\"foo\":" + octal + "}";
var json4 = "{\"foo\":" + hex + "}";
 
// all JSON strings are {"foo":100}
 

The strings shown in Listing A-3 are not valid JSON because the non-decimal numbers are built directly into the
string. In this example, there is no chance for the octal and hex literals to be converted to their decimal equivalents.

Listing A-3.  An Example of Invalid Numeric Values in JSON Strings

var json1 = "{\"foo\":0144}";
var json2 = "{\"foo\":0x64}"; 

Strings
JSON strings are very similar to normal JavaScript strings. However, JSON requires strings to be enclosed in double
quotes. Attempting to use single quotes will result in an error. In Listing A-4, a JSON string is created with a field
named foo whose string value is bar.

Listing A-4.  An Example of a JSON String Containing String Data

var json = "{\"foo\":\"bar\"}";
 
// json is {"foo":"bar"} 

Booleans
JSON Booleans are identical to normal JavaScript Booleans, and can only hold the values true and false. The
example in Listing A-5 creates a JSON string with two fields, foo and bar, which hold the Boolean values true and
false, respectively.

Listing A-5.  An Example of a JSON String Containing Boolean Data

var json = "{\"foo\":true, \"bar\":false}";
 
// json is {"foo":true, "bar":false}
 

Appendix A ■ JavaScript Object Notation

265

Arrays
An array is an ordered sequence of values. JSON arrays begin with an opening square bracket, [, and end with a
closing square bracket,]. Between the brackets are zero or more values, separated by commas. All of the values do
not have to be of the same data type. Arrays can contain any of the data types supported by JSON, including nested
arrays. Several JSON strings containing arrays are shown in Listing A-6. The foo array defined in json1 is empty, while
the one defined in json2 holds two strings. The foo array defined in json3 is more complex—it holds a number, a
Boolean, a nested array of strings, and an empty object.

Listing A-6.  Examples of Arrays Within JSON Strings

var json1 = "{\"foo\":[]}";
var json2 = "{\"foo\":[\"bar\", \"baz\"]}";
var json3 = "{\"foo\":[100, true, [\"bar\", \"baz\"], {}]}";
 
// json1 is {"foo":[]}
// json2 is {"foo":["bar", "baz"]}
// json3 is {"foo":[100, true, ["bar", "baz"], {}]} 

Objects
An object is an unordered collection of key/value pairs. As with arrays, objects can be composed of any of the data
types supported by JSON. The example in Listing A-7 shows how JSON objects can be nested within each other.

Listing A-7.  An Example of Nested Objects in JSON

var json = "{\"foo\":{\"bar\":{\"baz\":true}}}";
 
// json is {"foo":{"bar":{"baz":true}}} 

null
JavaScript’s null data type is also supported in JSON. Listing A-8 creates a JSON string with a null-valued field named
foo.

Listing A-8.  Using the null Data Type in a JSON String

var json = "{\"foo\":null}";
 
// json is {"foo":null} 

Unsupported Data Types
A number of JavaScript’s built-in data types are not supported by JSON. These types are undefined and the built-in
objects Function, Date, RegExp, Error, and Math. undefined values simply cannot be represented in JSON, but the
other unsupported types can be represented, if you use a little creativity. In order to serialize an unsupported data type,
it must first be converted into some other representation that is JSON compliant. Although there is no standardized way
of doing this, many of these data types can simply be converted to a string using the toString() method.

Appendix A ■ JavaScript Object Notation

266

Functions for Working with JSON
Working with raw JSON strings can be tedious and error prone considering all of the braces and brackets that must be
accounted for. In order to avoid this tedium, JavaScript provides a global JSON object for working with JSON data. The
JSON object contains two methods—stringify() and parse()—which are used to serialize objects into JSON strings
and deserialize JSON strings into objects. This section explains how these methods work in detail.

JSON.stringify()
JSON.stringify() is the recommended way to serialize JavaScript objects into JSON strings. The syntax for
stringify() is shown in Listing A-9. The first argument, value, is the JavaScript object being stringified. The other
two arguments, replacer and space, are optional and can be used to customize the stringification process. These
arguments will be revisited shortly.

Listing A-9.  Usage of the JSON.stringify() Method

JSON.stringify(value[, replacer[, space]]) 

The toJSON() Method
It is possible to customize the stringification process in several ways. One example of this is using the toJSON()
method. During serialization, JSON checks the objects for a method named toJSON(). If this method exists then it is
called by stringify(). Instead of processing the original object, stringify() will serialize whatever value is returned
by toJSON(). This is how JavaScript’s Date objects are serialized. Since JSON does not support the Date type, Date
objects come equipped with a toJSON() method.

Listing A-10 shows toJSON() in action. In the example, an object named obj is created with the fields foo, bar,
and baz. When obj is stringified, its toJSON() method is called. In this example, toJSON() returns a copy of obj, minus
the foo field. The copy of obj is serialized, resulting in a JSON string containing only the bar and baz fields.

Listing A-10.  An Example Using a Custom toJSON() Method

var obj = {foo: 0, bar: 1, baz: 2};
 
obj.toJSON = function() {
 var copy = {};
 
 for (var key in this) {
 if (key === "foo") {
 continue;
 } else {
 copy[key] = this[key];
 }
 }
 
 return copy;
};
 
var json = JSON.stringify(obj);

console.log(json);
 
//json is {"bar":1,"baz":2}
 

Appendix A ■ JavaScript Object Notation

267

The replacer Argument
The replacer argument to JSON.stringify() can be used as a function that takes two arguments representing a
key/value pair. First, the function is called with an empty key, and the object being serialized as the value.
The replacer() function must check for the empty string as the key in order to handle this case. Next, each of the
object’s properties and corresponding value are passed to the replacer(), one by one. The value returned by replacer()
is used in the stringification process. An example replacer() function, with no customized behavior, is shown in
Listing A-11.

Listing A-11.  An Example replacer() Function with no Custom Behavior

function(key, value) {
 // check for the top level object
 if (key === "") {
 return value;
 } else {
 return value;
 }
}
 

It is important to handle the top-level object properly. Typically, it is best to simply return the object’s value.
In the example in Listing A-12, the top-level object returns the string foo. Therefore, no matter how the object’s
properties are handled, stringify() will always just return foo.

Listing A-12.  A replacer() Function that Serializes Any Object as the String foo

function(key, value) {
 if (key === "") {
 return "foo";
 } else {
 // this is now irrelevant
 return value;
 }
}
 

In Listing A-13, an object is serialized using a custom replacer() function named filter(). The job of the
filter() function is to serialize numeric values only. All non-numeric fields will return an undefined value. Fields
that return undefined are automatically removed from the stringified object. In this example, the replacer() function
causes baz to be dropped because it holds a string.

Listing A-13.  An Example replacer() Function that Only Serializes Numbers

function filter(key, value) {
 // check for the top level object
 if (key === "") {
 return value;
 } else if (typeof value === "number") {
 return value;
 }
}
 

Appendix A ■ JavaScript Object Notation

268

var obj = {foo: 0, bar: 1, baz: "x"};
var json = JSON.stringify(obj, filter);
 
console.log(json);
// json is {"foo":0,"bar":1} 

The Array Form of replacer
The replacer argument can also hold an array of strings. Each string represents the name of a field that should be
serialized. Any field that is not included in the replacer array will not be included in the JSON string. In the example
in Listing A-14, an object is defined with fields named foo and bar. An array is also defined, containing the strings foo
and baz. During stringification, the bar field is dropped because it is not part of the replacer array. Note that a baz
field is not created because, although it is defined in the replacer array, it is not defined in the original object. This
leaves foo as the only field in the stringified object.

Listing A-14.  An Example of the replacer Argument as an Array

var obj = {foo: 0, bar: 1};
var arr = ["foo", "baz"];
var json = JSON.stringify(obj, arr);
 
console.log(json);
// json is {"foo":0} 

The space Argument
JSON strings are commonly viewed for logging and debugging purposes. In order to aid readability, the stringify()
function supports a third argument named space, which allows the developer to format whitespace in the resulting
JSON string. This argument can be a number or a string. If space is a number then up to 10 space characters can be
used as whitespace. If the value is less than one then no spaces are used. If the value exceeds 10 then the maximum
value of 10 is used. If space is a string then that string is used as whitespace. If the string length is greater than 10, then
only the first 10 characters are used. If space is omitted or null, then no whitespace is used. Listing A-15 shows how
the space argument is used.

Listing A-15.  An Example of Stringification Using the space Argument

var obj = {
 foo: 0,
 bar: [null, true, false],
 baz: {
 bizz: "boff"
 }
};
var json1 = JSON.stringify(obj, null, " ");
var json2 = JSON.stringify(obj, null, 2);
 
console.log(json1);
console.log(json2);
 

In Listing A-15, the JSON strings in json1 and json2 end up being identical. The resulting JSON is shown in
Listing A-16. Notice that the string now spans multiple lines and the properties are indented by an additional two
spaces as nesting increases. For non-trivial objects, this formatting greatly improves readability.

Appendix A ■ JavaScript Object Notation

269

Listing A-16.  The Formatted JSON String Generated in Listing A-15

{
 "foo": 0,
 "bar": [
 null,
 true,
 false
],
 "baz": {
 "bizz": "boff"
 }
} 

JSON.parse()
To build a JavaScript object from a JSON-formatted string, you use the JSON.parse() method. parse() provides the
inverse functionality of stringify(). It is used as a safer alternative to eval(), because, while eval() will execute
arbitrary JavaScript code, parse() was designed to only handle valid JSON strings.

The syntax of the parse() method is shown in Listing A-17. The first argument, text, is a JSON-formatted
string. If text is not a valid JSON string, a SyntaxError exception will be thrown. This exception will be thrown
synchronously, meaning that try...catch...finally statements can be used with parse(). If no problems are
encountered, parse() returns a JavaScript object corresponding to the JSON string. parse() also takes an optional
second argument named reviver, which will be covered shortly.

Listing A-17.  Usage of the JSON.parse() Method

JSON.parse(text[, reviver])
 

In Listing A-18, the parse() method is used to construct an object from a JSON string. The resulting object, stored
in obj, has two properties—foo and bar—which hold the numeric values 10 and 20.

Listing A-18.  An Example of Using JSON.parse() to Deserialize a JSON String

var string = "{\"foo\":10, \"bar\":20}";
var obj = JSON.parse(string);
 
console.log(obj.foo);
console.log(obj.bar);
// obj.foo is equal to 10
// obj.bar is equal to 20 

The reviver() Argument
The second argument to parse(), reviver(), is a function that allows an object to be transformed during parsing.
As each property is parsed from the JSON string it is run through the reviver() function. The value returned by
reviver() is used as the property’s value in the constructed object. If an undefined value is returned by reviver()
then the property is removed from the object.

The reviver() function takes two arguments, the property name (key) and its parsed value (value). reviver()
should always check the key argument for the empty string. The reason is, after reviver() is called on each individual
property, it is called on the constructed object. On the last call to reviver(), the empty string is passed as the key
argument, and the constructed object is passed as value. After taking this case into consideration, an example
reviver() function with no customization is shown in Listing A-19.

Appendix A ■ JavaScript Object Notation

270

Listing A-19.  An Example reviver() Function

function(key, value) {
 // check for the top level object
 if (key === "") {
 // be sure to return the top level object
 // otherwise the constructed object will be undefined
 return value;
 } else {
 // return the original untransformed value
 return value;
 }
}
 

In Listing A-20, an object is constructed from a JSON string using a custom reviver() function named square().
As the name implies, square() squares the value of each property encountered during parsing. This causes the values
of the foo and bar properties to become 100 and 400 after parsing.

Listing A-20.  An Example Using JSON.parse() and a Custom reviver() Function

function square(key, value) {
 if (key === "") {
 return value;
 } else {
 return value * value;
 }
}
 
var string = "{\"foo\":10, \"bar\":20}";
var obj = JSON.parse(string, square);
 
console.log(obj.foo);
console.log(obj.bar);
// obj.foo is 100
// obj.bar is 400 

Note■■  B oth JSON.parse() and JSON.stringify() are synchronous methods that can throw exceptions. Therefore,
any use of these methods should be wrapped in a try...catch statement.

Summary
JSON is used extensively in the Node ecosystem, as you’ve undoubtedly seen by now. For example, any package worth
using will contain a package.json file. In fact, a package.json is required in order for a module to be used with npm.
Nearly every data API is built using JSON as well, as the Node community has a strong preference toward JSON, as
opposed to XML. Therefore, understanding JSON is critical to using Node effectively. Luckily, JSON is simple to read,
write, and understand. After reading this chapter, you should understand JSON well enough to use it in your own
applications, or interface with other applications that do (for example, RESTful web services).

A������
addEventListener() method, 208
add() method, 235
address() method, 152
ArrayBuffer Views

byteLength, 118
byteOffset, 119
constructor information, 117
data values, 118
description of, 115
empty view, 117
Int8Array View, 118
length, 119
output, 117
set() method, 120
subarray(), 121
Uint32Array View, 115
view properties, 118
view sizing, 117

assert() method, 198
async module

doUntil() method, 44
doWhilst() method, 44
parallel() method

parallelLimit() method, 40
three tasks execution, 39

series() method
callback function, 36
errors handling, 38
executing functions, 37
npm install async command, 37
timer tasks, 37

until() method, 44
waterfall model, 41
whilst() method, 43

B������
bar() function, 25–26
basename() method, 80
Binary data

array specification
ArrayBuffer() constructor, 112
ArrayBuffer Views (see ArrayBuffer Views)
BYTES_PER_ELEMENT

property, 115
get() method, 119
output, 115
slice() method, 113

definition, 109
endianness

big-endian machine, 111
32-bit unsigned integer, 110
little-endian machine, 111

JSON Object, 109
node buffers

array compatibility, 128
Buffer() constructor, 121
byteLength() class, 124
concat() class, 127
copy() method, 127
fill(), 124
isBuffer(), 124
isEncoding() method, 123
reading numeric data, 126
slice() method, 127
stringification methods, 123
write() method, 124
write numeric data, 125

os.endianness() method, 111
Snowman Unicode Character, 110
string, 110

Index

271

C�       �
chdir() method, 78
Child_process core module

ChildProcess class, 134
close event, 135
disconnect() method, 139
error event, 135
execFile() method, 131
exec() method, 129
exit event, 135
fork(), 136
kill(), 136
pid property, 136
send() method, 137
spawn() method, 132
stdio option, 133

Client-server model, 148
close() method, 206
cluster.fork() method, 250
Cluster module

cluster.setupMaster() method, 251
cpus() method, 250
disconnect() method

crashed worker processes, 253
disconnect and exit events, 252
Worker class, 254
workers object, 253

fork() method, 250
implementation, 250
scaling across machines

http-proxy, 255
nginx, 256

scaling in the cloud
Heroku, 261
Nodejitsu, 260

cluster.setupMaster() method, 251
Command line interface (CLI)

command line arguments
argv array property, 59
argv-test.js, 59
automatically generated help, 62
in commander, 61
parseArgs() function, 60
sanitize() function, 61

signal events, 75
standard error (stderr)

console.trace() method, 72
console.warn() and console.error() method, 71
and standard output (stdout), 72
write() method, 71

standard input (stdin)
choose() function, 66
commander’s prompt() method, 65
confirm() method, 65
once() method, 63

password(), 65
pause() method, 63
reading data, 64
resume() method, 63
string-encoding types, 64

standard output (stdout)
console.log() method, 67
log() method, 68
and standard error (stderr), 72
stdout.write() method, 67
util.inspect() method, 69

TTY interface, 73
user environment variables, 75

cpus() method, 250
createServer() method, 150
cwd() method, 78

D�       �
Date.now() method, 96
Debugging

debugger statements, 237
diagnosing program and

unexpected values, 237
locating and fixing software bugs, 237
node-inspector, 238
node-inspector module

application, 239
Chrome’s developer tools, 238
debug-brk flag, 239
URL, 239

repl command, 238
dirname() method, 81
doesNotThrow() method, 243
Domain name system (DNS)

lookup() method, 162
resolve(), 163
reverse() method, 164
Valid IP Addresses, 164

E�       �
Event emitters

callback hell avoidance, 51
creation, 45
emit() method, 45
EventEmitter instance, 45
forEach() method, 47
inherits() method, 50
listenerCount() method, 47
newListener event, 48
One-Time Event Listener, 46
on() method, 46
passing arguments, 45
removeListener() method, 49
simple event emitter, 45

■ index

272

exec() method, 129
execFile() method, 131
Executing code

child_process core module
ChildProcess class, 134
close event, 135
disconnect() method, 139
error event, 135
execFile() method, 131
exec() method, 129
exit event, 135
fork(), 136
kill(), 136
pid property, 136
send() method, 137
spawn() method, 132
stdio option, 133

vm core module
createScript() method, 144
runInContext() method, 143
runInNewContext(), 141
runInThisContext() method, 140
sandboxing data, 142

Express framework
express-validator, 198
REST (see Representational State Transfer (REST))
routes

http module, 189–190
parameters, 191

skeleton app
app.js file, 193–194
creation, 192
get() method, 195
installation, 192
middleware, 195
/routes/index.js, 195
/routes/user.js, 195

template
account/home.jade, 197
HTML string, 197
jade, 196
render() method, 196

express-validator sanitize() Method, 199
extname() method, 80

F�       �
File streams

createReadStream() method
bytesWritten property, 106
console.log(), 102–103
fs module, 102
options argument, 103
ReadStream type, 103
WriteStream type, 105

fs.readFile(), 102

File system
current working directory, 78
__filename and __dirname variables, 77
fs module

closing files, 89
directory creation, 90
exists() and existsSync(), 83
fs.Stats object, 84
importing, 82
readdir() method, 91
readFile() and readFileSync()

methods, 87
reading data, 86
renaming files, 89
rmdir() method, 91
stat() method, 83
stats() variations, 85
unlink() method, 90
watch() method, 93
writing data, 87

node executable, 79
path module

basename() method, 80
delimiter property, 80
dirname() method, 81
extname() method, 80
normalization, 81
path.relative() method, 82
path.sep and join(), 79

filter() function, 267
fork() method, 136

G�       �
get() method, 119, 190
Google’s V8 JavaScript engine, 1

H�       �
Hypermedia as the engine of

application state (HATEOAS), 199
Hypertext Transfer Protocol (HTTP), 13

createServer() method, 167
form data

bodyParser() middleware, 182
Content-Length header, 181
Content-Type header, 181
nested objects, 183
POST request, 181
querystring.parse() method, 181

GET requests, 180
middleware function

createServer(), 177
multiple pieces, 177
output, 178
query(), 177–178

■ Index

273

OpenSSL command, 186
options argument, 179
request headers, 170
request method, 168, 179–180
request module

cookieParser() middleware, 185
options, 184
request.cookie() method, 185
use of, 184

response codes, 170
response headers

Content-Type, 172
Google’s Chrome browser, 173
setHeader() Method, 173
writeHead() method, 174

server, 186, 187
SSL/TLS, 186
telnet, 168
working with cookies, 175

I�       �
ifError() Method, 243
insertId property, 224
isEncoding() method, 123

J�       �
JavaScript

client-side scripting language, 1
de facto standard, 1
drawbacks, 1
Google’s V8 JavaScript engine, 1
node

vs. apache, 1
installation, 1–2
I/O operation, 2
nonblocking database query, 2
program execution, 8
REPL (see Read-Eval-Print-Loop (REPL))

JavaScript object notation (JSON)
parse() method, 269
stringify() method

replacer argument, 267
replacer array, 268
space argument, 268
toJSON() method, 266

supported data types
arrays, 265
booleans, 264
null, 265
numbers, 263
objects, 265

strings, 264
unsupported data types, 265

join() method, 81
JSON.parse() method, 269
JSON.stringify() method

replacer argument, 267
replacer array, 268
space argument, 268
toJSON() method, 266

K�       �
kill() method, 136

L�       �
Linux, Apache, MySQL, and PHP (LAMP) stack, 1
Logging

console.log() and console.error()
methods, 233

winston module
Logger creation, 236
output, 234–235
path variable, 234
transports, 235
util.format(), 234
winston.log() method, 234

M�       �
Memoization, 44
MongoDB

AngularJS, 225
close() method, 226
createConnection() method, 225
data insertion, 228
data query, 229
model() method, 227
Node.js. Mongo, 225
npm command, 225
query builder interface, 230
remove() method, 232
Schema() constructor, 226–227
update() method, 231

MySQL
connection.destroy() method, 222
connect() method, 220
createConnection() method, 220
createPool() method, 221
end() method, 222
getConnection() method, 221
query execution, 223–224
release() method, 222
third-party module, 219

■ index

274

Hypertext Transfer Protocol (HTTP) (cont.)

N�       �
Network programming

client-server model, 148
DNS

lookup() method, 162
resolve(), 163
reverse() method, 164
valid IP Addresses, 164

sockets, 147
TCP (see Transmission control protocol (TCP))
UDP

bind() method, 160
createSocket() method, 160
receiving data, 161
send() method, 161

Node buffers
array compatibility, 128
Buffer constructor, 121
byteLength() class method, 124
concat() method, 127
copy() method, 127
fill() method, 124
isBuffer() method, 124
isEncoding() method, 123
reading numeric data, 126
slice() method, 127
stringification methods, 123
write() method, 124
write numeric data, 125

Node module system
bar() function, 25
foo.js, 24–25
node_modules folder, 24
npm registry, 9
npm user account, 26
package installation

commander module, 9
global packages, 11
linking packages, 12
locations, 11
npm commands, 10
relational version range descriptors, 10
uninstalling packages, 13
unlinking packages, 12
updating packages, 13
URLs, 10

package.json file
additional fields, 21
author and contributors, 17
dependencies field, 18
description and keywords, 17
devDependencies field, 19
engines, 19
main entry point, 18
Markdown Syntax, 22–23

module dependency, 16
npm init, 21–22
npm registry, 16
optionalDependencies field, 19
preferGlobal setting, 18
rainbow text program, 24
scripts field, 20
version tagging, 16

properties, 26
require() function

colors module, 23
commander module, 13
core modules, 13
file extension processing, 15
file modules, 14
module caching, 15
resolve(), 15

Node programming model
asynchronous programming, 30
async module (see async module)
exception handling

Domains, 33
explicit binding, 34
global exception handlers, 33
traditional error handling, 32
uncaughtException error, 33

infinite loop, 29
multithreaded execution, 29

normalize() method, 81
NoSQL database

applications, 225
MongoDB

AngularJS, 225
close() method, 226
createConnection() method, 225
data insertion, 228
data query, 229
model() method, 227
Node.js. Mongo, 225
npm command, 225
query builder interface, 230
remove() method, 232
Schema() constructor, 226–227
update() method, 231

transaction, 225

O�       �
on() method, 151
OpenSSL command, 186

P�       �
pause() method, 97
pipe() method, 100
Prototypal inheritance, 50

■ Index

275

Q�       �
querystring.parse() method, 181

R�       �
Read-Eval-Print-Loop (REPL)

.break command, 6

.clear command, 8

.exit command, 6
features, 5
.help command, 6
input code, 5
.load command, 7
multiline expression, 5
.save command, 7

read() method, 87
readSync() method, 87
Relational database

data types, 217
foreign key, 218
MySQL

connection.destroy() method, 222
connect() method, 220
createConnection() method, 220
createPool() method, 221
end() method, 222
getConnection() method, 221
query execution, 223–224
release() method, 222
third-party module, 219

primary key, 218
rows/tuples, 217
SQL CREATE statement, 217–218
SQL INSERT statement, 218
vehicle table, 218

removeAllListeners() method, 48
remove() method, 235
rename() method, 89
replacer() function, 267
Representational State

Transfer (REST)
API

app.js content, 199–200
create operation, 200–201
delete operation, 202
read operation, 201
routes.js, 200
test script, 202
update operation, 201–202

principles, 199
require() function, 13
resume() method, 97
reviver() function, 269
runInContext() method., 143

S�       �
Secure Socket Layer/Transport Layer Security

(SSL/TLS), 186
setMaxListeners() method, 49
set() method, 120
Skeleton app

app.js file, 193–194
creation, 192
get() method, 195
installation, 192–193
middleware, 195
/routes/index.js, 196
/routes/user.js, 195

spawn() method, 132
Streams

creation, 95
definition, 95
file streams (see File streams)
importing, 95
readable streams

close event, 97
data event, 96
end event, 96
error event, 97

writable streams
close and error events, 99
drain event, 98
end() method, 98
finish event, 98
output, 101
pipe() method, 100
write() method, 98

zlib module, 106
subarray() method, 121

T�       �
Testing

assert module
assertion methods, 242
assert.strictEqual() method, 240
doesNotThrow() Method, 243
failed assertion, 241
ifError() method, 243
throws() method, 242

Mocha testing framework
asynchronous code, 246
creating test, 244
disabling tests, 248
fs.exists() method, 246
indexOf() method, 246
running Mocha, 244
test hooks, 247
test suite, 245, 248

■ index

276

throws() method, 242
Timers and scheduling

clearTimeout() function, 53
intervals

asynchronous callback functions, 56
clearImmediate() function, 54
consistent implementation,

callback function, 57
creation and cancellation, 53
inconsistent implementation,

callback function, 57
nextTick() method, 55
ref() method, 54
setImmediate() function, 54
synthetic computationally intensive function, 54
unref() method, 53

setTimeout() function, 52–53
toString() method, 123

Transmission control protocol (TCP)
address() method, 152
close() method, 154
communication protocol, 149
connect() and createConnection(), 155
connection-oriented protocol, 150
createServer() method, 150
error events, 155
handling connections, 153
listen() method, 150
listen() variation, 152
net Socket class, 157–158
ref() and unref(), 154
sockets, servers, and child processes, 159U

U�       �
User datagram protocol (UDP)

bind() method, 160
createSocket() method, 160
receiving data, 161
send() method, 161

V�       �
validationErrors() method, 198
Virtual machine (vm) core module

createScript() method, 144
runInContext() method, 143
runInNewContext(), 141
runInThisContext() method, 140
sandboxing data, 142

W, X, Y�       �
watch() method, 93
Waterfall model, 41
WebSockets API

close event handler, 209
close() method, 206
error event, 209
message event handler, 208
node core

Chrome’s developer tools, 212
HTTP client, 211
Server() constructor, 210
WebSocket client, 210

open event handler, 208
readyState property, 207
send() method, 209
Socket.IO

client-side script, 214
express, 215
server creation, 213

WebSocket() constructor
function, 206

writeFile()method, 88
write() method, 87, 98

Z�       �
zlib.createGunzip() method, 107
zlib.creatGzip() method, 106

■ Index

277

Pro Node.js for
Developers

Colin J. Ihrig

Pro Node.js for Developers

Copyright © 2013 by Colin J. Ihrig

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5860-5

ISBN-13 (electronic): 978-1-4302-5861-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Andy Olsen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss, Tom Welsh

Coordinating Editor: Mark Powers
Copy Editors: Thomas McCarthy and Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781430258605. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781430258605
http://www.apress.com/source-code/

This book is dedicated to my son, CJ. I love you so much!

This book is also dedicated to the entire Node.js community.

Contents

�

�

�

�

�

�

�

1

vii

Contents

About the Author ��� xix

About the Technical Reviewer ��� xxi

Acknowledgments ��� xxiii

Introduction �� xxv

Chapter 1: Getting Started ■ ���1

The Node Execution Model ��1

Installing Node ��2

Installing via Package Managers ��� 3

Building from Source ��� 4

Final Installation Steps �� 4

The Read-Eval-Print-Loop ���5

REPL Features ��� 5

REPL Commands ��� 6

Executing Node Programs ���8

Summary ���8

Chapter 2: The Node Module System ■ ���9

Installing Packages ���9

Installing from URLs �� 10

Package Locations ��� 11

Global Packages �� 11

Linking Packages �� 12

Unlinking Packages ��� 12

■ Contents

viii

Updating Packages��� 13

Uninstalling Packages�� 13

The require( ) Function���13

Core Modules�� 13

File Modules��� 14

File Extension Processing��� 15

Resolving a Module Location�� 15

Module Caching�� 15

The package.json File���16

Description and Keywords�� 17

Author and Contributors��� 17

The Main Entry Point�� 18

The preferGlobal Setting��� 18

Dependencies��� 18

Developmental Dependencies�� 19

Optional Dependencies��� 19

Engines��� 19

Scripts�� 20

Additional Fields��� 21

Generating a package.json File�� 21

A Complete Example��23

Module Authoring���24

The module Object�� 25

Publishing to npm��� 26

Summary��27

Chapter 3: The Node Programming Model■■ ��29

Asynchronous Programming��30

Callback Hell��� 31

Exception Handling���32

Domains�� 33

■ Contents

ix

The async Module��36

Executing in Series��� 36

Executing in Parallel��� 39

The Waterfall Model�� 41

The Queue Model�� 41

Repeating Methods��� 43

Additional async Functionality�� 44

Summary��44

Chapter 4: Events and Timers■■ ���45

Event Emitters��45

Listening for Events�� 46

Inspecting Event Listeners��� 47

The newListener Event��� 48

Removing Event Listeners�� 48

Detecting Potential Memory Leaks��� 49

Inheriting from Event Emitters�� 50

Using Events to Avoid Callback Hell�� 51

Timers and Scheduling���52

Intervals�� 53

The ref( ) and unref( ) Methods�� 53

Immediates��� 54

Scheduling with process.nextTick( )��� 55

Summary��58

Chapter 5: The Command Line Interface■■ ��59

Command Line Arguments���59

Parsing Argument Values�� 60

Command Line Arguments in commander��� 61

The Standard Streams��63

Standard Input�� 63

Standard Output��� 66

■ Contents

x

Standard Error�� 71

The TTY Interface�� 73

Signal Events��75

User Environment Variables���75

Summary��76

Chapter 6: The File System■■ ���77

Relevant Paths���77

The Current Working Directory��� 78

Locating the node Executable�� 79

The path Module��79

Cross-Platform Differences�� 79

Extracting Path Components�� 80

Path Normalization��� 81

Resolving a Relative Path Between Directories�� 82

The fs Module���82

Determining if a File Exists��� 82

Retrieving File Statistics��� 83

Opening Files�� 85

Reading Data from Files��� 86

Writing Data to Files��� 87

Closing Files��� 89

Renaming Files��� 89

Deleting Files�� 90

Creating Directories�� 90

Reading the Contents of a Directory��� 91

Removing Directories��� 91

Watching Files�� 93

Summary��94

■ Contents

xi

Chapter 7: Streams■■ ���95

What Are Streams? ��95

Working with Streams��95

Readable Streams��95

data Events��� 96

The end Event��� 96

The close Event�� 97

error Events�� 97

Controlling Readable Streams�� 97

Writable Streams��97

The write( ) Method��� 98

The end( ) Method��� 98

The drain Event��� 98

The finish Event�� 98

The close and error Events��� 99

An Example of a Writable Stream��� 99

Pipes��99

The pipe( ) Method�� 100

Back to the Writable Stream Example�� 101

File Streams���102

createReadStream( )��� 102

createWriteStream( )��� 105

Compression Using the zlib Module���106

Deflate/Inflate and DeflateRaw/InflateRaw�� 107

Convenience Methods�� 107

Summary��108

■ Contents

xii

Chapter 8: Binary Data■■ ���109

An Overview of Binary Data���109

Endianness��� 110

The Typed Array Specification��111

ArrayBuffers��� 112

ArrayBuffer Views��� 114

Node Buffers��121

The Buffer Constructor��� 121

Stringification Methods�� 123

Buffer.isEncoding( )��� 123

Buffer.isBuffer( )�� 124

Buffer.byteLength( ) and length��� 124

fill( )��� 124

write( )��� 124

Writing Numeric Data��� 125

Reading Numeric Data�� 126

slice( )��� 127

copy( )��� 127

Buffer.concat( )�� 127

Typed Array Compatibility��� 128

Summary��128

Chapter 9: Executing Code■■ ���129

The child_process Module���129

exec( )��� 129

execFile( )�� 131

spawn( )�� 132

The ChildProcess Class�� 134

The error Event��� 135

The exit Event��� 135

■ Contents

xiii

The close Event�� 135

The pid Property��� 136

kill( )�� 136

fork( )�� 136

send( )��� 137

disconnect( )��� 139

The vm Module��� 139

runInThisContext( )�� 140

runInNewContext( )��� 141

runInContext( )�� 143

createScript( )��� 144

Summary��145

Chapter 10: Network Programming■■ ��147

Sockets���147

Client-Server Programming���148

Transmission Control Protocol��149

Creating a TCP Server��� 150

Listening for Connections��� 150

Handling Connections��� 153

Shutting Down the Server�� 154

ref( ) and unref( )��� 154

error Events�� 155

Creating a TCP Client�� 155

The net.Socket Class�� 157

Sockets, Servers, and Child Processes��� 159

User Datagram Protocol���159

Creating UDP Sockets��� 160

Binding to a Port��� 160

Receiving Data�� 161

Sending Data�� 161

■ Contents

xiv

Domain Name System��162

Performing Lookups��� 162

Reverse Lookups�� 164

Detecting Valid IP Addresses�� 164

Summary��165

Chapter 11: HTTP■■ ��167

A Basic Server��167

Anatomy of an HTTP Request���168

Request Methods�� 168

Request Headers�� 170

Response Codes��� 170

Response Headers�� 172

Working with Cookies���175

Middleware��176

Connect�� 177

Issuing HTTP Requests���178

Form Data��� 181

The request Module�� 183

HTTPS���186

Summary��188

Chapter 12: The Express Framework■■ ���189

Express Routes���189

Route Parameters��� 191

Creating an Express Application���192

Examining the Skeleton App��� 193

Templating��196

express-validator���198

REST���199

An Example RESTful API��� 199

Summary��204

■ Contents

xv

Chapter 13: The Real-Time Web■■ ���205

The WebSockets API���206

Opening a WebSocket��� 206

Closing WebSockets��� 206

Checking a WebSocket’s State��� 207

The open Event��� 208

The message Event�� 208

The close Event�� 209

The error Event��� 209

Sending Data�� 209

WebSockets in Node��209

A WebSocket Client��� 210

A HTML Client��� 211

Examining the WebSocket Connection��� 212

Socket.IO��213

Creating a Socket.IO Server�� 213

Creating a Socket.IO Client��� 214

Socket.IO and Express�� 215

Summary��215

Chapter 14: Databases■■ ���217

Relational Databases��217

MySQL��219

Connecting to MySQL��� 219

Connection Pooling��� 221

Closing a Connection�� 222

Executing Queries��� 223

NoSQL Databases���225

MongoDB��225

Connecting to MongoDB��� 225

Schemas��� 226

■ Contents

xvi

Models�� 227

Inserting Data��� 228

Querying Data��� 229

Query Builder Methods��� 230

Updating Data��� 231

Deleting Data�� 232

Summary��232

Chapter 15: Logging, Debugging, and Testing■■ ��233

Logging��233

The winston Module��� 234

Debugging��237

The node-inspector Module�� 238

Testing��240

The assert Module�� 240

The Mocha Testing Framework��� 244

Summary��248

Chapter 16: Application Scaling■■ ���249

The cluster Module���249

The fork( ) Method��� 250

The disconnect( ) Method��� 252

The workers Object�� 253

The Worker Class�� 254

Scaling Across Machines���255

http-proxy��� 255

nginx��� 256

Scaling in the Cloud���260

Nodejitsu�� 260

Heroku�� 261

Summary��262

�

�

�

�

�

�

�

�

�

�

•

■ Contents

xvii

Appendix A: JavaScript Object Notation ■ ��263

Supported Data Types ���263

Numbers �� 263

Strings ��� 264

Booleans �� 264

Arrays �� 265

Objects ��� 265

null ��� 265

Unsupported Data Types �� 265

Functions for Working with JSON ��266

JSON�stringify() ��� 266

JSON�parse() ��� 269

Summary ���270

Index ���271

xix

About the Author

Colin Ihrig has been experimenting with JavaScript for fun and profit for over
15 years. He is currently a full-time Node.js engineer, as well as a JavaScript
writer and evangelist in his spare time. Colin received his Bachelor of Science in
Engineering and Master of Science in Computer Engineering from the University
of Pittsburgh in 2005 and 2008, respectively. Colin can be reached via his personal
web page at http://www.cjihrig.com.

http://www.cjihrig.com

xxi

About the Technical Reviewer

Andy Olsen is a freelance consultant/trainer based in the UK, and has been
working in distributed systems for 20 years. Andy started working in C in the mid
1980s, but it might as well have been the mid 1880s, it seems so long ago. Andy
migrated into C++, Java, and .NET as times and fashions changed, and is currently
kept (too?) busy in web-based systems, both client-side and server-side. Andy lives
by the seaside in Swansea and enjoys running, coffee shops, and watching the
Swans.

xxiii

Acknowledgments

I would like to thank everyone who helped make this book possible. Special thanks to Mark Powers and Ewan
Buckingham of the Apress editorial team. I would also like to thank the technical reviewer, Andy Olsen,
for his valuable feedback. Of course, many thanks go out to my friends and family.

	Pro Node.js for
Developers
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	The Node Execution Model
	Installing Node
	Installing via Package Managers
	Building from Source
	Final Installation Steps

	The Read-Eval-Print-Loop
	REPL Features
	REPL Commands
	.help
	.exit
	.break
	.save filename
	.load filename
	.clear

	Executing Node Programs
	Summary

	Chapter 2: The Node Module System
	Installing Packages
	Installing from URLs
	Package Locations
	Global Packages
	Linking Packages
	Unlinking Packages
	Updating Packages
	Uninstalling Packages

	The require() Function
	Core Modules
	File Modules
	File Extension Processing
	Resolving a Module Location
	Module Caching

	The package.json File
	Description and Keywords
	Author and Contributors
	The Main Entry Point
	The preferGlobal Setting
	Dependencies
	Developmental Dependencies
	Optional Dependencies
	Engines
	Scripts
	Additional Fields
	Generating a package.json File

	A Complete Example
	Module Authoring
	The module Object
	Publishing to npm

	Summary

	Chapter 3: The Node Programming Model
	Asynchronous Programming
	Callback Hell
	Explicit Binding

	Exception Handling
	The async Module
	Executing in Series
	Handling Errors

	Executing in Parallel
	Limiting Parallelism

	The Waterfall Model
	Additional Queue Methods and Properties

	Repeating Methods
	Repeating Variations

	Summary

	Chapter 4: Events and Timers
	Event Emitters
	Listening for Events
	One-Time Event Listeners

	Inspecting Event Listeners
	The newListener Event
	Inheriting from Event Emitters
	Using Events to Avoid Callback Hell

	Timers and Scheduling
	Intervals
	Implementing Asynchronous Callback Functions
	Maintaining Consistent Behavior

	Summary

	Chapter 5: The Command Line Interface
	Command Line Arguments
	Parsing Argument Values
	Command Line Arguments in commander
	Automatically Generated Help

	The Standard Streams
	Standard Input
	Reading From stdin Using commander
	confirm()
	password()
	choose()

	Standard Output
	console.log()
	Other Printing Functions
	util.inspect()

	Standard Error
	console.trace()
	Separating stderr and stdout

	The TTY Interface
	Determining the Terminal Size

	Signal Events
	User Environment Variables
	Summary

	Chapter 6: The File System
	Relevant Paths
	The Current Working Directory
	Changing the Current Working Directory

	Locating the node Executable

	The path Module
	Cross-Platform Differences
	Extracting Path Components
	Path Normalization
	Resolving a Relative Path Between Directories

	The fs Module
	Determining if a File Exists
	Retrieving File Statistics
	Other stats() Variations

	Opening Files
	Reading Data from Files
	The readFile() and readFileSync() Methods

	Writing Data to Files
	The writeFile() and writeFileSync() Methods

	Closing Files
	Renaming Files
	Deleting Files
	Creating Directories
	Reading the Contents of a Directory
	Removing Directories
	Watching Files

	Summary

	Chapter 7: Streams
	Working with Streams
	Readable Streams
	data Events
	The end Event
	The close Event

	Writable Streams
	The write() Method
	The end() Method
	The drain Event
	The finish Event
	The close and error Events
	The pipe() Method
	Back to the Writable Stream Example

	File Streams
	createReadStream()
	The ReadStream's open Event
	The options Argument
	The WriteStream's open Event
	The bytesWritten Property

	Compression Using the zlib Module
	Convenience Methods

	Summary

	Chapter 8: Binary Data
	An Overview of Binary Data
	Endianness
	Determining Endianness

	The Typed Array Specification
	ArrayBuffer s
	slice()

	ArrayBuffer Views
	A Note on View Sizing
	Constructor Information
	Creating an Empty View
	Creating a View from Data Values
	Creating a View from Another View
	View Properties
	byteLength
	length
	byteOffset
	get()
	set()
	subarray()

	Node Buffer s
	The Buffer Constructor
	Stringification Methods
	Buffer.isEncoding()
	Buffer.isBuffer()
	Buffer.byteLength() and length
	fill()
	write()
	Writing Numeric Data
	Reading Numeric Data
	slice()
	copy()
	Buffer.concat()
	Typed Array Compatibility

	Summary

	Chapter 9: Executing Code
	The child_process Module
	exec()
	execFile()
	spawn()
	The stdio Option
	The error Event
	The exit Event
	The close Event
	The pid Property
	kill()
	fork()
	send()
	disconnect()

	The vm Module
	runInThisContext()
	runInNewContext()
	Sandboxing Data

	runInContext()
	createScript()

	Summary

	Chapter 10: Network Programming
	Sockets
	Client-Server Programming
	Transmission Control Protocol
	Creating a TCP Server
	Listening for Connections
	address()
	Variations of listen()

	Handling Connections
	Shutting Down the Server
	ref() and unref()
	error Events
	Creating a TCP Client
	The net.Socket Class
	Local and Remote Addresses
	Closing a Socket
	Timeouts

	Sockets, Servers, and Child Processes

	User Datagram Protocol
	Creating UDP Sockets
	Binding to a Port
	Receiving Data
	Sending Data

	Domain Name System
	Performing Lookups
	resolve()

	Reverse Lookups
	Detecting Valid IP Addresses

	Summary

	Chapter 11: HTTP
	A Basic Server
	Anatomy of an HTTP Request
	Request Methods
	Request Headers
	Response Codes
	Response Headers

	Working with Cookies
	Middleware
	Connect

	Issuing HTTP Requests
	Form Data
	Nested Objects

	The request Module
	Cookies in request

	HTTPS
	Summary

	Chapter 12: The Express Framework
	Express Routes
	Route Parameters

	Creating an Express Application
	Examining the Skeleton App

	Templating
	express-validator
	REST
	An Example RESTful API
	Testing the API

	Summary

	Chapter 13: The Real-Time Web
	The WebSockets API
	Opening a WebSocket
	Closing WebSockets
	Checking a WebSocket’s State
	The open Event
	The message Event
	The close Event
	The error Event
	Sending Data

	WebSockets in Node
	A WebSocket Client
	A HTML Client
	Examining the WebSocket Connection

	Socket.IO
	Creating a Socket.IO Server
	Creating a Socket.IO Client
	Socket.IO and Express

	Summary

	Chapter 14: Databases
	Relational Databases
	MySQL
	Connecting to MySQL
	Connection Pooling
	Closing a Connection
	Executing Queries

	NoSQL Databases
	MongoDB
	Connecting to MongoDB
	Schemas
	Models
	Inserting Data
	Querying Data
	Query Builder Methods
	Updating Data
	Deleting Data

	Summary

	Chapter 15: Logging, Debugging, and Testing
	Logging
	The winston Module
	Transports
	Creating New Loggers

	Debugging
	The node-inspector Module

	Testing
	The assert Module
	The throws() Method
	The doesNotThrow() Method
	The ifError() Method

	The Mocha Testing Framework
	Running Mocha
	Creating Tests
	Creating Test Suites
	Testing Asynchronous Code
	Defining a Failure
	Test Hooks
	Disabling Tests
	Running a Single Test Suite

	Summary

	Chapter 16: Application Scaling
	The cluster Module
	The fork() Method
	Changing the Default fork() Behavior

	The disconnect() Method
	The workers Object
	The Worker Class

	Scaling Across Machines
	http-proxy
	nginx

	Scaling in the Cloud
	Nodejitsu
	Heroku

	Summary

	Appendix A: JavaScript Object Notation
	Supported Data Types
	Numbers
	Strings
	Booleans
	Arrays
	Objects
	null
	Unsupported Data Types

	Functions for Working with JSON
	JSON.stringify()
	The toJSON() Method
	The replacer Argument
	The Array Form of replacer
	The space Argument

	JSON.parse()
	The reviver() Argument

	Summary

	Index

