José Unpingco

Python
for Signal
essing

AAAAAAAAA

extras.springer.co m . @ Springer

Python for Signal Processing

José Unpingco

Python for Signal Processing

Featuring IPython Notebooks

@ Springer

José Unpingco
San Diego, CA
USA

ISBN 978-3-319-01341-1 ISBN 978-3-319-01342-8 (eBook)
DOI 10.1007/978-3-319-01342-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946655

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Irene, Nicholas, and Daniella, for all their
patient support.

Preface

This book will teach you the fundamentals of signal processing via the Python
language and its powerful extensions for scientific computing. This is not a good
first book in signal processing because we assume that you already had a course in
signal processing at the undergraduate level. Furthermore, we also assume that you
have some basic understanding of the Python language itself, perhaps through an
online course (e.g., codeacademy . com). Having said that, this book is appropriate
if you have a basic background in signal processing and want to learn how to use the
scientific Python toolchain. On the other hand, if you are comfortable with Python,
perhaps through working in another scientific field, then this book will teach you
the fundamentals of signal processing. Likewise, if you are a signal processing
engineer using a commercial package (e.g., MATLAB, IDL), then you will learn
how to effectively use the scientific Python toolchain by reviewing concepts you are
already familiar with.

The unique feature of this book is that everything in it is reproducible using
Python. Specifically, all of the code, all of the figures, and (most of) the text
is available in the downloadable supplementary materials that correspond to this
book in the form of IPython Notebooks. IPython Notebooks are live interactive
documents that allow you to change parameters, recompute plots, and generally
tinker with all of the ideas and code in this book. I urge you to download these
[Python Notebooks and follow along with the text to experiment with the signal
processing topics covered. As an open-source project, the entire scientific Python
toolchain, including the IPython Notebook, is freely available. Having taught this
material for many years, I am convinced that the only way to learn is to experiment
as you go. The text provides instructions on how to get started installing and
configuring your scientific Python environment.

This book is not designed to be exhaustive and reflects the author’s eclectic
background in industry. The focus is on fundamentals for day-to-day work. Al-
though Python supports many powerful constructs such as decorators, generators,
and context managers, all the code here uses Python in the most straightforward
way possible while encouraging good Python coding practices.

vii

viii Preface

Acknowledgements I would like to acknowledge the help of Brian Granger and Fernando Peréz,
two of the originators of the IPython Notebook, for all their great work, as well as the Python
community as a whole, for all their contributions that made this book possible. Additionally, I
would also like to thank Juan Carlos Chdvez for his thoughtful review.

San Diego, CA, USA José Unpingco

Contents

1 Introductionoiiiiiiiiiii 1
1.1 INtroduction ...o..ueiiie it 1

1.2 Installation and SEtUP.......oouuuiiiiiiii i 2

R N N1 1012 2 3
1.3.1 Numpy Arrays and Memoryc.ccoooveeeeeiininnnen... 3

1.3.2 Numpy MatriCesvvvieieiii i 4

1.3.3 Numpy Broadcastingooooeeeiiiiiiiiiiiiiiiiiee... 5

1.4 Matplothib . ..oooi e 5

1.5 Alternatives to Matplothib ... 7

1.6 IPYthOn coeeeee i 8
1.6.1 IPython NotebooKccooviiiiiiiiiiiiiiiie.. 9

R A 1o) 2 11

1.8 Computer AIZebraoovuuiiiiiiiiiiii e 12

1.9 Interfacing with Compiled Libraries.................cooeiiiiiio... 13
1.10 Other RESOUICESuviiiiiiiiii i 14
APPENAIX .ttt 15

2 Sampling Theorem....................iiiiiiiiiii 23
2.1 Sampling Theoremc.ooiiiiiiiiiiiiiiiiie e 23
2.2 ReCONSIUCHON ...ttt ittt 27

23 TheStory SO Far......coooiiii 30
2.4 Approximately Time-Limited-Functions....................ooooooee. 31

2.5 SUIMMATY eettt ettt e ettt e e e e 35
APPENAIX .ottt e 36

3 Discrete-Time Fourier Transform...........................o 45
3.1 Fourier Transform MatriX ..., 45

3.2 Computingthe DFT o e 47

3.3 Understanding Zero-Padding..................coiiiiiiiiii L. 48
3.4 SUMMATY ..ot 51
APPENAIX . 52

ix

X Contents
4 Introducing Spectral Analysis..........................ooiL L 57
4.1 Seeking Better Frequency Resolution with Longer DFT 57
4.2 The Uncertainty Principle Strikes Back!cooiii. 57

4.3 Circular Convolutionooeiiiiiiiiiiiiiiiiii i 60
4.4 Spectral Analysis Using Windowsccoviiiiiiiieniiinnn. 63

4.5 WIndow MEtricsoovviiiiiiiii i 66
4.5.1 Processing Gainooouuiieiiiiiiiiiiiiiiiiiii e 67

4.5.2 Equivalent Noise Bandwidth.....................ooooo 69

4.5.3 Peak Sidelobe Level.........c.oooooiiiiiiiiiiiiiiiii 70

454 3-dBBandwidthcooiiiiiii 72

4.5.5 Scalloping LoSS....cvviiiiiiiii i 72

4.0 SUMIMATY ..ttt ettt ettt e e e e 73
APPENAIX .ttt e 75

5 Finite Impulse Response Filtersooo 93
5.1 FIR Filters as MoOVINg AVEragesuveeeeeenuiiieeeennnnnneenn. 93

5.2 Continuous-Frequency Filter Transfer Function 94

53 Z-Transforme.........oooiiiiiii 97

54 Causality ..ooieinni e 97

5.5 Symmetry and Anti-SYMMEetryoovuuuiiieeeenniiiieeeennniieeee.. 98

5.6 Extracting the Real Part of the Filter Transfer Function 99

5.7 TheStory SO Far......coooii i 100

5.8 Filter Design Using the Window Method 101
5.8.1 Using Windows for FIR Filter Design........................ 104

5.9 TheStory SO Far......coooiiiii 106
5.10 Filter Design Using the Parks-McClellan Method 106
ST SUMMATY oot e 110
APPENAIX .ottt 111
References.ooiiiii i 123
SYMDOIS ... 125
Index .. .o e 127

Chapter 1
Introduction

1.1 Introduction

Python went mainstream years ago. It is well-established in web programming
and is the platform for high-traffic sites like YouTube. Less well known is Python
for scientific applications, what we are calling “Scientific Python” here. Scientific
Python has been used in government, academia, and industry for at least a decade.
NASA’s Jet Propulsion Laboratory uses it for interfacing Fortran/C++ libraries
for planning and visualization of spacecraft trajectories. The Lawrence Livermore
National Laboratory uses scientific Python for a wide variety of computing tasks,
some involving routine text processing, and others involving advanced visualization
of vast data sets (e.g. VISIT [CBB*05]). Shell Research, Boeing, Industrial Light
and Magic, Sony Entertainment, and Procter & Gamble use scientific Python on a
daily basis for similar tasks. Python is well-established and continues to extend into
many different fields.

Python is an interpreted language. This means that Python codes run on a Python
virtual machine that provides a layer of abstraction between your code and the
platform it runs on. This makes Python scripts portable, but slower than a compiled
language such as Fortran. In a compiled language, the compiler takes the text of the
code, studies it end-to-end, and then writes an executable that links against compiled
system libraries. Once the executable is created, there is no further need for the
compiler.

Python is different. Python codes need the Python interpreter, but the interpreter
can also call the same system libraries as the compiler. This means that the time-
consuming numerical algorithms are not implemented in the Python language itself
(that would be too slow!). They are called from compiled libraries. Thus, Python
provides a staging area for scientific computing, handing off the intensive work to
compiled libraries, while providing many more benefits.

For scientific computing, the main benefit of Python is that it provides a
common medium of exchange between many different kinds of scientific libraries.
This makes it possible to mix-and-match routines from many different sources

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8__1, 1
© Springer International Publishing Switzerland 2014

2 1 Introduction

that were not otherwise designed to work together. Moreover, Python provides
a multiplatform solution for scientific codes. As an open-source project, Python
itself is available anywhere you can build it, even though it typically ships standard
nowadays, as part of many operating systems. This means that once you have written
your code in Python, you can just transfer the script to another platform and run it, as
long as the compiled libraries are also available there. What if the compiled libraries
are absent? Building and configuring compiled libraries across multiple systems
used to be a painstaking job, but as scientific Python has matured, a wide range of
libraries have now become available across all of the major platforms (i.e. Windows,
MacOS, Linux, Unix) as prepackaged distributions.

Finally, scientific Python facilitates maintainability of scientific codes because
Python syntax is clean, free of semi-colon litter and other visual clutter that
makes code hard to read and easy to obfuscate. Python has many built-in testing,
documentation, and deployment tools that ease maintenance. Scientific codes are
usually written by scientists unschooled in software development, so having these
development tools built into the language itself is a particular boon for scientific
computing.

1.2 Installation and Setup

The easiest way to get started is to download the freely available Anaconda package
from Continuum Analytics, which is available for all the major platforms. If you
need it, Continuum also offers support for an additional fee. On Windows work-
stations, the free PythonXY distribution is a one-click installation of the scientific
Python toolchain, as well as many other packages. On the major Linux distributions,
the toolchain is usually available via the package manager (i.e. apt-get, yum).
Regardless of your platform, we recommend the Python version 2.7 distributions.
Python 2.7 is the “last” of the Python 2.x series and guarantees backwards
compatibility with legacy codes. Python 3.x makes no such guarantees. Although
all of the key components of the Python toolchain are available in version 3.x, the
safest bet is to stick with version 2.7 until further notice. Enthought Canopy is the
next generation of the Enthought Python Distribution (EPD), which is an enterprise-
level scientific Python integrated development environment. The “Express” version
of Canopy is available for free and works on all the major platforms.

You may later want to use a Python module that is not part of the major
scientific Python distributions mentioned above and that you have to build yourself.
The Windows platform presents singular difficulties because of the lack of freely
available compilers (especially for Fortran) and the general difficulty of working
with this complicated platform. A great place to look for high quality one-click
installers is Christoph Gohlke’s laboratory site at the University of California, Irvine
where he kindly makes a long list of scientific modules available. Otherwise, Python
packages on other platforms can be installed using easy_install or pip.

1.3 Numpy 3
1.3 Numpy

To use a compiled scientific library, the memory allocated in the Python interpreter
must somehow reach this library as input. Furthermore, the output from these
libraries must likewise return to the Python interpreter. This two-way exchange of
memory is essentially the core function of the Numpy (numerical arrays in Python)
module. Numpy is the de-facto standard for numerical arrays in Python. It arose as
an effort by Travis Oliphant and others to unify the many approaches to numerical
arrays in Python. In this section, we provide an overview and some tips for using
Numpy effectively, but for much more detail, Travis’ book Guide to Numpy [Oli06]
is still a great place to start and is available for free in PDF form.

Numpy provides specification of byte-sized arrays in Python. For example
Listing 1.1 creates an array of three numbers, each of 4-bytes long (32 bits at 8 bits
per byte) as shown by the itemsize property in Listing 1.1. In addition to providing
uniform containers for numbers, Numpy provides a long list if unary functions
(ufuncs) that process arrays element-wise without additional looping semantics.
Listing 1.2 shows how to compute the element-wise sine using Numpy,

Listing 1.2 shows computing the sine using Numpy where the input is a Numpy
array and the output is the element-wise sine of that array. Numpy uses common-
sense casting rules to resolve the output types. For example, if the inputs had been an
integer-type, the output would still have been a floating point type. Further, observe
that there was no Python looping construct (e.g. for loop) required to compute this
element-wise because this happens in the compiled code that is invoked by the unary
function. In this example, we provided a Numpy array as input to the sine function.
We could have also used a plain Python list instead and Numpy would have built the
intermediate Numpy array (e.g. np.sin([1,1,1])). The Numpy Documentation
provides a comprehensive (and very long) list of available ufuncs.

Numpy arrays come in various shapes and dimensions. For example, Listing 1.3
shows a two-dimensional 2x3 array constructed from two conforming Python lists.

Note that you can have as many as 32 dimensions and if you need more then
you can build Numpy to your specification.! Numpy arrays follow the usual Python
slicing rules, but in more dimensions as shown in Listing 1.4 where the “:” character
selects all elements along a particular axis. You can also select sub-sections of arrays
by using slicing as shown in Listing 1.5.

1.3.1 Numpy Arrays and Memory

Some interpreted languages implicitly allocate memory. For example, in MATLAB,
you can extend a matrix by simply tacking on another dimension as in the MATLAB

!See arrayobject.h

4 1 Introduction

session in Listing 1.6: This works because MATLAB arrays use pass-by-value
semantics so that slice operations actually copy parts of the array as needed. By
contrast, Numpy uses pass-by-reference semantics so that slice operations are views
into the array without implicit copying. Numpy forces you to explicitly allocate
memory for a new Numpy array. For example, to accomplish the same array
extension in Numpy, you have to do something like Listing 1.7.

As shown in Listing 1.7, we cannot tack an extra dimension onto an array and
instead must explicitly create a new array (line 12). One way to do this is with the
indexing trick of using one of the dimensions twice as shown in line 12 above. It’s
important to understand that Numpy views point to the same elements in memory.

Continuing with the example in Listing 1.7, we can change one of the elements
in x as shown in Listing 1.8, but this does not affect y because of the copy we forced
earlier. However, if we start over and construct y by slicing (which makes it a view)
as shown in Listing 1.9, then the change we made does affect y. If you want to
explicitly force a copy without any indexing tricks, you can do y=x.copy ().

In addition to slicing, Numpy offers many advanced indexing facilities so that
Numpy arrays can be indexed by other Numpy arrays and lists. Listing 1.10 shows
an interesting contrast between indexing and slicing. In Listing 1.10, we created an
array in x and created z by slicing. Then, we created y via integer indexing. Upon
changing x, because only z is a view, only z was affected, not y, even though they
coincidentally have the same elements. The flags . ownsdata property of Numpy
arrays can help sort this out until you get used to it, as shown in Listing 1.11.

1.3.2 Numpy Matrices

Matrices in Numpy are very similar to Numpy arrays, but they implement the row-
column matrix multiplication as opposed to element-wise multiplication. If you
have two matrices you want to multiply, you can either create them directly or
convert them from Numpy arrays. For example, Listing 1.12 shows how to create
two matrices and multiply them. More commonly, you can convert Numpy arrays
as in Listing 1.13. Everything until line 9 is a Numpy array and at this point we
cast the Numpy array as a matrix with np.matrix which then uses row-column
multiplication. Note that it is unnecessary to cast the x variable as a matrix because
the left-to-right order of the evaluation takes care of that automatically. If we need
to use A as a matrix elsewhere in the code then we should bind it to another variable
instead of re-casting it every time. If you find yourself casting back and forth for
large arrays, passing the copy=False flag to matrix avoids the expense of making

a copy.

1.4 Matplotlib 5
1.3.3 Numpy Broadcasting

Numpy broadcasting is a powerful way to make implicit multidimensional grids for
expressions. It is probably the single most powerful feature of Numpy and the most
difficult to grasp. Proceeding by example, consider the vertices of a two-dimensional
unit square in Listing 1.14.

Listing 1.14 shows the X and Y arrays whose corresponding entries match the
coordinates of the vertices of the unit square (e.g. (0, 0), (0, 1), (1,0), (1, 1)). To add
the x and y-coordinates, we could use X and Y as in X+Y shown below in Listing 1.15,
The output is the sum of the vertex coordinates of the unit square. It turns out we
can skip a step here and not bother with meshgrid to implicitly obtain the vertex
coordinates by using broadcasting as shown in Listing 1.16.

Listing 1.16 shows how to avoid the intermediate meshgrid calculation by using
Numpy broadcasting to create the intermediate arrays. This happens on line 7 where
the None Python singleton tells Numpy to make copies of y along this dimension to
create a conformable calculation. The following lines show that we obtain the same
output as when we used the X+Y Numpy arrays. Note that without broadcasting
x+y=array ([0, 2]) which is not what we are trying to compute. Let’s continue
with a more complicated example where we have differing array shapes.

Listing 1.17 shows that broadcasting works with different array shapes. For the
sake of comparison, on line 3, meshgrid creates two conformable arrays, X and
Y. On the last line, x+y[: ,None] produces the same output as X+Y without the
meshgrid. We can also put the None dimension on the x array as x[: ,None] +y
which would give the transpose of the result.

Broadcasting works in multiple dimensions also. Listing 1.18 shows broad-
casting in three dimensions. The output shown has shape (4,3,2). On the last
line, the x+y[: ,None] produces a two-dimensional array which is then broadcast
against z[: ,None,None], which duplicates itself along the two added dimensions
to accommodate the two-dimensional result on its left (i.e. x + y[: ,None]). The
caveat about broadcasting is that it can potentially create large intermediate arrays.
There are methods for controlling this by re-using previously allocated memory but
that is beyond our scope here. Some codes use a lot of broadcasting and some not at
all. We use it occasionally in this text where it abbreviates superfluous looping.

1.4 Matplotlib

Matplotlib is the primary visualization tool for scientific graphics in Python. Like all
great open-source projects, it originated to satisfy a personal need. At the time of its
inception, John Hunter primarily used MATLAB for scientific visualization, but as
he began to integrate data from disparate sources (e.g. internet, filesystems) using
Python, he realized he needed a Python solution for visualization, so he single-
handedly wrote Matplotlib. Since those early years, Matplotlib has displaced the

6 1 Introduction

other competing methods for two-dimensional scientific visualization and today is a
very actively maintained project, even without John Hunter, who sadly passed away
in 2012.

John had a few basic requirements for Matplotlib:

* Plots should look publication quality with beautiful text.

* Plots should output Postscript for inclusion within XX documents and publi-
cation quality printing.

* Plots should be embeddable in a Graphical User Interface (GUI) for application
development.

* The code should be mostly Python to allow for users to become developers.

* Plots should be easy to make with just a few lines of code for simple graphs.

Each of these requirements has been completely satisfied, judging from the
enthusiastic reception of Matplotlib by the scientific Python community. In the
beginning, to ease the transition from MATLAB to Python, many of the Matplotlib
functions were closely named after the corresponding MATLAB commands. The
community has moved away from this style and, even though you will still find the
old MATLAB-esque style used in the Matplotlib documentation. This book uses the
more powerful and explicit Matplotlib interfaces.

Listing 1.19 shows the quickest way to draw a plot using Matplotlib and the
plain Python interpreter. Later, we’ll see how to do this even faster using IPython.
The first line imports the requisite module as plt which is the recommended
convention. The next line plots a sequence of numbers generated using Python’s
range function. Note the output list contains a Line2D object. This is an artist
in Matplotlib parlance. Finally, the p1t.show() function draws the plot in a GUI
(i.e. figure window).

If you try this in your own plain Python interpreter (and you should!), you will
see that you cannot type in anything further in the interpreter until the figure window
is closed. This is because the plt . show () function preoccupies the interpreter with
the controls in the GUI and blocks further interaction. As we discuss below, IPython
provides ways to get around this blocking so you can simultaneously interact with
the interpreter and the figure window.

The plot function returns a list containing the Line2D object as shown
in Listing 1.19. More complicated plots yield larger lists filled with artists in
Matplotlib terminology. The suggestion is that artists draw on the canvas contained
in the Matplotlib figure. The final line is the plt.show function that provokes the
embedded artists to render on the Matplotlib canvas. The reason this is a separate
function is that plots may have dozens of complicated artists and rendering may be a
time-consuming task to only be undertaken at the end, when all the artists have been
mustered. Matplotlib supports plotting types such as images, contours, and many
others that we cover in detail in the following chapters.

Even though Listing 1.19 is the quickest way to draw a plot in Matplotlib, it is
not recommended because there are no handles to the intermediate products of the
plot such as the plot’s axis. While this is okay for a simple plot like this, later on
we will see how to construct complicated plots using the recommended style. There

1.5 Alternatives to Matplotlib 7

is a close working relationship between Numpy and Matplotlib and you can load
Matplotlib’s plotting functions and Numpy’s functions simultaneously using pylab
as from matplotlib.pylab import *. Although importing everything this way
as a standard practice is not recommended because of namespace pollution, there
is no danger in this case due to the close working relationship between Numpy and
Matplotlib.

One of the best ways to get started with Matplotlib is to browse the extensive
on-line “gallery” of plots on the main Matplotlib site. Each of the plots comes with
corresponding source code that you can use as a starting point for your own plots.
In Sect. 1.6, we discuss special “magic” commands that make this particularly easy.

1.5 Alternatives to Matplotlib

Even though Matplotlib is unbeatable for script-based plotting, there are some
alternatives for specialized scientific graphics that may be of interest. PyQwt is a
set of bindings for the Qwt library, which contains useful GUI components and
widgets for technical plotting. Matplotlib has some widgets for interactive plots,
but they are pretty limited. The downside of PyQwt is that it relies on the Qwt
documentation, which might be hard to read if you are not comfortable with C++
codes. Furthermore, the package does not seem to be currently maintained. The
upside is that these libraries have been around for at least a decade, so they are
well-tested and lighter-weight than Matplotlib.

Chaco is part of the Enthought Tool-Suite (ETS) and implements many real-
time data visualization concepts and corresponding widgets. It is available on
all of the major platforms and is also actively maintained and well-documented.
Chaco is geared towards GUI application development, rather than script-based data
visualization. It depends on the Traits package, which is also available in ETS and
in the Enthought Python Distribution (EPD). If you don’t want to use EPD, then
you have to build Chaco and its dependencies separately. On Linux, this should
be straight-forward, but potentially a nightmare on Windows if not for Christoph
Gohlke’s one-click installers.

If you require real-time data display and tools for volumetric data rendering and
complicated 3D meshes with isosurfaces, then PyQtGraph is an option. PyQtGraph
is a pure-Python graphics and GUI library that depends on Python bindings for the
Qt GUI library (i.e. PySide or PyQt4) and Numpy. This means that the PyQtGraph
relies on these other libraries (i.e. Qt’s GraphicsView framework) for the heavy-
duty numbercrunching and rendering. This package is actively maintained, but is
still pretty new, with good (but not comprehensive) documentation. You also need
to grasp a few Qt-GUI development concepts to use this effectively. Mayavi is
another Enthought-supported 3D visualization package that sits on VTK (open-
source C++ library for 3D visualization). Like Chaco, it is a toolkit for scientific
GUI development as opposed to script-based plotting. To use it effectively, you need

8 1 Introduction

to already know (or be willing to learn) about concepts like graphics pipelines. This
package is actively supported and well-documented.

1.6 IPython

IPython originated as a way to enhance Python’s basic interpreter for smooth
interactive scientific development. In the early days, the most important enhance-
ment was “tab-completion” for dynamic introspection of workspace variables. For
example, you can start I[Python at the commandline by typing ipython and then
you should see something like the following in your terminal:

IPython 0.14.dev -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.
\%quickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ’object’, use ’object??’ for extra details.
In [1]:

Next, creating a string as shown and hitting the TAB key after the “dot” character
initiates the introspection, showing all the functions and attributes of the string
object in x.

In [1]: x = ’this is a string’

In [2]: x.<TAB>

x.capitalize x.format X .isupper x.rindex x.strip
x.center x.index X.join x.rjust X.swapcase
x.count X.isalnum x.1ljust x.rpartition x.title
x.decode x.isalpha x.lower x.rsplit x.translate
x.encode X.isdigit x.lstrip x.rstrip X.upper
x.endswith x.islower x.partition x.split x.zfill
x.expandtabs x.isspace x.replace x.splitlines

x.find x.istitle x.rfind x.startswith

To get help about any of these, you simply add the ? character at the end as shown
below,

In [2]: x.center?

Type: builtin_function_or_method
String Form:<built-in method center of str object at 0x03193390>
Docstring:

S.center(width[, fillchar]) -> string

Return S centered in a string of length width. Padding is
done using the specified fill character (default is a space)

1.6 IPython 9

and IPython provides the built-in help documentation. Note that you can also get this
documentation with help (x.center) which works in the plain Python interpreter
as well.

The combination of dynamic tab-based introspection and quick interactive help
accelerates development because you can keep your eyes and fingers in one place as
you work. This was the original IPython experience, but [Python has since grown
into a complete framework for delivering a rich scientific computing workflow that
retains and enhances these fundamental features.

1.6.1 IPython Notebook

As you may have noticed investigating Python on the web, most Python users are
web-developers, not scientific programmers, meaning that the Python toolchain
is very well developed for web technologies. The genius move of the IPython
development team was to leverage these technologies for scientific computing by
embedding IPython in modern web-browsers. You can start the IPython Notebook,
with all the Matplotlib and Numpy functions set up with the following command-
line: ipython notebook --pylab=inline. The inline flag embeds Matplotlib
graphics created in the IPython Notebook into the browser itself instead of popping
open a separate GUI. After starting the notebook, you should see something like the
following in the terminal,

[NotebookApp] Using existing profile dir: u’C:\\.ipython\\profile_default’

[NotebookApp] Serving notebooks from local directory: D:\

[NotebookApp] The IPython Notebook is running at: http://127.0.0.1:8888/
[NotebookApp] Use Control-C to stop this server and shut down all kernels.

The first line reveals where IPython looks for default settings. The next line
shows where it looks for documents in the IPython Notebook format. The third
line shows that the IPython Notebook started a web-server on the local machine
(i.e. 127.0.0.1) on port number 8888. This is the address your browser needs to
connect to the IPython session although your default browser should have opened
automatically to this address. The port number and other configuration options are
available either on the commandline or in the profile_default shown in the first
line. If you are on a Windows platform and you do not get this far, then the Window’s
firewall is probably blocking the port. For additional configuration help, see the
main IPython site (ipython.org) or e-mail the very responsive IPython mailing
list (ipython-dev@scipy.org).

When IPython starts, it initiates many small Python processes that use the
blazing-fast ZeroMQ message passing framework for interprocess-communication,
along with the web-sockets protocol for back-and-forth communication with the
browser. As of yet, because neither Internet Explorer nor Safari support web-
sockets, you will have to use Firefox or Google Chrome to use the IPython
Notebook. To start [Python and get around your default browser, you can use the
additional --no-browser flag and then manually type in the local host address

10 1 Introduction

=

IP[yl: Notebook

3

Tao impaort a notebook, drag the file onto the listing below or click here Refresh New Notebook

D/

Fig. 1.1 The IPython Notebook dashboard

127001

IPIvl: Notebook uUntitledo susaes

File Edit View Insert Cell Kernel Help

B = @G DB 4 4+ © @ pr H code «| Cell Toolbar: None

In []: |
Fig. 1.2 A new IPython Notebook

http://127.0.0.1:8888 into your favorite browser to get started. Once all that
is settled, you should see something like the following Fig. 1.1.

You can create a new document by clicking the “New Notebook™ button
shown in Fig.1.1. Then, you should see something like Fig. 1.2. To start using
the IPython Notebook, you just start typing code in the shaded textbox and then
hit SHIFT+ENTER to execute the code in that IPython cell. Figure 1.3 shows the
dynamic introspection in the pulldown menu when you type the TAB key after the
x .. Context-based help is also available as before by using the 7 suffix which opens
a help panel at the bottom of the browser window. There are many amazing features
including the ability to share notebooks between different users and to run [Python
Notebooks in the Amazon cloud, but these features go beyond our scope here. Check
the ipython.org website or peek at the mailing list for the lastest work on these
fronts.

The IPython Notebook supports high-quality mathematical typesetting using
MathJaX, which is a JavaScript version of most of IfTEX, as well as video and other
rich content. The concept of consolidating mathematical algorithm descriptions
and the code that implements those algorithms into a shareable document is more
important than all of these amazing features. There is no understating the importance
of this in practice because the algorithm documentation (if it exists) is usually
in one format and completely separate from the code that implements it. This

1.7 Scipy 11

TIPIvl: Notebook untitiedo eusses

File Edit View nsert Cel Kernel Help

B < & B 24 ¥+ © © > H Code «| Cell Toolbar: None .

[x.capitalizel

x.center
.count
.decode
.encode
.endswith
.expandtabs
.find
.format

X
X
x
X
X
X
X
X.index

Fig. 1.3 Dynamic introspection in [Python Notebook with the pull-down menu

tragically common practice leads to un-synchronized documentation and code that
renders one or the other useless. The IPython Notebook solves this problem by
putting everything into a living shareable document based upon open standards and
freely available software. IPython Notebooks can even be saved as static HTML
documents for those without Python!

Finally, IPython provides a large set of “magic” commands for creating macros,
profiling, debugging, and viewing codes. A full list of these can be found by
typing in %lsmagic in IPython. Help on any of these is available using the ?
character suffix. Some frequently used commands include the %cd command that
changes the current working directory, the %1s command that lists the files in
the current directory, and the %hist command that shows the history of previous
commands (including optional searching). The most important of these for new
users is probably the % loadpy command that can load scripts from the local disk
or from the web. Using this to explore the Matplotlib gallery is a great way to
experiment with and re-use the plots there.

1.7 Scipy

Scipy (pronounced “Sigh Pie”) was one of the first truly consolidated modules for a
wide range of compiled libraries, all based on Numpy arrays. It contains the signal
module that we focus on for this text and others that we occasionally sample. Note
that some of the same functions appear in multiple places within Scipy itself as

12 1 Introduction

well as in Numpy. Scipy includes numerous special functions (e.g. Airy, Bessel,
elliptical) as well as powerful numerical quadrature routines via the QUADPACK
Fortran library (see scipy.integrate), where you will also find other kinds of
quadrature methods. Additionally, Scipy provides access to the ODEPACK library
for solving differential equations. Lots of statistical functions, including random
number generators, and a wide variety of probability distributions are included in
the scipy.stats module. Interfaces to the Fortran MINPACK optimization library
are provided via scipy.optimize. These include methods for root-finding, min-
imization and maximization problems, with and without higher-order derivatives.
Methods for interpolation are provided in the scipy. interpolate module via the
FITPACK Fortran package. Note that some of the modules are so big that you do not
get all of them with import scipy because that would take too long. You may have
to load some of these packages individually as import scipy.interpolate, for
example.

As we discussed, the Scipy module is already packed with an extensive list of
scientific codes. For that reason, the scikits modules were originally established
as a way to try out candidates that could eventually make it into the already stuffed
Scipy module, but it turns out that many of these modules became so successful in
their own right that they will probably never be integrated into Scipy proper. Some
examples include sklearn for machine learning and scikit-image for image
processing.

1.8 Computer Algebra

Although we don’t use it in this text, you should be aware of Sympy, which is a pure-
Python module for computer algebra. It has benefited from “Google Summer of
Code” sponsorship and grown into a powerful computer algebra system for Python.
Furthermore, it has spawned many sub-projects that make it faster and integrate
tighter with Numpy and IPython (among others). Alternatively, the Sage projectis a
consolidation of over 70 of the best open source packages for computer algebra
and related computation. Although Sympy and Sage share code freely between
them, Sage is a specialized build of the Python kernel itself as a way to hook
into the underlying libraries. Thus, it is not a pure-Python solution for computer
algebra and is really a superset of Python with its own extended syntax. From
a portability standpoint, the main drawback of Sage is that it cannot be run on
a Windows platform without running a virtual Linux machine that in turn runs
Sage. Notwithstanding the lack of native Windows support, the choice between
them depends on whether or not Sage implements a particular software package
of interest.

The IPython Notebook is tightly integrated with Sympy and provides mathemat-
ical typesetting for Sympy so that the implemented computer algebra is readable as
a publication-quality mathematical document. Use ipython --profile=sympy

1.9 Interfacing with Compiled Libraries 13

--pylab=inline to start IPython Notebook with integrated Sympy support. The
IPython Notebook also supports Sage.

1.9 Interfacing with Compiled Libraries

As we have discussed, Python for scientific computing really consists of gluing
together different scientific libraries written in a compiled language like C or
Fortran. Ultimately, you may want to use libraries not available with existing Python
bindings. There are many, many options for doing this. The most direct way is to
use the built-in ctypes module which provides tools for providing input/output
pointers to the library’s functions just as if you were calling them from a compiled
language. This means that you have to know the function signatures in the library
exactly—how many bytes for each input and how many bytes for the output. You are
responsible for building the inputs exactly the way the library expects and collecting
the resulting outputs. Even though this seems tedious, Python bindings for vast
libraries have been built this way.

If you want an easier way, then SWIG is an automatic wrapper generating tool
that can provide bindings to a long list of languages, not just Python; so if you need
bindings for multiple languages, then this is your best and only option. Using SWIG
consists of writing an interface file so that the compiled Python dynamically linked
library (Python PYD) can be readily imported into the Python interpreter. Huge
and complex libraries like Trilinos (Sandia National Labs) have been interfaced to
Python using SWIG, so it is a well-tested option.

However, the SWIG model assumes that you want to continue developing primar-
ily in C/Fortran and you are hooking into Python for usability or other reasons. On
the other hand, if you start developing algorithms in Python and then want to speed
them up, then Cython is an excellent option because it provides a mixed language
that allows you to have both C-language and Python code intermixed. Like SWIG,
you have to write additional files in this hybrid Python/C dialect to have Cython
generate the C-code that you will ultimately compile. The best part of Cython is the
profiler that can generate an HTML report showing where the code is slow and could
benefit from translation to Cython. Both SWIG and Cython provide tools to easily
connect to Numpy arrays. As you may have guessed, these work best for Linux/Unix
development because of the ready availability of high-quality compilers.

Cython and SWIG are just two of the ways to create Python bindings for your
favorite compiled libraries. Other notable options include FWrap, £2py, CFFI, and
weave. Itis also possible to use Python’s own API directly, but this is an undertaking
best left to professional coders. Although not mainly an interface option, the
Pypy project is alternative implemention of Python that implements a just-in-time
compiler (JIT) and other powerful optimizations that can substantially speed up
pure Python codes. Extending Pypy to include Numpy and the rest of the scientific
toolchain is well underway, but is still not appropriate for newcomers to Python.

14 1 Introduction
1.10 Other Resources

The Python community is filled with super-smart and amazingly helpful people.
One of the best places to get help with scientific Python is the stackoverflow site
which hosts a competitive Q&A forum that is particularly welcoming for Python
newbies. Several of the key Python developers regularly participate there and the
quality of the answers is very high. The mailing lists for any of the key tools
(e.g. Numpy, IPython, Matplotlib) are also great for keeping up with the newest
developments. Anything written by Hans Petter Langtangen [Lan09] is excellent,
especially if you have a physics background. The Scientific Python conference held
annually in Austin is also a great place to see your favorite developers in person,
ask questions, and participate in the many interesting sub-groups organized around
niche topics. The PyData workshop is a semi-annual meeting focused on Python
for large-scale data-intensive processing. The PyVideo site provides links to videos
of talks and tutorials related to Python from around the world.

[P

1
2

[S O

< o

1.10 Other Resources 15

Appendix

>>> import numpy as np # rTecommended convention
>>> x = np.array([1,1,1],dtype=np.float32)

>>> x

array([1., 1., 1.], dtype=float32)

>>> x.itemsize

4

Listing 1.1: Line 1 imports Numpy as np, which is the recommended convention. The next
line creates an array of 32 bit floating point numbers. The itemize property shows the number
of bytes per item.

>>> np.sin(np.array([1,1,1],dtype=np.float32))
array([0.84147096, 0.84147096, 0.84147096], dtype=float32)

Listing 1.2: This computes the sine of the input array of all ones, using Numpy’s unary
function, np.sin. There is another sine function in the built-in math module, but the Numpy
version is faster because it does not require explicit looping (i.e. using a for loop) over each
of the elements in the array. That looping happens in np.sin function itself.

>>> x=np.array([[1,2,3],[4,5,6] 1)
>>> x.shape
(2, 3

Listing 1.3: Numpy arrays can have different shapes and number of dimensions.

>>> x=np.array([[1,2,3],[4,5,6] 1)
>>> x[:,0] # 0th column

array([1, 41)

>>> x[:,1] # 1st column

array([2, 51)

>>> x[0,:] # 0th row

array([1, 2, 3])

>>> x[1,:] # 1st row

array([4, 5, 6])

@,

Listing 1.4: Numpy slicing rules extend Python’s natural slicing syntax. Note the colon “:
character selects all elements in the corresponding row or column.

S O

w

S O

w

16 1 Introduction

>>> x=np.array([[1,2,3],[4,5,6] 1)
>>> x
array([[1, 2, 3],
[4, 5, 611)
>>> x[:,1:]1 # all rows, 1st thru last column
array([[2, 3],
[5, 611)
>>> x[:,::2] # all rows, every other column
array([[1, 3],
[4, 611

Listing 1.5: Numpy slicing can select sections of an array as shown.

>> x=ones(3,3)

x =
1 1 1
1 1 1
1 1 1
>> x(:,4)=ones(3,1) / tack on extra dimension
x =
1 1 1 1
1 1 1 1
1 1 1 1
>> size(x)
ans =
3 4

Listing 1.6: MATLAB employs pass-by-value semantics meaning that slice operations like
this automatically generate copies.

>>> x = np.ones((3,3))
>>> x
array([[1., 1., 1.1,
[1., 1., 1.1,
[1., 1., 1.1D
>>> x[:,[0,1,2,2]]1 # notice duplicated last dimension
array([[1., 1., 1., 1.1,
L1, 1., 1., 1.1,
[1., 1., 1., 1.1D
>>> y=x[:,[0,1,2,2]] # same as above, but do assign it

Listing 1.7: In contrast with MATLAB, Numpy uses pass-by-reference semantics so it creates
views into the existing array, without implicit copying. This is particularly helpful with very
large arrays because copying can be slow.

o U R W N =

-

o U R W N -

-

1.10 Other Resources

>>> x[0,0]=999 # change element in
>>> x # changed

array([[999., 1., 1.1,

[1., 1., 1.7,

[1., 1., 1.1
>>> y # not changed!
array([[1., 1., 1., 1.1,

[+, 1., 1., 1.1,

[1., 1., 1., 1.1D

Listing 1.8: Because we made a copy in Listing 1.7, changing the individual elements of x
does not affect y.

>>> x = np.ones((3,3))

>>> y = x[:2,:2] # upper left piece

>>> x[0,0] = 999 # change walue

>>> x

array([[999., 1., 1.]
[1., 1., 1.]
[1., 1., 1.1

, # see the change?

>>> y
array([[999., 1.1, # changed y also!
L 1., 1.1D

Listing 1.9: As a consequence of the pass-by-reference semantics, Numpy views point at the
same memory as their parents, so changing an element in x updates the corresponding element
in y. This is because a view is just a window into the same memory.

17

S O

w

w

o

18 1 Introduction

>>> x = np.arange(5) # create array

>>> x

array([0, 1, 2, 3, 4])

>>> y=x[[0,1,2]] # index by integer list

>>> y
array ([0, 1, 2])

>>> z=x[:3] # slice

>>> z # note y and z have same entries?
array ([0, 1, 2])

>>> x[0]=999 # change element of z
>>> x

array([999, 1, 2, 3, 4])

>>> y # note y is unaffected,
array ([0, 1, 2])

>>> z # but z is (it’s a view).

array([999, 1, 21)

Listing 1.10: Indexing can also create copies as we saw before in Listing 1.7. Here, y is a
copy, not a view, because it was created using indexing whereas z was created using slicing.
Thus, even though y and z have the same entries, only z is affected by changes to x.

>>> x.flags.owndata

True

>>> y.flags.owndata

True

>>> z.flags.owndata # as a wview, z does not own the data!
False

Listing 1.11: Numpy arrays have a built-in flags.owndata property that can help keep track
of views until you get the hang of them.

>>> import numpy as np
>>> A=np.matrix([[1,2,3],[4,5,6]1,[7,8,9]1])
>>> x=np.matrix([[1],[0],[0]11)
>>> Akx
matrix([[1],
(41,
(711

Listing 1.12: Numpy arrays support elementwise multiplication, not row-column multiplica-
tion. You must use Numpy matrices for this kind of multiplication.

o - N S VO C R

R Y N

1.10 Other Resources 19

>>> A-np.ones((3,3))
>>> type(A) # array not matric
<type ’numpy.ndarray’>
>>> x=np.ones((3,1)) # array not matriz
>>> A*x
array([[1., 1., 1.1,
L1, t., 1.1,
[1., 1., 1.1D
>>> np.matrix(A)*x # row-column multiplication
matrix([[3.],
[3.1,
[3.1D

Listing 1.13: It is easy and fast to convert between Numpy arrays and matrices because
doing so need not imply any memory copying (recall the pass-by-value semantics). In the last
line, we did not have to bother converting x because the left-to-right evaluation automatically
handles that.

>>> X,Y=np.meshgrid(np.arange(2) ,np.arange(2))
>>> X
array([[0, 1],
[0, 11D
>>> Y
array([[0, 0],
(1, 11D

Listing 1.14: Numpy’s meshgrid creates two-dimensional grids.

>>> X+Y
array([[0, 1],
[1, 211

Listing 1.15: Because the two arrays have compatible shapes, they can be added together
element-wise.

o - N S VO C R

20

>>> x = np.array([0,1])
>>> y = np.array([0,1])
>>> x
array ([0, 1])
>>> y
array ([0, 1])
>>> x + y[:,None] # add broadcast dimension
array([[0, 1],
[1, 21D
>>> X+Y
array([[0, 1],
[1, 21D

1 Introduction

Listing 1.16: Using Numpy broadcasting, we can skip creating compatible arrays using
meshgrid and instead accomplish the same thing automatically by using the None singleton

to inject an additional compatible dimension.

>>> x = np.array([0,1])
>>> y = np.array([0,1,2])
>>> X,Y = np.meshgrid(x,y)

>>> X

array([[0, 1], # duplicate by row
[o, 17,
[o, 111)

>>> Y

array([[0, 0], # duplicate by column
[1, 11,
[2, 21

>>> X+Y

array([[0, 1],
[1, 21,
[2, 31D

>>> X+y[:,None] # same as w/ meshgrid
array([[0, 1],

[1, 21,

[2, 31

Listing 1.17: In this example, the array shapes are different, so the addition of x and y is
not possible without Numpy broadcasting. The last line shows that broadcasting generates the

same output as using the compatible array generated by meshgrid.

1.10 Other Resources 21

>>> x = np.array([0,1])
>>> y = np.array([0,1,2])
>>> z = np.array([0,1,2,3])

[S O

o

>>> x+y[:,None]+z[:,None,None]

array([[[O,
[l’
[2,
[[1,
[2,
[3’
[[2,
[3’
(4,
[[3,
(4,
[5’

11,
2]’
311,
2]’
31,
411,
31,
4]’
511,
4]’
5],
6111)

Listing 1.18: Numpy broadcasting also works in multiple dimensions. We start here with
three one-dimensional arrays and create a three-dimensional output using broadcasting. The
x+y [:None] part creates a conforming two-dimensional array as in Listing 1.17, and due to the
left-to-right evaluation order, this two-dimensional intermediate product is broadcast against
the z variable, whose two None dimensions create an output three-dimensional array.

>>> import matplotlib.pyplot as plt

>>> plt.plot (range(10))

[<matplotlib.lines.Line2D object at 0x00CB9770>]

>>> plt.show() # unnecessary in IPython (discussed later)

Listing 1.19: The first line imports the Matplotlib module following the recommended naming
convention. The next plots a range of numbers. The last line actually forces the plot to
render. Because this example assumes you are in the plain Python interpreter, this last step
is necessary. Otherwise, IPython (discussed later) makes this step unnecessary.

Chapter 2
Sampling Theorem

We enjoy the power and convenience of mobile communications today because
of a very important exchange made early in the history of this technology. Once
upon a time, radios were completely stunted by size, weight, and power limits. Just
think of the backpack-sized radios that infantrymen carried around during World
War II. The primary reason we enjoy tiny mobile radios (i.e. cellular phones) is
that the analog design burdens were shifted to the digital domain which in turn
placed the attendent digital algorithms onto integrated circuit technology, whose
power vs. cost ratio accelerated favorably over the ensuing decades. The key bridge
between the analog and the digital is sampling. In terms of basic electronics, an
analog signal voltage is applied to a sample-and-hold circuit and held there by a tiny
bit of capacitance while a bank of comparators marks off the proportional integer
value. These values are the digital samples of the analog signal. The challenge is to
analyze the original analog signal from its collected samples. The sampling theorem
provides the primary mathematical mechanism for doing this.

2.1 Sampling Theorem

The following is the usual statement of the theorem from Wikipedia:

If a function x (7) contains no frequencies higher than B hertz, it is completely determined
by giving its ordinates at a series of points spaced 1/(2B) seconds apart.

Because x(¢) is a function from the real line to the real line, there are infinitely
many points between any two consecutive samples and thus sampling is a massive
reduction of data because it only takes a finite number of points to completely
characterize the function. We have seen the concept of reducing a function to a
discrete set of numbers before in Fourier series expansions where (for periodic x (¢))
we have,

T
a, = l/ x(t) exp(—jw,t)dt 2.1
T Jo

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8_2, 23
© Springer International Publishing Switzerland 2014

24 2 Sampling Theorem
with corresponding reconstruction as:

x(t) =) anexp(jont) 22)

But here we generate discrete points a, by integrating over the entire function x (),
not just sampling it at a single point. This means we collect information about the
entire function to compute a single discrete point a,,, whereas with sampling we are
just taking individual points in isolation.

On the other hand, suppose we are given a set of samples [x, X2, .., x5] and we
are then asked to reconstruct the function. What would we do? Perhaps the most
natural thing to do is draw a straight line between each of the points as in linear
interpolation. Listing 2.1 takes samples of the sine over a single period and draws a
line between samples.

The first line of Listing 2.1 ensures that we use floating-point division not
Python’s default integer division where 1/4=0 instead of 0.25. You can embed this
statement in your startup files (ipython_config.py) to avoid constantly putting it
at the top of all your scientific codes, but only as long as you run your codes within
IPython. See your ipython_config.py file in your profile_default directory
that you noted when you first started the notebook, as we discussed in the previous
chapter.

Line 3 sets up the figure and corresponding axes. This follows the modern
convention for using Matplotlib. The fig is an object bound to the figure and ax is
the axis that is drawn within that figure. The reason we want these separate is more
complicated plots may have multiple axes embedded in the same figure. Because
Matplotlib can render the plots in GUI windows, in files, or embedded in other
applications (among others), it is not a good practice to assume that your plotting
commands are operating on whatever the “currently active” figure is. Using fig and
ax avoids this pitfall.

On line 6, the arange function creates a Numpy array of numbers starting at
-1 until 1+1/fs in steps of 1/fs. Recall that the built-in range command in
Python yields a half-open interval (i.e. excluding right endpoint) and the same is
true of arange. The next line computes the sine function on the array of points
we just created and returns a Numpy array. Note that although Python itself comes
with a sine function in the built-in math module, this sine is the Numpy version.
The difference is that the Numpy version can ingest a Numpy array and produce
a corresponding output without any extra looping that the math module’s version
would otherwise require.

The ax.plot command attaches the plot to the axis ax. The next two lines
put text labels on the x-axis and y-axis. These labeling functions also provide
many possibilities for text formatting including potential IXIEX fonts. Recall that
Matplotlib artists are objects like axes, lines, markers, and text that actually render
the given graphics.

Figure 2.1 shows that even where the function is curviest (t = 1/(4f) and t =
3/(4f)), we have the same density of points as anywhere else. This is because the

2.1 Sampling Theorem 25

Amplitude

-1.0 : : :
-1.0 -0.5 0.0 0.5 1.0

Time

Fig. 2.1 Graphic generated by Listing 2.1. This shows the sine function and its samples. Note that
sampling density is independent of the local curvature of the function. It may seem like it makes
more sense to sample more densely where the function is curviest, but the sampling theorem has
no such requirement

1.0

0.8 |

0.6 [

Amplitude

0.2}

0.0 s s s s s
-0.2 0.0 0.2 0.4 0.6 0.8

Time

Fig. 2.2 Figure generated by Listing 2.2. This is a zoomed-in version of Listing 2.1

sampling theorem doesn’t specify where we should sample as long as we sample at
a periodic intervals. This means that on the up and down slopes of the sine, which
are linear-looking and which would need fewer samples to characterize, we take the
sample density as near the curvy peaks. Listing 2.2 zooms in to the first peak to
illustrate this.

Listing 2.2 creates a new plot (e.g. lines, markers). The marker specification is
the same as for MATLAB so ’o-’ means use a >0’ marker and connect these with

26 2 Sampling Theorem

Errors with Piecewise Linear Interpolant

1.0
{0.030
05} 10.025
g
o)
3 {0.020 &
B ()
5 oof 2
{0.015 =
e !
< =
{0.010 %
-05}
{0.005
-1.0 L L 0.000
-1.0 -0.5 0.0 0.5 1.0

Time

Fig. 2.3 Figure generated by Listing 2.4 showing the squared error of the sine function and its
corresponding linear interpolant. Note that the piecewise approximation is worse where the sine is
curviest and better where the sine is approximately linear. This is indicated by the red-line whose
axis is on the right side

solid lines. The next line zooms into the plot by setting the axis limits. Note that we
again use the keyword function style that makes it clear what we are changing on
the axis. This is very useful for potential users of the code, including our forgetful
future-selves. When possible, we recommend using this style for clarity.

To drive this point home, we can construct the piecewise linear interpolant and
compare the quality of the approximation using numpy.piecewise. Listing 2.3
builds the arguments required for Numpy piecewise using the hstack function,
which “stacks” Numpy arrays horizontally into a bigger Numpy array. The Python
list tp has the intervals for the piecewise approximation and the apprx list
contains the corresponding linear approximations for each of those intervals. The
logical_and is necessary because we want an element wise logical operation.
Finally, tp and apprx are fed into piecewise which packages these together to
be used as a function later.

With all that set up, we can examine the squared errors in the interpolant.
Listing 2.4 plots the sine with the filled-in error of the linear interpolant we just
constructed.

Listing 2.4 uses the £ill_between function to fill the convex area between
the linear interpolant and the sine function with red (facecolor=‘red‘). The
following twinx () call creates a duplicate of the current axis (i.e. ax2) with a y-axis
label on the right-side. The ax2.set_ylabel call attaches the y-axis label on the
right-side where color changes the font color to red. Having separate axis variables
(i.e. ax1 and ax2) allows us to refer to them separately in the code. Next, we use
this newly-created axis to plot the squared-error (SE) in red (‘r¢).

2.2 Reconstruction 27

I invite you to download the IPython Notebook corresponding to this chapter and
see what happens when you change the f; sampling rate in the code and rerun the
[Python cell. How do the errors change with more/fewer sampling points?

Now, we could pursue this line of reasoning with higher-order polynomials
instead of just straight lines, but this would lead us to the same conclusion: all such
approximations improve as the density of sample points increases. But this is the
exact opposite of what the sampling theorem says: there is sparse set of samples
that will retrieve the original function. Furthermore, we observed that the quality
of the piecewise linear interpolant depends on where the sample points are taken
whereas the sampling theorem has no such requirement.

2.2 Reconstruction

Let’s look at this another way by examining the Fourier Transform of a bandlimited
signal satisfying the hypothesis of the sampling theorem: X (f) = 0 where | f| >
W. The inverse Fourier transform of this is the following:

W "
x(t) = /_ X(perray 23)

We can take the X (/) and expand it into a Fourier series by pretending it is periodic
with period 2W . Thus, we can formally write the following:

X(f) — Zake—janf/(ZW) (2.4)
k

and compute the coefficients a; as

1 W S
- X]2nkf/(2W)d 25
w =57 [X f @5

These coefficients bear a striking similarity to the x (¢) integral we just computed in
Eq.2.3. In fact, by lining up terms, we can write:

1 k
ajp = ﬁx (Z = ﬁ) (26)

Now, we can write out X (f) in terms of this series and these a; and then invert the
Fourier transform to obtain the following:

w
x(t) = / > agemIRIICW i1 g 2.7)

28 2 Sampling Theorem

Sampling Rate=5.00 Hz
1.5 T T T

1.0

0.5}

0.0

-05F

-1.0 -
-1.0 -0.5 0.0 0.5 1.0

Fig. 2.4 Figure generated by Listing 2.5 showing the fit of sinc-based interpolator.

substitute for ay,

W 1 k . .
t) = - f = — —j2rkf/2W) ,j2nft 2.
x(1) /_WXk:zwx(2W)e e df (2.8)

switch summation and integration (usually dangerous, but okay here)

kKN 1Y A
1) = t=— | — —jamkf/@W)+j2nft 4 29
0 ?x(2W)2W/_We e

which gives finally:

_ _ L sin(z(k — 2t W))
x(t)—Xk:x(t = 2W)—n(k_2tW) (2.10)

And this what we have been seeking—a formula that reconstructs the function from
its samples at ¢ = k/(2W). Note that the sinc function is defined as the following:

sinc(x) = sin(7x) (2.11)
X
Because our samples are spaced at t = k/f;, we’'ll use W = (/2 to line

things up.

2.2 Reconstruction 29

Errors with Whittaker Interpolant

15
10.00030
1.0}
1 0.00025
8
L oost {0.00020 &
= 54
= o]
g 1 0.00015 ir;
0.0 =}
< =
1{0.00010 ¥
_05 -
1 0.00005
-1.0 . . 0.00000
0.0 0.2 0.4 0.6 0.8 1.0

Time

Fig. 2.5 Figure generated by Listing 2.6. Note that the errors here are much smaller than those in
Fig.2.3

We can do the same evaluation of squared-error as we did for the linear
interpolant above using the same code as Listing 2.4 with minor modifications
shown in Listing 2.6.

Figure 2.5 shows the massive reduction in squared-error resulting from using the
sinc functions (scale on the right). This is much better than what we obtained from
the linear interpolant in Fig. 2.3. In this context, the interpolating sinc functions are
called the Whittaker interpolating functions. Let’s examine these functions with the
code in Listing 2.7

Listing 2.7 introduces the hlines, vlines, and ax.annotate functions. The
hlines and vlines functions draw horizontal and vertical lines on the plot,
respectively. The annotate function draws arrows on the plot with corresponding
text. This is a particularly powerful function because the arrow shapes and the text
can be formatted separately with all of their respective options.

The first argument for annotate is the descriptive text itself. The keyword
argument xy specifies the position of the tip of the arrowhead whereas the xytext
argument indicates the position of the start of the text itself. Next, arrowprops is a
Python dictionary that holds the properties for formatting the arrow. In this case, we
specify the facecolor as red and the shrink factor as 0. 05, which moves the tip
and base of the arrow a small percentage away from the text and annotation point.

Figure 2.6 shows three neighboring interpolation functions, one for each of three
neighboring samples. Note that the peaks and zeros of these functions interleave.
Therefore, at each of the sample points, there is no interference from any of the other
functions because the others are all zero there. This is why the interpolated function
matches the sample points exactly. In between sample points, the crown shape of the

30 2 Sampling Theorem

1.2 T

sample value goes here
1.0} ~

e N
, \
0.8} / N
, \
, \

0.6 | / \

no interference here \\

!

0.4 / \

, \

\
0.2f /’ \
- =~ - =<\
[he ~ N P < ~ Q
0.0 S > p
N N / \\ s
—02} ~_o L7 ~_-7
-0.4 - - -
-1.0 -0.5 0.0 0.5 1.0

Fig. 2.6 Figure generated by Listing 2.7 showing how neighboring interpolating functions do not
mutually interfere at the sample points

function fills in (i.e. interpolates) the missing values as shown in Fig. 2.6. Thus, the
sinc functions provide the missing values, not straight lines as we presumed earlier.
The width of these functions is directly related to the bandwidth of the signal which
is part of the statement of the sampling theorem.

As an illustration, Listing 2.8 shows how the individual Whittaker functions
(dashed lines) are assembled into the final approximation (black-line) using the
given samples (blue-dots). We urge you to play with the sampling rate in the
corresponding IPython Notebook and see what happens. Note the heavy use of
Numpy broadcasting in this code instead of the multiple loops we used earlier.

Figure 2.5 shows the errors in the Whittaker interpolation, but why are there
any errors? The sampling theorem didn’t say anything about errors! Answering this
question will take us deeper into the practical implications of the sampling theorem.
This is the topic of our next section.

2.3 The Story So Far

Whatever conclusions we draw from our analysis in the digital domain must
relate back to the original analog signal or they are not meaningful. The sampling
theorem provides the mathematical justification for digital signal processing and
thereby underpins the entire field. In this section, we started our investigation of
the sampling theorem by asking if we could reverse-engineer it by reconstructing
a signal from its discrete samples. This led us to derive the Whittaker interpolator,
but this still did not exactly retrieve the original signal. The pursuit of an exact
reconstruction is the topic of our next section. In the meantime, I invite you to

2.4 Approximately Time-Limited-Functions 31

Sine Reconstructed with Whittaker Interpolator

1.0

0.5}
(]
-
=1
-

= 00}
£
<

-05}

1.0}

-1.0 -0.5 0.0 0.5 1.0
Time

Fig. 2.7 Figure generated by Listing 2.8 showing how the sampled sine function is reconstructed
(solid line) using individual Whittaker interpolators (dashed lines). Note each of the sample points
sits on the peak of a sinc function

download the IPython Notebook corresponding to this section and play with the
sampling frequency, and maybe even the sampled function and see what else you
can discover about the sampling theorem.

2.4 Approximately Time-Limited-Functions

We left off with the disturbing realization that even though we satisfied the
requirements of the sampling theorem, we still had errors in our approximating
formula. We can resolve this by examining the Whittaker interpolating functions,
which are used to reconstruct the signal from its samples.

Notice in Fig.2.8 that the function extends to infinity in either direction. This
basically means that the signals we can represent must also extend to infinity
in either direction which then means that we have to sample forever to exactly
reconstruct the signal! So, on the one hand, the sampling theorem says we only
need a sparse density of samples, but this result says we need to sample forever.

This is a deep consequence of band-limited functions which, as we have just
demonstrated, are not time-limited. Now, the new question is how to get these
signals into a computer with finite memory? How can we use what we have learned
about the sampling theorem with these finite-duration signals?

32 2 Sampling Theorem

1.0 T T T T
] O O SRR SIS PO S

06F-------- e e B e
This Ekeeps goir:ig... : an:d going...

Fig. 2.8 Figure generated by Listing 2.9

Let’s compromise and settle for functions that are approximately time-limited in
the sense that almost all of their energy is concentrated in a finite time-window:

/T f()Pdt = E — e

where E is the total energy of the signal:

/ T\ 0pdi = E

Now, with this new definition, we can seek out functions that are band-limited but
come very, very (i.e. within €) close to being time-limited as well. In other words,
we want functions ¢ (¢) so that they are band-limited:

w
o(t) = /_W d(v)e¥ V' dt

and coincidentally maximize the following:

/_ 16 () Pdi

After a complicated derivation, this boils down to solving the following eigenvalue
equation:

t sinRaW(t — x))

o A =260

2.4 Approximately Time-Limited-Functions 33

<
©

<
=)

o
=

Maximum Eigenvalue

P T A EE T N P s R .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time-bandwidth product o

Fig. 2.9 Figure generated by Listing 2.10

The set of ¢ (¢) eigenfunctions form the basis for arbitrary approximately time-
limited functions. In other words, we can express

F@O) =" ardi(1)
k

Note that the ¢ (¢) functions are not time-limited, but only time-concentrated in the
[—7, 7] interval. With a change of variables, we can write this in normalized form as

/_ 11) Si“@:‘(’t([_‘x;)/ D dx = 20 (0)

where we define 0 = (27)(2W) as the time-bandwidth product. The advantage of
this change of variables is that T and W are collected in a single term. Furthermore,
this is the form of a classic problem where the v functions turn out to be the angular
prolate spheroidal wave functions. Let’s see what these y functions look like by
solving this form of the eigenvalue problem in Listing 2.10.

As shown in Fig. 2.9, the maximum eigenvalue quickly ramps up to almost one.
The largest eigenvalue is the fraction of the energy contained in the interval [—1, 1].
Thus, this means that for o > 3, ¥ (¢) is the eigenfunction that is most concentrated
in that interval. Now, let’s look at this eigenfunction under those conditions shown
in Fig. 2.10.

Note that we’ll see the shape in Fig.2.10 again when we take up window
functions. What does this all mean? By framing our problem this way, we made
a connection between the quality of our reconstruction via the Whittaker interpolant
and the time-bandwidth product. Up until now, we did not have a concrete way of

34 2 Sampling Theorem

Eigenvalue=0.9990;0=3.00

0.16

Wy (2)

0.00 N N N
-1.0 -0.5 0.0 0.5 1.0

Fig. 2.10 Figure generated by Listing 2.10

0.20

0.15 |

~—~ 0.10
~
SN—
&
I
S
- 005
0.00
—0.05
20 -15 -10 -05 0.0 0.5 1.0 15 2.0
t

Fig. 2.11 Figure generated by Listing 2.12

relating limitations in time to limitations in frequency. Now that we know how to
use the time-bandwidth product, let’s go back to the original formulation with the
separate T and W terms as in the following:

’ sin2rW(t — x))
_r $(x) w(t —x)

and then re-solve the eigenvalue problem.
Figure 2.11 looks suspicously like the sinc function. In fact, in the limit as 0 —
00, the eigenfunctions devolve into time-shifted versions of the sinc function. These

dx = A (1)

2.5 Summary 35

are the same functions used in the Whittaker interpolant. Now we have a way to
justify the interpolant by appealing to large o values.

2.5 Summary

We started by investigating the residual error in the reconstruction formula using
the Whittaker approximation functions. Then, we recognized that we cannot have
signals that are simultaneously time-limited and band-limited. This realization
drove us to investigate approximately time-limited functions. Through carefully
examining the resulting eigenvalue problem, we determined the time-bandwidth
conditions under which the Whittaker interopolant is asymptotically valid. As you
can imagine, there is much more to this story, and many powerful theorems place
bounds on the quality and dimensionality of this reconstruction, but for us, the
qualifying concept of time-bandwidth product is enough for now.

36

Appendix

from __future__ import division

fig,ax = subplots()

f =1.0 # Hz, signal frequency

fs = 5.0 # Hz, sampling rate (ie. >= 2%f)

t = arange(-1,1+1/fs,1/fs) # sample interval, symmetric
for convenience later

x = sin(2+pixf*t)

ax.plot(t,x,’0-7)
ax.set_xlabel(’Time’,fontsize=18)
ax.set_ylabel(’Amplitude’ ,fontsize=18)

2 Sampling Theorem

Listing 2.1: The first line ensures that we use floating-point division instead of the default
integer divide. Line 3 establishes the figure and axis bindings using subplots. Keeping these
separate is useful for very complicated plots. The arange function creates a Numpy array of
numbers. Then, we compute the sine of this array and plot it in the figure we just created. The
-o is shorthand for creating a plot with solid lines and with points marked with o symbols.
Attaching the plot to the ax variable is the modern convention for Matplotlib that makes it
clear where the plot is to be drawn. The next two lines set up the labels for the x-axis and

y-axis, respectively, with the specified font size.

fig,ax = subplots()
ax.plot(t,x,’0-7)
ax.axis(xmin = 1/(4*f)-1/fs*3,

xmax 1/(4xf)+1/fs%3,

ymin = O,

ymax = 1.1)
ax.set_xlabel(’Time’,fontsize=18)
ax.set_ylabel(’Amplitude’ ,fontsize=18)

Listing 2.2: Listing corresponding to Fig.2.2. On the third line, we establish the limits of
the axis using keyword arguments. This enhances clarity because the reader does not have to

otherwise look up the positional arguments instead.

S O

w

2.5 Summary 37

interval=[] # piecewise domains
apprx = [] # line on domains
build up points *evenly* inside of intervals
tp = hstack([linspace(t[i],t[i+1],20,False) for i in range(len(t)-1)])
construct arguments for piecewise
for i in range(len(t)-1):
interval.append(logical_and(t[i] <= tp,tp < t[i+1]))
apprx.append ((x[i+1]-x[i])/(t [i+1]-t[i])*(tp[interval [-1]]-t[i]) + x[i])
x_hat = piecewise(tp,interval,apprx) # piecewise linear approzimation

Listing 2.3: Code for constructing the piecewise linear approximation. The hstack function
packs smaller arrays horizontally into a larger array. The remainder of the code formats the
respective inputs for Numpy’s piecewise linear interpolating function.

fig,axl=subplots()

fill in the difference between the interpolant and the sine
ax1.fill_between(tp,x_hat,sin(2*pi*f*tp),facecolor="red’)
axl.set_xlabel(’Time’,fontsize=18)
axl.set_ylabel(’Amplitude’,fontsize=18)

ax2 = axl.twinx() # create clone of azl

sqe = (x_hat-sin(2*pi*f*tp))**2 #compute squared-error
ax2.plot(tp, sqe,’r’)

ax2.axis(xmin=-1,ymax= sqe.max())

ax2.set_ylabel(’Squared error’, color=’r’,fontsize=18)
axl.set_title(’Errors with Piecewise Linear Interpolant’,fontsize=18)

Listing 2.4: Listing corresponding to Fig.2.3. Line 2 uses £i11_between to fill in the convex
region between the x_hat and the sin function with the given facecolor. Because we want
a vertical axis on both sides of the figure, we use the twinx function to create the duplicated
axis. This shows the value of keeping separate variables for axes (i.e. ax1,ax2).

fig,ax=subplots()

t = linspace(-1,1,100) # redefine this here for convenience

ts = arange(-1,1+1/fs,1/fs) # sample points

num_coeffs=len(ts)

sm=0

for k in range(-num_coeffs,num_coeffs): # since function is real, need both
sides smt+=sin(2*pi*(k/fs))*sinc(k - fs*t)

ax.plot(t,sm,’--’,t,sin(2%pi*t),ts, sin(2*pix*ts),’0’)

ax.set_title(’Sampling Rate=7,3.2f Hz’ J, fs, fontsize=18)

Listing 2.5: Code corresponding to Fig. 2.4 that shows that you can draw multiple lines with a
single plot function. The only drawback is that you cannot later refer to the lines individually
using the legend function. Note the squared-error here is imperceptible in this plot due to
improved interpolant.

S O

w

S O

w

38 2 Sampling Theorem

fig,ax1=subplots()
ax1.fill_between(t,sm,sin(2*pi*f*t),facecolor=>red’)
axl.set_ylabel(’Amplitude’,fontsize=18)
axl.set_xlabel(’Time’,fontsize=18)

ax2 = axl.twinx()

sqe = (sm - sin(2*pi*f*t))**2

ax2.plot(t, sqe,’r’)

ax2.axis(xmin=0,ymax = sqe.max())

ax2.set_ylabel(’Squared Error’, color=’r’,fontsize=18)
axl.set_title(r’Errors with Whittaker Interpolant’,fontsize=18)

Listing 2.6: Listing for Fig. 2.5. Note that on Line 8, we scale the y-axis maximum using the
Numpy unary function (max ()) attached to the sqe variable.

fig,ax=subplots()

k=0

fs=2 # makes this plot easier to read

ax.plot(t,sinc(k - fs * t),
t,sinc(k+1 - fs * t),’--’,k/fs,1,’0’,(k)/£fs,0,’07,
t,sinc(k-1 - fs * t),’--’,k/fs,1,%0’,(-k)/fs,0,%0’

ax.hlines(0,-1,1) # horizontal lines
ax.vlines(0,-.2,1) # wertical lines
ax.annotate(’sample value goes here’,
xy=(0,1), # arrowhead position
xytext=(-1+.1,1.1),# texzt position
arrowprops={’facecolor’:’red’,
’shrink’:0.05},
)
ax.annotate(’no interference here’,
xy=(0,0),
xytext=(-1+.1,0.5),
arrowprops={’facecolor’:’green’,’shrink’:0.05},

)

Listing 2.7: Listing corresponding to Fig. 2.6 introducing the annotate function that draws
arrows with indicative text on the plot. The shrink key moves the tip and base of the arrow a
small percentage away from the annotation point.

2.5 Summary 39

£s=5.0 # sampling rate

k=array(sorted(set((t*fs).astype(int)))) # sorted coefficient list

fig,ax = subplots()

ax.plot(t, (sin(2*pi*(k[:,None]/fs))*sinc(k[:,Nonel-fs*t)).T,’--’, # individual
whittaker functions t,(sin(2*pix*(k[:,Nonel/fs))*sinc(k[:,None]-fs*t)).
sum(axis=0),’k-’, # whittaker interpolant k/fs,
sin(2*pi*k/fs),’ob’) # samples

ax.set_xlabel(’Time’,fontsize=18)

ax.set_ylabel(’Amplitude’ ,fontsize=18)

ax.set_title(’Sine Reconstructed with Whittaker Interpolator’)

ax.axis((-1.1,1.1,-1.1,1.1));

Listing 2.8: Listing for Fig.2.7. Line 4 uses Numpy broadcasting to create an implicit grid
for evaluating the interpolating functions. The .T suffix is the transpose. The sum(axis=0) is
the sum over the rows.

t = linspace(-5,5,300) # redefine this here for convenience
fig,ax = subplots()

£s=5.0 # sampling rate
ax.plot(t,sinc(fs * t))
ax.grid() # put grid on azes
ax.annotate(’This keeps going...’,
xy=(-4,0),
xytext=(-5+.1,0.5),
arrowprops={’facecolor’:’green’,
’shrink’:0.05%},
fontsize=14)
ax.annotate(’... and going...’,
xy=(4,0),
xytext=(3+.1,0.5),
arrowprops={’facecolor’:’green’,
’shrink’:0.05},
fontsize=14)

Listing 2.9: Listing corresponding to Fig. 2.8.

o U R W N =

-

40 2 Sampling Theorem

def kernel(x,sigma=1):
’convenient function to compute kernel of eigenvalue problem’
X = np.asanyarray(x) # ensure T is array
y = pi*where(x == 0,1.0e-20, x)# avoid divide by zero
return sin(sigma/2*y)/y

nstep=100 # quick and dirty integral quantization
t = linspace(-1,1,nstep) # quantization of time
dt = diff(t)[0] # differential step size

def eigv(sigma):
return eigvalsh(kernel(t-t[:,Nonel,sigma)) .max() # compute maz eigenvalue

sigma = linspace(0.01,4,15) # range of time-bandwidth products to consider

fig,ax = subplots()

ax.plot(sigma, dt*array([eigv(i) for i in sigmal),’-o07)
ax.set_xlabel(’Time-bandwidth product σ’,fontsize=18)
ax.set_ylabel (’Maximum Eigenvalue’,fontsize=18)
ax.axis(ymax=1.01)

ax.grid()

Listing 2.10: Listing corresponding to Fig.2.9. The eigvalsh function comes from the
LAPACK compiled library.

sigma=3 # time-bandwidth product

w,v=eigh(kernel(t-t[:,Nonel,sigma)) # eigen-system

maxv=v[:, w.argmax()] # eigenfunction for maz eigenvalue
fig,ax=subplots()

ax.plot (t,maxv)

ax.set_xlabel(’t’,fontsize=22)
ax.set_ylabel(’$\psi_0(t)$’,fontsize=22)
ax.set_title(’Eigenvalue=73.4f;σ=73.2f "% (w.max()*dt,sigma))

Listing 2.11: Listing corresponding to Fig.2.10. The argmax function finds the array index
corresponding to the array maximum.

2.5 Summary 41

def kernel_tau(x,W=1):
’convenient function to compute kernel of eigenvalue problem’
X = np.asanyarray(x)
y = pi*where(x == 0,1.0e-20, x) # avoid divide by zero
return sin(2*Wxy)/y

nstep=300 # quick and dirty integral quantization
t = linspace(-1,1,nstep) # quantization of time

tt = linspace(-2,2,nstep) # extend interval

sigma = 5

W = sigma/2./2./t.max()

w,v=eig(kernel_tau(t-tt[:,None] ,W)) # compute e-vectors/e-values
maxv=v[:,w.real.argmax()].real # take real part

fig,ax = subplots()

ax.plot(tt,maxv/sign(maxv[nstep/2])) # normalize for orientation
ax.set_xlabel(’t’,fontsize=24)
ax.set_ylabel(r’$\phi_{max}(t)$’,fontsize=24)
ax.set_title(’$\sigma=7d$’%(2+W*2*t .max()),fontsize=26)

Listing 2.12: Listing corresponding to Fig. 2.11. the sign function computes the sign of the
argument.

42

def

def

2 Sampling Theorem

facet_filled(x,alpha=0.5,color="b"):

’construct 3D facet from adjacent points filled to zero’
a,b=x

a0= axarray([1,1,0])

b0= barray([1,1,0])

ve = vstack([a,a0,b0,b]) # create closed polygon facet
poly = Poly3DCollection([vel) # create facet
poly.set_alpha(alpha) # set transparency

poly.set_color(color)
return poly

drawDFTView(X,ax=None,fig=None) :
’Draws 3D diagram given DFT matrix’
a=2*pi/len(X)*arange (len(X))
d=vstack([cos(a),sin(a) ,array(abs(X)).flatten()]).T
if ax is None and fig is None:

fig = plt.figure()

fig.set_size_inches(6,6)

if ax is None: # add az to existing figure
ax = fig.add_subplot(l, 1, 1, projection=’3d’)

ax.axis([-1,1,-1,1]1) # z-y limits
ax.set_zlim([0,d[:,2] .max()]) # z-limit
ax.set_aspect (1) # aspect ratio
ax.view_init (azim=-30) # camera view position

a=FancyArrow(0,0,1,0,width=0.02,length_includes_head=True)
ax.add_patch(a)
b=FancyArrow(0,0,0,1,width=0.02,length_includes_head=True)
ax.add_patch(b)

art3d.patch_2d_to_3d(a) # format 2D patch for 3D plot
art3d.patch_2d_to_3d(b)

ax.axis(Poff’)

sl=[slice(i,i+2) for i in range(d.shapel[0]-2)] # collect neighboring points
for s in sl:

poly=facet_filled(d[s,:])

ax.add_collection3d(poly)

edge polygons
ax.add_collection3d(facet_filled(d[[-1,0],:1))
ax.add_collection3d(facet_filled(d[[-2,-1],:1))

43
44
45

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

2.5 Summary 43

def drawInOut(X,v,return_axes=False):
fig = plt.figure()
fig.set_size_inches(8,8)
gs = gridspec.GridSpec(8,6)

axl = plt.subplot(gs[3:5,:2])
ax2 = plt.subplot(gs[:,2:],projection=’3d’)

axl.stem(arange(len(v)),v)

ymin,ymax= axl.get_ylim()

axl.set_ylim(ymax = ymax+*1.2, ymin = ymin*1.2)
axl.set_title(’Signal’)

axl.set_xlabel(’n’)
ax1.tick_params(labelsize=8)

drawDFTView(X,ax2)
if return_axes:
return axl,ax2

Listing 2.13: Setup code for gyphs. The add_patch function places graphics primitives
(“patches”) like rectangles and arrows onto the plot. The FancyArrow is one of the graphics
primitives for an arrow. The gridspec is a more powerful tool than subplots for controlling
placement of plots on a grid.

Chapter 3
Discrete-Time Fourier Transform

3.1 Fourier Transform Matrix

Let us start with the following DFT matrix

U= [('2” k)} 3.1
=——|exp|j—n .
VN N n€f0.Ny—1} ke{0.N—1}

where n counts the number of samples and k indexes the discrete frequencies as
columns.

Figure 3.1 shows the discrete frequencies on the unit circle and their corre-
sponding real and imaginary parts that are the columns of U. The pinwheel on the
left shows each discrete frequency on the unit circle corresponding to each of the
columns of the U matrix shown on the right. These are color coded corresponding
to the graphs on the right. For example, the k' = 1 column of the U matrix (i.e.
u,) corresponds to discrete frequency w; = 21—’6’ marked on the y-axis label which is
shown in the second row down the middle column in the figure. The real part of u;
is plotted in bold and the corresponding imaginary part is muted in the background
because it is just an out-of-phase version of the real part. These real/imaginary
parts shown in the graphs correspond to the conjugacy relationships on the leftmost
radial plot. For example, w; and w;5 are complex conjugates and their corresponding
imaginary parts are inverted as shown in the plots on the right. Figure 3.1 is the most
important graphic in this entire book so please make sure to review it carefully.

As shown, N divides the unit circle into discrete frequencies between zero and
2. It also divides the sample rate into sampled frequencies between zero and f;.
This is because sampling at ¢ = n/ f; means that

exp(j2mft) = exp(j2mfn/fs)

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8_3, 45
© Springer International Publishing Switzerland 2014

3 Discrete-Time Fourier Transform

46

910110 J1un Ay uo suonisod Jurpuodsariod Iy pue Xiew [Y} Jo suwnjod ay) Suimoys [*¢ Junsr] £q pojerouss a1 '€ *S1g

Te}
g
)
1=
—
—
1=
(=)
—
(< Kol
o
g~

u

O

91
X qT="Tr

SYE€CTO SWIEICIIIOI6 8L9SVECTTO
LI D) L) T T -_.

¥

9L _¥

91
X er=">l

o1
X er="%

91
X 11="e

o1
X 01="l

91
w7 X 6= 6¢r

I, o8
X 8="0

WIMX e=%m
WIMX ="
mlMx 1="m
mlwx 0="m

eay
0'T 5000500 T—

h
L

A

1 1

o 11 <

)
Areurbewr]

0 m

1
w©
o

10°1T

Kouanbaui,] [eipey

3.2 Computing the DFT 47

and equating the argument of the exponential with Eq. 3.1 gives

k
fk:ﬁfs

One immediate consequence of the one-to-one correspondence between wy and
Ji is that when k = N/2, we have wy/» = m (halfway around the circle) and
JSn/2 = fs/2 which is another way of saying that the Nyquist frequency occurs
when wy/», = m. Qualitatively, we can see this in Fig. 3.1 where the counterclock-
wise rotation around the unit circle towards m corresponds to increasingly jagged
plots on the right. These plots get smoother as the rotation passes m and swings
back towards zero. This is because the higher frequencies are those close to = and
the lower frequencies are those close to zero on the complex plane. We will explore
these crucial relationships more later, but let’s first consider computing the DFT
using this matrix.

3.2 Computing the DFT
To compute the DFT using the matrix, we calculate the following,
% =Ufx

which individually takes each of the columns of U and computes the complex inner
product as the ith entry,'

That is, we are measuring the degree of similarity between each column of U and
the input vector. We can think of this as the coefficient of the projection of x onto
u;. We can retrieve the original input from the DFT by calculating

x = UUx

because the columns of U are orthonormal (i.e. u/u; = 0,uf’w; = 1). An
important consequence of this is that

||X||2 =xx = x"UUx = ||§(||2

I'The H superscript indicates the conjugate transpose.

48 3 Discrete-Time Fourier Transform

This is Parseval’s theorem and it means that the DFT does not somehow “lose”
signal energy as we transform back and forth between discrete frequency and
sampled-time. As we’ll see later, not losing energy in fotal doesn’t account for how
that energy may be spread out in frequency.

3.3 Understanding Zero-Padding

The only relationship between N, the size of the DFT, and the number of samples
N; is that N > N;. In practice, because we use the Fast Fourier Transform (FFT)
to compute this, we always choose N as a power of 2. Let’s now turn to the
consequences of choosing N larger than N;. Figure 3.2 shows the magnitude of
the DFT of x = 1 € R with N, = 16 samples with DFT-length, N = 64.

If you’ve been following closely, you may realize that for the above example we
had x = 1. But isn’t this one of the columns of the U matrix? If all the columns of
that matrix are orthonormal, then why is there more than one non-zero point on this
graph? The subtle point here is that the DFT matrix has dimensions 64 x 16. This
means that computationally,

H _ yH T
UtsxeaX = Ugyye [X. 0]

In other words, filling the original 16 x 1 vector x with zeros and using a larger
compatible Ugsx64 matrix has the same effect as using the U x4 matrix. The answer
to the question is therefore that x = 1j6x; # [liexi, O]T and the zero-augmented
ones vector is not orthonormal to any columns in Ugaxes. This explains why there
are so many non-zero points on the graph at different discrete frequencies.

As shown in Fig. 3.3, without zero-padding, x is the 0 column of the 16-point
DFT matrix and so all the coefficients except for the 0™ column are zero due to
orthonormality (shown by the green squares). But, the zero-padded 64-element-long
x vector is definitely not a column of the 64-point DFT matrix so we would not

n 3T 2m

w

o
N

Fig. 3.2 Figure generated by Listing 3.2 showing the magnitude of the DFT of x = 1 € R'® with
N; = 16 samples with DFT-length, N = 64

3.3 Understanding Zero-Padding 49

Zero padding samples more frequencies

A [l
e—e zero padded
3l ®_Pno padding
3,
1 o
0 [I
0 ’22 %ﬂ 27
w

Fig. 3.3 Figure generated by Listing 3.3
Fig. 3.4 Figure generated by 64-Point DFT Magnitude

Listing 3.6 showing the
magnitude of the X (wy)
64-point DFT as in Fig. 3.2,
but now plotted on the face of
a cylinder, emphasizing its
periodicity

expect all the other terms to be zero. In fact, the other terms account for the 63 other
discrete frequencies that are plotted in Fig. 3.3.

In Fig. 3.3, note that for the 0" frequency, the DFT magnitude is much smaller
for the zero-padded constant signal compared to the unpadded version. Recall from
Parseval’s theorem that ||x|| = ||X]|| so no energy is “lost”, but this does not account
for how that energy may be spread across frequency. In the unpadded case, all of
the signal energy is concentrated in the uy column of the DFT matrix because our
constant signal is just a scalar multiple of uy. In the padded case, the signal’s energy
is spread out across many frequencies with smaller signal magnitudes per frequency,
thus satisfying Parseval’s theorem. In other words, the single non-zero term in the
unpadded DFT is smeared out over all the other frequencies in the padded case.

The problem with Fig.3.3 is that it does not emphasize that the discrete
frequencies are periodic with period N. Figure 3.4 attempts to remedy this by

50 3 Discrete-Time Fourier Transform

plotting the 64-point DFT on the face of a three-dimensional cylinder to emphasize
the periodicity of the discrete frequencies. Figure 3.4 is very important and we will
use it as a glyph later. It shows the same magnitude of the X (wy) 64-point DFT as
in Fig. 3.2, but now plotted on the face of a cylinder, we can really see the periodic
discrete frequencies. The two arrows in the xy-plane show the discrete frequencies
zero and m, respectively, for reference. The code that draws this glyph is collected
in Listing 3.6.

Figure 3.5 shows the symmetric lobes of the DFT of a real signal. The plot on
the left is the signal in the sampled time-domain and the plot on the right is its DFT-
magnitude glyph. Because the input signal is real, the DFT is symmetric. Recall
that in Fig. 3.1, every u; had its complex conjugate, uy—;, and since the real parts of
complex conjugates are the same and there is no imaginary part in the real-valued

0.15
0.10
0.05
0.00
—-0.05
-0.10
-0.15

Fig. 3.5 Figure generated by Listing 2.13 showing the symmetric lobes of the DFT of a real signal

Highest Frequency

T T
1.0 p b

0.5 T

0.0

=05 b

—-1.0F} -

0 2 4 6 8 10 12 14 16

Fig. 3.6 Figure generated by Listing 3.5 showing the highest-frequency signal

3.4 Summary 51

Lowest Frequency

T T T T T T
1.01..“".‘..“".-
0.8 [1
0.6 N
0.4
0.2
0.0

0 2 4 6 8 10 12 14
n

Fig. 3.7 Figure generated by Listing 3.5 showing the lowest-frequency signal

input signal, the resulting corresponding inner products are complex conjugates and
thus have the same magnitudes. The block of code in Listing 3.4 illustrates this in
Fig.3.5. This fact has extremely important computational consequences for the fast
implemention of the DFT (i.e. FFT), but that is a story for another day. For now, it’s
enough to recognize the symmetry of the DFT of real signals and how it arises.

Now that we have enough vocabulary defined, we can ask one more intuitive
question: what does the highest frequency signal (i.e. wy/» = m) look like in the
sampled time-domain? This is shown on the left in Fig. 3.6 where a signal toggles
back and forth positive and negative. Note that the amplitudes of this toggling are
not important, it is the rate of toggling that defines the high frequency signal. At the
other extreme, Fig. 3.7 shows the lowest frequency signal (i.e. wy = 0). Note that
it is the mirror image of the high frequency signal. Please download the IPython
notebook corresponding to this section and play with these plots to develop an
intuition for where the various input signals appear.

3.4 Summary

In this section, we considered the Discrete-Time Fourier Transform (DFT) using
a matrix/vector approach. We used this approach to develop an intuitive visual
vocabulary for the DFT with respect to high/low frequency and real-valued signals.
We used zero-padding to enhance frequency domain signal analysis and examined
the consequences of Parseval’s theorem.

o U R W N =

-

52 3 Discrete-Time Fourier Transform

Appendix

must start notebook with --pyladb flag

from matplotlib.patches import FancyArrow

import mpl_toolkits.mplot3d.art3d as art3d

from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import matplotlib.gridspec as gridspec

def dftmatrix(Nfft=32,N=None):
’construct DFT matrix’
k= np.arange (Nfft)
if N is None: N = Nfft
n = arange(N)
U = matrix(exp(lj* 2*pi/Nfft *k*n[:,Nonel)) # use numpy broadcasting to
create matrix return U/sqrt(Nfft)

Nfft=16

v = ones((16,1))

U = dftmatrix(Nfft=Nfft,N=16)

oo

hardcoded constants to format complicated figure

gs = gridspec.GridSpec(8,12)
gs.update(wspace=1, left=0.01)

fig =figure(figsize=(10,5))
ax0 = subplot(gs[:,:3])
fig.add_subplot (ax0)

ax0.set_aspect (1)
a=2*pi/Nfft*arange (Nfft)

colors = [’k’,’b’,’r’,’m’,’g’, Brown’, ’DarkBlue’, ’Tomato’,’Violet’, ’Tan’,
’Salmon’,’Pink’,’SaddleBrown’, ’SpringGreen’, ’RosyBrown’,’Silver’,]
for j,i in enumerate(a):
ax0.add_patch(FancyArrow(0,0,cos(i),sin(i),width=0.02,
length_includes_head=True,edgecolor=colors[j]1))

ax0.text(1,0.1,°0’ ,fontsize=16)
ax0.text(0.1,1,r’$\frac{\pi}{2}$’,fontsize=22)
ax0.text(-1,0.1,r’π’,fontsize=18)
ax0.text(0.1,-1.2,r’$\frac{3\pi}{2}$’,fontsize=22)
ax0.axis(array([-1,1,-1,1]1)#*1.45)
ax0.set_title(’Radial Frequency’,fontsize=18)
ax0.set_xlabel(’Real’)

ax0.set_ylabel(’Imaginary’)

46
47
48
49
50
51
52
53
54
55

57

[S O

o

3.4 Summary 53

plots in the far right column

for i in range(8):
ax=subplot(gs[i,8:])
ax.set_xticks([]); ax.set_yticks([])
ax.set_ylabel(r’$\omega_{/d}=/d\times\frac{2\pi}{16}$°%(i+8,i+8) ,fontsize=16,

rotation=’horizontal’)

ax.plot(U.real[:,i+8],’-0’,color=colors[i+8])
ax.plot(U.imag[:,i+8],’--0’,color=colors[i+8],alpha=0.2)
ax.axis(ymax=4/Nfft*1.1,ymin=-4/Nfft*1.1)
ax.yaxis.set_label_position(’right’)

ax.set_xticks(arange(16))

ax.set_xlabel(’n’)

Listing 3.1: Listing corresponding to Fig.3.1. The yaxis.set_label_position function
places the y-label on the right side of the figure instead of on the default left side. Using
set_xticks to set the tick labels list to the empty list ([1) removes all the tick marks on the
x-axis. The set_xticklabels functions sets the labels on the tickmarks to the specified list of
ATEX formatted strings. Matplotlib’s gridspec is a generalization of subplot that allows more
precise control of the layout of nested plots. The art3d module holds the codes for converting
2D elements into 3D elements that can be added to 3D axes. The Poly3DCollection object
is a container for 3D elements.

U = dftmatrix(64,16)
x = ones((16,1))
X = U.H*xx

fig,ax=subplots()

fig.set_size_inches((8,4))

ax.set_aspect(0.8)

ax.grid()

ax.plot (arange(0,64)*2*pi/64.,abs(X),’0-’)

ax.set_ylabel(r’$|X(\omega) |$’,fontsize=18)

ax.set_xticks([0, pi/2., pi, 3#*pi/2,2*pil)

ax.set_xlabel(r’ω’,fontsize=16)

ax.axis ([0, 2#%pi,0,2.1])

ax.set_xticklabels([’0’,r’$\frac{\pi}{2}$’, r’π’,r’$\frac{3\pi}{2}$’,
r’2π’], fontsize=18);

Listing 3.2: Listing corresponding to Fig.3.2. The set_xticklabels function changes the
labeling of the tick marks to the given string, here with extra ISIEX formatting.

S O

w

S O

w

54

U

X =

X

3 Discrete-Time Fourier Transform

dftmatrix(64,16)
ones ((16,1))
U.H*x

fig,ax=subplots()
fig.set_size_inches((8,4))

ax.
.plot (arange(0,64)*2*pi/64.,abs(X),’0-’,label="zero padded’)

ax

ax.

ax.
ax.
ax.
ax.
ax.
ax.

ax.

set_aspect(0.8) # aspect ratio

stem(arange (0,16)*2*pi/16.,abs (dftmatrix(16) .H*x),
markerfmt=’gs’, basefmt=’g-’,linefmt=’g-’,
label=’no padding’)

set_xlabel(r’ω’ ,fontsize=18)

set_ylabel(r’$|X(\omega) |$’,fontsize=18)

set_xticks([0, pi/2., pi, 3*pi/2,2%pil)

axis([-.1, 2*pi,-.1,4.1])

legend(loc=0,fontsize=18)

set_xticklabels([’0?,r’$\frac{\pi}{2}$’, r’π’,r’$\frac{3\pi}{2}$’,

r’2π’], fontsize=18);

set_title(’Zero padding samples more frequencies’);

Listing 3.3: Listing corresponding to Fig. 3.3.

v = U[:,6].real
ax1,ax2=drawInOut (U.H*v,v,return_axes=1)
axl.set_title(r’$\omega=\frac{2\pi 5}{16}$’)

v

Listing 3.4: Listing corresponding to Fig. 3.5.

= matrix(cos(pi*arange(0,16))).T

ax1,ax2=drawInOut (U.H*v,v,return_axes=1)
axl.set_title(’Highest Frequency’)

v

= ones((16,1))

ax1,ax2=drawInOut (U.H*v,v,return_axes=1)

axl.set_title(’Lowest Frequency’)

Listing 3.5: Listing corresponding to Fig. 3.7.

S O

w

3.4 Summary 55

a=2%pi/64.+*arange (64)
d=vstack([cos(a),sin(a),array(abs(X)).flatten()]).T

fig = plt.figure()

fig.set_size_inches(6,6)

ax = fig.add_subplot(l, 1, 1, projection=’3d’)
ax.axis([-1,1,-1,1])

ax.set_zlim([0,d[:,2] .max()])

ax.set_aspect (1)

ax.view_init(azim=-30)

ax.set_xlabel(’real’)
ax.set_ylabel(’imag’)
ax.set_zlabel(’Abs’)
ax.set_title(’64-Point DFT Magnitude’)

def facet_filled(x,alpha=0.5,color="b’):
’construct 3D facet from adjacent points filled to zero’
a,b=x
a0= axarray([1,1,0])
b0= barray([1,1,0])
ve = vstack([a,a0,b0,b]) # create closed polygon facet
poly = Poly3DCollection([vel) # create facet
poly.set_alpha(alpha)
poly.set_color(color)
return poly

sl=[slice(i,i+2) for i in range(d.shape[0]-2)] # collect neighboring points
for s in sl:

poly=facet_filled(d[s,:])

ax.add_collection3d(poly)

edge polygons
ax.add_collection3d(facet_filled(d[[-1,0],:1))
ax.add_collection3d(facet_filled(d[[-2,-1],:1))

add 0 and pi/2 arrows for reference
a=FancyArrow(0,0,1,0,width=0.02,length_includes_head=True)
ax.add_patch(a)
b=FancyArrow(0,0,0,1,width=0.02,length_includes_head=True)
ax.add_patch(b)

art3d.patch_2d_to_3d(a)

art3d.patch_2d_to_3d(b)

plt.show()

Listing 3.6: Listing corresponding to Fig. 3.4.

Chapter 4
Introducing Spectral Analysis

In this section, we try to separate two nearby tones using the Discrete Fourier
Transform (DFT). This problem is fundamental to signal processing, and we will
develop the circular convolution as a tool to understand it, as we once again confront
the uncertainty principle. Separating tones is important because scientific apparatus
are often designed to indirectly measure physical quantities by associating them
with frequencies. For example, radar converts relative velocity into frequency so
that by resolving nearby frequencies, you can measure differential velocity.

4.1 Seeking Better Frequency Resolution with Longer DFT

The top plot in Fig. 4.1 above shows the magnitude of the DFT for the sum of two
equal-amplitude tones separated by 2 Hz. Using the parameters we have chosen for
the DFT, we can easily see there are two distinct frequencies in the input signal.
However, in the bottom plot, the same tones are only separated by 0.5 Hz and cannot
be distinguished in the DFT. Because the frequency resolution is f;/N, could we
increase N and thereby resolve the two tones? Let’s try it as shown in Fig. 4.2.

As Fig. 4.2 shows, increasing the size of the DFT did not help separate our two
tones. Didn’t we increase the frequency resolution using a longer DFT? Why can’t
we separate frequencies now?

4.2 The Uncertainty Principle Strikes Back!

The resolution problem is a consequence of the uncertainty principle we discussed
in Chap.2. Recall that the uncertainty principle basically states that we cannot
have arbitrarily fine frequency-resolution unless we have a longer time-durations
(i.e. worse time-resolution). Because we always have a finite slice of signal to
analyze, what we really have are samples of the product of a signal x(¢) and a

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8_4, 57
© Springer International Publishing Switzerland 2014

58 4 Introducing Spectral Analysis

0f=2Hz, T=1s

6 T T T T
[0 R T AL -

a e o o o o o o o 6 olo o o 6 ole o

0f=1/2Hz, T=1s

6 T T T T
I ¥ e e I I -
A4 .. -
O A N 1
T S A RR TR EEREEEPEEPRS EEPERPEEPRES SERPPERRS -
B I SRR P S e N R R

0

0 5 10 15 20 25 30
Frequency (Hz)

Fig. 4.1 Figure generated by Listing 4.1. In the fop plot, we can clearly distinguish two tones
separated by 2 Hz by the magnitude of the DFT shown. However, when these tones are separated
by only 0.5 Hz, we can no longer do so (bottom plot)

N=128, T'=1s

0 5 10 15 20 25 30
Frequency (Hz)

Fig. 4.2 Figure generated by Listing 4.2. In the top plot, we keep everything as in Fig. 4.1, but
increase the DFT length to N = 128. Unfortunately, we still cannot clearly distinguish the two
tones. Going up to N = 256 in the bottom plot does no better

rectangular time-window, r(¢), that is always zero except r(t) = 1 & ¢ € [0, 1].
To understand frequency resolution, we have to understand how this rectangular
window influences the DFT.

4.2 The Uncertainty Principle Strikes Back! 59

N=128, T'=2s

i a L L

0 5 10 15 20 25 30
Frequency (Hz)

Fig. 4.3 Figure generated by Listing 4.3. By sampling through a longer duration, we can now
distinguish the two tones using a longer DFT (bottom plot), but still not so in the fop plot with the
shorter DFT. Clearly, we need both larger DFTs and longer sampling durations to resolve these
two nearby tones, not just longer DFTs

The N = 128 DFT in Fig. 4.2 is updated with a longer duration rectangular
window and shown at the top of Fig. 4.3. The bottom plot shows the DFT of the same
pair of signals N = 512, but this time we can clearly distinguish two frequencies.
Thus, in this case, a longer DFT did resolve the nearby frequencies, but only by
using a longer duration signal. Why is this? Consider the DFT of a rectangular
window of length Nj,

1S (o
R, = — ex (—kn)
7w &\
after some re-arrangement, this reduces to

1
VN

sin (N2 k)

R =
| R sin (%”k)

A.1)

which bears a strong resemblance to our original sinc function. Figure 4.4 plots
this function.

Note that the DFT grows taller and narrower as the rectangular window grows
longer (i.e. sampling duration increases). The amplitude growth occurs because the
longer window accumulates more energy than the shorter window. Functionally,
this appears in the argument of the sine function in the numerator of Eq.4.1. The
length of the DFT is the same for both lines in Fig. 4.4, so only the length of the

60 4 Introducing Spectral Analysis

Rectangular Window DFT
0.9 T T T T

0.8
0.7
0.6
T 205
N 04
0.3
0.2
0.1
0.0

— duration=10 |
— duration=20 |

k

Fig. 4.4 Figure generated by Listing 4.4 showing how longer windows narrow the mainlobe so
that it can resolve two nearby tones

rectangular window varies. Looking at the formula in Eq. 4.1, the null-to-null width
of the mainlobe in frequency terms is the following

NS S
2Ny, N N,

§f =2

Thus, two frequencies that differ by at least this amount should be resolvable in these
plots. In our last example, we had Ny = 128, f; = 64 = §f = 1/2Hz and we were
trying to separate two frequencies 0.5 Hz apart so we were right on the edge in that
case. [invite you to download this IPython notebook and try longer or shorter signal
durations to see how these plots change. This where some define frequency bin as
the DFT resolution (f;/N) divided by this minimal resolution (f;/ N;), which gives
N,/ N. Unfortunately, sometimes bin is used as slang for the kth discrete frequency
index. Fundamentally, the DFT measures frequency in discrete units of this minimal
resolution, Ny/N. We will see this terminology again when we take up window
functions.

Beware that sampling over a longer duration only helps when the signal
frequencies are stable over the longer duration. If these frequencies drift during the
longer interval or otherwise become contaminated with other signals, then advanced
techniques become necessary. Now that we have built up enough intuition, let’s
consider the mechanics of how the DFT of the rectangular window affects resolution
by developing the circular convolution.

4.3 Circular Convolution

Suppose we want to compute the DFT of a product z, = x,y, as shown below,

N—1
1
Iy = —— (xny,,)W_”k
N L

4.3 Circular Convolution 61

where

| N
Xp=—= Y X, Wy
N
P
and
o N—1Y _—
Yn Nm=0 mVV N

N-1 W]{[V(—k—P—m) 1— ej2n(—k—p—m)

1 W]\Tk—p—m T 1 _ gi2n(—k—p—m)/N

This is always zero except where k + p +m = gN (g € Z), in which case it
is N. Substituting all this back into our expression gives the circular convolution
usually denoted as

Z—lijY = Xy Qn Y]
k m p L ((k—p))n k' ON Lk

p=0

where the double subscripted parenthesis emphasizes the periodic nature of the
index. The circular convolution lets us to compute the DFT Z; directly from the
corresponding DFTs X and Y.

Let’s work through an example to see this in action. Figure 4.5 shows the
rectangular window DFT in blue, R; against the sinusoid input signal in red, X,
for each value of k as the two terms slide past each other from left to right, top to
bottom. In other words, the kth term in Zj, the DFT of the product x,r,, can be
thought of as the inner-product of the red and blue lines. This is not exactly true
because we are just plotting magnitudes and not the real/imaginary parts, but it’s
enough to understand the mechanics of the circular convolution.

4 Introducing Spectral Analysis

62

LI 2y Sursn uonnjosar £ousnbaly 10§ WISTUBYISW Y ST J09JJ3 STY, "PAYSINSUnSIp aq IFUO] OU ULD SAUO) 0M] Y} ‘Xapur [Jenonied
© J10J souo) yjoq ssedwoous 0) YSnous apim SI IJJ S, MOPUIM Ie[nSue)doal oy} usym Jey) Seensny[r siyL, ‘9"t "SI ur umoys st ¢[= ¥ IoJ 1.JJ Sunnsar ay) pue
Qu0) Jsounyey 2y jo yead oy s)Y mopurm IenSue)oo1 ay) ‘7] = ¥ Ioj ‘opdwrexs 10 pazrurxews s1 jonpoid-rouur Sunnsar oY) ‘seuo) Ay Jo uo Jo yead oy 03
dn s{[o1 (UOTIOUNY OUTS “9°T) MOPUIM JB[NSULIOI Y} JO L] Y} USYA\ ‘P24 UI UMOYS dIB SOUO) 0M) dY) PUB 21]q UL UMOUS ST MOPUIM Je[nSueidas oy Jo LI YL
"Xapur [Y} smoys sjo[dgns ay) Jo Yoed Jo 9131 Y [, 'UONN[OAUOD Je[nI1o dy} Jo uonerado doys-£q-deys oy) Suimoys g Sunsry Aq pajerouas a1 s ‘31

1€=y €=y 62=Y 87=Y LT=Y 97=% GT=Y ve=3
]

€C=3 =y 1=y 0=y 61=¥ 81=H LT=H 91=H
L

ST=H Yi=x €1=y =y 1= 01=y 6=Y 8=y

L= 9=

4.4 Spectral Analysis Using Windows 63

B, S .

0.25 .. — %] = X, on Ry i
e e|Z.| by DFT

0.20 [+ t-i-d-dedeaianonetobe il st il I S A A S 8

012345678 910111213141516171819202122232425262728293031323334

k

Fig. 4.6 Figure generated by Listing 4.6. Each point on this plot corresponds to one of the frames
shown in Fig. 4.5. For example, at k = 12, the DFT achieves a peak corresponding to one of the
two tones in the input. This corresponds to the k' = 12 frame in Fig. 4.5 where the DFT of the
rectangular window lines up exactly with one of the two tones

The best way to think about the rectangular window’s sinc-shaped DFT as it
slides past the input signal is as a probe with a resolution defined by its mainlobe
width. For example, in frame k = 12, we see that the peak of the rectangular
window coincides with the peak of the input frequency so we should expect a large
value for Z;—;, which is shown in Fig.4.6. However, if the rectangular window
were shorter, corresponding to a wider mainlobe, then two nearby frequencies
would be draped in the same mainlobe and would then be indistinguishable in the
resulting inner-product of the two overlapping graphs. Figure 4.6 shows the direct
computation of the DFT of Z; matches the circular convolution method using X}
and Ry.

In this section, we unpacked the issues involved in resolving two nearby
frequencies using the DFT and once again confronted the uncertainty principle
in action. We realized that longer DFTs cannot distinguish nearby frequencies
unless the signal is sampled over a sufficient duration. We developed the circular
convolution as a tool to visualize the exactly how a longer sampling duration helps
resolve frequencies.

4.4 Spectral Analysis Using Windows

In the previous section, we discovered that resolving two nearby frequencies
depends crucially on the rectangular window and its corresponding DFT. However,
our two neighboring tones had equal amplitudes. What happens when this is no
longer the case? Figure 4.7 shows the DFT of two nearby signals where one has ten
times the amplitude of the other.

64 4 Introducing Spectral Analysis

— 20 USRI Lot e
T L A A ...Equal amplitudes L

Rtof SR I £ SR

= 20f---eeeees P EREEEEE AR R LT EEEE PP PPP PP .

YYyy
o

. : . : : :
0 5 10 15 20 25 30
Frequency (Hz)

Fig. 4.7 Figure generated by Listing 4.7. The two equal amplitude tones are easily distinguished
in the fop plot, but not in the bottom plot, where one has ten times the amplitude

In Fig.4.7, the top plot shows the two peaks of neighboring tones when they
both have the same amplitude. The bottom plot shows the case where the higher
frequency signal has ten times the amplitude of the lower frequency signal. Note
that the two frequencies are no longer resolvable because the sidelobes of the
stronger signal have swamped the weaker signal. Thus, we need more than just
longer sampling durations and longer DFTs to resolve these signals. This is where
windows come in.

A window is a function that is multiplied sample-by-sample against the input
signal (i.e. element-wise). For example, given an input signal, s,, and a window, w,,
the new windowed signal is,

Yn = SpWn “4.2)
known in vector notation as the Hadamard product,
y=woOs (4.3)

Figure 4.8 shows the input signal before (light blue line) and after (red line)
applying the triangular window. The amplitudes are noted on the vertical scale on
the left. The triangular window is drawn in the background with scale noted on
the right side. The red line is the product of the blue line and the window function
in the pink background. Because the triangular window starts at zero, peaks in the
middle, and descends back to zero at the end, the amplitude of the windowed signal
also peaks at the middle, and drops away towards either end. This means that we
lose precious signal energy at the start and end of the signal. We certainly want
something in exchange for this!

4.4 Spectral Analysis Using Windows 65

0.15 1.0
signal
010} windowed
signal 0.8
g
o 005f S
o 0.6 2
2 =}
= =
= 0.00
2 3
g 043
-0.05 | £
=
0.2
-0.10 |
-0.15 0.0
0 10 20 30 40 50 60 70
n
Fig. 4.8 Figure generated by Listing 4.8
40 T T T T T T
30 | Smaller signal i
M 20 1
= 10 1
0 B
B AARAAA
=20 . t
40 T T T T T T
30 | Smaller signal 1
20 | . . 1
8 ot triangular window -
0F B
—-10 ﬂ 4
o . e AL . . .
40 T T T T
30 |} Smaller signal 1
20 | . . 1
8 ot Hamming window -
0F B
—-10 4
—-20 L P L L L
0 10 15

5 20 25 30

Frequency (Hz)

Fig. 4.9 Figure generated by Listing 4.9 showing a weaker signal buried in the sidelobes of a
strong signal that is uncovered by window functions

Figure 4.9 shows the two input signals with rectangular, triangular, and Hamming
windows applied. To enhance detail, Fig. 4.9 shows the 201og;, | X | of the DFT of
the input signal with noted windows applied on the same scale. In the top plot, we
can barely make out the smaller signal in the sidelobes of the dominant larger signal.
The middle plot shows the application using the triangular window with the weaker
tone peeking out from the sidelobes. The bottom plot shows two distinct peaks due
to the applied Hamming window. Note that the width of the mainlobe widened as the
second weaker signal emerged from the sidelobes of the stronger signal. This is one

66 4 Introducing Spectral Analysis

of the many trade-offs involved when using windows for spectral analysis. We just
traded precious signal energy for resolution, but we need a systematic framework
for evaluating different window functions. This framework will be the topic of our
next section.

4.5 Window Metrics

In the last section, we used windows for spectral analysis and noted that, while
windows helped uncover weak signals buried in the sidelobes of nearby stronger
signals, there were trade-offs involved. In this section, we put together the standard
framework for analyzing and categorizing windows. There are many, many windows
used in signal processing, so we begin by considering their common characteristics
and then develop the standard metrics for them.

In Chap. 2, we discussed the time-bandwidth product and how to choose signal
durations to satisfy the underlying reconstruction, but satisfactory reconstruction is
different from separating frequencies in a finite window using the DFT, even though
many of the same issues apply. The DFT works best when the signal is periodic
with period equal to the length of the DFT (), and when an N-length section of
signal, repeated end-to-end, has no discontinuities at the joining end-points. When
this happens, it is possible to exactly isolate the signal’s frequency, because it,
like the columns of the DFT matrix, shares the same fundamental frequency, 277/ N .
More commonly, when this doesn’t happen, the signal is smeared across all of the
frequencies represented in the DFT matrix. This is spectral leakage.

Figure 4.10 shows the effect of spectral leakage. The top row shows the ideal
situation where there is a perfect match between the period of the signal and the
DFT-length. Furthermore, one of the DFT frequencies is exactly equal to the signal
frequency. This means that the DFT perfectly isolates the signal frequency at the
one component shown on the top right.

The second row of Fig.4.10 shows when the signal’s period is slightly different
from the DFT-length and there is a discontinuity at the joining ends. When this
happens, the DFT cannot perfectly isolate the signal’s frequency because the signal
frequency is not an integer-multiple of 27t/ N, which means it is not in the set of
frequencies represented in the DFT (i.e. columns of the DFT matrix) and thus leaks
energy into other frequencies. In other words, the signal frequency is somewhere
between integer-multiples of 277/ N and thus cannot be perfectly isolated in any
of the N discrete frequencies represented by the DFT. The third row of Fig.4.10
uses a window to that eliminates the discontinuity at edges, but obviously distorts
the amplitude of the original signal. The remainder of this section explores the
many ways to analyze windows and their effects and provides some guidelines for
choosing windows in practice.

4.5 Window Metrics 67

Continuous at endpoints

1.0 : . . - . : . .
%'5 0.5 / / 1 157
= 0.0 i 55 10 No spectral leakage
& = st
g -os5f / /]
-1.0 _— . — 0 = 2 2
Discontinuous at endpoints
1.0 - . . - . - : ; .
% 0.5 / / 1 = 15y 1
= 00 | = Spectral Leakage
g—o.s -] = ost
1.0 . . . A . 0 ? L2 °
Window restores continuity at endpoints Frequency(Hz)
1.0 - - . . - ; - . ; ;
§ o5l { = 15 |
= 0.0 | = 10r o Leakage with window
£ = st
g -ost | 1
-1.0 L n . L L L 0 I ® -2
0 10 20 30 40 50 60 70 0 1 2 3 4 5
sample index Frequency(Hz)

Fig. 4.10 Figure generated by Listing 4.12

4.5.1 Processing Gain

Figure 4.11 shows the loss in signal due to the window in the sample domain (top
plot) and in the DFT-domain (bottom plot). The shaded region in the top plot shows
the signal that has been attenuated by the window, which slopes to zero towards the
edges. The bottom plot shows the DFTs of the signal before and after windowing.
As indicated, the loss in power is the drop in the DFT at the signal frequency, f,.
Note that the mainlobe of the windowed DFT is much larger than before which
makes it harder to separate two nearby frequencies that are separated by less than
the width of the mainlobe. Losing signal energy is not good, but we must consider
this in the context of ever-present noise. This brings us to our first formal window
metric.

To analyze the effect of windows, we define the signal-to-noise ratio (SNR) and
then compute it before and after applying the window function. For simplicity, we
consider a perfect narrowband signal at frequency f, with amplitude, A4,

x = Au, (4.4)

where

u, = ! [ex (.anon)i|N5_l 4.5)
o \/ﬁs P\ fS n=0 .

68 4 Introducing Spectral Analysis

Lost signal due to window

0.20
0.15 F
0.10 |
0.05 |
0.00
-0.05
-0.10 |
-0.15

~0.20
0 10 20 30 40 50 60 70

— before window
= after window

Amplitude

— DFT before window
— DFT after window

0

Fig. 4.11 Figure generated by Listing 4.10. The shaded region in the top plot shows the signal
attenuated by the window resulting in a loss of signal energy. The same loss is shown in the bottom
plot using the DFT

Lost signal power

_30 L
| a
_40 A . [| . | .
5 10 15 20 25 30
k

0

with signal energy equal to A%. We’ll assume the noise power is JVZ. Thus, the pre-
window signal-to-noise ratio is,

A2

SNRyre = — 4.6
» po (4.6)

After applying the window, the updated signal power at f = f, becomes
u (wox) > = [u diag(w)x|* = A*|17 w|? 4.7)

with corresponding noise power

E|w © n|> = Trace (diag(w)E (nn") diag(w)) 4.8)
= Trace (diag(w)o; I diag(w)) (4.9)
= UVZWTW (4.10)

where E (nn”) = oI and n s a vector of mutually uncorrelated noise samples with
variance o2. Thus, the post-window signal-to-noise ratio is

4.5 Window Metrics 69

A?[1Tw)?

SNRpost =
g o2wlw

@.11)

Finally, the ratio of the post-window to pre-window signal-to-noise ratios is
defined as the processing gain,

s SNRypy 17w

G
P~ SNR,.. w'w

4.12)

Note that the coherent gain comes from the numerator as defined as the following:
Geon 217w (4.13)

Thus, the window reduces signal power and noise power and the net effect is to
increase the SNR. Processing gain summarizes this effect.

4.5.2 Equivalent Noise Bandwidth

Another way to understand window functions in terms of noise is to evaluate win-
dows in terms of the amount of noise they pass through the mainlobe. Figure 4.12
illustrates this concept. Figure 4.12 shows the squared DFT of the window with the
overlaid rectangle showing the idealized bandpass filter that would pass the same
amount of noise power at the peak of the window’s DFT. It’s as if all the noise was
packed into a rectangle centered at the peak of the mainlobe. This is the Equivalent
Noise Bandwidth (ENBW) concept. The post-window noise power is the following:

E|lwOn|* = o?w'w (4.14)

We want to equate this power (which is spread over all frequencies) to the
corresponding output noise power of a perfect bandlimited filter with height equal
to Wy and width By .

By - Wio2 = a’w''w (4.15)
and solving for B, gives,
Boey =W w/ W (4.16)
and since Wy = 17w, we can write this as the following,

wiw 1

A
Bneq:W:G_p

4.17)

70 4 Introducing Spectral Analysis

Equivalent Noise Bandwidth

0.035} B,.
<>

0.030 |

0.025 Area of rectangle
S is windowed

< 0.020 s noise power
2 T

—0.015_’WO| 0-1/ oy W W

0.010 |

0.005 |

0.000 !

0 10 20 30 40 50 60

k

Fig. 4.12 Figure generated by Listing 4.11 showing the equivalent noise bandwidth concept

which shows its close relationship to processing gain. The intuition is that the larger
the equivalent noise bandwidth, the more noise is passed through the mainlobe, thus
competing more with the signal at the nominal center of that lobe, thereby reducing
the processing gain of the window.

Now, we cover three additional metrics used in practice for evaluating and
choosing between different window functions.

4.5.3 Peak Sidelobe Level

As the name suggests, Peak Sidelobe Level measures the gap between the mainlobe
maximum and the nearest sidelobe peak. This captures the worst-case scenario
where a nearby signal sits exactly on the highest sidelobe. This idea is illustrated
in Fig. 4.13.

Figure 4.13 shows the DFT of the Hanning window and how far down the next
sidelobe is from the peak (~31dB). The figure of merit considers the worst-case
where an interfering single frequency sits exactly on the peak of this sidelobe.'

Now, let’s consider the scenario with a signal on the highest sidelobe of the
window function. The cartoon in Fig. 4.14 shows the DFT of the window function as
it slides across the two signals in the circular convolution. In the top plot, the green
signal sits on the peak of the first sidelobe of the window. Because the peak sidelobe
level is 31 dB down, its contribution to the overall DFT at that discrete frequency is
reduced by 31 dB. Note that at this stage, the signal on the left offers its maximum

'The code in Listing 4.14 uses complex roots to find the peaks of the sidelobes for window
functions.

4.5 Window Metrics 71

Hanning Window

Fig. 4.13 Figure generated by Listing 4.13 showing the definition of “peak sidelobe level”. The
peak sidelobe level is the gap between the window’s peak and the peak of the highest sidelobe

100 120

10 R
- (B3 4
~e
E -10f The signal (green) on the first sidelobe is reduced
N by 31 dB during the convolution but still
a0 contaminates the other signal (blue) by
9O =301 the residual amount 1
o
N 40+ m b
-50 (\ 1
o [AYaAWN . . .
10 E
T or In this case, the window's mainlobe peak reaches |
E -10 the green signal and it's the blue signal's turn to -
S _g0t sit on the sidelobe and contaminate the green
a0 signal.
S =30 E
g sl) m ﬂ _
-50} m 1
oL . . N A . .
0 20 40 60 80
k

Fig. 4.14 Figure generated by Listing 4.15 illustrating the effect of peak sidelobe levels. As we
discussed previously in the circular convolution, as the window slides past one of the two tones, the
neighboring tone coincidentally hits the peak sidelobe and is only attenuated by the peak sidelobe
level. Thus, with a high peak sidelobe level, interference from the neighboring tone can bleed
into the signal at the center of the mainlobe and distort it. This happens in the fop plot where
the left-most tone is contaminated by the other tone. The bottom plot shows this happening again
in the circular convolution, but now the right-most tone becomes contaminated. The concept of
peaks sidelobe level quantifies this potential unhappy circumstance. Keep in mind that this figure
is a cartoon because the circular convolution does uses complex linear terms, not the logarithmic
magnitudes shown

72 4 Introducing Spectral Analysis

BW,,;=1.31 bins

0.0 0.5 1.0 1.5 2.0
N g
N

Fig. 4.15 Figure generated by Listing 4.16 illustrating the concept of 3-dB bandwidth. the
distance (in frequency units) between the mainlobe’s peak and the point on the mainlobe that
is 3dB down from the peak is half of the 3-dB bandwidth. This metric attempts to quantify how
close two nearby tones can be before they become indistinguishable

contribution because it is squarely on the peak of the window’s mainlobe. As shown
in the bottom plot, the same situation happens again in the convolution as the sliding
window reaches the green signal on the right, where it will be contaminated by
signal on the left as that signal climbs onto the peak of the sidelobe on the left. Bear
in mind this figure is a cartoon because the circular convolution uses complex linear
terms, not the logarithmic magnitudes shown.

4.5.4 3-dB Bandwidth

At the 3-dB bandwidth point, the mainlobe has lost half of its peak power. This
figure of merit provides a sense of how far off a signal can be from the mainlobe
before losing half its energy. This is because 101og;,(1/2) ~ —3. Figure 4.15 shows
the DFT of the hamming window and its corresponding half-power point on the
mainlobe. In general, there is no closed form solution to the half-power level so we
must compute it numerically. Figure 4.15 is the schematic for the mainlobe of the
window.

4.5.5 Scalloping Loss

The DFT divides the sampling frequency f; into N discrete frequencies, but the
signal of interest may not conveniently lie on one of these sampled frequencies. The
scalloping loss accounts for the reduction in signal energy. Scalloping loss is defined

4.6 Summary 73

Triangular Window Scalloping Loss=1.83

— window
— half-bin shifted |™

0 5 10 15 20
k

Fig. 4.16 Figure generated by Listing 4.17 illustrating the concept of “scalloping loss”. This
metric quantifies the loss that occurs when the DFT index frequency does not match the signal
frequency

as the ratio of coherent gain for a tone located half a bin from a DFT sample point
to the coherent gain,

| 3200 waexp (—jmn/N,) |
Sto W
The horizontal line in Fig.4.16 shows the level of the scalloping loss for the
triangular window.

Scalloping Loss =

4.6 Summary

In this section, we explained the shape of windows functions in terms of spectral
leakage and developed the concept of processing gain and equivalent noise band-
width as closely related metrics for categorizing windows. The exhaustive 1978
paper by Harris [Haran] is the primary reference work for many more windows.
Note that the window functions are implemented in the scipy.signal.windows
submodule but sometimes the normalization factors and defined parameters are
slightly different from Harris’ paper. Sometimes the term fapers is used instead of
window functions in certain applications. Window functions are also fundamental
to antenna analysis for many of the same reasons, especially with respect to linear
arrays.

We illustrated the major issues involved in using window functions for spectral
analysis and derived the most common figures of merit for some popular windows.
There are many more windows available and Harris [Haran] provides an exhaustive
list and many more detailed figures of merit. In fact, I have seen rumpled versions
of this 1978 paper in just about every engineering lab I have worked in. In practice,
some window functions are preferred because they have coefficients that are easy

74 4 Introducing Spectral Analysis

to implement on fixed point arithmetic hardware without excessive sensitivity to
quantization errors. The main idea is that windows with favorable sidelobe levels
are always wider (larger equivalent noise bandwidth and 3-dB bandwidth) so these
pull more signal noise into their mainlobes and make it harder to distinguish
nearby signals which may fit into the same mainlobe. Thus, there is a tension
between signal-to-noise (more noise in mainlobe reduces signal-to-noise) and
resolution (wider mainlobes mask nearby signals). Unfortunately, it is not possible
to simultaneously have very low sidelobes and a very narrow mainlobe. This is due
to the waterbed effect where “pushing” down the window’s DFT at any one place
causes it to pop up somewhere else.

Outside of two-tone separability, there is the issue of wideband signals. In that
case, you may prefer a wide mainlobe that encompasses the signal bandwidth with
very low sidelobes that reduce extraneous signals. The bottom line is that there are
many engineering trade-offs involved in choosing window functions for a particular
application. Understanding how window functions are used in spectral analysis is
fundamental to the entire field of signal processing because it touches all of the key
issues encountered in practice.

4.6 Summary 75

Appendix

from numpy import fft

Nf = 64 # N- DFT size

fs = 64 # sampling frequency

f =10 # one signal

t = arange(0,1,1/fs) # time-domain samples
deltaf = 1/2. # second mearbdby frequency

keep = and y-axes on same respective scale
fig,ax = subplots(2,1,sharex=True,sharey=True)
fig.set_size_inches((8,3))

x=cos (2*pi*f*t) + cos(2*pix(£+2)*t) # 2 Hz frequency difference
X = fft.fft(x,Nf)/sqrt(Nf)

ax[0] .plot(linspace(0,fs,Nf) ,abs(X),’-0’)

ax[0] .set_title(r’$\delta f = 2$ Hz, $T=1$ s’,fontsize=18)
ax[0] .set_ylabel(r’$|X(£) |$’,fontsize=18)

ax[0].grid()

x=cos (2+pi*f*t) + cos(2*pix(f+deltaf)*t) # delta_f frequency difference
X = fft.fft(x,Nf)/sqrt(Nf)

ax[1] .plot(linspace(0,fs,Nf) ,abs(X),’-0’)

ax[1] .set_title(r’$\delta f = 1/2$ Hz, $T=1$ s’,fontsize=14)
ax[1] .set_ylabel(r’$|X(£f) |$’,fontsize=18)

ax[1] .set_xlabel(’Frequency (Hz)’,fontsize=18)
ax[1] .set_xlim(xmax = fs/2)

ax[1] .set_ylim(ymax=6)

ax[1].gridQ)

Listing 4.1: Listing corresponding to Fig. 4.1. The ££t module is a front-end to the FFTPACK
compiled library. The abs computes the real-valued magnitude of its complex argument.

[N T

o

76 4 Introducing Spectral Analysis

Nf = 64%2 # FFT size
fig,ax = subplots(2,1,sharex=True,sharey=True)
fig.set_size_inches((8,4))

X = £ft.fft(x,Nf)/sqrt(Nf)

ax[0] .plot(linspace(0,fs,len(X)) ,abs(X),’-0’,ms=3.) # marker size=3
ax[0] .set_title(r’$N=/d$, $T=1$s’/Nf,fontsize=18)

ax[0] .set_ylabel(r’$|X(k) |$’,fontsize=18)

ax[0] .grid ()

Nf = 64x4 # FFT size

X = fft.fft(x,Nf)/sqrt(Nf)

ax[1] .plot(linspace(0,fs,len(X)) ,abs(X),’-0’,ms=3.)
ax[1].set_title(r’$N=7d$, $T=1$s’/Nf,fontsize=18)
ax[1] .set_ylabel(r’$|X (k) |$’,fontsize=18)

ax[1] .set_xlabel(’Frequency (Hz)’,fontsize=18)
ax[1] .set_xlim(xmax=fs/2)

ax[1].set_ylim(ymax=6)

ax[1].grid()

Listing 4.2: Listing corresponding to Fig. 4.2. Note the explicit setting for the marker size ms=3.

t = arange(0,2,1/fs)
x=cos (2*pi*f*t) + cos(2*pi*(f+deltaf)x*t)

Nf = 64%2 # FFT size
fig,ax = subplots(2,1,sharex=True,sharey=True)
fig.set_size_inches((8,4))

X = fft.fft(x,Nf)/sqrt(Nf)

ax[0] .plot(linspace(0,fs,len(X)) ,abs(X),’-0’,ms=3.)
ax[0] .set_title(r’$N=/d$, $T=2$s’)Nf,fontsize=18)
ax[0] .set_ylabel(r’$|X(f)|$’,fontsize=18)
ax[0].grid()

Nf = 64*8 # FFT size

X = fft.££t(x,Nf)/sqrt (Nf)

ax[1] .plot(linspace(0,fs,len(X)) ,abs(X),’-0’,ms=3.)
ax[1].set_title(r’$N=/d$, $T=28$s’’Nf,fontsize=18)
ax[1] .set_ylabel(r’$|X(£f) |$’,fontsize=18)

ax[1] .set_xlabel(’Frequency (Hz)’,fontsize=18)
ax[1] .set_xlim(xmax = fs/2)

ax[1].set_ylim(ymax=6)

ax[1].grid()

Listing 4.3: Listing corresponding to Fig. 4.3.

S O

w

4.6 Summary 77

def abs_sinc(k=None,N=64,Ns=32):
’absolute value of sinc’
if k is None: k = arange(0,N-1)
y = where(k == 0, 1.0e-20, k)
return abs(sin(Ns*2*pi/N*y)/sin(2+pi*y/N))/sqrt(N)

fig,ax=subplots()
fig.set_size_inches((8,3))

ax.plot(abs_sinc(N=512,Ns=10) ,label=’duration=10’)
ax.plot(abs_sinc(N=512,Ns=20) ,label=’duration=20")
ax.set_xlabel (’k’,fontsize=22)
ax.set_ylabel(r’$|R_k|$’,fontsize=22)
ax.set_title(’Rectangular Window DFT’,fontsize=18)
ax.legend(loc=0,fontsize=14);

Listing 4.4: Listing corresponding to Fig. 4.4. The 1abel keyword in the plot function assigns
the text to the line for later use in the 1egend function. You can assign text without this labeling
later in legend, but doing it this ways makes it easier to keep track of which line goes with
which text.

78 4 Introducing Spectral Analysis

def dftmatrix(Nfft=32,N=None):
’construct DFT matrix’
k= np.arange (Nfft)
if N is None: N = Nfft
n = arange(N)
use numpy broadcasting to create matrizc
U = matrix(exp(lj* 2*pi/Nfft *k*n[:,Nonel))
return U/sqrt(Nfft)

Nf = 32 # DFT size

U = dftmatrix(Nf,Nf)

x = U[:,12] .real # input signal

X = U.H*x # DFT of input

rect = ones((Nf/2,1)) # short rectangular window

z = x[:N£f/2] # product of rectangular window and = (i.e. chopped version of x)
R = dftmatrix(Nf,Nf/2) .H*rect # DFT of rectangular window

Z = dftmatrix(Nf,Nf/2) .H*z # DFT of product of z_n and r_n

use numpy broadcasting to setup summand’s indices
idx=arange (Nf) -arange (Nf) [: ,None]

idx[idx<0]+=Nf # add periodic Nf to negative indices for wraparound
a = arange(Nf) # k~th frequency index

fig,ax = subplots(4,8,sharex=True,sharey=True)
fig.set_size_inches((12,5))
for i,j in enumerate(ax.flat):
j.fill_between(arange (Nf),1/sqrt (Nf)*abs(R[idx[:,1],0]) .flat,0,alpha=0.3)
separate stem parts
markerline, stemlines, baseline =j.stem(arange(Nf),abs(X))
setp(markerline, ’markersize’, 4.)
setp(markerline, *markerfacecolor’,’r’)
setp(stemlines,’color’,’r?)
j.axis(Poff?)
j.set_title(’k=7d’%i,fontsize=8)

Listing 4.5: Listing corresponding to Fig. 4.5. The f1lat suffix converts the multidimensional
Numpy arrays to one-dimensional Numpy arrays. The setp function is a Matplotlib conve-
nience function to set the individual properties of the given objects.

o U R W N =

-

o U R W N -

-

4.6 Summary 79

fig,ax=subplots()

fig.set_size_inches((7,3))

ax.plot(a,abs(R[idx,0]*X)/sqrt (Nf),label=r’$|Z_k|$ = $X_k\otimes_N R_k$’)
ax.plot(a,abs(Z),’0’,label=r’$|Z_k|$ by DFT’)
ax.set_xlabel(’k’,fontsize=22)

ax.set_ylabel(r’$|Z_k|$’,fontsize=22)
ax.set_xticks(arange(ax.get_xticks() .max()))

ax.tick_params(labelsize=8)

ax.legend(loc=0,fontsize=14)

ax.grid()

Listing 4.6: Listing corresponding to Fig.4.6. The tick_params function changes the size of
the labels of all of the tick marks. The set_xticks function changes the set of tick marks that
are drawn.

from scipy import signal
from numpy import fft

some useful functions
def dftmatrix(Nfft=32,N=None):
’construct DFT matrix’
k= np.arange (Nfft)
if N is None: N = Nfft
n = arange(N)
U = matrix(exp(lj* 2*pi/Nfft *k*n[:,Nonel)) # use numpy broadcasting
to create matrix return U/sqrt(Nfft)

def db20(W,Nfft=None):
’Given DFT, return power level in dB’
if Nfft is None: # assume W is DFT
return 20%1logl0(abs(W))
else: # assume time-domain passed, so need DFT
return 20%loglO(abs(fft.fft(W,Nfft)/sqrt(Nfft)))

fs = 64 # sampling frequency

t = arange(0,2,1/fs)

f =10 # one signal

deltaf = 2.3 # second nearby frequency

Nf = 512
fig,ax = subplots(2,1,sharex=True,sharey=True)
fig.set_size_inches((9,4))

28
29
30
31
k)
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54

80 4 Introducing Spectral Analysis

x=10%cos(2*pi*f*t) + 10*cos(2*pix(f+deltaf)*t) # equal amplitudes
X = fft.fft(x,Nf)/sqrt(Nf)
ax[0] .plot(linspace(0,fs,len(X)) ,abs(X),’-0’,ms=3.)
ax[0] .set_ylabel(r’$|X(£f) |$’,fontsize=18)
ax[0] .set_xlim(xmax = fs/2)
ax[0] .grid ()
ax[0] .text(0.5,0.5,’Equal amplitudes’,
transform=ax[0] .transAxes,
backgroundcolor="Lightyellow’,
fontsize=16)
x=cos (2*pi*f*t) + 10*cos(2*pi*(f+deltaf)*t) # one has 10z the amplitude
X = fft.fft(x,Nf)/sqrt (Nf)
ax[1] .plot(linspace(0,fs,len(X)) ,abs(X),’-0’,ms=3.)
ax[1] .set_ylabel(r’$|X(£f) |$’,fontsize=18)
ax[1] .set_xlabel(’Frequency (Hz)’,fontsize=18)
ax[1] .set_xlim(xmax = fs/2)
ax[1].gridQ

ax[1] .text(0.5,0.5,’Unequal amplitudes’,
transform=ax[1] .transAxes,
backgroundcolor=’lightyellow’,
fontsize=16)
ax[1] .annotate(’Smaller signal’,
fontsize=12,xy=(f,abs(X) [int (£/£s*Nf)]),
xytext=(2,15),
arrowprops={’facecolor’:’m’,’alpha’:.3});

Listing 4.7: Listing corresponding to Fig.4.7. The text function puts text in the middle of
the plot. Setting the transform to transAxes means that the (0.5,0.5) coordinates of the
text are relative to the axis and not to the data in the plot. Thus, (0.5,0.5) refers to the center
of the plot. Using this coordinate system makes it easy to place things in the plot regardless of
the data that is plotted.

S O

w

4.6 Summary 81

fig,ax = subplots()
fig.set_size_inches((10,5))

Nf = 128

nsamp = 64

window = signal.triang(nsamp)
rectwin = ones(nsamp)

x=array(dftmatrix(64,64) [:,5] .real).flatten() # convert to numpy array
n = arange(len(x))
window = signal.triang(len(x))

ax.plot(n,x,’-0’,label="signal’,ms=3.,alpha=0.3)
ax.plot(n,window*x,’-or’,label=’windowed\nsignal’,ms=5.)
ax.set_ylabel(’Amplitude’ ,fontsize=16)
ax.set_xlabel(’n’,fontsize=22)
ax.legend(loc=0,fontsize=14)

ax2 = ax.twinx()
ax2.fill_between(n,window,alpha=0.2,color="m’)
ax2.set_ylabel(’Window function’,fontsize=16);

Listing 4.8: Listing corresponding to Fig. 4.8.

82 4 Introducing Spectral Analysis

Nf = 512
fig,ax = subplots(3,1,sharex=True,sharey=True)
fig.set_size_inches((10,6))

x=cos (2*pi*f*t) + 10*cos(2*pi*(f+deltaf)*t)
X = fft.fft(x,Nf)/sqrt(Nf)
ax[0] .plot(linspace(0,fs,len(X)),db20(X),’-0’,ms=3.)
ax[0] .set_xlim(xmax = fs/2)
ax[0] .set_ylabel(’dB’,fontsize=16)
ax[0] .text(0.5,0.5, ’rectangular window’,
transform=ax[0] .transAxes,
backgroundcolor=’1lightyellow’,
fontsize=16)
ax[0] .annotate(’Smaller signal’,
fontsize=12,xy=(f,db20(X) [int (£/£s*Nf)]),
xytext=(1,30),
arrowprops={’facecolor’:’m’})

w = signal.triang(len(x))

X = fft.fft(x*w,Nf)/sqrt(Nf)

ax[1] .plot(linspace(0,fs,len(X)),db20(X),’-0’,ms=3.)

ax[1].set_xlim(xmax = fs/2)

ax[1] .set_ylabel(’dB’,fontsize=16)

ax[1].text(0.5,0.5, ’triangular window’,
transform=ax[1] .transAxes,
backgroundcolor=’1lightyellow’,
fontsize=16)
ax[1] .annotate(’Smaller signal’,

fontsize=12,xy=(f,db20(X) [int (£/£s*N£f)]),

xytext=(1,30),
arrowprops={’facecolor’:’m’})
w = signal.hamming(len(x))
X = fft.fft(x*w,Nf)/sqrt(Nf)
ax[2] .plot(linspace(0,fs,len(X)),db20(X),’-0’,ms=3.)
ax[2] .set_xlabel(’Frequency (Hz)’,fontsize=18)
ax[2] .set_xlim(xmax = fs/2)
ax[2] .set_ylabel(’dB’,fontsize=16)
ax[2] .set_ylim(ymin=-20)
ax[2] .text(0.5,0.5, ’Hamming window’,
transform=ax[2] .transAxes,
backgroundcolor=’lightyellow’,
fontsize=16)
ax[2] .annotate(’Smaller signal’,
fontsize=12,xy=(£,db20(X) [int (£/£s*Nf)]),
xytext=(1,30),
arrowprops={’facecolor’:’m’});

Listing 4.9: Listing.

S O

w

S O

w

4.6 Summary 83

fo = 2xpi/64%6 # in radians/sec
nz=randn(64,1) # noise samples
w=signal.triang(64) # window function

fig,ax= subplots(2,1)
fig.set_size_inches((10,6))
subplots_adjust (hspace=.3)
n = arange(len(u))
ax[0] .plot(n,u.real,label="before window’,lw=2)
ax[0] .set_ylabel(’Amplitude’,fontsize=16)
ax[0] .plot(n,diag(w)*u.real,label="after window’,lw=3.)
ax[0] .£ill_between(n,array(u) .flat, array(diag(w)*u).flat,alpha=0.3)
ax[0] .1legend(loc=0,fontsize=14)
ax[0] .set_xlabel(’n’,fontsize=14)
ax[0] .annotate(’Lost signal due to window’,
fontsize=16,
bbox={’fc’:’b’,’alpha’:.3}, # alpha is transparency
xy=(11,0.1),
xytext=(30,40),
textcoords=’offset points’, # coordinate system for zytext
arrowprops={’facecolor’:’b’,’alpha’:.3})
N=256 # DFT size for plot
idx = int(fo/(2xpi/N))
ax[1] .plot(db20(u,N),label="DFT before window’)
ax[1] .plot(db20(diag(w)*u,N) ,label="DFT after window’)
ax[1].set_ylim(ymin=-40,ymax=-5)
ax[1] .set_xlim(xmax=40)
ax[1].set_ylabel (r’$20\log_{10}|X_k|$’,fontsize=18)

ax[1] .set_xlabel(r’k’,fontsize=16)
ax[1] .annotate(’Lost signal power’,
fontsize=22,
xy=(22,-13),
xytext=(2,-15),
arrowprops={’facecolor’:’m’,’alpha’:.3})
pkU = db20(u,N) [idx]
pkW = db20(diag(w)*u,N) [idx]
ax[1] .annotate(’’,xy=(idx,pkW),
xytext=(idx,pkU),
fontsize=12,
arrowprops={’arrowstyle’:’<->’,’color’:’m’})
ax[1] .legend(loc=0,fontsize=12)

Listing 4.10: Listing corresponding to Fig.4.11. The subplots_adjust function tweaks the
subplot layout by changing the horizontal/vertical whitespace and relative positions of the
subplot elements.

84 4 Introducing Spectral Analysis

1 from matplotlib.patches import Rectangle

3 fig,ax = subplots()
4+ fig.set_size_inches((8,4))

6 N = 256 # DFT size

7 idx = int(fo/(2%pi/N))

8 Xm = abs(fft.fft(array(diag(w)*u).flatten(),N)/sqrt(N))**2

9 ax.plot(Xm,’-0’)

10 ax.add_patch(Rectangle((idx-10/2,0),width=10,height=Xm[idx],alpha=0.3))
11 ax.set_xlim(xmax = N/4)

12 ax.set_ylabel(r’$|W_k|~2$’,fontsize=18)

13 ax.set_xlabel(r’k’,fontsize=18)

14 ax.set_title(’Equivalent Noise Bandwidth’,fontsize=18)

15 ax.annotate(’Area of rectangle\n is windowed\nnoise power\n’\

16 +r’$\sigma_\nu~2 \mathbf{w}~T \mathbf{w}$’,
17 fontsize=14,

18 xy=(idx,Xm.max()/2.),

19 xytext=(40,Xm.max()/2.),

20 arrowprops={’facecolor’:’m’,’alpha’:.3});

21 ax.annotate(’’,ha=’center’,fontsize=24,

2 xy=(idx+10/2,Xm.max () *1.05),

23 xytext=(idx-10/2,Xm.max()*1.05),

2 arrowprops=dict (arrowstyle=’<->’))

25 ax.annotate(’’,ha=’center’,fontsize=24,

2 xy=(15,0),

27 xytext=(15,Xm.max()),

28 arrowprops=dict (arrowstyle=’<->’))

29 ax.text(1, Xm.max()/2,r’$ |W_0|"2\sigma_\nu~2 $’,fontsize=20,

30 bbox={’fc’:’gray’,’alpha’:.3}) ax.text(idx-5, Xm.max()*1.1,r’B_{neq}’,
31 fontsize=18,bbox={’fc’:’gray’,’alpha’:.3}) ax.set_ylim(ymax = Xm.max()*1.2)

Listing 4.11: Listing corresponding to Fig. 4.12.

4.6 Summary 85

from scipy import signal

fo = 1 # signal frequency

fs = 32 # sample frequency

Ns = 32 # number of samples

x = sin(2+pixfo/fs*arange(Ns)) # sampled signal
fig,axs= subplots(3,2,sharex=’col’,sharey=’col’)
fig.set_size_inches((12,6))

subplots_adjust (hspace=.3)

ax=axs[0,0]

ax.plot (arange(Ns) ,x,label=’signal’)

ax.plot (arange(Ns)+Ns,x,label=’extension’)
ax.set_ylabel(’Amplitude’,fontsize=14)
ax.set_title(’Continuous at endpoints’,fontsize=16)

ax=axs[0,1]

N=Ns #chosen so DFT bin is ezactly on fo

Xm = abs(fft.fft(x,N))

idx = int(fo/(fs/N))

ax.stem(arange (N) /N*fs,Xm,basefmt="b-’)

ax.plot(fo, Xm[idx],’0?)

ax.set_ylabel(r’$|X_k|$’,fontsize=18)

ax.set_xlim(xmax=5)

ax.set_ylim(ymin=-1)

ax.text(0.3,0.5,’No spectral leakage’,fontsize=16,
transform=ax.transAxes,
bbox={’fc’:’y’,’alpha’:.3})

fo = 1.1 # signal frequency
x = sin(2xpi*fo/fs*arange(Ns)) # sampled signal

ax=axs[1,0]

ax.plot (arange(Ns) ,x,label=’signal’)

ax.plot (arange(Ns)+Ns,x,label=’extension’)
ax.set_ylabel(’Amplitude’,fontsize=14)
ax.set_title(’Discontinuous at endpoints’,fontsize=16)
ax=axs[1,1]

Xm = abs(fft.fft(x,N))

idx = int(fo/(fs/N))
ax.stem(arange (N) /N*fs,Xm,basefmt="b-’)

ax.plot(fo, Xm[idx],’o0?)

43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71

86 4 Introducing Spectral Analysis

ax.set_xlabel (’Frequency(Hz)’,fontsize=16)

ax.set_ylabel(r’$|X(£)|$’,fontsize=18)

ax.text(0.3,0.5, Spectral Leakage’,fontsize=16,
transform=ax.transAxes,
bbox={’fc’:’y’,’alpha’:.3})

ax.set_xlim(xmax=5)

ax.set_ylim(ymin=-1)

x = x*signal.triang(Ns,2)

ax=axs[2,0]

ax.plot(arange(Ns) ,x,label=’signal’)

ax.plot (arange(Ns)+Ns,x,label=’extension’)

ax.set_xlabel(’sample index’,fontsize=14)

ax.set_ylabel(’Amplitude’ ,fontsize=14)

ax.set_title(’Window restores continuity at endpoints’,fontsize=14)

ax=axs[2,1]

Xm = abs(fft.fft(x,N))

idx = int(fo/(fs/N))

ax.stem(arange (N) /N*fs,Xm,basefmt="b-’)

ax.plot(fo, Xm[idx],’0’)

ax.set_xlabel (’Frequency(Hz)’ ,fontsize=16)

ax.set_ylabel(r’$|X(£f)|$’,fontsize=18)

ax.text(0.3,0.5,’Leakage with window’,fontsize=16,
transform=ax.transAxes,
bbox={’fc’:’y’,alpha’:.3})

ax.set_xlim(xmax=5)

ax.set_ylim(ymin=-1)

Listing 4.12: Listing corresponding to Fig. 4.10 illustrating the effect of end-to-end disconti-
nuity and the resulting spectral leakage.

4.6 Summary 87

fig, ax = subplots()
fig.set_size_inches((6,3))

Ns= 16

Nf = 256%2

freqs = arange (Nf)*2*pi/Nf
w = signal.hanning(Ns,False)
W = db20(w,Nf)

ax.plot(freqs,W,’-b’,ms=4.)
ax.set_ylim(ymin = -60)
ax.set_xlim(xmax = pix1.01)
ax.set_xlabel(r’ω’ ,fontsize=14)
ax.set_ylabel(r’$20\log_{10} |W(\omega) | $’,fontsize=18)
ax.grid()
ax.set_title(’Hanning Window’,fontsize=18)
ax.annotate(’’,fontsize=28,
xy=(76/Nf*2+pi,W[0]),
xytext=(76/Nf*2+pi,W[0]-32),
arrowprops={’facecolor’:’b’, ’arroustyle’:’<->’},
)
ax.text(0.4,0.5,’Peak sidelobe level’,
fontsize=18,
transform=ax.transAxes,
bbox={’fc’:’y’,’alpha’:.3})

Listing 4.13: Listing corresponding to Fig. 4.13. The bbox creates a bounding box for the text
with a yellow face-color (i.e. >fc?:?y?) that is semi-transparent (alpha).

def peak_sidelobe(w,N=256,return_index=False, return_all=False):

’?’Given window function, return peak sidelobe level and bin index of
all (return_all=True) or some sidelobe peaks if desired
(return_indez=True). Note that this method fails when the window
function has no roots on the unit circle (e.g. ezponential window).
The return indez is in units of DFT-bin (k/N).

295

assert (len(w)<=N) # need longer DFT otherwise

r=np.roots (w) # find complez roots of window function

r = r[np.where(np.round(abs(r),3)==1)] # keep only those on unit circle
(approx)

y=log(r) .imag/2./pi*N # get k"th bin index

y=y[y>0] .astype(np.int32) # keep positive half only as integer roundoff
y=np.unique(y) # dump repeated

y.sort() # sort in-place

W = 20%loglO(abs(fft.fft(w,N))) #compute DFT
loop through slices and pick out maz() as peak for that slice’s sidelobe

88

def

4 Introducing Spectral Analysis

sidelobe_levels = []

sidelobe_idx =[]

for s in [slice(i,j) for i,j in zip(y[:-1],y[1:1)]:
imx= s.start+W[s].argmax() # bin indez of maz

peak= W[imx]-W[0] # relative to global peak
sidelobe_levels.append(peak) # store sidelobe level for later
sidelobe_idx.append (imx/N) # ... with corresponding bin

if return_all:

return zip(sidelobe_levels, sidelobe_idx)
if return_index:

return (sidelobe_levels[0], sidelobe_idx[0])
return sidelobe_levels[0]

dftmatrix (N=32,Ns=None) :

’construct DFT matrix of size N give Ns time-samples’

k= np.arange(N)

if Ns is None: Ns = N

n = arange(Ns)

U = matrix(exp(1j* 2%pi/N *k#n[:,Nonel)) # use numpy broadcasting to create
matrix return U/sqrt(N)

Listing 4.14: Code to compute peak sidelobe level.

4.6 Summary

Ns = 64
N= 512

U=dftmatrix (N=N,Ns=Ns)
offset=8 # place DFT near middle of plot for readability
u=array(U[:,offset]) .flatten()*sqrt(N) # phase shifts

w = signal.hanning(Ns,False)

level,idx = peak_sidelobe(w,N,return_index=True)

x0 = u*ones (Ns)

x1=u*exp(1j*2*pi*arange(Ns)*(idx)) # signal on peak of sidelobe

fig,axs = subplots(2,1,sharex=True,sharey=True)
fig.set_size_inches((9,6))

ax=axs [0]

ax.plot (db20 (wxx0,N))

ax.arrow(offset+idx*N,-60,0,60,
length_includes_head=True,lw=2.,
head_length=14,head_width=4,fc=’g’ ,alpha=0.3)

#az.arrow(idz+*N,0,0,3,length_includes_head=True, lw=1.5,head_width=2, fc="g

ax.arrow(offset,-60,0,60,
length_includes_head=True,
1lw=2.,head_length=14,head_width=4,fc="b’)
#az.legend(loc=0)
ax.set_xlim(xmax=N/4.,xmin=-3)
ax.set_ylim(ymax = 17,ymin=-60)
ax.set_ylabel(r’$20\1log_{10}|W_k|$’,fontsize=18)
ax.text(0.4,.5,”’’The signal (green) on the first sidelobe is reduced
by 31 dB during the convolution but still
contaminates the other signal (blue) by
the residual amount’’’,va=’center’,fontsize=12,transform=ax.transAxes);

ax=axs[1]
ax.plot (db20 (wxx1,N))
ax.arrow(offset+idx*N,-60,0,60,
length_includes_head=True,lw=2.,
head_length=14,head_width=4,fc=’g’)
ax.arrow(offset,-60,0,60,
length_includes_head=True,lw=2.,
head_length=14,head_width=4,fc=’b’,alpha=0.3)
#az.legend(loc=0)
ax.set_xlim(xmax=N/4.,xmin=-3)
ax.set_ylim(ymax = 17,ymin=-60)
ax.set_ylabel(r’$20\log_{10}|W_k|$’,fontsize=18)
ax.set_xlabel(’k’,fontsize=16)
ax.text(0.4,.6,”’’In this case, the window’s mainlobe peak reaches
the green signal and it’s the blue signal’s turn to
sit on the sidelobe and contaminate the green
signal.’’’,va=’center’,fontsize=12,transform=ax.transAxes);

Listing 4.15: Listing corresponding to Fig. 4.14.

89

S O

w

90

4 Introducing Spectral Analysis

fig,ax = subplots()
fig.set_size_inches((7,3))

N=512
w=signal.windows.hamming(Ns)
W=db20 (w,)

m =10

p=np.polyfit(arange(m)/N*Ns,W[:m]-W[0]+3.01,2) # fit quadratic polynomial

width = np.roots(p) [0]1*2 # 3-dB beamwidth

ax

ax.
ax.

ax.
ax.
ax.
ax.
ax.

ax.

ax

ax.
ax.

.plot (arange (N) /N*Ns,W-W[0]) # normalize to peak

set_ylim(ymin=-10)
set_xlim(xmax = 2)

vlines(width/2,0,-60,1w=2.,linestyle=’--’,color="g’)
set_ylabel(’dB’,fontsize=22)
set_title(r’$ BW_{3dB}$=%3.2f bins’)width,fontsize=18)
set_xlabel (r’$\frac{N_s}{N} k$’,fontsize=22)
annotate(’’,fontsize=28,xy=(0,-3),

xytext=(width/2,-3),

arrowprops=dict (arrowstyle="<->" 1u=3))
annotate(’’,fontsize=28,xy=(1.2,0),

xytext=(1.2,-3),

arrowprops=dict (arrowstyle="<->" 1u=3))

.hlines(-3,width/2,2,linestyle=’--’,color="g’,lw=2.)

text (width/2/4,-5,r’$\frac{BW_{3dB}}{2}$’,fontsize=22)
text(1.3,-2,°-3 dB’,fontsize=18)

Listing 4.16: Listing corresponding to Fig. 4.15.

S O

w

4.6 Summary 91

fig,ax = subplots()
fig.set_size_inches((7,3))

N=256

Ns = 32
w=signal.windows.triang(Ns)
W=db20 (w,N)

WO = db20(exp(1j*2*pi/Ns*arange(Ns)*1/2.)*w,N)-W[0]
W=W-W[0] # rescale for plot

ax.plot(W,label=’window’)
ax.plot(W0,label=’half-bin shifted’)
scalloping_loss = W[0]-WO[O]
ax.axis(ymin=-15,ymax=1,xmax=24)

ax.set_title(’Triangular Window Scalloping Loss=73.2f’J(scalloping_loss))
ax.set_xlabel (’k’,fontsize=18)
ax.set_ylabel(r’$20\log_{10}IW|$’,fontsize=22)
ax.hlines(-scalloping_loss,0,24,color="red’,linestyle=’--’,1lw=2.)
ax.legend(loc=0)

Listing 4.17: Listing corresponding to Fig. 4.16.

Chapter 5
Finite Impulse Response Filters

5.1 FIR Filters as Moving Averages

Filtering means preserving certain favored signal frequencies without distorting
them while simultaneously suppressing others. Although there are many, many
approaches to digital filtering, we focus on Finite Impulse Response (FIR) filters. As
the name suggests, these filters have no feedback loops, which means that they stop
producing output when the input runs out. These are very popular in practice, with
blazing-fast on-chip implementations, and easy-to-understand design specifications.
This section introduces the main concepts of FIR filter design.
Finite Impulse Response (FIR) filters have the following form:

M—1
Yn= Y hixu s (5.1)
k=0

with real input x, and real output y,. These are called finite impulse response
because there is no feedback to keep them going indefinitely. These are also
sometimes called moving average filters or all-zero filters. The word faps is used
for M so a 10-tap filter has M = 10 coefficients. For example, given the two-tap
filter, hy = h; = 1/2, we have

Yn = xn/2+xn—1/2

For example, for input x, = 1Vn > 0, the corresponding outputis y, = 1Vn > 1.
Note that we have to wait one sample to fill the filter for » = 0 which means we have
to wait one sample for a valid filter output. This is the filter’s transient state. In this
case, the output y, is equal to the input x, except for this transient shift. Because
the constant x, input corresponds to w = 0 radial frequency, and the filter leaves
this unchanged, we conclude that this two-tap moving-average filter preserves the
o = 0 signal.

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8_5, 93
© Springer International Publishing Switzerland 2014

94 5 Finite Impulse Response Filters

As another example, consider « = = input x, = exp(jmn)Vn > 0, with
corresponding output, y, = 0Vn > 1. Unlike the last example, the filter zeros-
out this input. These two cases show that this moving average filter eliminates the
highest frequency signal (w =) and preserves the lowest frequency signal (v =
0). But what about all those frequencies in between? To completely characterize
filters by frequency, we need to review the continuous-frequency version of the
Fourier Transform.

5.2 Continuous-Frequency Filter Transfer Function

Thus far, we have considered samples of the Fourier transform at discrete frequences
(wx = 2W”k). Now, we want to consider the Fourier Transform of the discrete input

for continuous frequency defined as the following:

H(w) = Z hy exp (—jon)
nez
Note that this is periodic, H(w) = H(w + 27). By keeping track of summation
indicies, it is not hard to show that

Y(w) = Hw)X(w)

where H(w) is called the transfer function or the frequency response of the filter
hy. This product of transforms is much easier to work with than convolution and
narrows our focus to the properties of H(w) that determine filter performance. Now,
we can reconsider our two-tap moving average filter by plotting the magnitude and
phase of H(w).

The top plot in Fig. 5.1 shows the magnitude response of the filter (in dB) and
the bottom plot shows the phase response in degrees. At w = 0, we have |H(w =
0)| = 1 (i.e. unity-gain) which says that our moving average filter does not change
the amplitude of signals at @ = 0. We observed this already with the input x,, = 1
that produced y, = 1 as output. On the graph at the other extreme (v =), we
have | H(w = m)| = 0 which we observed earlier for input x, = exp (jzn) Vn > 0
that produced all-zero output.

Now, let’s consider a signal halfway between the two extremes 0 < w = /2 <
7 as input and see if we can make sense of the filter’s output in the time-domain
(shown in Fig. 5.2) using Fig. 5.1. The input signal is then,

xXp =exp(jrn/2)Vn >0

According to the top plot in Fig. 5.3, the magnitude of the filter at ® = 7/2 is
about —3 dB, which corresponds to |H(w = m/2)|> = 1/2 meaning the signal
energy at this frequency has been cut in half which is indicated by the lower
amplitude of the output signal as compared to the input. According to the bottom
plot in Fig.5.1 the signal phase has been shifted by 45°. To see this, note that
the input signal repeats every four samples (360°). A phase shift of 45° which is

5.2 Continuous-Frequency Filter Transfer Function

95

................................

Fig. 5.1 Figure generated by Listing 5.3. The fop plot shows the magnitude response of the two-
tap moving average filter in decibels. The bottom plot shows the phase response in degrees

Amplitude

1.0 ¢ P -
I ®_?input
]e_¢output |

0.5} > q 9 S < o

0.0} s
-0.5 : 6 o € 4
-1.0f é é 6 $

o 1 2 3 5 7 8 9 10 12 14 16 17 18 19 20
n

Fig. 5.2 Figure generated by Listing 5.1. This shows the input/output time-domain response of the
two-tap moving average filter. Note that the output is delayed by one sample because of the filter’s
transient. The frequency domain response for this filter is shown in Fig.5.1. The input frequency

isw=m/2

equivalent to a shift of one-half sample. Note that signal.1lfilter automatically
inserts a zero initial condition so we had to drop that one incomplete output point to
align the input and output.

96 5 Finite Impulse Response Filters

150 : .

] 100+ : .

50 F : 1

0 -

-50
_ -100

ATAN

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

¢ (deg)

;| @@ input

w {190 O O

1 1 1 ‘. 1 1 1 1 1 ‘ 1 " 1 1 1 1 1 " 1 1]
01234567 891011121314151617181920212223242526272829
n

Amplitude
|
'._
'_

|
—_
o

T
&

Fig. 5.3 Figure generated by Listing 5.2. The top left shows the magnitude response of the
eight-tap filter. The top left shows the corresponding phase response. The bottom plot shows the
input/output time-domain response for the input at frequency w = /3

What happens when we lengthen our moving average filter to average over eight
samples instead of two? Figure 5.3 shows the magnitude (top left) and phase (top
right) responses of the longer moving average filter. Note that the magnitude plot
shows multiple lobes and dips at discrete frequencies where the output is zero-ed
out by the filter. The zig-zag lines of the phase plot are due to the wrap-around
of the phase as it coils around 180° mark. The bottom plot shows the input/output
sequences. Note that the output shown in Fig.5.3 is delayed by the length of the
input filter. Because the frequency of the input signal is 277/6, its period is T = 6
samples, and the input signal repeats every six samples. According to the phase plot
in Fig. 5.1, the phase at this discrete frequency is approximately 30° plus the 180°
jump, so the output sequence is shifted over by half a sample (30/360 = 0.5/6)
plus the three samples (half the six sample period, 180/360 = 1/2).

By simply increasing the length of the moving average filter, we obtained many
more cases (i.e. zeros) where H(w) = 0. Because our filters produce real outputs
¥ given real inputs, x,, the zeros of the H(w) must be in complex conjugate pairs.
To analyze the impact of these zeros, we need to generalize the Fourier Transform
to the z-transform.

5.4 Causality 97
5.3 Z-Transform

The filter’s z-transform is defined as the following:
H@) =) ha"
n

The Fourier transform is a special case of the z-transform evaluated on the unit
circle (z = exp(jw)), but z more generally spans the entire complex plane. Thus, to
understand how our moving average filter removes frequencies, we need to compute
the complex roots of the z-transform of #,,. Thus, for our eight-tap moving average
filter, we have

M—1 7
H(z) = Z h,z " = éZz‘” = é(l +2(1 + 21+ Y/
n=0 n=0

The first zero occurs when z = exp(jw) = —1 = @ = . The next pair of zeros
occurs when z = £ which corresponds to @ = /2. Finally, there are more
zeros at @ = £ /4 and at @ = £37/4. Notice that any filter with this z + 1 term
will eliminate the w = = (highest) frequency. Likewise, the term z — 1 means that
the filter zeros out the w = 0 frequency. In general, the roots of the z-transform do
not lie on the unit circle. One way to understand FIR filter design is as the judicious
placement of these zeros in the complex plane so the resulting transfer function
H(z) evaluated on the unit circle satisfies our design specifications. However, the
complex-plane is a big place so we need practical considerations to corral this idea.

5.4 Causality

Recall a special case of the Fourier Transform when when the input sequence is
symmetric,

Xp = X_p
that leads to a real-valued (i.e. zero-phase) Fourier transform property,

H(w) = xo Z 2x, cos (wn)
n>0

When the input is anti-symmetric,

X, = —X—p

Hw) =] Zan sin (wn)

n>0

98 5 Finite Impulse Response Filters

The Fourier transform is purely imaginary. Observe that x, = —x_, forn = 0
means that xo = 0.

With that in mind, by changing the indexing in our first moving average filter
example from hy = hy = 1/2to h—; = h; = 1/2, we can get symmetry around
zero with the resulting Fourier transform,

H(w) = %exp (o) + %exp (—jw) = cos(w)

which is a real function of frequency (with zero-phase). While this is nice
theoretically, it is not practical because it requires future-knowledge of the input
sequence as shown below

Yn = thxn—k =Vn = h—lxn+l + hlxn—l = (xn+1 + xn—l)/2
k
which shows that y, depends on the n + 1 future value, x,+;. This is what non-
causal means and we must omit this kind of symmetry about zero from our class of
admissible filter coefficients. Causality (or the lack thereof) is an artifact of the FIR
definition in Eq. 5.1. Non-causal filters, such as smoothing filters, do exist, but they
use a buffering mechanism outside of our definition.

To enforce causality, we can scoot the symmetric point to the center of the
sequence at the cost of introducing a linear phase factor, exp (—jw(M — 1)/2).
Filters with linear phase do not distort the input phase across frequency. This means
that all frequency components of the signal emerge at the other end of the filter
in the same order they entered it. Otherwise, it would be very hard to retrieve any
information embedded in the signal’s phase in later processing. This is the concept
of group delay. Thus, we can build linear phase causal filters with symmetric
coefficients,

hn = hM—l—n
or anti-symmetric coefficients,
hn = _hM—l—n

by putting the point of symmetry at (M — 1)/2. Note that this symmetry means that
efficient hardware implementations can re-use stored filter coefficients.

5.5 Symmetry and Anti-symmetry

Now that we know how to build linear phase filters with symmetric or anti-
symmetric coefficients and enforce causality by centering the point of symmetry,
we can collect these facts and examine the resulting consequences. Given

hy = £hy—1-n

5.6 Extracting the Real Part of the Filter Transfer Function 99

with i, =0 Vn > M A Vn < 0. For even M, the z-transform then becomes,

M—1
H(Z) = Z 7 "h, = hy +]’llz_l +...+ hM_lz_M+1
n=0

M/2—1
— Z—(M—l)/2 Z hn (Z(M—I—Zn)/z :l:Z—(M—l—Zn)/Z)
n=0

Likewise, for odd M,

(M=3)/2
HE) =2 M2 by + Z h, (Z(M—l—2n)/2:l:z—(M—l—2n)/2)

n=0
By substituting 1/z and multiplying both sides by z=™ =1, we obtain
M VHET) = £H(z)

This equation shows that if z is a root, then so is 1/z, and because we want a real-
valued impulse response, complex roots must appear in conjugate pairs. Thus, if z;
is a complex root, then its complex conjugate, zj, is also a root, and so is 1/z; and
1/z}. One complex root generates four roots. This means that having M taps on the
filter does not imply M independent choices of the filter’s roots, or, equivalently, of
the filter’s coefficients. The symmetry conditions reduce the number of degrees of
freedom available in the design.

5.6 Extracting the Real Part of the Filter Transfer Function

We can evaluate these z-transforms on the unit circle when h, = “+hy_,_1 to
obtain the following,

H(w) = Hye(w)exp (—jo(M —1)/2)
where H,.(w) is a real-valued function that can be written as
(M/2)—1

M-1-2
H..(w) =2 Z h, cos (w%)

n=0

100 5 Finite Impulse Response Filters

for even M and as

(M—=3)/2
M—1-2n
H,, =h—12 +2 h, _
(w) (M—1)/2 ,;) cos (a) 5)
for odd M. Similar results follow when h,, = —hy;—1_,. For M even, we have
M/2—1
. M—-1-2n
H..(w) =2 }; h,, sin (wf)
and for odd M.
(M—=3)/2
M—-1-2n
H,, =2 hn i D
() nX:(:) sin (a) 5)

By narrowing our focus to H,.(®) and separating out the linear-phase part, we
can formulate design techniques that focus solely on this real-valued function, as we
will see later with Parks-McClellen FIR design.

Example 1. We can use these results to reconsider our earlier result for the two-tap
moving average filter for which M = 2 and hy = 1/2. Then,

H,.(w) = cos(w/2)
with phase,

exp(—jo(M —1)/2) = exp(—jw/2)

which equals exp(—jm/4) when @ = /2 as we observed numerically earlier. As
an exercise, you can plot these expressions for magnitude and phase and compare
with Fig. 5.1.

5.7 The Story So Far

We began our work with FIR filters by considering the concepts of linear phase,
symmetry, and causality. By defining FIR filter coefficients symmetrically, we were
able to enforce both causality and linear phase. We introduced the continuous-
frequency version of the Fourier Transform and the more general z-transform as
tools to understand the role of zeros in filter design. All this led us to conditions
on the filter coefficients that satisfy our practical requirements of linear phase (no
phase-distortions across frequency) and causality (no future knowledge of inputs).
Finally, we considered the mathematical properties of FIR filters that apply to any
design.

5.8 Filter Design Using the Window Method 101

Sadly, all this work is exactly backwards because all our examples so far started
with a set of filter coefficients (4,) and then analysed filter performance. In a real
situation, we start with a desired filter performance, and then (by various means)
come up with the corresponding filter coefficients. Our next section gets into this
nitty-gritty.

5.8 Filter Design Using the Window Method

In this section, we start designing FIR filters using the window design method.
This is the most straightforward design method and it illustrates the concepts we
developed in the previous section. The window method of FIR filter design starts
by constructing the ideal filter response, H;(w). For example, consider the ideal
lowpass filter with cutoff frequency w,,

|Hi(w)| = Vo € (o, o)

and zero otherwise. The inverse Fourier Transform is the sequence,

. sin(w.n)

h, =
T @n
if n # 0 and
hn=0 = &
g

This is obviously non-causal and infinitely long. We can shift the sequence by an
arbitrary amount and then truncate to fix both problems, respectively.

Figure 5.4 shows the filter sequence 5, in the top plot. This has been shifted
over to enforce causality. The middle plot shows | H(w)| as a function of frequency.
The vertical dashed lines show £, limits and the horizontal dashed line shows the
ideal response, | H;(w)|. The bottom plot shows 201og,, | H(w)| as a function of
frequency. The middle plot reveals rippling in the passband that increases towards
the edge of the passband. This is known as the Gibbs phenomenon and we need to
examine it carefully because it is a serious form of distortion. The bottom plot is 20
times the logarithm of the middle plot and shows the fine detail in the sidelobes on
this scale.

Truncating the filter coefficients is the same as multiplying the infinitely-long
desired filter sequence (h,) by a rectangular window (r,). This is equivalent to a
convolution in the frequency domain between the desired response, H;(w), and
R(w), the Fourier transform of the rectangular window. Thus, the filter output is

102 5 Finite Impulse Response Filters

0-30 T T T T T T T
0.25
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10 - L L L v L L
0

3
T -0} -
=
o0 —20F b
- (\
S -30f .
A
_40 I/\[\/\I 1 1 1 I/\/\/\I
-15 -1.0 —05 0.0 05 1.0 1.5

w

Fig. 5.4 Figure generated by Listing 5.4. The top plot shows the filter coefficients. The middle
plot shows the magnitude response in linear units. The bottom plot shows the magnitude response
is decibel units. The reason we favor decibel units is that it emphasizes the detail in the small values
that the linear plot does not

Vo) =5 [Hi@Rw-81as = [R

27) —w
where

Ny—1

R(w) = Z exp (—jown)

n=0

Because everything is finite, we can combine these two equations to obtain the
following:

-1

@e) 1 Ns sin(nw,))
| expi@—pmds = - 3 0 expom)

n=0

Ns'_l

Y(w) = % >
n=0

5.8 Filter Design Using the Window Method 103

w, =m/4

10k -\ '«~ Gibhs phenomenon -

o
[ISE| SRS Epa.
IS Y CEEEE

Fig. 5.5 Figure generated by Listing 5.5 that shows the Gibbs phenomenon at the edge of the
filter’s passband. The cutoff frequency is @,

We can expand the summation term to obtain,

Y(w) = 1 NX_:I cos(nw) sin(nw,) + j sin(nw) sin(nw,)
T

n
n=0

To understand the Gibbs phenomenon at the edges where @ = ., we recall the
following two trigonometric identities:

2 cos(nw) sin(nw,) = sin(nw + nw,) — sin(nw — nw,)
and likewise,

2sin(nw) sin(nw,) = cos(nw —nw,) — cos(nw + nw,)
These two identities show that as w — w,, the surviving terms in Y (w) summation
oscillate at double the cut-off frequency (i.e. 2w.) which accounts for the intense

rippling as w moves from w = 0 to w = w,. Consider the real part of Y (w) when
o < O,

N sin(no + nwe) — sin(no — nw,)

1
Yre(w) = ; Z o

n=0

In this case, sin(nw — nw,) < 0 so it contributes positively (i.e. constructive
interference) to the summation. When o > w,, the sign reverses and destructive
interference reduces the real part. This is the mechanism for the transition from
passband to stopband. Figure 5.5 illustrates this effect.

Now that we have a grip on the Gibbs phenomenon, we need to control this form
of distortion. Fortunately, we already have all of the tools in place from our prior
discussion of window functions.

104 5 Finite Impulse Response Filters

0.25 T T T T T T

0.20

0.15

< 0.10
0.05

0.00
—0.05O

2Olog10|H(w)|

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
w

Fig. 5.6 Figure generated by Listing 5.6 that shows the filter coefficients in the fop plot, the
magnitude of the frequency response in the middle plot (linear units), and the magnitude of the
frequency response in decibel units in the bottom plot. In this case, we use a Hamming window to
control the Gibbs phenomenon at the edges of the passband. Note that the entire passband is much
flatter than the previous case without the Hamming window shown in Fig. 5.4

5.8.1 Using Windows for FIR Filter Design

The root of the Gibbs phenomenon is the sudden truncation of the filter sequence by
the rectangular window. We can mitigate this effect by smoothly guiding the filter
coefficients to zero using a window function. Figure 5.6 is the same as Fig. 5.4 but
now using a Hamming window to terminate the ideal filter sequence. Note that the
Gibbs effect is significantly reduced, producing a much flatter but wider mainlobe.
The low sidelobes of the Hamming window flatten the Gibbs phenomenon at the
edge of the passband.

5.8 Filter Design Using the Window Method 105

Number of taps=74

O ..
E ~10F passband %"\ " stopband ™ * 77T
R e e R EEEE R PP
e L
b% B e e T SR
RVl S B L S
= ;
S —60f----e-s oo oRaee Locscseozsd dcococscscbozzeseczsd
N 70 [| AAAA e em - - e e e oo

80 : (\ﬁ NANNAANA A AN A8 iaca
0 100 200 300 400 500

Frequency (Hz)

Fig. 5.7 Figure generated by Listing 5.8 showing the passband region, the transition region, and
the stopband region from the filter specification. The specification called for 60 dB of attenuation
in the stopband and that is clearly shown at the stopband cutoff frequency (150 Hz)

I invite you to download the IPython notebook corresponding to this section
and try to generate Fig.5.6 for different values of M. Note that drop from the
passband to the sidelobes steepens with increasing M . As we have seen before with
window functions, this is because the window’s mainlobe narrows with increasing
sequence length. Naturally, you can use other window functions besides Hamming
and change the sidelobe level and mainlobe width. The most popular window used
for this method of filter design is the Kaiser-Bessel window because it provides extra
parameters for tuning the frequency response.

The signal.fir_filter_design module provides functions for filter design
using the Kaiser-Bessel window (among other windows). For example, to design
a lowpass filter using the Kaiser-Bessel window, we need the a subset of the
following parameters: maximum passband ripple (§), width of the transition region,
Kaiser-Bessel parameter 8, and the number of filter taps. The fir_filter_design
provides tools to solve for some of these parameters given others. For example,
the kaiserord function can determine the number of taps given the maximum
allowable passband ripple and the width of the transition region.

Example 2. Consider the following low-pass filter specification in Listing 5.7. In
listing 5.8, we find the number of taps and the Kaiser-Bessel parameter using
the kaiserord function. For the FIR window design method, the § parameter is
simultaneously the maximum allowable passband ripple and the desired attenuation
in the stopband. The resulting filter is shown in Fig.5.7.

Let’s consider the performance of the filter with two equal-amplitude single-
frequency tones, one in the passband and one in the stopband. Figure 5.8 shows the
frequency domain input and the corresponding filtered output. Because second tone
is in the stopband, and its relative energy is approximately 40dB, it is completely
extinguished by the filter shown in Fig. 5.7, whose attenuation in the stopband is
60 dB. I invite you to download the IPython Notebook corresponding to this section
and try different amplitude values for the tone in the stopband.

106 5 Finite Impulse Response Filters

50
: i : — input
40F-- - B IR attenuated-in-------- I:: -
: | &——stopband —— outpu
30 -l R i R REREREEEEEERERE EEEEEEEEEEERES
20 bt W - (R K T s T
ae) : : : :
T o] - S s Ll]

Bt I """" """"""" T

-20
0

100 200 300 400 500
Frequency (Hz)

Fig. 5.8 Figure generated by Listing 5.9 showing the application of the filter on two equal-
amplitude input tones where one tone is in the passband and the other in the stopband. The tone in
the passband passes through to the output but the tone in the stopband is completely eliminated by
the filter because the attenuation in the stopband is 60 dB and the tone is only 40 dB

5.9 The Story So Far

The window design method is the easiest FIR design method to understand and it
draws upon what we already learned about window functions. The Kaiser-Bessel
window is widely used in this method because it provides design flexibility and
easy-to-understand filter specifications. Furthermore, there are many closed form
approximations to the various derived terms (e.g. 8, M) which means that iterative
algorithms are not necessary and that engineering trade-offs appear explicitly in a
formula. In the next section we consider Parks-McClellan FIR design that solves for
the desired filter sequence using a powerful iterative exchange algorithm.

5.10 Filter Design Using the Parks-McClellan Method

In this section, we equate the filter design problem as the search for an op-
timal Chebyshev polynomial that has a minimal maximum deviation from the
ideal desired response, H;(w). The Parks-McClellan algorithm generates filter
coefficients by solving the optimum equiripple Chebyshev approximation to the
ideal filter characterized by the specification. It turns out that solving for such
polynomials employs the Remez exchange algorithm so the implemented function
in signal.fir_filter_design is called remez, even though the application of
this algorithm to FIR filter design is just part of the Parks-McClellan algorithm.
Unfortunately, the algorithm itself is based on certain advanced theorems beyond
our scope, so we will just use it to get acceptable filter coefficients.

5.10 Filter Design Using the Parks-McClellan Method 107

20-tap Parks-McClellan Filter

_slpassband|.....|. ... stopband

2010g1o|H(f) |

2(I)O 3(.)0 500
Frequency (Hz)

Fig. 5.9 Figure generated by Listing 5.10 showing the magnitude response of the filter we
designed using the Parks-McClellan methods

The remez function takes the numtaps argument which is M in our notation, the
bands argument is a sequence of passband/stopband edges in normalized frequency
(i.e. scaled by f;/2), the desired argument is a numpy array (or other array-like
iterable) that is half the length of the bands argument and contains the desired
gain in each of the specified bands. The next argument is the optional weight
which is array-like, half the length of the bands argument, and provides the
relative weighting for the passband/stopband. The unfortunately-named optional Hz
argument (default=1) is the sampling frequency in the same units as the bands.
The next optional argument is the type of filter response in each of the bands (i.e.
bandpass, hilbert). The default is bandpass filter. The remaining arguments of the
function have to do with the internal operation of the iterative algorithm. Now, let’s
see this approach in action.

Example 3.

Suppose we operate at a 1 kHz sample rate and we want a 20-tap lowpass filter
with a passband up to 100 Hz and a stopband starting at 150 Hz. Figure 5.9 shows
the frequency response for the FIR filter constructed in Listing 5.10. The pink region
is the transitional region between the pass and stop bands. As shown, the attenuation
in the stopband only provides approximately 15 dB of attenuation. This means that
a signal greater than 15 dB in the stopband will leak into the signals in the passband.
One way to increase the attenuation in the stopband is to increase the filter order,
M , as shown in the Fig. 5.10 below.

Figure 5.10 shows the frequency response when the filter order is doubled. Note
that the attenuation in the stopband has improved but there is now a significant
distortion due to the ripple in the passband. Given the same filter order, M, we can
mitigate this with the weight argument as shown in Listing 5.12. As the Fig.5.12
shows, using the weight argument allows flattening of the passband at the expense
of raising the stopband attenuation. This argument influences the iterative algorithm
to penalize errors in the passband much more than in the stopband. I invite you to

108 5 Finite Impulse Response Filters

40-tap Parks-McClellan Filter

bee ooy - - -

_5 | passband

2010g1o|H(f) |
|

100 200 300 400 500
Frequency (Hz)

Fig. 5.10 Figure generated by Listing 5.11 showing the frequency response when the filter order
is doubled. As compared to the previous case in Fig.5.9, the attenuation in the stopband has

improved, but now there is significant distortion in the passband

Weighted 40-tap Parks-McClellan Filter

of——~

_s|passband|.| ... stopband:........... :

2010%10|H(f)|
|

100 200 300 400 500
Frequency (Hz)

Fig. 5.11 Figure generated by Listing 5.12 showing the magnitude response of the filter and the
embedded passband, transition band, and stopband

download the IPython Notebook corresponding to this section to try different filter
orders and weights. Let’s now consider the performance of this filter in practice
(Fig.5.11).

Figure 5.12 shows the input and output of the filter where the input consists of
two equal-amplitude tones, one in the passband and one in the stopband. Because
the filter’s stopband provides approximately 10dB of attenuation, the tone in the
stopband is reduced by this amount. Note that the tone in the passband remains
unchanged because the passband attenuation is negligible (as it was designed!).
Let’s consider the input and output signals in the time domain in Fig. 5.13.

Figure 5.13 breaks down the time-domain response of the filter. The top plot
shows the two signals separately. The middle plot shows the sum of these two signals
that is the filter’s input. The bottom plot shows the filter’s output compared to the
input signal that was in the filter’s passband. The hope for this filter was that the tone

5.10 Filter Design Using the Parks-McClellan Method 109

AR i

Frequency (Hz)

Fig. 5.12 Figure generated by Listing 5.13 showing the filter applied to two inputs tones, one in
the passband and the other in the stopband. Because we preferentially weighted the passband over
the stopband, the tone in the stopband still comes through because the attenuation there is only
10dB and the signal peaks at approximately 40 dB. This leaves roughly 30dB of signal left as
shown

— passband signal

AN TN — sopbana sgnas

LS N

| M | T 1. 1 M | T 1.

— filter input=passband + stopband signals

— passband signal
— filter output

r \AY vV \J

|
LT 0N

NEROOOREN NRROOOREN NRROOOREN
coLbutUItULIO BUIbULICULICLIO SULIbULIbLIOULIO
™ T

0.05 0.10 0.15 0.20 0.25 0.30
Time (sec)

(=]
o

Fig. 5.13 Figure generated by Listing 5.14. The top plot shows the two input tones separately.
The middle plot is the sum of the two tones in the top plot. The bottom plot shows the passband
signal and the filter’s output. The shift of the output comes from the filter’s phase. Note that the
time-domain output still has the wiggle in it from the tone in the stopband that was not sufficiently
attenuated

in the passband would be the only signal to survive at the output. In the bottom plot
in Fig. 5.13, observe that the output signal is shifted compared to the input. This is
due the phase response of the filter. Because this is a FIR filter, this phase is linear.
Also notice that the stopband signal that caused the ripple at the filter’s input is still

110 5 Finite Impulse Response Filters

obvious in the filter’s output. This is a result of the relatively poor 10 dB attenuation
in the stopband that we noted earlier. If we want to eliminate this rippling effect
entirely, we have to design a filter with much greater attenuation in the stopband.

Iinvite you to download the IPython Notebook corresponding to this section and
change the amplitude of the signal in the stopband and see how it affects the filter’s
output.

5.11 Summary

In this section, we covered the Parks-McClellan algorithm that generates FIR filter
coefficients by solving the optimum equiripple Chebyshev approximation to the
ideal filter provided in the specification. This design technique as implemented
in the signal.remez function allows the designer to specify the passband and
stopband frequencies, the idealized response in the passband, and optional relative
weighting of the desired response in the passband as opposed to the stopband. All
of these filter design techniques are subject to the waterbed effect which means that
pushing the filter’s response down in one area (i.e. increasing attenuation in the
stopband) just pushes it up elsewhere in the frequency domain, potentially causing
passband distortion as we illustrated. It is the designer’s responsibility to reconcile
these competing demands for filter performance in terms of the overarching cost of
complexity (i.e. filter length, numerical precision of coefficients) that may dominate
the filter’s implementation in hardware.

One thing we did not discuss is how to pick the filter order given a desired
passband/stopband specification. Unfortunately, this is left to trial-and error and the
intuition of the filter designer, because unlike the windowing method with Kaiser-
Bessel windows, there are no closed-form approximations for these parameters.
Note that there are many other ways to design FIR filters, each in interpreting the
FIR design problem differently.

5.11 Summary

Appendix

from scipy import signal

Ns=
n=
x =

y=

30 # length of input sequence

arange(Ns) # sample index
cos(arange (Ns) *pi/2.)
signal.lfilter([1/2.,1/2.],1,%)

fig,ax = subplots(l,1)
fig.set_size_inches(12,5)

ax.
ax.
ax.
ax.
ax.
ax.
ax.
ax.
ax.
ax.

stem(n,x,label=’input’,basefmt=’b-’)

plot(n,x,’:?)

stem(n[1:],y[:-1] ,markerfmt="ro’,linefmt="r-’,label=’output’)
plot(n[1:1,y[:-11,°r:?)

set_ylim(ymin=-1.1,ymax=1.1)

set_xlabel("n",fontsize=22)

legend(loc=0,fontsize=18)

set_xticks(n)

set_x1im(xmin=-1.1,xmax=20)

set_ylabel ("Amplitude",fontsize=22);

Listing 5.1: Listing for Fig. 5.2. The signal.filter function implements Eq.5.1.

112 5 Finite Impulse Response Filters

from matplotlib import gridspec

fig=figure()
#fig.set_size_inches((8,5))

gs = gridspec.GridSpec(2,2)
add vertical and horizontal space
gs.update (wspace=0.5, hspace=0.5)

ax = fig.add_subplot(subplot(gs[0,0]))

ma_length = 8 # moving average filter length
w,h=signal.freqz(ones(ma_length)/ma_length,1)

ax.plot (w,20%1log10(abs(h)))

ax.set_ylabel(r"$ 20 \log_{10}|H(\omega)| $",fontsize=18)
ax.set_xlabel(r"ω",fontsize=18)
ax.vlines(pi/3,-25,0,linestyles=’:’,color="r’,lw=3.)
ax.set_ylim(ymin=-25)

ax = fig.add_subplot(subplot(gs[0,1]))
ax.plot(w,angle(h,deg=True))
ax.set_xlabel(r’ω’ ,fontsize=18)
ax.set_ylabel(r"$\phi $ (deg)",fontsize=16)
ax.set_xlim(xmax = pi)
ax.set_ylim(ymin=-180,ymax=180)
ax.vlines(pi/3,-180,180,1linestyles=":’,color="r’,1lw=3.)
ax = fig.add_subplot (subplot(gs[1,:]))

Ns=30

n= arange (Ns)

x = cos(arange(Ns)*pi/3.)

y= signal.lfilter(ones(ma_length)/ma_length,1,x)

ax.stem(n,x,label=’input’,basefmt=’"b-’)
ax.plot(n,x,’:”)
ax.stem(n[ma_length-1:],y[:-ma_length+1],

markerfmt=’ro’,

linefmt="r-",

label=’output’)
ax.plot(n[ma_length-1:],y[:-ma_length+1],’r:’)
ax.set_xlim(xmin=-1.1)
ax.set_ylim(ymin=-1.1,ymax=1.1)
ax.set_xlabel("n",fontsize=18)
ax.set_xticks(n)
ax.legend(loc=0)
ax.set_ylabel("Amplitude",fontsize=18);

Listing 5.2: Listing for Fig. 5.3. The signal.freqz function computes the filter’s magnitude
(|H (w)|) and phase response given the filter coefficents.

5.11 Summary 113

from scipy import signal

fig, axs = subplots(2,1,sharex=True)
subplots_adjust (hspace = .2)
fig.set_size_inches((5,5))

ax=axs [0]

w,h=signal.freqz([1/2., 1/2.1,1) # Compute impulse response
ax.plot (w,20%1logl0(abs(h)))

ax.set_ylabel(r"$20 \log_{10} |H(\omega)| $",fontsize=18)
ax.grid()

ax=axs[1]

ax.plot (w,angle (h,deg=True))
ax.set_xlabel(r’ω’,fontsize=18)
ax.set_ylabel(r"$\phi $ (deg)",fontsize=18)
ax.set_xlim(xmax = pi)

ax.grid()

Listing 5.3: Listing corresponding to Fig.5.1. The angle function returns the angle of the
complex number. The deg=True option returns degrees instead of radians.

114 5 Finite Impulse Response Filters

from scipy import signal
from numpy import fft

wc = pi/4

M=20

N = 512 # DFT size

n = arange(-M,M)

h = wc/pi * sinc(wcx(n)/pi) # see definition of np.sinc()

w,Hh = signal.freqz(h,1,whole=True, worN=N) # get entire frequency domain
wx = fft.fftfreq(len(w)) # shift to center for plotting

fig,axs = subplots(3,1)
fig.set_size_inches((8,8))
subplots_adjust (hspace=0.3)

ax=axs [0]
ax.stem(n+M,h,basefmt="b-?)
ax.set_xlabel("n",fontsize=22)
ax.set_ylabel("h_n",fontsize=22)

ax=axs[1]

ax.plot (w-pi,abs(fft.fftshift(Hh)))
ax.axis(xmax=pi/2,xmin=-pi/2)
ax.vlines([-wc,wc],0,1.2,color="g’,1lw=2.,linestyle="--",)
ax.hlines(1,-pi,pi,color=’g’,lw=2.,linestyle="--",)
ax.set_xlabel(r"ω",fontsize=22)
ax.set_ylabel(r"$|H(\omega) | $",fontsize=22)

ax=axs[2]

ax.plot (w-pi,20*logl0(abs (fft.fftshift(Hh))))
ax.axis(ymin=-40,xmax=pi/2,xmin=-pi/2)
ax.vlines([-wc,wc],10,-40,color="g’,1lw=2.,linestyle="--",)
ax.hlines(0,-pi,pi,color=’g’,lw=2.,linestyle="--",)
ax.set_xlabel(r"ω" ,fontsize=22)
ax.set_ylabel(r"$20\1log_{10} |H(\omega) | $",fontsize=18)

Listing 5.4: Listing corresponding to Fig.5.4. The fftshift function reorganizes the DFT
so that the frequencies are centered on zero (f € [—f;/2, f;/2]) instead of on f;/2 (f €

[0, /D)

o U R W N =

5.11 Summary 115

fig,ax = subplots()
fig.set_size_inches(6,3)

k=arange (M)
omega = linspace(0,pi,100)

ax.plot (omega, (sin(k*omegal: ,Nonel +k*wc)
-sin(k+omegal:,None] -k*wc)) .sum(axis=1))
ax.set_ylabel(r"$Y_{re}(\omega)$",fontsize=18)
ax.grid()
t=ax.set_title(r"$\omega_c = \pi/4$",fontsize=22)
t.set_y(1.03) # scoot title up a bit
ax.set_xlabel(r"ω",fontsize=22)
setup zticks and labels for LaTeX
ax.set_xticks([0, pi/4,pi/2.,3*pi/4, pi,]1)
ax.set_xticklabels([’0’ ,r>$\frac{\pit{4}$’,r’$\frac{\pi+{2}$’,
r’$\frac{3\pi}{4}$’, r’π’],fontsize=18)
ax.set_xlim(xmax=pi)
ax.annotate("Gibbs phenomenon",xy=(pi/4,10) ,fontsize=14,
xytext=(20,0),
textcoords=’offset points’,
arrowprops={’facecolor’:’b’,’arrowstyle’:’->’})

Listing 5.5: Listing corresponding to Fig. 5.5 that shows the Gibbs phenomenon at the edge
of the filter’s passband. The set_y function moves the title a bit up so the fonts can be easily
seen.

o U R W N =

-

116 5 Finite Impulse Response Filters
wc = pi/4

M=20

N = 512 # DFT size

n = arange(-M,M)
signal.hamming(len(n))
h = wc/pi * sinc(wc*(n)/pi)*win # see definition of np.sinc()

win =

w,Hh = signal.freqz(h,1,whole=True, worN=N) # get entire frequency domain
wx = fft.fftfreq(len(w)) # shift to center for plotting

fig,axs
fig.set_size_inches((8,8))
subplots_adjust (hspace=0.3)

= subplots(3,1)

ax=axs [0]

ax.stem(n+M,h,basefmt="b-?)

ax.set_xlabel ("n",fontsize=24)
ax.set_ylabel("h_n",fontsize=24)

ax=axs[1]

ax.plot(w-pi,abs(fft.fftshift(Hh)))

ax.axis (xmax=pi/2,xmin=-pi/2)
ax.vlines([-wc,wc],0,1.2,color="g’,1lw=2.,linestyle="--",)
ax.hlines(1,-pi,pi,color=’g’,lw=2.,linestyle="--",)
ax.set_xlabel(r"ω" ,fontsize=22)
ax.set_ylabel(r"$|H(\omega) | $",fontsize=22)

ax=axs[2]

ax.plot (w-pi,20*loglO(abs(fft.fftshift(Hh))))
ax.axis(ymin=-80,xmax=pi/2,xmin=-pi/2)
ax.vlines([-wc,wc],10,-80,color="g’,1lw=2.,linestyle="--",)
ax.hlines(0,-pi,pi,color=’g’,lw=2.,linestyle="--",)
ax.set_xlabel(r"ω" ,fontsize=22)
ax.set_ylabel(r"$20\1log_{10} |H(\omega) | $",fontsize=18)

Listing 5.6: Listing corresponding to Fig.5.6. The fftfreq function generates the DFT
sample frequencies.

Ns =300 # number of samples
N = 1024 # DFT size

fs = 1le3 # sample rate in Hz

fpass
fstop
delta

100 # in Hz
150 # <n Hz
60 # in dB, desired attenuation in stopband

Listing 5.7: Listing showing the filter specification for our example.

5.11 Summary

from matplotlib.patches import Rectangle

M,beta= signal.fir_filter_design.kaiserord(delta, (fstop-fpass)/(fs/2.))

hn = signal.firwin(M, (fstop+fpass)/2.,window=("kaiser’,beta),nyq=£fs/2.)

w,H = signal.freqz(hn) # frequency response

fig,ax = subplots()
fig.set_size_inches((8,3))

ax.plot (w/pi*fs/2.,20%1logl0(abs(H)))
ax.set_xlabel ("Frequency (Hz)",fontsize=16)
ax.set_ylabel(r"$20\1log_{10} [|H(£f)| $",fontsize=22)
ymin,ymax = -80,5
ax.axis(ymin = ymin,ymax=ymax)
ax.add_patch(Rectangle((0,ymin) ,width=fpass,
height=ymax-ymin,
color=’g’,alpha=0.3))
ax.add_patch(Rectangle((fpass,ymin) ,width=fstop-fpass,
height=ymax-ymin,
color="r’,alpha=0.3))
ax.add_patch(Rectangle((fstop,ymin) ,width=fs/2-fstop,
height=ymax-ymin,
color="y’,alpha=0.3))
ax.set_title("Number of taps=7d"7%M)
ax.text(10,-15, ’passband’ ,fontsize=14,bbox=dict (color="white’))
ax.text(200,-15, stopband’ ,,fontsize=16,bbox=dict (color=’white’))
ax.grid()

Listing 5.8: Listing corresponding to Fig.5.7. The bbox puts the text in the foreground of a

colored box.

118

5 Finite Impulse Response Filters

from numpy import fft

t =
X =

X

arange(0,Ns)/fs
cos (2¥pi*30%t)+cos (2¥pi*200%t)
fft. fft(x,N)

y=signal.lfilter(hn,1,x)

Y =

fft. £t (y,N)

fig,ax = subplots()
fig.set_size_inches((10,4))

ax.
ax.
ax.
ax.
ax.
ax.
ax.
ax.

ax.

plot (arange (N) /N*fs,20*1og10(abs (X)), ’r-’,label=’input’)

plot(arange (N) /N*fs,20*logl0(abs(Y)),’g-’,label="output’)

set_xlim(xmax = fs/2)

set_ylim(ymin=-20)

set_ylabel(r’dB’,fontsize=22)

set_xlabel ("Frequency (Hz)",fontsize=18)

grid()

annotate(’attenuated in\nstopband’,fontsize=16,xy=(200,32),
xytext=(50,3) ,textcoords=’offset points’,
arrowprops=dict (arrowstyle=’->’,1w=3),
)

legend(loc=0,fontsize=16);

Listing 5.9: Listing corresponding to Fig. 5.8.

5.11 Summary 119

from matplotlib.patches import Rectangle
from scipy import signal

fs = 1le3 # sample rate in Hz

M = 20
fpass = 100 # in Hz
fstop = 1650 # in Hz

= signal.remez(M,
array([0, fpass, fstop, fsl)/2., # scaled passband, and stop
band [1,0], # low pass filter
Hz = fs, # sampling frequency
)

w,H=signal.freqz(hn,1) # frequency response

def apply_plot_overlay():

’convenience function to illustrate stop/passband in frequency response
plot’

ax.plot (w/pi*(fs/2),20*%1logl0(abs(H)),label="Filter response’)
ax.set_ylim(ymax=5)

ax.vlines(100,*ax.get_ylim() ,color="r’)
ax.vlines(150,*ax.get_ylim(),color=’"r’)

ax.set_ylim(ymin=-40)

ax.set_xlabel ("Frequency (Hz)",fontsize=18)
ax.set_ylabel(r"$20\log_{10} |H(f) |$",fontsize=22)
ax.add_patch(Rectangle((0,-40) ,width=fpass,height=45,color="g’,alpha=0.3))
ax.add_patch(Rectangle((fpass,-40) ,width=fstop-fpass,height=45,color="r’,
alpha=0.3))

ax.add_patch(Rectangle((fstop,-40) ,width=fs/2-fstop,height=45,color="y’,
alpha=0.3))

ax.text(10,-5, ’passband’ ,fontsize=14,bbox=dict (color=’white’))
ax.text(200,-5, ’stopband’ ,fontsize=16,bbox=dict(color=’white’))

ax.grid()

fig,ax = subplots()

fig.set_size_inches((7,3))

apply_plot_overlay()

ax.set_title(’’d-tap Parks-McClellan Filter’YM)

Listing 5.10: Listing corresponding to Fig.5.9. The remez function computes the optimal
filter coefficients for the Parks-McClellan method. The numtaps argument which is M in
our notation, the bands argument is a sequence of passband/stopband edges in normalized
frequency (i.e. scaled by f;/2), the desired argument is a Numpy array (or other array-like
iterable) that is half the length of the bands argument and contains the desired gain in each
of the specified bands. The next argument is the optional weight which is array-like, half the
length of the bands argument, and provides the relative weighting for the passband/stopband.
The Hz argument (default=1) is the sampling frequency in the same units as the bands.
The next optional argument is the type of filter response in each of the bands (i.e. bandpass,
hilbert). The default is bandpass filter. The remaining arguments of the function call have to
do with the internal operation of the iterative algorithm.

o U R W N -

-

120 5 Finite Impulse Response Filters

M = 40 # double filter length
hn = signal.remez(M,
array([0, fpass, fstop, fs])/2., # scaled passband, and stop
band [1,0], # low pass filter
Hz = fs, # sampling frequency
)

w,H=signal.freqz(hn,1) # frequency response
fig,ax = subplots()

fig.set_size_inches((7,3))

apply_plot_overlay()

ax.set_title(’’d-tap Parks-McClellan Filter’’M)

Listing 5.11: Listing corresponding to Fig. 5.10.

hn = signal.remez (M,
array([0, fpass, fstop, fs])/2., # scaled passband, and stop
band [1,0], # low pass filter
weight=[100,1], # passband 100 times more important than
stopband Hz = fs, # sampling frequency
)

w,H=signal.freqz(hn,1) # frequency response

fig,ax = subplots()

fig.set_size_inches((7,3))

apply_plot_overlay()

ax.set_title(’Weighted Yd-tap Parks-McClellan Filter’’M)

Listing 5.12: Listing corresponding to Fig.5.11. By using the weight option in the remez
function, we influenced the algorithm to penalize errors in the passband more than errors in
the stopband.

5.11 Summary

Ns =300 # number of samples
N = 1024 # DFT size
t = arange(0,Ns)/fs

x = cos(2*pi*30*t)+cos(2*pi*200%*t)
#z = z*signal.hamming (Ns) # try windowing also!
X = fft.fft(x,N)

y=signal.lfilter(hn,1,x)
Y = fft.fft(y,N)

fig,ax = subplots()
fig.set_size_inches((10,4))
apply_plot_overlay()
ax.set_ylim(ymin=-30,ymax=7)
ax.legend(loc=’upper left’,fontsize=16)

ax2 = ax.twinx()

ax2.plot (arange (N) /Nxfs,20*1logl0(abs (X)), ’r-’,label="filter input’)
ax2.plot (arange (N) /N*fs,20*1og10(abs(Y)),’g-’,label="filter output’)
#az2.plot (arange (N)/N*fs,20%1log10(abs(X)*abs(H)),’g:’,lw=2., label="YY")
ax2.set_xlim(xmax = fs/2)

ax2.set_ylim(ymin=-20)

ax2.set_ylabel(r’$20\log|Y(£)|$’,fontsize=22)
ax2.legend(loc=0,fontsize=16) ;

fig,ax = subplots()

fig.set_size_inches((10,4))

ax.plot (arange (N) /N*fs,20%1logl0(abs (X)), ’r-’,label="input’)

ax.plot (arange (N) /N*fs,20%1ogl0(abs(Y)), ’g-’,label=’output’)

ax.set_xlim(xmax = fs/2)

ax.set_ylim(ymin=-20)

ax.set_ylabel(’dB’,fontsize=22)

ax.set_xlabel ("Frequency (Hz)",fontsize=18)

ax.grid()

ax.annotate(’stopband\nattenuation’,fontsize=16,xy=(200,32),
xytext=(50,3) ,textcoords=’offset points’,
arrowprops=dict (arrowstyle=’->’,1w=3),
)

ax.legend(loc=0,fontsize=16);

Listing 5.13: Listing corresponding to Fig. 5.12.

121

S O

w

122 5 Finite Impulse Response Filters

x_pass = cos(2*pi*30%t) # passband signal
x_stop = cos(2%pi*200%*t) # stopband signal
X = x_pass + x_stop
y=signal.lfilter(hn,1,x)

fig,axs = subplots(3,1,sharey=True,sharex=True)
fig.set_size_inches((10,5))

ax=axs [0]

ax.plot(t,x_pass,label=’passband signal’,color=’k’)
ax.plot(t,x_stop,label=’stopband signal’)
ax.legend(loc=0,fontsize=16)

ax=axs[1]
ax.plot(t,x,label="filter input=passband + stopband signals’,color=’r’)
ax.legend(loc=0,fontsize=16)

ax=axs[2]

ax.plot(t,x_pass,label=’passband signal’,color=’k’)
ax.plot(t,y,label="filter output’,color=’g’)
ax.set_xlabel("Time (sec)",fontsize=18)
ax.legend(loc=0,fontsize=16);

Listing 5.14: Listing corresponding to Fig. 5.13.

References

[CBB+05] H. Childs, E.S. Brugger, K.S. Bonnell, J.S. Meredith, M. Miller, B.J. Whitlock,
N. Max, A contract-based system for large data visualization, in Proceedings of IEEE
Visualization 2005, Minneapolis, 2005, pp. 190-198

[Haran] FJ. Harris, On the use of windows for harmonic analysis with the discrete fourier
transform. Proc. IEEE 66(1), 51-83 (1978)

[Laf90] P. Lafrance, Fundamental Concepts in Communication (Prentice-Hall, Inc.,
Englewood, 1990)

[Lan09] H.P. Langtangen, Python Scripting for Computational Science, vol. 3 (Springer,
Berlin, 2009)

[MP73] J. McClellan, T. Parks, A united approach to the design of optimum fir linear-phase
digital filters. IEEE Trans. Circuit Theory 20(6), 697-701 (1973)

[MPR73] J. McClellan, T.W. Parks, L. Rabiner, A computer program for designing optimum fir

linear phase digital filters. IEEE Trans. Audio Electroacoust. 21(6), 506-526 (1973)

[O1i06] T.E. Oliphant, A Guide to Numpy, vol. 1 (Trelgol Publishing, USA, 2006)

[OW96] A.V. Oppenheim, A.S. Willsky, Signals and Systems (Prentice-Hall, Upper Saddle
River, 1996)

[OSB+89] A.V. Oppenheim, R.W. Schafer, J.R. Buck et al., Discrete-Time Signal Processing,
vol. 2 (Prentice Hall, Englewood Clifts, 1989)

[Orf95] S.J. Orfanidis, Introduction to Signal Processing (Prentice-Hall, Englewood Cliffs,
1995)

[Pap77] A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977)

[ProO1] J.G. Proakis, Digital Signal Processing: Principles Algorithms and Applications
(Pearson Education, New Delhi, 2001)

[S1e78] D. Slepian, Prolate spheroidal wave functions, Fourier analysis, and uncertainty. ATT
Tech. J. 57, 1371-1430 (1978)

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8, 123
© Springer International Publishing Switzerland 2014

Symbols

For all

Element of

Set of complex numbers

Expectation

Set of real numbers

n-dimensional vector of real numbers
Set of integers

Hadamard product

ONmEEEHOMN<

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8, 125
© Springer International Publishing Switzerland 2014

Index

C

Causality, 97

Chebyshev polynomial, 106

Circular Convolution, 70

Continuous-Frequency Filter Transfer
Function, 94

F
FFT
fftfreq, 116
fftshift, 114
frequency response, 94

G
Gibbs phenomenon, 101
Group Delay, 98

K
Kaiser-Bessel, 105

M

Matplotlib
add_collection3d, 55
add_patch, 43,55
annotate, 38
arrow, 89
art3d, 53
bbox, 117
FancyArrow, 43
fill_between, 37
grid, 76
GridSpec, 53

J. Unpingco, Python for Signal Processing, DOI 10.1007/978-3-319-01342-8,

hlines, 38

legend, 49
patch_2d_to_3d, 55
Poly3DCollection, 53
Rectangle, 105
set_label_position, 53
set_xlim, 76
set_xticklabels, 53
set_xticks, 53

setp, 78

stem, 49

subplots, 36
subplots_adjust, 83
text, 84

tick_params, 79
twinx, 37

vlines, 38

N

Numpy
abs, 75
angle, 113
arange, 36
fft, 76
flatten, 89
hstack, 37
linspace, 37
logical_and, 37
max, 38
piecewise, 37
polyfit, 90
roots, 88
unique, 88
vstack, 55
where, 77

© Springer International Publishing Switzerland 2014

127

128

P

Parks-McClellan, 106
Parseval’s theorem, 48
Peak Sidelobe Level, 70
Preface, vii

Processing Gain, 67

R
Remez exchange, 106

S

Scipy
freqz, 112

hamming, 90

Ifilter, 111
triang, 91
Signal

fir_filter_design, 117

firwin, 117
remez, 119

Spectral Leakage, 66

T

Transfer Function, 94

Z
Z-Transform, 97

~ StormRG~

	Preface
	Contents
	Chapter 1: Introduction

	1.1 Introduction
	1.2 Installation and Setup
	1.3 Numpy
	1.3.1 Numpy Arrays and Memory
	1.3.2 Numpy Matrices
	1.3.3 Numpy Broadcasting

	1.4 Matplotlib
	1.5 Alternatives to Matplotlib
	1.6 IPython
	1.6.1 IPython Notebook

	1.7 Scipy
	1.8 Computer Algebra
	1.9 Interfacing with Compiled Libraries
	1.10 Other Resources
	Appendix

	Chapter 2: Sampling Theorem

	2.1 Sampling Theorem
	2.2 Reconstruction
	2.3 The Story So Far
	2.4 Approximately Time-Limited-Functions
	2.5 Summary
	Appendix

	Chapter 3: Discrete-Time Fourier Transform

	3.1 Fourier Transform Matrix
	3.2 Computing the DFT
	3.3 Understanding Zero-Padding
	3.4 Summary
	Appendix

	Chapter 4: Introducing Spectral Analysis

	4.1 Seeking Better Frequency Resolution with Longer DFT
	4.2 The Uncertainty Principle Strikes Back!
	4.3 Circular Convolution
	4.4 Spectral Analysis Using Windows
	4.5 Window Metrics
	4.5.1 Processing Gain
	4.5.2 Equivalent Noise Bandwidth
	4.5.3 Peak Sidelobe Level
	4.5.4 3-dB Bandwidth
	4.5.5 Scalloping Loss

	4.6 Summary
	Appendix

	Chapter 5: Finite Impulse Response Filters

	5.1 FIR Filters as Moving Averages
	5.2 Continuous-Frequency Filter Transfer Function
	5.3 Z-Transform
	5.4 Causality
	5.5 Symmetry and Anti-symmetry
	5.6 Extracting the Real Part of the Filter Transfer Function
	5.7 The Story So Far
	5.8 Filter Design Using the Window Method
	5.8.1 Using Windows for FIR Filter Design

	5.9 The Story So Far
	5.10 Filter Design Using the Parks-McClellan Method
	5.11 Summary
	Appendix

	References
	Symbols
	Index

