3
<,
g
o
S
:
o
=
S
g
2
)
=
S
0!

Apache Administrators

Cookbook

O’REILLY"

Ken Coar & Rich Bowen

Web Administration/Apache

O’REILLY*

Apache Cookbook

There’s plenty of documentation on installing and configuring the Apache Web server, but
how do you find help for day-to-day issues, such as adding common modules or fine-
tuning your activity logging? This new edition of Apeache Cookbook includes more than
200 updated solutions to problems vou're likely to face with Apache versions 2.0 and 2.2,

The Apache package includes dozens of extensions, but if you require more, there is probably
something to satisfy that—if you can find it among Usenet newsgroups, Apache-related mailing
lists, or questions posed on IRC chat channels. In this cookbook, you will find timesaving recipes
in one convenient place, including solutions for:

e Installing the most common third-party modules
¢ Recording visits to your Web site(s), and using Apache’s error logging mechanism
e Running multiple Web sites using a single Apache server and set of configuration files

e Manipulating URLs—controlling the files to which they refer, changing them from one thing to
another, and making them point to other Web sites

e Securing Apache against penetration and exposure

e Making Apache handle secure transactions with SSL-capable browsers—a must for handling

sensitive data such as money transfers or medical records
e Enhancing Apache with runtime scripts and making them operate as a particular user
e Customizing Apache’s error messages to give your site its own unique flavor
e Configuring Apache to act as a proxy between users and web pages
e Addressing performance bottlenecks and improving Apache’s overall function
If you run Apache on Linux, FreeBSD, Solaris, or Windows, Apache Cookbook, Second Edition,
tackles everything from beginner problems to those faced by experienced users. Every recipe comes
from real-life situations, encountered either by the authors or by people who have asked for their help.
Ken Coar is the author of Apache Server for Dummies (Wiley) and coauthor of Apeache Server
Unleashed (Sams). He's responsible for fielding email sent to the Apache project; his experience
with that mailing list provided a foundation for this book.
Rich Bowen works primarily on the documentation for the Apache Web server. He is coauthor of
Apache Administrator’s Handbook (Sams) and the first edition of the Apache Cookbook.

www.oreilly.com

US $34.99 CAN $34.99
ISBN-10: 0-596-52994-5
ISBN-13: 978-0-596-52994-9 s

>F line editi
I i Safari’ fieeonine sdion

780596"529949 Books Online Details on last page.

Apache Cookbook

SECOND EDITION

Apache Cookbook’

Ken Coar and Rich Bowen

O’REILLY"

Beijing - Cambridge - Farnham - KdIn - Sebastopol + Taipei - Tokyo

Apache Cookbook™, Second Edition
by Ken Coar and Rich Bowen

Copyright © 2008 Ken Coar and Rich Bowen. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana _Apandi COVQF Designer: Karen Montgomery
Production Editor: Sarah Schneider Interior Designer: David Futato
Production Services: GEX, Inc. [llustrator: Robert Romano and Jessamyn Reed

Printing History:
November 2003: First Edition.
December 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Apache Cookbook, the image of a moose, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

RepKover.
S
=TT This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-13: 978-0-596-52994-9

(M]
[6/09]

http://safari.oreilly.com

Preface ...

1. Installation

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

2. Adding Common Modules

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3. Logging

3.1
3.2

Table of Contents

Installing from Red Hat Linux’s Packages
Installing from Debian Packages
Installing Apache on Windows
Downloading the Apache Sources
Building Apache from the Sources
Installing with ApacheToolbox

Starting, Stopping, and Restarting Apache
Uninstalling Apache

Which Version of Apache to Use
Upgrading Using config.nice

Starting Apache at Boot

Useful configure Options

Finding Apache’s Files

Installing a Generic Third-Party Module
Installing mod_dav on a Unixish System
Installing mod_dav on Windows

Installing mod_perl on a Unixish System
Installing mod_php on a Unixish System
Installing mod_php on Windows

Installing mod_ssl

Finding Modules Using modules.apache.org
Installing mod_security

Why Won’t This Module Work?

Getting More Details in Your Log Entries
Getting More Detailed Errors

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4. Virtual Hosts

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5. Aliases, Redirecting, and Rewriting

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Logging POST Contents

Logging a Proxied Client’s IP Address

Logging Client MAC Addresses

Logging Cookies

Not Logging Image Requests from Local Pages
Rotating Logfiles at a Particular Time

Rotating Logs on the First of the Month
Logging Hostnames Instead of IP Addresses
Maintaining Separate Logs for Each Virtual Host
Logging Proxy Requests

Logging Errors for Virtual Hosts to Multiple Files
Logging Server IP Addresses

Logging the Referring Page

Logging the Name of the Browser Software
Logging Arbitrary Request Header Fields
Logging Arbitrary Response Header Fields
Logging Activity to a MySQL Database

Logging to syslog

Logging User Directories

Setting Up Name-Based Virtual Hosts

Designating One Name-Based Virtual Host as the Default
Setting Up Address-Based Virtual Hosts

Creating a Default Address-Based Virtual Host
Mixing Address-Based and Name-Based Virtual Hosts
Mass Virtual Hosting with mod_vhost_alias

Mass Virtual Hosting Using Rewrite Rules

Logging for Each Virtual Host

Splitting Up a Logfile

Port-Based Virtual Hosts

Displaying the Same Content on Several Addresses
Defining Virtual Hosts in a Database

Mapping a URL to a Directory

Creating a New URL for Existing Content

Giving Users Their Own URLs

Aliasing Several URLs with a Single Directive
Mapping Several URLs to the Same CGI Directory
Creating a CGI Directory for Each User
Redirecting to Another Location

Redirecting Several URLs to the Same Destination

49
50
51
51
53
54
55
56
57
58
59
60
61
62
63
64
64
65
67

70
72
73
74
74
75
77
78
79
80
81
81

83
85
86
89
89
90
91
93

vi | Table of Contents

5.9
5.10

Permitting Case-Insensitive URLs

94

Showing Highlighted PHP Source without Symlinking 94
5.11 Replacing Text in Requested URLs 96
5.12 Rewriting Path Information to CGI Arguments 97
5.13 Denying Access to Unreferred Requests 98
5.14 Redirecting Unreferred Requests to an Explanation Page 99
5.15 Rewriting Based on the Query String 100
5.16 Redirecting All—or Part—of Your Server to SSL 100
5.17 Turning Directories into Hostnames 101
5.18 Redirecting All Requests to a Single Host 102
5.19 Turning Document Names into Arguments 103
5.20 Rewriting Elements between Path and Query String 103
5.21 Rewriting a Hostname to a Directory 104
5.22 Turning URL Segments into Query Arguments 105
5.23 Using AliasMatch, ScriptAliasMatch, and RedirectMatch 105
6. Security ... 107
6.1 Using System Account Information for Web Authentication 109
6.2 Setting Up Single-Use Passwords 110
6.3 Expiring Passwords 111
6.4 Limiting Upload Size 113
6.5 Restricting Images from Being Used Off-Site 115
6.6 Requiring Both Weak and Strong Authentication 116
6.7 Managing .htpasswd Files 117
6.8 Making Password Files for Digest Authentication 119
6.9 Relaxing Security in a Subdirectory 120
6.10 Lifting Restrictions Selectively 122
6.11 Authorizing Using File Ownership 124
6.12 Storing User Credentials in a MySQL Database 125
6.13 Accessing the Authenticated Username 126
6.14 Obtaining the Password Used to Authenticate 127
6.15 Preventing Brute-Force Password Attacks 128
6.16 Using Digest Versus Basic Authentication 129
6.17 Accessing Credentials Embedded in URLs 130
6.18 Securing WebDAV 131
6.19 Enabling WebDAV Without Making Files Writable by the
Web User 132
6.20 Restricting Proxy Access to Certain URLs 133
6.21 Protecting Files with a Wrapper 134
6.22 Protecting Server Files from Malicious Scripts 136
6.23 Setting Correct File Permissions 137
6.24 Running a Minimal Module Set 140
6.25 Restricting Access to Files Outside Your Web Root 142
Table of Contents | vii

6.26
6.27
6.28
6.29
6.30
6.31
6.32

6.33

8. Dynamic Content

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21

Limiting Methods by User

Restricting Range Requests

Rebutting DoS Attacks with mod_evasive
Chrooting Apache with mod_security
Migrating to 2.2 Authentication

Blocking Worms with mod_security

Mixing Read-Only and Write Access to a Subversion Repository

Using Permanent Redirects to Obscure Forbidden URLs

Installing SSL

Installing SSL on Windows

Generating Self-Signed SSL Certificates
Generating a Trusted CA

Serving a Portion of Your Site via SSL
Authenticating with Client Certificates
SSL Virtual Hosts

Wildcard Certificates

Enabling a CGI Directory

Enabling CGI Scripts in Non-ScriptAliased Directories
Specifying a Default Document in a CGI Directory
Using Windows File Extensions to Launch CGI Programs
Using Extensions to Identify CGI Scripts

Testing that CGI Is Set Up Correctly

Reading Form Parameters

Invoking a CGI Program for Certain Content Types
Getting SSIs to Work

Displaying Last Modified Date

Including a Standard Header

Including the Output of a CGI Program

Running CGI Scripts as a Different User with suexec
Installing a mod_per]l Handler from CPAN

Writing a mod_perl Handler

Enabling PHP Script Handling

Verifying PHP Installation

Parsing CGI Output for Server Side Includes

Parsing ScriptAlias Script Output for Server-Side Includes
Getting mod_perl to Handle All Perl Scripts

Enabling Python Script Handling

143
144
145
147
148
149

150
151

153
155
155
160
161
163
164
166

167
168
169
171
172
173
176
179
180
182
183
184
184
186
187
189
190
190
191
192
193

viii | Table of Contents

9. Error Handling

9.1
9.2
9.3
9.4
9.5
9.6
9.7

10. Proxies

10.1

10.2 Preventing Your Proxy Server from Being Used as an Open

10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

11. Performance

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15

12. Directory Listings

12.1

12.2 Display a Standard Header and Footer on Directory Listings

Handling a Missing Host Field

Changing the Response Status for CGI Scripts
Customized Error Messages

Providing Error Documents in Multiple Languages
Redirecting Invalid URLs to Some Other Page
Making Internet Explorer Display Your Error Page
Notification on Error Conditions

Securing Your Proxy Server

Mail Relay

Forwarding Requests to Another Server
Blocking Proxied Requests to Certain Places
Proxying mod_perl Content to Another Server
Configuring a Caching Proxy Server

Filtering Proxied Content

Requiring Authentication for a Proxied Server
Load Balancing with mod_proxy_balancer
Proxied Virtual Host

Refusing to Proxy FTP

Determining How Much Memory You Need
Benchmarking Apache with ab

Tuning KeepAlive Settings

Getting a Snapshot of Your Site’s Activity
Avoiding DNS Lookups

Optimizing Symbolic Links

Minimizing the Performance Impact of .htaccess Files
Disabling Content Negotiation

Optimizing Process Creation

Tuning Thread Creation

Caching Frequently Viewed Files

Distributing Load Evenly Between Several Servers
Caching Directory Listings

Speeding Up Perl CGI Programs with mod_perl
Caching Dynamic Content

Generating Directory/Folder Listings

195
196
197
198
199
200
201

203

205
205
207
207
208
209
210
211
212
213

216
217
218
220
221
222
223
225
227
228
229
231
232
233
235

Table of Contents | ix

12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20

13. Miscellaneous Topics

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

A. Using Regular Expressions in Apache

B. Troubleshooting

Applying a Stylesheet

Hiding Things from the Listing

Searching for Certain Files in a Directory Listing
Sorting the List

Allowing a Client-Specified Sort Order
Specifying How the List Will Be Formatted
Allowing the Client to Specify the Formatting
Adding Descriptions to Files

Autogenerated Document Titles

Changing the Listing Icons

Listing the Directories First

Ordering by Version Number

Allowing the End User to Specify Version Sorting
Complete User Control of Output

Don’t Allow the End User to Modify the Listing
Suppressing Certain Columns

Showing Forbidden Files

Aliases in Directory Listings

Placing Directives Properly

Renaming .htaccess Files

Generating Directory/Folder Listings

Solving the “Trailing Slash” Problem

Setting the Content-Type According to Browser Capability
Handling Missing Host: Header Fields

Alternate Default Document

Setting Up a Default “Favicon”

Directory Listings in ScriptAliased Directories
Enabling .htaccess Files

Converting IBM/Lotus Server-Side Includes to Apache

240
240
241
242
242
244
244
245
246
246
247
248
248
249
250
251
251
252

253
255
256
257
259
259
260
261
261
263
264

x | Table of Contents

Preface

The Apache Web server is a remarkable piece of software. The basic package distributed
by the Apache Software Foundation is quite complete and very powerful, and a lot of
effort has gone into keeping it from suffering software bloat. One facet of the package
makes it especially remarkable: it includes extensibility by design. In short, if the
Apache package right out of the box does not do what you want, you can generally
extend it so that it does. Dozens of extensions (called modules) are included as part of
the package distributed by the Apache Software Foundation. And if one of these doesn’t
meet your needs, with several million users out there, there is an excellent chance
someone else has already done your work for you, someone who has concocted a recipe
of changes or enhancements to the server that will satisfy your requirements.

This book is a collection of these recipes. Its sources include tips from the firehose of
the Usenet newsgroups, the Apache FAQ, Apache-related mailing lists, mail containing
“how-to” questions, questions and problems posed on IRC chat channels, and volun-
teered submissions.

All of the items in this book come from real-life situations, encountered either by us or
by other people who have asked for our help. The topics range from basic compilation
of the source code to complex problems involving the treatment of URLs that require
SSL encryption.

We’ve collected more than a hundred different problems and their solutions, largely
based on how often they occurred, and have grouped them roughly by subject as shown
in Recipe 1.

Primarily, these recipes are useful to webmasters who are responsible for the entire
server; however, many are equally applicable to users who want to customize the
behavior in their own Web directories through the use of .htaccess files.

We've written the Apache Cookbook to be a practical reference, rather than a theo-
retical discourse: reading it recipe by recipe, chapter by chapter, isn’t going to reveal a
plot (“Roy Fielding in the Library with an RFC!™"). It’s intended to provide point
solutions to specific problems, located through the table of contents or the index.

" An obscure reference to a board game called Clue and an obscure developer of HTTP.

xi

What'’s in This Book

Because much of the material in this book is drawn from question-and-answer discus-
sions and consultations, we have tried to make it as complete as possible. Of course,
this means that we have included “recipes” for some questions to which there are cur-
rently no satisfactory answers (at least to our knowledge). This has not been done to
tease, annoy, or frustrate you; such recipes are included to provide completeness, so
that you will know those problems have been considered rather than ignored.

Very few problems remain insoluble forever, and these incomplete recipes are the ones
that will receive immediate attention on the book’s Web site and in revisions of the
book. If a reader has figured out a way to do something the book mentions but doesn’t
explain, or omits mentioning entirely, our research team can be notified, and that
solution will go on the Web site and in the next revision.

Who knows, you may be the one to provide such a solution!

Platform Notes

The recipes in this book are geared toward two major platforms: Unixish (such as
Linux, FreeBSD, and Solaris) and Windows. There are many that have no platform-
specific aspects, and for those, any mention of the underlying operating system or
hardware is gratefully omitted. Because of the authors’ personal preferences and ex-
periences, Unixish coverage is more complete than that for the Windows platforms.
However, contributions, suggestions, and corrections for Windows-specific recipes
will be gladly considered for future revisions and inclusion on the Web site.

Other Books

There are a number of books currently in print that deal with the Apache Web server
and its operation. Among them are:

* Apache: The Definitive Guide, Third Edition, by Ben and Peter Laurie (O’Reilly)
* Pro Apache, Third Edition, by Peter Wainwright (Apress)
* Apache Administrator’s Handbook by Rich Bowen, et al. (Macmillan)

You can also keep an eye on a couple of Web pages that track Apache titles:

* http://Apache-Server.Com/store.html
* http://httpd.apache.org/infolapache_books.html

xii | Preface

http://Apache-Server.Com/store.html
http://httpd.apache.org/info/apache_books.html

Other Sources

In addition to books, there is a wealth of information available online. There are Web
sites, mailing lists, and Usenet newsgroups devoted to the use and management of the
Apache Web server. The Web sites are limitless, but here are some active and useful
sources of information:

* The comp.infosystems.www.servers.unix and comp.infosystems.www.servers.ms-
windows Usenet newsgroups. Although these aren’t dedicated to Apache specifi-
cally, there is a lot of traffic concerning it, and experienced Apache users hang out
here. If you don’t have access to news, or don't know how to reach Usenet, check
out http://groups.google.com/.

* The Apache Today Web site, http://apachetoday.com/, run by Internet.com. This
site regularly lists articles about the Web server and making the most of it.

* Theusers@httpd.apache.org mailing list is populated with people who have varying
degrees of experience with the Apache software, and some of the Apache devel-
opers can be found there, too. Posting is only permitted to subscribed participants.
To join the list, visit http://httpd.apache.orgluserslist.html.

* The #apache IRC channel on the irc.freenode.net network—or on many other IRC
networks, for that matter. However, your chances of encountering us are most
likely on the freenode network.

We must point out that none of these are “official” support mediums for the Web
server. In fact, there is no “official” support path, since the software is largely developed
by volunteers and is free. However, these informal support forums successfully answer
many questions.

How This Book |s Organized

This book is broken up into 13 chapters and 2 appendixes, as follows:

Chapter 1, Installation, covers the basics of installing the vanilla Apache software, from
source on Unixish systems, and on Windows from the Microsoft Software Installer
(MSI) package built by the Apache developers.

Chapter 2, Adding Common Modules, describes the details of installing some of the
most common third-party modules, and includes generic instructions that apply to
many others that have less complex installation needs.

Chapter 3, Logging, includes recipes about recording the visits to your Web site(s), and
Apache’s error logging mechanism.

Chapter 4, Virtual Hosts, tells you how to run multiple Web sites using a single Apache
server and set of configuration files.

Preface | xiii

http://groups.google.com/
http://apachetoday.com/
http://httpd.apache.org/userslist.html

Chapter 5, Aliases, Redirecting, and Rewriting, describes how to manipulate URLs, how
to control which files they refer to, how to change them from one thing to another, and
how to make them point to other Web sites.

Chapter 6, Security, covers some of the basic issues of securing your Apache server
against penetration and exposure by the nefarious elements on the Internet.

Chapter 7, SSL, addresses the issues of making your Apache Web server capable of
handling secure transactions with SSL-capable browsers—a must if you’re going to be
handling sensitive data such as money transfers or medical records.

Chapter 8, Dynamic Content, tells you how to enhance your server with runtime scripts
and make them operate as a particular user.

Chapter 9, Error Handling, describes how to customize the Web server’s error messages
to give your site its own unique flavor.

Chapter 10, Proxies, describes how to configure your Apache server to act as a proxy
between users and Web pages and make the processes as transparent and seamless as
possible.

Chapter 11, Performance, includes a number of recipes for addressing performance
bottlenecks and improving the overall function of your Apache server.

Chapter 12, Directory Listings, describes how to customize the module for displaying
a directory listing as a Web page.

Chapter 13, Miscellaneous Topics, covers a variety of miscellaneous topics that didn’t
seem to fit into any of the other chapters.

Appendix A, Using Regular Expressions in Apache, explains how regular expressions
are used for pattern-matching in Apache directives.

Appendix B, Troubleshooting, covers some basic troubleshooting techniques, where to
look for messages, common configuration problems, and so on.

Conventions Used in This Book

Throughout this book certain stylistic conventions are followed. Once you are accus-
tomed to them, you can easily distinguish between comments, commands you need to
type, values you need to supply, and so forth.

In some cases, the typeface of terms in the main text will be different and likewise in
code examples. The details of what the different styles (italic, boldface, etc.) mean are
described in the following sections.

Programming Conventions

In this book, most case examples of code will be in the form of excerpts from scripts,
rather than actual application code. When commands need to be issued at a command-

xiv | Preface

line prompt (such as an xterm for a Unixish system or a DOS command prompt for
Windows), they will look something like this:

o

find/usr/local -name apachectl -print
/usr/local/apache/bin/apachectl graceful

:>cd "\Program Files\Apache Group\Apache\bin"
:\Program Files\Apache Group\Apache\bin>apache -k stop

Q Q #*

On Unixish systems, command prompts that begin with # indicate that you need to be
logged in as the superuser (root username); if the prompt begins with %, then the
command can be used by any user.

Typesetting Conventions

The following typographic conventions are used in this book:

Italic
Used for commands, filenames, abbreviations, citations of books and articles,
email addresses, URLs, and Usenet group names.

Bold
Used for labeling menu choices in a graphical interface.

Constant Width
Used for function names, command options, computer output, environment var-
iable names, literal strings, and code examples.

Constant Width Bold
Used for user input in computer dialogues and examples.

Constant Width Italic
Used for replaceable parameters, filesystem paths, and variable names.

W

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Documentation Conventions

Because this book deals with a general topic rather than a specific one (such as the Perl
language), there are additional sources of information to which it will refer you. The
most common ones are as follows.

Preface | xv

The online manual (“man”) pages on a Unixish system

References to the manpages will appear something like, “For more information, see the
kill(1) manpage.” The number in parentheses is the manual section; you can access this
page with a command such as:

% man 1 kill

The Apache Web server documentation

Such a reference may appear as “See the mod_auth documentation for details.” This
refers to a Web page like:

http://httpd.apache.org/docs/mod/mod_auth.html

In some cases, the reference will be to a specific Apache directive rather than an actual
module; in cases like this, you can locate the appropriate Web page by looking up the
directive name on:

http://httpd.apache.org/docs/mod/directives.html

This page lists all of the directives available in the standard Apache package. In some
situations, the directive may be specific to a nonstandard or third-party module, in
which case the documentation should be located wherever the module itself was found.
The links above are for the documentation for Version 1.3 of the software. To access
the documentation for Version 2.0, replace “docs/” with “docs-2.0/” in the URLs.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Apache Cookbook, Second Edition, by Ken
Coar and Rich Bowen. Copyright 2008 Ken Coar and Rich Bowen,
978-0-596-52994-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xvi | Preface

http://httpd.apache.org/docs/mod/mod_auth.html
http://httpd.apache.org/docs/mod/directives.html

We’'d Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (which may in fact resemble bugs). Please let
us know about any errors you find, as well as your suggestions for future editions, by
writing to the following address.

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a Web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://lwww.oreilly.com/catalog/9780596529949
To comment or ask technical questions about this book, send an email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our Web site at:

http://www.oreilly.com

We have a Web site for the book, where we’ll list errata and plans for future editions.
Here you’ll also find the source code from the book available for download so you don’t
have to type it all in:

http://apache-cookbook.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Preface | xvii

http://www.oreilly.com/catalog/9780596529949
http://www.oreilly.com
http://apache-cookbook.com
http://safari.oreilly.com

Acknowledgments

Originally, each recipe was going to be individually attributed, but that turned out to
be logistically impossible.

Many people have helped us during the writing of this book, by posing a problem,
providing a solution, proofreading, reviewing, editing, or just (!) providing moral sup-
port. This multitude, to each of whom we are profoundly grateful, includes Nat Tor-
kington (our project editor and demonstrator of Herculean feats of patience), Sharco
and Guy- from #apache on irc.freenode.net, Mads Toftum, Morbus Iff (known to the
FBI under the alias Kevin Hemenway), and Andy Holman.

Ken Coar

I dedicate this book to my significantly better half, Cathy Coar, who has performed
Heraclean feats of love and support on my behalf for more than two decades.

My sincere thanks go out to the crew at O’Reilly, for their deific patience and under-
standing. Thanks also to the WriterBase Authors Support Group and Cabal mailing
lists, whereon much balm and advice was offered. Our technical reviewers provided
much excellent feedback and helped make this a better book.

The people who have worked on the Apache Web server documentation, and the peo-
ple who develop the software itself, get a big note of thanks, too; without the former,
collating a lot of the information in this book would have been a whole lot more diffi-
cult, and without the latter, the book wouldn’t have happened at all.

The users of the software, whose frequently challenging questions populate the mailing
lists, the IRC channels, and our inboxes, deserve thanks for all the inspiration they
unwittingly provided for the recipes in this book.

But foremost among those to whom I owe gratitude is my significantly better half,
Cathy, without whose patience, support, and constructive criticism [would never have
achieved what I have.

Rich Bowen

[dedicate this book to the experts on #apache who answer so many of these questions
every day, and to the beginners, on their way to becoming experts, who ask them.

A huge thank you goes to all the many people involved in making this book a reality.
Tatiana, thank you for your patience and persistent assistance throughout this process.

And, finally, thanks go to my wonderful family. To Sarah, who always looks for my
books at the bookstore. To Isaiah, for all his boundless energy and tight hugs. And to
my Best Beloved, for helping me discover so much Pointless Beauty.

xviii | Preface

CHAPTER 1
Installation

For this Cookbook to be useful, you need to install the Apache Web server software.
So what better way to start than with a set of recipes that deal with the installation?

There are many ways of installing this package; one of the features of open software
like Apache is that anyone may make an installation kit. This allows vendors (such as
Debian, FreeBSD, Red Hat, Mandrake, Hewlett-Packard, and so on) to customize the
Apache file locations and default configuration settings so that these settings fit with
the rest of their software. Unfortunately, one of the consequences of customization is
that the various prepackaged installation kits are almost all different from one another,
which means that when it comes to getting assistance, you need to find someone
familiar with the kit you’re using.

In addition to installing it from a prepackaged kit, of which the variations are legion,
there’s always the option of building and installing it from the source yourself. This has
both advantages and disadvantages; on the one hand, you know exactly what you in-
stalled and where you put it, but, on the other hand, it’s possible that binary add-on
packages will expect files to be in locations other than those you have chosen.

If setting up the Web server is something you’re going to do once and never again, using
a packaged solution prepared by your system vendor is probably the way to go. How-
ever, if you anticipate applying source patches, adding or removing modules, or just
fiddling with the server in general, building it yourself from the ground up is probably
the preferred method. (The authors of this book, being confirmed bit-twiddlers,
always build from source.)

This chapter covers some of the more common prepackaged installation varieties and
also how to build the server from the source yourself.

Throughout the chapter, we assume that you will be using dynamic shared objects
(DSOs) rather than building modules statically into the server. The DSO approach is
highly recommended,; it not only makes it easy to update individual modules without
having to rebuild the entire server, but it also makes adding or removing modules from
the server’s configuration a simple matter of editing the configuration file.

DSOs on Unixish systems typically have a .so extension; on Windows, they end with

a .dll suffix.

1.1 Installing from Red Hat Linux’s Packages

Problem

You have a Red Hat Linux server and want to install or upgrade the Apache Web server
on it using the packages that Red Hat prepares and maintains.

Solution
If you are a member of the Red Hat Network (RHN), Red Hat’s subscription service,
you can use Red Hat’s up2date tool to maintain your Apache package:

up2date -ui apache apache-devel apache-manual

If you’re running a more recent version:

up2date -ui httpd httpd-devel httpd-manual

If you aren’t a member of RHN, you can still download the packages from one of Red
Hat’s servers (either ftp:/ftp.redhat.com or ftp:/fupdates.redhat.com), and install it with
the following command:

rpm -Uvh apache

Discussion

The -uvh option to the rpm command tells it to:

* Upgrade any existing version of the package already on the system or install it for
the first time if it isn’t.

* Explain the process, so that you can receive positive feedback that the installation
is proceeding smoothly.

* Display a pretty line of octothorpes (#) across the screen, marking the progress of
the installation.

If you use the packages Red Hat maintains for its own platform, you will benefit from
a simple and relatively standard installation. However, you can only update versions
for which Red Hat has put together an RPM package, which typically means that you
may be lagging weeks to months behind the latest stable version.

There is also the issue of platform compatibility; for instance, at some point the version
of Apache provided for Red Hat Linux changed from 1.3 to 2.0, and newer versions of
the operating system will probably only have the 2.0 packages available. Similarly, if
you run an older version of Red Hat Linux, the newer packages will probably not install
properly on your system.

2 | Chapter 1: Installation

ftp://ftp.redhat.com
ftp://updates.redhat.com

It’s a good idea to install the apache-devel package as well. It’s quite small, so it won’t
have much impact on your disk usage; however, it includes files and features that a lot
of third-party modules will need in order to install properly.

See Also

* Red Hat’s full platform release archive at ftp://ftp.redhat.com/
* Red Hat’s incremental update (errata) archive at ftp://updates.redhat.com/

1.2 Installing from Debian Packages

Problem

You have a computer running Debian, or one of the Debian-based distributions, such
as Ubuntu, and wish to install Apache.

Solution
Using apt-get, install the apache2 package:

apt-get install apache2-mpm-prefork

Discussion

As with any package-based Linux distribution, it’s usually best to stick with the pack-
ages supplied by that distribution in order to have ease of updates, and maximum
interoperability with other packages installed on the same system. On Debian, this
means using apt-get.

It’s a good idea to install the apache2-dev package as well, as it provides utilities, such
as apxs, which will be useful in installing third-party modules, should the need arise.

Debian has its own unique arragement of configuration files, which is unlike that of
any other distribution. Both modules and sites (virtual hosts) are arranged in
subdirectories so that they can be enabled or disabled at will using utilities that come
with Debian’s version of Apache. For example, to enable a particular module, you will
use the a2enmod command, which makes the appropriate changes to the server con-
figuration file to cause that module to be loaded. For example:

al2enmod rewrite

Fora full description of where Debian places its files and directories, you should consult
http://wiki.apache.org/httpd/DistrosDefaultLayout.

See Also
* http://wiki.apache.org/httpd/DistrosDefaultLayout

* man a2enmod

1.2 Installing from Debian Packages | 3

ftp://ftp.redhat.com/
ftp://updates.redhat.com/
http://wiki.apache.org/httpd/DistrosDefaultLayout
http://wiki.apache.org/httpd/DistrosDefaultLayout

* man apt-get

1.3 Installing Apache on Windows

Problem

You want to install the Apache Web server software on a Windows platform.

N

S If you already have Apache installed on your Windows system, remove
. it before installing a new version. Failure to do this results in unpre-

T 918y dictable behavior. See Recipe 1.8.

Solution

Primarily, Windows is a graphically oriented environment, so the Apache install for
Windows is correspondingly graphical in nature.

The simplest way to install Apache is to download and execute the Microsoft Software
Installer (MSI) package from the Apache Web site at http://httpd.apache.org/down
load. The following screenshots come from an actual installation made using this
method.

Each step of the installation procedure is distinct in the process and you can revise
earlier decisions, until the files are installed. The first screen (Figure 1-1) simply con-
firms what you’re about to do and the version of the package you’re installing.

The second screen (Figure 1-2) presents the Apache license. Its basic tenets boil down
to the following: do what you want with the software, don’t use the Apache marks
(trademarks like the feather or the name Apache) without permission, and provide
proper attribution for anything you build based on Apache software. (This only applies
if you plan to distribute your package; if you use it strictly on an internal network, this
isn’t required.) You can’t proceed past this screen until you agree to the license terms.

4 | Chapter 1: Installation

http://httpd.apache.org/download
http://httpd.apache.org/download

international treaties,

fi& Apache HTTP Server - Installation Wizard x|

Welcome to the Installation Wizard for
Apache HTTP Server 1.3.27

The Installation Wizard will install Apache HTTP Server 1.3.27
on your computer, To continue, dlick Nesxt,

WARMNING: This program is protected by copyright law and

< Back.

Cancel

Figure 1-1. First screen of Apache MSI install

iiél' Apache HTTP Server - Installation Wizard

License Agreement

Please read the Following license agreement carefully,

The Apache Software License, Version 1.1

canditions and the fallowing disclaimer.

& T accepk the terms in the license agreement:

" I do not accept the kerms in the license agreement

Inistallshield

Copyright () 2001 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and hinary farms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the abhove copyright notice, this list of

2. Redistributions in hinary form must reproduce the ahove copyright notice, this ;'

< Back.

I Mext = I Cancel

Figure 1-2. License agreement

1.3 Installing Apache on Windows | 5

Figure 1-3 shows the recommended reading for all new users of the Apache software.
This describes special actions you should take, such as making configuration changes
to close security exposures, so read it closely.

i‘é‘n Apache HTTP Server - Installation Wizard x|
Read This First

Read this Before Running Apache on Windows,

Apache -
Yersion 1.3 {and up)

What is it?

Apache is an HTTP server, ariginally designed for Linix systems. This is the version
of Apache for Microsoft Windows 2000, NT, 88, and 95 systerns. Like the Unix
version, it includes many frequently requested new features, and has an AP that
allows itto be extended to meet users' needs more easily. It also allows limited
support for ISAP| extensions.

The LatestYersion
Details ofthe latest version can be found on the Apache HTTP server project page
under hitpishittnd.apache.orgr

=

ImsballShizld

< Back.

Cancel |

Figure 1-3. Recommended reading for new users

If you are installing Apache for the first time, the installation process asks for some
information so that it can make an initial configuration for your server (Figure 1-4). If
you already have a version of Apache installed, nothing you enter on this screen will
override your existing configuration.

The Server Name in the figure is filled with the same value as the Network Domain
field; this is a nod to the growing tendency to omit the “www” prefix of Web sites and
use the domain name (e.g., http://oreilly.com/instead of http://www.oreilly.com/). What
name you specify for the server is just advisory, allowing the installation process to
configure some initial values; you can change them later by editing the configuration
file. The important thing is that the Server Name value be resolvable into an IP address.

Next comes a screen asking what portions of the package you want to install, as shown
in Figure 1-5. Just go with Typical unless you’re an advanced user. The Custom option
allows you to choose whether to install the Apache documentation.

6 | Chapter 1: Installation

http://oreilly.com/
http://www.oreilly.com/

i Apache HTTP Server - Installation Wizard :. | x|

Server Information

Please enter your server's information,

Metwork Domain (e.g. somenet.com)
IApache—Cookbook.Com

Server Mame (2., wiww, somenek, com):
IApache-Cookbook.Com

Administrator's Email Address (e.g. webmaster@somenet. com):

Install Apache HTTP Server programs and shorbouts bos

% Run as a service for All Users -- Recommended

" Run when started manually, only For me (Ken Coar)

InistallShield

< Back, I Mexk = I Cancel

Figure 1-4. Initial server configuration information

m!f' Apache HTTP Server - Installation Wizard ' | x|

Setup Type

Choose the setup bype that best suits your needs,

Please select a setup bype.

Al pragram Features will be installed. (Requires the most disk
space.)

" Custom
@ Choose which program Features you want installed and where they

will be installed, Recommended for adwvanced users,

InistallShield

< Back. I Mext = I Cancel

Figure 1-5. Installation type

1.3 Installing Apache on Windows | 7

ii& Apache HTTP Server - Installation Wizard | x|

Destination Folder

Click Change to install ko a different Folder

\‘J_\] Install Apache HTTP Server to the Faolder;

C:\Program FilesiApache Grouph, change. .. |

InistallShield

< Back, Cancel

Figure 1-6. ServerRoot directory

Figure 1-6 asks where you want the software installed. The screenshot shows the default
location, which will become the ServerRoot.

Once you’ve answered all the questions, a screen similar to Figure 1-7 will come up.
This is your last chance to go back and change anything; once you click the Install
button on this screen, the installation puts the pieces of the package in place on your
system.

Figures 1-8 and 1-9 show the last screens for the Windows MSI install; they show the
progress of the installation. When they’re finished, Apache has been installed (and
started, if you chose the “Run as a service” option shown in Figure 1-4).

8 | Chapter 1: Installation

{i§ Apache HTTP Server - Installation Wizard X|

Ready to Install the Program

The wizard is ready to beqgin installation.

Click Install to beqgin the installation,

IF wou want ko review o change any of vour installation settings, click Back, Click Cancel to
exit the wizard,

Instal|shield
< Back, Cancel
Figure 1-7. The last chance to change your mind
i Apache HTTP Server - Installation Wizard | o] 4|

Installing Apache HTTP Server 1.3.27

The program Features you selected are being installed,

Cd Please wait while the Installation Wizard installs Apache HTTP Server
1.3.27. This may take several minutes,

Skakus:
Copying new files

IristallShield

< Back ext =

Figure 1-8. The installation progress

1.3 Installing Apache on Windows | 9

ji? Apache HTTP Server - Installation Wizard |

Installation Wizard Completed

The Installation Wizard has successfully installed Apache HTTP
Server 1.3.27, Click Finish bo exit the wizard,

= Back Cancel

Figure 1-9. MSI installation finished

Discussion

A lot of effort has been put into making the Apache server run well on Windows and
be managed like other Windows applications. As a consequence, the primary installa-
tion method (InstallShield or MSI) should be familiar to Windows users.

If you’ve never run Apache before, accept the defaults the first time you install it. This
makes it easier for others to provide assistance if you need help, because the files will
be in predictable locations.

If you chose to start the Apache server as a service (see Figure 1-4), then you can modify
the conditions for it to start, such as the user it should run as or whether it should start
automatically, just as you would any other service. Figure 1-10 shows one way to do
this; bring up the window by right-clicking on the My Computer icon on the desktop
and choose Manage from the pop-up menu.

See Also

* The Apache license at http://www.apache.org/LICENSE
* Recipe 1.8

10 | Chapter 1: Installation

http://www.apache.org/LICENSE

J Ackion Miew H ()

2] » =0

Tree I Mame 7/ | Description | Skakus | Startup Type | Log ©n As | o
@ Computer Managsmert: (Local) %Alertar Mokifies sel. .. Maral LacalSystem
=) m System Taals Apache A
.. Event Yiswer %Appllcanon Manage.., Providess,., Manual LocalSystem
- System Information %CliDBDok Supports C... Marual LocalSystem
[H- ﬁ Performance Logs and Alerts %COI‘M Event System Provides a... Started Manual LocalSystem
- Shared Folders %Computer Browser Maintains a... Started Aukoratic LocalSystem
B Device Manager %DHCP Client Managesn... Started Automatic LocalSystem
(-4 Local Users and Groups %Dlstrlbuted Link Tra... Sends notif... Started Automatic Lacalsystem
H@ Stnraga %Distributed Transac... Coordinate... Maral LacalSystem
(] Disk Management %DNS Client Resolves a... Started Aukomatic LocalSystem
E D'Sk_ Dzlafra.gmanter %Event Log Logs evenk.., Skarted Aukornatic LacalSystem
&) Logical Drives %Fax Service Helps you ... Manual LocalSystem
@ Removable Starags
) %Indeang Service Manual Localsystem
EI"@ Services and Applications
"4k wm Contral %Internet Connectio,., Provides n.., Manual LocalSystem
% Services %IPSEC Policy Agent Manages I... Started Aukomatic LocalSystem
g Tndexing Service %Logical Disk Manager Logical Disk.., Started Automatic LocalSystem
%Lngi[al Disk Manage... Administrat... Manual LocalSystem
%Massenger Sends and .., Started Aukomatic Localsystem
%Net Logon Supports ... Manual LocalSystem
%Netmeeting Remote... Allows aut... Manual LocalSystem
HNetwork Conrections Manages 0., Starked Marual LocalSystem LI

o e A= i e IR i T

11;59 AM

Figure 1-10. Modifying the Apache service

1.4 Downloading the Apache Sources

Problem

You want to build the Apache Web server yourself from the sources directly (see Rec-
ipe 1.5), but don’t know how to obtain them.

Solution

There are a number of ways to obtain the sources. You can access the latest version in
close to real-time by using Subversion (the tool used by the Apache developers for
source control), you can download a release tarball, or you can install a source package
prepared by a distributor, among others.

To install from a prepackaged tarball, download the tarball from http://
httpd.apache.org/download.cgi, and then:
% tar xzvf httpd-2.0.59.tar.gz

If your version of tar doesn’t support the z option for processing zipped archives, use
this command instead:

1.4 Downloading the Apache Sources | 11

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi

% gunzip -c < httpd-2.0.59.tar.gz | tar xvf -
From the very latest up-to-the-minute Apache 2.0 source repository (not guaranteed
to be completely functional), use:

% svn checkout http://svn.apache.org/repos/asf/httpd/httpd/branches/2.0.x/ httpd-2.0
You can fetch a particular release version instead of the bleeding edge code if you know

the name the developers gave it. For example, this will pull the sources of the 2.0.59
release, which is expected to be stable, unlike the up-to-the-minute version:

% svn checkout http://svn.apache.org/repos/asf/httpd/httpd/tags/2.0.59/ httpd-2.0.59

You can find the names of the tags used in the source tree by visiting either http://
svn.apache.org/viewvc/httpd/httpd/tags/ or with:

% svn ls http://svn.apache.org/repos/asf/httpd/httpd/tags/

W

All sorts of tags are used by the developers for various purposes. The
tags used to label versions of files used for a release are always of the
* 9la form n.m.e, so use these to work with a particular release version.

Discussion

No matter how you install the source, the directory tree will be ready for configuration
and building. Once the source is in place, you should be able to move directly to build-
ing the package (see Recipe 1.5).

If you chose to install the sources using the Subversion method, you can keep your
sources up-to-date by simply executing the following command from the top level of
the source directory:

o

% svn update

This will update or fetch any files that have been changed or added by the developers
since the last time you downloaded or updated.

If you update to the latest version of the sources, you’re getting whatever the developers
are currently working on, which may be only partially finished. If you want reliability,
stick with the released versions, which have been extensively tested.

See Also
* Recipe 1.5

12 | Chapter 1: Installation

http://svn.apache.org/viewvc/httpd/httpd/tags/
http://svn.apache.org/viewvc/httpd/httpd/tags/

1.5 Building Apache from the Sources

Problem

You want to build your Apache Web server from the sources directly rather than
installing it from a prepackaged kit.

Solution

Assuming that you already have the Apache source tree—whether you installed it from
a tarball, Subversion, or some distribution package, the following commands—exe-
cuted in the top directory of the tree, builds the server package with most of the standard
modules as DSOs:

% ./buildconf

./configure --prefix=/usr/local/apache

> --with-layout=Apache --enable-modules=most --enable-mods-shared=all \
> —-with-mpm=prefork

% make
#make install

o

If you want more detailed information about the various options and their meanings,
you can use the following command:

% ./configure --help

Discussion

Building the server from the sources can be complex and time-consuming, but it’s
essential if you intend to make any changes to the source code. It gives you much more
control over things, such as the use of shareable object libraries and the database rou-
tines available to modules. Building from source is also de rigeur if you’re developing
your own Apache modules.

If you want to build the modules statically into the server, replace any occurrences of
--enable-mods-shared=1ist with -—enable-mods=1ist.

The options to the configure script are many and varied; if you haven’t used it before
to build Apache, locate some online tutorials (such as those at http://apache-server.com/
tutorials/ or http://httpd.apache.org/docs-2.0/install. html) when you want to change the
defaults. The default options generally produce a working server, although the
filesystem locations and module choices may not be what you’d like; they may include
modules you don’t want or omit some you do. (See Chapter 2 for some examples.)

See Also

* Recipe 1.4
* http://apache-server.com/tutorials/
* http://httpd.apache.org/docs-2.0/install. html

1.5 Building Apache from the Sources | 13

http://apache-server.com/tutorials/
http://apache-server.com/tutorials/
http://httpd.apache.org/docs-2.0/install.html
http://apache-server.com/tutorials/
http://httpd.apache.org/docs-2.0/install.html

1.6 Installing with ApacheToolbox

Problem

You have a complicated collection of modules you want to install correctly.

Solution

Download ApacheToolbox from http://www.apachetoolbox.com/. (Note that the ver-
sion numbers will probably be different than these, which were the latest available when
this section was written.) Unpack the file:

% bunzip2 Apachetoolbox-1.5.65.tar.bz2
%tar xvf Apachetoolbox-1.5.65.tar

(Depending on your version of tar, you may be able to combine these operations into
a single tar xjvf command.)

Then run the installation script:

cd Apachetoolbox-1.5.65
#./install.sh

Discussion

ApacheToolbox is developed and maintained by Bryan Andrews. It is a shell script that
assists in the configuration and installation of Apache. It includes support for over 100
commonly used or standard modules.

When you run the script, you select modules from lists appearing on various screens.
Once you have decided on your list of modules, ApacheToolbox downloads the third-
party modules you have selected and the tools that you don’t have installed, and then
runs the Apache configure script with any arguments needed to create the combination
you have requested.

The main screen (see Figure 1-11) lists the most popular third-party modules that
ApacheToolbox caninstall. Select or deselect a particular module by typing the number
next to that module’s name.

Typing apache moves you to the second screen (see Figure 1-12), which lists the
standard Apache modules. Add or remove individual modules by typing the number
next to their module names.

You can choose options for configuring the modules on additional menus, and you can
build an RPM on your installation configuration, which you can then install on multiple
machines without requiring that ApacheToolbox be installed.

Once you have made all your module selections, type go to tell ApacheToolbox to start
the configuration process.

14 | Chapter 1: Installation

http://www.apachetoolbox.com/

Figure 1-11. Main screen of ApacheToolbox install

Your preferences are saved to a file (etc/config.cache) so that if you want to reinstall
Apache with the same configuration, you merely need to run ApacheToolbox again,
and it will start up with the selections from the last run. To upgrade to a new version
of Apache, get the latest version of ApacheToolbox, and ask it to run the installation
script with your last selections (without going through the menu process), by typing
the following commands:

./install.sh --update
#./install.sh --fast

The --update option requires that you have lynx installed.

Once ApacheToolbox has completed its work, you can edit the configuration script to
insert or modify arguments. Once you are satisfied and ApacheToolbox has run the
configuration script, go into the Apache source subdirectory and run make and make
install to compile and install Apache:

cd apache 1.3.27

make
#make install

1.6 Installing with ApacheToolbox | 15

Eterm Font Backoround Terminal

ApacheToolbox only works with Apache 1.3, and there are no plans to
update it for Apache 2.0 or 2.2 at this time.

See Also
* http:/lapachetoolbox.com/

1.7 Starting, Stopping, and Restarting
Apache

Problem

You want to be able to start and stop the server at need, using the appropriate tools.

Solution

On Unixish systems, use the apachectl script; on Windows, use the options in the
Apache folder of the Start menu.

16 | Chapter 1: Installation

http://apachetoolbox.com/

Discussion

The basic Apache package includes tools to make it easy to control the server. For
Unixish systems, this is usually a script called apachectl, but prepackaged distributions
may replace or rename it. It can only perform one action at a time, and the action is
specified by the argument on the command line. The options of interest are:

apachectl start
This will start the server if it isn’t already running. If it is running, this option has
no effect and may produce a warning message.

apachectl graceful
This option causes the server to reload its configuration files and gracefully restart
its operation. Any current connections in progress are allowed to complete. The
server will be started if it isn’t running.

apachectl restart
Like the graceful option, this one makes the server reload its configuration files.
However, existing connections are terminated immediately. If the server isn’t
running, this command will try to start it.

apachectl stop
This shuts the server down immediately. Any existing connections are terminated
at once.

For Windows, the MSI installation of Apache includes menu items for controlling the
server, as shown in Figure 1-13.

Both of the solutions shown (for Unixish and Windows systems) illustrate the basic
server control operations: start, stop, and restart. The purpose of the start and stop
functions should be self-evident. Any time you modify the server-wide configuration
files (such as httpd.conf), you must restart the server for the changes to take effect.

See Also

* Recipe 1.1
* Recipe 1.3

1.8 Uninstalling Apache

Problem

You have the Apache software installed on your system, and you want to remove it.

Solution

On Red Hat Linux, to remove an Apache version installed with the RPM tool, use:

rpm -ev apache

1.8 Uninstalling Apache | 17

2 Metscape SmartUpdate
‘windows Update
WinZip

Free ADL & Unlimited Internet

Accessories

ﬁ Internet Explorer
Documents L4 ﬁﬂ Qutlook Express
| LEGO MINDSTORMS ¥

Settings
Palm Desktop L Configure Apache Server

Search » &Y adobe Iustrator 10 o Brver q . Restart
ficrobat Distiler 5.0 r i
o [} Adobe Acrobat 5.0 i N stop

Run..,

Shut Dawn..,

| [B | (3D Temp | #imst-o7.gi - paint 1159 AM

Figure 1-13. Using the Start menu to control Apache

Other packaging systems may provide some similar mechanism. If they don’t, however,
chances are that cleaning out all the files will require a lot of manual work.

On Windows, Apache can typically be removed like any other MSl-installed software
(see Figure 1-14).

Discussion

Unfortunately, there is no generic works-for-all removal method for Apache installa-
tions on Unixish systems. Some packages, such as Red Hat’s RPM, do remember what
they installed so they can remove all the pieces, as shown in the solution. However, if
the software was installed by building from the sources (see Recipe 1.5), the burden of
knowing where files were put rests with the person who did the build and install. The
same applies if the software was installed from source on a Windows system; it’s only
the MSI or InstallShield packages that make the appropriate connections to allow the
use of the Add/Remove Software control panel.

For a Unixish system, if you have access to the directory in which the server was built,
look for the --prefix option in the config.nice file. That will give you a starting point,

18 | Chapter 1: Installation

TERTSTAPE T I T] S PTTETE

Currently installed programs:
B Adobe Acrobat 5.0
ﬂ Adobe ustrator 10
E Adobe Phatashop 6,0
Apache HTTP Server 1.3.27

t Deadlock

q Microsoft Office 97, Professional Edition

=7 Microsoft visual C++ 6.0 Professional Edition
Microsoft Web Publishing Wizard 1,53

(] M5DN Library - Visual Studio 6.0a

ﬁ Metscape Communicator 4,79

@ Metwark Play System (Patching)

33 nikon view ver.2

=0l

Sart by:| Mame -I

Size:
Size

Size:

Size

Size:
Size
Size:

Size

Size:

Size

79.0ME 2
112ME
104ME

Remove

[TSI P

11:59 4M

Figure 1-14. Uninstalling the Apache software

at least. Here is a list of the directories an Apache 2.0 installation usually puts

somewhere
bin
build
cgi-bin
conf
error
htdocs
icons
include
lib
logs
man
manual

on your disks:

modules

1.8 Uninstalling Apache | 19

See Also
¢ Recipe 1.5

1.9 Which Version of Apache to Use

Problem

You want to know which version of Apache is the right one for you.

Solution

Although there is not necessarily one right answer for everyone, the Apache HTTP
Server development team works very hard to ensure that every release of the software
is the best, most stable, most secure product that they are able to put together, and
each release of the product fixes problems that were found in earlier releases. So, it’s
always our position that the latest version of the server is the one that you should be
running.

As of this writing, that means the latest release of the 2.2.x branch, which, right now,
is 2.2.4. When 2.4 is released, we will recommend that you upgrade to 2.4.

Discussion

This question is not always quite as simple as we would like it to be. We want to give
the One Right Answer, but there are sometimes very good reasons for sticking with an
older version of the software. However, these reasons are less frequently valid than they
were a few years ago.

The most common reason that people give for remaining on the 1.3 version of the server
is that they are running mod_something and it’s not available for 2.2 yet. In the early
days of Apache 2, this was a valid reason for many people that were sticking with
Apache 1.3, and it entered the commonly accepted wisdom that most modules weren’t
yet available for Apache 2.

However, as various major Linux distributions started including Apache 2 as the default
Web server, more and more modules became available for Apache 2, or people devel-
oped alternative modules implementing the same functionality, and this became less
and less true.

As of this writing, it seems to be that only a very few commercial modules still satisty
the “not available for Apache 2” category, and this reason is not nearly as believable as
it once was.

Another common reason given is that a large installation, with many virtual hosts and
complex configuration, is built on Apache 1.3, and it would be an enormous under-
taking to migrate it to Apache 2. This is a much more compelling reason. However, it

20 | Chapter 1: Installation

must also be factored in that Apache 1.3 is in maintenance-only mode, and will never
get the new features that are being developed for the 2.x branch. Also, perhaps more
importantly, the people who provide free online support for Apache are, for the most
part, themselves using Apache 2, and their knowledge of Apache 1.3 is waning. So if
you have a stable installation, and have no technical difficulties, and are content to slip
gradually further and further behind in terms of new functionality, then perhaps staying
with 1.3 is a valid solution in that case.

If, however, you are doing a new Web server installation, there is absolutely no good
reason not to do with the latest version of the product. You’ll benefit from the experi-
ence gained in the 1.3 days, and you’ll get the new features that come with the 2.2
server, as well as the better-implemented old features.

See Also

* http://httpd.apache.org/docs/2.2/new_features_2_2.html
* http://httpd.apache.org/docs/2.2/new_features_2_0.html
* http://www.oreilly.com/catalog/9780596529277

1.10 Upgrading Using config.nice

Problem

You built your Apache Web server software from the source, and now you want to
upgrade it while keeping all the same configuration options.

Solution

Unpack the source of the new version into a separate tree, and execute the config.nice
script created by your build of the earlier version.

W
o This technique is primarily intended for use when upgrading within the
“:\ same major version series, such as from 2.0.17 to0 2.0.59, or from 2.2.0
o QI8 10 2.2.4. Attempting to use it to apply older configuration options to a
" newer major version (such as from 2.0.17 to 2.2.4) may not work
reliably.

For example, suppose you built and installed version 2.0.17 long ago, and you now
want to upgrade your system to 2.0.59:

cd /usr/local/build

tar xvf /tmp/httpd-2.0.59.tat.gz
cd httpd-20.0.59

../httpd-2.0.17/config.nice
#make

1.10 Upgrading Using config.nice | 21

http://httpd.apache.org/docs/2.2/new_features_2_2.html
http://httpd.apache.org/docs/2.2/new_features_2_0.html
http://www.oreilly.com/catalog/9780596529277

Discussion

When you execute the configure script to set up your compilation and installation
preferences, it creates a file called config.script with all the options you chose. The file
config.nice executes configure with all those options. This means you don’t need to
remember or write down all the options you specified when you finally got it working.

In addition, config.nice allows you to specify additional options, which it adds to those
with which it invokes configure. When configure runs, it will create config.nice again
with the complete new set of options.

See Also
* Recipe 1.5

1.11 Starting Apache at Boot

Problem

You want your Apache Web server to start automatically when your system boots up.

Solution

On a Windows system, if you installed Apache as a service, you can configure it to start
automatically just as you would any other service. Go to the Services control panel and
make the desired changes there.

On Unixish systems, how you set this up differs by platform. For Red Hat-based
systems:

cp path/to/apachectl /etc/rc.d/init.d/httpd

vi /etc/rc.d/init.d/httpd # add '# chkconfig 3 92 10°'

chkconfig --add httpd
#chkconfig --levels 35 httpd on

This will cause Apache to be started up (and shut down) as part of the normal sequence
for runlevels 3 and 5.

Discussion

The solution provided is specific to Red Hat-based platforms such as Fedora Core or
RHEL. For other platforms or distributions you may instead need to edit /etc/rc.local,
or copy the apachectl scriptinto /etc/rc3.d, or something similar. Consult your operating
system’s documentation for specifics.

See Also
* Recipe 1.5

22 | Chapter 1: Installation

¢ Recipe 1.7

1.12 Useful configure Options

Problem

The configure script, that is used to set up a build from source, has many options, and
it’s not clear which ones are really important.

Solution

Here are some of the mostimportant and useful options that you you might want to use:

--prefix
Specifies the top level of the directory tree into which files will be put. The default
is usually —-prefix=/usr/local/apache2, but different layouts can change this (see
the -—enable-layout option in this section).

—-—enable-layout
This allows you to select one of the predefined filesystem structures; that is, where
make install should put all the files. To see where files will be put for a particular
layout, examine the config.layout in the top level of the source tree.

Currently the predefined layouts include:
Apache
beos
BSDI
Darwin
Debian
FreeBSD
GNU
Mac OS X Server
OpenBSD
opt
RedHat
Solaris
SuSE

To use one of the layout names that contains spaces, you must enclose it in
quotation marks:

./configure --enable-layout="Mac OS Server"

--enable-mods-shared
This option controls which modules will be built as DSOs rather than being linked
statically into the server. An excellent shortcut value is most.

1.12 Useful configure Options | 23

--enable-ssl
If you’re going to be running a secure server, you will need to include this option,
as the SSL module is not activated by default.

--enable-suexec
Use this option if you want the suexec utility to be built. Because of the degree to
which it depends on the rest of the server build, you should specify this when
configuring the main server build, and not try to build suexec later.

--with-apr, ——with-apr-util
If you have multiple versions of the Apache Portable Runtime library and utilities
installed—as you might if you build Apache on a system with Subversion
installed—you can use these options to ensure that the Apache server is built with
a compatible APR version.

--with-included-apr
This option is a nice shorthand way of specifying the compatible bundled version
of APR should be used. The option is not available prior to Apache version 2.2,
though.

--with-mpm
The Multi-Processing Model, or MPM, defines how the server handles requests by
setting the relationship between threads and child processes. Usually the
configure script will choose one appropriate for the platform on which you’re
building, but sometimes you may want to override this. For example, if you’re
going to be using the PHP scripting module, you need to use the prefork MPM in
order to avoid problems.

--with-port
This option is useful if you are building the server under a non-root username but
intend to run it as a system daemon. The configure script chooses a different default
for the port number depending upon whether it’s being run by root or not. With
this option you can override this behaviour. The most common use of this option
is:

--with-port=80

Discussion

Minimal documentation for all of the configure options is available from the scriptitself:

./configure --help

However, for more detailed understanding you need to consult the Apache documen-
tation itself—or look at the source code.

See Also
* http://httpd.apache.org/docs/2.0/install. html

24 | Chapter 1: Installation

http://httpd.apache.org/docs/2.0/install.html

1.13 Finding Apache’s Files

Problem

You’ve installed the Apache Web server, whether from source or an installation kit,
but you’re not sure where all the files have been put. (This is useful to know if you want
to uninstall it later.)

Solution

If you installed the software from a source kit, look at the config.layout file in the top
level of the source directory. Look for a <Layout> stanza that matches the —~-enable-
layout option given to the configure script. (If none was supplied, the Apache layout
will have been used.)

If you installed the software from an RPM package, use the -g1 option to see where
the files have been installed:

[

°

rpm -gl httpd

If you installed from a kit prepared by a distributor, such as Ubuntu, check with the
distribution documentation to find out where the files are stored.

Discussion

One of the advantages—and disadvantages—of open software is that everyone can
build an installation kit. And everyone pretty much chooses options different from
everyone else.

The Apache source package includes a list of “common” layouts, and most installation
kits use one or another of these.

See Also
* http://httpd.apache.org/docs/2.0/programs/configure.html

1.13 Finding Apache’s Files | 25

http://httpd.apache.org/docs/2.0/programs/configure.html

CHAPTER 2
Adding Common Modules

There are a number of extremely popular modules for the Apache Web server that are
not included in the basic distribution. Most of these are separate because of licensing
or support reasons; some are not distributed by the Apache Software Foundation
because of a decision by the Apache developers; and some are integral parts of other
projects. For instance, mod_ssl for Apache 1.3 is developed and maintained separately,
not only because of the U.S. export control laws (which were more restrictive when the
package was originally developed), but also because it requires changes to the core
software that the Apache developers chose not to integrate.

This chapter provides recipes for installing some of the most popular of these third-
party modules; when available, there are separate recipes for installation on Unixish
systems and on Windows.

The most comprehensive list of third-party modules can be found in the Apache Mod-
ule Registry at http://modules.apache.org. Some modules are so popular—or complex—
that they have entire sites devoted to them, as do the ones listed in this chapter.

Although hundreds of third-party modules are available, many module developers are
only concerned with their single module. This means that there are potentially as many
different sets of installation instructions as there are modules. The first recipe in this
chapter describes an installation process that should work with many Apache 1.3 mod-
ules, but you should check with the individual packages’ instructions to see if they have
a different or more detailed process.

Many of the modules are available from organizations that prepackage or distribute
Apache software, such as in the form of an RPM from Mandrake or Red Hat, but such
prebuilt module packages include the assumptions of the packager. In other words, if
you build the server from source and use custom locations for the files, don’t be
surprised if the installation of a packaged module fails.

All of the modules described in this chapter are supported with Apache 1.3 on Unixish
systems. Status of support with Apache 2.0 on Windows is shown in Table 2-1.

27

http://modules.apache.org

Table 2-1. Module support status
Module name Windows Support on Apache 2.0

mod_dav Yes Included; no installation necessary
mod_per! Yes Yes
mod_php Yes Yes
mod_ss/ No Included; no installation necessary

2.1 Installing a Generic Third-Party Module

Problem

You have downloaded a third-party module that isn’t listed in this chapter, and you
want to install it.

Solution

Move to the directory where the module’s source file was unpacked, and then:

)

% /path/to/apache/bin/apxs -cia module.c

Discussion

In the case of a third-party module that consists of a single .c file, there is a good chance
that it can be built and installed using the Solution. Modules that involve multiple
source files should provide their own installation instructions.

The -cia options mean to compile, install, and activate. The first is pretty straightfor-
ward; install means put the .so file in the place Apache expects to find it; and activate
means to add the module to the httpd.conf file.

See Also

* The apxs manpage, typically ServerRoot/man/man8/apxs.8

2.2 Installing mod_dav on a Unixish System

Problem

You want to add or enable WebDAV capabilities to your server. WebDAV permits
specific documents to be reliably and securely manipulated by remote users without
the need for FTP, to perform such tasks as adding, deleting, or updating files.

28 | Chapter 2: Adding Common Modules

Solution

If you’re using Apache 2.0 or later, mod_dav is automatically available, although you
may need to enable it at compile time with --enable-dav.

If you are using Apache 1.3, download and unpack the mod_dav source package from
http://webdav.org/mod_dav/, and then:

cd mod dav-1.0.3-1.3.6

./configure --with-apxs=/usr/local/apache/bin/apxs
make

#make install

e oe

o

Restart the server, and be sure to read Recipe 6.18.

Discussion

The mod_dav source package is an encapsulated and well-behaved module that is easily
built and added to an existing server. To test that it has been properly installed, you
need to enable some location on the server for WebDAV management and verify access
to that location with some WebDAV-capable tool. We recommend cadaver, which is
an open source command-line WebDAYV tool. (The URL for the cadaver tool is found
at the end of this recipe.)

To enable your server for WebDAV operations, you need to add at least two directives
to your httpd.conf file. The first identifies the location of the locking database used by
mod_dav to keep WebDAV operations from interfering with each other; it needs to be
in a directory that is writable by the server. For example:

cd /usr/local/apache

mkdir var

chgrp nobody var
#chmod g+w var

Now add the following line to your httpd.conf file, outside any containers:

<IfModule mod dav.c>
DAVLockDB var/DAVlock
</IfModule>

The DAVLockDB location must not be on an NFS-mounted filesystem

“5"@ because NES doesn’t support the sort of locking mod_dav requires. Put-
ting the lock database on an NFS filesystem may result in unpredictable
results.

Next, create a temporary directory for testing WebDAV functionality:

cd /usr/local/apache

mkdir htdocs/dav-test

chgrp nobody htdocs/dav-test
#chmod g+w htdocs/dav-test

2.2 Installing mod_dav on a Unixish System | 29

http://webdav.org/mod_dav/

Add a stanza to your httpd.conf file that will enable this directory for WebDAV
operations:
<Directory "/usr/local/apache/htdocs/dav-test">

DAV On
</Directory>

Now restart your server. It should be ready to handle WebDAYV operations directed to
the /dav-test local URL. To test it with the cadaver tool, try the following commands;
your output should look very similar to that shown:

% cd /tmp

% echo "Plain text" > dav-test.txt

% cadaver

dav:!> open http://localhost/dav-test

Looking up hostname... Connecting to server... connected.

dav:/dav-test/> put dav-test.txt

Uploading dav-test.txt to '/dav-test/dav-test.txt': (reconnecting...done)
Progress: [= == == == == == == == == == == == == == ==>] 100.0%

bytes succeeded.
dav:/dav-test/> propset dav-test.txt MyProp 1023
Setting property on 'dav-test.txt': (reconnecting...done) succeeded.
dav:/dav-test/> propget dav-test.txt MyProp
Fetching properties for 'dav-test.txt':
Value of MyProp is: 1023
dav:/dav-test/> propdel dav-test.txt MyProp
Deleting property on 'dav-test.txt': succeeded.
dav:/dav-test/> close
Connection to 'localhost' closed.
dav:!> exit
$rm dav-test.txt

Properties are attributes of a WebDAV resource. Some are managed by the system,
such as the resource’s size, but others can be arbitrary and added, changed, and
removed by the user.

Once you have verified that mod_dav is working correctly, remove the htdocs/dav-test
directory, and the corresponding <Directory> stanza in your httpd.conf file, and follow
the guidelines in Recipe 6.18.

See Also

¢ Recipe 6.18
* http://webdav.org/mod_dav
* http://webdav.org/cadaver

30 | Chapter 2: Adding Common Modules

of 11

http://webdav.org/mod_dav
http://webdav.org/cadaver

2.3 Installing mod_dav on Windows

Problem

You want to enable WebDAV capabilities on your existing Apache 1.3 server with
mod_dav.

Solution

Apache 2.0 includes mod_dav as a standard module, so you do not need to download
and build it.

Download and unpack the mod_dav Windows package from http://webdav.org/
mod_dav/win32. Verify that your Apache installation already has the xmliparse.dll and
xmlitok.dll files in the ServerRoot directory; if they aren’t there, check through the
Apache directories to locate and copy them to the ServerRoot. mod_dav that requires
the Expat package, which is included with versions of the Apache Web server after
1.3.9; these files hook into Expat, which mod_dav will use.

Put the mod_dav DLL file into the directory where Apache keeps its modules:

C:\>cd mod dav-1.0.3-dev
C:\mod dav-1.0.3-dev>copy mod dav.dll C:\Apache\modules
C:\mod dav-1.0.3-dev>cd \Apache

Add the following line to your httpd.conf file:

LoadModule dav_module modules/mod dav.dll

You may also need to add an AddModule line if your httpd.conf file includes a
ClearModuleList directive and re-adds the other modules. Alternatively, you can insert
the LoadModule for mod_dav after the ClearModuleList directive.

Discussion

The mod_dav Package is an encapsulated and well-behaved module that is easily built
and added to an existing server. To test that it has been properly installed, you need to
enable some location on the server for WebDAV management and verify access to that
location with some WebDAV-capable tool, or browse to it in Windows Explorer, which
knows how to access WebDAYV locations (as of Windows 2000), or access it from a
different system where cadaver or another WebDAYV tool is available.

To enable your server for WebDAV operations, you need to add at least two directives
to your ServerRoot/conf/httpd.conf file. The first identifies the location of the locking
database used by mod_dav to keep WebDAV operations from interfering with each
other; it needs to be in a directory that is writable by the server. For example:

C:\Apache-1.3>mkdir var

Now add the following lines to your httpd.conf file to enable WebDAV:

2.3 Installing mod_dav on Windows | 31

http://webdav.org/mod_dav/win32
http://webdav.org/mod_dav/win32

<IfModule mod dav.c>
DAVLockDB "C:/Apache-1.3/var/dav-lock"
</IfModule>
Create a temporary directory for testing mod_dav’s ability to function:

C:\Apache-1.3>mkdir htdocs\dav-test

Modify the <IfModule> container to enable WebDAV operations for this test directory:

<IfModule mod_dav.c>
DAVLockDB "C:/Apache-1.3/var/dav-lock"
<Directory "C:/Apache-1.3/htdocs/dav-test">
DAV On
</Directory>
</IfModule>

Now restart your server and try accessing the /dav-test location with a WebDAV client.
If you’re using cadaver from another system, see Recipe 2.2 for detailed instructions.
If you want to use Windows Explorer to test mod_dav, read the following section.

Using Windows Explorer to test mod_dav

After enabling the htdocs\dav-test directory for WebDAV operations and restarting your
server, start up Windows Explorer. Follow the steps below to access the directory using
WebDAV. This can be done on the local system or on another Windows system that
can access your server systent.

1. Click on Network Places.

2. In the righthand pane of the Windows Explorer window, you should see an item
named “Add Network Place.” Double-click on this item.

3. When prompted for a location, enter:
http://127.0.0.1/dav-test/
If you are executing these steps on a different system, replace the 127.0.0.1 with
the correct name of the server on which you installed mod_dav.
4. After clicking on Next, give this location any name you like or keep the default.

5. After completing the dialog, Windows Explorer should open a new window with
the name you selected in the previous step. The window should be empty, which
makes sense because the directory is.

6. In the main Windows Explorer window, navigate to a directory (any directory) with
files in it.

7. Ctrl-drag a file (any file) from the main Windows Explorer window to the window
that was opened by step 5.

8. Windows should briefly display a progress dialog window, and then the file should
appear in the destination window.

Congratulations! The file was uploaded to your Web server using WebDAV.

32 | Chapter 2: Adding Common Modules

After your testing is complete, don’t forget to remove the htdocs\dav-test directory and
the <Directory "C:/Apache-1.3/htdocs/dav-test"> stanza in your configuration file, or
else anyone can upload files to your server.

See Also

* Recipe 6.18
* http://webdav.org/mod_dav/

2.4 Installing mod_perl on a Unixish System

Problem

You want to install the mod_perl scripting module to allow better Perl script perform-
ance and easy integration with the Web server.

Solution

For Apache 1.3, download and unpack the mod_perl 1.0 source package from http://
perl.apache.org/. Then use the following command:

% perl Makefile.PL \
USE_APXS=1 \
WITH APXS=/usr/local/apache/bin/apxs \
EVERYTHING=1 \
PERL USELARGEFILES=0
make
Smake install

VvV V V V

Restart your server.

For Apache 2.0 and later, the process is similar. Download and unpack the mod_perl
2.0 source package, then use the following command:

% perl Makefile.PL MP APXS=/usr/local/apach2/bin/apxs

Discussion

The mod_perl source package is quite a complex module, and there are several different
ways to add it to your server. This recipe is the fastest and lowest-impact one; if it
doesn’t suit your needs, check the various README.* files in the package directory
after unpacking. Because its primary language is Perl rather than C, the installation
instructions are significantly different from those for most other modules.

Once you have restarted your server successfully, mod_perl should be available and
configured as part of it. You can test it by making some changes to the httpd.conf file,
adding a few scripts, and seeing whether the server processes them correctly. Here is a
sample set of steps to test mod_perl’s operation:

2.4 Installing mod_perl on a Unixish System | 33

http://webdav.org/mod_dav/
http://perl.apache.org/
http://perl.apache.org/

1. Create a directory where your mod_perl scripts can live:

cd ServerRoot
#mkdir lib lib/perl lib/perl/Apache

2. Create a file named startup.pl in your server’s conf/ directory that will give
mod_perl some startup instructions:

#! /usr/bin/perl
BEGIN {
use Apache ()7
use lib Apache->server root relative('lib/perl');

use Apache::Registry () ;
use Apache::Constants ();
use CGI gw(-compile :all);
use CGI::Carp ()

1;

3. Next, create the lib/perl/Apache/HelloWorld.pm file that will be used for our test:

package Apache::HelloWorld;

use strict;

use Apache::Constants gw (:common) ;

sub handler {
my Sr = shift;
$r->content type ('text/plain; charset=IS0-8859-1");
$r->send_http header;
$r->print ("Hello, world! Love, mod perl.\n");
return OK;

}

1;

4. Next, edit the server’s configuration file to add the directives that will enable
mod_perl to locate all the pieces it needs, and tell it when to invoke the test script.
Add the following lines to the httpd.conf file:

<IfModule mod perl.c>
PerlRequire conf/startup.pl
<Location /mod perl/howdy>
SetHandler perl-script
PerlHandler Apache::HelloWorld
</Location>
</IfModule>

5. Now restart your server and then request the script using http://localhost/mod_perl/

howdy.

If your configuration is valid, the response should be a page containing simply the
words, “Hello, world! Love, mod_perl.”

See Also

* http://perl.apache.org

* Writing Apache Modules with Perl and C by Doug MacEachern and Lincoln Stein
(O’Reilly)

34 | Chapter 2: Adding Common Modules

http://localhost/mod_perl/howdy
http://localhost/mod_perl/howdy
http://perl.apache.org

* mod_perl Developer’s Cookbook by Geoffrey Young, Paul Lindner, and Randy
Kobes (Sams)

2.5 Installing mod_php on a Unixish System

Problem

You want to add the mod_php scripting module to your existing Apache Web server.

Solution
Download the mod_php package source from the Web site at http://php.net (follow the
links for downloading) and unpack it. Then:

% cd php-5.2.3

% ./configure \

> --with-apxs2=/usr/local/apache/bin/apxs
% make

#make install

Restart the server.

Discussion

To test that your installation was successful, create a file named info.php in your server’s
DocumentRoot; the file should contain the single line:

<?php phpinfo(); ?>
Add the following lines to your server’s httpd.conf file:

<IfModule mod php4.c>
AddHandler application/x-httpd-php .php
</IfModule>

After restarting your server, try fetching the document info.php using a browser. You
should see a detailed description of the PHP options that are active. If you do, indicating
a successful installation, remove the info.php file.

There are numerous additional options and extensions available for PHP; the recipe
given here is only for the most basic installation.

See Also

* Recipe 8.16
¢ Recipe 8.17
* http://php.net

2.5 Installing mod_php on a Unixish System | 35

http://php.net
http://php.net

2.6 Installing mod_php on Windows

Problem

You want to add the mod_php scripting module to your existing Apache server on
Windows.

Solution

This recipe needs to be described largely in terms of actions rather than explicit
commands to be issued.

1.

Download the PHP Windows binary .zip file with API extensions (not the .exe file)
from http://php.net.

. Unpack the .zip file into a directory where you can keep its contents indefinitely

(such as C:\PHP4). If you use WinZip, be sure to select the Use folder names check-
box to preserve the directory structure inside the .zip file.

. Copy the PHPA\SAPIN\php4apache.dll file to the \modules\ directory under your

Apache installation’s ServerRoot.

. In a command-prompt window, change to the PHP4 directory where you

unpacked the .zip file, and type:

...\PHP4>copy php.ini-dist $SYSTEMROOT%\php.ini
...\PHP4>copy php4ts.dll $SYSTEMROOT$%

(If installing on Windows 95 or Windows 98, use $WINDOWS% instead of
$SYSTEMROOTS.)

. Edit the %SYSTEMROOT%\php.ini file, locate the line that starts with

extensions_dir,and change the value to point to the PHP4\extensions directory.
For instance, if you unpacked the .zip file into C:\PHP4, this line should look like:

extensions dir = C:\PHP4\extensions

. Edit the conf\httpd.conf file under the Apache ServerRoot and add the following

lines near the other LoadModule lines:

LoadModule php4 module modules/php4apache.dll

Add the following lines in some scope where they will apply to your .php files:

<IfModule mod php4.c>
AddType application/x-httpd-php .php
</IfModule>

. Restart the Apache server, and the PHP module should be active.

36

| Chapter 2: Adding Common Modules

http://php.net

Discussion

The PHP module installation on Windows requires a lot of nitpicky manual steps. To
test that your installation was successful, create a file named info.php in your server’s
DocumentRoot; the file should contain the single line:

<?php phpinfo(); 2>

After restarting your server, try fetching the document info.php from it using a browser.
You should see a detailed description of the PHP options that are active.

There are numerous additional options and extensions available for PHP; the recipe
given here is only the most basic installation. See the install.txt file in the PHP4 directory
and the documentation on the Web site for more details.

See Also
* http://php.net

2.7 Installing mod_ssl

Problem

You want to add SSL support to your Apache server with the mod_ssl secure HTTP
module.

Solution

Windows
There is a discussion of installing SSL on Windows in Recipe 7.2, but the short
form is, you should get XAMPP from ApacheFriends.org, unless you are very
experienced with building source code on the Microsoft Windows platform.

Apache 2.0
mod_sslisincluded with 2.0, although it is not automatically compiled nor installed
when you build from source. You need to include the --enable-ss1 option on
your ./configure line, and enable it with LoadModule and AddModule directives.

Apache 1.3
To install mod_ssl on a Unixish system, download the tarball package from the
http://www.modssl.org Web site and unpack it. Then:

cd mod ssl1-2.8.14-1.3.27
./configure \
--with-apache=../apache 1.3.27 \
--with-ssl1l=SYSTEM \
--prefix=/usr/local/apache
cd ../apache 1.3.27
make
make certificate

d° vV V V oo de

o°

oo

2.7 Installing mod_ssl | 37

http://php.net
http://www.modssl.org

Discussion

The mod_ssl package requires source-level changes to the base Apache code, and so
the version of the mod_ssl package you install must match the version of the Apache
distribution you have. If your Apache installation doesn’t include the source, such as
if you installed a binary-only RPM or other vendor distribution, you won’t be able to
add mod_ssl to it.

In addition to the Apache source, mod_ssl requires that you have Perl and the OpenSSL
libraries installed. The --with-ss1 option on the build configuration statement indi-
cates where this is located; if it is in a vendor-distributed directory, the special keyword
SySTEM tells the build to look for it, and you don’t have to find it yourself.

Unlike most other Apache modules, when adding mod_ssl you run the ./configure script
that’s in mod_ssl’s directory, rather than the one in the Apache source directory; the
module’s script makes changes to Apache’s and then invokes it directly.

This recipe is the bare basics; there are many optional components and features that
mod_ssl allows you to specify at configuration time. For more information, consult the
README and INSTALL files in the mod_ssl source directory, or the mod_ssl Web site
at http://www.modssl.org.

See Also

* Recipe 7.3
* http://www.modssl.org

2.8 Finding Modules Using
modules.apache.org

Problem

You’re looking for Apache modules with a particular functionality, or by name, and
you’ve heard about the Apache Module Registry.

Solution

Visit http://modules.apache.org and search for keywords related to the functionality you
want, or portions of the module name.

Discussion

The Apache modules registry is an unofficial site at which module authors can volun-
tarily register their work for easy location.

38 | Chapter 2: Adding Common Modules

http://www.modssl.org
http://www.modssl.org
http://modules.apache.org

By no means are all third-party modules registered on this site; many
are on SourceForge or on their authors’ home systems. If you don’t find
Qs what you're looking for at http://modules.apache.org, try SourceForge
(http://sourceforge.net), FreshMeat (http://freshmeat.net), or just search
the Web with Google or the search engine of your choice.

See Also

* http://sourceforge.net
* http://freshmeat.net

2.9 Installing mod_security

Problem

You want to install the mod_security module to take advantage of its simple and
powerful filtering mechanisms.

Solution

1. Download mod_security and the core rules from http://modsecurity.org/download.

W

After downloading, you should verify the PGP signature to make
sure the file hasn’t been altered. See the mod_security Web site for
U details.

2. Unpack the kit (not the rules) into a working directory:

% cd /usr/local/build
Star xzf /usr/local/kits/modsecurity-apache 2.1.1

3. Move into the unpacked directory, and build the package using the supplied
Makefile. Specify the value of your ServerRoot on the make command line:

$ cd /usr/local/build/modsecurity-apache 2.1.1/apache2
% make top dir=/usr/local/apache2
#make top dir=/usr/local/apache2 install

W N

Unlike many other third-party modules, mod_security needs to be
built using its own mechanism rather than a simple invocation of
s Apache’s apxs tool.

4. Unpack the core rules into a subdirectory under your ServerRoot:

cd /usr/local/apache2/conf
mkdir mod security

2.9 Installing mod_security | 39

http://modules.apache.org
http://sourceforge.net
http://freshmeat.net
http://sourceforge.net
http://freshmeat.net
http://modsecurity.org/download

cd mod_security
#tar xzf /tmp/modsecurity-core-rules 2.1-1.4.tar.gz

5. Edit your httpd.conf file to add the following lines in the appropriate places:
LoadModule security module modules/mod security2.so
Include conf/mod security/*.conf

6. Restart your server.

Discussion

The Makefile included with the mod_security package will do the building of the module
and putitin the right place, but activating it in your server is your responsibility. Recent
versions of the package include a set of core rules for handling things like blog spam
and common attacks, and the rules are also available as a separate tarball, which may
or may not be updated more frequently than the ones bundled with the software.

The current version of mod_security only supports version 2 of the Apache Web server.
There is an older version that supports the 1.3 versions, but it is unlikely to be
maintained for long.

See Also
* The mod_security Web site at http://modsecurity.org

2.10 Why Won’t This Module Work??

Problem

You are trying to install a third-party module, but the Apache Web server refuses to
recognize it.

Solution

Consult the sources for the module, or its documentation, or ask the author, in order
to determine which version of Apache the package supports.

Discussion

As significant changes are made to the Apache Web server, sometimes compatibility
suffers as the API is changed. Although efforts are made to keep this sort of thing to a
minimum, sometimes it is unavoidable.

To keep an incompatible module from being loaded and crashing the Web server when
used, both modules and the server have a built-in “magic” number that is recorded
when they’re built, and that relates to the version of the API. When the server tries to
load a module DSO, it compares the module’s magic number with the server’s own,
and if they aren’t compatible, the server refuses to load it.

40 | Chapter 2: Adding Common Modules

http://modsecurity.org

The development team tries to keep the magic number compatibility within major
version numbers, but not across them. That is, a module built for Apache 1.3 should
work with almost any 1.3 version of the server built after the module was, but it defi-
nitely won’t work with a 2.0 server. Contrariwise, a 2.0 module won’t work with a 1.3
server under any circumstances.

See Also
* The Apache Modules Registry at http://modules.apache.org

2.10 Why Won’t This Module Work? | 41

http://modules.apache.org

CHAPTER 3

Logging

Apache can, and usually does, record information about every request it processes.
Controlling how this is done and extracting useful information out of these logs after
the fact is at least as important as gathering the information in the first place.

The logfiles may record two types of data: information about the request itself, and
possibly one or more messages about abnormal conditions encountered during pro-
cessing (such as file permissions). You, as the Webmaster, have a limited amount of
control over the logging of error conditions, but a great deal of control over the format
and amount of information logged about request processing (activity logging). The
server may log activity information about a request in multiple formats in multiple
logtiles, but it will only record a single copy of an error message.

One aspect of activity logging you should be aware of is that the log entry is formatted
and written after the request has been completely processed. This means that the
interval between the time a request begins and when it finishes may be long enough to
make a difference.

For example, if your logfiles are rotated while a particularly large file is being down-
loaded, the log entry for the request will appear in the new logfile when the request
completes, rather than in the old logfile when the request was started. In contrast, an
error message is written to the error log as soon as it is encountered.

The Web server will continue to record information in its logfiles as long as it’s running.
This can result in extremely large logfiles for a busy site and uncomfortably large ones
even for a modest site. To keep the file sizes from growing ever larger, most sites rotate
or roll over their logfiles on a semi-regular basis. Rolling over a logfile simply means
persuading the server to stop writing to the current file and start recording to a new
one. Because of Apache’s determination to see that no records are lost, cajoling it to
do this according to a specific timetable may require a bit of effort; some of the recipes
in this chapter cover how to accomplish the task successfully and reliably (see Recipes
3.8 and 3.9).

The log declaration directives, CustomLog and ErrorLog, can appear inside
<VirtualHost> containers, outside them (in what’s called the main or global server, or

43

sometimes the global scope), or both. Entries will only be logged in one set or the other;
if a <VirtualHost> container applies to the request or error and has an applicable log
directive, the message will be written only there and won’t appear in any globally
declared files. By contrast if no <VirtualHost> log directive applies, the server will fall
back on logging the entry according to the global directives.

However, whichever scope is used for determining what logging directives to use, all
CustomLog directives in that scope are processed and treated independently. That is,
if you have a CustomLog directive in the global scope and two inside a <VirtualHost>
container, both of these will be used. Similarly, if a CustomLog directive uses the
env= option, it has no effect on what requests will be logged by other CustomLog
directives in the same scope.

Activity logging has been around since the Web first appeared, and it didn’t take long
for the original users to decide what items of information they wanted logged. The
result is called the common log format (CLF). In Apache terms, this format is:

"$h %1 %u %t \"S$r\" %$>s %b"

That is, it logs the client’s hostname or IP address, the name of the user on the client
(as defined by RFC 1413 and if Apache has been told to snoop for it with an
IdentityCheck On directive), the username with which the client authenticated (if weak
access controls are being imposed by the server), the time at which the request was
received, the actual HTTP request line, the final status of the server’s processing of the
request, and the number of bytes of content that were sent in the server’s response.

Before long, as the HTTP protocol advanced, the common log format was found to be
wanting, so an enhanced format—called the combined log format—was created:

"$h $1 %Su St \"$r\" $>s %b \"${Referer}i\" \"%{User-agent}i\""

The two additions were the Referer (it’s spelled incorrectly in the specifications) and
the User-agent. These are the URL of the page that linked to the document being
requested, and the name and version of the browser or other client software making
the request.

Both of these formats are widely used, and many logfile analysis tools assume log entries
are made in one or the other.

The Apache Web server’s standard activity logging module allows you to create your
own formats; it is highly configurable and is called (surprise!) mod_log_config. Apache
2.0 has an additional module, mod_logio, which enhances mod_log_config with the
ability to log the number of bytes actually transmitted or received over the network. If
these don’t meet your requirements, though, there are a significant number of third-
party modules available from the module registry at http://modules.apache.org/.

The status code entry in the common and combined log formats deserves some mention
because its meaning is not immediately clear. The status codes are defined by the HTTP
protocol specification documents (currently RFC 2616, which you can access by going

44 | Chapter 3: Logging

http://modules.apache.org/

to ftp://ftp.isi.edufin-notes/rfc2616.txt). Table 3-1 gives a brief description of the codes
defined in the HTTP specification at the time of this writing; other specifications (such
as that for WebDAYV) define additional staus conditions, but we’re not going to include

them here because they’re more advanced and there are lots of them.

Table 3-1. HTTP status codes

Code Abstract
Informational 1xx

100 Continue

101 Switching protocols
Successful 2xx

200 OK

201 Created

202 Accepted

203 Nonauthoritative information
204 No content

205 Reset content

206 Partial content
Redirection 3xx

300 Multiple choices
301 Moved permanently
302 Found

303 See other

304 Not modified

305 Use proxy

306 (Unused)

307 Temporary redirect
Client error 4xx

400 Bad request

401 Unauthorized

402 Payment required
403 Forbidden

404 Not found

405 Method not allowed
406 Not acceptable

407 Proxy authentication required
408 Request timeout

Logging | 45

ftp://ftp.isi.edu/in-notes/rfc2616.txt

Code Abstract

409 Conflict

410 Gone

411 Length required

412 Precondition failed

413 Request entity too large
414 Request-URI too long

415 Unsupported media type
416 Requested range not satisfiable
417 Expectation failed

Server error 5xx

500 Internal server error

501 Not implemented

502 Bad gateway

503 Service unavailable

504 Gateway timeout

505 HTTP version not supported

The one-line abstracts shown in Table 3-1 are sometimes terse to the point of being
confusing, but they should at least give you an inkling of what the server thinks hap-
pened. The first digit is used to separate the codes into classes or categories; for example,
all codes starting with 5 indicate there is a problem handling the request, and the server
thinks the problem is on its end rather than on the client’s end.

For a complete description of the various status codes, you’ll need to read a document
about the HTTP protocol or the RFC itself.

3.1 Getting More Details in Your Log Entries

Problem

You want to add a little more detail to your access log entries.

Solution

Use the combined log format, rather than the common log format:

CustomLog logs/access_log combined

46 | Chapter 3: Logging

Discussion

The default Apache logfile enables logging with the common log format, but it also
provides the combined log format as a predefined LogFormat directive.

The combined log format offers two additional pieces of information not included in
the common log format: the Referer (where the client linked from) and the User-
agent (what browser they are using).

Every major logfile parsing software package is able to handle the combined format as
well as the common format, and many of them give additional statistics based on these
added fields. So you lose nothing by using this format and potentially gain some
additional information.

See Also

* http://hitpd.apache.org/docs/2.1/mod/mod_log_config.html
* http://httpd.apache.org/docs/2.2/mod/mod_log_config.html

3.2 Getting More Detailed Errors

Problem

You want more information in the error log in order to debug a problem.

Solution
Change (or add) the LogLevel line in your httpd.conf file. There are several possible

arguments, which are enumerated here.
For example:

LogLevel Debug

Discussion

There are several hierarchical levels of error logging available, each identified by its own
keyword. The default value of LogLevel is warn. Listed in descending order of
importance, the possible values are:

emerg

Emergencies; Web server is unusable
alert

Action must be taken immediately
crit

Critical conditions

3.2 Getting More Detailed Errors | 47

http://httpd.apache.org/docs/2.1/mod/mod_log_config.html
http://httpd.apache.org/docs/2.2/mod/mod_log_config.html

error
Error conditions

warn
Warning conditions

notice

Normal but significant condition
info

Informational

debug
Debug-level messages

emerg results in the least information being recorded and debug in the most. However,
at debug level a lot of information will probably be recorded that is unrelated to the
issue you’re investigating, so it’s a good idea to revert to the previous setting when the
problem is solved.

Even though the various logging levels are hierarchical in nature, one oddity is that
notice level messages are always logged regardless of the setting of the LogLevel
directive.

The severity levels are rather loosely defined and even more loosely applied. In other
words, the severity at which a particular error condition gets logged is decided at the
discretion of the developer who wrote the code—your opinion may differ.

Here are some sample messages of various severities:

[Thu Apr 18 01:37:40 2002] [alert] [client 64.152.75.26] /home/smith/public html/
test/.htaccess: Invalid command 'Test', perhaps mis-spelled or defined by a
module not included in the server configuration

[Thu Apr 25 22:21:58 2002] [error] PHP Fatal error: Call to undefined function:
decode url() in /usr/apache/htdocs/foo.php on line 8

[Mon Apr 15 09:31:37 2002] [warn] pid file /usr/apache/logs/httpd.pid overwritten --
Unclean shutdown of previous Apache run?

[Mon Apr 15 09:31:38 2002] [info] Server built: Apr 12 2002 09:14:06

[Mon Apr 15 09:31:38 2002] [notice] Accept mutex: sysvsem (Default: sysvsem)

These are fairly normal messages that you might encounter on a production Web server.
If you set the logging level to Debug, however, you might see many more messages of
cryptic import, such as:
[Thu Mar 28 10:29:50 2002] [debug] proxy cache.c(992): No CacheRoot, so no caching.

Declining.
[Thu Mar 28 10:29:50 2002] [debug] proxy http.c(540): Content-Type: text/html

These are exactly what they seem to be: debugging messages intended to help an Apache
developer figure out what the proxy module is doing.

48 | Chapter 3: Logging

See Also

At the time of this writing, there is an effort underway to provide a dictionary of Apache
error messages, what they mean, and what to do about the conditions they report, but
it doesn’t have anything concrete to show at this point. When it does, it should be
announced at the Apache server developer site:

http://httpd.apache.org/dev

It will be mentioned on this book’s companion Web site, as well:
http://apache-cookbook.com

In addition, see the detailed documentation of the LogLevel directive at the Apache site:

http://httpd.apache.org/docs/2.2/mod/core. html#loglevel

3.3 Logging POST Contents

Problem

You want to record data submitted with the POST method, such as from a web form.

Solution

Ensure that mod_dumpio is installed and enabled, and put the following in your
configuration file:
DumpIOLogLevel notice - 2.3.x and later

LogLevel debug
DumpIOInput On

Or, with mod_security:

SecAuditLogType Concurrent
SecAuditLogStorageDir /var/www/audit log/data/
SecAuditLog /var/www/audit log/index
SecAuditLogParts ABCFHZ

Discussion

mod_dumpio is a new module in Apache 2.0 (that is to say, it’s not available for Apache
1.3) that allows the complete input and output of each HTTP transaction to be logged.
In the example above, we’re enabling input logging only, using the DumpIOInput
directive.

On Apache 2.0 and 2.2, LogLevel needs to be set to debug in order for these records to
be logged. In 2.3 and later, there’s a new directive DumpIOLogLevel that allows you
to set the LogLevel at which the entries will be logged. For example, if you set
DumpIOLogLevel to notice, then these entries will be logged when LogLevel is set to
notice or higher.

3.3 Logging POST Contents | 49

http://httpd.apache.org/dev
http://apache-cookbook.com
http://httpd.apache.org/docs/2.2/mod/core.html#loglevel

Log entries for POST data will look like:
[Sun Feb 11 16:49:27 2007] [debug] mod dumpio.c(51): mod dumpio:

dumpio in (data-HEAP): 11 bytes
[Sun Feb 11 16:49:27 2007] [debug] mod dumpio.c(67): mod dumpio:

dumpio in (data-HEAP): foo=example
In the log entry shown here, the form value foo was set to example.

The output from mod_dumpio is very noisy. A typical request may generate somewhere
between 30 and 50 lines of log entries. The entry shown here is just a tiny part of what
was logged with the POST.

mod_security also permits the logging of request data. In the mod_security configuration
shown in the recipe above, a logfile is created containing all available request headers,
and the request body itself.

See Also

* http://modsecurity.org
* http://httpd.apache.org/docs/2.2/mod/mod_dumpio.html

3.4 Logging a Proxied Client’s IP Address

Problem

You want to log the IP address of the actual client requesting your pages, even if they’re
being requested through a proxy.

Solution

None.

Discussion

Unfortunately, the HTTP protocol itself prevents this from being possible. From the
clientside, proxies are intended to be completely transparent; from the side of the origin
server, where the content actually resides, they are meant to be almost utterly opaque,
concealing the identity of a request.

Your best option is to log the IP address from which the request came. If it came directly
from a browser, it will be the client’s address; if it came through one or more proxy
servers, it will be the address of the one that actually contacts your server.

Both the combined and common log formats include the $h format effector, which
represents the (remote) client’s identity. However, this may be a hostname rather than
an address, depending on the setting of your HostNameLookups directive, among oth-

50 | Chapter 3: Logging

http://modsecurity.org
http://httpd.apache.org/docs/2.2/mod/mod_dumpio.html

er things. If you always want the client’s IP address to be included in your logfile, use
the %a effector instead.

See Also
* The HTTP protocol specification at ftp://ftp.isi.edu/in-notes/rfc2616.txt

3.5 Logging Client MAC Addresses

Problem

You want to record the MAC (hardware) address of clients that access your server.

Solution

This cannot be logged reliably in most network situations and not by Apache at all.

Discussion

The MAC address is not meaningful except on local area networks (LANs) and is not
available in wide area network transactions. When a network packet goes through a
router, such as when leaving a LAN, the router will typically rewrite the MAC address
field with the router’s hardware address.

See Also

e The TCP/IP protocol specifications (see hitp://www.rfc-editor.org/cgi-bin/
rfesearch.pl and search for “TCP” in the title field)

3.6 Logging Cookies

Problem

You want to record all the cookies sent to your server by clients and all the cookies your
server asks clients to set in their databases; this can be useful when debugging Web
applications that use cookies.

Solution

To log cookies received from the client:
CustomLog logs/cookies in.log "%{UNIQUE ID}e %{Cookie}i"
CustomLog logs/cookies2 in.log "${UNIQUE ID}e %{Cookie2}i"
To log cookie values set and sent by the server to the client:

CustomLog logs/cookiesiout.log "%{UNIQUE ID}e %{Set-Cookie}o"
CustomLog logs/cookies2iout.log "%{UNIQUE ID}e %{Set-Cookie2}o"

3.5 Logging Client MAC Addresses | 51

ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl

In versions before to 2.0.56, using the % { Set-Cookie} o format effector for debugging
is not recommended if multiple cookies are (or may be) involved. Only the first one
will be recorded in the logtfile. See the Discussion text for an example.

Discussion

Cookie fields tend to be very long and complex, so the previous statements will create
separate files for logging them. The cookie log entries can be correlated against the
client request access log using the server-set UNIQUE_ 1D environment variable (assum-
ing that mod_unique_id is active in the server and that the activity log format includes
the environment variable with a $ {UNIQUE_ID}e format effector).

At the time of this writing, the Cookie and set-Cookie header fields are most com-
monly used. The Cookie2 and corresponding Set-Cookie? fields are newer and have
been designed to correct some of the shortcomings in the original specifications, but
they haven’t yet achieved much penetration.

Because of the manner in which the syntax of the cookie header fields has changed over
time, these logging instructions may or may not capture the complete details of the
cookies.

Bear in mind that these logging directives will record all cookies, and not just the ones
in which you may be particularly interested. For example, here is the log entry for a
client request that included two cookies, one named RFC2109-1 and one named
RFC2109-2

PNCSUsCOF2UAACI3CZs RFC2109-1="This is an old-style cookie, with space characters
embedded"; RFC2109-2=This is a normal old-style cookie

Even though there’s only one log entry, it contains information about two cookies.

On the cookie-setting side, here are the Set-Cookie header fields sent by the server
in its response header:

Set-Cookie: RFC2109-1="This is an old-style cookie, with space characters embedded";
Version=1; Path=/; Max-Age=60; Comment="RFC2109 demonstration cookie"
Set-Cookie: RFC2109-2=This is a normal old-style cookie; Version=1; Path=/; Max-

Age=60; Comment="RFC2109 demonstration cookie"

And here’s the corresponding log entry for the response (this was all one line in the
logtile, so line wrapping was added to make it all fit on the page):
eCF1vsCoF2UAAHBIDMIAAAAA RFC2109-1=\"This is an old-style cookie, with space
characters embedded\"; Version=1; Path=/; Max-Age=60; Comment=\"RFC2109

demonstration cookie\", RFC2109-2=This_is_a normal old-style cookie;
Version=1; Path=/; Max-Age=60; Comment=\"RFC2109 demonstration cookie\"

Before version 2.0.56, Apache httpd didn’t log multiple cookies
correctly; it would only log one.

52 | Chapter 3: Logging

See Also

* RFC2109, “HTTP State Management Mechanism” (IETF definition of Cookie and
Set-Cookie header fields) at ftp://ftp.isi.edu/in-notes/rfc2109.txt

* RFC 2965, “HTTP State Management Mechanism” (IETF definition of Cookie?
and Set-Cookie2 header fields) at ftp://ftp.isi.edu/in-notes/rfc2965.txt

* The original Netscape cookie proposal at http://home.netscape.com/newsref/std/
cookie_spec.html

3.7 Not Logging Image Requests from Local
Pages

Problem

You want to log requests for images on your site, except when they’re requests from
one of your own pages. You might want to do this to keep your logfile size down, or
possibly to track down sites that are hijacking your artwork and using it to adorn their

pages.

Solution

Use SetEnvIfNoCase to restrict logging to only those requests from outside of your site:

<FilesMatch \. (jpglgif|png)$>

SetEnvIfNoCase Referer "“http://www.example.com/" local referrer=1
</FilesMatch>
CustomLog logs/access_log combined env=!local referrer

Discussion

In many cases, documents on a Web server include references to images also kept on
the server, but the only item of real interest for log analysis is the referencing page itself.
How can you keep the server from logging all the requests for the images that happen
when such a local page is accessed?

The SetEnvIfNoCase will set an environment variable if the page that linked to the image
is from the www.example.com site (obviously, you should replace that site name with
your own) and the request is for a GIF, PNG, or JPEG image.

L)
\
- SetEnvIfNoCase is the same as SetEnvif except that variable compari-
ﬁ:\ sons are done in a case-insensitive manner.
N N
o)

3.7 Not Logging Image Requests from Local Pages | 53

ftp://ftp.isi.edu/in-notes/rfc2109.txt
ftp://ftp.isi.edu/in-notes/rfc2965.txt
http://home.netscape.com/newsref/std/cookie_spec.html
http://home.netscape.com/newsref/std/cookie_spec.html

The CustomLog directive will log all requests that do not have that environment variable
set, i.e., everything except requests for images that come from links on your own pages.

This recipe only works for clients that actually report the referring page. Some people
regard the URL of the referring page to be no business of anyone but themselves, and
some clients permit the user to select whether to include this information or not. There
are also “anonymizing” sites on the Internet that act as proxies and conceal this
information.

See Also
* Recipe 6.5

3.8 Rotating Logfiles at a Particular Time

Problem

You want to automatically roll over the Apache logs at specific times without having
to shut down and restart the server.

Solution

Use CustomLog and the rotatelogs program:

CustomLog "| /path/to/rotatelogs /path/to/logs/access_log.%Y-%m-%d 86400" combined

Discussion

The rotatelogs script is designed to use an Apache feature called piped logging, which
is just a fancy name for sending log output to another program rather than to a file. By
inserting the rotatelogs script between the Web server and the actual logfiles on disk,
you can avoid having to restart the server to create new files; the script automatically
opens a new file at the designated time and starts writing to it.

The first argument to the rotatelogs script is the base name of the file to which records
should be logged. If it contains one or more % characters, it will be treated as a
strftime (3) format string; otherwise, the rollover time (in seconds since 1 January
1970), in the form of a 10-digit number, will be appended to the base name. For ex-
ample, a base name of foo would result in logfile names like f00.1020297600, whereas

a base name of foo.%Y-%m-%d would cause the logfiles to be named something like
f00.2002-04-29.

The second argument is the interval (in seconds) between rollovers. Rollovers will occur
whenever the system time is a multiple of this value. For instance, a 24-hour day con-
tains 86,400 seconds; if you specify a rollover interval of 86400, a new logfile will be
created every night at midnight—when the system time, which is based at representing
midnight on 1 January 1970, is a multiple of 24 hours.

54 | Chapter 3: Logging

N

S Note that the rollover interval is in actual clock seconds elapsed, so
"‘:\ when time changes because of daylight savings, this does not in any way

T Qs affect the interval between rollovers.

See Also

* The rotatelogs manpage; try:

% man -M /path/to/ServerRoot/man rotatelogs.8

replacing the /path/to/ServerRoot with the actual value of your installation’s
ServerRoot directive in httpd.conf or view the documentation online at http:/
httpd.apache.org/docs/2.2/programs/rotatelogs.hitml

3.9 Rotating Logs on the First of the Month

Problem

You want to close the previous month’s logs and open new ones on the first of each
month.

Solution

The Apache distribution doesn’t come with a script that does this, but there is a free
program that provides this and many other useful features. It is called Cronolog, and
may be obtained from http://cronolog.org.

Obtain and install Cronolog, and then place the following in your configuration file:

CustomLog "|/usr/bin/cronolog /www/logs/access$Y%m.log" combined

Discussion

Cronolog has been around for a long time, and provides many of the features that people
wished were available in the standard rotatelogs utility. Over the years, rotatelogs has
improved, but Cronolog has a number of other useful features that are of interest to
sites with rapidly growing logfiles.

One of these is the ability to automatically rotate logfiles by day, week, month, or year,
based on the format of the filename specified in the CustomLog directive.

In the example given, the logfile is rotated at the start of a new month, because the
logfile name given contains only the year and month variables (%Y and %m, respectively).

See Also
* http://httpd.apache.org/docs/logs. html#piped

3.9 Rotating Logs on the First of the Month | 55

http://httpd.apache.org/docs/2.2/programs/rotatelogs.html
http://httpd.apache.org/docs/2.2/programs/rotatelogs.html
http://cronolog.org
http://httpd.apache.org/docs/logs.html#piped

* http://httpd.apache.org/docs/2.2/programs/rotatelogs.html
* http://cronolog.org

3.10 Logging Hostnames Instead of IP
Addresses

Problem

You want to see hostnames in your activity log instead of IP addresses.

Solution

You can let the Web server resolve the hostname when it processes the request by
enabling runtime lookups with the Apache directive:

HostnameLookups On

Or you can let Apache use the IP address during normal processing and let a piped
logging process resolve them as part of recording the entry:

HostnameLookups Off
CustomLog "| /path/to/logresolve -c >> /path/to/logs/access_log.resolved" combined

Or you can let Apache use and log the IP addresses, and resolve them later when
analyzing the logfile. Add this to http.conf:

CustomLog /path/to/logs/access log.raw combined

And analyze the log with:

[

% /path/to/logresolve -c < access log.raw > access_log.resolved

Discussion

The Apache activity logging mechanism can record either the client’s IP address or its
hostname (or both). Logging the hostname directly requires that the server spend some
time to perform a DNS lookup to turn the IP address (which it already has) into a
hostname. This can have some serious impact on the server’s performance, however,
because it needs to consult the name service in order to turn the address into a name;
and while a server child or thread is busy waiting for that, it isn’t handling client
requests. One alternative is to have the server record only the client’s IP address and
resolve the address to a name during logfile postprocessing and analysis. At the very
least, defer it to a separate process that won’t directly tie up the Web server with the
resolution overhead.

In theory, this is an excellent choice; in practice, however, there are some pitfalls. For
one thing, the logresolve application included with Apache (usually installed in the
bin/ subdirectory under the ServerRoot) will only resolve IP addresses that appear at
the very beginning of the log entry, and so it’s not very flexible if you want to use a

56 | Chapter 3: Logging

http://httpd.apache.org/docs/2.2/programs/rotatelogs.html
http://cronolog.org

nonstandard format for your logfile. For another, if too much time passes between the
collection and resolution of the IP addresses, the DNS may have changed sufficiently
so that misleading or incorrect results may be obtained. This is especially a problem
with dynamically allocated TP addresses such as those issued by ISPs. Although, for
these dynamically allocated IP addresses, the hostnames tend not to be particularly
informative anyway.

An additional shortcoming becomes apparent if you feed your log records directly to
logresolve through a pipe: as of Apache 1.3.24 at least, logresolve doesn’t flush its output
buffers immediately, so there’s the possibility of lost data if the logging process or the
system should crash.

In practice, however, all log analysis software provides hostname resolution function-
ality, and it generally makes most sense to use that functionality than trying to resolve
the IP addresses in the logfile before that stage.

See Also

* The logresolve manpage:
% man -M /path/to/ServerRoot/man/logresolve.8

* http://hitpd.apache.org/docs/2.2/programs/logresolve.html

3.11 Maintaining Separate Logs for Each
Virtual Host

Problem

You want to have separate activity logs for each of your virtual hosts, but you don’t
want to have all the open files that multiple CustomLog directives would use.

Solution

Use the split-logfile program that comes with Apache. To split logfiles after they’ve been
rolled over (replace /path/to/ServerRoot with the correct path):

cd /path/to/ServerRoot

mv logs/access log logs/access log.old
bin/apachectl graceful

[wait for old logfile to be completely closed]

cd logs

#../bin/split-logfile < access log.old

To split records to the appropriate files as they’re written, add this line to your

httpd.conf file:

CustomLog "| /path/to/split-logfile /usr/local/Apache/logs" combined

3.11 Maintaining Separate Logs for Each Virtual Host | 57

http://httpd.apache.org/docs/2.2/programs/logresolve.html

Discussion

In order for split-logfile to work, the logging format you’re using must begin with
“sv” (note the blank after the v). This inserts the name of the virtual host at the be-
ginning of each log entry; split-logfile will use this to figure out to which file the entry
should be written. The hostname will be removed from the record before it gets written.

There are two ways to split your access logfile: after it’s been written, closed, and rolled
over, or as the entries are actually being recorded. To split a closed logfile, just feed it
into the split-logfile script. To split the entries into separate files as they’re actually being
written, modify your configuration to pipe the log messages directly to the script.

Each method has advantages and disadvantages. The rollover method requires twice
as much disk space (for the unsplit log plus the split ones) and that you verify that the
logfile is completely closed. (Unfortunately there is no guaranteed, simple way of doing
this without actually shutting down the server or doing a graceless restart; it’s entirely
possible that a slow connection may keep the old logfile open for a considerable amount
of time after a graceful restart.) Splitting as the entries are recorded is sensitive to the
logging process dying—although Apache will automatically restart it, log messages
waiting for it can pile up and constipate the server.

See Also
¢ Recipe 3.10

3.12 Logging Proxy Requests

Problem

You want to log requests that go through your proxy to a different file than the requests
coming directly to your server.

Solution

Use the SetEnv directive to earmark those requests that came through the proxy server,
in order to trigger conditional logging:

<Directory proxy:*>
SetEnv is_proxied 1
</Directory>
CustomLog logs/proxy log combined env=is proxied

Or, for 2.x, use a <Proxy> block:

<Proxy *>
SetEnv is proxied 1
</Proxy>
CustomLog logs/proxy log combined env=is proxied

58 | Chapter 3: Logging

Discussion

Apache 1.3 has a special syntax for the <Directory> directive, which applies specifically
to requests passing through the proxy module. Although the * makes it appear that
wildcards can be used to match documents, it’s misleading; it isn’t really a wildcard.
You may either match explicit paths, such as proxy:http://example.com/foo.html, or use
* to match everything. You cannot do something like proxy:http://example.com/*. html.

If you want to apply different directives to different proxied paths, you need to take
advantage of another module. Because you're dealing with requests that are passing
through your server rather than being handled by it directly (i.e., your server is a
proxy rather than an origin server), you can’t use <Files> or <FilesMatch> containers
to apply directives to particular proxied documents. Nor can you use <Location> or
<LocationMatch> stanzas because they can’t appear inside a <Directory> container.
You can, however, use mod_rewrite’s capabilities to make decisions based on the path
of the requested document. For instance, you can log proxied requests for images in a
separate file with something like this:

<Directory proxy:*>
RewriteEngine On

RewriteRule "\. (gif|png|jpg)s$" "-" [ENV=proxied_image:1]
RewriteCond "%{ENV:proxied image}" "!1"
RewriteRule """ "-" [ENV=proxied other:1]

</Directory>

CustomLog logs/proxy image log combined env=proxied image
CustomLog logs/proxy other log combined env=proxied other

Directives in the <Directory proxy:*> container will only apply to requests going
through your server. The first RewriteRule directive sets an environment variable if the
requested document ends in .gif, .png, or .jpg. The RewriteCond directive tests to see if
that envariable isn’t set, and the following RewriteRule will set a different envariable if
so. The two CustomLog directives send the different types of requests to different
logfiles according to the environment variables.

See Also

* The mod_rewrite and mod_log_config documentation

3.13 Logging Errors for Virtual Hosts to
Multiple Files

Problem

Unlike access logs, Apache only logs errors to a single location. You want Apache to
log errors that refer to a particular virtual host to the host’s error log, as well as to the
global error log.

3.13 Logging Errors for Virtual Hosts to Multiple Files | 59

Solution

There are at least two possible ways of doing this:
1. Use piped logging to send entries to a custom script that will copy and direct error
messages to the appropriate files.
2. Use piped logging to duplicate log entries:

ErrorLog "| tee logfilel | tee logfile2 > logfile3"

Discussion

Unlike activity logs, Apache will log error messages only to a single location. If the error
is related to a particular virtual host and this host’s <VirtualHost> container includes
an ErrorLog entry, the error will be logged only in this file, and it won’t appear in any
global error log. If the <VirtualHost> does not specify an ErrorLog directive, the error
will be logged only to the global error log. (The global error log is the last ErrorLog
directive encountered that isn’t in a <VirtualHost> container.)

Currently, the only workaround to this is to have the necessary duplication performed
by a separate process (i.e., by using piped logging to send the error messages to the
process as they occur). Of the two solutions given earlier, the first, which involves a
custom script you develop yourself, has the most flexibility. If all you want is simply
duplication of entries, the second solution is simpler but requires that your platform
have a tee program (Windows does not). It also may be subject to lagging messages if
your tee program doesn’t flush its buffers after each record it receives. This could also
lead to lost messages if the pipe breaks or the system crashes.

An alternate approach may be to send the error log to syslog, and then have your syslog
server log entries to multiple places.

See Also
* http://httpd.apache.org/docs/logs. html#piped

3.14 Logging Server IP Addresses

Problem

You want to log the IP address of the server that responds to a request, possibly because
you have virtual hosts with multiple addresses each.

Solution

Use the %a format effector in a LogFormat or CustomlLog directive:

CustomLog logs/served-by.log "S$A"

60 | Chapter 3: Logging

http://httpd.apache.org/docs/logs.html#piped

Discussion

The %2 effector signals the activity logging system to insert the local IP address—that
is, the address of the server—into the log record at the specified point. This can be
useful when your server handles multiple IP addresses. For example, you might have a
configuration that includes elements such as the following;:
Listen 10.0.0.42
Listen 192.168.19.243
Listen 263.41.0.80
<VirtualHost 192.168.19.243>
ServerName Private.Example.Com
</VirtualHost>
<VirtualHost 10.0.0.42 263.41.0.80>
ServerName Foo.Example.Com
ServerAlias Bar.Example.Com
</VirtualHost>

This might be meaningful if you want internal users to access Foo.Example.Com using
the 10.0.0. 42 address rather than the one published to the rest of the network (such
as to segregate internal from external traffic over the network cards). The second virtual
host is going to receive requests aimed at both addresses even though it has only one
ServerName; using the %A effector in your log format can help you determine how many
hits on the site are coming in over each network interface.

See Also

* The mod_log_config documentation

3.15 Logging the Referring Page

Problem

You want to record the URL of pages that refer clients to yours, perhaps to find out
how people are reaching your site.

Solution
Add the following effector to your activity log format:

${Referer}i

Discussion

One of the fields that a request header may include is called the Referer. Referer is
the URL of the page that linked to the current request. For example, if file a.html con-
tains a link such as:

another page

3.15 Logging the Referring Page | 61

When the link is followed, the request header for b.html will contain a Referer field
that has the URL of a.html as its value.

The Referer tield is not required nor reliable; some users prefer software or anonymizing
tools that ensure that you can’t tell where they’ve been. However, this is usually a fairly
small number and may be disregarded for most Web sites.

See Also

* Recipe 3.17
* Recipe 6.5

3.16 Logging the Name of the Browser
Software

Problem

You want to know the software visitors use to access your site, for example, so you can
optimize its appearance for the browser that most of your audience uses.

Solution

Add the following effector to your activity log format:

% {User-Agent}i

Discussion

Request headers often include a field called the User-agent. This is defined as the
name and version of the client software being used to make the request. For instance,
a User-agent field value might look like this:

User-Agent: Mozilla/4.77 [en] (X11; U; Linux 2.4.4-4GB 1686)

This tells you that the client is claiming to be Netscape Navigator 4.77, run on a Linux
system and using X-windows as its GUI.

The User-agent field is neither required nor reliable; many users prefer software or
anonymizing tools that ensure that you can’t tell what they’re using. Some software
even lies about itself so it can work around sites that cater specifically to one browser
or another; users have this peculiar habit of thinking it’s none of the Webmaster’s
business which browser they prefer. It’s a good idea to design your site to be as browser-
agnostic as possible for this reason, among others. If you’re going to make decisions
based on the value of the field, you might as well believe it hasn’t been faked—Dbecause
there’s no way to tell if it has.

62 | Chapter 3: Logging

See Also
* Recipe 3.17

3.17 Logging Arbitrary Request Header
Fields

Problem

You want to record the values of arbitrary fields clients send to their request header,
perhaps to tune the types of content you have available to the needs of your visitors.

Solution

Use the {. ..} 1 log format variable in your access log format declaration. For exam-
ple, to log the Host header, you might use:

${Host}i

Discussion

The HTTP request sent by a Web browser can be very complex, and if the client is a
specialized application rather than a browser, it may insert additional metadata that’s
meaningful to the server. For instance, one useful request header field is the Accept
field, which tells the server what kinds of content the client is capable of and willing to
receive. Given a CustomLog line such as this:

CustomLog logs/accept log "\"%{Accept}i\""
a resulting log entry might look like this:

PNb6VsCoF2UAAH1dAUo "text/html, image/png, image/jpeg, image/gif,
image/x-xbitmap, */*"

This tells you that the client that made that request is explicitly ready to handle HTML
pages and certain types of images, but, in a pinch, will take whatever the server gives
it (indicated by the wildcard */* entry).

See Also

* Recipe 3.15
* Recipe 3.17

3.17 Logging Arbitrary Request Header Fields | 63

3.18 Logging Arbitrary Response Header
Fields

Problem

You want to record the values of arbitrary fields the server has included in a response
header, probably to debug a script or application.

Solution

Use the ${. . . }o log format variable in your access log format declaration. For exam-
ple, to log the Last-Modified header, you would do the following:

${Last-Modified}o

Discussion

The HTTP response sent by Apache when answering a request can be very complex,
according to the server’s configuration. Advanced scripts or application servers may
add custom fields to the server’s response, and knowing what values were set may be
of great help when trying to track down an application problem.

Other than the fact that you’re recording fields the server is sending rather than receiv-
ing, this recipe is analogous to Recipe 3.17 in this chapter; refer to that recipe for more
details. The only difference in the syntax of the logging format effectors is that response
fields are logged using an o effector, and request fields are logged using i.

See Also
* Recipe 3.17

3.19 Logging Activity to a MySQL Database

Problem

Rather than logging accesses to your server in flat text files, you want to log the
information directly to a database for easier analysis.

Solution

Install the latest release of mod_log_sql from hitp://www.outoforder.cc/projects/apache/
mod_log_sql/ according to the modules directions (see Recipe 2.1), and then issue the
following commands:

#

mysgladmin create apache log

#

64 | Chapter 3: Logging

http://www.outoforder.cc/projects/apache/mod_log_sql/
http://www.outoforder.cc/projects/apache/mod_log_sql/

mysql apache log < access_log.sql

#

mysql apache log

mysql>

grant insert,create on apache log.* to webserver@localhost identified by 'ww

Add the following lines to your httpd.conf file:

<IfModule mod_ log_sgl.c>
LogSQLLoginInfo mysql://webserver:wwwpwl@dbmachine.example.com/apache log
LogSQLCreateTables on

</IfModule>

Then, in your VirtualHost container, add the following log directive:

LogSQLTransferLogTable access_log

Discussion

Replace the values of webserver and wwwpw with a less guessable username and pass-
word when you run these commands.

Consult the documentation on the referenced Web site to ensure that the example here
reflects the version of the module that you have installed, as the configuration syntax
changed with the 2.0 release of the module.

See Also
o http://lwww.outoforder.cc/projects/apache/mod_log_sql

3.20 Logging to syslog

Problem

You want to send your log entries to syslog.

Solution
To log your error log to syslog, simply tell Apache to log to syslog:

ErrorLog syslog:user

W N

Some other syslog reporting class than user, such as 1ocall might be
more appropriate in your environment.

Logging your access log to syslog takes a little more work. Add the following to your
configuration file:

CustomLog |/usr/local/apache/bin/apache syslog combined

3.20 Logging to syslog | 65

http://www.outoforder.cc/projects/apache/mod_log_sql

Where apache_syslog is a program that looks like the following:

#!/usr/bin/perl
use Sys::Syslog gw(:DEFAULT setlogsock);

setlogsock ('unix"');
openlog('apache', 'cons', 'pid', 'user');

while ($log = <STDIN>) {
syslog('notice', $log);
}

closelog;

Discussion

There are several compelling reasons for logging to syslog. The first of these is to have
many servers log to a central logging facility. The second is that there are many existing
tools for monitoring syslog and sending appropriate notifications on certain events.
Allow Apache to take advantage of these tools, and your particular installation may
benefit. Also, in the event that your server is either compromised, or has some kind of
catastrophic failure, having logfiles on a dfferent physical machine can be of enormous
benefit in finding out what happened.

Apache supports logging your error log to syslog by default. This is by far the more
useful log to handle this way, since syslog is typically used to track error conditions,
rather than merely informational messages.

The syntax of the ErrorLog directive allows you to specify syslog as an argument, or
to specify a particular syslog facility. In this example, the user syslog facility was
specified. In your /etc/syslog.conf file, you can specify where a particular log facility
should be sent—whether to a file, or to a remote syslog server.

Because Apache does not support logging your access log to syslog by default, you need
to accomplish this with a piped logfile directive. The program that we use to accomplish
this is a simple Perl program using the Sys::Syslog module, which is a standard module
with your Perl installation. Because the piped logfile handler is launched at server start-
up, and merely accepts input on STDIN for the life of the server, there is no performance
penalty for using Perl.

If you have several Web servers, and want to have all of them log to one central logfile,
this can be accomplished by having all of your servers log to syslog, and pointing that
syslog facility to a central syslog server. Note that this may cause your log entries to be
in non-sequential order, which should not really matter, but may appear strange at first.
This effect can be reduced by ensuring that your clocks are synchronized via NTP.

Consult your syslogd manual for further detail on setting up a networked syslog server.

Finally, depending on what particular operating system you are using, you may be able
to use the logger utility to accomplish the same thing:

66 | Chapter 3: Logging

AccessLog "|/usr/bin/logger" combined

See Also
* The manages for syslogd and syslog.conf

3.21 Logging User Directories

Problem

You want each user directory Web site (i.e., those that are accessed via http://server/
~username) to have its own logfile.

Solution
In httpd.conf, add the directive:
CustomLog "|/usr/local/apache/bin/userdir log" combined
Then, in the file /ust/local/apache/bin/userdir_log, place the following code:

#!/usr/bin/perl

my $SL = '/usr/local/apache/logs'; # Log directory
my %is open = (); # File handle cache

S1=1;

open (F, ">>$L/access_log"); # Default error log

while (my $log = <STDIN>) {
if ($log =~ m!\s/~(.*2)/!) {

my $u = $1;

unless ($is_open{Su}) {
my S$fh;
open $fh, '>>' . SL . '/'. Su;
$is_open{$u} = $fh;

}

select ($is_open{Su});

$1=1;
print $log;
}
else {
select F;
$1=1;

print F $log;

}

close F;
foreach my $h (keys %is_open) {
close $h;

}

3.21 Logging User Directories | 67

http://server/~username
http://server/~username

Discussion

Usually, requests to user directory Web sites are logged in the main server log, with no
differentiation between one user’s site and another. This can make it very hard for a
user to locate log messages for their personal Web site.

The recipe above allows you to break out those requests into one logfile per user, with
requests not going to a userdir Web site going to the main logfile. The log handler can,
of course, be modified to put all log messages in the main logfile as well as in the
individual logfiles.

In order to lessen the amount of disk activity necessary, file handles are cached, rather
than opened and closed with each access. This results in a larger number of file handles
which are open at any given time. For sites with a very large number of user Web sites,
this may cause you to run out of system resources.

Because Perl buffers output by default, we need to explicitly tell our script not to buffer
the output, so thatlog entries make it into the logfile immediately. This is accomplished
by setting the autoflush variable, $ |, to a true value. This tells Perl not to buffer output
to the most-recently selected file handle. Without this precaution, output will be
buffered, and it will appear that nothing is being written to your logfiles.

An alternate approach might involve setting an environment variable using
mod_rewrite and then adding that variable to your LogFormat directive:

RewriteRule */~(["/]+)/ - [E=userdir:S$1]
LogFormat "%{userdir}e %h %1 %u %t \"%r\" %>s %b" common

Having done this, you could then use the split-logfile script to split the logfile up into
one file per individual user.

See Also

* http://httpd.apache.org/docs/2.0/mod/mod_log config.html
* http://httpd.apache.org/docs/2.2/mod/mod_log_config.html
* http://httpd.apache.org/docs/2.2/programs/other.html

68 | Chapter 3: Logging

http://httpd.apache.org/docs/2.0/mod/mod_log_config.html
http://httpd.apache.org/docs/2.2/mod/mod_log_config.html
http://httpd.apache.org/docs/2.2/programs/other.html

CHAPTER 4
Virtual Hosts

As a person can be known by many names, so can a Web server support multiple Web
sites. In the Apache configuration file, each alternate identity, and probably the “main”
one as well, is known as a virtual host (sometimes written as vhost) identified with a
<VirtualHost> container directive. Depending on the name used to access the Web
server, Apache responds appropriately, just as someone might answer differently
depending on whether she is addressed as “Miss Jones” or “Hey, Debbie!” If you want
to have a single system support multiple Web sites, you must configure Apache
appropriately—and you’ll need to know a little bit about your system (such as the IP
addresses assigned to it) in order to do it correctly.

There are two different types of virtual host supported by Apache. The first type, called
address-based or IP-based, is tied to the numeric network address used to reach the
system, rather like telephone numbers. Bruce Wayne never answered the parlour tel-
ephone with “Batman here!” nor did he answer the phone in the Batcave by saying,
“Bruce Wayne speaking.” However, it’s the same person answering the phone, just as
it’s the same Web server receiving the request. Even if the caller had a wrong number
and said, “Hi, Steve!,” the phone was still answered the same way; nothing would
convince Batman to admit on the Batphone that it was Bruce Wayne answering.

The other type of virtual host is called name-based because the server’s response
depends on the name by which it was called. To continue the telephone analogy, con-
sider an apartment shared by multiple roommates; you call the same number whether
you want to speak to Dave, Joyce, Amaterasu, or Georg. Just as multiple people may
share a single telephone number, multiple Web sites can share the same IP address.
However, all IP addresses shared by multiple Apache virtual hosts need to be declared
with a NameVirtualHost directive.

In the most simple of Apache configurations, there are no virtual hosts. Instead, all of
the directives in the configuration file apply universally to the operation of the server.
The environment defined by the directives outside any <VirtualHost> containers is
sometimes called the “default server,” “main server,” or perhaps the “global server.”

69

There is no official name for it, but it can become a factor when adding virtual hosts to
your configuration.

But what happens if you add a <VirtualHost> container to such a configuration? How
are those directives outside the container interpreted, and what is their effect on the
virtual host?

The answer is not a simple one: essentially, the effect is specific to each configuration
directive. Some get inherited by the virtual hosts, some get reset to a default value, and
some pretend they’ve never been used before. You’ll need to consult the documentation
for each directive to know for sure.

There are two primary forms of virtual hosts: IP-based virtual hosts, where each virtual
host has its own unique IP address; and name-based virtual hosts, where more than
one virtual host runs on the same IP address but with different names. This chapter
will show you how to configure each one and how to combine the two on the same
server. You’ll also learn how to fix common problems that occur with virtual hosts.

To avoid problems and confusing error messages, we strongly advise
that you explicitly include the port number on directives specifying an
“s IP address if they support supplying both the address and the port. For

instance, use:

NameVirtualHost *:80
instead of:
NameVirtualHost *

Normal Web operations use port 80, and most SSL requests use port
443.

4.1 Setting Up Name-Based Virtual Hosts

Problem

You have only one IP address, but you want to support more than one Web site on
your system.

Solution

Use the NameVirtualHost *:80 directive in conjunction with <VirtualHost> sections:

ServerName 127.0.0.1
NameVirtualHost *:80

<VirtualHost *:80>

ServerName TheSmiths.name

DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

70 | Chapter 4: Virtual Hosts

<VirtualHost *:80>

ServerName JohnSmith.name

DocumentRoot "C:/Apache/Sites/JustJohnSmith"
</VirtualHost>

Discussion

With IP addresses increasingly hard to come by, name-based virtual hosting is the most
common way to run multiple Web sites on the same Apache server. The previous recipe
works for most users in most virtual hosting situations.

The *: 80 in the previous rules means that the specified hosts run on all addresses. For
a machine with only a single address, this means that it runs on that address but will
also run on the loopback, or localhost address. Thus if you are sitting at the physical
server system, you can view the Web site.

The argument to the <VirtualHost> container directive needs to match the argument
in a NameVirtualHost directive. Putting the hostname here may cause Apache to ignore
the virtual host on server startup, and requests to this virtual host may unexpectedly
go somewhere else. If your name server is down or otherwise unresponsive at the time
that your Apache server is starting up, then Apache can’t match the particular
<VirtualHost> section to the NameVirtualHost directive to which it belongs.

Requests for which there is not a virtual host listed will go to the first virtual host listed
in the configuration file. In the case of the previous example, requests coming to the
server using hostnames that are not explicitly mentioned in one of the virtual hosts will
be served by the TheSmiths.name virtual host.

It is particularly instructive to run httpd -S and observe the virtual host configuration
as Apache understands it, to see if it matches the way that you understand it. httpd -S
returns the virtual host configuration, showing which hosts are name-based, which are
[P-based, and what the defaults are.

Multiple names can be listed for a particular virtual host using the ServerAlias directive,
as shown here:

ServerName TheSmiths.name
ServerAlias www.TheSmiths.name Smith.Family.name

[tis important to understand that virtual hosts render the server listed in the main body
of your configuration file (the “main” or “default” server mentioned earlier) no longer
accessible—you must create a virtual host section explicitly for that host. List this host
first, if you want it to be the default one.

Adding name-based virtual hosts to your Apache configuration does not magically add
entries to your DNS server. You must still add records to your DNS server so that the
names resolve to the IP address of the server system. When users type your server
name(s) into their browser location bars, their computers first contact a DNS server to

4.1 Setting Up Name-Based Virtual Hosts | 71

look up that name and resolve it to an IP address. If there is no DNS record, then their
browsers can’t find your server.

For more information on configuring your DNS server, consult the documentation for
the DNS software you happen to be running, or talk to your ISP if you’re not running
your own DNS server.

See Also
* http://httpd.apache.org/docs/2.2/vhosts

4.2 Designating One Name-Based Virtual
Host as the Default

Problem

You want all unmatched requests, whether they specify a name or use an IP address,
to be directed to a default host, possibly with a “host not found” error message.

Solution

Add the following <VirtualHost> section, and list it before all of your other ones:

<VirtualHost *:80>
ServerName default
DocumentRoot /www/htdocs
ErrorDocument 404 /site list.html
</VirtualHost>

Discussion

Note that this recipe is used in the context of name-based virtual hosts, so it is assumed
that you have other virtual hosts that are also using the <VirtualHost *:80> notation,
and that there is also an accompanying NameVirtualHost *:80 appearing above them.
We have used the default name for clarity; you can call it whatever you want.

Setting the ErrorDocument 404 to a list of the available sites on the server directs the
user to useful content, rather than leaving him stranded with an unhelpful 404 error
message. You may wish to set DirectoryIndex to the site list as well, so that users who
go directly to the front page of this site also get useful information.

It’s a good idea to list explicitly all valid hostnames either as ServerNames or
ServerAliases, so that nobody ever winds up at the default site. However, if someone
accesses the site directly by IP address, or if a hostname is added to the address in
question before the appropriate virtual host is created, the user still gets useful content.

72 | Chapter 4: Virtual Hosts

http://httpd.apache.org/docs/2.2/vhosts

See Also
* Recipe 4.4

4.3 Setting Up Address-Based Virtual Hosts

Problem

You have multiple IP addresses assigned to your system, and you want to support one
Web site on each.

Solution

Create a virtual host section for each IP address you want to list on:

ServerName 127.0.0.1

<VirtualHost 10.0.0.1>

ServerName Example.Com

DocumentRoot "C:/Apache/Sites/Example.Com"
</VirtualHost>

<VirtualHost 10.0.0.2>
ServerName JohnSmith.Example.Com
DocumentRoot "C:/Apache/Sites/JustJohnSmith"
</VirtualHost>

Discussion

The virtual hosts defined in this example catch all requests to the specified IP addresses,
regardless of what hostname is used to get there. Requests to any other IP address not
listed go to the virtual host listed in the main body of the configuration file.

The ServerName specified is used as the primary name of the virtual host, when needed,
but is not used in the process of mapping a request to the correct host. Only the IP
address (not the Host header field) is consulted to figure out which virtual host to serve
requests from.

See Also
* http://hitpd.apache.org/docs/2.2/vhosts/

4.3 Setting Up Address-Based Virtual Hosts | 73

http://httpd.apache.org/docs/2.2/vhosts/

4.4 Creating a Default Address-Based Virtual
Host

Problem

You want to create a virtual host to catch all requests that don’t map to one of your
address-based virtual hosts.

Solution
Use the _default_ keyword to designate a default host:

<VirtualHost _default >
DocumentRoot /www/htdocs
</VirtualHost>

Discussion

The _default keyword creates a virtual host that catches all requests for any
address:port combinations for which there is no virtual host configured.

The _default_ directive may—and should—be used in conjunction with a particular
port number, such as:

<VirtualHost _default :443>

Using this syntax means that the specified virtual host catches all requests to port 443,
on all addresses for which there is not an explicit virtual host configured. SSL virtual
hosts are usually set up using the _default_ syntax, so you’ll see this syntax used in the
default SSL configuration file, along with the necessary directives to enable SSL.

default typically does not work as people expect in the case of name-based virtual
hosts. It does not match names for which there are no virtual host sections, only
address:port combinations for which there are no virtual hosts configured. If you
wish to create a default name-based host, see Recipe 4.2.

See Also
* Recipe 4.2

4.5 Mixing Address-Based and Name-Based
Virtual Hosts

Problem

You have multiple IP addresses assigned to your system, and you want to support more
than one Web site on each address.

74 | Chapter 4: Virtual Hosts

Solution

Provide a NameVirtualHost directive for each IP address, and proceed as you did with
a single IP address:
ServerName 127.0.0.1

NameVirtualHost 10.0.0.1:80
NameVirtualHost 10.0.0.2:80

<VirtualHost 10.0.0.1:80>

ServerName TheSmiths.name

DocumentRoot "C:/Apache/Sites/TheSmiths"
</VirtualHost>

<VirtualHost 10.0.0.1:80>

ServerName JohnSmith.name

DocumentRoot "C:/Apache/Sites/JustJohnSmith"
</VirtualHost>

<VirtualHost 10.0.0.2:80>

ServerName Example.Com

DocumentRoot "C:/Apache/Sites/Example.Com"
</VirtualHost>
<VirtualHost 10.0.0.2:80>

ServerName DoriFerguson.Example.Com

DocumentRoot "C:/Apache/Sites/JustDoriFerguson"
</VirtualHost>

Discussion

Using the address of the server, rather than the wildcard * argument, makes the virtual
hosts listen only to that IP address. However, you should notice that the argument to
<VirtualHost> still must match the argument to the NameVirtualHost with which the
virtual hosts are connected.

See Also
* http://httpd.apache.org/docs/2.2/vhosts/

4.6 Mass Virtual Hosting with
mod_vhost_alias

Problem

You want to host many virtual hosts, all of which have exactly the same configuration.

Solution
Use VirtualDocumentRoot and VirtualScriptAlias provided by mod_vhost_alias:

4.6 Mass Virtual Hosting with mod_vhost_alias | 75

http://httpd.apache.org/docs/2.2/vhosts/

VirtualDocumentRoot /www/vhosts/%$-1/%-2.1/%-2/htdocs
VirtualScriptAlias /www/vhosts/%-1/%-2.1/%-2/cgi-bin

Discussion

This recipe uses directives from mod_vhost_alias, which you may not have installed
when you built Apache, as it is not one of the modules that is enabled by default.

These directives map requests to a directory built up from pieces of the hostname that
was requested. Each of the variables represents one part of the hostname, so that each
hostname is mapped to a different directory.

In this particular example, requests for content from www.example.com are served
from the directory /'www/vhosts/com/e/example/htdocs, or from /www/vhosts/com/e/ex
ample/cgi-bin (for CGI requests). The full range of available variables is shown in Ta-
ble 4-1.

Table 4-1. mod_vhost_alias variables

Variable Meaning

%% Inserta %

%p Insert the port number of the virtual host
%M.N Insert (part of) the name

M and N may have positive or negative integer values, the meanings of which are shown
in Table 4-2.

Table 4-2. Meanings of variable values

Value Meaning

0 The whole name

1 The first part of the name

-1 The last part of the name

2 The second part of the name

-2 The next-to-last part of the name

2+ The second, and all following, parts

-2+ The next-to-last, and all preceding, parts

When the value is placed in the first part of the argument—in the M part of $M. N—it
refers to parts of the hostname itself. When used in the second part—the N—it refers
to a particular letter from that part of the hostname. For example, in hostname
www . example. com, the meanings of the variables are as shown in Table 4-3.

76 | Chapter 4: Virtual Hosts

Table 4-3. Example values for the hostname www.example.com

Value Meaning

%0 www.example.com
%1 www

%?2 example

%3 com

Y%-1 com

%-2 example

%-3 www

%-2.1 e

%-2.2 X

%-2.3+ ample

Depending on the number of virtual hosts, you may wish to create a directory structure
subdivided alphabetically by domain name, by top-level domain, or simply by
hostname.

Note that mod_vhost_alias does not set the DOCUMENT_ROOT environment varia-
ble, and so applications that rely on this value may not work in this kind of virtual
hosting environment.

See Also

* http://httpd.apache.org/docs/2.2/mod/mod_vhost_alias.html
* http://httpd.apache.org/docs/2.2/vhosts

4.7 Mass Virtual Hosting Using Rewrite Rules

Problem

Although there is a module—mod_vhost_alias—that is explicitly for the purpose of
supporting large numbers of virtual hosts, it is very limiting and requires that every
virtual host be configured exactly the same way. You want to support a large number
of vhosts, configured dynamically, but at the same time, you want to avoid
mod_vhost_alias.

Solution

Use directives from mod_rewrite to map to a directory based on the hostname:

RewriteEngine on
RewriteCond "%${HTTP_HOST}" "M www\.) 2 ([*.]+) \.com"
RewriteRule "A(LK)ST "/home/%2$1"

4.7 Mass Virtual Hosting Using Rewrite Rules | 77

http://httpd.apache.org/docs/2.2/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/2.2/vhosts

Discussion

mod_vhost_alias is useful, but it is best for settings where each virtual host is identical
in every way but the hostname and document tree. Using mod_vhost_alias precludes
the use of other URL-mapping modules, such as mod_userdir, mod_rewrite, and
mod_alias, and it can be very restrictive. Using mod_rewrite is less efficient, but it is
more flexible.

For example, when using mod_vhost_alias, you must do all of your hosts with
mod_vhost_alias; with this alternate approach, you can do some of your hosts using
the rewrite rules and others using conventional virtual host configuration techniques.

The directives in the Solution map requests for www. something. com (or without the
www) to the directory /home/something.

See Also

* Recipe 5.17
* http://httpd.apache.org/docs/2.2/vhosts
* http://httpd.apache.org/docs/2.2/mod/mod_rewrite. html

4.8 Logging for Each Virtual Host

Problem

You want each virtual host to have its own logfiles.

Solution

Specify Errorlog and CustomLog within each virtual host declaration:

<VirtualHost *:80>
ServerName waldo.example.com
DocumentRoot /home/waldo/www/htdocs

ErrorLog /home/waldo/www/logs/error log
CustomLog /home/waldo/www/logs/access log combined
</VirtualHost>
Discussion

The various logging directives can be placed either in the main body of your configu-
ration file or within a <VirtualHost> section. When they are placed within a virtual
host, log entries for that virtual host go in the specified logfiles, rather than into the
logfile(s) defined in the main server configuration.

78 | Chapter 4: Virtual Hosts

http://httpd.apache.org/docs/2.2/vhosts
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

Each logfile counts against the total number of files and network con-
nections your server is allowed to have. If you have 100 virtual hosts,
each with its own error and activity log, that’s 200 open channels—and

if the server’s quota is 256, you can only handle 56 concurrent requests
at any one time.

Those numbers are just examples; actual values for maximum open file
quotas vary by platform, but are generally much larger. Consult your
platform’s documentation to find out your actual limit.

For this reason, we recommend that you have all your virtual hosts log
to the same files, and split them apart later for analysis or examination.

In the recipe given here, the logfiles are placed within the home directory of a particular
user, rather than in the main log directory. This gives you easier access to those files,
but you still need to take adequate precautions to set the permissions on the directory
in question. Consult Chapter 6 for a discussion on file permissions.

See Also

e Chapter 3
* Chapter 6
* Recipe 4.9

4.9 Splitting Up a Lodfile

Problem

Because of a large number of virtual hosts, you want to have a single logfile for all of
them and split it up afterward.

Solution

LogFormat "%$v %$h %1 %u %t \"S$r\" %>s %b" vhost
CustomLog logs/vhost log vhost

Then, after rotating your logfile:

split-logfile < logs/vhost log

Discussion

The LogFormat directive in this recipe creates a logfile that is similar to the common
logfile format but additionally contains the name of the virtual host being accessed.
The split-logfile utility splits up this logfile into its constituent virtual hosts.

4.9 Splitting Up a Logdfile | 79

See Also
* Recipe 3.11

4.10 Port-Based Virtual Hosts

Problem

You want to present different content for HTTP connections on different ports.

Solution

Explicitly list the port number in the <VirtualHost> declaration:

Listen 8080

<VirtualHost 10.0.1.2:8080>
DocumentRoot /www/vhosts/port8080
</VirtualHost>

Listen 9090

<VirtualHost 10.0.1.2:9090>
DocumentRoot /www/vhosts/port9090
<VirtualHost>

Discussion

Port-based virtual hosting is somewhat less common than other techniques shown in
this chapter. However, there are a variety of situations in which it can be useful. If you
have only one IP address, have no ability to add hostnames to DNS, or if your ISP blocks
inbound traffic on port 80, it may be useful to run virtual hosts on other ports.

It also may be useful in development environments to run separate httpd instances on
different ports for different developers or different setups.

Visitors to your Web site must list the port number in the URL that they use. For
example, to load content from the second virtual host previously listed, the following
URL might be used:

http://server.example.com: 9090

See Also
* http://httpd.apache.org/docs/2.2/vhosts

80 | Chapter 4: Virtual Hosts

http://httpd.apache.org/docs/2.2/vhosts

4.11 Displaying the Same Content on Several
Addresses

Problem

You want to have the same content displayed on two of your addresses.

Solution

Specify both addresses in the <VirtualHost> directive:
NameVirtualHost 192.168.1.1:80
NameVirtualHost 172.20.30.40:80

<VirtualHost 192.168.1.1:80 172.20.30.40:80>
DocumentRoot /www/vhosts/server
ServerName server.example.com
ServerAlias server

</VirtualHost>

Discussion

This setup is most useful on a machine that has addresses that are internal to your
network, as well as those that are accessible only from outside your network. If these
are the only addresses, you could use the * notation introduced in Recipe 4.1. However,
if there are more addresses, this allows you to specify what content appears on what
address.

See Also
* http://httpd.apache.org/docs/2.2/vhosts/

4.12 Defining Virtual Hosts in a Database

Problem

You want to define virtual hosts in a database, rather than having to edit the configu-
ration file each time.

Solution

Obtain mod_vhost_dbi from http://www.outoforder.cc/projects/apache/mod_vhost_dbi
and use that to configure virtual hosts to be loaded out of the database:

PoolDbiDriver Serverl mysqgl
PoolDbiHost Serverl 192.168.1.50
PoolDbiUsername Serverl datauser
PoolDbiPassword Serverl password

4.11 Displaying the Same Content on Several Addresses | 81

http://httpd.apache.org/docs/2.2/vhosts/
http://www.outoforder.cc/projects/apache/mod_vhost_dbi

PoolDbiDBName
PoolDbiConnMin
PoolDbiConnSoftMax
PoolDbiConnHardMax
PoolDbiConnTTL

<VirtualHost *:80>
VhostDbiEnabled On

Serverl
Serverl
Serverl
Serverl
Serverl

VhostDbiConnName Serverl
VhostDbiQuery "SELECT ServerName, DocumentRoot,
FROM vhost info WHERE ServerName = &{RequestHostname}"

</VirtualHost>

Discussion

mod_vhost_dbi is a third-party module that provides the ability to put your virtual host
configuration in a database and update those virtual hosts without having to modify

vhosts
1

1

5

30

your configuration file or restart Apache.

The full documentation and code for this module is available from the site http:/
www.outoforder.cc/projects/apache/mod_vhost_dbi. Using the sample configuration
above, you can get virtual hosts running. You’ll need to create records in the
vhost_info table for each virtual host, containing ServerName, DocumentRoot, and
Username, where ServerName and DocumentRoot have the obvious meanings, and
Username refers to the user ID under which suexec will execute CGI processes.
Unfortunately, mod_vhost_dbi is a somewhat limited solution because it provides only

these three configuration directives.

Username

\

82 | Chapter 4: Virtual Hosts

http://www.outoforder.cc/projects/apache/mod_vhost_dbi
http://www.outoforder.cc/projects/apache/mod_vhost_dbi

CHAPTER 5
Aliases, Redirecting, and
Rewriting

When Apache receives a request, it is assumed that the client will be served a file out
of the DocumentRoot directory. However, there will be times when you want these
resources to be served from some other location. For example, if you wanted to place
a set of documents on your Web site, it may be more convenient to leave them where
they are, rather than to move them to a new location.

In this chapter, we deal with three general categories of these sorts of cases. Aliasing
refers to mapping a URL to a particular directory. Redirecting refers to mapping a URL
to another URL. And Rewriting refers to using mod_rewrite to alter the URL in some
way.

Other recipes in this chapter are related because they map URLs to resources that are
at unexpected places in the filesystem.

These topics are particularly interesting to Webmasters who want to avoid link-rot or
have sites that are periodically subject to upheaval (files or directories are moved
around, or even moved from server to server). The redirection and rewriting capabilities
of the Apache Web server allow you to conceal such ugly behind-the-scenes
disturbances from the eyes of your Internet visitors.

5.1 Mapping a URL to a Directory

Problem

You want to serve content out of a directory other than the DocumentRoot directory.
For example, you may have an existing directory of documents, which you want to
have on your Web site but that you do not want to move into the Apache document
root.

83

Solution

Alias "/desired-URL-prefix" "/path/to/other/directory"

Discussion

The given example maps URLs starting with /desired-URL-prefix to files in the /path/
to/other/directory directory. For example, a request for the URL:

http://example.com/desired-URL-prefix/something. html
results in the file /path/to/other/directory/something. html being sent to the client.

This same effect could be achieved on Unixish systems by simply creating a symbolic
link from the main document directory to the target directory and turning on the
Options +FollowSymLinks directive."However, using Alias explicitly allows you to keep
track of these directories more easily. Creating symlinks to directories makes it hard to
keep track of the location of all of your content. Additionally, a stray symlink may cause
you to expose a portion of your filesystem that you did not intend to.

You may also need to add a few configuration directives to permit access to the directory
that you are mapping to. An error message (in your error_log file) saying that the request
was “denied by server configuration” usually indicates this condition. It is fairly com-
mon—and recommended in the documentation (http://httpd.apache.org/docs/2.2/misc/
security_tips.html#protectserverfiles)—to configure Apache to deny all access, by de-
fault, outside of the DocumentRoot directory. Thus, you must override this for the
directory in question, with a configuration block as shown below:
<Directory "/path/to/other/directory">
Order allow,deny

Allow from all
</Directory>

This permits access to the specified directory.

Note that the Alias is very strict with respect to slashes. For example, consider an
Alias directive as follows:

Alias "/puppies/" "/www/docs/puppies/"

This directive aliases URLs starting with /puppies/ but does not alias the URL /puppies
(i.e., without the trailing slash). This may result in a “trailing slash problem.” That is,
if a user attempts to go to the URL http://fexample.com/puppies he gets a 404 error,
whereas if he goes to the URL http://example.com/puppies/ with the trailing slash, he
receives content from the desired directory. To avoid this problem, create Aliases
without the trailing slash on each argument.

Finally, make sure that if you have a trailing slash on the first argument to Alias, you
also have one on the second argument. Consider the following example:

" See the documentation for the Option directive at http://httpd.apache.org/docs/2.2/mod/core. html#options.

84 | Chapter 5: Aliases, Redirecting, and Rewriting

http://example.com/desired-URL-prefix/something.html
http://httpd.apache.org/docs/2.2/misc/security_tips.html#protectserverfiles
http://httpd.apache.org/docs/2.2/misc/security_tips.html#protectserverfiles
http://example.com/puppies
http://example.com/puppies/
http://httpd.apache.org/docs/2.2/mod/core.html#options

Alias "/icons/" "/usr/local/apache/icons"

A request for http://example.com/icons/test.gif results in Apache attempting to serve the
file /usr/local/lapacheliconstest.gif rather than the expected /usr/local/lapachelicons/

test.gif.
This is called “maintaining slash parity,” which is a fancy way of saying, “If you end

the alias with a slash, end the directory with one, too; if the alias doesn’t end with a
slash, the directory shouldn’t, either.”

See Also

* http://httpd.apache.org/docs/2.2/mod/mod_alias.html
* http://httpd.apache.org/docs/2.2/mod/core.html#options

5.2 Creating a New URL for Existing Content

Problem

You have an existing directory that you want to access using a different name.

Solution

Use an Alias directive in httpd.conf:

Alias "/newurl" "/www/htdocs/oldurl"

Discussion

Although Alias is usually used to map URLs to a directory outside of the
DocumentRoot directory tree, this is not necessarily required. There are many times
when itis desirable to have the same content accessible via a number of different names.
This is typically the case when a directory has its name changed, and you wish to have
the old URLs continue to work, or when different people refer to the same content by
different names.

Remember that Alias only affects the mapping of a local URI (the /foo/bar.txt part of
http://example.com/foo/bar.txt); it doesn’t affect or change the hostname part of the
URL (the http://example.com/ part). To alter that portion of the URL, use the Redirect
or RewriteRule directives.

See Also
* Recipe 5.1
* http://httpd.apache.org/docs/2.2/mod/mod_alias.html
* http://hitpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.2 Creating a New URL for Existing Content | 85

http://example.com/icons/test.gif
http://httpd.apache.org/docs/2.2/mod/mod_alias.html
http://httpd.apache.org/docs/2.2/mod/core.html#options
http://example.com/foo/bar.txt
http://example.com/
http://httpd.apache.org/docs/2.2/mod/mod_alias.html
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.3 Giving Users Their Own URLs

Problem

You want to give each user on your system his own Web space.

Solution

If you want users’ Web locations to be under their home directories, add this to your

httpd.conf file:

UserDir public_html

To put all users’ Web directories under a central location:

UserDir "/www/users/*/htdocs"

If you want to let users access their home directory without having to use a tilde (~) in
the URL, you can use mod_rewrite to perform this mapping:

RewriteEngine On
RewriteCond "/home/$1/public html" -d [NC]
RewriteRule "*/(["/]1+)/(.*)" "/home/$1l/public html/$2"

Finally, if you have mod_perl installed, you can do something more advanced like this
(again, added to your httpd.conf file):

<Perl>
Folks you don't want to have this privilege
my %$forbid = map { $_ => 1 } gw(root postgres bob);
opendir H, '/home/';
my Q@dir = readdir (H);
closedir H;
foreach my $u (@dir) {
next if $u =~ m/"\./;
next if $forbid{Su};
if (-e "/home/S$u/public_html") {
push @Alias, "/$u/", "/home/$u/public html/";
}

}
</Perl>

Discussion

The first solution is the simplest and most widely used of the possible recipes we present
here. With this directive in place, all users on your system are able to create a directory
called public_html in their home directories and put Web content there. Their Web
space is accessible via a URL starting with a tilde (~), followed by their usernames. So,
a user named bacchus accesses his personal Web space via the URL:

http://www.example.com/~bacchus/

If you installed Apache from the standard source distribution, your default configura-
tion file includes an example of this setup. It also contains a <Directory> section re-

86 | Chapter 5: Aliases, Redirecting, and Rewriting

ferring to the directory /home/*/public_html, with various options and permissions
turned on. You need to uncomment that section in order for anyone to have access to
these user Web sites. This section should look something like the following:
<Directory "/home/*/public html">
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>
Order allow,deny
Allow from all
</Limit>
<LimitExcept GET POST OPTIONS PROPFIND>
Order deny,allow
Deny from all
</LimitExcept>
</Directory>

Make sure you understand what each of these directives is enabling before you
uncomment this section in your configuration.

The second solution differs in that the argument to UserDir is given as a full pathname
and so is not interpreted as relative to the user’s home directory, but as an actual file-
system path. The * in the file path is replaced by the username. For example, http:/
example.com/~smith/ is translated to /www/users/smith/htdocs. This directory structure
needs to be configured in a manner similar to the previous example.

The third solution is slightly more sophisticated, and provides UserDir functionality
without having to use a tilde (~) in the URL.

Using the RewriteCond directive, we first check for the existence of the user’s home
directory, and, if it exists, we rewrite requests into that directory. Performing this check
first ensures that other URLSs continue to work correctly, and only those URLSs starting
with a valid username are rewritten to a user’s home directory.

This rewrite ruleset takes advantage of a little-known fact about mod_rewrite—in par-
ticular, that a RewriteRule is always considered first, and, if it matches, the
RewriteCond is evaluated after that. Consequently, we can use $1 in the Rewrite-
Cond, even though the value of that variable is set in the RewriteRule appearing on the
following line.

The fourth and final solution requires mod_perl and provides alias mappings for all top
directories under the /home hierarchy (typically user directories). It differs from the first
two by not including the tilde prefix; user smith’s Web location would be specified as
http://example.com/smith/ instead of http:/fexample.com/~smith/, but is still the
filesystem location /home/smith/public_html.

In each case, the directory in question, and directories in the path leading up to it, need
to be readable for the Apache user (usually nobody or www or httpd), and also have the
execute bit set for that user, so the Apache server can read content out of that directory.
The execute bit is needed in order to get a directory listing. Thus, for user bob, the
directories /, /home, /home/bob, and /home/bob/public_html (or the corresponding

5.3 Giving Users Their Own URLs | 87

http://example.com/~smith/
http://example.com/~smith/
http://example.com/smith/
http://example.com/~smith/

directory paths for the other solutions) all need to execute access, and the last one also
requires read access.

On Unixish systems, you would set these permissions by issuing the following
commands:

oe°

chmod o+x / /home /home/bob
%$chmod o+rx /home/bob/public_html

The files within the directory need only be readable:

% find /home/bob/public_html -type f | xargs chmod 644

This will recurse through subdirectories, and change the file permission on all files, but
not on directories.

If you use the first solution, many users may be concerned about these file permissions,
and rightly so, as it usually allows all other users read access to these directories. Make
sure that your users are aware of this, and that they keep personal files in directories
that are not world readable.

The advantage of the second solution over the previous one is that these files are stored
in a location that is not inside the user’s home directory, and so the user may keep
sensible file permissions on her home directory. This lets her store personal files there
without concern that other users may have free access to them.

The last Solution is completely different and requires that you have mod_perl installed.
The list of directives previously mentioned goes in your configuration file, using the

<Perl> configuration directive supplied by mod_perl, which allows you to put Perl code
in your configuration file to dynamically add things to the configuration file at server
startup.

At server startup, the code shown looks in the /home/ directory for any user that has a
public_html directory and creates an Alias for them. This has the advantage over the
previous two solutions because the URLs no longer contain that annoying tilde char-
acter, which people tend to think unprofessional. So user bacchus is now able to access
his personal Web space via the URL http://www.example.com/bacchus/.

The ¢ forbid list at the top of the code provides a list of users who should not be given
this special alias for one reason or another. This allows you to eliminate users for which
this feature may cause a security risk, such as root, or users who have shown that they
can’t be trusted with such privileges.

As with the previous examples, this should be accompanied by a <Directory> section
that enables read access for the directory /home/*/public_html.

And, of course, you can have this code point these aliases at any location, if you want
to serve content out of some other location rather than the home directories of the users.

88 | Chapter 5: Aliases, Redirecting, and Rewriting

http://www.example.com/bacchus/

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_userdir.html

5.4 Aliasing Several URLs with a Single
Directive

Problem

You want to have more than one URL map to the same directory but don’t want
multiple Alias directives.

Solution
Use AliasMatch in http.conf to match against a regular expression:

AliasMatch ""/pupp(ylies)" "/www/docs/small dogs"

AliasMatch "~/P-([[:alnum:]]) ([~/]1*)" "/usr/local/projects/$1/$1$2"
Discussion

The AliasMatch directive allows you to use regular expressions to match arbitrary pat-
terns in URLs and map anything matching the pattern to the desired URL. Think of it
as Alias with a little more flexibility.

The first AliasMatch causes URLs starting with /puppy, as well as URLs starting
with /puppies, to be mapped to the directory /www/docs/small_dogs. The second
AliasMatch is designed to map to the appropriate project directory if they’re organised
under the first character of their names. For instance, project Example’s URI would
be /pP-Example/ and would be mapped to /ust/local/projects/E/Examplel.

Apache’s regular expression syntax is discussed in much greater detail in Appendix A.

See Also
* Appendix A
* Mastering Regular Expressions by Jeffrey Friedl (O’Reilly)

5.5 Mapping Several URLs to the Same CGl
Directory

Problem

You want to have a number of URLs map to the same CGI directory but don’t want to
have multiple ScriptAlias directives.

5.4 Aliasing Several URLs with a Single Directive | 89

http://httpd.apache.org/docs/2.2/mod/mod_userdir.html

Solution

Use ScriptAliasMatch in httpd.conf to match against a regular expression:

ScriptAliasMatch "~/ [sS]cripts?|cgi (-bin)?/" "/www/cgi-bin/"

Discussion

This is a more complicated recipe than the previous one and may require that you read
Appendix A. This directive maps requests starting with /script/, /
scripts/, /Script/, /Scripts/, /cgi/, and /cgi-bin/ to the directory /'www/cgi-bin/, and it causes
all files in that directory to be treated as CGI programs.

This kind of directive is generally used to clean up a mess that you have made. If you
design your Web site well from the start, this sort of thing is never necessary, but the
first time you redesign, or otherwise rearrange your Web site, you’ll find the necessity
for these sorts of contortions.

See Also

¢ Recipe 5.4
* Appendix A

5.6 Creating a CGl Directory for Each User

Problem

You want each user to have their own cgi-bin directory rather than giving them all access
to the main server CGI directory.

Solution
Put this in your httpd.conf:

<Directory "/home/*/public html/cgi-bin/">
Options ExecCGI
SetHandler cgi-script
</Directory>
ScriptAliasMatch "/~ (["/]+4)/cgi-bin/ (.*)" "/home/$1/public_html/cgi-bin/$2"

Discussion

You can’t use ScriptAlias in this case, because for each user, the first argument to
ScriptAlias would be different. The <Directory> container and the ScriptAliasMatch
directive are functionally equivalent.

This recipe lets each user put CGI scripts in her own personal Web space. Files accessed
via URLs starting with:

http://www.example.com/~username/cgi-bin/

90 | Chapter 5: Aliases, Redirecting, and Rewriting

are treated as CGI scripts.

If you have suexec enabled, CGI programs run from this target directory will be run
with the user ID of the user specified in the URL. For example, a CGI program accessed
via the URL http://www.example.com/~rbowen/cgi-bin/example.cgi would be run as the
user rbowen.

Allowing users to set up their own scripts to be automatically executed
: without some sort of review is asking for trouble, either from malicious

users (perish the thought!) or exploitable insecure scripts.

See Also
* Recipe 8.1

5.7 Redirecting to Another Location

Problem

You want requests to a particular URL to be redirected to another server.

Solution

Use a Redirect directive in httpd.conf, and give an absolute URL on the second
argument:

Redirect "/example" "http://www2.example.com/new/location"

Discussion

Whereas Alias maps a URL to something in the local filesystem, Redirect maps a URL
to another URL, usually on another server. The second argument is a full URL and is
sent back to the client (browser), which makes a second request for the new URL.

It is also important to know that the Redirect directive preserves path information, if
there is any. Therefore, this recipe redirects a request for http://original.example.com/
example/something.html to http://other.example.com/new/location/something.html.

Redirections come in several different flavors, too; you can specify which particular
type of redirect you want to use by inserting the appropriate keyword between the
Redirect directive and the first URL argument. All redirects instruct the client where
the requested document is now; the different types of redirection inform where the
client should look for the document in the future. If no keyword is specified, the
temp meaning is used by default:

5.7 Redirecting to Another Location | 91

http://www.example.com/~rbowen/cgi-bin/example.cgi
http://original.example.com/example/something.html
http://original.example.com/example/something.html
http://other.example.com/new/location/something.html

temp
A temporary redirection is used when the document is not in the originally re-
quested location at the moment, but is expected to be there again some time in the
future. So the client remembers the URL it used on the original request and will
use it on future requests for the same document.

permanent
A permanent redirection indicates that not only is the requested document not in
the location specified by the client, but that the client should never look for it there
again. In other words, the client should remember the new location indicated in
the redirect response and look there in all subsequent requests for the resource.

gone
This keyword means that the document doesn’t exist in this location, and it
shouldn’t bother asking any more. This differs from the 404 Not Found error
response in that the gone status admits that the document was once here, even
though it isn’t any more.

seeother
A seeother redirection tells the client that the original document isn’t located
here any more and has been superseded by another one in a different location. That
is, the original request might have been for:

http://example.com/chapter2.html

but the server answers with a seeother redirection to:
http://bookname.com/edition-2/chapter2.html

indicating that the desired content can be gotten at a different URL, and that a
second request should be made to get it.

The semantics of the 303 see other status code suggest that you
only use it if you're really familiar with it. Use the temporary key-
ol word instead if you’re not sure whether see other is appropriate.

By default, if no keyword is present, a temporary redirection is issued.

Here’s an example of the various directive formats, including the HTTP status code
number in case you want to use an ErrorDocument to customize the server’s response
text:

#

These are equivalent, and return a response with a 302 status.

#

Redirect /foo.html http://example.com/under-construction/foo.html

Redirect temp /foo.html http://example.com/under-construction/foo.html
RedirectTemp /foo.html http://example.com/under-construction/foo.html
#

These are equivalent to each other as well, returning a 301 status

#

92 | Chapter 5: Aliases, Redirecting, and Rewriting

http://example.com/chapter2.html
http://bookname.com/edition-2/chapter2.html

Redirect permanent /foo.html http://example.com/relocated/foo.html
RedirectPermanent /foo.html http://example.com/relocated/foo.html

#

This tells the client that the old URL is dead, but the document
content has been replaced by the specified new document. It

returns a 303 status.

#

Redirect seeother /foo.html http://example.com/relocated/bar.html
#

Returns a 410 status, telling the client that the document has been
intentionally removed and won't be coming back. Note that there

is no absoluteURL argument.

#

Redirect gone /foo.html

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_alias.html

5.8 Redirecting Several URLs to the Same
Destination

Problem

You want to redirect a number of URLs to the same place. For example, you want to
redirect requests for /fish and /Fishing to http://fish.example.com/.

Solution

Use RedirectMatch in httpd.conf to match against a regular expression:

RedirectMatch "~/ [fF]ish(ing)?(/.*)?" "http://fish.example.com/$2"

Discussion

This recipe redirects requests on one server for URLs starting with fish or fishing, with
either an upper-case or lower-case f, to a URL on another server, fish.example.com. As
with Redirect, the path information, if any, is preserved. That is, a request for http:/
original.server/Fishing/tackle.html is redirected to http://fish.example.com/tackle.html
so that existing relative links continue to work.

As with several of the earlier examples, RedirectMatch uses regular expressions to
provide arbitrary text pattern matching.

See Also
* Appendix A

5.8 Redirecting Several URLs to the Same Destination | 93

http://httpd.apache.org/docs/2.2/mod/mod_alias.html
http://fish.example.com/
http://original.server/Fishing/tackle.html
http://original.server/Fishing/tackle.html
http://fish.example.com/tackle.html

5.9 Permitting Case-Insensitive URLs

Problem

You want requested URLs to be valid whether uppercase or lowercase letters are used.

Solution

Use mod_speling to make URLs case-insensitive:

CheckSpelling On

Discussion

The mod_speling module is part of the standard Apache distribution but is not enabled
by default, so you need to explicitly enable it.

In addition to making URLs case-insensitive, mod_speling, as the name implies, pro-
vides simple spellchecking capability. In particular, in the case of a “not found” error,
mod_speling attempts to find files that may have been intended, based on similar spell-
ing, transposed letters, or perhaps letters swapped with similar-looking numbers, like
O for 0 and 1 for 1.

When mod_speling is installed, it may be turned on for a particular scope (such as a
directory, virtual host, or the entire server) by setting the CheckSpelling directive to On.

And, yes, that is the correct spelling of the module name.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_speling.html

5.10 Showing Highlighted PHP Source
without Symlinking

Problem

You want to be able to see the syntax-highlighted source to your PHP scripts without
having to set up symbolic links for all of them.

Solution
Add a line such as the following to your httpd.conf or .htaccess file:

RewriteRule ""(.+\.php)s$" "S$1" [T=application/x-httpd-php-source]

Or, for versions 2.2 and later:

RewriteRule "~ (.+\.php)s$" "$1" [H=application/x-httpd-php-source]

94 | Chapter 5: Aliases, Redirecting, and Rewriting

http://httpd.apache.org/docs/2.2/mod/mod_speling.html

Alternate Solution
Add a line such as the following to your httpd.conf file:

RewriteRule "" (.*\.php)s$" "/cgi-bin/show.php?file=$1" [PT, L]

Create a file named show.php as shown below, and put it in your server’s /cgi-bin/
directory:

<?php
/*
* Show the highlighted source of a PHP script without a symlink or copy.
*/
if ((! isset($_GET))
[| (! isset($_GET['file']))
[(! ($file = $ GET['file']))) {
/*
* Missing required arguments, so bail.
*/

return status('400 Bad Request',
"Data insufficient or invalid.\r\n");

}

$file = preg replace('/\.phps$/', '.php', $file);
if (! preg match('/\.php$/', $file)) {
return status('403 Forbidden',
"Invalid document.\r\n");
}
S$docroot = $_SERVER['DOCUMENT_ROOT'];
if ((! preg match(";”"Sdocroot;", S$file))
[l (! preg match(";"/home/["/]+/public_html;", S$file))) {
return status('403 Forbidden',
"Invalid document requested.\r\n");
}
Header ('Content-type: text/html; charset=iso-8859-1");
print highlight file($file);
return;

function status (msg, Stext) {
Header ("Status: S$msg");
Header ('Content-type: text/plain; charset=iso-8859-1");
Header ('Content-length: ' . strlen($text));
print Stext;
}

?>

Discussion

The PHP interpreter has a built-in function to display PHP source code syntax color-
coded. Ordinarily, this function is invoked for .phps files when your configuration file
contains the following line:

AddHandler application/x-httpd-php-source .phps

5.10 Showing Highlighted PHP Source without Symlinking | 95

However, in order to take advantage of this functionality, you need to make a copy, or
symbolic link, of each PHP file you wish to treat this way, replacing the .php file
extension with a .phps file extension. This is impractical and inconvenient.

The recipe given removes the need to do this, by rewriting any request for a .phps file
to that same filename, but with a .php file extension instead, and associating the
php-source handler with that request.

The [H] flag to the RewriteRule directive is new in version 2.2, and so for earlier ver-
sions, you will need to use the [T] flag instead, which provides a similar functionality.

The script in the alternate solution uses a built-in PHP function to display the script’s
source in highlighted form. It’s a more complex solution than the one-liner change in
the first solution, but it allows you to change the behaviour without having to restart
the server, just by altering the script. The preg_match against $docroot verifies the
requested file is under the server’s DocumentRoot. The next preg_match also permits
files in users’ public_html directories.

See Also
* Recipe 2.5

5.11 Replacing Text in Requested URLs

Problem
You want to change all occurrences of stringl to string2 in a request’s URL.
Solution
RewriteRule " (.*)stringl(.*)" "$lstring2$2" [N,PT]
Discussion

The [N] flag tells Apache to rerun the rewrite rule. This rule will get run repeatedly
until the RewriteCond fails. Thus, it will get rerun as long as the URL contains the string
that you want to replace. As soon as all occurrences of this string have been replaced,
the RewriteCond will fail, and the rule will stop. The [PT] tells mod_rewrite to pass the
rewritten URL on to the rest of Apache for any additional processing once the rewriting
is done.

Care should be taken to avoid infinite loops, such as might happen if string1 is part
of s tringZ2.

See Also
* Appendix A

96 | Chapter 5: Aliases, Redirecting, and Rewriting

5.12 Rewriting Path Information to CGl
Arguments

Problem

You want to pass arguments as part of the URL but have these components of the URL
rewritten as CGI QUERY STRING arguments.

Solution

This is just an example, of course; make appropriate changes to the RewriteRule line
to fit your own environment and needs:

RewriteEngine on
RewriteRule ""/book/ ([*/1*)/([*/1*)" "/cgi-bin/book.cgi?author=$1l&subject=$2" [PT]

Discussion

One reason you might want or need to do this is if you’re gluing together two legacy
systems that do things in different ways, such as a client application and a vendor script.
For example, the RewriteRule in the Solution will cause:

http://www.example.com/book/apache/bowen

to be rewritten as:

http://www.example.com/cgi-bin/book.cgi?subject=apache&author=bowen

The [pT] flag on the RewriteRule directive instructs Apache to keep processing the
URL even after it has been modified; without the flag, the server would directly try to
treat the rewritten URL as a filename, instead of continuing to the step at which it
determines it’s a CGI script. It also allows multiple RewriteRule directives to make
additional refinements to the URL.

If the URL being rewritten already has a query string, or might, change the [PT] to
[0sa, PT]. The QSA means “query string add” and will cause the query string gener-
ated by the rewrite to be added to the query string in the original URL. Without QSA,
the original query string will be replaced.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.12 Rewriting Path Information to CGl Arguments | 97

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.13 Denying Access to Unreferred Requests

Problem

You want to prevent other Web sites from using your images (or other types of docu-
ments) in their pages and allow your images to be accessed only if they were referred
from your own site.

Solution
Put this in your httpd.conf:

RewriteEngine On
RewriteCond "%{ HTTP REFERER}" t=nn

RewriteCond "${HTTP_REFERER}" "!“http://mysite.com/.*$" [NC]
RewriteRule "\. (jpglgifipng)$ - [F]
Discussion

This recipe is a series of RewriteCond directives, designed to determine whether an
image file is requested from within a document on your site or if it is embedded in a
page from another server. If the the latter, then the other site is stealing your images
and needs to be stopped.

The first rule checks to see if the referer is even set. Some clients don’t send a referer,
and some browsers can be configured not to send referers. If we deny requests from all
clients that don’t send a referer, we’ll deny a lot of valid requests; so we let these ones
in.

Next, we check to see if the referer appears to be from some site other than our own.
If so, we keep going through the rules. Otherwise, we’ll stop processing the rewrite.

Finally, we check to see if this is a request for an image file. If the file is a nonimage file,
such as an HTML file, then we want to allow people to link to these files from
somewhere offsite.

If we’ve reached this point in the ruleset, we know that we have a request for an image
file from within a page on another Web site. The RewriteRule matches a request and
returns Forbidden to the client.

See Also

* http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
* Recipe 5.14

98 | Chapter 5: Aliases, Redirecting, and Rewriting

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.14 Redirecting Unreferred Requests to an
Explanation Page

Problem

When a request comes to your server without a referring URL being mentioned, you
want to redirect it to a page that explains why you’re not satisfying it.

Solution

Add lines such as the following to your configuration files:

RewriteEngine On
RewriteCond "${HTTP_REFERER}" "~S$"
RewriteRule " (.*)" "/cgi-bin/need-referer" [PT,E=0RIG:$1]

Be sure to put these directives in an appropriate scope, or people won'’t
be able to type in your site’s URLs at all!

Discussion

The specific problem being addressed in the Solution is requests coming to your server
with no information about where they got the URL (which is passed in the Referer
request header field). This frequently indicates someone surfing directly to the page
rather than following a link, and in the case of images informaltable may be the result
of a “Save As” request on the user’s part. If you want to only serve requests that came
from links on your own site, you can change the RewriteCond directive to:

RewriteCond "${HTTP REFERER}" "!http://%{SERVER NAME}/" [NC]

The RewriteRule will pass the request to a CGI script named need-referer, and will put
the original URI into the environment variable ORIG for the script to reference. Note
that only the local portion of the URIis included; the hostname will not be, for instance.

The lack of a Referer request header field does not always signify
“*‘@ skulduggery. Some people consider it none of a site’s business how they

came to it, and don’t care to have their surfing patterns recorded. How-
ever, there’s no way Apache can tell why the header field was omitted,
so your need-referer script should explain the situation.

See Also
* Recipe 5.13

5.14 Redirecting Unreferred Requests to an Explanation Page | 99

5.15 Rewriting Based on the Query String

Problem
You want to translate one URI into another based on the value of the query string.
Solution
Put this in your httpd.conf:

RewriteCond "%{QUERY STRING}" "fuser=(["=]*)"

RewriteRule "/people" "http://%1.users.example.com/" [R]
Discussion

mod_rewrite does not consider the query string as part of the URI for matching and
rewriting purposes, so you need to treat it separately. The given example translates
requests of the form:

http://example.com/peopleuser=jones
http://jones.users.example.com/

The [R] tells mod_rewrite to direct the browser to the URL constructed by the
RewriteRule directive.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_alias.html

5.16 Redirecting All—or Part—of Your Server
to SSL

Problem

You want certain parts of your non-SSL Web space to be redirected to a secured area.

Solution

You can redirect everything that is attached to port 80 with the following RewriteRule:
RewriteCond "% {SERVER PORT}" "AgOS™
RewriteRule "~ (.*)S$" "https://%${SERVER NAME}$1" [R,L]

You can redirect particular URLs to a secure version:

RewriteRule "”/normal/secure(/.*)" "https://%{HTTP_HOST}$1" [R,L]

You can check to see whether the HTTPS environment variable is set:

100 | Chapter 5: Aliases, Redirecting, and Rewriting

http://example.com/people?user=jones
http://jones.users.example.com/
http://httpd.apache.org/docs/2.2/mod/mod_alias.html

RewriteCond "% {HTTPS}" "!=on"
RewriteRule "”(/secure/.*)" "https://%{HTTP_HOST}$1" [R,L]

Or, you can simply use the Redirect directive in the http section of httpd.conf file to to
cause a URL to be served as HTTPS:

Redirect "/" "https://secure.example.com/"

Make sure that this appears only in in the http scope and not in the https scope, or
all https requests will loop.

Discussion

The first solution causes all requests that come in on port 80 (normally the unencrypted
HTTP port) to be redirected to the same locations on the current server but accessed
through SSL. Note the use of SERVER NAME; because this is a complete site redirection,
it’s simplest to use the server’s official name for itself.

The directive shown in the second solution causes all portions of the server’s Web space
under http://myhost/mormal/secure to be redirected to the SSL location rooted at https://
myhost/. The use of HTTP_HOST rather than SERVER NAME means that only the location
and the scheme in the visitor’s browser, not the server name.

Note that using HTTP_HOST might break here, because it may contain the port num-
ber, too. If you expect HTTP_HOST to contain the port number, therefore, you’ll need
to compensate for this in your ruleset.

Note that the paths to the SSL and non-SSL locations differ; if you want the paths to
be the same except for the security, you can use something like the directives given in
the third solution.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_rewrite. html

5.17 Turning Directories into Hosthames

Problem

You want to migrate pathnames under a single hostname to distinct hostnames.

Solution

Use RewriteRule in httpd.conf:
RewriteRule ""/ (pathalpathb|pathc) (/.*)" "http://$1l.example.com$2" [R]
RewriteRule "~/ (["~./]1*) (/.*)" "http://S$1l.example.com$2" [R]
RewriteRule """/~ ([*./]1*) (/.*)" "http://$1.example.com$2" [R]

5.17 Turning Directories into Hosthames | 101

http://myhost/normal/secure
https://myhost/
https://myhost/
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

Discussion

The first recipe redirects requests of the form http://example.com/pathseg/some/
file.html to a different host, such as http://pathseg.example.com/somelfile.html, but only
for those requests in which pathseg is patha, pathb, or pathc.

The second recipe does the same thing, except that any top-level path segment is
redirected in this manner.

The third recipe splits the difference, redirecting all “user” requests to distinct hosts
with the same name as the user.

See Also
 http://httpd.apache.org/docs/2.2/mod/mod_rewrite. html

5.18 Redirecting All Requests to a Single Host

Problem
You want all requests made of your system to be redirected to a specific host.
Solution
Put this in your httpd.conf:
RewriteCond "${HTTP_HOST}" "1 *www.example.com" [NC, OR]
RewriteCond "% {SERVER NAME}" "!“www.example.com" [NC]
RewriteRule " (.*)" "http://www.example.com$1" [R]
Discussion

Any request handled by your server within the scope of the directives in the Solution
(which aren’t directed to the www.example.com host) is redirected there.

The two different RewriteCond directives are used to catch all requests made by some
host other than www.example.com, regardless of the redirection method.

The nC (No Case) flag makes the regular expression case-insensitive. That is, it makes
it match regardless of whether letters are upper- or lowercase.

The oR flag is a logical “or,” allowing the two conditions to be strung together so that
either one being true is a sufficient condition for the rule to be applied.

Finally, the R flag causes an actual Redirect to be issued, so that the browser will make
another request for the generated URL.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

102 | Chapter 5: Aliases, Redirecting, and Rewriting

http://example.com/pathseg/some/file.html
http://example.com/pathseg/some/file.html
http://pathseg.example.com/some/file.html
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.19 Turning Document Names into
Arguments

Problem

You want to redirect requests for documents to a CGI script, or other handler, that gets
the document names as an argument.

Solution
Use RewriteRule in httpd.conf:

RewriteRule "~/dir/ ([~./]1*)\.html" "/dir/script.cgi?doc=$1" [PT]

Discussion

This solution causes all requests for HTML documents in the specified location to be
turned into requests for a handler script that receives the document name as an
argument in the QUERY STRING environment variable.

The pr flag should be included to allow any appropriate subsequent URL rewriting or
manipulation to be performed.

See Also
 http://httpd.apache.org/docs/2.2/mod/mod_rewrite. html

5.20 Rewriting Elements between Path and
Query String

Problem

You want to turn portions of a URL into query-string parameters, or vice versa.

Solution

To rewrite http://example.com/path/to/5 to http://fexample.com/path/to?id=5:
RewriteRule "” (/path/to)/ (\d+)" "$1?id=$2" [PT]

To go the other way:

RewriteCond "${QUERY STRING}" "\bid=(\d+)\b"
RewriteRule " (/path/to)"™ "$1/%2" [PT,QSA]

5.19 Turning Document Names into Arguments | 103

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://example.com/path/to/5
http://example.com/path/to?id=5

Note that the arguments to the RewriteRule directives need to be struc-
tured differently if they occur in a .htaccess file. The above solution il-
98 lustrates the syntax if they’re putinto the server-wide configuration files.

Discussion

It is quite common for sites to have to change the way URLs are structured, either
moving portions into or out of the query-string portion. This often becomed necessary
when the underlying software is changed—say, from one blogging package to another.
The new software requires URLs to be in a different format, but you don’t want to
invalidate all the old-style URLSs that might be bookmarked or otherwise spread around
the Web.

This is a perfect application for mod_rewrite, and quite simple to accomplish as well,
as demonstrated in the solution.

See Also
* http://hitpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.21 Rewriting a Hostname to a Directory

Problem

You want requests for http://bogus.example.com/ to be turned into requests for http://
example.com/bogus/.

Solution
RewriteCond "${HTTP HOST}" "~ ([".]+)\.example\.com" [NC]
RewriteRule " (.*)" "http://example.com/%$1$1"™ [R]"

To do this transparently, without a redirect:

RewriteCond "${HTTP_HOST}" "~ ([".]+4)\.example\.com$" [NC]
RewriteRule " (.*)" "/%1$1" [PT]

Discussion

This technique is occasionally needed when wildcard hostnames are being supported.
It gives the illusion that URLs are pointing to separate hosts rather than subdirectories
on only one system. Of course, using the redirection ([R]) flag will void the illusion
because the replacement URL will be visible to the end user. If you want it to be com-
pletely transparent to the user, you can use the second option to get the equivalent
result with a rewrite internal to the server that the client never sees.

104 | Chapter 5: Aliases, Redirecting, and Rewriting

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://bogus.example.com/
http://example.com/bogus/
http://example.com/bogus/

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.22 Turning URL Segments into Query
Arguments

Problem
You want to turn requests of the form:

http://example.com/foo/bar.html

into something like this:

http://example.com/cgi-bin/remap?page=foo/bar.html

Solution

Add a line such as the following to your configuration file:
RewriteRule "/ (.*)" "/cgi-bin/remap?page=$1" [QSA,PT]

Discussion

The solution performs the rewrite in a manner completely transparent to the user, since
all the changes to how to find things are done within the server rather than giving the
users’s client a new URL to load.

The 0sa option allows any query-string information that was on the original request
to be retained and merged with the one being added by the RewriteRule. The PT option
tells the server to continue processing the request rather than treating it as completely
finished. This is necessary in order to have the new URL, which involves a CGI script,
handled correctly.

See Also
* Recipe 5.21

5.23 Using AliasMatch, ScriptAliasMatch, and
RedirectMatch

Problem

You want to use the basic functionality of the Alias or Redirect directives, but you need
to handle a bunch of related cases without needing one directive for each.

5.22 Turning URL Segments into Query Arguments | 105

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://example.com/foo/bar.html
http://example.com/cgi-bin/remap?page=foo/bar.html

Solution
Use the grouping syntax to manipulate the URI into filesystem paths:
AliasMatch "/users/ (.*)/" "/home/webonly/$1/"
Force browsers to learn the new URLs for directories relocated to their own hosts:

RedirectMatch permanent "/projects/ ([~/]+) (/.*)" "http://$1l.projectdomain.com$2"

Discussion

The AliasMatch, ScriptAliasMatch, and RedirectMatch directives use the same regular
expression syntax as the rest of Apache’s configuration language. They’re not as
powerful as the mod_rewrite directives, though, because they can’t be made conditional
and can’t reference environment variables. However, they tend to have less of a
performance impact on the server precisely because of their simpler syntax.

See Also

¢ Recipe 5.4
¢ Recipe 5.5

106 | Chapter 5: Aliases, Redirecting, and Rewriting

CHAPTER 6
Security

In this chapter, security means allowing people to see what you want them to see and
preventing them from seeing what you don’t want them to see. Additionally, there are
the issues of what measures you need to take on your server in order to restrict access
vianon-Web means. This chapterillustrates the precautions you need to take to protect
your server from malicious access and modification of your Web site.

The most common questions ask how to protect documents and restrict access.
Unfortunately, because of the complexity of the subject and the nature of the Web
architecture, these questions also tend to have the most complex answers or often no
convenient answers at all.

Normal security nomenclature and methodology separate the process of applying
access controls into two discrete steps; in the case of the Web, they may be thought of
as the server asking itself these questions:

* Are you really who you claim to be?

* Are you allowed to be here?

These steps are called authentication and authorization, respectively. Here’s a real-
world example: a flight attendant checks your photo identification (authentication)
and your ticket (authorization) before permitting you to board an airplane.

Authentication can be broken down into what might be called weak and strong. Weak
authentication is based on the correctness of credentials that the end user supplies
(which therefore may have been stolen from the real owner—hence the name “weak”),
whereas strong authentication is based on attributes of the request over which the end
user has little or no control, and it cannot change from request to request—such as the
IP address of his system.

Although checking authentication and authorization are clearly separate activities,
their application gets a bit blurred in the context of the Apache Web server modules.
Even though the main difference between the many security modules is how they store
the credentials (in a file, a database, an LDAP directory, etc.), they nevertheless have
to provide the code to retrieve the credentials from the store, validate those supplied

107

by the client, and check to see if the authenticated user is authorized to access the
resource. In other words, there’s a lot of functionality duplicated from module to mod-
ule, and although there are frequently similarities between their behavior and directives,
the lack of shared code means that sometimes they’re not quite as similar as you’d hope.
This overloading of functionality has been somewhat addressed in the next version of
the Web server after 2.0 (still in development at the time of this writing).

In addition to the matter of requiring a password to access certain content from the
Web server, there is the larger issue of securing your server from attacks. As with any
software, Apache has, at various times in its history, been susceptible to conditions that
would allow an attacker to gain inappropriate control of the hosting server. For exam-
ple, an attacker may have been able to access, or modify, files that the site administrator
had not intended to give access to, or an attacker may have been able to execute com-
mands on the target server. Thus, it is important that you know what measures need
to be taken to ensure that your server is not susceptible to these attacks.

The most important measure that you can take is to keep apprised of new releases, and
read the CHANGES file to determine if the new version fixes a security hole to which you
may be subject. Running the latest version of the Apache server is usually a good
measure in the fight against security vulnerabilities.

Recipes in this chapter show you how to implement some of the frequently requested
password scenarios, as well as giving you the tools necessary to protect your server from
external attacks.

Authentication and Authorization

When checking for access to restricted documents, there are actually two different
operations involved: checking to see who you are, and checking to see if you’re allowed
to see the document.

The first part, checking to see who you are, is called authentication. The Web server
doesn’t know who you are, so you need to provide some proof of your identity, such
as a username and matching password. When the server successfully compares these
bits of information (called credentials) with those in its databases, the server will pro-
ceed, but if you’re not in the list, or the information doesn’t match, the server will turn
you away with an error status.

Once you have convinced the server you are who you say you are, it will look at the list
of people allowed to access the document and see if you're on it; this is called author-
ization. If you are on the list, access proceed normally; otherwise, the server returns an
error status and denies access.

The two different operations do not differentiate in the errors they return; it is always
a 401 (unauthorized) code, even if the failure was in authentication. This is to prevent
would-be attackers from being able to tell when they have valid credentials.

108 | Chapter 6: Security

6.1 Using System Account Information for
Web Authentication

Problem

You want all the users on your Unixish system to be able to authenticate themselves
over the Web using their already-assigned usernames and passwords.

Solution

Set up a realm using mod_auth and name /etc/passwd as the AuthUserFile:

<Directory "/home">
AuthType Basic
AuthName HomeDir
AuthUserFile /etc/passwd
Require valid-user
Satisfy All

</Directory>

Discussion

We must stress that using system account information for Web authentication is a very
bad idea, unless your site is also secured using SSL. For one thing, any intruder who
happens to obtain one of your users’ credentials not only can access the protected files
over the Web, but can actually log onto your system where it’s possible to do significant
damage. For another, Web logins don’t have the same security controls as most oper-
ating systems; over the Web, an intruder can keep hammering away at a username with
password after password without the system taking any defensive measures; all
mod_auth will do is record a message in the Apache error log. However, most operating
systems will enter a paranoid mode and at least ignore login attempts for a while after
some number of failures.

If you still want to do this, either because you consider the risk acceptable or because
it doesn’t apply in your situation, the httpd.conf directives in the Solution will do the
trick. The syntax and order of the fields in a credential record used by mod_auth hap-
pens (and not by accident) to match the standard layout of the /etc/passwd lines.
mod_auth uses a simple text file format in which each line starts with a username and
password and may optionally contain additional fields, with the fields delimited by
colons. For example:

smith:S$Saprl$GLWeF/. .$8hOXRFUpHhBJHpOUdNFe51

mod_auth ignores any additional fields after the password, which is what allows
the /etc/passwd file to be used. Note that the password in the example is encrypted.

6.1 Using System Account Information for Web Authentication | 109

You can manage Apache mod_auth credential files with the htpasswd utility, but don’t
use this utility on the /etc/passwd file! Use the normal account maintenance tools for
that.

Note that this technique will not work if shadow passwords are in use, because the
password field of /etc/passwd contains nothing useful in that situation. Instead, the
passwords are stored in the file /etc/shadow, which is readable only by root, while
Apache runs as an unprivileged user. Furthermore, most modern Unixish operating
systems use the /etc/shadow means of user authentication by default.

See Also

* The Authentication and Authorization sidebar, earlier in this chapter
e The HTTP, Browsers, and Credentials sidebar, later in this chapter

* The Weak and Strong Authentication sidebar, later in this chapter

* The htpasswd manpage

* The passwd(5) manpage

6.2 Setting Up Single-Use Passwords

Problem

You want to be able to provide credentials that will allow visitors into your site only
once.

Solution

No solution is available with standard Apache features.

Discussion

As described in the HTTP, Browsers, and Credentials sidebar, the concept of being
“logged in” to a site is an illusion. In order to achieve the desired one-time-only effect,
the server needs to complete the following steps:

1. Note the first time the user successfully presents valid credentials.
2. Somehow, associate that fact with the user’s “session.”
3. Never allow those credentials to succeed again if the session information is different

from the first time they succeeded.

The last step is not a simple task, and it isn’t a capability provided in the standard
Apache distribution. To complicate matters, there is the desire to start a timeout once
the credentials have succeeded, so that the user doesn’t authenticate once and then
leave his browser session open for days and retain access.

110 | Chapter 6: Security

Fulfilling this need would require a custom solution. Unfortunately, we are not aware
of any open or public modules that provide this capability; however, search and watch
the module registry for possible third-party implementations.

See Also

* Recipe 6.3
* http://modules.apache.org

6.3 Expiring Passwords

Problem

You want a user’s username and password to expire at a particular time or after some
specific interval.

Solution

No solution is available with standard Apache features, but a few third-party solutions
exist.

Discussion

Refer to the HTTP, Browsers, and Credentials sidebar. In order for Apache to provide
this functionality, it would need to store more than just the valid username and pass-
word; it would also have to maintain information about the credentials’ expiration
time. No module provided as part of the standard Apache distribution does this.

There are several third-party solutions to this problem, including the Perl module
Apache::Htpasswd::Perishable and the mod_perl handler Apache::AuthExpire.

There are two slightly different ways to look at this problem, that will influence your
choice of a solution. You may want a user’s authentication to be timed out after a certain
amount of time, or perhaps after a certain period of inactivity, forcing them to log in
again. Or you may want a particular username/password pair to be completely expired
after a certain amount of time, so that it no longer works. The latter might be used
instead of a single-use password, which is impractical to implement in HTTP.

Apache::Htpasswd::Perishable partially implements the latter interpretation of the
problem by adding expiration information to the password file. Inheriting from the
Apache::Htpasswd module, it adds two additional methods, expire and extend, which
set an expiration date on the password and extend the expiration time, respectively.

For example, the following code will open a password file and set an expiration date
on a particular user entry in that file:

use Apache::Htpasswd::Perishable;

6.3 Expiring Passwords | 111

http://modules.apache.org

my S$pass = Apache::Htpasswd::Perishable->new ("/usr/local/apache/passwords/user.pass")

or die "Could not open password file.";
Spass->expire('waldo', 5); # Set the expiration date 5 days in the future

Such a mechanism is only useful if expired passwords are removed from the password
file periodically. This can be accomplished by running the following cron script every
day. This will delete those users for whom the expiration date has passed:

#! /usr/bin/perl
use Apache::Htpasswd::Perishable;

my Spassword file = '/usr/local/apache/passwords/user.pass';

open (F, $Spassword file) or die "Could not open password file.";
my @users;
while (my S$user = <F>) {

Suser =~ s/ ([":])+:.*%5/$1/;

push Qusers, S$user;

}

close F;

my $pass = Apache::Htpasswd::Perishable->new (Spassword file) or die
"Could not open password file.";

foreach my $user (Qusers) {
Spass->htDelete ($user) unless S$pass->expire(Suser) > 0;

}

Apache::AuthExpire, by contrast, implements timeouts on “login sessions.” That is, a
user must reauthenticate after a certain period of inactivity. This gives you protection
against the user who steps away from her computer for a few moments, leaving herself
“logged in.”

As previously discussed, HTTP is stateless so it does not really have a concept of being
logged in. However, by watching repeated connections from the same address, such a
state can be simulated.

To use the expiring functionality offered by Apache::AuthExpire, download the module
from CPAN, and install it:

perl -MCPAN -e shell
cpan>install Apache::AuthExpire

Then configure your Apache server to use this module for your authentication handler:

PerlAuthenHandler Apache::AuthExpire
PerlSetVar DefaultLimit 7200

The given example will time out idle connections after 7,200 seconds, which is 2 hours.

See Also

¢ Recipe 6.2
* http://modules.apache.org
* http://search.cpan.org/author/[JHORNER/Apache-AuthExpire/AuthExpire.pm

112 | Chapter 6: Security

http://modules.apache.org
http://search.cpan.org/author/JJHORNER/Apache-AuthExpire/AuthExpire.pm

* http://search.cpan.orglauthor/ALLENDAY/Apache-Htpasswd-Perishable/Perisha
ble.pm

6.4 Limiting Upload Size

Problem

With more and more Web hosting services allowing customers to upload documents,
uploads may become too large. With a little creativity, you can put a limit on uploads
by using the security capabilities of the server.

Solution

Assume you want to put a limit on uploads of ten thousand (10,000) bytes. The simplest
way to do this is to add a LimitRequestBody directive to the appropriate scope:
<Directory "/usr/local/apache2/uploads">

LimitRequestBody 10000
</Directory>

If a user ties to send a request that’s too large, he’ll get an error message. However, the
default Apache message may leave something to be desired so you can either tailor it
with a ErrorDocument 413 directive, or with some more complex (and more flexible)
jiggery-pokery such as the following:

SetEnvIf Content-Length "~[1-9][0-9]{4,}" upload too large=1
<Location /upload>

Order Deny,Allow

Deny from env=upload too_large

ErrorDocument 403 /cgi-bin/remap-403-to-413
</Location>

You can tailor the response by making the /cgi-bin/remap-403-to-413 script look
something like this:

#! /usr/local/bin/perl

#

Perl script to turn a 403 error into a 413 IFF
the forbidden status is because the upload was
too large.

#

if ($ENV{'upload too large'}) {
#
Constipation!
#

print <<EOHT
Status: 413 Request Entity Too Large
Content-type: text/plain; charset=iso-8859-1
Content-length: 84

Sorry, but your upload file exceeds the limits
set forth in our terms and conditions.

6.4 Limiting Upload Size | 113

http://search.cpan.org/author/ALLENDAY/Apache-Htpasswd-Perishable/Perishable.pm
http://search.cpan.org/author/ALLENDAY/Apache-Htpasswd-Perishable/Perishable.pm

EOHT
}
else {
#
This is a legitimate "forbidden" error.
#
my Suri = $ENV{'REDIRECT_REQUEST_URI'};
my S$clength = 165 + length(Suri);
print <<EOHT
Status: 403 Forbidden
Content-type: text/html; charset=iso-8859-1
Content-length: S$clength

<html>
<head>
<title>Forbidden</title>
</head>
<body>
<hl>Forbidden</hl>
<p>
You don't have permission to access Suri
on this server.
</p>
</body>
</html>
EOHT

}
exit (0);

Discussion

This script is invoked when a request results ina 403 Forbidden error (which is what
the Deny directive causes if it’s triggered). It checks to see if it’s a real forbidden con-
dition, or whether the upload file is too large, displaying an appropriate error page.

Note that both paths issue a status CGI response header field; this is necessary to
propagate the correct status back to the client. Without this, the status code would be
200 OK because the script would have been invoked successfully, which is hardly the
appropriate status. An incorrect status code may cause the browser to report to the user
that the file was uploaded successfully, which might generate confusion, as this may
be in conflict with the message of the error page.

Actually, there is a status value that corresponds to “you sent me something too large”
(413), so we remap the Deny’s 403 (Forbidden) status to it.

The same Content-length field is used to indicate the amount of data

"E‘% included in a POST request, such as from a Web form submission, so be

I; careful not to set your maximum too low or your forms may start getting
this error!

114 | Chapter 6: Security

See Also
e Chapter 9

6.5 Restricting Images from Being Used Off-
Site

Problem

Other sites are linking to images on your system, stealing bandwidth from you and
incidentally making it appear as though the images belong to them. You want to ensure
that all access to your images is from documents that are on your server.

Solution

Add the following lines to the .htaccess file in the directory where the images are, or to
the appropriate <Directory> container in the httpd.conf file. Replace the
myserver.com with your domain name:
<FilesMatch "\. (jpglipeglgif|png)s$">
SetEnvIfNoCase Referer "“http://(["/]1*\.)?myserver.com/" local referrer=1
Order Allow,Deny

Allow from env=local referrer
</FilesMatch>

In fact, by using the following recipe, you can even go one step further, and return a
different image to users accessing your images via an off-site reference:
SetEnvIfNoCase Referer "“http://(["/]1*\.)?myserver.com/" local referrer=1

RewriteCond "%{ENV:local referer}" "!=1"
RewriteRule ".*" "/Stolen-100x100.png" [L]

Discussion

The first solution will cause all requests for image files to be refused with a
403 Forbidden status unless the link leading to the request was in one of your own
documents. This means that anyone linking to your images from a different Web site
system will get the error instead of the image, because the referer does not match the
approved server name.

Note that this technique can cause problems for requests that do not include a
Referer request header field, such as people who visit your site through an anonym-
izing service or who have their browser configured not to send this information.

The second solution is similar to the first, except that it substitutes an image of your
choice for the one requested, rather than denying the request. Using the values in the
Solution, you can construct a Stolen-100x100.png that has whatever admonitory mes-
sage or perhaps just some picture that will deter the visitor from “stealing” your images.

6.5 Restricting Images from Being Used Off-Site | 115

This technique has a tendency to get the problem fixed more quickly,
since visitors to the thieving site will see “This Image Is Stolen!”—and
%s" that’s typically not the impression the site’s owners would like them to
* get. Simply returning a 403 (Forbidden) error will result in a broken-
image icon on the referring page, and everyone is used to those
nowadays and thinks nothing of them.

See Also
* Recipe 6.21

6.6 Requiring Both Weak and Strong
Authentication

Problem

You want to require both weak and strong authentication for a particular resource. For
example, you wish to ensure that the user accesses the site from a particular location
and to require that he provides a password.

Solution

Use the Satisfy directive to require both types of authentication:

<Directory /www/htdocs/sensitive>

Enforce all restrictions
Satisfy All

Require a password

AuthType Basic

AuthName Sensitive

AuthUserFile /www/passwords/users
AuthGroupFile /www/passwords/groups
Require group salesmen

Require access from a certain network
Order deny,allow
Deny from all
Allow from 192.168.1
</Directory>

Discussion

In this example, a user must provide a login, identifying him as a member of the sales-
men group, and he must also use a machine on the 192.168.1 network.

116 | Chapter 6: Security

The Satisfy All directive requires that all access control measures be enforced for the
specified scope. A user accessing the resource from a nonmatching IP address will
immediately receive a Forbidden error message in his browser, while, in the logfile,
the following error message is logged:

[Sun May 25 15:31:53 2003] [error] [client 208.32.53.7] client denied by server
configuration: /usr/local/apache/htdocs/index.html

Users who are in the required set of IP addresses, however, receive a password dialog
box and are required to provide a valid username and password.

Looking forward a little bit, the syntax of this recipe will change somewhat with the
2.4 release of the Web server. The Allow, Deny, and Satisfy directives have long con-
fused Apache admins, and so this syntax has been revised.

The new syntax will look something like the following, with the old syntax still being
available to those who want it by use of the mod_access_compat module.

The Satisfy All command will look like:

<SatisfyAll>
Require group salesmen
Require ip 192.168.1
</SatisfyAll>

See also the SatisfyOne directive, which replaces the Satisfy any syntax.

See Also
* Recipe 6.9

6.7 Managing .htpasswd Files

Problem

You wish to create password files for use with Basic HTTP authentication.

Solution

Use the htpasswd utility to create your password file, as in Table 6-1.

Table 6-1. Managing password files with htpasswd

Command Action

% htpasswd -cuser.pass waldo Create a new password file called user.pass with
this one new entry for user waldo. Will prompt for
password.

% htpasswd user.pass ralph Add an entry for user ralph in password file
user.pass. Will prompt for password.

6.7 Managing .htpasswd Files | 117

Command Action

% htpasswd -buser.pass ralph Add a user ralph to password file user.pass with
mydogspot password mydogspot.

Or, use the Perl module Apache::Htpasswd to manage the file programmatically:

use Apache: :Htpasswd;
$pass = new Apache: :Htpasswd ("/usr/local/apache/passwords/user.pass") or
die "Couldn't open password file.";

Add an entry
Spass->htpasswd ("waldo", "emerson");

Delete entry
Spass->htDelete ("waldo") ;

Discussion

The htpasswd utility, which comes with Apache, is located in the bin subdirectory.
W
. On some third-party distributions of Apache, the htpasswd program has
been copied into a directory in your path, but ordinarily it will not be

%s" in your path; you will either have to put it there, or provide the full path
" to the program in order to run it, such as /usr/local/apache/bin/htpasswd.

aqs
(R

The first line of the Solution creates a new password file at the specified location. That
is, in the example given, it creates a new password file called user.pass, containing a
username and password for a user waldo. You will be prompted to enter the desired
password, and then prompted to repeat the password for confirmation.

The -c flag creates a new password file, even if a file of that name already exists, so
make sure that you only use this flag the first time. After that, using it causes your
existing password file to be obliterated and replaced with the (almost empty) new one.

The second line in the Solution adds a password to an existing password file. As before,
the user is prompted to enter the desired password, and then prompted to confirm it
by typing it again.

The examples given here create a password file using the crypt algorithm by default
on all platforms other than Windows, Netware, and TPF. On those platforms, the MD5
algorithm is used by default.

For platforms that use crypt, each line of the password file looks something like:

waldo:/z320W/ruTI8U

The portion of the line following the username and colon is the encrypted password.
Other usernames and passwords appear one per line.

118 | Chapter 6: Security

The htpasswd utility provides other options, such as the ability to use the MD5 algo-
rithm to encrypt the password (the -m flag), provide the password on the command
line rather than being prompted for it (the -b flag), or print the results to stdout, rather
than altering the password file (the -n flag).

The -b flag can be particularly useful when using the htpasswd utility to create pass-
words in some scripted fashion, rather than from an interactive prompt. The third line
of the recipe above illustrates this syntax.

As of Apache 2.0.46, the -D flag lets you delete an existing user from the password file:

% htpasswd -D user.pass waldo

whereas in previous versions, you would need to use some alternate method to remove
lines from the file. For example, you could remove a line using grep, or simply open
the file in a text editor:

)

% egrep -v

A v

waldo:' user.pass >! user.pass

Apache::Htpasswd, written by Kevin Meltzer, is available from CPAN (http://cpan.org)
and gives a Perl interface to Apache password files. This allows you to modify your
password files from CGI programs or via other mechanisms, using just a few lines of
Perl code as shown in the recipe.

In addition to the methods demonstrated in this recipe, there are also methods for
checking a particular password against the contents of the password file, obtaining a
list of users from the file, or retrieving the encrypted password for a particular user,
among other things. See the documentation for this fine module for the full details on
its many features.

One final note about your password file. We strongly recommend that you store your
password file in some location that is not accessible through the Web (i.e., outside of
your document directory). By putting it in your document directory, you run the risk
of someone downloading the file and running a brute-force password-cracking
algorithm against it, which will eventually yield your passwords for them to use.

See Also

* Recipe 6.8
* http://search.cpan.orglauthor/KMELTZ/Apache-Htpasswd/Htpasswd.pm

6.8 Making Password Files for Digest
Authentication

Problem

You need to create a password file to be used for Digest authentication.

6.8 Making Password Files for Digest Authentication | 119

http://cpan.org
http://search.cpan.org/author/KMELTZ/Apache-Htpasswd/Htpasswd.pm

Solution
Use the following command forms to set up a credential file for a realm to be protected
by Digest authentication:

% htdigest -c "By invitation only" rbowen
$htdigest "By invitation only" krietz

Discussion

Digest authorization, implemented by mod_auth_digest, uses an MD5 hash of the user-
name, password, and authentication realm to check the credentials of the client. The
htdigest utility, which comes with Apache, creates these files for you.

The syntax for the command is very similar to the syntax for the htpasswd utility, except
that you must also specify the authentication realm that the password will be used for.
The resulting file contains one line per user, looking something like the following:

rbowen:By invitation only:23bc21£78273£f49650d4b8c2e26141a6
Note that, unlike entries in the password files created by htpasswd, which can be used

anywhere, these passwords can be used only in the specified authentication realm,
because the encrypted hash includes the realm.

As with htpasswd, the -c flag creates a new file, possibly overwriting an existing file.
You will be prompted for the password and then asked to type it again to verify it.

htdigest does not have any of the additional options that htpasswd does.

See Also
* Recipe 6.7

6.9 Relaxing Security in a Subdirectory

Problem

There are times when you might want to apply a tight security blanket over portions
of your site, such as with something like:
<Directory /usr/local/apache/htdocs/BoD>
Satisfy All
AuthUserFile /usr/local/apache/access/bod.htpasswd
Require valid-user
</Directory>

Because of Apache’s scoping rules, this blanket applies to all documents in that direc-
tory and in any subordinate subdirectories underneath it. But suppose that you want
to make a subdirectory, such as BoD/minutes, available without restriction.

120 | Chapter 6: Security

Solution

The Satisfy directive is the answer. Add the following to either the .htaccess file in the
subdirectory or in an appropriate <Directory> container:
Satisfy Any

Order Deny,Allow
Allow from all

HTTP, Browsers, and Credentials

It is easy to draw incorrect conclusions about the behavior of the Web; when you have
a page displayed in your browser, it is natural to think that you are still connected to
thatsite. In actuality, however, that’s not the case—once your browser fetches the page
from the server, both disconnect and forget about each other. If you follow a link, or
ask for another page from the same server, a completely new exchange has begun.

When you think about it, this is fairly obvious. It would make no sense for your browser
to stay connected to the server while you went off to lunch or home for the day.

Each transaction that is unique and unrelated to others is called stateless, and it has a
bearing on how HTTP access control works.

When it comes to password-protected pages, the Web server doesn’t remember wheth-
er you've accessed them before or not. Down at the HTTP level where the client
(browser) and server talk to each other, the client has to prove who it is every time; it’s
the client that remembers your information.

When accessing a protected area for the first time in a session, here’s what actually gets
exchanged between the client and the server:

1. The client requests the page.

2. The server responds, “You are not authorized to access this resource (a
401 unauthorized status). This resource is part of authentication realm xvz.”
(This information is conveyed using the WwWwW-Authenticate response header
field; see RFC 2616 for more information.)

3. If the client isn’t an interactive browser, at this point it probably goes to step 7. If
it is interactive, it asks the user for a username and password, and shows the name
of the realm the server mentioned.

4. Having gotten credentials from the user, the client reissues the request for the
document—including the credentials this time.

5. The server examines the provided credentials. If they’re valid, it grants access and
returns the document. If they aren’t, it responds as it did in step 2.

6. If the client receives the unauthorized response again, it displays some message
about it and asks the user if he wants to try entering the username and password
again. If the user says yes, the client goes back to step 3.

7. If the user chooses not to reenter the username and password, the client gives up
and accepts the “unauthorized” response from the server.

6.9 Relaxing Security in a Subdirectory | 121

Once the client has successfully authenticated with the server, it remembers the cre-
dentials, URL, and realm involved. Subsequent requests that it makes for the same
document or one “beneath” it (e.g., /foo/bar/index.html is “beneath” /foo/index.html)
causes it to send the same credentials automatically. This makes the process start at
step 4, so even though the challenge/response exchange is still happening between the
client and the server, it’s hidden from the user. This is why it’s easy to get caught up in
the fallacy of users being “logged on” to a site.

This is how all HT TP weak authentication works. One of the common features of most
interactive Web browsers is that the credentials are forgotten when the client is shut
down. This is why you need to reauthenticate each time you access a protected
document in a new browser session.

Discussion

This tells Apache that access is granted if the requirements of either the weak (user
credentials) or strong protection (IP address) mechanisms are fulfilled. Then it goes on
to say that the strong mechanism will always be happy regardless of the visitor’s origin.

Be aware that this sets a new default security condition for all subdirectories below the
one affected. In other words, you are not just unlocking the one subdirectory but all of
its descendants as well.

See Also

* Recipe 6.6
* Recipe 6.10

6.10 Lifting Restrictions Selectively

Problem

You want most documents to be restricted, such as requiring a username and password,
but want a few to be available to the public. For example, you may want index.html to
be publicly accessible, whereas the rest of the files in the directory require password
authentication.

Solution
Use the Satisfy Any directive in the appropriate place in your .htaccess or httpd.conf file:

<Files index.html>
Order Deny,Allow
Allow from all
Satisfy Any
</Files>

You canlocate this in a.htaccess file, or within a <Directory> container to limit its effect:

122 | Chapter 6: Security

<Directory "/usr/local/apache/htdocs">
Satisfy All
Order allow,deny
Deny from all
<Files *.html>
Order deny,allow
Allow from all
Satisfy Any
</Files>
</Directory>

Discussion

Regardless of what sorts of restrictions you may have on other files, or on the directory
as a whole, the <Files> container in the solution makes the index.hitml file accessible
to everyone without limitation. Satisfy Any tells Apache that any of the restrictions in
place may be satisfied, rather than having to enforce any particular one. In this case,
the restriction in force will be Allow from all, which permits access for all clients.

This method can be easily extended to apply to arbitrary filename patterns using shell
global characters. To extend it to use regular expressions for the filename, use the
<FilesMatch> directive instead.

Weak and Strong Authentication

The basic Apache security model for HTTP is based on the concepts of weak and
strong authentication mechanisms. Weak mechanisms are those that rely on informa-
tion volunteered by the user; strong ones use credentials obtained without asking him.
For instance, a username and password constitute a set of weak credentials, whereas
the IP address of the user’s client system is regarded as a strong one.

One difference between the two types lies in how Apache handles an authentication
failure. If invalid weak credentials are presented, the server will respond with a 401
Unauthorized status, which allows the user to try again. In contrast, a failure to
authenticate when strong credentials are required will result in a 403 Forbidden sta-
tus—for which there is no opportunity to retry.

In addition, strong and weak credentials can be required in combination; this is con-
trolled by the Satisfy directive. The five possible requirements are:

* None; no authentication required.

* Only strong credentials are needed.

* Only weak credentials are required.

* Bothstrongand weak credentials are accepted; if either is valid, access is permitted.

* Both strong and weak credentials are required.

6.10 Lifting Restrictions Selectively | 123

See Also

* Recipe 6.9
* Recipe 6.6
* http://httpd.apache.org/docs/mod/mod_access.html

6.11 Authorizing Using File Ownership

Problem

You wish to require user authentication based on system file ownership. That is, you
want to require that the user that owns the file matches the username that
authenticated.

Solution

Use the Require file-owner directive:

<Directory /home/*/public html/private>
AuthType Basic
AuthName "MyOwnFiles"
AuthUserFile /some/master/authdb
Require file-owner

</Directory>

Discussion

The goal here is to require that username jones must authenticate in order to access
the /home/jones/public_html/private directory.

The user does not authenticate against the system password file but against the
AuthUserFile specified in the example. Apache just requires that the name used for
authentication matches the name of the owner of the file or directory in question. Note
also that this is a feature of mod_auth and is not available in other authentication
modules.

)

This feature was added in Apache 1.3.22. In Apache 2.2, this function-
ality is provided by the module mod_authz_owner.

See Also

* The Require file-group keyword at http://httpd.apache.org/docs/mod/
mod_auth.html#require

124 | Chapter 6: Security

http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/mod_auth.html#require
http://httpd.apache.org/docs/mod/mod_auth.html#require

6.12 Storing User Credentials in a MySQL
Database

Problem

You wish to use user and password information in your MySQL database for authen-
ticating users.

Solution
For Apache 1.3, use mod_auth_mysql:

Auth MySQL Info db_host.example.com db_user my password
Auth MySQL General DB auth database name

<Directory /www/htdocs/private>
AuthName "Protected directory"
AuthType Basic
require valid-user
</Directory>

For Apache 2.2 and later, use mod_authn_dbi:

AuthnDbiDriver Configl mysqgl

AuthnDbiHost Configl db.example.com
AuthnDbiUsername Configl db username
AuthnDbiPassword Configl db password
AuthnDbiName Configl auth database name
AuthnDbiTable Configl auth database table
AuthnDbiUsernameField Configl user field
AuthnDbiPasswordField Configl password field
AuthnDbiIsActiveField Configl is active field

AuthnDbiConnMin Configl 3
AuthnDbiConnSoftMax Configl 12
AuthnDbiConnHardMax Configl 20
AuthnDbiConnTTL Configl 600

<Directory "/www/htdocs/private">
AuthType Digest
AuthName "Protected directory>
AuthBasicProvider dbi
AuthnDbiServerConfig Configl
Require valid-user

</Directory>

Discussion

There are a number of modules called mod_auth_mysql. The module used in the pre-
vious example is the mod_auth_mysql from http://www.diegonet.com/support/
mod_auth_mysql.shtml. For the full explanation of the database fields that you will need

6.12 Storing User Credentials in a MySQL Database | 125

http://www.diegonet.com/support/mod_auth_mysql.shtml
http://www.diegonet.com/support/mod_auth_mysql.shtml

to create, and the additional options that the module affords, you should consult the
documentation on the Web site.

If you are running Apache 2.2 or later, you will want to take advantage of the new
authentication framework, and use the module mod_authn_dbi, available from http://
open.cyanworlds.com/mod_authn_dbi. Because of the new authentication API in
Apache 2.2, a number of things are possible that were not possible in earlier versions.
For example, a single module, such as mod_authn_dbi, can be used for either Basic or
Digest authentication, by simply changing the AuthType directive from Basic to
Digest. (AuthBasicProvider would also become AuthDigestProvider in the previous
example.)

mod_authn_dbi uses libdbi, which is a generic database access library, allowing you to
use your favorite database server to provide authentication services. libdbi drivers are
available for most popular database servers. For a more complete description of
mod_authn_dbi, you should consult the documentation on the Web site.

See Also

* http://www.diegonet.com/support/mod_auth_mysql.shtml
* http://open.cyanworlds.com/mod_authn_dbi

6.13 Accessing the Authenticated Username

Problem

You want to know the name of the user who has authenticated.

Solution

Some scripting modules, such as mod_php, provide a standard interface for accessing
values set by the server. For instance, to obtain the username that was used to authen-
ticate from within a PHP script, it would access a field in the $ SERVER superglobal
array:

Sauth user = $ SERVER['REMOTE USER'];

For a Perl or mod_perl script, use:

my $username = SENV{REMOTE USER};

In a Server-Side Include (SSI) directive, this may look like:
Hello, user <!--#echo var="REMOTE USER" -->. Thanks for visiting.
Other scripting modules may provide specific means of accessing this information. For

those that don’t, or for nonscript applications, use the appropriate means to consult
the REMOTE_USER environment variable.

126 | Chapter 6: Security

http://open.cyanworlds.com/mod_authn_dbi
http://open.cyanworlds.com/mod_authn_dbi
http://www.diegonet.com/support/mod_auth_mysql.shtml
http://open.cyanworlds.com/mod_authn_dbi

Discussion

When a user has authenticated, the environment variable REMOTE USER is set to the
name with which she authenticated. You can access this variable in CGI programs, SSI
directives, PHP files, and a variety of other methods. The value also will appear in your
access_log file.

Note that although it is the convention for an authentication module to set this variable,
there are reportedly some third-party authentication modules that do not set it but
provide other methods for accessing that information.

See Also
* Recipe 6.14

6.14 Obtaining the Password Used to
Authenticate

Problem

You want to get the password the user used to authenticate.

Solution

Standard Apache modules do not make this value available. It is, however, available
from the Apache API if you wish to write your own authentication methods.

In the Apache 1.3 API, you need to investigate the ap_get basic auth pw function.
In the 2.0 API, look at the get_basic auth function.

If you write an authentication handler with mod_perl, you can retrieve the username
and password with the get username function:

my ($username, S$password) = get username (Sr);
You can make this information available to CGI scripts executed by the server if you
rebuild the package with the appropriate flag. For Apache 1.3 and 2.0:

% CFLAGS="$CFLAGS -DSECURITY HOLE PASS AHTORIZATION"

Discussion

For security reasons, although the username is available as an environment variable,
the password used to authenticate is not available in any simple manner. The rationale
behind this is that it would be a simple matter for unscrupulous individuals to capture
passwords so that they could then use them for their own purposes. Thus, the decision
was made to make passwords near to impossible to obtain.

6.14 Obtaining the Password Used to Authenticate | 127

The only way to change this is to rebuild the server from the sources with a particular
(strongly discouraged) compilation flag. Alternately, if you write your own authenti-
cation module, you would of course have access to this value, as you would need to
verify it in your code.

See Also
* Recipe 6.13

6.15 Preventing Brute-Force Password
Attacks

Problem

You want to disable a username when there are repeated failed attempts to authenticate
using it, as if it is being attacked by a password-cracker.

Solution

There is no way to do this with standard Apache authentication modules. The usual
approach is to watch your logfile carefully. Or you can use something like
Apache::BruteWatch to tell you when a user is being attacked:

PerlLogHandler Apache::BruteWatch

PerlSetVar BruteDatabase DBI:mysqgl:brutelog

PerlSetVar BruteDataUser username
PerlSetVar BruteDataPassword password

PerlSetVar BruteMaxTries 5

PerlSetVar BruteMaxTime 120

PerlSetVar BruteNotify rbowenlexample.com
Discussion

Because of the stateless nature of HTTP and the fact that users are not, technically,
“logged in” at all (see the HTTP, Browsers, and Credentials sidebar, earlier in this
chapter), there is no connection between one authentication attempt and another. Most
Apache auditing tools, such as mod_security, work on a per-request basis, and have no
way to compare one request to another to build a profile across multiple requests. This
makes it possible to repeatedly attempt to log in with a particular username, without
it being easily dectable by any automated tool.

Your best bet is to carefully watch the log files, or to have some process which watches
the log files for you.

Apache::BruteWatch is one way to watch the logfile and send notification when a
particular account is being targeted for a brute-force password attack. With the con-

128 | Chapter 6: Security

figuration shown above, if a given account fails authentication five times in two mi-
nutes, the server administrator will be notified of the situation, so that she can take
appropriate measures, such as blocking the offending address from the site.

Apache::BruteWatch is available from CPAN (CPAN.org (hitp://CPAN.org)) and re-
quires mod_perl to run.

We are not, at this time, aware of another module that does this in real time.

See Also

* The HTTP, Browsers, and Credentials sidebar, earlier in this chapter

6.16 Using Digest Versus Basic
Authentication

Problem

You want to understand the distinction between the Basic and Digest authentication
methods.

Solution

Use AuthType Basic and the htpasswd tool to control access using Basic authentica-
tion. Use AuthType Digest and the htdigest tool for the Digest method.

Discussion

Basic Web authentication is exactly that: primitive and insecure. It works by encoding
the user credentials with a reversible algorithm (essentially base-64 encoding) and
transmitting the result in plaintext as part of the request header. Anyone (or anything)
that intercepts the transmission can easily crack the encoding of the credentials and
use them later. As a consequence, Basic authentication should only be used in envi-
ronments where the protected documents aren’t truly sensitive or when there is no
alternative.

In contrast, Digest authentication uses a more secure method that is much less
susceptible to credential theft, spoofing, and replay attacks. The exact details don’t
matter; the essential ingredient is that no username or password traverses the network
in plaintext.

Preparing a realm to use Basic authentication consists of simply storing the username/
password pair and telling the server where to find them. The password may or may not
be encrypted. The same credentials may be applied to any realm on the server, or even
copied to a completely different server and used there. They may be stored in a variety

6.16 Using Digest Versus Basic Authentication | 129

http://CPAN.org
http://CPAN.org

of databases; multiple modules exist for storing Basic credentials in flat text files,
GDBM files, MySQL databases, LDAP directories, and so on.

Setting up Digest authentication is a little more involved. For one thing, the credentials
are not transportable to other realms; when you generate them, you specify the realm
to which they apply. For another, the only storage mechanism currently supported
directly by the Apache package is flat text files; if you want to keep your Digest cre-
dentials in an LDAP directory or Oracle database, you’re going to have to look for third-
party modules to do it or else write one yourself.

In addition to the more complex setup process, Digest authentication currently suffers
from a lack of market penetration. That is, even though Apache supports it, not all
browsers and other Web clients do; so you may end up having to use Basic authen-
tication simply, because there’s nothing else available to your users. However, this is
less and less the case with the passage of time, and there are very few Web clients in
the wild any more that don’t support Digest authentication.

See Also
¢ Recipe 6.18

6.17 Accessing Credentials Embedded in
URLs

Problem

You know people access your site using URLs with embedded credentials, such as
http:/luser:password@host/, and you want to extract them from the URL for validation
or other purposes.

Solution

None; this is a nonissue that is often misunderstood.

Discussion

Embedding the username and password in the URL gives a way to distribute a link to
your users to access a password-protected site directly without being prompted for the
password. However, what tends to be misunderstood about this is that the username
and password are actually sent to the server in the ordinary way (i.e., via the www-
Authenticate header) and not as part of the URL. The browser dissects the URL and
turns it into the appropriate request header fields to send to the server.

130 | Chapter 6: Security

http://user:password@host/

See Also

* The HTTP, Browsers, and Credentials sidebar, earlier in this chapter

6.18 Securing WebDAV

Problem

You want to allow your users to upload and otherwise manage their Web documents
with WebDAYV but without exposing your server to any additional security risks.

Solution

Require authentication to use WebDAV:

<Directory "/www/htdocs/dav-test">
Order Allow,Deny
Deny from all
AuthDigestFile "/www/acl/.htpasswd-dav-test"
AuthDigestDomain "/dav-test/"
AuthName "DAV access"
Require valid-user
Satisfy Any
</Directory>

Discussion

Because WebDAYV operations can modify your server’s resources and mod_dav runs as
part of the server, locations that are WebDAV-enabled need to be writable by the user
specified in the server’s User directive. This means that the same location is writable
by any CGI scripts or other modules that run as part of the Apache server. To keep
remote modification operations under control, you should enable access controls for
WebDAV-enabled locations. If you use weak controls, such as user-level authentica-
tion, you should use Digest authentication rather than Basic, as shown in the Solu-
tion.

The contents of the <Directory> container could be put into a dav-test/.htaccess file, as
well. Note that the authentication database (specified with the AuthDigestFile directive)
is not within the server’s URI space, and so it cannot be fetched with a browser nor
with any WebDAV tools.

Your authentication database and .htaccess files should not be modifiable by the server
user; you don’t want them getting changed by your WebDAV users!

See Also
* Recipe 6.16

6.18 Securing WebDAV | 131

6.19 Enabling WebDAV Without Making Files
Writable by the Web User

Problem

You want to run WebDAYV but don’t want to make your document files writable by
the Apache server user.

Solution

Run two Web servers as different users. The DAV-enabled server, for example, might
run as User dav, Group dav, whereas the other server, which is responsible for serving
your content, might run as User nobody, Group nobody. Make the Web content writ-
able by the dav user, or the dav group.

'

w5 Remember that only a single Web server can be handling a particular
ﬁ:\ port/IP address combination. This means that your WebDAV-enabled
o Gl server will have to be using either a different address, a different port,

" or both than the non-WebDAYV server.

Discussion

A big security concern with DAV is that the content must be modifiable by the Web
server user for DAV to be able to update that content. This means that any content also
can be edited by CGI programs, SSI directives, or other programs running under the
Web server. Although the Apache security guidelines caution against having any files
writable by the Web server user, DAV requires it.

By running two Apache servers, you can move around this limitation. The DAV-enabled
Web server, running on an alternate port, has the User and Group directives set to an
alternate user and group, such as:

User dav
Group dav

which is the owner of the Web content in question. The other Web server, which will
be responsible for serving content to users, runs as a user who does not have permission
to write to any of the documents.

The DAV-enabled Web server should be well authenticated, so that only those who are
permitted to edit the site can access that portion of the server. You should probably
also set up this server to be very lightweight, both in the modules that you install as
well as in the number of child processes (or threads) that you run.

Finally, it should be noted that the perchild MPM, under Apache 2.0, supports the idea
of running different virtual hosts with different user ids, so that this recipe could be

132 | Chapter 6: Security

accomplished by enabling DAV just for the one particular vhost. However, as of this
writing, the perchild MPM is not working yet.

See Also

* http://httpd.apache.org/docs-2.0/mod/mod_dav.html
* http://httpd.apache.org/docs-2.0/mod/perchild.html

6.20 Restricting Proxy Access to Certain
URLs

Problem

You don’t want people using your proxy server to access particular URLs or patterns
of URLSs (such as MP3 or streaming video files).

Solution
You can block by keyword:

ProxyBlock .rm .ra .mp3

You can block by specific backend URLs:

<Directory proxy:http://other-host.org/path>
Order Allow,Deny
Deny from all
Satisfy All

</Directory>

Or you can block according to regular expression pattern matching:

<Directory proxy:*>
RewriteEngine On
#
Disable proxy access to Real movie and audio files
#
RewriteRule "\. (rm|ra)$" "-" [F,NC]
#
Don't allow anyone to access .mil sites through us
#
RewriteRule ""[a-z]+://[-.a-z0-9]*\.mil($|/)" "-" [F,NC]
</Directory>

Discussion

All of these solutions will result in a client that attempts to access a blocked URL
receiving a 403 Forbidden status from the server.

The first solution uses a feature built into the proxy module itself: the ProxyBlock
directive. It’s simple and efficient, and it catches the results so that future accesses to

6.20 Restricting Proxy Access to Certain URLs | 133

http://httpd.apache.org/docs-2.0/mod/mod_dav.html
http://httpd.apache.org/docs-2.0/mod/perchild.html

the same URL are blocked with less effort; however, the pattern matching it can perform
is extremely limited and prone to confusion. For instance, if you specify:

ProxyBlock .mil

the server denies access to both http://www.navy.mil/ and http://example.com/spec.mil/
list.html. This is probably not what was intended!

The second method allows you to impose limitations based on the URL being fetched
(or gateway, in the case of a ProxyPass directive).

The third method, which allows more complex what-to-block patterns to be construc-
ted, is both more flexible and more powerful, and somewhat less efficient. Use it only
when the other methods prove insufficient.

<DirectoryMatch> containers work as well, so more complex patterns
may be used.

The flags to the RewriteRule directive tell it, first, that any URL matching the pattern
should result in the server returning a 403 Forbidden error (F or forbidden), and
second that the pattern match is case-insensitive (NC or nocase).

One disadvantage of the mod_rewrite solution is that it can be too specific. The first
RewriteRule pattern can be defeated if the client specifies path-info or a query string,
or if the origin server uses a different suffix naming scheme for these types of files. A
little cleverness on your part can cover these sorts of conditions, but beware of trying
to squeeze too many possibilities into a single regular expression pattern. It’s generally
better to have multiple RewriteRule directives than to have a single all-singing
all-dancing one that no one can read—and is, hence, prone to error.

See Also

* The mod_proxy and mod_rewrite documentation at http://httpd.apache.org/docs/
mod/mod_proxy.html and http://httpd.apache.org/docs/mod/mod_rewrite.html

6.21 Protecting Files with a Wrapper

Problem

You have files to which you want to limit access using some method other than standard
Web authentication (such as a members-only area).

134 | Chapter 6: Security

http://www.navy.mil/
http://example.com/spec.mil/list.html
http://example.com/spec.mil/list.html
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

Solution

In httpd.conf, add the following lines to a <Directory> container whose contents should
be accessed only through a script:

RewriteEngine On

RewriteRule "\. (dll|zip|exe)$" protect.php [NC]

RewriteCond ${REMOTE ADDR} "!“my.servers.ip"
RewriteRule "\.cgi$" protect.php [NC]

And an example protect.php that just displays the local URI of the document that was
requested:

<?php

/*
* The URL of the document actually requested is in
* S SERVER['REQUEST URI']. Appropriate decisions
* can be made about what to do from that.
*/

Header ('Content-type: text/plain');

Sbody sprintf ("Document requested was: %s\n", $ SERVER['REQUEST URI']);
Header ('Content-length: ' . strlen($body));
print S$body;
?>
Discussion

In the situation that prompted this recipe, authentication and authorization were com-
pleted using a cookie rather than the standard mechanisms built into the Web
protocols. Any request for a document on the site was checked for the cookie and
redirected to the login page if it wasn’t found, was expired, or had some other problem
causing its validity to be questioned.

This is fairly common and straightforward. What is needed in addition to this is a way
to limit access to files according to the cookie and ensure that no URL-only request
could reach them.

To this end, a wrapper is created (called protect.php in the Solution), which is invoked
any time one of the protected document types is requested. After validating the cookie,
the protect.php script figures out the name of the file from the environment variables,
determines the content-type from the extension, and opens the file and sends the
contents.

This is illustrated in the Solution. Any time a document ending in one of the exten-
sions .dll, .zip, .exe, or .cgi is requested from the scope covered by the mod_rewrite
directives, and the request comes from some system other than the Web server system
itself (i.e., from a client system), the protect.php script will be invoked instead. In the
Solution, the script simply displays the local URI of the document that is requested,;
applying additional access control or other functionality is easily developed from the
example.

6.21 Protecting Files with a Wrapper | 135

If access control is the main purpose of the wrapper and the access is granted, the
wrapper needs to send the requested document to the client. In this case, the wrapper
could either determine the filesystem path to the desired document and use the PHP
routine fpassthru() to open it and send it to the client, or it could access the docu-
ment using PHP’s ability to open a URL as though it were a file with the
fopen ("http://docurl™) function call. (This latter method is necessary if the docu-
ment requires server processing, such as if it’s a script.)

This would ordinarily trigger the wrapper on the dynamic document again, causing a
loop. To prevent this, the wrapper is only applied to dynamic documents if the
requesting host isn’t the server itself. If it is the Web server making the request, we
know the wrapper has already been run and you don’t need to run it again. The server
processes the document as usual and sends the contents back to the wrapper, which is
still handling the original request, and it dutifully passes it along to the client. This is
handled by the RewriteCond directive, which says “push requests for scripts through
the wrapper unless they’re coming from the server itself.”

This method is perhaps a little less than perfectly elegant and not the best for perform-
ance, because each CGI request involves at least two concurrent requests, but it does
address the problem.

See Also
* Chapter 5

6.22 Protecting Server Files from Malicious
Scripts

Problem

Scripts running on your Web server may access, modify, or destroy files located on your
Web server if they are not adequately protected. You want to ensure that this cannot
happen.

Solution

Ensure that none of your files are writable by the nobody user or the nobody group,
and that sensitive files are not readable by that user and group:

find / -user nobody
#find / -group nobody

Discussion

The User and Group directives specify a user and group under whose privileges the
Web server will run. These are often set to the values of nobody and nobody, respec-

136 | Chapter 6: Security

tively, but they can vary in different setups. It is often advisable to create a completely
new user and group for this purpose, so that there is no chance that the user has been
given additional privileges of which you are not aware.

Because everything runs with these privileges, any files or directories that are accessible
by this user and/or group will be accessible from any script running on the server. This
means that a script running under one virtual host may possibly modify or delete files
contained within another virtual host, either intentionally or accidentally, if those files
have permissions making this possible.

Ideally, no files anywhere on your server should be owned by, or writable by, the server
user, unless for the explicit purpose of being used as a datafile by a script. And, even
for this purpose, it is recommended that a real database be used, so that the file itself
cannot be modified by the server user. And if files simply must be writable by the server,
they should definitely not be in some Web-accessible location, such as /cgi-bin/.

See Also

¢ Recipe 8.13
* Recipe 6.23

6.23 Setting Correct File Permissions

Problem

You want to set file permissions to provide the maximum level of security.

Solution

The bin directory under the ServerRoot should be owned by user root, group root, and
have file permissions of 755 (rwxr-xr-x). Files contained therein should also be owned
by root.root and be mode 755.

Document directories, such as htdocs, cgi-bin, and icons, will have to have permissions
set in a way that makes the most sense for the development model of your particular
Web site, but under no circumstances should any of these directories or files contained
in them be writable by the Web server user.

N

The solution provided here is specific to Unixish systems. Users of other
operating systems should adhere to the principles laid out here,
s although the actual implementation will vary.

The conf directory should be readable and writable only by root, as should all the files
contained therein.

6.23 Setting Correct File Permissions | 137

The include and libexec directories should be readable by everyone, writable by no one.

The logs directory should be owned and writable by root. You may, if you like, permit
other users to read files in this directory, as it is often useful for users to be able to access
their logfiles, particularly for troubleshooting purposes.

The man directory should be readable by all users.

Finally, the proxy directory should be owned by and writable by the server user.

On most Unixish file systems, a directory must have the x bit set in order
for the files therein to be visible.

Discussion

You should be aware that if you ask 12 people for the correct ways to set file permissions
on your Apache server, you will get a dozen different answers. The recommendations
here are intended to be as paranoid as possible. You should feel free to relax these
recommendations, based on your particular view of the world and how much you trust
your users. However, if you set file permissions any more restrictive than this, your
Apache server is likely not to function. There are, of course, exceptions to this, and
cases in which you could possibly be more paranoid are pointed out later.

The most important consideration when setting file permissions is the Apache server
user—the user as which Apache runs. This is configured with the User and Group
directives in your httpd.conf file, setting what user and group the Apache processes will
run as. This user needs to have read access to nearly everything but should not have
write access to anything.

The recommended permissions for the bin directory permit anyone to run programs
contained therein. This is necessary in order for users to create password files using the
htpasswd and htdigest utilities, run CGI programs using the suexec utility, check the
version of Apache using httpd -v, or use any of the other programs in this directory.
There is no known security risk of permitting this access. The Web server itself cannot
be stopped or started by an unprivileged user under normal conditions. These files, or
the directory, should never be writable by nonroot users, as this would allow compro-
mised files to be executed with root privileges.

Extra-paranoid server administrators may wish to make the bin directory and its con-
tents readable and executable only by root. However, the only real benefit to doing so
is that other users cannot run the utilities or httpd server, such as on a different port.
Some of those utilities, such as htpasswd and htdigest, are intended to be run by content
providers (i.e., users) in addition to the Webmaster.

The conf directory, containing the server configuration files, can be locked down as
tightly as you like. Although it is unlikely that reading the server configuration files will

138 | Chapter 6: Security

allow a user to gain additional privileges on the server, more information is always
useful for someone trying to compromise your server. You may, therefore, wish to make
this directory readable only by root. However, most people will consider this just a little
too paranoid.

Document directories are particularly problematic when it comes to making permission
recommendations, as the recommended setting will vary from one server to another.
On a server with only one content provider, these directories should be owned by that
user and readable by the Apache user. On a server with more than one content devel-
oper, the files should be owned by a group of users who can modify the files but still
be readable by the Apache user. The icons directory is a possible exception to this rule,
because the contents of that directory are rarely modified and do not need to be writable
by any users.

The include and libexec directories contain files that are needed by the Apache execut-
able at runtime and only need to be readable by root, which starts as root, and by no
other users. However, since the include directory contains C header files, it may occa-
sionally be useful for users to have access to those files to build applications that need
those files.

The logs directory should under no circumstances ever be writable by anyone other
than root. If the directory is ever writable by another user, it is possible to gain control
of the Apache process at start time and gain root privileges on the server. Whether you
permit other users to read files in this directory is up to you and is not required. How-
ever, on most servers, it is very useful for users to be able to access the logfiles—par-
ticularly the error_log file, in order to troubleshoot problems without having to contact
the server administrator.

The man directory contains the manpages for the various utilities that come with
Apache. These need to be readable by all users. However, it is recommended that you
move them to the system man path, or install them there when you install Apache by
providing an argument to the -mandi r argument specifying the location of your system
man directory.

Finally, the proxy directory should be owned by, and writable by, the server user. This
is the only exception to the cardinal rule that nothing should be writable by this user.
The proxy directory contains files created by and managed by mod_proxy, and they
need to be writable by the unprivileged Apache processes. If you are not running a
proxy server with mod_proxy, you may remove this directory entirely.

See Also

* Learning the Unix Operating System, Fifth Edition, by Jerry Peek, Grace Todino-
Gonquet, and John Strang (O’Reilly)

* http://'www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

6.23 Setting Correct File Permissions | 139

http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

6.24 Running a Minimal Module Set

Problem

You want to eliminate all modules that you don’t need in order to reduce the potential
exposure to security holes. What modules do you really need?

Solution

For Apache 1.3, you can run a bare-bones server with just three modules (actually, you
can get away with not running any modules at all, but it is not recommended):

% ./configure --disable-module=all --enable-module=dir \
>--enable-module=mime --enable-module=log config \

For Apache 2.x, this is slightly more complicated, as you must individually disable
modules you don’t want:

% ./configure --disable-access \

> --disable-auth --disable-charset-lite \

> --disable-include --disable-log-config --disable-env --disable-setenvif \
> --disable-mime --disable-status --disable-autoindex --disable-asis \

> --disable-cgid --disable-cgi --disable-negotiation --disable-dir \
>--disable-imap --disable-actions --disable-alias --disable-userdir

Note that with 2.x, as with 1.3, you may wish to enable mod_dir, mod_mime, and
mod_log_config, by simply leaving them off of this listing.

Discussion

A frequent security recommendation is that you eliminate everything that you don’t
need; if you don’t need something and don’t use it, then you are likely to overlook
security announcements about it or forget to configure it securely. The question that
is less frequently answered is exactly what you do and don’t need.

A number of Apache package distributions come with everything enabled, and people
end up running modules that they don’t really need—or perhaps are not even aware
that they are running.

This recipe is an attempt to get to the very smallest Apache server possible, reducing it
to the minimum set of modules that Apache will run. That is, if you take any of these
out, Apache will not even start up, let alone serve a functional Web site.

Apache 1.3

With Apache 1.3, this question is fairly easy to answer. We’ve reduced it to a set of
three modules, and actually you can eliminate all of the modules if you really want to,
as long as you’re aware of the implications of doing so.

mod_dir is the module that takes a request for / and turns it into a request
for /index.html, or whatever other file you have indicated with the Directorylndex di-

140 | Chapter 6: Security

rective as the default document for a directory. Without this module, users typing just
your hostname into their browser will immediately get a 404 error, rather than a default
document. Granted, you could require that users specify a hostname and filename in
their URL, in which case you could dispense with this module requirement. This would,
however, make your Web site fairly hard to use.

mod_mime enables Apache to determine what MIME type a particular file is and send
the appropriate MIME header with that file, enabling the browser to know how to
render that file. Without mod_mime, your Web server will treat all files as having the
MIME type set by the DefaultType directive. If this happens to match the actual type
of the file, well and good; otherwise, this will cause the browser to render the document
incorrectly. If your Web site consists only of one type of files, you can omit this module.

Finally, mod_log_config, while not technically required at all, is highly recommended.
Running your Web server without any activity logfiles will leave you without any idea
of how your site is being used, which can be detrimental to the health of your server.
However, you should note that it is not possible to disable the ErrorLog functionality
of Apache, and so, if you really don’t care about the access information of your Web
site, you could feasibly leave off mod_log_config and still have error log information.

W
og The default distributed configuration file will need some adjustment to
ﬁ:\ run under these reduced conditions. In particular, you will probably
T 44s need to remove Order, Allow, and Deny directives (provided by
" mod_access), and you will need to remove LogFormat and CustomLog
directives if you remove mod_log_config. Many other sections of the
configuration files are protected by <IfModule> sections and will still

function in the absence of the required modules.

Apache 2.x

With Apache 2.x, a new configuration utility is used, and so the command-line syntax
is more complicated. In particular, there is no single command-line option to let you
remove all modules, and so every module must be specified with a—disable directive.

The list of modules that are minimally required for Apache 2.x is the same as that for
1.3. mod_dir, mod_mime, and mod_log config are each recommended, but not
mandated, for the same reasons outlined previously.

See Also

* http://httpd.apache.org/docs/mod/mod_dir.html
* http://httpd.apache.org/docs/mod/mod_mime.html
* http://httpd.apache.org/docs/mod/mod_log_config.html

6.24 Running a Minimal Module Set | 141

http://httpd.apache.org/docs/mod/mod_dir.html
http://httpd.apache.org/docs/mod/mod_mime.html
http://httpd.apache.org/docs/mod/mod_log_config.html

6.25 Restricting Access to Files Outside Your
Web Root

Problem

You want to make sure that files outside of your Web directory are not accessible.

Solution

For Unixish systems:

<Directory />
Order deny,allow
Deny from all
AllowOverride None
Options None
</Directory>

For Windows systems:

<Directory C:/>
Order deny,allow
Deny from all
AllowOverride None
Options None
</Directory>

Repeat for each drive letter on the system.

Discussion

Good security technique is to deny access to everything, and then selectively permit
access where it is needed. By placing a Deny from all directive on the entire filesystem,
you ensure that files cannot be loaded from any part of your filesystem unless you
explicitly permit it, using a Allow from all directive applied to some other
<Directory> section in your configuration.

If you wanted to create an Alias to some other section of your filesystem, you would
need to explicitly permit this with the following:
Alias /example /var/example
<Directory /var/example>
Order allow,deny
Allow from all
</Directory>

See Also
* http://httpd.apache.org/docs/mod/mod_access.html

142 | Chapter 6: Security

http://httpd.apache.org/docs/mod/mod_access.html

6.26 Limiting Methods by User

Problem

You want to allow some users to use certain methods but prevent their use by others.
For instance, you might want users in group A to be able to use both GET and posT but
allow everyone else to use only GET.

Solution

Apply user authentication per method using the Limit directive:

AuthName "Restricted Access"
AuthType Basic
AuthUserFile filename
Order Deny,Allow
Allow from all
<Limit GET>
Satisfy Any
</Limit>
<LimitExcept GET>
Satisfy All
Require valid-user
</Limit>

Discussion

It is often desirable to give general access to one or more HTTP methods, while
restricting others. For example, although you may wish any user to be able to GET
certain documents, you may wish for only site administrators to POST data back to
those documents.

It is important to use the LimitExcept directive, rather than attempting to enumerate
all possible methods, as you’re likely to miss one.

See Also

* http://httpd.apache.org/docs/mod/mod_auth.html

* http://httpd.apache.org/docs/mod/mod_access.himl

* http://httpd.apache.org/docs/mod/core.html#limit

* http://httpd.apache.org/docs/mod/core. html#limitexcept

6.26 Limiting Methods by User | 143

http://httpd.apache.org/docs/mod/mod_auth.html
http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/core.html#limit
http://httpd.apache.org/docs/mod/core.html#limitexcept

6.27 Restricting Range Requests

Problem

You want to prevent clients from requesting partial downloads of documents within a
particular scope, forcing them to request the entire document instead.

Solution

You can overload ErrorDocument 403 to make it handle range requests. To do this,
put the following into the appropriate <Directory> container in your httpd.conf file or
in the directory’s .htaccess file:

SetEnvIf "Range" "." partial requests
Order Allow,Deny

Allow from all

Deny from env=partial requests
ErrorDocument 403 /forbidden.cgi

Then put the following into a file named forbidden.cgi in your server’s DocumentRoot:

#! /usr/bin/perl -w
use strict;

my Smessage;

my $status_line;

my S$body;
my Suri = $ENV{'REDIRECT_REQUEST_URI'} | $ENV{’REQUEST_URI'};
my $range = $ENV{'REDIRECT_HTTP_RANGE'} | $ENV{’HTTP_RANGE'};
if (defined($Srange)) {
Sbody = "You don't have permission to access "
$ENV{'REQUEST_URI'}
" on this server.\r\n";
$status_line = '403 Forbidden';
}
else {
Sbody = "Range requests disallowed for document '"
SENV{'REQUEST URI'}
"t \r\n";
$status_line = '416 Range request not permitted';

}
print "Status: S$status_line\r\n"
"Content-type: text/plain;charset=1iso-8859-1\r\n"
"Content-length: " . length($body) . "\r\n"
"\ r\n"
. $body;
exit (0);

Or use mod_rewrite to catch requests with a Range header. To do this, put the following
into the appropriate <Directory> container in your httpd.conf file or in the directo-
ry’s .htaccess file:

RewriteEngine On

RewriteCond "${HTTP:RANGE}" "."
RewriteRule " (.*)" "/range-disallowed.cgi" [L, PT]

144 | Chapter 6: Security

Then put the following into a file named range-disallowed.cgi in your server’s
DocumentRoot:

#! /usr/bin/perl -w
use strict;

my Smessage = "Range requests disallowed for document '"
SENV{ 'REQUEST_URI'}
"t A\r\n";

print "Status: 416 Range request not permitted\r\n"
"Content-type: text/plain;charset=iso-8859-1\r\n"
"Content-length: " . length ($Smessage) . "\r\n"
"\r\nll
. Smessage;
exit (0);

Discussion
Both of these solutions are a bit sneaky about how they accomplish the goal.

The first overloads an ErrorDocument 403 script so that it handles both real “access
forbidden” conditions and range requests. The SetEnvIf directive sets the
partial request environment variable if the request header includes a Range field,
the Deny directive causes the request to be answered with a 403 Forbidden status if the
environment variable is set, and the ErrorDocument directive declares the script to
handle the 403 status. The script checks to see whether there was a Range field in the
request header so it knows how to answer—with a “you can’t do Range requests here”
or with a real “document access forbidden” response.

The second solution uses mod_rewrite to rewrite any requests in the scope that include
a Range header field to a custom script that handles only this sort of action; it returns
the appropriate status code and message. The “sneaky” aspect of this solution is
rewriting a valid and successful request to something that forces the response status to
be unsuccessful.

See Also

* http://httpd.apache.org/docs/mod/mod_setenvif.html
* http://httpd.apache.org/docs/mod/mod_access.html
* http://httpd.apache.org/docs/mod/mod_rewrite.html

6.28 Rebutting DoS Attacks with
mod_evasive

Problem

You want to protect your server from Denial of Service (DoS) attacks.

6.28 Rebutting DoS Attacks with mod_evasive | 145

http://httpd.apache.org/docs/mod/mod_setenvif.html
http://httpd.apache.org/docs/mod/mod_access.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

Solution

Obtain mod_evasive from http://www.zdziarski.com/projects/mod_evasive/ and use a
configuration like the following:

DOSPageCount 2
DOSPageInterval 1
DOSSiteCount 50
DOSSitelInterval 1

DOSBlockingPeriod 10

Discussion

mod_evasive is a third-party module that performs one simple task, and performs it
very well. It detects when your site is receiving a Denial of Service (DoS) attack, and it
prevents that attack from doing as much damage as it would do if left to run its course.

“Denial of Service” is a fairly broad term used to refer to attacks that consist of con-
nections that cause your server to be so busy handling them that it can’t do anything
else, such as talk to legitimate clients. Usually, in the case of Apache, this consists of
simply making hundreds of HTTP requests per second. Often, the attacker will not
even wait for the response, but will immediately disconnect and make another request,
leaving Apache making a response to a client that isn’t even there anymore.

mod_evasive detects when a single client is making multiple requests in a short period
of time, and denies further requests from that client. The period for which the ban is
in place can be very short, because it just gets renewed the next time a request is detected
from that same host.

This configuration places two restrictions on requests. First, the DOSPage directives
state that if a single client address requests the same URL more than twice in a single
second, it should be blocked. The DOSSite directives state that if a single client address
requests more than 50 URLs in a single second, it should be blocked. This second value
is higher because sometimes a single page will contain a large number of images, and
so will result in a larger number of requests from one client.

The DOSBlockingPeriod directive sets the interval for which the client will be blocked—
in this case, 10 seconds. Although this seems like a very short interval, it can stretch
indefinitely, as each time that same client attempts to connect (and is blocked) the
denial period will start over again.

See Also

* http://lwww.zdziarski.com/projects/mod_evasive

146 | Chapter 6: Security

http://www.zdziarski.com/projects/mod_evasive/
http://www.zdziarski.com/projects/mod_evasive

6.29 Chrooting Apache with mod_security

Problem

You want to chroot Apache to make it more secure.

Solution

There are a number of different ways to chroot Apache. One of the simplest is to use
mod_security, and add the following directive:

SecChrootDir /chroot/apache

Discussion

chroot is a Unix command that causes a program to run in a jail. That is to say, when
the command is launched, the accessible file system is replaced with another path, and
the running application is forbidden to access any files outside of its new file system.
By doing this, you are able to control what resources the program has access to and
prevent it from writing to files outside of that directory, or running any programs that
are not in that directory. This prevents a large number of exploits by simply denying
the attacker access to the necessary tools.

The trouble with chroot is that it is very inconvenient. For example, when you chroot
Apache, you must copy into the new file system any and all libraries or other files that
Apache needs to run. For example, if you’re running mod_ssl, you’d need to copy all
of the OpenSSL libraries into the chroot jail so that Apache could access them. And if
you had Perl CGI programs, you’d need to copy Perl, and all its modules, into the chroot
directory.

mod_security gets around this complexity by chrooting Apache, not when it starts up,
but immediately before it forks its child processes. This solves the mod_ssl problem
mentioned above, but it would not solve the Perl problem because the Perl CGI
program is run by the forked child process. However, the number of things that you’ll
need to move or copy into the chroot jail is greatly reduced, and tends to consist only
of things that you're running as CGI programs, rather than all of the libraries that
Apache needs while it is starting up. This greatly reduced complexity increases the
probability that someone would actually chroot Apache, as otherwise the complexity
is such that most of us would never be willing to put up with the inconvenience.

If you’re running Apache 1.3, you’ll need to make sure that mod_security appears first
in your LoadModule list, so that it can have the necessary level of control over how
things are orchestrated. It’s important that the chrooting happen at just the right
moment, and in order for this to happen, mod_security needs to get there first before
another module can take over.

6.29 Chrooting Apache with mod_security | 147

If you’re running Apache 2.0, this isn’t necessary, as the module “knows” when it’s
supposed to load, and the right thing happens.

See Also
* http://modsecurity.org

6.30 Migrating to 2.2 Authentication

Problem

You had authentication working, and then you moved to Apache 2.2, and everything
is different.

Solution

Authentication was rearchitected in Apache 2.2 to more completely separate authen-
tication and authorization as separate steps which can be configured independently.
Although, at first, it can seem to be change for the sake of change, once you understand
this separation, the new configuration syntax makes a lot more sense, and the changes
that you’ll have to make seem more sensible.

Discussion

These terms—authentication and autorization—are defined in some detail in the in-
troduction to this chapter. Traditionally, Apache has blurred the boundary between
these two concepts, making it difficult to configure one without being compelled to
configure the other a particular way. For example, if you wanted to use Digest au-
thentication, you were required to use a plain text file for the list of users. This is no
longer the case with Apache 2.2.

In order to configure authentication and authorization in Apache 2.2, you’ll need to
make three decisions, which, in practical terms, involves choosing one module from
each of three lists.

First, you’ll need to determine which authentication type you’re going to use. Your
choices are Digest and Basic authentication, so you’ll need to choose either
mod_auth_basic or mod_auth_digest. This is done with the AuthType directive, as it
was in versions before 2.2:

AuthType Basic

Next, you’ll need to choose your authentication provider. This means that you’re
choosing where your authentication information will be stored—in a text file, dbm file,
database, and so on. The directive for making this choice will be either
AuthBasicProvider, if you're using Basic authentication, or AuthDigestProvider, if
you’re using Digest authentication:

148 | Chapter 6: Security

http://modsecurity.org

AuthBasicProvider dbm

Finally, you’ll need to provide some authorization requirement, using either a group
or a some other method, using the Require directive:

Require user sarah

Thus, as compared to before 2.2, your authentication/authorization configuration
directives may be an extra line or two:

AuthName "Private"

AuthType Basic

AuthBasicProvider dbm

AuthDBMUserFile /www/passwords/passwd.dbm
Require user sarah isaiah

See Also
* http://httpd.apache.org/docs/2.2/howto/auth.html

6.31 Blocking Worms with mod_security

Problem

You want to use the mod_security third-party module to intercept common probes
before they actually reach your Web server’s pages.

Solution

If you have mod_security installed (see Recipe 2.9), then you can use its basic “core
rules” accessory package to intercept many of the most common attack and probe forms
that hit Web servers. The core rules package is periodically updated to keep pace with
new issues that appear on the Web.

Discussion

Installing the core rules package and following the instructions in the README file
makes this very simple. In addition, the files in the package make it easy to write your
own rules by illustrating the formats.

See Also
* http://modsecurity.org/projects/rules

6.31 Blocking Worms with mod_security | 149

http://httpd.apache.org/docs/2.2/howto/auth.html
http://modsecurity.org/projects/rules

6.32 Mixing Read-Only and Write Access to
a Subversion Repository

Problem

You want to protect different portions of your Subversion repository differently,
allowing read-access in some paths and write-access in others.

Solution

For a simple solution, you can use the <LimitExcept> to protect certain files or paths
such that write access requires authentication:

<Location "/repos">
DAV svn
SVNParentPath "/repository/subversion"
AuthType Basic
AuthName "Log in for write access"
AuthUserFile "/path/to/authfile"
<LimitExcept GET REPORT OPTIONS PROPFIND>

Requre valid-user

</LimitExcept>

</Location>

The configuration fragment above applies the restriction to the entire Subversion
repository. For more flexible or fine-grained control, combine this with the
mod_authz_svn module:

LoadModule authz svn module modules/mod _authz svn.so

<Location "/repos">
DAV svn
SVNParentPath "/repository/subversion"
Order Deny,Allow
Allow from all
AuthName "Log in for write access"
AuthType Digest
AuthDigestDomain "/repos/"
AuthDigestFile "/path/to/digest-file"
AuthzSVNAccessFile "/path/to/access-file"
<Limit GET PROPFIND OPTIONS REPORT>
Satisfy Any
</Limit>
<LimitExcept GET PROPFIND OPTIONS REPORT>
Satisfy All
Require valid-user
</LimitExcept>
</Location>

150 | Chapter 6: Security

Discussion

The first solution takes a simple approach: it says, in essence, “These methods are
harmless, but if you use any others you gotta log in.”

The second solution combines this with the functionality of the mod_authz_svn mod-
ule, which allows you to grant (or deny) access selectively according to the path in-
volved. It still provides read access to the entire repository; if you want to limit that to
only specific paths according to the username being used, remove the <LimitExcept>
and </LimitExcept> lines, and remove the <Limit> container entirely. Then users will
be required to log in to access the repository at all, and what they can access—read,
write, or not at all—is defined by the SVN auth file identified by the
AuthzSVNAccessFile directive.

See Also

* http://httpd.apache.org/docs/2.0/core. html#limitexcept
* http://svnbook.red-bean.com/en/1.0/ch06s04.html

6.33 Using Permanent Redirects to Obscure
Forbidden URLs

Problem

When access to a file is forbidden, you don’t want the user’s browser to show its URL.

Solution

Add an ErrorDocument script that issues a permanent redirect to a “document not
found” message page:

Alias "/not-found" "/path/to/documentroot/not-found.html"
ErrorDocument 403 "/cgi/handle-403

And in the cgi-bin/handle-403 script, something like this:
#! /usr/bin/perl -w

#
Force a permanent redirect
#
print "Location: http://example.com/not-found\r\n\r\n";
exit (0);
Discussion

Ordinarily, when access to a document is forbidden, the browser’s display of its URL
remains when the error is displayed. By using the steps in the Solution, the URL of the
actual document being forbidden will be obscured by the server handling it with a

6.33 Using Permanent Redirects to Obscure Forbidden URLs | 151

http://httpd.apache.org/docs/2.0/core.html#limitexcept
http://svnbook.red-bean.com/en/1.0/ch06s04.html

redirection—which causes the browser to change its location bar—rather than as a
normal error.

Note that the title of this recipe uses the verb “obscure.” That’s for a
1&% good reason; what’s being practiced here is called “security by obscur-
ity,” which means, “they can still get at it if they know exactly what to
look for, but we’ll hope they don’t know it.” In a way, it’s like sticking
your head in the sand and hoping that either the problem will go away

or no one will discover it. A savvy user may be able to examine the
network traffic and find out the name of the file being forbidden to him.

Because the redirection to the not-found.html file is successful, the
browser is unaware that it tried to do anything wrong. You can spice
this up a bit by making the redirection target a script that uses:

print "Status: 403 Forbidden\r\n\r\n";
What will happen in this case is that the browser will request a forbidden
file, the server will answer, “Go look over there,” and when the browser
obediently looks, then it gets the 403 Forbidden error. But the brows-

er’s location field will show the not-found.html document’s URL rather
than that of the actual forbidden document.

See Also

* http://httpd.apache.org/docs/2.0/core.html#errordocument
* RFC 3875 sections 6.3.2 and 6.3.3 (ftp:/ftp.rfc-editor.org/in-notes/rfc3875.txt)

152 | Chapter 6: Security

http://httpd.apache.org/docs/2.0/core.html#errordocument
ftp://ftp.rfc-editor.org/in-notes/rfc3875.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3875.txt

CHAPTER 7

SSL

Secure Socket Layer (SSL) is the standard way to implement secure Web sites. By
encrypting the traffic between the server and the client, which is what SSL does, that
content is protected from a third party listening to the traffic going past.

All of the traffic exchanged is encrypted once the SSL session has been set up. This
means that even the URLs being requested are encrypted.

The exact mechanism by which this encryption is accomplished is discussed extensively
in the SSL specification, which you can read at http://wp.netscape.com/eng/ssl3. For a
more user-friendly discussion of SSL, we recommend looking through the mod_ssl
manual, which you can find at http://httpd.apache.org/docs/2.2/ssl. This document not
only discusses the specific details of setting up mod_ssl but also covers the general
theory behind SSL and contains pictures illustrating the concepts.

You also may wish to see the TLS 1.0 (RFC 2246) specification, which provides what
might be thought of as the next generation of SSL. You can read the full specification
at http:/lwww.ietf.org/rfc/rfc2246.txt, or you can find a more friendly explanation at
http://en.wikipedia.org/wiki/Transport_Layer_Security.

In this chapter, we talk about some of the common things that you might want to do
with your secure server, including installing it.

7.1 Installing SSL

Problem

You want to install SSL on your Apache server.

Solution

The solutions to this problem fall into several categories, depending on how you
installed Apache in the first place (or whether you are willing to rebuild Apache to get
SSL).

153

http://wp.netscape.com/eng/ssl3
http://httpd.apache.org/docs/2.2/ssl
http://www.ietf.org/rfc/rfc2246.txt
http://en.wikipedia.org/wiki/Transport_Layer_Security

If you installed a binary distribution of Apache, your best bet is to return to the place
from which you acquired that binary distribution and try to find the necessary files for
adding SSL to it.

If you built Apache yourself from source, the solution will depend on whether you are
running Apache 1.3 or Apache 2.x.

In Apache 1.3, SSL is an add-on module that you must acquire and install from a
location different than that from which you obtained Apache. There are two main
choices available: mod_ssl (http://'www.modssl.org) and Apache-SSL (http://
www.apache-ssl.org); the installation procedure will vary somewhat depending on
which one of these you choose.

If you are building Apache 2.x from source, the situation is somewhat simpler; just add
--enable-ssl to the ./configure arguments when you build Apache to include SSL as one
of the built-in modules.

Consult Chapters 1 and 2 for more information on installing third-party modules, par-
ticularly if you have installed a binary distribution of Apache rather than building it
yourself from the source code.

If you are attempting to install SSL on Apache for Windows, there is a discussion of
this in the Compiling on Windows document, which you can find at http://
httpd.apache.org/docs/2.0/platform/win_compiling.html for Apache 2.0. Or if you are
using Apache 1.3 on Windows and wish to install SSL, you should consult the file
INSTALL.Win32, which comes with the SSL distribution, or look at the HowTo at
http://tud.at/programm/apache-ssl-win32-howto.php3.

Finally, note that the Apache SSL modules are an interface between Apache and the
OpenSSL libraries, which you must install before any of this can work. You can obtain
the OpenSSL libraries from http://www.openssl.org. Although you may already have
these libraries installed on your server, it is recommended that you obtain the latest
version of the libraries to have the most recent security patches and to protect yourself
from exploits.

Discussion

So, why is this so complicated? Well, there are a variety of reasons, most of which
revolve around the legality of encryption. For a long time, encryption has been a
restricted technology in the United States. Because Apache is primarily based out of
the United States, there is a great deal of caution regarding distributing encryption
technology with the package. Even though major changes have been made in the laws,
permitting SSL to be shipped with Apache 2.0, there are still some gray areas that make
it problematic to ship compiled binary distributions of Apache with SSL enabled.

This makes the situation particularly unpleasant on Microsoft Windows, where most
people do not have a compiler readily available to them, and so must attempt to acquire
binary builds from third parties to enable SSL on their Apache server on Windows. The

154 | Chapter 7: SSL

http://www.modssl.org
http://www.apache-ssl.org
http://www.apache-ssl.org
http://httpd.apache.org/docs/2.0/platform/win_compiling.html
http://httpd.apache.org/docs/2.0/platform/win_compiling.html
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org

URL given previously for compiling Apache 2.0 with SSL on Windows assumes that
you do have a compiler, and the document telling you how to build Apache 1.3 with
SSL takes great pains to encourage you not to use Apache 1.3 on Windows, where it
does not have comparable performance to Apache on Unixish operating systems.

See Also

* http://httpd.apache.org/docs-2.0/platform/win_compiling. html
* http://tud.at/programm/apache-ssl-win32-howto.php3

* http://www.openssl.org

* http://www.modssl.org

* http://www.apache-ssl.org

7.2 Installing SSL on Windows

Problem

You want to install Apache with SSL on Microsoft Windows.

Solution
Obtain XAMPP from http://apachefriends.org and install that.

Discussion

As was mentioned in the previous recipe, it is certainly possible to build Apache with
SSL from source on Microsoft Windows. However, to be honest, this is beyond the
expertise of most of us.

Fortunately, the kind folks at ApacheFriends have made available a binary distribution
called XAMPP, which includes, among other things, Apache with mod_ssl. The package
also includes MySQL, PHP, and Perl, some of the commonly used tools in Web site
development.

So, save yourself some pain, take advantage of the great work that has been done by
the ApacheFriends guys, and install the XAMPP package.

7.3 Generating Self-Signed SSL Certificates

Problem

You want to generate a self-signed certificate to use on your SSL server.

7.2 Installing SSL on Windows | 155

http://httpd.apache.org/docs-2.0/platform/win_compiling.html
http://tud.at/programm/apache-ssl-win32-howto.php3
http://www.openssl.org
http://www.modssl.org
http://www.apache-ssl.org
http://apachefriends.org

Solution

Use the openssl command-line program that comes with OpenSSL:

o
S

openssl genrsa -out server.key 1024

o
S

openssl req -new -key server.key -out server.csr
o

S

cp server.key server.key.org

)

S

openssl rsa -in server.key.org -out server.key

3
S

openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.

Then move these files to your Apache server’s configuration directory, such as /'www/
conf/, and then add the following lines in your httpd.conf configuration file:

SSLCertificateFile "/www/conf/server.crt"
SSLCertificateKeyFile "/www/conf/server.key"

Discussion

The SSL certificate is a central part of the SSL conversation and is required before you
can run a secure server. Thus, generating the certificate is a necessary first step to
configuring your secure server.

Generating the key is a multistep process, but it is fairly simple.

Generating the private key

In the first step, we generate the private key. SSL is a private/public key encryption
system, with the private key residing on the server and the public key going out with
each connection to the server and encrypting data sent back to the server.

The first argument passed to the openssl program tells openssl that we want to generate
an RSA key (genrsa), which is an encryption algorithm that all major browsers support.

You may, if you wish, specify an argument telling openssl what to use as the source of
randomness. The -rand flag will accept one or more filenames, which will be used as
a key for the random number generator. If no -rand argument is provided, OpenSSL
will attempt to use /dev/urandom by default if that exists, and it will try /dev/random
if /dev/urandom does not exist. It is important to have a good source of randomness in
order for the encryption to be secure. If your system has neither /dev/urandom
nor /dev/random, you should consider installing a random number generator, such as
egd. You can find out more information about this on the OpenSSL Web site at http:/
www.openssl.org/docs/crypto/RAND_egd.html.

The -out argument specifies the name of the key file that we will generate. This file
will be created in the directory in which you are running the command, unless you
provide a full path for this argument. Naming the key file after the hostname on which

156 | Chapter 7: SSL

http://www.openssl.org/docs/crypto/RAND_egd.html
http://www.openssl.org/docs/crypto/RAND_egd.html

it will be used will help you keep track of the file, although the name of the file is not
actually important.

And, finally, an argument of 1024 is specified, which tells openssl how many bytes of
randomness to use in generating the key.

Your output should look something like:

Generating RSA private key, 1024 bit long modulus
... ++++++
........ +H++++

e is 65537 (0x10001)

Generating the certificate signing request

The next step of the process is to generate a certificate signing request. The reason it is
called this is because the resultant file is usually sent to a certificate authority (CA) for
signing and is, therefore, a signing request. (A certificate is just a signed key, showing
that someone certifies it to be valid and owned by the right entity.)

A certificate authority is some entity that can sign SSL certificates. What this usually
means is that it is one of the few dozen companies whose business it is to sign SSL
certificates for use on SSL servers. When a certificate is signed by one of these certificate
authorities browsers will automatically accept the certificate as being valid. If a certif-
icate is signed by a CA that is not listed in the browser’s list of trusted CAs, then the
browser will generate a warning, telling you that the certificate was signed by an
unknown CA and asking you if you are sure that you want to accept the certificate.

This is a bit of an oversimplification of the process but conveys enough of it for the
purposes of this recipe.

The alternative is that you sign the certificate yourself, which is what we’ll be doing in
the coming steps.

The arguments to this command specify the key for which the certificate is being gen-
erated (the -key argument) and the name of the file that you wish to generate (the
-out argument).

If you want a certificate that will be accepted without warning or comment by all major
browsers, you will send the csr file, along with a check or credit card information, to
one of these CAs.

During this step, you’ll be asked a number of questions. The answers to these questions
will become part of the certificate, and will be used by the browser to verify that the
certificate is coming from a trusted source. End users may inspect these details any time
they connect to your Web site.

The questions will look like the following:

Country Name (2 letter code) [GB]: EX
State or Province Name (full name) [Berkshire]: CO
Locality Name (eg, city) [Newbury]: Example City

7.3 Generating Self-Signed SSL Certificates | 157

Organization Name (eg, company) [My Company Ltd]: Institute of Examples

Organizational Unit Name (eg, section) []: Demonstration Services
Common Name (eg, your name or your server's hostname) []: www.example.com
Email Address []: big-cheese@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

All of these values are optional, with the exception of the Common Name. You must
supply the correct value here, which is the hostname of the server on which this certicate
will be used. It is crucial that the hostname that you put in here exactly match the
hostname that will be used to access the site. Failure to do this will result in a warning
message each time a user connects to your Web site.

Removing the passphrase

In the first step, we put a passphrase on the private key. This makes the key encrypted
so that only someone with the passphrase can read the contents of the key.

A side-effect of this is that every time you start up your Apache server, you will need to
type in the passprase. This is extremely inconvenient, as it means that starting up the
Web server always requires a manual step. This is particularly a problem for reboots
or other automated restarts of the Apache server, when there might not be a human
handy to type in the passphrase.

Therefore, we’re going to remove the passphrase from the key so that this isn’t an issue.

The key is copied to a backup location just in case we screw something up, and then
the command is issued to remove the passphrase, resulting in an unencrupted key. You
must remember to change the permissions on the file so that only root can read this
file. Failure to do so may result in someone stealing that file and then being able to run
a Web site while pretending to be you.

Signing your key

If you choose not to send the CSR to a Certificate Authority, and, instead, sign your
own public key (also called “signing your own certificate,” because signing your public
key results in a self-signed certificate), this will result in a perfectly usable certificate,
and save you a little money. This is especially useful for testing purposes, but it may
also be sulfficient if you are running SSL on a small site or a server on your internal
network.

The process of signing a key means that the signer trusts that the key does indeed belong
to the person listed as the owner. If you pay Entrust or one of the other commercial
CAs for a certificate, they will actually do research on you and verify, to some degree
of certainty, that you really are who you claim to be. They will then sign your public
key and send you the resulting certificate, putting their stamp of approval on it and
verifying to the world that you are legitimate.

158 | Chapter 7: SSL

In the example given, we sign the key with the key itself, which is a little silly, as it
basically means that we trust ourselves. However, for the purposes of the actual SSL
encryption, this is sufficient.

If you prefer, you can use the CA.pl script that comes with OpenSSL to generate a CA
certificate of your own. The advantage of this approach is that you can distribute this
CA certificate to users, who can install it in their browsers, enabling them to automat-
ically trust this certificate and any other certificates that you create with that same CA.
This is particularly useful for large companies where you might have several SSL servers
using certificates signed by the same CA.

Of the arguments listed in the command, one of the most important ones is the -
days argument, which specifies how many days the certificate will be good for. If you
are planning to purchase a commercial certificate, you should generate your own
self-signed key that is good for perhaps 30 days so that you can use it while you are
waiting for the commercial certificate to arrive. If you are generating a key for actual
use on your server, you may want to make this a year or so, so that you don’t have to
generate new keys very often.

The -signkey argument specifies what key will be used to sign the certificate. This
can be either the private key that you generated in the first step or a CA private key
generated with the CA.pl script, as mentioned earlier.

If this step goes well, you should see some output like the following:

Signature ok

subject=/C=US/ST=KY/L=Wilmore/O=Asbury College/OU=Information
Services/CN=www.asbury.edu/Email=rbowen@asbury.edu

Getting Private key

Configuring the server

Once you have generated the key and certificate, you can use them on your server using
the two lines of configuration shown in the previous solution.

The easy way

Now that we’ve gone through the long and painful way of doing this, you should know
that there is a simpler way. OpenSSL comes with a handy script, called CA.pl, which
simplifies the process of creating keys. The use of CA.pl is described in Recipe 7.4 so
you can see it in action. It is useful, however, to know some of what is going on behind
the script. At least, we tend to think so. It also gives you considerably more control as
to how the certificate is made.

See Also

* The manpage for the openssl tool

* The manpage for the CA.pl script

7.3 Generating Self-Signed SSL Certificates | 159

* CA.pl documentation at http://www.openssl.org/docs/apps/CA.pl.html

7.4 Generating a Trusted CA

Problem

You want to generate SSL keys that browsers will accept without a warning message.

Solution

Issue the following commands:

% CA.pl -newca
% CA.pl -newreq
% CA.pl -signreqg
%CA.pl -pkcsl2

Discussion

Recipe 7.3 discusses the lengthy steps that are required to create keys and sign them.
Fortunately, OpenSSL comes with a script to automate much of this process so that
you don’t have to remember all of those arguments. This script, called CA.pl, is located
where your SSL libraries are installed, for example, /usr/share/ssl/misc/CA.pl.

The lines in the Solution hide a certain amount of detail, as you will be asked a number
of questions in the process of creating the key and the certificate. Note also that you
will probably need to be in the directory where this script lives to get successful results
from this recipe.

If you want to omit the passphrase on the certificate so that you don’t have to provide
the passphrase each time you start up the server, use -newreg-nodes rather than
-newreg when generating the certificate request.

After running this sequence of commands, you can generate more certificates by
repeating the -newreq and -signreq commands.

Having run these commands, you will have generated a number of files. The file
newcert.pem is the file you specify in your SSLCertificateFile directive, the file
newreq.pem is your SSLCertificateKeyFile, and the file demoCA/cacert.pem is the CA
certificate file, which will need to be imported into your users’ browsers (for some
browsers) so that they can automatically trust certificates signed by this CA. And,
finally, newcert.p12 serves the same purpose as demoCA/cacert.pem for certain other
browsers.

Importing the CA

If your users are using Internet Explorer, you need to create a special file for them to
import. Use the following command:

160 | Chapter 7: SSL

http://www.openssl.org/docs/apps/CA.pl.html

openssl X509 -demoCA/cacert.pem -out cacert.crt -outform DER
Then you can send them the cacert.crt file.

Clicking on that file will launch the SSL certificate wizard and guide users through
installing the CA certificate into their browser.

Other browsers, such as Mozilla, expect to directly import the cacert.pem file. Users
will navigate through their menus (Edit => Preferences => Privacy and Security =>
Certificates), then click on Manage Certificates, then on the Authorities tab, and finally
on Import, to select the certificate file.

After importing a CA certificate, all certificates signed by that CA should be usable in
your browser without receiving any kind of warning.

See Also

* The manpage for the CA.pl script
* CA.pl documentation at http://www.openssl.org/docs/apps/CA.pl.html

7.5 Serving a Portion of Your Site via SSL

Problem

You want to have a certain portion of your site available via SSL exclusively.

Solution
This is done by making changes to your httpd.conf file.
For Apache 1.3, add a line such as the following;:

Redirect /secure/https://secure.example.com/secure/

For Apache 2.0:

<Directory /www/secure>
SSLRequireSSL
</Directory>

Note that the SSLRequireSSL directive does not issue a redirect. It merely forbids
non-SSL requests.

Or for any version of Apache you can accomplish this using mod_rewrite:

RewriteEngine On
RewriteCond $%{HTTPS} !=on
RewriteRule "~/ (.*) https://%${SERVER NAME}/$1 [R,L]

7.5 Serving a Portion of Your Site via SSL | 161

http://www.openssl.org/docs/apps/CA.pl.html

Discussion

It is perhaps best to think of your site’s normal pages and its SSL-protected pages as
being handled by two separate virtual hosts rather than one. Although they may point
to the same content, they run on different ports, are configured differently, and, most
important, the browser considers them to be completely separate servers. So you
should, too.

Don’t think of enabling SSL for a particular directory; rather, you should think of it as
redirecting requests for one server to another.

Note that the Redirect directive preserves path information, which means that if a re-
quest is made for /secure/something.html, then the redirect will be to https://
secure.example.com/secure/something. html.

Be careful where you put this directive. Make sure that you only put it in the HTTP
(non-SSL) virtual host declaration. Putting it in the global section of the config file may
cause looping, as the new URL will match the Redirect requirement and get redirected
itself.

Finally, note that if you want the entire site to be available only via SSL, you can
accomplish this by simply redirecting all URLs, rather than a particular directory:

Redirect / https://secure.example.com/
Again, be sure to put that inside the non-SSL virtual host declaration.

You will see various solutions proposed for this situation using RedirectMatch or var-
ious RewriteRule directives. There are special cases in which this is necessary, but in
most cases, the simple solution offered here works just fine. In particular, you might
be compelled to use this solution when you only have access to your .htaccess file, and
not to the main server configuration file.

So, the entire setup might look something like this:

NameVirtualHost *

<VirtualHost *>
ServerName regular.example.com
DocumentRoot /www/docs

Redirect /secure/ https://secure.example.com/secure/
</VirtualHost>

<VirtualHost default :443>
SSLEngine On
SSLCertificateFile /www/conf/ssl/ssl.crt
SSLCertificateKeyFile /www/conf/ssl/ssl.key

ServerName secure.example.com
DocumentRoot /www/docs
</VirtualHost>

162 | Chapter 7: SSL

The other two solutions are perhaps more straightforward, although they each have a
small additional requirement for use.

The second recipe listed, using SSLRequireSSL, will work only if you are using Apache
2.0. Tt is a directive added specifically to address this need. Placing the
SSLRequireSSL directive in a particular <Directory> section will ensure that non-SSL
accesses to that directory are not permitted. It does not redirect users to the SSL host;
it merely forbids non-SSL access.

The third recipe, using RewriteCond and RewriteRule directives, requires that you have
mod_rewrite installed and enabled. Using the RewriteCond directive to check if the
client is already using SSL, the RewriteRule is invoked only if they are not. In that case,
the request is redirected to a request for the same content but using HTTPS instead of
HTTP.

See Also

* http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
* http://httpd.apache.org/docs/mod/mod_alias.html
* http://httpd.apache.org/docs/mod/mod_rewrite.html

7.6 Authenticating with Client Certificates

Problem

You want to use client certificates to authenticate access to your site.

Solution
Add the following mod_ssl directives to your httpd.conf file:

SSLVerifyClient require
SSLVerifyDepth 1
SSLCACertificateFile conf/ssl.crt/ca.crt

Discussion

If you happen to be lucky enough to have a small, closed user community, such as an
intranet, or a Web site for a group of friends or family, it is possible to distribute client
certificates so that each user can identify himself.

Create client certificates, signing them with your CA certificate file, and then specify
the location of this CA certificate file using the SSLCACertificateFile directive, as shown
above.

Client certificates are created in the same manner as server certificates, except that the
CN (Common Name) on the certificate is the name of the client certificate owner.

7.6 Authenticating with Client Certificates | 163

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html
http://httpd.apache.org/docs/mod/mod_alias.html
http://httpd.apache.org/docs/mod/mod_rewrite.html

See Also

* Recipe 7.3
* http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

7.7 SSL Virtual Hosts

Problem

You want to run several SSL hosts on a single IP address.

Solution
There are several possible answers to this problem, depending on your perspective.

The officially correct answer is that you can only run one SSL host per IP address and
port. This has to do with the way that SSL works, and is not a limitation specifically of
Apache. Attempting to run multiple SSL hosts on the same IP address and port will
result in warning messages being displayed by the browser, because it will be receiving
the wrong certificate.

One other possible answer is to use a wildcard certificate. This is covered in the next
recipe.

Finally, if you don’t care about the warning messages, you can set up name-based virtual
hosts in the usual way, and simply have Apache use the same certificate for all of them.

In the near future, there will be other solutions to this problem, and there are a con-
siderable number of very smart people working on this problem. Unfortunately, it’s
still not quite solved.

Discussion

When an https (SSL) request is made by a browser, the first thing that happens is that
the certificate is sent to the browser in order for the SSL encryption to be set up. This
happens before the browser has told the server what URL it is requesting, so it is im-
possible to select a particular virtual host. Thus, it is not possible to associate more
than one certificate with a particular IP address and port.

There are basically three types of solutions. Either you ignore the problem, you find a
way to use one certificate on multiple hostnames, or you use more IP addresses or ports.
We'll discuss each of these in turn.

164 | Chapter 7: SSL

http://httpd.apache.org/docs-2.0/mod/mod_ssl.html

Ignore the problem

In some situations, you may be content to ignore the problem. For test servers, or servers
where you have a very small audience and can explain the situation to each person, this
may be a perfectly acceptable scenario.

In that case, you can set up name-based virtual hosts, and use the same certificate for
each one. However, when you connect to any of them, except for the one for which the
hostname matches the Common Name on the certificate, you will get a warning mes-
sage from the browser. In Firefox, this will look like the image below, and will say
something like:

You have attempted to establish a connection with www . examplel . com. However, the
security certificate presented belogs to www.example2.com. It is possible, although
unlikely, that someone may be trying to intercept your communication with this Web
site. If you suspect the certificate shown does not belong to www. examplel . com, please
cancel the connection and notify the site administrator.

At this point you, the site administrator, know that everything is fine, and that there’s
no actual problem. The person on the other end, however, may have any of a number
of different reactions. She may panic, and press “Cancel” immediately. She mightignore
the message entirely and click “OK,” which is almost as bad because ignoring such
warning messages is bound to get one into problems eventually. Or she may indeed
take the suggested action and contact you, the site administrator. In any of these cases,
you probably can immediately see why this isn’t a valid solution when you’re running
an actual secure Web site and performing tasks like taking credit card transactions.

Use one certificate on several hosts

It is possible to use a single certificate on multiple hostnames if all of those hostnames
are in the same domain. Thisis called a wildcard certificate, and is discussed in the next
recipe.

Use more than one address

The recommended solution is that you run each SSL host on its own IP address. Failing
that, you can run different sites on different ports on the same IP address. IP-based
virtual hosts are discussed in the chapter on Virtual Hosts, as are port-based virtual
hosts. Using either one of these solutions, the warning messages will go away.

If you choose to do port-based virtual hosting, remember that you must put the port
number in URLs in order for them to work. For example, if you run your SSL host on
port 8443, you will need to access the site using a URL like:

https://www.example.com: 8443/

This may be inconvenient for the end user, but if access to the site is all through links
and form elements, this is a very fine solution.

7.7 SSL Virtual Hosts | 165

7.8 Wildcard Certificates

Problem

You want to use a single certificate for multiple hostnames in the same domain.

Solution

Use a wildcard certificate, which works for any name within a particular domain, such
as “*.example.com.”

Discussion

Using the technique described in Recipe 7.3, create a certificate with a Common Name
of *.example.com, where example.comis the domain for which you wish to use the
certificate. This certificate will now work for any hostname in the example.com do-
main, such as www.example.com Or secure.example.com.

On many browsers, however, the certificate will not work for example.com or for
one.two.example.com, but only for hostnames strictly of the form hostname.exam
ple.com.

Most certificate authorities will charge considerably more to sign wildcard certificates.
This is not because it is somehow more complicated to sign these certificates, but be-
cause itis a simple business decision, based on the fact that buying a wildcard certificate
means that you don’t need to buy multiple single-host certificates.

See Also
* Recipe 7.3

166 | Chapter 7: SSL

CHAPTER 8
Dynamic Content

Very few Web sites can survive without some mechanism for providing dynamic
content—content that is generated in response to the needs of the user. The recipes in
this chapter guide you through enabling various mechanisms to produce this dynamic
content and help you troubleshoot possible problems that may occur.

CGI programs are one of the simplest ways to provide dynamic content for your Web
site. They tend to be easy to write because you can write them in any language. Thus,
youdon’thave to learn a new language to write CGI programs. Examples in this chapter
will be given in a variety of languages, but it’s not necessary that you know these
languages in order to see how to configure Apache for their execution.

Although CGI is no longer the preferred mechanism for generating dynamic content,
it is the simplest, and understanding how CGI works is a great help in understanding
how the more complex dynamic content providers work.

Other dynamic content providers, such as PHP and mod_perl, also enjoy a great deal
of popularity, because they provide many of the same functions as CGI programs but
typically execute faster.

8.1 Enabling a CGI Directory

Problem

You want to designate a directory that contains only CGI scripts.

Solution
Add the following to your httpd.conf file:

ScriptAlias /cgi-bin/ /www/cgi-bin/

Discussion

A CGI directory will usually be designated and enabled in your default configuration
file when you install Apache. However, if you want to add additional directories where

167

CGI programs are located, the ScriptAlias directive does this for you. You may have as
many ScriptAlias’ed directories as you want.

The one line previously introduced is equivalent to these directive lines:

Alias /cgi-bin/ /www/cgi-bin/

<Location /cgi-bin/>
Options ExecCGI
SetHandler cgi-script
</Location>

Note that URLs that map to the directory in question via some other
‘-% mechanism or URL path, such as another Alias or a RewriteRule, will
not benefit from the ScriptAlias setting, as this mapping is by URL
(<Location>), not by directory. As a result, accessing the scripts in this

directory through some other URL path may result in their code being
displayed rather than the script being executed.

You also may need to add a <Directory> block to permit access to the directory in
question, as a cgi-bin directory is usually outside of the document directory tree. It is
also recommended that you deny the use of .htaccess files in cgi-bin directories:
<Directory /www/cgi-bin>
Order allow,deny
Allow from all

AllowOverride None
</Directory>

B
)

See also Recipe 8.4 for a discussion of using Windows file extensions to
launch CGI programs.

See Also

* Chapter 5
* Recipe 8.2
* http://httpd.apache.org/docs/2.0/mod/mod_alias.html

8.2 Enabling CGl Scripts in Non-ScriptAliased
Directories

Problem

You want to put a CGI program in a directory that contains non-CGI documents.

168 | Chapter 8: Dynamic Content

http://httpd.apache.org/docs/2.0/mod/mod_alias.html

Solution
Use AddHandler to map the CGI handler to the particular files that you want executed:

<Directory "/foo">

Options +ExecCGI

AddHandler cgi-script .cgi .py .pl
</Directory>

Discussion

Enabling CGl execution via the ScriptAlias directive is preferred for a number of reasons
over permitting CGI execution in arbitrary document directories. The primary reason
is security auditing. It is much easier to audit your CGI programs if you know where
they are, and storing them in a single directory ensures that.

However, there are cases in which it is desirable to have access to CGI functionality in
other locations. For example, you may want to keep several files together in one direc-
tory—some of them static documents, and some of them scripts—because they are
part of a single application.

Using the AddHandler directive maps certain file extensions to the cgi-script handler so
they can be executed as CGI programs. In the case of the aforementioned example,
programs with a .cgi, .py, or .pl file extension will be treated as CGI programs, whereas
all other documents in the directory will be served up with their usual MIME type.

Note that the +ExecCGI argument is provided to the Options directive, rather than the
ExecCGI argument—that is, with the + sign rather than without. Using the + sign adds
this option to any others already in place, whereas using the option without the + sign
will replace the existing list of options. You should use the argument without the + sign
if you intend to have only CGI programs in the directory, and with the + sign if you
intend to also serve non-CGI documents out of the same directory.

See Also
¢ Recipe 8.1

8.3 Specifying a Default Document in a CGl
Directory

Problem

You want to allow a default file to be served when a CGI directory is requested.

Solution

Rather than using ScriptAlias to enable a CGI directory, use the following:

8.3 Specifying a Default Document in a CGI Directory | 169

Alias /cgi-bin /www/cgi-bin

<Directory /www/cgi-bin>
Options ExecCGI
SetHandler cgi-script
DirectoryIndex index.pl

Order allow,deny

Allow from all

AllowOverride none
</Directory>

Discussion

Using ScriptAlias explicitly forbids the use of DirectoryIndex to provide a default docu-
ment for a directory. Because of this, if you attempt to get a default document from a
ScriptAlias’ed directory, you’ll see the following error message in your error log
file: "attempt to invoke directory as script".

And, in their browsers, users will see the message:
Forbidden. You don't have permission to access /cgi-bin/ on this

server.

So, in order to get a default document, you must avoid ScriptAlias and use the alternate
method of creating a CGl-enabled directory, as discussed in Recipe 8.2.

Once you have created a CGI directory without using ScriptAlias, you may use a
DirectoryIndex directive to display a default document when the directory is requested.

An alternate method is possible if you wish, for some reason, to use ScriptAlias rather
than this technique. You may use either a RedirectMatch directive, or a RewriteRule
directive, to redirect the request for the CGI directory to the filename desired:

ScriptAlias /cgi-bin /www/cgi-bin
RedirectMatch ""/cgi-bin/?$" "http://server.example.com/cgi-bin/index.pl"

Or:

ScriptAlias /cgi-bin /www/cgi-bin
RewriteEngine On
RewriteRule "*/cgi-bin/?$" "/cgi-bin/index.pl" [PT]

The two examples above should go in your main server configuration file.

Ordinarily, .htaccess files are not enabled in ScriptAlias directories. However, if you do

have .htaccess files enabled in your ScriptAlias directory, and wish to use the

RewriteRule technique in one, remember that the directory path is stripped from the

requested URI before the RewriteRule is applied, so your rule set should look more like:
RewriteEngine On

RewriteBase /cgi-bin/
RewriteRule "7"$" "index.pl" [R]

170 | Chapter 8: Dynamic Content

See Also
* Recipe 8.2

8.4 Using Windows File Extensions to Launch
CGl Programs

Problem

You want to have CGI programs on Windows executed by the program associated with
the file extension. For example, you want .pl scripts to be executed by perl.exe without
having to change the scripts’ #/ line to point at the right location of perl.exe.

Solution
Add the following line to your httpd.conf file:

ScriptInterpreterSource registry

Discussion

Because Apache has its roots in the Unixish world, there are a number of things that
are done the Unixish way, even on Microsoft Windows. CGI execution is one of these
things, but the ScriptInterpreterSource directive allows you to have Apache behave more
in the way to which Windows users are accustomed.

Usually, on Windows, a file type is indicated by the file extension. For example, a file
named example.pl is associated with the Perl executable; when a user clicks on this file
in the file explorer, Perl is invoked to execute this script. This association is created
when you install a particular program, such as Perl or MS Word, and the association
is stored in the Windows registry.

On Unixish systems, by contrast, most scripts contain the location of their interpreter
in the first line of the file, which starts with the characters #!. This line is often called
the shebang line (short for sharp bang, which are the shorthand names for the two
characters).

For example, a Perl program might start with the line:

#!/usr/bin/perl

The shell running the script looks in this first line and uses the program at the indicated
path to interpret and execute the script. In this way, files with arbitrary file extensions
(or no extension at all) may be invoked with any interpreter desired. In the case of Perl,
for example, one might have several versions of Perl installed, and the particular version
desired may be invoked by using the appropriate #! line.

8.4 Using Windows File Extensions to Launch CGI Programs | 171

However, you may be accustomed to Windows’ usual way of executing a program
based on the file extension, and this Unixism can be somewhat nonintuitive. Thus, in
the early days of Apache on Windows, the ScriptInterpreterSource directive was added
to make Apache behave the way that Windows users expected.

ScriptInterpreterSource may have one of three values. When set to the default value,
script, Apache will look in the script itself for the location of the interpreter that it is to
use.

When it is set to registry, it will look in the Windows registry for the mapping that is
associated with the file’s extension and use this to execute the script.

Setting the value to registry-strict will have the same effect as registry except that only
the subkey Shel1\ExecCGI\Command will be searched. This requires that the setting
be manually configured, and prevents unintentional command execution.

This feature can be very useful for users who are running multiple servers, some on
Unixish operating systems and others on Windows, but who want the same CGI pro-
grams to run both places. Because Perl, for example, is unlikely to be located at /usr/
bin/perl on your Windows machine, using the ScriptInterpreterSource directive allows
you to run the script unedited on Windows, simply by virtue of it having a .pl file
extension.

See Also

* Recipe 8.2
* Recipe 8.5
* http://httpd.apache.org/docs/2.2/mod/core.himl#ScriptinterpreterSource

8.5 Using Extensions to Identify CGI Scripts

Problem

You want Apache to know that all files with a particular extension should be treated
as CGI scripts.

Solution

Add the following to your httpd.conf file in a scope covering the areas where it should
apply, or in an .htaccess file for the appropriate directory:

AddHandler cgi-script .cgi

172 | Chapter 8: Dynamic Content

http://httpd.apache.org/docs/2.2/mod/core.html#ScriptInterpreterSource

Discussion

The AddHandler directive shown in this solution tells Apache that any files that have
a .cgi extension should be treated as CGI scripts, and it should try to execute them
rather than treat them as content to be sent.

The directive only affects files with that extension in the same scope as the directive
itself. You may replace the common .cgi extension with another, or even with a list of
space-separated extensions.

Note the use of the term extension rather than suffix; a file named foo.cgi.en is treated
as a CGI script unless a handler with the .en extension overrides it.

An alternate way of accomplishing this will cause files with a particular extension to
be execute as CGI programs regardless of where they appear in the file system:
<FilesMatch \.cgi(\.]$)>
Options +ExecCGI

SetHandler cgi-script
</FilesMatch>

The FilesMatch directive allows directives to be applied to any file that matches a par-
ticular pattern. In this case, a file with a file extension of .cgi. As mentioned above, a
file may have several file extensions. Thus, rather than using a pattern of \.cgi$, which
would require that the filename ended with .cgi, we use \.cgi(\.|$). The (\.|$) regular
expression syntax requires that .cgi be followed either by another ., or the end of the
string.

See Also
* Recipe 8.2

8.6 Testing that CGl Is Set Up Correctly

Problem

You want to test that you have CGI enabled correctly. Alternatively, you are receiving
an error message when you try to run your CGI script and you want to ensure the
problem doesn’t lie in the Web server before you try to find a problem in the script.

Solution

#! /usr/bin/perl
print "Content-type: text/plain\n\n";
print "It's working.\n";

And then, if things are still not working, look in the error log.

8.6 Testing that CGl Is Set Up Correctly | 173

File Edit View Go Bookmarks Tools Window Help
i - @N T \3 |‘$ http://localhost/egi-bin/example.cgi _."I @
It's working.

Done [Fﬂ&4ﬁr

Figure 8-1. Your CGI program worked

Discussion

Because Perl is likely to be installed on any Unixish system, this CGI program should
be a pretty safe way to test that CGI is configured correctly. In the event that you do
not have Perl installed, an equivalent shell program may be substituted:

#! /bin/sh

echo Content-type: text/plain

echo
echo It\'s working.

And if you are running Apache on Windows, so that neither of the above options works
for you, you could also try this with a batch file:

echo off

echo Content-type: text/plain

echo.
echo It's working.

Make sure that you copy the program code exactly, with all the right punctuation,
slashes, and so on, so that you don’t introduce additional complexity by having to
troubleshoot the program itself.

In either case, once the program is working, you should see something like the screen
capture shown in Figure 8-1.

The idea here is to start with the simplest possible CGI program to ensure that problems
are not caused by other complexities in your code. We want to ensure that CGI is
configured properly, not to verify the correctness of a particular CGI program.

There are a variety of reasons why a particular CGI program might not work. In very
general terms, it can be in one of three categories: misconfiguration of the Web server;
an error in the program itself; or incorrect permissions on the files and directories in
question.

Fortunately, when something goes wrong with one of your CGI programs, an entry is
made in your error log. Knowing where your error log is located is a prerequisite to
solving any problem you have with your Apache server. The error messages that go to

174 | Chapter 8: Dynamic Content

the browser, while vaguely useful, tend to be catch-all messages and usually don’t
contain any information specific to your actual problem.

Ideally, if you have followed the recipes earlier in this chapter, you will not be having
configuration problems with your CGI program, which leaves the other two categories
of problems.

If your problem is one of permissions, you will see an entry in your logfile that looks
something like the following:

[Sun Dec 1 20:31:16 2002] [error] (13)Permission denied: exec of /usr/local/apache/
cgi-bin/examplel.cgi failed

The solution to this problem is to make sure that the script itself is executable:

chmod at+x /usr/local/apache/cgi-bin/examplel.cgi

If the problem is an error in the program itself, then there are an infinite number of
p prog

possible solutions, as there are an infinite number of ways to make any given program

fail. If the example program above works correctly, you can be fairly assured that the

problem is with your program, rather than with some other environmental condition.

The error message Premature end of script headers, which you will see fre-
quently in your career, means very little by itself. You should always look for other error
messages that augment this message. Any error in a CGI program will tend to cause
the program to emit warnings and error message prior to the correctly formed HTTP
headers, which will result in the server perceiving malformed headers, resulting in this
message. The suexec wrapper also can confuse matters if it’s being used.

One particularly common error message, which can be rather hard to track down if
you don’t know what you’re looking for, is the following:

[Sat Jul 19 21:39:47 2003] [error] (2)No such file or directory:
exec of /usr/local/apache/cgi-bin/example.cgi failed

This error message almost always means one of two things: an incorrect path or a
corrupted file.

In many cases, particularly if you have acquired the script from someone else, the #!
line of the script may point to the wrong location (such as #!/usr/local/bin/perl, when
perlis instead located at /usr/bin/perl). This can be confirmed by using the which com-
mand and comparing its output to the #! line. For example, to find the correct location
for Perl, you would type:

% which perl

The other scenario is that the file has been corrupted somehow so that the #! line is
illegible. The most common cause of this second condition is when a script file is
transferred from a Windows machine to a Unixish machine, via FTP, in binary mode
rather than ASCII mode. This results in a file with the wrong type of end-of-line char-
acters, so that Apache is unable to correctly read the location of the script interpreter.

To fix this, you should run the following one-liner from the command line:

8.6 Testing that CGl Is Set Up Correctly | 175

% perl -pi.bak -le 's/\r$//;' example.cgi

This will remove all of the Windows-style end-of-line characters, and your file will be
executable. It also creates a backup copy of the file, with a .bak file extension, in case,
for some reason, the changes that you make to the file cause any problems.

See Also

* Recipe B.3 in Appendix B
* Appendix B

8.7 Reading Form Parameters

Problem

You want your CGI program to read values from Web forms for use in your program.

Solution

First, look at an example in Perl, which uses the popular CGL.pm module:

#1/usr/bin/perl
use CGI;

use strict;

use warnings;

my $form = CGI->new;

Load the various form parameters
A} A}

my $name = $form->param('name') || '-';
Multi-value select lists will return a list
my @foods = S$form->param('favorite foods');

Output useful stuff
print "Content-type: text/html\n\n";
print 'Name: ' . $name . "
\n";
print "Favorite foods: \n";
foreach my $food (@foods) {

print " <1li>$food\n";
}
print "\n";

Next, look at a program in C, which does pretty much the same thing, and uses the
cgic C library:
#include "cgic.h"

/* Boutell.com's cgic library */

int cgiMain() {
char name[100];

176 | Chapter 8: Dynamic Content

/* Send content type */
cgiHeaderContentType ("text/html") ;

/* Load a particular variable */
cgiFormStringNoNewlines ("name", name, 100);
fprintf (cgiOut, "Name: ");
cgiHtmlEscape (name) ;

fprintf (cgiOut, "\n");

return 0;

}

For this example, you also will need a Makefile, which looks something like this:

CFLAGS=-g -Wall
CC=gcc

AR=ar

LIBS=-L./ -lcgic

libcgic.a: cgic.o cgic.h

[TABJrm -f libcgic.a
$ (AR) rc libcgic.a cgic.o

example.cgi: example.o libcgic.a
gcc example.o -o example.cgi $(LIBS)

Discussion

The exact solution to this will vary from one programming language to another, and
so examples are given here in two languages. Note that each of these examples uses an
external library to do the actual parsing of the form content. This is important, because
it is easy to parse forms incorrectly. By using one of these libraries, you ensure that all
of the form-encoded characters are correctly converted to usable values, and then
there’s the simple matter of code readability and simplicity. It’s almost always better
to utilize an existing library than to reimplement functionality yourself.

The Perl example uses Lincoln Stein’s CGIL.pm module, which is a standard part of the
Perl distribution and will be installed if you have Perl installed. The library is loaded
using the use keyword and is used via the object-oriented (OO) interface.

The param method returns the value of a given form field. When called with no argu-
ments, params() returns a list of the form field names. When called with the name of
amultivalue select form field, it will return a list of the selected values. This is illustrated
in the example for a field named favorite foods.

The example in C uses the cgic C library, which is available from http://boutell.com.
You will need to acquire this library and install it in order to compile the aforementioned
code. The Makefile provided is to assist in building the source code into a binary file
that you can run. Type make example.cgi to start the compile. Note that if you are doing
this on Windows, you will probably want to replace .cgi with .exe in the example
Makefile.

8.7 Reading Form Parameters | 177

http://boutell.com

In either case, an HTML form pointed at this CGI program, containing a form field
named name, will result in the value typed in that field being displayed in the browser.
The necessary HTML to test these programs is as follows:
<html>
<head>
<title>Example CGI</title>

</head>
<body>

<h3>Form:</h3>

<form action="/cgi-bin/example.cgi" method="post">
Name: <input name="name">

<input type="submit">

</form>

</body>
</html>

The examples given in this recipe each use CGI libraries, or modules, for the actual
functionality of parsing the HTML form contents. Although many CGI tutorials on the
Web show you how to do the form parsing yourself, we don’t recommend it. One of
the great virtues of a programmer is laziness, and using modules, rather than reinventing
the wheel, is one of the most important manifestations of laziness. And it makes good
sense, too, because these modules tend to get it right. It’s very easy to parse form con-
tents incorrectly, winding up with data that have been translated from the form en-
coding incompletely or just plain wrongly. These modules have been developed over a
number of years, extensively tested, and are much more likely to correctly handle the
various cases that you have not thought about.

Additionally, modules handle file uploads, multiple select lists, reading and setting
cookies, returning correctly formatted error messages to the browser, and a variety of
other functions that you might overlook if you were to attempt to do this yourself.
Furthermore, in the spirit of good programming technique, reusing existing code saves
you time and tends to prevent errors.

See Also

* http://search.cpan.org/author/LDS/CGL.pm/CGIl.pm
* http://www.boutell.com/cgic

178 | Chapter 8: Dynamic Content

http://search.cpan.org/author/LDS/CGI.pm/CGI.pm
http://www.boutell.com/cgic

8.8 Invoking a CGI Program for Certain
Content Types

Problem

You want to invoke a CGI program to act as a sort of content filter for certain document
types. For example, a photographer may wish to create a custom handler to add a
watermark to photographs served from his Web site.

Solution

Use the Action directive to create a custom handler, which will be implemented by a
CGI program. Then use the AddHandler directive to associate a particular file extension
with this handler:

Action watermark /cgi-bin/watermark.cgi
AddHandler watermark .gif .Jjpg

Or if you really want to the server to select your handler based on the type of data rather
than the name of the file, you can use:

Action image/gif /cgi-bin/watermark.cgi
Action image/jpeg /cgi-bin/watermark.cgi

Discussion

This recipe creates a watermark handler that is called whenever a .gif or .jpg file is
requested.

A CGl program, watermark.cgi, takes the image file as input and attaches the watermark
image on top of the photograph. The path to the image file that was originally requested
in the URL is available in the PATH TRANSLATED environment variable, and the pro-
gram needs to load that file, make the necessary modifications, and send the resulting
content to the client, along with the appropriate HTTP headers.

Note that there is no way to circumvent this measure, as the CGI program will be called
for any .gif or .jpg file that is requested from within the scope to which these directives
apply.

This same technique may be used to attach a header or footer to HTML pages in an
automatic way, without having to add any kind of SSI directive to the files. This can be
extremely inefficient, as it requires that a CGI program be launched, which can be a
very slow process. It is, however, connstructive to see how it is done. What follows is
a very simple implementation of such a footer script:

#! /usr/bin/perl
print "Content-type: text/html\n\n";

my $file = SENV{PATH TRANSLATED};

8.8 Invoking a CGI Program for Certain Content Types | 179

open FILE, "$file";
print while <FILE>;
close FILE;

print gg~

<p>

FOOTER GOES HERE
</p>

~7

An equivalent PHP script might look something like this:

#! /usr/bin/php
$fh = fopen ($_SERVER['PATH TRANSLATED'], 'r');
fpassthru($fh);
print "\n\n<p>\n"
. "FOOTER GOES HERE\n"
. "</p>\n";
return;
The requested file, located at PATH TRANSLATED, is read in and printed out, unmodi-
fied. Then, at the end of it, a few additional lines of footer are output. A similar tech-
nique might be used to filter the contents of the page itself. With Apache 2.0, this may
be better accomplished with mod_ext_filter.

This script is intended to illustrate the technique, not to be used to add footer text to
Web pages! It doesn’t do any of the checking that would be necessary for such a task
(“Is this an HTML file?,” “Is it safe to add HTML after all of the content?,” and so on).

See Also

* Recipe 8.11
* Recipe 10.7

8.9 Getting SSls to Work

Problem

You want to enable Server-Side Includes (SSIs) to make your HTML documents more
dynamic.

Solution
There are at least two different ways of doing this.

Specify which files are to be parsed by using a filename extension such as .shtml. For
Apache 1.3, add the following directives to your httpd.conf in the appropriate scope:

<Directory /www/html/example>
Options +Includes

180 | Chapter 8: Dynamic Content

AddHandler server-parsed .shtml
AddType "text/html; charset=IS0-8859-1" .shtml
</Directory>

Or, for Apache 2.0 and later:

<Directory /www/html/example>
Options +Includes
AddType text/html .shtml
AddFilter INCLUDES .shtml
</Directory>

The second method is to add the XBitHack directive to the appropriate scope in your
httpd.conf file and allow the file permissions to indicate which files are to be parsed for
SSI directives:

XBitHack On

Discussion

SSIs provide a way to add dynamic content to an HTML page via a variety of simple
tags. This functionality is implemented by the mod_include module, which is docu-
mented at http://httpd.apache.org/docs/mod/mod_include.html. There is also a how-to-
style document available at http://httpd.apache.org/docs/howto/ssi.html.

The first solution provided here tells Apache to parse all .shtml files for SSI directives.
So, to test that the solution has been effective, create a file called something.shtml, and
put the following line in it:

File last modified at '<!--#echo var="LAST MODIFIED" -->'.

N

Note the space between the last argument and the closing "-->". This
space is surprisingly important; many SSI failures can be traced to its
.-?“ omission.

Accessing this document via your server should result in the page displaying the date
and time when you modified (or created) the file.

If you wish to enable SSIs, but do not wish to permit execution of CGI scripts, or other
commands using the #exec or the #include virtual SSI directives, substitute
IncludesNoExec for Includes in the Options directive in the solution.

Some Webmasters like to enable SSI parsing for all HTML content on their sites by
specifying .html instead of .shtml in the AddType, AddHandler, and AddFilter directives.

If for some reason you do not wish to rename documents to .shtml files, merely because
you want to add dynamic content to those files, XBitHack gives you a way around this.
Of course, you could enable SSI parsing for all . himl files, but this would probably result
in a lot of files being parsed for no reason, which can cause a performance hit.

8.9 Getting SSIs to Work | 181

http://httpd.apache.org/docs/mod/mod_include.html
http://httpd.apache.org/docs/howto/ssi.html

The XBitHack directive tells Apache to parse files for SSI directives if they have the
execute bit set on them. So, when you have this directive set to On for a particular
directory or virtual host, you merely need to set the execute bit on those files that
contain SSI directives. This way, you can add SSI directives to existing documents
without changing their names, which could potentially break links from other pages,
sites, or search engines.

The simplest way of setting (or clearing) the execute permission bit of a file is:

chmod a+x foo.html # turns it on
chmod a-x foo.html # turns it off

The XBitHack method only works on those platforms that support the concept of
execute access to files; this includes Unixish systems but does not include Windows.

See Also

* Recipe 8.12
* Recipe 8.11

8.10 Displaying Last Modified Date

Problem

You want your Web page to indicate when it was last modified but not have to change
the date every time.

Solution

Use SSI processing by putting a line in the HTML file for which you want the infor-
mation displayed:

<!--#config timefmt="%B %e, SY" -->
This document was last modified on <!--#echo var="LAST MODIFIED" -->
Discussion

The config SSI directive allows you to configure a few settings governing SSI output
formats. In this case, we’re using it to configure the format in which date/time infor-
mation is displayed. The default format for date output is 04-Dec-2037 19:58:15
EST, which is not the most user-friendly style. The recipe provided changes this to the
slightly more readable format December 4, 2002.If you wantanother output format,
the timefmt attribute can take any argument accepted by the C strftime (3) function.

See Also
* Recipe 8.9

* The strftime(3) documentation

182 | Chapter 8: Dynamic Content

8.11 Including a Standard Header

Problem

You want to include a header (or footer) in each of your HTML documents.

Solution

Use SSI by inserting a line in all your parsed files:
<!--#include virtual="/include/headers.html" -->

Discussion

By using the SSI include directive, you can have a single header file that can be used
throughout your Web site. When your header needs to be modified, you can make this
change in one place and have it go into effect immediately across your whole site.

The argument to the virtual attribute is a local URI and subject to all normal Alias,
ScriptAlias, RewriteRule, and other commands, which means that:

<!--#include virtual="/index.html" -->

will include the file from your DocumentRoot, and:

<!--#include virtual="/cgi-bin/foo" -->
will include the output from the foo script in your server’s ScriptAlias directory.

If the argument doesn’t begin with a / character, it’s treated as being relative to the
location of the document using the #include directive.

W

Be aware that URIs passed to #include virtual may not begin with ../,
nor may they refer to full URLs such as http://example.com/foo.html.
' Documents included using relative syntax (i.e., those not beginning
with /) may only be in the same location as the including file, or in some
sublocation underneath it. Server processing of the URI may result in
the actual included document being located somewhere else, but the
restrictions on the #include virtual SSI command syntax permit only
same-location or descendent-location URIs.

See Also

* Recipe 8.8
* Recipe 8.9

8.11 Including a Standard Header | 183

8.12 Including the Output of a CGI Program

Problem

You want to have the output of a CGI program appear within the body of an existing
HTML document.

Solution

Use server-side includes by adding a line such as the following to the document (which
must be enabled for SSI parsing):

<!--f#include virtual="/cgi-bin/content.cgi" -->

Discussion

The SSI #include directive, in addition to being able to include a plain file, can also
include other dynamic content, such as CGI programs, other SSI documents, or content
generated by any other method.

The #exec SSI directive may also be used to produce this effect, but for a variety of
historical and security-related reasons, its use is deprecated. The #include directive is
the preferred way to produce this effect.

See Also
* Recipe 8.9

8.13 Running CGI Scripts as a Different User
with suexec

Problem

You want to have CGI programs executed by some user other than nobody (or whatever
user the Apache server runs as). For example, you may have a database that is not
accessible to anyone except a particular user, so the server needs to temporarily assume
that user’s identity to access it.

Solution

When building Apache, enable suexec by passing the --enable-suexec argument to
configure.

Then, in a virtual host section, specify which user and group you’d like to use to run
CGI programs:

184 | Chapter 8: Dynamic Content

User rbowen
Group users

Also, suexec will be invoked for any CGI programs run out of username-type URLs for
the affected virtual host.

Discussion

The suexec wrapper is a suid (runs as the user ID of the user that owns the file) program
that allows you to run CGI programs as any user you specify, rather than as the
nobody user that Apache runs as. suexec is a standard part of Apache butis not enabled

by default.

The suexec concept does not fit well into the Windows environment,
and so suexec is not available under Windows.

When suexec is installed, there are two different ways that it can be invoked, as shown
in the Solution.

A User and Group directive may be specified in a VirtualHost container, and all CGI
programs executed within the context of that virtual host are executed as that user and
group. Note that this only applies to CGI programs. Normal documents and other types
of dynamic content are still accessed as the user and group specified in the User and
Group directives in the main server configuration, not those in the virtual host, and
need to be readable by that user and group.

Second, any CGI program run out of a UserDir directory is run with the permissions
of the owner of that directory. That is, if a CGI program is accessed via the URL http:/
example.com/~rbowen/cgi-bin/test.cgi, then that program will be executed, via suexec,
with a userid of rbowen, and a groupid of rbowen’s primary group.

W N

If UserDir points to a nonstandard location, you must tell suexec about

this when you build it. In a default configuration, suexec is invoked when

" 98¢ CGI programs are invoked in a directory such as /home/username/pub

" lic_html/ for some username. If, however, you move the UserDir direc-
tory somewhere else, such as, for example, /home/username/www/,
then you could configure suexec to be invoked in that directory instead,
using the following argument when you build Apache 1.3:

--suexec-userdir=www

And, for Apache 2.0, you would specify the following:

--with-suexec-userdir=www

8.13 Running CGI Scripts as a Different User with suexec | 185

http://example.com/~rbowen/cgi-bin/test.cgi
http://example.com/~rbowen/cgi-bin/test.cgi

Running CGI programs via suexec eliminates some of the security concerns surrounding
CGI programs. By default, CGI programs run with the permissions of the user and
group specified in the User and Group directives, meaning that they have rather limited
ability to do any damage. However, it also means that CGI programs on one part of
your Web server run with all the same permissions as those on another part of your
server, and any files that are created or modified by one will be modifiable by another.

By running a CGI program under suexec, you allow each user to exercise a little more
control over her own file permissions, and in the event that a malicious CGI program
is written, it can only damage the files owned by the user in question, rather than having
free rein over the entire Web server.

PHP scripts that are run as CGI programs, rather than under the mod_php handler,
may be run as suexec processes in the same way as any other CGI program.

If suexec encounters a problem, it reacts in as paranoid a way as possible—which means
it won’t serve the document. The end user will see an error page, but the only explan-
ation of what really went wrong will be found in the server’s error log. The messages
are pretty self-explanatory. Almost all suexec problems are caused by files having the
wrong permission or ownership; the entry in suexec’s log should make clear which.

See Also

* User directive at http://httpd.apache.org/docs/mod/core. html#user or http://
httpd.apache.org/docs-2.0/mod/mpm_common.html#user

* Group directive at http://httpd.apache.org/docs/mod/core.html#group or http://
httpd.apache.org/docs-2.0/mod/mpm_common. html#group

* Thesuexec documentation at http://httpd.apache.org/docs/programs/suexec.html or
http://httpd.apache.org/docs-2.0/programs/suexec.html

8.14 Installing a mod_perl Handler from
CPAN

Problem

You want to install one of the many mod_perl handler modules available on CPAN.
For example, you want to install the Apache::Perldoc module, which generates HTML
documentation for any Perl module that you happen to have installed.

Solution

Assuming you already have mod_perl installed, you’ll just need to install the module
from CPAN, and then add a few lines to your Apache configuration file.

To install the module, run the following command from the shell as root:

186 | Chapter 8: Dynamic Content

http://httpd.apache.org/docs/mod/core.html#user
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#user
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#user
http://httpd.apache.org/docs/mod/core.html#group
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#group
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#group
http://httpd.apache.org/docs/programs/suexec.html
http://httpd.apache.org/docs-2.0/programs/suexec.html

perl -MCPAN -e 'install Apache::Perldoc’

Then, in your Apache configuration file, add:

<Location /perldoc>
SetHandler perl-script
PerlHandler Apache::Perldoc
</Location>

After restarting Apache, you can access the handler by going to a URL such as http://
example.com/perldoc/Apache/Perldoc.

Discussion

The CPAN shell, which is installed when Perl is installed, gives you an easy way to
install Perl modules from CPAN. CPAN, if you’re not familiar with it, is the Compre-
hensive Perl Archive Network, at http://cpan.org, a comprehensive archive of Perl stuff,
including Perl modules for every purpose you can imagine and several you can’t. This
includes a substantial number of mod_perl handlers.

The module specified in this recipe is a very simple one that gives you HTML docu-
mentation for any Perl module you have installed, accessible via your Apache server.
Other ones provide photo albums, weblog handlers, and DNS zone management,
among other things.

The first time you run the CPAN shell, you will need to answer a series of questions
about your configuration, what CPAN server you want to get modules from, where it
should find your FTP clients, and so on. This only happens once, and for every use
after that it just works.

The specific way that you need to configure Apache to use your newly-installed module
will vary from one module to another, but many of them will look like the example
given. The SetHandler perl-script directive tells Apache that the content will be handled
by mod_perl, whereas the PerlHandler directive specifies what Perl module contains
the actual handler code.

See Also

* http://cpan.org

* http://search.cpan.org/author/RBOW/Apache-Perldoc
* http://apachegallery.dk

* http://dnszone.org

8.15 Writing a mod_perl Handler

Problem

You want to write your own mod_perl handler.

8.15 Writing a mod_perl Handler | 187

http://example.com/perldoc/Apache/Perldoc
http://example.com/perldoc/Apache/Perldoc
http://cpan.org
http://cpan.org
http://search.cpan.org/author/RBOW/Apache-Perldoc
http://apachegallery.dk
http://dnszone.org

Solution

Here’s a simple handler:

package Apache::Cookbook: :Example;

sub handler ({
my $r = shift;
Sr->send http header('text/plain');
Sr->print ('Hello, World.');

}

1;

Place this code in a file called Example.pm, in a directory Apache/Cookbook/,
somewhere that Perl knows to look for it.

Discussion

The example handler given is fairly trivial and does not do anything useful. More useful
examples may be obtained from the mod_perl Web site (http://perl.apache.org) and
from Geoffrey Young’s (et al.) excellent book) mod_perl Developer’s Cookbook (Sams).
Also, although it is somewhat dated, the “Eagle book” (Writing Apache Modules with
Perl and C) by Lincoln Stein and Doug MacFachern (O’Reilly) is an excellent
introduction to mod_perl and the Apache API.

The real question here, however, is how and where you should install the file that you’ve
created. There are two answers to this question, and which one you choose will be
largely personal preference.

When Perl looks for a module, it looks through the list called @INC for directories
where that module mightbe. You can either put your module in one of those directories,
or you can add a directory to the list.

To find out where Perl is looking, you can examine the values stored in @INC with the
following:

perl -le 'print join "\n", QINC;'

This will give you a listing that will look something like:

/usr/local/lib/perl5/5.8.0/1i686-1inux
/usr/local/lib/perl5/5.8.0
/usr/local/lib/perl5/site perl/5.8.0/1686-1inux
/usr/local/lib/perl5/site perl/5.8.0
/usr/local/lib/perl5/site perl

This will of course vary from one system to another, from one version of Perl to another,
but will bear some resemblance to that listing.

188 | Chapter 8: Dynamic Content

http://perl.apache.org

To install a module called Apache::Cookbook::Example, you might put the file
Example.pm at this location: /usr/local/lib/perl5/site_perl/5.8.0/Apache/Cookbook/Ex
ample.pm.

Alternately, you can tell Perl to look in some other directory by adding a value to the
@INC list. The best way to do this is to add the following to your startup.pl file:

use lib '/home/rbowen/perl libs/';

startup.pl should then be loaded by Apache at startup, using the following directive in
the Apache server configuration file:

PerlRequire /path/to/startup.pl

This tells Perl to also look in that directory for Perl modules. This time, if your module
is called Apache::Cookbook::Example, you would now place it at the location /home/
rbowen/perl_libs/Apache/Cookbook/Example.pm.

See Also

* mod_perl Developer’s Cookbook by Geoffrey Young et al., which can be accessed
at http://modperlcookbook.org

8.16 Enabling PHP Script Handling

Problem

You want to enable PHP scripts on your server.

Solution

If you have mod_php installed, use AddHandler to map .php and .phtml files to the PHP
handler:

AddHandler application/x-httpd-php .phtml .php

Discussion

This recipe maps all files with .phtml or .php to the PHP handler. You must ensure that
the mod_php module is installed and loaded.

W
\
T

You may find some disagreement as to whether one should use
AddHandler or AddType to enable the module, but the AddHandler di-
%" rective is the correct one.

See Also
¢ Recipe 2.5

8.16 Enabling PHP Script Handling | 189

http://modperlcookbook.org

* Installation instructions on the mod_php Web site at http://www.php.net/manual/
enfinstall.apache.php for Apache 1.3, or go to http://www.php.net/manual/en/in
stall.apache2.php for Apache 2.0.

8.17 Verifying PHP Installation

Problem

You want to verify that you have PHP correctly installed and configured.

Solution

Put the following in your test PHP file:
<?php phpinfo(); ?>

Discussion

Place that text in a file called something.php in a directory where you believe you have
enabled PHP script execution. Accessing that file should give you a list of all configured
PHP system variables. The first screen of the output should look something like Fig-
ure 8-2.

See Also
* Recipe 8.16

8.18 Parsing CGI Output for Server Side
Includes

Problem

You want to include SSI directives in the output from a CGI script and have them
processed correctly.

Solution

This is fully supported only in Apache httpd version 2.0 and later.

Put the following into a scope that includes the CGI scripts for which you want the
output parsed. Change the . cgi suffix to whatever your scripts use:

190 | Chapter 8: Dynamic Content

http://www.php.net/manual/en/install.apache.php
http://www.php.net/manual/en/install.apache.php
http://www.php.net/manual/en/install.apache2.php
http://www.php.net/manual/en/install.apache2.php

7 File
i

Bark

Edit

View G0 Bookmarks Tools Window Help

Forward | Reload

étbp | &

A

PHP Version 4.4.0-dev

Support

System Linu- I ~ < #0-19 7 #1 Tue Jul 15 13:44:14 EDT 2003 (666
Build Date Dec 30 Z00& 06:11:57
Configure *foonfigure’ —-with-mysgl=fusr' ‘—-with-zlib=/usr' '——with-wml' *—-with-gd' *—-with-png’
Command *—-with-jpeg-dir=/usr' *--with-zlib-dir=/usr' ‘--enahle-exit '-enable-calendar’

N —-with-apxs hinfapxs'

: Server API Apache
Virtual Directory |disabled

Configuration File

Austilacalflibiphp.ini

(php.ini) Path
PHP API 20020918

PHP Extension 20020429

Zend Extension 200z1010

Debugy Build no

Thread Safety disabled

Registered PHP | php, hitp, fip, compress zlib
Streams

This program makes use of the Zend Scripting Language Engine:
Zend Engine ¥1.4.0, Copyright () 1938-2002 Zend Technologies
]

Powered by
i /

| Fo= |

-1

[% & <2 E& [Document Done (0667 secs)

Figure 8-2. Sample phpinfo() output

Options +Includes
AddOutputFilter INCLUDES .cgi

Discussion

Place this text in the server-wide configuration files or in a .htaccess file in the same
directory as the scripts. This will cause the server to collect the output from the scripts
and examine it for SSI directives before sending it to the client.

See Also
* Recipe 8.19

8.19 Parsing ScriptAlias Script Output for
Server-Side Includes

Problem

You want to include SSI directives in the output from one or more of the scripts in your
ScriptAlias directory and have them processed correctly.

8.19 Parsing ScriptAlias Script Output for Server-Side Includes | 191

Solution

W N
- This is fully supported only in Apache httpd version 2.0 and later.
a.
v

Put the following into the <Directory> container for your ScriptAlias directory:

Options +Includes
SetOutputFilter INCLUDES

Discussion

The above directive will instruct the server to filter all output from scripts in the
ScriptAlias directory for SSI directives before sending it to the client.

See Also
* Recipe 8.18

8.20 Getting mod_perl to Handle All Perl
Scripts

Problem

You want all .pl files to always be executed by mod_perl.

Solution
Place this line near the top of your httpd.conf file, after the module declaration and
activation sections:

PerlModule Apache::Registry
Place this code in the section of your httpd.conf file which includes the scope where you
want this behavior to occur (such as within a <Directory> container:

<FilesMatch \.pl$>
SetHandler perl-script
PerlHandler Apache::Registry
</FilesMatch>

Be sure that you have the Apache module mod_perl installed and activated.

192 | Chapter 8: Dynamic Content

Discussion

The PerlModule directive ensures that the necessary bits from mod_perl are available.
The <FilesMatch> applies to every file ending in .p1 and instructs the server to treat it
as a script to be handled as CGI scripts by the Apache::Registry package.

More information can be found at the mod_perl Web site (http://perl.apache.org).

These directives will result in all . p1 files being treated as CGI scripts, whether they
are or not. If the server tries to execute a non-CGI script using this method, the end-
user will get an error page and an entry will be made in the server’s error log. The most
common error logged refers to “Premature end of script headers,” whichisa
pretty sure indicator of either a broken CGI script or a completely non-CGI script being
treated like one.

See Also

* The mod_perl Web site at http://perl.apache.org

* mod_perl Developer’s Cookbook, by Geoffrey Young et al., which can be accessed
at http://modperlcookbook.org/

8.21 Enabling Python Script Handling

Problem

You want to enable Python scripts on your server.

Solution
If you have mod_python installed, use the following directives to instruct the server to
call it when a Python script is referenced:

AddHandler mod python .py
PythonHandler mod python.publisher
PythonDebug On

Discussion

This recipe maps all files with .py to the Python script handler. Whenever a request
resolves to a file with a .py suffix in the scope of those directives, the server will treat it
as a Python script and execute it. You must ensure that the mod_python module is
installed.

See Also
* Recipe 8.16

8.21 Enabling Python Script Handling | 193

http://perl.apache.org
http://perl.apache.org
http://modperlcookbook.org/

* Installation instructions on the mod_python Web site at http://modpython.org/
doc_html

194 | Chapter 8: Dynamic Content

http://modpython.org/doc_html
http://modpython.org/doc_html

CHAPTER 9
Error Handling

When you’re running a Web site, things go wrong. And when they do, it’s important
that they are handled gracefully, so that the user experience is not too greatly dimin-
ished. In this chapter, you’ll learn how to handle error conditions, return useful mes-
sages to the user, and capture information that will help you fix the problem so that it
does not happen again.

9.1 Handling a Missing Host Field

Problem

You have multiple virtual hosts in your configuration, and at least one of them is name-
based. For name-based virtual hosts to work properly, the client must send a valid
Host field in the request header. This recipe describes how you can deal with situations
in which the field is not included.

Solution
Add the following lines to your httpd.conf file:

Alias /NoHost.cgi /usr/local/apache/cgi-bin/NoHost.cgi
RewriteEngine On

RewriteCond "%{HTTP_ HOST}" "~ $"

RewriteRule " (.*)" "/NoHost.cgi$l" [PT]

The file NoHost.cgi can contain something like the following:

#! /usr/bin/perl -Tw

my $msg = "To properly direct your request, this server requires that\n"
"your web client include the HTTP 'Host' request header field.\n"
"The request which caused this response did not include such\n"
. "a field, so we cannot determine the correct document for you.\n";
print "Status: 400 Bad Request\r\n\"
"Content-type: text/plain\r\n\"
'Content-length: ' . length(S$msg) . "\r\n\"
"\r\n\"

195

. Smsg;
exit (0);

Discussion

Once the directives in the solution are in place, all requests made of the server that do
not include a Host field in the request header will be redirected to the specified CGI
script, which can take appropriate action.

The solution uses a CGI script so that the response text can be tailored according to
the attributes of the request and the server’s environment. For instance, the script might
respond with a list of links to valid sites on the server, determined by the script at
runtime by examining the server’s own configuration files. If all you need is a “please
try again, this time with a Host field” sort of message, a static HTML file would suffice.
Replace the RewriteRule directive in the solution with that below, and create the
nohost.html accordingly:

RewriteRule ".*" "/nohost.html" [PT]

A more advanced version of the script approach could possibly scan the httpd.conf file
for ServerName directives, construct a list of possibilities from them, and present links
ina 300 Multiple Choices response. Of course, there’s an excellent chance they
wouldn’t work, because the client still did not include the Host field.

See Also
* http://httpd.apache.org/docs/mod/mod_rewrite.html

9.2 Changing the Response Status for CGl
Scripts

Problem

There may be times when you want to change the status for a response—for example,
you want 404 Not Found errors to be sent back to the client as 403 Forbidden
instead.

Solution

Point your ErrorDocument to a CGl script instead of a static file. The CGI specification
permits scripts to specify the response status code.

In addition to the other header fields the script emits, like the Content-type field,
include one named status with the value and text of the status you want to return:

#! /bin/perl -w
print "Content-type: text/html;charset=iso-8859-1\r\n";

196 | Chapter 9: Error Handling

http://httpd.apache.org/docs/mod/mod_rewrite.html

print "Status: 403 Access denied\r\n";

Discussion

If Apache encounters an error processing a document, such as not being able to locate
a file, by default it will return a canned error response to the client. You can customize
this error response with the ErrorDocument directive, and Apache will generally
maintain the error status when it sends your custom error text to the client.

However, if you want to change the status to something else, such as hiding the fact
that a file doesn’t exist by returning a Forbidden status, you need to tell Apache about
the change.

This requires that the ErrorDocument be a dynamic page, such as a CGI script. The
CGI specification provides a very simple means of specifying the status code for a
response: the status CGI header field. The Solution shows how it can be used.

See Also
* Chapter 8
* http://httpd.apache.org/docs/mod/core.html#errordocument

* http://lwww.rfc-editor.org/cgi-bin/rfcdoctype.pllloc=RFC&lets
20=3875&type=ftp&rfile_format=txt

9.3 Customized Error Messages

Problem

You want to display a customized error message, rather than the default Apache error
page.

Solution

Use the ErrorDocument directive in httpd.conf:

ErrorDocument 405 /errors/notallowed.html

Discussion

The ErrorDocument directive allows you to create your own error pages to be displayed
when particular error conditions occur. In the previous example, in the event of a
405 status code (Method Not Allowed), the specified URL is displayed for the user,
rather than the default Apache error page.

The page can be customized to look like the rest of your Web site. When an error
document looks significantly different from the rest of the site, this can leave the user
feeling disoriented, or she may think she has left the site that she was on.

9.3 Customized Error Messages | 197

http://httpd.apache.org/docs/mod/core.html#errordocument
http://www.rfc-editor.org/cgi-bin/rfcdoctype.pl?loc=RFC&letsgo=3875&type=ftp&file_format=txt
http://www.rfc-editor.org/cgi-bin/rfcdoctype.pl?loc=RFC&letsgo=3875&type=ftp&file_format=txt

See Also
* http://httpd.apache.org/docs/mod/core.html#errordocument

9.4 Providing Error Documents in Multiple
Languages

Problem

On a multilingual (content-negotiated) Web site, you want your error documents to
be content-negotiated as well.

Solution

The Apache 2.0 default configuration file contains a configuration section, initially
commented out, that allows you to provide error documents in multiple languages
customized to the look of your Web site, with very little additional work.

Uncomment those lines. You can identify the lines by looking for the following
comment in your default configuration file:

The internationalized error documents require mod_alias, mod_include
and mod negotiation. To activate them, uncomment the following 30 lines.

In Apache 1.3 this is harder, but there’s a solution in the works, as of this writing, that
will make it similar to the 2.0 implementation. Check the Apache Cookbook Web site
for more information.

Discussion

The custom error documents provided with Apache 2.0 combine a variety of techniques
to provide internationalized error messages. As of this writing, these error messages are
available in German, English, Spanish, French, Dutch, Swedish, Italian, and Portu-
guese. Based on the language preference set in the client browser, the error message is
delivered in the preferred language of the end user.

Using content negotiation, the correct variant of the document (i.e., the right language)
is selected for the user, based on her browser preference settings. For more information
about content negotiation, see the content negotiation documentation at http://
httpd.apache.org/docs-2.0/content-negotiation.html ~ (for Apache 2.0) or hitp:/
httpd.apache.org/docs/content-negotiation.html (for Apache 1.3).

In addition to delivering the error message in the correct language, this functionality
also lets you customize the look of these error pages so that they resemble the rest of
your Web site. To facilitate this, the files top.html and bottom.html, located in the
include subdirectory of the error directory, should be modified to look like the standard
header and footer content that appears on your Web site. The body of the error message

198 | Chapter 9: Error Handling

http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs-2.0/content-negotiation.html
http://httpd.apache.org/docs-2.0/content-negotiation.html
http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs/content-negotiation.html

documents is placed between the header and the footer to create a page that is less
jarring to users when they transition from your main site to the error pages that are
generated.

You also will note that the error documents contain SSI directives, which are used to
further customize the error documents for the user. For example, in the case of the 404
(file not found) error document, the page will provide a link back to the page that the
user came from, if the environment variable HTTP_REFERER is defined, and if that
variable is not found, the page will merely notify the user that the URL was not found.
Other SSI directives may be put in these documents, if you wish, to further customize
them.

See Also

* http://httpd.apache.org/docs/content-negotiation. html

* http://httpd.apache.org/docs-2.0/content-negotiation.html
* http://apache-cookbook.com

* Recipe 8.9

9.5 Redirecting Invalid URLs to Some Other
Page

Problem

You want all “not found” pages to go to some other page instead, such as the front page
of the site, so that there is no loss of continuity on bad URLs.

Solution

Use the ErrorDocument directive to catch 404 (Not Found) errors:

ErrorDocument 404 /index.html
DirectoryIndex index.html/path/to/notfound.html

Discussion

The recipe given here will cause all 404 errors—every time someone requests an invalid
URL—to return the URL /index.html, providing the user with the front page of your
Web site, so that even invalid URLs still get valid content. Presumably, users accessing
an invalid URL on your Web site will get a page that helps them find the information
that they were looking for.

By contrast, this behavior may confuse the user who believes she knows exactly where
the URL should take her. Make sure that the page that you provide as the global error
document does in fact help the user find things on your site, and does not merely

9.5 Redirecting Invalid URLs to Some Other Page | 199

http://httpd.apache.org/docs/content-negotiation.html
http://httpd.apache.org/docs-2.0/content-negotiation.html
http://apache-cookbook.com

confuse or disorient her. You may, as shown in the example, return her to the front
page of the site. From there she should be able to find what she was looking for.

When users get good content from bad URLs, they will never fix their bookmarks and
will continue to use a bogus URL long after it has become invalid. You will continue
to get 404 errors in your log file for these URLs, and the users will never be aware that
they are using an invalid URL. If, by contrast, you actually return an error document,
they will immediately be aware that the URL they are using is invalid and will update
their bookmarks to the new URL when they find it.

Note that, even though a valid document is being returned, a status code of 404 is still
returned to the client. This means that if you are using some variety of tool to validate
the links on your Web site, you will still get good results, if the tool is checking the
status code, rather than looking for error messages in the content.

See Also

* http://httpd.apache.org/docs/mod/core.html#errordocument
* http://httpd.apache.org/docs/mod/mod_dir.html

9.6 Making Internet Explorer Display Your
Error Page

Problem

You have an ErrorDocument directive correctly configured, but IE is displaying its own
error page, rather than yours.

Solution
Make the error document bigger—at least 512 bytes.

Discussion

Yes, this seems a little bizarre, and it is. In this case, Internet Explorer thinks it knows
better than the Web site administrator. If the error document is smaller than 512 bytes,
it will display its internal error message page, rather than your custom error page,
whenever it receives a 400 or 500 series status code. This size is actually configurable
in the browser, so this number may in fact vary from one client to another. “Friendly
error messages” also can be turned off entirely in the browser preferences.

This can be extremely frustrating the first time you see it happen, because you just
know you have it configured correctly and it seems to work in your other browsers.
Furthermore, when some helpful person tells you that your error document just needs

200 | Chapter 9: Error Handling

http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/mod/mod_dir.html

to be a little larger, it’s natural to think that he is playing a little prank on you, because
this seems a little too far-fetched.

But it’s true. Make the page bigger. It needs to be at least 512 bytes, or IE will ignore it
and gleefully display its own “friendly” error message instead.

Exactly what you fill this space with is unimportant. You can, for example, just bulk it
up with comments. For example, repeating the following comment six times would be
sufficient to push you over that minimum file size:

<!-- message-obscuring clients are an abomination
and an insult to the user's intelligence -->

* http://httpd.apache.org/docs/mod/core.html#errordocument

9.7 Notification on Error Conditions

Problem

You want to receive email notification when there’s an error condition on your server.

Solution

Point the ErrorDocument directive to a CGI program that sends mail, rather than to a
static document:

ErrorDocument 404 /cgi-bin/404.cgi

404.cgi looks like the following:

#!/usr/bin/perl
use Mail::Sendmail;
use strict;

my S$message = gg~
Document not found: $ENV{REQUEST7URI}
Link was from: $ENV{HTTP7REFERER}

my %mail = (
To => 'admin@server.com',
From => 'website@server.com',
Subject => 'Broken link',
Message => S$Smessage,
);

sendmail ($mail) ;

print "Content-type: text/plain\n\n";
print "Document not found. Admin has been notified\n";

9.7 Notification on Error Conditions | 201

http://httpd.apache.org/docs/mod/core.html#errordocument

Discussion

This recipe is provided as an example, rather than as a recommendation. On a Web
site of any significant size or traffic level, actually putting this into practice generates a
substantial quantity of email, even on a site that is very well maintained. This is because
people mistype URLs, and other sites, over which you have no control, will contain
incorrect links to your site. It may be educational, however, to put something like this
in place, at least briefly, to gain an appreciation for the scale of your own Web site.

The ErrorDocument directive will cause all 404 (Document Not Found) requests to
be handled by the specified URL, and so your CGI program gets run and is passed
environment variables that will be used in the script itself to figure out what link is bad
and where the request came from.

The script used the Mail::Sendmail Perl module to deliver the email message, and this
module should work fine on any operating system. The module is not a standard part
of Perl, so you may have to install it from CPAN (http://www.cpan.org). A similar effect
can, of course, also be achieved in PHP or any other programming language.

The last two lines of the program display a very terse page for the user, telling him that
there was an error condition. You may wish, instead, to have the script redirect the user
to some more informative and attractive page on your Web site. This could be accom-
plished by replacing those last two lines with something like the following:

print "Location: http://server.name/errorpage.html\n\n";

This would send a redirect header to the client, which would display the specified URL
to the user.

See Also
* http://httpd.apache.org/docs/mod/core.html#errordocument

202 | Chapter 9: Error Handling

http://www.cpan.org
http://httpd.apache.org/docs/mod/core.html#errordocument

CHAPTER 10
Proxies

Proxy means to act on behalf of another. In the context of a Web server, this means
one server fetching content from another server, then returning it to the client. For
example, you may have several Web servers that hide behind a proxy server. The proxy
server is responsible for making sure requests go to the right backend server.

mod_proxy, which comes with Apache, handles proxying behavior. The recipes in this
chapter cover various techniques that can be used to take advantage of this capability.
We discuss securing your proxy server, caching content proxied through your server,
and ways to use mod_proxy to map requests to services running on alternate ports.

Additional information about mod_proxy can be found at http://httpd.apache.org/docs/
mod/mod_proxy.html for Apache 1.3, or http://httpd.apache.org/docs/2.0/mod/
mod_proxy.html for Apache 2.0.

Apache 2.2 introduces a number of submodules, such as mod_proxy_balancer, which
give additional functionality to mod_proxy. These will be discussed in this chapter, too.

Please make sure that you don’t enable proxying until you understand the security
concerns involved and have taken steps to secure your proxy server. (See Recipe 6.20
for details.)

You also may wish to consider a dedicated proxy server, such as Squid (http://
www.squid-cache.org), which is focused entirely on one task, and thus has more options
related to this task.

10.1 Securing Your Proxy Server

Problem

You want to enable proxying, but you don’t want an open proxy that can be used by
just anyone.

203

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://www.squid-cache.org
http://www.squid-cache.org

Solution
For Apache 1.3:

<Directory proxy:*>

Order deny,allow

Deny from all

Allow from .yourdomain.com
</Directory>

For Apache 2.0:

<Proxy *>

Order Deny,Allow

Deny from all

Allow from .yourdomain.com
</Proxy>

Discussion

Running an open proxy is a concern because it permits Internet users to use your proxy
server to cover their tracks as they visit Web sites. This can be a problem for a numbers
of reasons. The user is effectively stealing your bandwidth and is certainly part of the
problem. However, perhaps more concerning is the fact that you are probably enabling
people to circumvent restrictions that have been put in place by their network admin-
istrators, or perhaps you are providing users with anonymity while they visit a Web
site, and as a consequence, these visits appear to come from your network.

In these recipes, . yourdomain. comshould be replaced by the name of your particular
domain, or, better yet, the network address(es) that are on your network. (IP addresses
are harder to fake than host and domain names.) For example, rather than the line
appearing in the recipe, you might use a line such as:

Allow from 192.168.1
Note that every request for resources that goes through your proxy server generates a

logfile entry, containing the address of the client and the resource that she requested
through your proxy server. For example, one such request might look like:

192.168.1.5 - - [26/Feb/2003:21:26:13 -0500] "GET http://httpd.apache.org/docs/mod/
mod proxy.html HTTP/1.1" 200 49890

Your users, if made aware of this fact, will no doubt find it invasive, because this will
show all HTTP traffic through the proxy server.

It is possible to configure your server not to log these requests. To do this, you need to
set an environment variable for proxied requests:

<Directory proxy:*>
SetEnv PROXIED 1
</Directory>

Then, in your log directive, specify that these requests are not to be logged:

CustomLog /www/logs/access_log common env=!PROXIED

204 | Chapter 10: Proxies

See Also

* http://httpd.apache.org/docs/mod/mod_proxy.html
* http://httpd.apache.org/docs/mod/mod_log_config.html

10.2 Preventing Your Proxy Server from
Being Used as an Open Mail Relay

Problem

If your Apache server is set up to operate as a proxy, it is possible for it to be used as a
mail relay unless precautions are taken. This means that your system may be function-
ing as an “open relay” even though your mail server software is securely configured.

Solution
Use mod_rewrite to forbid proxy requests to port 25 (SMTP):

<Directory proxy:*>

RewriteEngine On

RewriteRule "“proxy:[a-z]*://["~/]*:25(/|$)" "-" [F,NC,L]
</Directory>

Discussion

To use the Apache proxy as an SMTP relay is fairly trivial, but then so is preventing it.
The solution simply tells the server to respond with a 403 Forbidden to any attempts
to use it to proxy to a remote mail server (port 25). Other ports, such as HTTP (port
80), HTTPS (port 443), and FTP (ports 20 and 21), which are commonly permitted
proxy access, will not be affected.

See Also

* http://httpd.apache.org/docs/mod/mod_proxy.himl
* http://httpd.apache.org/docs/mod/core. himl# directory
* http://httpd.apache.org/docs/mod/mod_rewrite.html

10.3 Forwarding Requests to Another Server

Problem

You want requests for particular URLs to be transparently forwarded to another server.

10.2 Preventing Your Proxy Server from Being Used as an Open Mail Relay |
205

http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/mod_log_config.html
http://httpd.apache.org/docs/mod/mod_proxy.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/mod_rewrite.html

Solution

Use ProxyPass and ProxyPassReverse directives in your httpd.conf:

ProxyPass /other/ http://other.server.com/
ProxyPassReverse /other/ http://other.server.com/

Discussion

These directives will cause requests to URLs starting with /other/ to be forwarded to
the server other.server.com, with the path information preserved. That is to say, a
request for hitp://www.server.com/other/something.html will be translated into a re-
quest for http://other.server.com/something.html. Content obtained from this other
server will be returned to the client, who will be unable to determine that any such
technique was employed. The ProxyPassReverse directive ensures that any redirect
headers sent from the backend server (in this case, other.server.com) will be modified
so that they appear to come from the main server.

This method is often used to have the dynamic portion of the site served by a server
running mod_perl—often even on the same machine, but on a different port—while
the static portions of the site are served from the main server, which can be lighter
weight, and so run faster.

Note that URLSs contained within documents are not rewritten as they pass through
the proxy, and links within documents should be relative, rather than absolute, so that
they work correctly.

Use this recipe when you have a frontend server and one or more backend servers,
inaccessible from the Internet, and you wish to serve content from them. In the example
given, when a request is made fora URL starting with /other/, Apache makes a request
for the URL http://other.server.com, and returns the content obtained by the client. For
example, a request for the URL /other/example.html results in a request for the
URL http://other.server.com/example.html.

The ProxyPassReverse directive ensures that any header fields returned by the secon-
dary server (which contain the name of the server, such as Location headers) will be
rewritten to contain the URL that the end user will actually be using, ensuring that the
redirect actually functions as desired.

Note that links within HTML documents on the secondary site should all be relative,
rather than absolute, so that these links work for users using the content via the proxy
server. In the recipe given, for example, a link to /index.html removes the /other/
portion of the URL, causing the request to no longer hit the proxied portion of the
server.

Using this technique, you can have content for one Web site actually served by multiple
Web server machines. This can be used as a means to traverse the border of your net-
work, or it can be used as a load-sharing technique to lessen the burden on your primary
Web server.

206 | Chapter 10: Proxies

See Also

* http://httpd.apache.org/docs/mod/mod_proxy.html
* Recipe 11.12

10.4 Blocking Proxied Requests to Certain
Places

Problem

You want to use your proxy server as a content filter, forbidding requests to certain
places.

Solution

Use ProxyBlock in the httpd.conf to deny access to particular sites:

ProxyBlock forbiddensite.com www.competitor.com monster.com

Discussion

This example forbids proxied requests to the sites listed. These arguments are substring
matches; example . com will also match www.example. com, and an argument of exam
ple would match both.

If you want more fine-grained control of what content is requested through your proxy
server, you may want to use something more sophisticated, such as Squid, which is
more full-featured in that area.

See Also
* The Squid proxy server, found at http://www.squid-cache.org

10.5 Proxying mod_perl Content to Another
Server

Problem

You want to run a second HTTP server for dynamically generated content and have
Apache transparently map requests for this content to the other server.

Solution

First, install Apache, running on an alternate port, such as port 90, on which you will
generate this dynamic content. Then, on your main server:

10.4 Blocking Proxied Requests to Certain Places | 207

http://httpd.apache.org/docs/mod/mod_proxy.html
http://www.squid-cache.org

ProxyPass /dynamic/ http://localhost:90/
ProxyPassReverse /dynamic/ http://localhost:90/

Discussion

Most dynamic content generation techniques use a great deal more system resources
than serving static content. This can slow down the process of serving static content
from the same server, because child processes will be consumed with producing this
dynamic content, and thus unable to serve the static files.

By giving the dynamic content its own dedicated server, you allow the static content to
be served much more rapidly, and the dynamic content has a dedicated server. Each
server can have a smaller set of modules installed than it would otherwise require be-
cause it’ll be performing a smaller subset of the functionality needed to do both tasks.

This technique can be used for a mod_perl server, a PHP server, or any other dynamic
content method. Or you could reverse the technique and have, for example, a dedicated
machine for serving image files using mod_mmap_static to serve the files very rapidly
out of an in-memory cache.

In the example, all URLs starting with /dynamic/ will be forwarded to the other server,
which will, presumably, handle only requests for dynamic content. URLs that do not
match this URL, however, will fall through and be handled by the frontend server.

See Also

* http://httpd.apache.org/docs/mod/mod_proxy.html
* Chapter 8

10.6 Configuring a Caching Proxy Server

Problem

You want to run a caching proxy server.

Solution
Configure your server to proxy requests and provide a location for the cached files to
be placed:

ProxyRequests on
CacheRoot /var/spool/httpd/proxy

Discussion

Running a caching proxy server allows users on your network to have more rapid access
to content that others have already requested. They will perhaps not be getting the most
recent version of the document in question, but since they are retrieving the content

208 | Chapter 10: Proxies

http://httpd.apache.org/docs/mod/mod_proxy.html

from a local copy rather than from the remote Web server, they will get it much more
quickly.

With the contents of the WWW growing ever more dynamic, running a caching proxy
server perhaps makes less sense than it once did, when most of the Web was composed
of static content. However, because mod_proxy is fairly smart about what it caches and
what it does not cache, this sort of setup will still speed things up by caching the static
portions of documents, such as the image files, while retrieving the most recent version
of those documents that change over time.

The directory specified in the CacheRoot directive specifies where cached content will
be stored. This directory must be writable by the user that Apache is running as (typ-
ically nobody), so that it is able to store these files there.

Finally, note that, while in Apache 1.3, the functions discussed here are provided by
mod_proxy; in Apache 2.0, the proxying and caching functionalities have been split
into the modules mod_proxy and mod_cache, respectively. In either case, these modules
are not enabled by default.

See Also
* http://httpd.apache.org/docs/mod/mod_proxy.html

10.7 Filtering Proxied Content

Problem

You want to apply some filter to proxied content, such as altering certain words.

Solution

In Apache 2.0 and later, you can use mod_ext_filter to create output filters to apply to
content before it is sent to the user:

ExtFilterDefine naughtywords mode=output intype=text/html cmd="/bin/sed
blasted/g"

<Proxy *>
SetOutputFilter naughtywords
</Proxy>

Discussion

The recipe offered is a very simple-minded “naughty word” filter, replacing the naughty
word “darned” with the sanitized alternate “blasted.” This could be expanded to a
variety of more sophisticated content modification, because the cmd argument can be
any command line, such as a Perl script, or arbitrary program, which can filter the

10.7 Filtering Proxied Content | 209

s/darned/

http://httpd.apache.org/docs/mod/mod_proxy.html

content in any way you want. All proxied content will be passed through this filter
before it is delivered to the client.

Note that this recipe will work only in Apache 2.0, as the module mod_ext_filter, the
SetOutputFilter directive, and the <Proxy> directive are available only in Apache 2.0.

Note also that there are ethical and legal issues surrounding techniques like these,
which you may need to deal with. We don’t presume to take a position on any of them.
In particular, modifying proxied content that does not belong to you may be a violation
of the owner’s copyright and may be considered by some to be unethical. Thankfully,
this is just a technical book, not a philosophical one. We can tell you how to do it, but
whether you should is left to your conscience and your lawyers.

See Also

* http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
* http://hitpd.apache.org/docs-2.0/mod/mod_ext_filter.html

10.8 Requiring Authentication for a Proxied
Server

Problem

You wish to proxy content from a server, but it requires a login and password before
content may be served from this proxied site.

Solution

Use standard authentication techniques to require logins for proxied content:

ProxyPass "/secretserver/" "http://127.0.0.1:8080"
<Directory "proxy:http://127.0.0.1:8080/">
AuthName SecretServer
AuthType Basic
AuthUserFile /path/to/secretserver.htpasswd
Require valid-user
</Directory>

Discussion

This technique can be useful if you are running some sort of special-purpose or limited-
function Web server on your system, but you need to apply Apache’s rich set of access
control and its other features to access it. This is done by using the ProxyPass directive
to make the special-purpose server’s URI space part of your main server, and using the
special proxy:path <Directory> container syntax to apply Apache settings only to the
mapped URIs.

210 | Chapter 10: Proxies

http://httpd.apache.org/docs-2.0/mod/mod_proxy.html
http://httpd.apache.org/docs-2.0/mod/mod_ext_filter.html

See Also
* Recipe 6.7

10.9 Load Balancing with
mod_proxy_balancer

Problem

You want to balance the load between several backend servers.

Solution

Use mod_proxy_balancer to create a load-balanced cluster:

<Proxy balancer://mycluster>
BalancerMember http://192.168.1.50:80
BalancerMember http://192.168.1.51:80
</Proxy>
ProxyPass /application balancer://mycluster/

Discussion

mod_proxy_balancer is an exciting new module that provides load balancing between
multiple backend servers. This kind of functionality has traditionally been associated
with expensive and complex commercial solutions. This module makes this simple to
configure, and it’s included in the standard installation of the Apache Web server.

The example given above sets up a two-member balanced cluster and proxies the
URL /application to that cluster.

mod_proxy_balancer offers a wide variety of options, which you can find in detail in
the documentation, available here: http://httpd.apache.org/docs/2.2/mod/
mod_proxy_balancer.html.

For example, you can indicate that a particular server is more powerful than another,
and so should be allowed to assume more of the load than other machines in the cluster.
In the following configuration line, we indicate that one particular machine should
receive twice as much traffic as other machines:

BalancerMember http://192.168.1.51:80 loadfactor=2

Traffic may be balanced by traffic (bytes transferred) or by request (number of requests
made per host) by putting additional arguments on the ProxyPass directive:

ProxyPass /application balancer://mycluster/ lbmethod=bytraffic
See the mod_proxy documentation for more information on this point.

And there is a Web-based balancer manager tool, which can be configured as follows:

10.9 Load Balancing with mod_proxy_balancer | 211

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

<Location /balancer-manager>
SetHandler balancer-manager
</Location>
The balancer manager lets you set servers available or unavailable, and change their
load factor, without restarting the server. This allows you to take servers offline for
maintenance, do whatever needs to be done, and bring them back up, without ever
affecting the end user.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

10.10 Proxied Virtual Host

Problem

You want to have an entire virtual host proxied to a different server.

Solution

Place a ProxyPass directive in your VirtualHost configuration block:

<VirtualaHost *:80>
ServerName server2.example.com
ProxyPass / http://192.168.1.52:80
ProxyPassReverse / http://192.168.1.52:80
</VirtualHost>

Discussion

This recipe will pass all requests to this virtual host to the specified backend server and
serve the content from there. The ProxyPassReverse directive ensures that redirects
issued from the backend server will be correctly rewritten to the front-end server, rather
than having clients try to request content directly from the backend server.

It can be useful to collect logfiles on the frontend server, rather than on the backend
server. Requests to the backend server will appear to come from the proxy server, rather
than from the original client address. However, logfiles collected on the proxy
(frontend) server will have the original client address.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

212 | Chapter 10: Proxies

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

10.11 Refusing to Proxy FTP

Problem

You want to make sure that FTP (or, perhaps, other protocols) are not proxied through
your server.

Solution
Make sure that mod_proxy_ftp isn’t loaded:

LoadModule proxy ftp module modules/mod proxy ftp.so

Discussion

mod_proxy has several helper modules that provide the protocol-specific proxying
functionality. These modules are mod_proxy_http, for proxying HTTP requests;
mod_proxy_ftp, for proxying FTP requests; and mod_proxy_connect, for support for
the cONNECT HTTP method, used primarily for tunneling SSL requests through proxy
servers.

If you want mod_proxy to never proxy FTP requests, you need merely to ensure that
the LoadModule directive for mod_proxy_ftp is commented out, as shown above.

See Also

* http://httpd.apache.org/docs/2.2/mod/mod_proxy_ftp.html
* http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

10.11 Refusing to Proxy FTP | 213

http://httpd.apache.org/docs/2.2/mod/mod_proxy_ftp.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

CHAPTER 11
Performance

Your Web site can probably be made to run faster if you are willing to make a few trade-
offs and spend a little time benchmarking your site to see what is really slowing it down.

There are a number of things that you can configure differently to get a performance
boost. Although, there are other things to which you may have to make more substantial
changes. It all depends on what you can afford to give up and what you are willing to
trade off. For example, in many cases, you may need to trade performance for security,
or vice versa.

In this chapter, we make some recommendations of things that you can change, and
we warn against things that can cause substantial slow-downs. Be aware that Web sites
are very individual, and what may speed up one Web site may not necessarily speed
up another Web site.

Topics covered include hardware considerations, configuration file changes, and
dynamic content generation, which can all be factors in getting every ounce of per-
formance out of your Web site.

W

. Very frequently, application developers create programs in conditions
o that don’t accurately reflect the conditions under which they will run in
T Q8 production. Consequently, the application that seemed to run ade-

" quately fast with the test database of 100 records, runs painfully slowly
with the production database of 200,000 records.

By ensuring that your test environment is at least as demanding as your
production environment, you greatly reduce the chances that your
application will perform unexpectedly slow when you roll it out.

215

11.1 Determining How Much Memory You
Need

Problem

You want to ensure that you have sufficient RAM in your server.

Solution

Find the instances of Apache in your process list, and determine an average memory
footprint for an Apache process. Multiply this number by your peak load (maximum
number of concurrent Web clients you’ll be serving).

Discussion

Because there is very little else that you can do at the hardware level to make your server
faster, short of purchasing faster hardware, it is important to make sure that you have
as much RAM as you need.

Determining how much memory you need is an inexact science, to say the least. In
order to take an educated guess, you need to observe your server under load, and see
how much memory it is using.

The amount of memory used by one Apache process will vary greatly from one server
to another, based on what modules you have installed and what the server is being
called upon to do. Only by looking at your own server can you get an accurate estimate
of what this quantity is for your particular situation.

Tools such as top and ps may be used to examine your process list and determine the
size of processes. The server-status handler, provided by mod_status, may be used
to determine the total number of Apache processes running at a given time.

If, for example, you determine that your Apache processes are using 4 MB of memory
each, and under peak load, you find that you are running 125 Apache processes, then
you will need, at a bare minimum, 500 MB of RAM in the server to handle this peak
load. Remember that memory is also needed for the operating system, and any other
applications and services that are running on the system, in addition to Apache. So in
reality you will need more than this amount to handle this peak load.

If, by contrast, you are unable to add more memory to the server, for whatever reason,
you can use the same technique to figure out the maximum number of child processes
that you are capable of serving at any one time, and use the MaxClients directive to
limit Apache to that many processes:

MaxClients 125

216 | Chapter 11: Performance

See Also
* http://httpd.apache.org/docs/misc/perf-tuning.html

11.2 Benchmarking Apache with ab

Problem

You want to benchmark changes that you are making to verify that they are in fact
making a difference in performance.

Solution

Use ab (Apache bench), which you will find in the bin directory of your Apache
installation:

ab -n 1000 -c 10 http://www.example.com/test.html

Discussion

Apache bench is a command-line utility that comes with Apache and lets you do very
basic performance testing of your server. It is especially useful for making small changes
to your configuration and testing server performance before and after the change.

The arguments given in the previous example tell ab to request the resource http://
www.example.com/test.html 1000 times (-n 1000 indicates the number of requests)
and to make these requests 10 at a time (-c 10 indicates the concurrency level).

Other arguments that may be specified can be seen by running ab with the -h flag. Of
particular interest is the -k flag, which enables keepalive mode. See the following
keepalive recipe for additional details on this matter.

There are a few things to note about ab when using it to evaluate performance.

Apache bench does not mimic Web site usage by real people. It requests the same
resource repeatedly to test the performance of that one thing. For example, you may
use ab to test the performance of a particular CGI program, before and after a per-
formance-related change was made to it. Or you may use it to measure the impact of
turning on .htaccess files, or content negotiation, for a particular directory. Real users,
of course, do not repeatedly load the same page, and so performance measurements
made using ab may not reflect actual real-world performance of your Web site.

You should probably not run the Web server and ab on the same machine, as this will
introduce more uncertainty into the measurement. With both ab and the Web server
itself consuming system resources, you will receive significantly slower performance
than if you were to run ab on some other machine, accessing the server over the network.
However, also be aware that running ab on another machine will introduce network
latency, which is not present when running it on the same machine as the server.

11.2 Benchmarking Apache with ab | 217

http://httpd.apache.org/docs/misc/perf-tuning.html

Finally, there are many factors that can affect performance of the server, so you will not
get the same numbers each time you run the test. Network conditions, other processes
running on the client or server machine, and a variety of other things may influence
your results slightly one way or another. The best way to reduce the impact of
environmental changes is to run a large number of tests and average your results. Also,
make sure that you change as few things as possible—ideally, just one—between tests,
so that you can be more sure what change has made any differences you can see.

Finally, you need to understand that, while ab gives you a good idea of whether certain
changes have improved performance, it does not give a good simulation of actual users.
Actual users don’t simply fetch the same resource repeatedly; they obtain a variety of
different resources from various places on your site. Thus, actual site usage conditions
may produce different performance issues than those revealed by ab.

See Also

* The manpage for the ab tool
* http://httpd.apache.org/docs/2.2/programs/ab.html

11.3 Tuning KeepAlive Settings

Problem

You want to tune the keepalive-related directives to the best possible setting for your
Web site.

Solution

Turn on the KeepAlive setting, and set the related directives to sensible values:

KeepAlive On
MaxKeepAliveRequests 0
KeepAliveTimeout 15

Discussion

The default behavior of HTTP is for each document to be requested over a new con-
nection. This causes a lot of time to be spent opening and closing connections. Keep-
Alive allows multiple requests to be made over a single connection, thus reducing the
time spent establishing socket connections. This, in turn, speeds up the load time for
clients requesting content from your site.

In addition to turning keepalive on using the KeepAlive directive, there are two
directives that allow you to adjust the way that it is done.

The first of these, MaxKeepAliveRequests, indicates how many keepalive requests
should be permitted over a single connection. There is no reason to have this number

218 | Chapter 11: Performance

http://httpd.apache.org/docs/2.2/programs/ab.html

set low. The default value for this directive is 100, and this seems to work pretty well
for most sites. Setting this value to 0 means that an unlimited number of requests will
be permitted over a single connection. This might allow users to load all of their content
from your site over a single connection, depending on the value of KeepAliveTimeout
and how quickly they went through the site.

KeepAliveTimeout indicates how long a particular connection will be held open when
no further requests are received. The optimal setting for this directive depends entirely
on the nature of your Web site. You should probably think of this value as the amount
of time it takes users to absorb the content of one page of your site before they move
on to the next page. If the users move on to the next page before the
KeepAliveTimeout has expired, when they click on the link for the next page of content,
they will get that next document over the same connection. If, however, that time has
already expired, they will need to establish a new connection to the server for that next
page.

You also should be aware that if users load a resource from your site and then go away,
Apache will still maintain that open connection for them for KeepAliveTimeout sec-
onds, which makes that child process unable to serve any other requests during that
time. Therefore, setting KeepAliveTimeout too high is just as undesirable as setting it
too low.

In the event that KeepAliveTimeout is set too high, you will see (i.e., with the server-
status handler—see Recipe 11.4) that a significant number of processes are in keepalive
mode, but are inactive. Over time, this number will continue to grow, as more child
processes are spawned to take the place of child processes that are in this state.

Conversely, setting KeepAlive Timeout too low will result in conditions similar to having
KeepAlive turned off entirely, when a single client will require many connections over
the course of a brief visit. This is harder to detect than the opposite condition. In general,
it is probably better to err on the side of setting it too high, rather than too low.

Because the length of time that any given user looks at any given document on your
site is going to be as individual as the users themselves, and varies from page to page
around your Web site, it is very difficult to determine the best possible value of this
directive for a particular site. However, it is unlikely that this is going to make any large
impact on your overall site performance when compared to other things that you can
do. Leaving it at the default value of 5 tends to work pretty well for most sites.

See Also

* http://hitpd.apache.org/docs/2.2/mod/core.html#keepalive
* http://httpd.apache.org/docs/2.2/mod/core. himl#maxkeepaliverequests
* http://hitpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout

11.3 Tuning KeepAlive Settings | 219

http://httpd.apache.org/docs/2.2/mod/core.html#keepalive
http://httpd.apache.org/docs/2.2/mod/core.html#maxkeepaliverequests
http://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout

11.4 Getting a Snapshot of Your Site’s Activity

Problem

You want to find out exactly what your server is doing.

Solution

Enable the server-status handler to get a snapshot of what child processes are run-
ning and what each one is doing. Enable ExtendedStatus to get even more detail:
<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from 192.168.1
</Location>

ExtendedStatus On

Then, view the results at the URL http://servername/server-status.

Discussion

Provided by mod_status, which is enabled by default, the server-status handler
provides a snapshot of your server’s activity. This snapshot includes some basic details,
such as when the server was last restarted, how long it has been up, and how much
data it has served in that time. Following that, there will be a list of the child processes
and what each one is doing. At the bottom of the page is a detailed explanation of the
terms used and what each column of the table represents.

The server status display shows activity across the entire server—
including virtual hosts. If you are providing hosting services for others,
215" you may not want them to be able to see this level of detail about each
" other.

It is recommended that, as in the default configuration file that comes with Apache,
you restrict access to this handler. Part of the information contained on this page is a
list of client addresses and the document that they are requesting. Some users feel that
it is a violation of their privacy for you to make this information readily available on
your Web site. Additionally, it may provide information such as QUERY STRING vari-
ables, PATH_INFO variables, or simply URLs that you wished to not be made public. It
is therefore recommended that you add to the above recipe some lines such as:
Order deny,allow

Deny from all
Allow from 192.168.1

220 | Chapter 11: Performance

http://servername/server-status

This configuration allows access only from the 192.168.1 network, or whatever
network you put in there, and denies access from unauthorized Internet users.

See Also

* http://httpd.apache.org/docs/2.2/mod/mod_status.html
* http://httpd.apache.org/server-status/

11.5 Avoiding DNS Lookups

Problem

You want to avoid situations where you have to do DNS lookups of client addresses,
as this is a very slow process.

Solution

Always set the HostNameLookups directive to Of £:

HostNameLookups Off

Make sure that, whenever possible, Allow from and/or Deny from directives use the
IP address, rather than the hostname of the hosts in question.

Discussion

DNS lookups can take a very long time—anywhere from 0 to 60 seconds—and should
be avoided at all costs. In the event that a client address cannot be looked up at all, it
can take up to a minute for the lookup to time out, during which time the child process
that is doing the lookup cannot do anything else.

There are a number of cases in which Apache will need to do DNS lookups, and so the
goal here is to completely avoid those situations.

HostNameLookups

Before Apache 1.3, HostNameLookups, which determines whether Apache logs client
IP addresses or hostnames, defaulted to on, meaning that each Apache log entry
required a DNS lookup to convert the client IP address to a hostname to put in the
logfile. Fortunately, that directive now defaults to of £, and so this is primarily an ad-
monition to leave it alone.

If you need to have these addresses converted to hostnames, this should be done by
another program, preferably running on a machine other than your production Web
server. That is, you really should copy the file to some other machine for the purpose
of processing, so that the effort required to do this processing does not negatively effect
your Web server’s performance.

11.5 Avoiding DNS Lookups | 221

http://httpd.apache.org/docs/2.2/mod/mod_status.html
http://httpd.apache.org/server-status/

Apache comes with a utility called logresolve, which will process your logfile, replacing
[P addresses with hostnames. Additionally, most logfile analysis tools will also perform
this name resolution as part of the log analysis process.

Allow and Deny from hostnames

When you do host-based access control using the Allow fromand Deny f rom directives,
Apache takes additional precautions to make sure that the client is not spoofing its
hostname. In particular, it does a DNS lookup on the IP address of the client to obtain
the name to compare against the access restriction. It then looks up the name that was
obtained, just to make sure that the DNS record is not being faked."

For the sake of better performance, therefore, it is much better to use an IP address,
rather than a name, in Allow and Deny directives.

See Also
* Chapter 3

11.6 Optimizing Symbolic Links

Problem

You wish to balance the security needs associated with symbolic links with the per-
formance impact of a solution, such as using Options SymLinksIfOwnerMatch, which
causes a server slowdown.

Solution

For tightest security, use Options SymlinksIfOwnerMatch, or Options -
FollowSymLinks if you seldom or never use symlinks.

For best performance, use Options FollowSymlinks.

Discussion

Symbolic links are an area in which you need to weigh performance against security
and make the decision that makes the most sense in your particular situation.

In the normal everyday operation of a Unixish operating system, symbolic links are
considered to be the same as the file to which they link.TWhen you cd into a directory,
you don’t need to be aware of whether that was a symlink or not. It just works.

" For example, the owner of the IP address could very easily put a PTR record in his reverse-DNS zone, pointing
his IP address at a name belonging to someone else.

T Of course, this is not true at the filesystem level, but we’re just talking about the practical user level.

222 | Chapter 11: Performance

Apache, by contrast, has to consider whether each file and directory is a symlink or
not, if the server is configured not to follow symlinks. And, additionally, if Option
SymlinksIfOwnerMatch is turned on, Apache not only has to check if the particular
file is a symlink, but also has to check the ownership of the link itself and of the target,
in the event that it is a symlink. Although this enforces a certain security policy, it takes
a substantial amount of time and so slows down the operation of your server.

In the trade-off between security and performance, in the matter of symbolic links, here
are the guidelines.

If you are primarily concerned about security, never permit the following of symbolic
links. It may permit someone to create a link from a document directory to content that
you would not want to be on a public server. Or, if there are cases in which you really
need symlinks, use Options SymlinksIfOwnerMatch, which requires that someone
may only link to files that they own and will presumably protect you from having a user
link to a portion of the filesystem that is not already under her control.

If you are concerned about performance, always use Options FollowSymlinks, and
never use Options SymlinksIfOwnerMatch. Options FollowSymlinks permits
Apache to follow symbolic links in the manner of most Unixish applications—that is,
Apache does not even need to check to see if the file in question is a symlink or not.

See Also
* http://httpd.apache.org/docs/2.2/mod/core. html# options

11.7 Minimizing the Performance Impact
of .htaccess Files

Problem

You want per-directory configuration but want to avoid the performance hit
of .htaccess files.

Solution

Turn on AllowOverride only in directories where it is required, and tell Apache not to
waste time looking for .htaccess files elsewhere:

AllowOverride None

Then use <Directory> sections to selectively enable . htaccess files only where needed.

Discussion

.htaccess files cause a substantial reduction in Apache’s performance, because it must
check for a .htaccess in every directory along the path to the requested file to be assured

11.7 Minimizing the Performance Impact of .htaccess Files | 223

http://httpd.apache.org/docs/2.2/mod/core.html#options

of getting all of the relevant configuration overrides. This is necessary because Apache
configuration directives apply not only to the directory in which they are set, but also
to all subdirectories. Thus, we must check for .htaccess files in parent directories, as
well as in the current directory, to find any directives that would trickle down the
current directory.

For example, if, for some reason, you had AllowOverride 211 enabled for all directories
and your DocumentRoot was /usr/local/apache/htdocs, then a request for the URL http://
example.com/events/parties/christmas.html would result in the following files being
looked for and, if found, opened and searched for configuration directives:

/.htaccess

/usr/.htaccess

/usr/local/.htaccess

/usr/local/apache/.htaccess

/usr/local/apache/htdocs/.htaccess

/usr/local/apache/htdocs/events/.htaccess
/usr/local/apache/htdocs/events/parties/.htaccess

Now, hopefully, you would never have AllowOverride 211 enabled for your entire
filesystem, so this is a worst-case scenario. However, occasionally, when people do not
adequately understand what this configuration directive does, they will enable this
option for their entire filesystem and suffer poor performance as a result.

The recommended solution is by far the best way to solve this problem. The
<Directory> directive is specifically for this situation, and .htaccess files should really
only be used in the situation where configuration changes are needed and access to the
main server configuration file is not readily available.

For example, if you have a .htaccess file in /usr/local/apache/htdocs/events containing
the directive:

AddEncoding x-gzip tgz

You should instead simply replace this with the following in your main configuration

file:

<Directory /usr/local/apache/htdocs/event>
AddEncoding x-gzip tgz
</Directory>

Which is to say, anything that appears in a .htaccess can, instead, appear in a
<Directory> section, referring to that same directory.

If you are compelled to permit .htaccess files somewhere on your Web site, you should
only permit them in the specific directory where they are needed. For example, if you
particularly need to permit .htaccess files in the directory /www/htdocs/users/leopold/,
then you should explicitly allow then for only this directory:

<Directory /www/htdocs/users/leopold>

AllowOverride All
</Directory>

224 | Chapter 11: Performance

One final note about the AllowOverride directive: this directive lets you be very specific
about what types of directives you permit in .htaccess files, and you should make an
effort only to permit those directives that are actually needed. That is, rather than using
the 11 argument, you should allow specific types of directives as needed. In particular,
the Options argument to AllowOverride should be avoided, if possible, as it may enable
users to turn on features that you have turned off for security reasons.

See Also
* http://httpd.apache.org/docs/2.2/howto/htaccess.html

11.8 Disabling Content Negotiation

Problem

Content negotiation causes a big reduction in performance.

Solution

Disable content negotiation where it is not needed. If you do require content negotia-
tion, use the type-map handler, rather than the Multiviews option:

Options -MultiViews
AddHandler type-map var

Discussion

If at all possible, disable content negotiation. However, if you must do content
negotiation—if, for example, you have a multilingual Web site—you should use the
type-map handler, rather than the Multiviews method.

When Multiviews is used, Apache needs to get a directory listing each time a request
is made. The resource requested is compared to the directory listing to see what variants
of that resource might exist. For example, if index.html is requested, the variants
index.html.en and index.html.fr might exist to satisfy that request. Each matching var-
iant is compared with the user’s preferences, expressed in the various Accept headers
passed by the client. This information allows Apache to determine which resource is
best suited to the user’s needs.

However, this process can be very time-consuming, particularly for large directories or
resources with large numbers of variants. By putting the information in a .var file and
allowing the type-map handler to be used instead, you eliminate the requirement to
get a directory listing, and greatly reduce the amount of work that Apache must do to
determine the correct variant to send to the user.

The .var file just needs to contain a listing of the variants of a particular resource and
describe their important attributes.

11.8 Disabling Content Negotiation | 225

http://httpd.apache.org/docs/2.2/howto/htaccess.html

If you have, for example, English, French, and Hebrew variants of the resource

index.html, you may express this in a .var file called index.html.var containing infor-

mation about each of the various variants. This file might look like the following:
URI: index.html.en

Content-language: en
Content-type: text/html

URI: index.html.fr
Content-language: fr
Content-type: text/html

URI: index.html.he.is08859-8
Content-language: he
Content-type: text/html;charset=IS0-8859-8

This file should be placed in the same directory as the variants of this resource, which
are called index.html.en, index.html.fr, and index.html.he.is08859-8.

Note that the Hebrew variant of the document indicates an alternate character set, both
in the name of the file itself, and in the Content-type header field.

Enable the .var file by adding a AddHandler directive to your configuration file, as
follows:

AddHandler type-map .var

N

Each of the file extensions used in these filenames should have an
associated directive in your configuration file. This is not something that
s you should have to add—these should appear in your default configu-
" ration file. Each of the language indicators will have an associated Ad-
dLanguage directive, while the character set indicator will have an Add-
Charset directive.

In contrast to Multivieuws, this technique gets all of its information from this .var file
instead of from a directory listing, which is much less efficient.

You can further reduce the performance impact of content negotiation by indicating
that negotiated documents can be cached. This is accomplished by the directive:

CacheNegotiatedDocs On

Caching negotiated documents can cause unpleasant results, such as people getting
files in a language that they cannot read or in document formats that they don’t know
how to render.

If possible, you should completely avoid content negotiation in any form, as it will
greatly slow down your server no matter which technique you use.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_negotiation.html

226 | Chapter 11: Performance

http://httpd.apache.org/docs/2.2/mod/mod_negotiation.html

http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addhandler
http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addcharset
http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addlanguage
http://httpd.apache.org/docs/2.2/mod/core.html#optionsr

11.9 Optimizing Process Creation

Problem

You’re using Apache 1.3, or Apache 2.0 with the prefork MPM, and you want to tune
MinSpareServers and MaxSpareServers to the best settings for your Web site.

Solution

Will vary from one site to another. You’ll need to watch traffic on your site and decide
accordingly.

Discussion

The MinSpareServers and MaxSpareServers directives control the size of the server pool
so that incoming requests will always have a child process waiting to serve them. In
particular, if there are fewer than MinSpareServers idle processes, Apache will create
more processes until that minimum is reached. Similarly, if there are ever more than
MaxSpareServers processes, Apache will kill off processes until there are fewer than
that maximum. These things will happen as the site traffic fluctuates on a normal day.

The best values for these directives for your particular site depends on the amount and
the rate at which traffic fluctuates. If your site is prone to large spikes in traffic,
MinSpareServers needs to be large enough to absorb those spikes. The idea is to never
have a situation where requests come in to your site, and there are no idle server pro-
cesses waiting to handle the request. If traffic patterns on your site are fairly smooth
curves with no abrupt spikes, the default values may be sufficient.

The best way to watch exactly how much load there is on your server is by looking at
the server-status handler output. (See Recipe 11.4.)

You also should set MaxClients to a value such that you don’t run out of server resources
during heavy server loads. For example, if your average Apache process consumes 2
MB of memory and you have a total of 256 MB of RAM available, allowing a little bit
of memory for other processes, you probably don’t want to set MaxClients any higher
than about 120. If you run out of RAM and start using swap space, your server per-
formance will abruptly go downhill and will not recover until you are no longer using
swap. You can watch memory usage by running a program such as top, which shows
running processes and how much memory each is using.

11.9 Optimizing Process Creation | 227

http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addhandler
http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addcharset
http://httpd.apache.org/docs/2.2/mod/mod_mime.html#addlanguage
http://httpd.apache.org/docs/2.2/mod/core.html#optionsr

See Also
* Recipe 11.10

11.10 Tuning Thread Creation

Problem

You’re using Apache 2.0 with one of the threaded MPMs, and you want to optimize
the settings for the number of threads.

Solution

Will vary from server to server.

Discussion

The various threaded MPMs on Apache 2.0 handle thread creation somewhat differ-
ently. In Apache 1.3, the Windows and Netware versions are threaded, whereas the
Unixish version is not. Tuning the thread creation values will vary from one of these
versions to another.

Setting the number of threads on single-child MPMs

On MPMs that run Apache with a single threaded child process, such as the Windows
MPM (mpm_winnt) and the Windows and Netware versions of Apache 1.3, there are
a fixed number of threads in the child process. This number is controlled by the
ThreadsPerChild directive and must be large enough to handle the peak traffic of the
site on any given day. There really is no performance tuning that can be done here, as
this number is fixed throughout the lifetime of the Apache process.

Number of threads when using the worker MPM

The worker MPM has a fixed number of threads per child process but has a variable
number of child processes so that increased server load can be absorbed. A typical
configuration might look like the following;:

StartServers 2

MaxClients 150

MinSpareThreads 25

MaxSpareThreads 75

ThreadsPerChild 25
ServerLimit 16

The MinSpareThreads and MaxSpareThreads directives control the size of the idle pool
of threads, so that incoming clients will always have an idle thread waiting to serve their
request. The ThreadsPerChild directive indicates how many threads are in each child
process so when the number of available idle threads drops below MinSpareThreads,

228 | Chapter 11: Performance

Apache will launch a new child process populated with ThreadsPerChild threads. Sim-
ilarly, when server load is reduced and the number of idle threads is greater than
MaxSpareThreads, Apache will kill off one or more child processes to reduce the idle
pool to that number or less.

The goal, when setting these values, is to ensure that there are always idle threads ready
to serve any incoming client’s request without having to create a new one. The previous
example will work for most sites, as it will ensure that there is at least one completely
unused child process, populated with 25 threads, waiting for incoming requests. As
soon as threads within this process start to be used, a new child process will be launched
for future requests.

The values of MaxClients and ServerLimit should be set so that you will never run out
of RAM when a new child process is launched. Look at your process list, using top or
a similar utility, and ensure that ServerLimit, multiplied by the size of an individual
server process, does not exceed your available RAM. MaxClients should be less than,
or equal to, ServerLimit multiplied by ThreadsPerChild.

Setting the number of threads when using netware or the perchild MPM

Whereas with most of the other MPMs the MinSpareThreads and MaxSpareThreads
directives are server-wide, in the perchild and netware MPMs, these directives are
assessed per child process. Of course, with the netware MPM, there is only one child
process, so it amounts to the same thing.

With the netware MPM, threads are created and reaped as needed to keep the number
of spare threads between the limits imposed by MinSpareThreads and
MaxSpareThreads. The total number of threads must be kept at all times below the
limit imposed by the MaxThreads directive.

See Also
* http://httpd.apache.org/docs/2.2/mpm.html

11.11 Caching Frequently Viewed Files

Problem

You want to cache files that are viewed frequently, such as your site’s front page, so
that they don’t have to be loaded from the filesystem every time.

Solution

Use mod_mmap_static or mod_file_cache (for Apache 1.3 and 2.0, respectively) to cache
these files in memory:

11.11 Caching Frequently Viewed Files | 229

http://httpd.apache.org/docs/2.2/mpm.html

MMapFile /www/htdocs/index.html
MMapFile /www/htdocs/other page.html

For Apache 2.0, you can use either module or the CacheFile directive. MMapFile caches
the file contents in memory, while CacheFile caches the file handle instead, which gives
slightly poorer performance but uses less memory:

CacheFile /www/htdocs/index.html
CacheFile /www/htdocs/other page.html

Discussion

For files that are frequently accessed, it is desirable to cache that file in some fashion
to save disk access time. The MMapFile directive loads a file into RAM, and subsequent
requests for that file are served directly out of RAM, rather than from the filesystem.
The CacheFile directive, by contrast, opens the file and caches the file handle, saving
time on subsequent file opens.

In Apache 1.3, this functionality is available with the mod_mmap_static module, which
is labelled as experimental and is not built into Apache by default. To enable this mod-
ule, you need to specify the —enable-module=mmap_static flag to configure when
building Apache. mod_mmap_static provides only the MMapFile directive.

In Apache 2.0, this functionality is provided by the mod_file_cache module, which is
labelled as experimental, and is not built into Apache by default. To enable this module,
you need to specify the --enable-file-cache flag to configure when building
Apache. mod_file_cache provides both the MMapFile and CacheFile directives.

These directives take a single file as an argument, and there is not a provision for spec-
ifying a directory or set of directories. If you wish to have the entire contents of a
directory mapped into memory, the documentation provides the following suggestion.
For the directory in question, you would run the following command:

[

% find /www/htdocs -type f -print \
>| sed -e 's/.*/mmapfile &/' > /www/conf/mmap.conf

In your main server configuration file, you would then load the file created by that
command, using the Include directive:

Include /www/conf/mmap.conf

This would cause every file contained in that directory to have the MMapFile directive
invoked on it.

Note that when files are cached using one of these two directives, any changes to the
file will require a server restart before they become visible.

See Also

* http://httpd.apache.org/docs/2.2/mod/mod_mmap_static.html
* http://httpd.apache.org/docs/2.2/mod/mod_file_cache.html

230 | Chapter 11: Performance

http://httpd.apache.org/docs/2.2/mod/mod_mmap_static.html
http://httpd.apache.org/docs/2.2/mod/mod_file_cache.html

11.12 Distributing Load Evenly Between
Several Servers

Problem

You want to serve the same content from several servers and have hits distributed evenly
among the servers.

Solution

Use DNS round-robin to have requests distributed evenly, or at least fairly evenly,
among the servers:

www.example.com. 86400 IN A 192.168.10.2
www.example.com. 86400 IN A 192.168.10.3
www.example.com. 86400 IN A 192.168.10.4
www.example.com. 86400 IN A 192.168.10.5
www.example.com. 86400 IN A 192.168.10.6
www.example.com. 86400 IN A 192.168.10.7

Add the following to your configuration file:

FileETag MTime Size

Discussion

This example is an excerpt from a BIND zone file. The actual syntax may vary,
depending on the particular name server software you are running.

By giving multiple addresses to the same hostname, you cause hits to be evenly dis-
tributed among the various servers listed. The name server, when asked for this par-
ticular name, will give out the addresses listed in a round-robin fashion, causing re-
quests to be sent to one server after the other. The individual servers need be
configured only to answer requests from the specified name.

Running the host command on the name in question will result in a list of possible
answers, but each time you run the command, you’ll get a different answer first:

% host www.example.com

www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
% host www.example.com

www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.
www.example.com has address 192.168.10.

~ o U w N

o U W N

11.12 Distributing Load Evenly Between Several Servers | 231

Make sure that when you update your DNS zone file, you also update
the serial number and restart or reload your DNS server.

One of the document aspects used to determine cache freshness is the ETag value the
server associates with it. This usually includes a calculation based on the document’s
actual disk location, which may be different on the different backend hosts. The
FileETag settings cause that information to be omitted, so if the documents are truly
identical they should all be given the same ETag value, and be indistinguishable when
it comes to caching them.

See Also

* DNS and Bind by Paul Albitz and Cricket Liu (O’Reilly)
* Recipe 10.3

11.13 Caching Directory Listings

Problem

You want to provide a directory listing but want to reduce the performance hit of doing
s0.

Solution

Use the TrackModified argument to IndexOptions to allow browsers to cache the
results of an auto-generated directory index:

IndexOptions +TrackModified

Discussion

When sending a directory listing to a client, Apache has to open that directory, obtain
a directory listing, and determine various attributes of the files contained therein. This
is very time consuming, and it would be nice to avoid this when possible.

By default, the Last Modified time sent with a directory listing is the time that the
content is being served. Thus, when a client, or proxy server, makes a HEAD or con-
ditional GET request to determine if it can use the copy that it has in cache, it will
always decide to get a fresh copy of the content. The TrackModified option to
IndexOptions cause mod_autoindex to send a Last Modified time corresponding to the
file in the directory that was most recently modified. This enables browsers and proxy
servers to cache this content, rather than retrieving it from the server each time, and
also ensures that the listing that they have cached is in fact the latest version.

232 | Chapter 11: Performance

Note that clients that don’t implement any kind of caching will not benefit from this
directive. In particular, testing with ab will show no improvement from turning on this
setting, as ab does not do any kind of content caching.

See Also

* The manpage for the ab tool
* http://httpd.apache.org/docs/2.2/programs/ab.html

11.14 Speeding Up Perl CGI Programs with
mod_perl

Problem

You have existing functional Perl CGI programs and want them to run faster.

Solution

If you have the mod_perl module installed, you can configure it to run your Perl CGI
programs instead of running mod_cgi. This gives you a big performance boost, without
having to modify your CGI code.

There are two slightly different ways to do this.

For Apache 1.3 and mod_perl version 1:

Alias /cgi-perl/ /usr/local/apache/cgi-bin/
<Location /cgi-perl>
Options ExecCGI
SetHandler perl-script
PerlHandler Apache::PerlRun
PerlSendHeader On
</Location>

Alias /perl/ /usr/local/apache/cgi-bin/
<Location /perl>
Options ExecCGI
SetHandler perl-script
PerlHandler Apache::Registry
PerlSendHeader On
</Location>

For Apache 2.0 and mod_perl version 2, the syntax changes slightly:

PerlModule ModPerl::PerlRun

Alias /cgi-perl/ /usr/local/apache2/cgi-bin/

<Location /cgi-perl>
SetHandler perl-script
PerlResponseHandler ModPerl::PerlRun
Options +ExecCGI

</Location>

11.14 Speeding Up Perl CGI Programs with mod_perl | 233

http://httpd.apache.org/docs/2.2/programs/ab.html

PerlModule ModPerl::Registry

Alias /perl/ /usr/local/apache2/cgi-bin/

<Location /perl>
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
Options +ExecCGI

</Location>

Discussion

By using mod_perl’s CGI modes, you can improve the performance of existing CGI
programs without modifying the CGI code itself in any way. Given the previous con-
figuration sections, a CGI program that was previously accessed via the URL http://
www.example.com/cgi-bin/program.cgi will now be accessed via the URL http:/
www.example.com/cgi-perl/program.cgi to run it in PerlRun mode or via the URL http://
www.example.com/perl/program.cgi to run it in Registry mode.

The primary difference between PerlRun and Registry is that, in Registry, the program
code itself is cached after compilation, whereas in PerlRun mode, it is not. While this
means that code run under Registry is faster than that executed under PerlRun, it also
means that a greater degree of code quality is required. In particular, global variables
and other careless coding practices may cause memory leaks, which, if run in cached
mode, could eventually cause the server to run out of available memory.

When writing Perl CGI code to run under mod_perl, and, in general, when writing any
Perl code, it is recommended that you place the following two lines at the top of each
program file, following the #! line:

use strict;

use warnings;
Code that runs without error messages, with these two lines in them, runs without
problems under Registry.

W N

strict is not available before Perl 5, and warnings is not available before
Perl 5.6. In versions of Perl earlier than 5.6, you can get behavior similar
918 to warnings by using the -w flag to Perl. This is accomplished by adding
" it to the #! line of your Perl programs:

#!/usr/bin/perl -w

See Also

* Programming Perl, Third Edition, by Larry Wall, Tom Christiansen, and Jon
Orwant (O’Reilly)

234 | Chapter 11: Performance

11.15 Caching Dynamic Content
Problem

You want to cache dynamically generated documents that don’t actually change very
often.

Solution
In Apache 2.2, use the following recipe:

CacheEnable disk /
CacheRoot /var/www/cache
CacheIgnoreCacheControl On
CacheDefaultExpire 600

In 2.3 and later, you can use something like this:

CacheEnable disk /
CacheRoot /var/www/cache
CacheDefaultExpire 600
CacheMinExpire 600

Discussion

Caching is usually explicitly disabled for dynamic content. Dynamic content, by defi-
nition, is content that is generated on demand—that is, created fresh each time it is
requested. Thus, caching it is contrary to its very nature

However, it is often—even usually—the case that dynamically generated content
doesn’t actually change very much from one minute to the next. This means that you
end up wasting an awful lot of time generating content that hasn’t actually changed
since the last time it was requested. If you’re doing this several times per second, you’re
probably causing your server a great deal more work than is really necessary.

The recipes above solve this problem in two slightly different ways. The solution for
2.3 is better, but, as of this writing, 2.3 hasn’t been released yet, so it’s not a terribly
practical solution yet.

The recipe for Apache 2.2 takes the approach of disabling cache control—that is, it
tells Apache to ignore the request made by the dynamic content that it not be cached,
and caches it anyway. Then, for good measure, a default cache expiration time of 5
minutes (600 seconds) is set, so that any content that is cached will be retained at least
that long.

The solution for 2.3 is slightly more elegant. It sets a minimum cache expiration time
of five minutes, as well as setting the default expiration time. This ensures that all
content is cached at least for five minutes, but the content itself may specify a longer
time, if desired. The main difference here is that in the 2.2 solution if the content itself

11.15 Caching Dynamic Content | 235

sends a request that it be cached longer this will be ignored, whereas in the 2.3 solution
it will be honored.

You'll first see the 2.3 solution working when the 2.4 version of the server is released.
2.3 is a development branch, and it will be called 2.4 when it is ready for general use.

Make sure that the directory specified as the CacheRoot exists and is writeable by the
Apache user.

See Also
* http://httpd.apache.org/docs/2.2/caching. html

236 | Chapter 11: Performance

http://httpd.apache.org/docs/2.2/caching.html

CHAPTER 12
Directory Listings

The default Apache HTTP Server package includes a module, mod_autoindex, for dis-
playing a directory listing as a Web page. The default display is simple and informative,
but the module provides all sorts of controls to let you tweak and customize the output.

12.1 Generating Directory/Folder Listings
Problem

You want to see a directory listing when a directory is requested.

Solution

Turn on Options Indexes for the directory in question:

<Directory /www/htdocs/images>
Options +Indexes
</Directory>

Discussion

When a URL maps to a directory or folder in the filesystem, Apache will respond to
the request in one of three ways:

1. If mod_dir is part of the server configuration, and the mapped directory is within
the scope of a Directorylndex directive, and the server can find one of the files
identified in that directive, then the file will be used to generate the response.

2. If mod_autoindex is part of the server configuration and the mapped directory is
within the scope of an Options directive that has enabled the Indexes keyword, then
the server will construct a directory listing at runtime and supply it as the response.

3. The server will return a 404 (“Resource Not Found”) status.

237

Enabling directory listings

The real keys to enabling the server’s ability to automatically generate a listing of files
in a directory are the inclusion of mod_autoindex in the configuration and the
Indexes keyword to the Options directive. This can be done either as an absolute form,
as in:

Options FollowSymLinks Indexes

Or in a selective or relative form such as:

Options -ExecCGI +Indexes

Enabling directory listings should be done with caution. Because of the scope inheri-
tance mechanism (see http://httpd.apache.org/docs/2.2/sections. html#mergin for more
details), directories farther down the tree also will be affected; and because the server
will apply the sequence of rules listed at the beginning of this section in an effort to
provide some sort of response, a single missing file can result in inadvertent exposure
of your filesystem’s contents.

Disabling directory indexing below an enabled directory

There are essentially two ways to work around this issue and ensure that the indexing
applies only to the single directory:

* Add an "Options -Indexes" to .htaccess files in each subdirectory.

* Add an "Options -Indexes" to a <Directory> container that matches all the
subdirectories.

For example, to permit directory indexes for directory /usr/local/htdocs/archives but not
any subdirectories thereof:
<Directory /usr/local/htdocs/archives>

Options +Indexes
</Directory>

<Directory /usr/local/htdocs/archives/*>
Options -Indexes
</Directory>

If this needs to apply only to certain subdirectories, the task becomes a little more
complex. You may be able to accomplish it with a <DirectoryMatch> directive if the
list of subdirectories is reasonably small:

<Directory /usr/local/htdocs/archives>

Options +Indexes
</Directory>

<DirectoryMatch /usr/local/htdocs/archives/ (images|video|audio)>
Options -Indexes
</DirectoryMatch>

238 | Chapter 12: Directory Listings

http://httpd.apache.org/docs/2.2/sections.html#mergin

See Also

* http://httpd.apache.org/docs/2.2/mod/core.html# options
* http://httpd.apache.org/docs/2.2/mod/mod_dir.html
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.2 Display a Standard Header and Footer
on Directory Listings

Problem

You want to display a header above and a footer below your directory listing.

Solution

Remove the standard HTML header, if desired
IndexOptions +SuppressHTMLPreamble

HeaderName /includes/header.html

ReadmeName /includes/footer.html

Discussion

The directives HeaderName and ReadmeName specify the URI of files to be used as a
header and footer, respectively, for directory listings.

If your HeaderName file contains an HTML <head> tag, <title> tag, or other things
associated with the start of an HTML document, you will want to use the IndexOptions
+SuppressHTMLPreamble directive to disable mod_autoindex’s automatically gener-
ated HTML heading. Failure to do so will result in an HTML document with two
heading elements, with the result that any heading attributes set in your header will
probably be ignored by the browser.

The argument to both HeaderName and ReadmeName is a URI relative to the current
directory. That is, if there is no leading slash, it is interpreted as a path relative to the
current directory, but if there is a leading slash, it is interpreted as a URI path—that is,
relative to the DocumentRoot.

Your HeaderName and ReadmeName can be arbitrarily complex to produce whatever
page layout you like wrapped around the auto-generated directory listing. You could,
for example, open <table> or <div> sections in the header, which you then close in
the footer, in order to produce page layout effects.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.2 Display a Standard Header and Footer on Directory Listings | 239

http://httpd.apache.org/docs/2.2/mod/core.html#options
http://httpd.apache.org/docs/2.2/mod/mod_dir.html
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.3 Applying a Stylesheet

Problem

You want to apply a CSS stylesheet to a directory listing without supplying a whole
HeaderName document.

Solution

IndexStyleSheet /styles/listing.css

Discussion

The IndexStyleSheet directive sets the name of the file that will be used as the CSS for
the index listing.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.4 Hiding Things from the Listing

Problem

You want to omit certain files from the directory listing.

Solution

IndexIgnore *.tmp *.swp .svn secret.txt

Discussion

Certain files should be ommitted from directory listings. Temporary files, swap files,
and various other generated files don’t need to be shown to users visiting your Web
site. Revision control directories, such as the CVS directory created by CVS, or
the .svn directory created by Subversion, also should not be displayed, as they are un-
likely to contain any information that would be of use to your visitors.

W

- Although this technique can be used to hide private or secret docu-
ﬁ:\ ments, it must be understood that these files can still be accessed by
b

& someone who knows, or guesses, the filename. The files are hidden from
" the directory listing, but they are still accessible. Do not use this
technique with an expectation of security.

Files that are password-protected are automatically omitted from
directory listings.

240 | Chapter 12: Directory Listings

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

See Also

* Recipe 12.19
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.5 Searching for Certain Files in a Directory
Listing

Problem

You want to provide a way to filter the listing by filename.

Solution

Use a P (pattern) argument in the QUERY_STRING of the URL:
http://servernamel/directory/?P=a*

Or place the following HTML form in a HeaderName file to provide a search feature

on a directory listing.

<form action="" method="get">

Show files matching <input type="text" name="P" value="*" />
<input type="submit" value="Go" />

<form>

Discussion

In Apache 2.0.23, a number of new options were added to mod_autoindex, which
allowed for more client control over the output of directory listings. By inserting options
in the QUERY_STRING of the URL, changes can be made to the sort order, output
formatting, and, as shown in this recipe, the files that are shown in the listing.

Using the ?P= QUERY_STRING, the file listing is filtered by the supplied argument.
For example, with a URL of: hitp://servname/directory/?P=a*, any file starting with a
will be listed.

Because this functionality is new with 2.0, there is no way to achieve the same outcome
with earlier versions of Apache.

See Also

* Recipe 12.16
* Recipe 12.2

12.5 Searching for Certain Files in a Directory Listing | 241

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
http://servername/directory/?P=a*
http://servname/directory/?P=a*

12.6 Sorting the List

Problem

You want to sort the directory listing by something other than the defaults.

Solution

IndexOrderDefault Descending Date

Discussion

The IndexOrderDefault directive allows you to specify, in your configuration file
or .htaccess file, the order in which the directory listing will be displayed, by default.
If, for example, you wish to have files displayed with the most recent one first, you
could use the directive shown in the Solution above.

The possible arguments to IndexOrderDefault are:

* Name—the file or directory name

* Date—the date and time that the file was most recently modified

* Size—the size of the file, in bytes

* Description—the file description, if any, set with the AddDescription directive
Any of these may be ordered Ascending or Descending.

The value of IndexOrderDefault may be overridden by the end user by supplying
QUERY_STRING arguments, unless you explicitly forbid it using
IndexOptions IgnoreClient.

See Also

* Recipe 12.17
* Recipe 12.7

12.7 Allowing a Client-Specified Sort Order

Problem

You want to allow the end user to specify the order in which the listing should be
ordered.

Solution
Users can supply QUERY_STRING arguments to modify the sort order:
http://servernamel/directory/?C=D&O=D

242 | Chapter 12: Directory Listings

http://servername/directory/?C=D&O=D

Or you can provide a form allowing the user to select the sort order, by placing the
following form in a HeaderName file:

<form action="" method="get">

Order by by <select name="C">

<option value="N" selected="selected"> Name</option>
<option value="M"> Date Modified</option>

<option value="S"> Size</option>

<option value="D"> Description</option>

</select>

<select name="0">

<option value="A" selected="selected"> Ascending</option>
<option value="D"> Descending</option>

</select>

<input type="submit" value="Go" />

</form>

Discussion

Allowing the end user to control his experience is a powerful way to make your Web
content more useful.

Unless this feature has been explicitly disabled using the IgnoreClient argument to
IndexOptions, you will always be able to reorder the directory listing using the ?C=
and ?0= QUERY_STRING options.

O (order) can be set to either A, for Ascending, or D, for Descending, and C (column)
may be set to one of the following:

* N—name of the file or directory
* M—the last modified date of the file or directory
* S—the size of the file in bytes
* D—the description of the file, set with the AddDescription directive
The argument parsing routine will quit if it encounters an invalid argument.
With Apache 1.3, the syntax is, instead:
http://servername/directory/?X=Y

where X is one of n, m, s, or d, as described earlier, and v is either a, for ascending, or
d, for descending.

See Also

* Recipe 12.16
¢ Recipe 12.17
* Recipe 12.2

12.7 Allowing a Client-Specified Sort Order | 243

http://servername/directory/?X=Y

12.8 Specifying How the List Will Be
Formatted

Problem

You want to specify different levels of formatting on the listing.

Solution

There are three levels of formatting that can be set. The list may be unformatted,
formatted, or can be rendered in an HTML table.

To enable fancy indexing, do the following;:

IndexOptions FancyIndexing
IndexOptions FancyIndexing HTMLTables

Discussion

The “fancy” formatting is the one that you’re most used to seeing because it’s the default
setting in most configurations of Apache.

The HTMLTable formtting is rather less common, and gives a slightly less plain look
to the listing.

See Also
* http://hitpd.apache.org/docs/2.2/mod/mod_autoindex.html#indexoptions

12.9 Allowing the Client to Specify the
Formatting

Problem

You want to allow the end user to specify how the list will be formatted.

Solution

The user may specify which of the formatting options she wishes to use by adding an
F argument to the query string.

To specify a plain bulleted list:

http://www.example.com/icons/?F=0

To specify a formatted list:

http://www.example.com/icons/?F=1

244 | Chapter 12: Directory Listings

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#indexoptions

To specify a list arranged in an HTML table:

http://www.example.com/icons/?F=2

Discussion

Unless IndexOptions IgnoreClient is in effect, the end user may apply a number of layout
customizations by adding query string arguments. The F argument controls the
formatting of the list.

See Also
¢ Recipe 12.16

12.10 Adding Descriptions to Files

Problem

You want to put a brief description of files in the listing.

Solution

Use the AddDescription directive to add a description to certain files or groups of files:

AddDescription "GIF image" .gif

Discussion

You may set a description for a particular file, or for any file that matches a particular
pattern. The first argument to AddDescription is the description that you want to use,
and the second is a substring that will be compared to file names. Any file that matches
the pattern will have the description used for it.

By default, you have 23 characters available for this description. That space can be
altered explicitly by setting IndexOptions DescriptionWidth, or by suppressing one of
the other columns.

You should ensure that the description isn’t too long, or it will be truncated when it
reaches the width limit. This can be annoying when the description is truncated and
therefore unreadable. Also, because you’re permitted to use HTML in the description,
it’s possible that the HTML could be truncated, leaving unclosed HTML tags.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#adddescription

12.10 Adding Descriptions to Files | 245

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#adddescription

12.11 Autogenerated Document Titles

Problem

You want to have the description of HTML files autogenerated.

Solution

Place the following in the <Directory> scope where you want to have descriptions
automatically loaded from the <Title> tags of HTML files:

IndexOptions ScanHTMLTitles

Discussion

If generating a directory listing of a directory full of HTML files, it is often convenient
to have the titles of those documents automatically displayed in the description column.

The ScanHTMLTitles option has mod_autoindex look in each HTML file for the
contents of the <Title> tag, and use that value for the description.

This process is, of course, rather file-access intensive, and so will cause a significant
performance degradation proportional to the number of HTML files that are in the
directory.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#indexoptions

12.12 Changing the Listing Icons

Problem

You want to use different icons in the directory listing.

Solution

Use AddIcon and its variants to specify which icons are to be used by different kinds of
files:

AddIcon /icons/image.gif .gif .jpg .png

Discussion

There are a number of variants of the AddIcon directive that allow you to associate
certain icons with various files, groups of files, or types of files.

The AddIcon directive sets an icon to be used for files that match a particular pattern.
The first argument is the URI of the icon file to be used. The argument or arguments

246 | Chapter 12: Directory Listings

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#indexoptions

following this are file extensions, partial filenames, or complete filenames, with which
this icon should be used.

You also can specify the argument ~*DIRECTORY"" for directories, or ~~“BLANKI
CON~* to be used for blank lines, to ensure correct spacing.

To specify an icon to be used for the parent directory link, use an argument of ". . " :

AddIcon /icons/up_one.gif "..

You also may use AddIconByEncoding to specify an icon to be used for files with a
particular encoding such as, x-gzip:

AddIconByEncoding /icons/gzip.gif x-gzip

Use AddIconByType for associating an icon with a particular MIME type:

AddIconByType /icons/text.gif text/*
AddIconByType /icons/html.gif text/html

Finally, you can specify the default icon to be used if nothing else matches:

DefaultIcon /icons/unknown.png

With any of these directives, you also may specify an alternate text to be displayed for
clients that have image loading turned off. The syntax for this is to include the alt text
in parentheses before the image path:

AddIcon (IMAGE,/icons/image.gif) .gif .png .Jjpg

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#addicon

12.13 Listing the Directories First

Problem

You want to have the folders (directories) listed at the top of the directory listing.

Solution

To have the directories displayed first in the directory listing, rather than in alphabetical
order with the rest of the files, place the following in your configuration file:

IndexOptions FoldersFirst

Discussion

By default, directory listings are displayed in alphabetical order, including the directo-
ries. However, some people are used to having the directories at the top, followed by
the files. This allows for faster navigation through deep directory structures.

12.13 Listing the Directories First | 247

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#addicon

Adding the FoldersFirst option puts the folders at the top of the listing, followed by the
files in alphabetical order.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#indexoptions

12.14 Ordering by Version Number

Problem

You want to have files ordered by version number so that 1.10 comes after 1.9 rather
than before 1.2.

Solution

To have files sorted in version number order, add the following to your configuration

file:

IndexOptions VersionSort

Discussion

Sites that distribute software will often have multiple versions of the software in the
directory, and it is useful to have them ordered by version number rather than alpha-
betically. In this way, httpd-1.10.tar.gz will be listed after httpd-1.9.tar.gz, rather than
between httpd-1.1.tar.gz and httpd-1.2.tar.gz, as it would be in alphabetical order.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#addicon

12.15 Allowing the End User to Specify
Version Sorting

Problem

You want to let the end user enable or disable version sorting.

Solution

The user may specify whether to enable or disable the version ordering by adding a v
query string argument to the URL:

To enable version ordering:

http://www.example.com/download/?V=1

248 | Chapter 12: Directory Listings

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#indexoptions
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html#addicon

To disable it:

http://www.example.com/download/?V=0

Discussion

Like the F argument, the v argument allows the user to impose his own custom
formatting on a directory listing.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.16 Complete User Control of Output

Problem

You want to combine some of the above techniques to give the end user full control of
the output of a directory listing.

Solution

Place the following HTML in a file and use it as the header for your directory listing:

<form action="" method="get">

Show me a <select name="F">

<option value="0"> Plain list</option>

<option value="1" selected="selected"> Fancy list</option>
<option value="2"> Table list</option>

<select>

Sorted by <select name="C">

<option value="N" selected="selected"> Name</option>
<option value="M"> Date Modified</option>

<option value="S"> Size</option>

<option value="D"> Description</option>

<select>

<select name="0">

<option value="A" selected="selected"> Ascending</option>
<option value="D"> Descending</option>

<select>

<select name="V">

<option value="0" selected="selected"> in Normal
order</option>

<option value="1"> in Version order</option>
<select>

Matching <input type="text" name="P" value="*" />
<input type="submit" value="Go" />

<form>

12.16 Complete User Control of Output | 249

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

Discussion

Several of these recipes show how to let the end user specify formatting options in the
query string. However, they’re likely not going to know about this.

This recipe allows you to give the end user the full bag of tricks, and lets her select
various formatting options right there in the page. If you save the above HTML as
header.html, you can use this in your directory listing with the HeaderName directive:

HeaderName /header.html

The user can than select various options, reorder the listing, search for various strings,
and alter the formatting of the output to his heart’s content.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.17 Don’t Allow the End User to Modify the
Listing

Problem

You don’t want the end user to be able to modify the output of the directory listing.

Solution

Place the following IndexOptions directive in the <Directory> scope where you wish
this restriction to be in place:

IndexOptions +IgnoreClient

Discussion

Although it is generably preferable to allow the end user to have some control over her
user experience, there may be times when you wish for a particular directory listing to
be presented in a particular way, without the option of a user to modify that display.

Although most users will probably be unaware of the ability to do so, by default any
user can modify the output of the directory listing with a combination of
QUERY_STRING arguments. With the recipe shown above, this feature is disabled.

When IgnoreClient is set, SuppressColumnSorting is also put into effect. That is, the
clickable header at the top of each column is removed so that the user isn’t misled into
thinking that he can alter the sort order by these links.

IgnoreClient can be used in conjunction with IndexOrderDefault to enforce a certain
nondefault directory listing order.

250 | Chapter 12: Directory Listings

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.18 Suppressing Certain Columns

Problem

You don’t want to show certain columns in the directory listing.

Solution

Various columns can be suppressed with one of the Suppress* arguments to the
IndexOptions directive. For example, to suppress the last modified date column:

IndexOptions SuppressLastModified

Discussion

With the exception of the filename, all of the columns in a directory listing may be
suppressed using one of the following IndexOptions arguments:

* SuppressDescription—hide the description column.
* Suppresslcon—don’t display the icon usually shown next to the filename.
* SuppressLastModified—hide the column that lists the file datestamp.

* SuppressSize—hide the column showing the file size.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.19 Showing Forbidden Files

Problem

Password-protected files and directories don’t show up in the directory listing.

Solution

If you’re running Apache 2.2, place the following IndexOptions directive in a
<Directory> block referring to the directory in question, or in a .htaccess file in that
directory:

IndexOptions +ShowForbidden

If you’re running Apache 2.0, there is no solution.

12.18 Suppressing Certain Columns | 251

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

Discussion

Starting with Apache 2.0, directory listings attempt to protect protected documents.
So if a file or directory requires password authentication, it is not shown in a directory
listing.

In Apache 2.0, this is simply how things work. There is no way to have forbidden files
or directories shown in directory listings.

In Apache 2.2, the ShowForbidden argument was added for the IndexOptions directive,
specifically to address this request.

See Also
* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

12.20 Aliases in Directory Listings

Problem

Aliases don’t show up in directory listings.

Solution

In the directory to be listed, put a file or directory named the same as the Alias. It will
be displayed in the listing, but clicking on it will invoke the Alias.

Discussion

Aliases don’t show up in directory listings, because mod_autoindex generates the listing
by asking the filesystem for an actual directory listing. The filesystem doesn’t know
about the aliases.

There is no way to get mod_autoindex to pick up on these Aliases and list them.

You can, however, place items in the directory that act as placeholders for the Alias.
Because an Alias is consulted before the filesystem, when you actually click on the file
the Alias will be invoked and the file ignored.

See Also

* http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
* http://httpd.apache.org/docs/2.2/mod/mod_alias.html

252 | Chapter 12: Directory Listings

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.2/mod/mod_alias.html

CHAPTER 13
Miscellaneous Topics

With its hundreds of configuration directives, and dozens upon dozens of modules
providing additional functionality, the Apache Web server can be terrifically complex.
So, too, can the questions about how to use it. We have collected many of the most
common questions we have seen and categorized them, putting related topics into their
own chapters when there were enough of them.

However, some of the questions that come up don’t fall readily into one of the categories
we have chosen, and some are more fundamental so we’ve collected them into this
catch-all chapter of “questions that don’t belong anywhere else.”

13.1 Placing Directives Properly

Problem

You know what directive you need but aren’t sure where to put it.

Solution

If you wish the scope of the directive to be global (i.e., you want it to affect all requests
to the Web server), then it should be put in the main body of the configuration file or
it should be put in the section starting with the line <Directory /> and ending with
</Directory>.

If you wish the directive to affect only a particular directory, it should be put in a
<Directory> section that specifies that directory. Be aware that directives specified in
this manner also affect subdirectories of the stated directory.

Likewise, if you wish the directive to affect a particular virtual host or a particular set
of URLs, then the directive should be put in a <VirtualHost> section, <Location>
section, or perhaps a <Files> section, referring to the particular scope in which you
want the directive to apply.

In short, the answer to “Where should I put it?” is “Where do you want it to be in
effect?”

253

Discussion

This question is perhaps the most frequently asked question in every Apache help ven-
ue. It is usually answered in a way that is relevant to the specific situation but not in a
general all-purpose kind of way.

The situation is further complicated by the fact that the configuration file is frequently
split over several files, which are loaded via Include directives, and the (usually) mis-
taken impression that it will make a difference whether a directive is put in one file or
another.

Knowing exactly where to put a particular directive comes from understanding how
Apache deals with sections (such as <Directory> and <Location>). There is seldom one
magic place that a directive must be placed to make it work. However, there are usually
a number of places where you can put a directive and have it produce an undesired
effect.

There are two main situations in which a directive, when added to your configuration
file, will not have the desired effect. These are when a directive is overridden by a
directive appearing in the same scope but later in the configuration, and when there is
a directive in a more specific scope.

For the first of these two situations, it is important to understand that the Apache
configuration file is parsed from top to bottom. Files that use Include are considered to
appear in their entirety in the location where the Include directive appears. Thus, if you
have the same directive appearing twice but with different values, the last one appearing
will be the one that is actually in effect.

In the other situation, it’s important to understand that, while directives in one direc-
tory apply to subdirectories, a <Directory> section referring to a more specific or
“deeper” directory will have precedence over sections referring to “shallower”
directories. For example, consider the following configuration:

<Directory /www/docs>

Options ExecCGI
</Directory>

<Directory /www/docs/mod>
Options Includes
</Directory>

Files accessed from the directory /www/docs/mod/misc/ will have Options Includes in
effect but will not have Options ExecCGI in effect, because the more specific directory
section is the configuration that applies.

Finally, you must consider . htaccess files as well, which can override settings in the main
server configuration file and cause situations that are confusing and difficult to track.

254 | Chapter 13: Miscellaneous Topics

See Also
For .htaccess files:

http://httpd.apache.org/docs/howto/htaccess.himl
http://hittpd.apache.org/docs/2.2/howto/htaccess.html

For directories:

http://httpd.apache.org/docs/mod/core. html#directory
http://httpd.apache.org/docs/mod/core. html#directorymatch
http://httpd.apache.org/docs/2.2/mod/core. html#directory
http://httpd.apache.org/docs/2.2/mod/core.html# directorymatch

For location:

http://httpd.apache.org/docs/mod/core. html#location
http://httpd.apache.org/docs/mod/core. html#locationmatch
http://httpd.apache.org/docs/2.2/mod/core. html#location
http://httpd.apache.org/docs/2.2/mod/core. html#locationmatch

For Apache:

http://httpd.apache.org/docs/mod/core. html#files
http://httpd.apache.org/docs/mod/core. html#filesmatch
http://httpd.apache.org/docs/2.2/mod/core. html#files
http://httpd.apache.org/docs/2.2/mod/core. html#filesmatch

13.2 Renaming .htaccess Files

Problem

You want to change the default name of per-directory configuration files on a Windows
system, because filenames beginning with a dot can cause problems.

Solution

Use the AccessFileName directive to specify the new name:

AccessFileName ht.access

Discussion

In addition to the server-wide configuration files, you can add directives to special files
in individual directories. These are called .htaccess (aitch tee access) files because that’s
the default name for them.

However, the Unixish convention of filenames that begin with a dot doesn’t play well
on all platforms; on Windows in particular it can be difficult to edit files with such
names.

13.2 Renaming .htaccess Files | 255

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs/2.2/howto/htaccess.html
http://httpd.apache.org/docs/mod/core.html#directory
http://httpd.apache.org/docs/mod/core.html#directorymatch
http://httpd.apache.org/docs/2.2/mod/core.html#directory
http://httpd.apache.org/docs/2.2/mod/core.html#directorymatch
http://httpd.apache.org/docs/mod/core.html#location
http://httpd.apache.org/docs/mod/core.html#locationmatch
http://httpd.apache.org/docs/2.2/mod/core.html#location
http://httpd.apache.org/docs/2.2/mod/core.html#locationmatch
http://httpd.apache.org/docs/mod/core.html#files
http://httpd.apache.org/docs/mod/core.html#filesmatch
http://httpd.apache.org/docs/2.2/mod/core.html#files
http://httpd.apache.org/docs/2.2/mod/core.html#filesmatch

Apache allows you to change the name it will use when looking for these per-directory
files with the AccessFileName directive (which can only appear in the server-wide
configuration files). You can use any name that’s valid on your platform.

If you use the AccessFileName directive, be sure to make any additional appropriate
changes to your configuration such as the <FilesMatch ""\.ht"> container that keeps
the files from being fetchable over the Web:

<FilesMatch "~ht\.">
Order deny,allow
Deny from all

</FilesMatch>

See Also

¢ Recipe 11.7
* http://hitpd.apache.org/docs/howto/htaccess. html
* http://httpd.apache.org/docs/2.2/howto/htaccess.html

13.3 Generating Directory/Folder Listings

Problem

You want to see a directory listing when a directory is requested.

Solution

Turn on Options Indexes for the directory in question:

<Directory /www/htdocs/images>
Options +Indexes
</Directory>

Discussion

When a URL maps to a directory or folder in the filesystem, Apache will respond to
the request in one of three ways:

* If mod_dir is part of the server configuration, the mapped directory is within the
scope of a DirectoryIndex directive, and the server can find one of the files identified
in that directive, then the file will be used to generate the response.

* If mod_autoindex is part of the server configuration and the mapped directory is
within the scope of an Options directive that has enabled the Indexes keyword, then
the server will construct a directory listing at runtime and supply it as the response.

¢ The server will return a 404 (Resource Not Found) status.

256 | Chapter 13: Miscellaneous Topics

http://httpd.apache.org/docs/howto/htaccess.html
http://httpd.apache.org/docs/2.2/howto/htaccess.html

Enabling directory listings
The real keys to enabling the server’s ability to automatically generate a listing of files
in a directory are the inclusion of mod_autoindex in the configuration and the
Indexes keyword to the Options directive. This can be done either as an absolute form,
as in:

Options FollowSymLinks Indexes
or in a selective or relative form, such as:

Options -ExecCGI +Indexes
Enabling directory listings should be done with caution. Because of the scope inheri-
tance mechanism, directories farther down the tree also will be affected; because the
server will apply the sequence of rules listed at the beginning of this section in an effort

to provide some sort of response, a single missing file can result in the inadvertent
exposure of your filesystem’s contents.

Disabling directory indexing below an enabled directory
There are essentially two ways to work around this issue and ensure that the indexing
applies only to the single directory:

* Add an Options -Indexes to .htaccess files in each subdirectory.

* Add an Options -Indexes to a <Directory> container that matches all the

subdirectories.

For example, to permit directory indexes for directory /usr/local/htdocs/archives but not
any subdirectories, use:

<Directory /usr/local/htdocs/archives>
Options +Indexes
</Directory>

<Directory /usr/local/htdocs/archives/*>

Options -Indexes
</Directory>

See Also

* http://httpd.apache.org/docs/mod/core.html# options
* http://httpd.apache.org/docs/mod/mod_dir.html
* http://httpd.apache.org/docs/mod/mod_autoindex.html

13.4 Solving the “Trailing Slash” Problem

Problem

Loading a particular URL works with a trailing slash but does not work without it.

13.4 Solving the “Trailing Slash” Problem | 257

http://httpd.apache.org/docs/mod/core.html#options
http://httpd.apache.org/docs/mod/mod_dir.html
http://httpd.apache.org/docs/mod/mod_autoindex.html

Solution

Make sure that ServerName is set correctly and that none of the Alias directives have a
trailing slash.

Discussion

The “trailing slash” problem can be caused by one of two configuration problems: an
incorrect or missing value of ServerName, or an Alias with a trailing slash that doesn’t
work without it.

Incorrect ServerName

An incorrect or missing ServerName seems to be the most prevalent cause of the prob-
lem, and it works something like this: when you request a URL such as http://
example.com/something, where something is the name of a directory, Apache actually
sends a redirect to the client telling it to add the trailing slash.

The way that it does this is to construct the URL using the value of ServerName and
the requested URL. If ServerName is not set correctly, then the resultant URL, which
is sent to the client, will generate an error on the client end when it can’t find the
resulting URL.

If, by contrast, ServerName is not set at all, Apache will attempt to guess a reasonable
value when you start it up. This will often lead it to guess incorrectly, using values such
as 127.0.0.1 or localhost, which will not work for remote clients. Either way, the client
will end up getting a URL that it cannot retrieve.

Invalid Alias directive

In the second incarnation of this problem, a slightly malformed Alias directive may
cause a URL with a missing trailing slash to be an invalid URL entirely.
Consider, for example, the following directive:

Alias /example/ /home/www/example/
The Alias directive is very literal, and aliases URLSs starting with /example/, but it does
not alias URLs starting with /example. Thus, the URL http://example.com/example/ will
display the default document from the directory /home/www/example/, while the URL

http://example.com/example will generate a “file not found” error message, with an error
log entry that will look something like:

File does not exist: /usr/local/apache/htdocs/example

The solution to this is to create Alias directives without the trailing slash, so that they
will work whether or not the trailing slash is used:

Alias /example /home/www/example

258 | Chapter 13: Miscellaneous Topics

See Also
* http://httpd.apache.org/docs/misc/FAQ-E.html#set-servername

13.5 Setting the Content-Type According to
Browser Capability

Problem

You want to set Content-Type headers differently for different browsers, which may
render the content incorrectly otherwise.

Solution

Check the Accept headers with RewriteCond and then set the Content-Type header
with a T flag:

RewriteCond "${HTTP_ ACCEPT}" "application/xhtml\+xml"
RewriteCond "%{HTTP_ACCEPT}" "l!application/xhtml\+xml\s*;\s*qg=0+(2:\.0*["0-9])"
RewriteRule . - [T=application/xhtml+xml;charset=1is0-8859-1]

Discussion

Different browsers tend to deal with content differently and sometimes need a nudge
in the right direction. In this example, for browsers that specify (using the
HTTP_ACCEPT header) that they prefer XHTML content, we want to send a Content-
Type header specifying that the content we are sending fulfills that requirement.

The T (Type) flag sets the Content-Type for the response.

See Also
* http://httpd.apache.org/docs/mod/mod_rewrite.html

13.6 Handling Missing Host: Header Fields

Problem

You want to treat differently all requests that are made without a Host request header

field.

Solution

SetEnvIf Host "”$" no host=l
Order Allow,Deny

Allow from all

Deny from env=no_host

13.5 Setting the Content-Type According to Browser Capability | 259

http://httpd.apache.org/docs/misc/FAQ-E.html#set-servername
http://httpd.apache.org/docs/mod/mod_rewrite.html

RewriteCond "${HTTP_HOST}" "~3$"
RewriteRule ".*" - (F, L]

Discussion

The Host: request header field is essential to correct handling of name-based virtual
hosts (see Recipe 4.1). If the client doesn’t include it, the chances are very good that
the request will be directed to the wrong virtual host. All modern browsers automati-
cally include this field, so only custom-written or very old clients are likely to encounter
this issue.

The solutions given will cause such requests to be rejected with a 403 Forbidden
status; the exact text of the error page can be tailored with an ErrorDocument 403
directive.

The first solution is slightly more efficient.

See Also
¢ Recipe 4.1

13.7 Alternate Default Document

Problem

You want to have some file other than index.html appear by default.

Solution

Use DirectoryIndex to specify the new name:

DirectoryIndex default.htm

Discussion

When a directory is requested—that is, a URL ending in a / rather than in a filename—
mod_dir will select the index document from that directory and serve that file in re-
sponse. By default, the index file is assumed to be index.html, but this can be
configured to something else with the Directorylndex directive.

Note also that DirectoryIndex can be set to several files, which are listed in order of
precedence:

DirectoryIndex index.html index.htm index.php default.htm
Finally, note that you also can provide a relative URL if you want to load content from
some other directory, such as a CGI program:

DirectoryIndex /cgi-bin/index.pl

260 | Chapter 13: Miscellaneous Topics

See Also
* http://httpd.apache.org/docs/mod/mod_dir.html

13.8 Setting Up a Default “Favicon”

Problem

You want to define a default favorite icon, or "favicon,” for your site, but allow
individual sites or users to override it.

Solution

Put your default favicon.ico file into the /icons/ subdirectory under your ServerRoot,
and add the following lines to your server configuration file in the scope where you
want it to take effect (such as inside a particular <VirtualHost> container or outside all
of them):

AddType image/x-icon .ico

<Files favicon.ico>

ErrorDocument 404 /icons/favicon.ico
</Files>

Discussion

favicon.ico files allow Web sites to provide a small (16 x 16 pixels) image to clients for
use in labeling pages; for instance, the Mozilla browser will show the favicon in the
location bar and in any page tabs. These files are typically located in the site’s
DocumentRoot or in the same directory as the pages that reference them.

What the lines in the solution do is trap any references to favicon.ico files that don’t
exist and supply a default instead. An ErrorDocument is used instead of a
RewriteRule because we want the default to be supplied only if the file isn’t found where
expected. A rewrite, unless carefully crafted, would force the specified file to be used
regardless of whether a more appropriate one existed.

See Also
* Chapter 5

13.9 Directory Listings in ScriptAliased
Directories

Problem

You want to allow directory indexing in a directory named in a ScriptAlias directive.

13.8 Setting Up a Default “Favicon” | 261

http://httpd.apache.org/docs/mod/mod_dir.html

This is considered a bad idea because it can reveal to strangers the names
of specific scripts that may be subvertible.

Solution

Add the following lines to the <Directory> container that defines the characteristics of
your ScriptAliased directory:
<Files ".">
Options Indexes FollowSymLinks

SetHandler httpd/unix-directory
</Files>

Discussion

The ScriptAlias directive imposes a lot of restrictions on directories to which it is
applied, primarily for reasons of security. After all, such directories contain scripts of
arbitrary code that will be executed on your system; if you should happen to be using
a well-known and popular script in which a vulnerability is subsequently detected,
anyone on the Web may be able to take advantage of it.

One of the restrictions imposed explicitly by design is disallowing directory listings in
ScriptAliased parts of the filesystem. This amounts to what’s called “security through
obscurity”—namely, hiding an issue and hoping that no one discovers it even though
it’s easily accessible—but it’s better than advertising what scripts your server can
execute.

However, under some circumstances you may want to allow directory listings in such
directories—or at least the use of pseudolistings provided by files named in a
DirectoryIndex directive. To do this you need to override the special protections. In
particular, you need to indicate that they don’t apply to the directory itself (indicated
by the <Files "."> container), and that the directory should be treated as a directory
(the AddHandler directive) and not a script.

This is actually playing rather fast and loose with Apache’s internal mechanisms, and
taking advantage of an unintentional feature. As a consequence, it may not continue
to work in future versions of the software.
See Also

* Chapter 12

262 | Chapter 13: Miscellaneous Topics

13.10 Enabling .htaccess Files

Problem

You want to enable the use of .htaccess files in directories on your server.

Solution

Add the following line to your httpd.conf file in a scope that applies to the directory (or
directories) for which you want to enable .htaccess files:

AllowOverride keyword ...

Discussion

As long as the keyword you specify isn’t None, this will instruct the server to
process .htaccess files in the relevant scope. Which keyword or keywords you use
depends on what sort of things you want the .htaccess file to be able to affect.

W N

Some platforms, such as Microsoft Windows, object to filenames that
begin with a dot. To placate this particular idiosyncrasy, you can use
s the AccessFileName directive to tell the server to use a different name
° for these files, such as:

AccessFileName ht.access

If Apache seems to be ignoring an .htaccess file, you can verify this by putting some
normal text into the file and browsing to a document in the same directory:

This is not an Apache directive

If the server is reading the . htaccess file, it will complain about the text (because it isn’t
an Apache directive); you’ll get both a message in the server’s error log and an “Internal
Server Error” page in your browser. If neither of these happens, then the file is being
ignored, and you should check your scoping and AllowOverride directives.

See Also
* http://httpd.apache.org/docs/mod/core. html#allowoverride

13.10 Enabling .htaccess Files | 263

http://httpd.apache.org/docs/mod/core.html#allowoverride

13.11 Converting IBM/Lotus Server-Side
Includes to Apache

Problem

You are migrating documents from a Web server running IBM’s Web Traffic Express
or Lotus Domino Go Webserver to a server running Apache.

Solution

Most of the WTE/LDGW server side include directives that are directly portable to
Apache’s format, but there are a few that either have no parallel or need to be modified
to work properly. Here is a list of the exceptions:

* config cmntmsg—there is no Apache equivalent for this setting.

* echo directive variables SST DIR, SSI _FILE, SSI_INCLUDE, SSI PARENT, and
SSTI_ROOT—there are no built-in Apache equivalents for these automatic variables.

* global—there is no direct equivalent for this SSI directive. Variables set in the cur-
rent file may be referenced later in the file, but they are not available to included
documents.

* set directive—Apache’s version of this directive is roughly the same as WTE’s/
LDGW:’s, except that it does not understand the svarname; type of SSI variable
substitution.

Discussion

Apache’s mod_include module implements the canonical list of SSI directives, but WTE
and LDGW have added extensions to the “standard” list. Because SSI is now largely
considered a legacy technology for providing dynamic content, the usual recommen-
dation is to use servlets, template engines, or scripting languages to provide equivalent
functionality. It is extremely unlikely that Apache’s implementation will be extended,
so if you’re taking advantage of some of the WTE/LDGW extensions, your time would
probably be better spent migrating to a newer technology instead of trying to duplicate
the original effect with Apache’s SSI implementation.

See Also
* http://httpd.apache.org/docs/mod/mod_include.html

264 | Chapter 13: Miscellaneous Topics

http://httpd.apache.org/docs/mod/mod_include.html

APPENDIX A
Using Regular Expressions
In Apache

A number of the Apache Web server’s configuration directives permit (or require!) the
use of what are called regular expressions. Regular expressions are used to determine if
a string, such as a URL or a user’s name, matches a pattern.

There are numerous resources that cover regular expressions in excruciating detail, so
this Appendix is not designed to be a tutorial for their use. Instead, it documents the
specific features of regular expressions used by Apache—what’s available and what
isn’t. Even though there are quite a number of regular expression packages, with dif-
fering feature sets, there are some commonalities among them. The Perl language, for
instance, has a particularly rich set of regular expressions, which have been mostly
available in the Apache regex library since version 2.0 of the server.

Regular expressions, as mentioned, are a language that allows you to determine if a
particular string or variable looks like some pattern. For example, you may wish to
determine if a particular string is all uppercase, or if it contains at least three numbers,
or perhaps if it contains the word “monkey” or “Monkey.” Regular expressions provide
avocabulary for talking about these sort of tests. Most modern programming languages
contain some variety of regular expression library, and they tend to have a large number
of things in common, although they may differ in small details.

Apache 1.3 uses a regular expression library called hsregex, so called because it was
developed by Henry Spencer. Note that this is the same regular expression library that
has been used in the egrep.

Apache 2.0 uses a somewhat more full-featured regular expression library called Perl
Compatible Regular Expressions (PCRE), so called because it implements many of the
features available in the regular expression engine that comes with the Perl program-
ming language. Although this appendix does not attempt to communicate all the dif-
ferences between these two implementations, you should know that hsregex is a subset

265

of PCRE, as far as functionality goes, so everything you can do with regular expressions
in Apache 1.3, you can do in 2.0, but not necessarily the other way around.

To grossly simplify, regular expressions implement two kinds of characters. Some
characters mean exactly what they say (for example, a G appearing in a regular
expression will usually mean the literal character G), whereas some characters have
special significance (for example, the period [.] will match any character at all—a wild-
card character). Regular expressions can be composed of these characters to represent
(almost) any desired pattern appearing in a string. (Recursive patterns, for example,
are not possible.)

What Directives Use Regular Expressions?

Two main categories of Apache directives use regular expressions. Any directive with
a name containing the word Match, such as FilesMatch, can be assumed to use regular
expressions in its arguments. And directives supplied by the module mod_rewrite use
regular expressions to accomplish their work.

For more about mod_rewrite, see Chapter 5.

SomethingMatch directives each implement the same functionality as their counter-
part without the Match. For example, the RedirectMatch directive does essentially the
same thing as the Redirect directive, except that the first argument, rather than being
a literal string, is a regular expression, which will be compared to the incoming request
URL.

Regular Expression Basics

To get started in writing your own regular expressions, you’ll need to know a few basic
pieces of vocabulary, such as shown in Tables A-1 and A-2. These constitute the bare
minimum that you need to know. Although this will hardly qualify you as an expert,
it will enable you to solve many of the regex scenarios you will find yourself faced with.

Table A-1. A basic regex vocabulary

Character Meaning
Matches any character. This is the wildcard character.

+ Matches one or more of the previous character. For example, M+ would
match one or more us; “+” would match one or more characters of any kind.

* Matches zero or more of the previous character. For example, v* would
match zero or more ms. This means that it will not only match v, mv, and
vy, it will also match a string that doesn’t have any ms in it at all.

? Makes the previous character optional. For example, the regular expression
monkeys? Will match a string containing either monkey or monkeys.

A Indicates that the following characters must appear at the beginning of the
string being tested. Thus, a regular expression of ~zim requires that the

266 | Appendix A: Using Regular Expressions in Apache

Character

)

Meaning

string being tested start with the characters zim. ~ is referred to as an anchor
because it anchors the match to the beginning of the string. In the context
of a character class (see below), the ~ character has another special mean-
ing.

Indicates that the characters to be matched must appear at the end of the
string. Thus, a regular expression of gi£$ requires that the string being tes-
ted end with the characters gif. $ is referred to as an anchor because it
anchors the match to the end of the string.

Escapes the following character, meaning that it removes the “specialness”
of the character. For example, a pattern containing \ . would match a liter-
al . character, since the \ . removes the special meaning of the . character.

Character class. Match one of the things contained in the square brackets.
For example, [abc] will match either an a, or b, or c. [abc]+, on the other
hand, would match a sequence of a’s, b’s, and c’s, or any combination of
them. Note that within a character class, the ~ character doesn’t have its
normal anchor status but means any character exceptthose in the class.
Thus, a character class of [~abc] will match any character that is notan a,
b, NOr c.

A character class containing a - between two characters means an entire
range of characters. For example, the character class [a-gq] means all of
the lowercase letters starting from a and ending with q. [a-z2a-z] would be
all uppercase and all lowercase letters.

In addition to character classes that you form yourself, there are a number
of special predefined character classes to represent commonly used groups
of characters. See Table A-2 for a list of these predefined character classes.

Groups a set of characters together. This allows you to consider them as a
single unit. For example, you could apply a + or 2 to an entire group of char-
acters, rather than just a single character. The expression (monkeys) 2, for
example, would make the entire word monkeys an optional part of the match.
In some regular expression libraries, the () characters also capture the
contents of the match so that they can be used later. (The regex libraries
used by the Apache HTTP server a/ways do this.)

Two Common Mistakes

A common pitfall when constructing regular expression (also called “RE” or “regex”
[pronounced “rej-eks”]) patterns is overlooking that * matches zero or more occur-
rences. This means that a pattern of “firstfield: *lastfields, intended to match
things like firstfield:blah:foo:blah:lastfield, will also match firstfiel
dlastfield. Often, you actually want to use a + meaning one or more occurrences.

Another fact often forgotten is that pattern characters that match a variable number of
occurrences—*, +, and ?—apply to the single pattern expression they immediately
follow. And unless you’ve grouped several together with parentheses, that usually

What Directives Use Regular Expressions? | 267

means a single character. foo+ will match foo and foooooo, not foofoofoofoo. To
match the latter, group the characters like this: (foo) +.

Table A-2. Predefined regular expression character classes

Character Meaning

class

\d Any decimal digit (“0” through “9”).

\D Any character that is not a decimal digit.

\s Any whitespace character except VT (vertical TAB). This matches
space, HT, CR, LF, and FF. (Note that this differs from the POSIX class
[:space:] described elsewhere in this table, which matches all of those
characters andVT.)

\S Any nonwhitespace character (that is, anything that doesn’t match \s).

\w Any “word” character; that is, an underscore or any character with an
ordinal value less than 255 that is a letter or decimal digit. (This has
restrictions and ideosyncrasies which are affected by the current locale.
See the PCRE documentation for details.)

\W Any nonword character.

[:alnum:] Any alphanumeric character.

[:alpha:] Any alphabetical character.

[:blank:] A space or horizontal tab.

[:entrl:] A control character.

[:digit:] A decimal digit.

[:graph:] A nonspace, noncontrol character.

[:lower:] A lowercase letter.

[:print:] Same as graph, but also space and tab.

[:punct:] A punctuation character.

[:space:] Any whitespace character, including newline and return.

[:upper:] An uppercase letter.

[:xdigit:] A valid hexadecimal digit.

[Jand [: :]
The POSIX classes (the ones using [: :1) are shorthand names for multiple matching

characters, and the [: and :] are part of their syntax. As classes, they can only be used
within a class expression (i.e., between [and 1), which can make things look a little
weird and confusing. For instance, to match any single hexadecimal digit, you’d use:

[[:xdigit:]]

To match more than one, you’d use:

268 | Appendix A: Using Regular Expressions in Apache

[[:xdigit:]]+

To match any hexidecimal digit or whitespace character:
[[:xdigit:] [:space:]]

Or maybe:
[[:xdigit:]\s]

To match any character except a hexidecimal digit, use:
(" [:xdigit:]]

(The PCRE implementation of POSIX classes also allows:
[[:"xdigit:]]

but that’s an extension syntax and not universally supported.)

Examples

The previous concepts can best be illustrated by a few examples of regular expressions
in action.

Redirecting several URLs

We'll start with something fairly simple. In this scenario, we’re getting a new Web
server to handle the customer support portion of our Web site. So, all requests that
previously went to http://www.example.com/support will now go to the new server,
http://support.example.com. Ordinarily, this could be accomplished with a simple
Redirect statement, but it appears that our Web site developer has been careless and
has been using mod_speling (see Recipe 5.9), so there are links throughout the site to
http://www.example.com/support and to http://www.example.com/Support, which
requires not one but two Redirect statements.

So, instead of using the two Redirect statements, we will use the following one
RedirectMatch directive:

RedirectMatch */[sS]upport/(.*) http://support.example.com/$1

The square brackets indicate a character class, causing this one statement to match
requests with either the upper- or lowercase s.

Note also the ~ on the front of the argument, causing this directive to apply only to
URLs that start with the specified pattern, rather than URLs that simply happen to
contain that pattern somewhere in them.

The parentheses on the end of the regular expression capture the remainder of the
requested URI, putting it in the variable $1 for later use. We use it in the redirect target
to retain the remainder of the requested URL

What Directives Use Regular Expressions? | 269

http://www.example.com/support
http://support.example.com
http://www.example.com/support
http://www.example.com/Support

Catching common misspellings

While watching the logfiles, we see that a number of people are misspelling support
as suport. This is easily fixed by slightly altering our RedirectMatch directive:

RedirectMatch ~/[sS]upp?ort/(.*) http://support.example.com/$1

The 2 makes the second p optional, thus catching those requests that are misspelled
and redirecting them to the appropriate place anyway.

For More Information

By far the best resources for learning about regular expressions are Jeffrey Friedl’s book
Mastering Regular Expressions and Tony Stubblebine’s book Regular Expression Pocket
Reference, both published by O’Reilly. They cover regular expressions in many
languages, as well as the theory behind regular expressions in general.

For a free resource on regular expressions, you should see the Perl documentation on
the topic. Just type perldoc perlre on any system that has Perl installed. Or you can
view this documentation online at http://perldoc.perl.org/perlre.html. But be aware that
there are subtle (and not-so-subtle) differences between the regular expression
vocabulary of Perl and that of the PCRE library (the one used by Apache). These
differences are described on the Web at http://www.pcre.org/pcre.txt.

270 | Appendix A: Using Regular Expressions in Apache

http://perldoc.perl.org/perlre.html
http://www.pcre.org/pcre.txt

APPENDIX B
Troubleshooting

The Apache Web server is a very complex beast. The vanilla package includes over 30
functional modules and more than 12 dozen configuration directives. This means that
there are significant opportunities for interactions that produce unexpected or unde-
sirable results. This Appendix covers some of the more common issues that cause
problems, as culled from various support forums.

Troubleshooting Methodology
In the Error Log

The Apache software does quite a reasonable job of reporting the details when it
encounters problems. The reports are recorded in the server’s error log, which is usually
stored in one of the following places:

* Jusr/locallapachel/logs/error_log

* /var/loglapachelerror_log

* var/log/httpd-error.log

* /var/log/httpd/error_log

* C:A\Program Files\Apache Group\error.log
Where the error log is put depends on how you installed and configured the server; the
wealth of possible locations in the list above is because popular prepackaged installa-
tion kits (from Red Hat, SuSE, etc.) each has its own preferred location. Of course, the

definitive location can be determined by examining your httpd.conf file for the
ErrorLog directive(s).

So the very first thing you should do when Apache appears to be misbehaving is see if
the server has any comments to make.

If the messages in the error log don’t make the cause of the problem immediately clear,
or if there aren’t any messages that seem to relate to the problem, it’s a good idea to
crank the logging level up by changing the LogLevel setting in the httpd.conf file:

271

LogLevel debug

The debug setting enables all possible error messages and makes the server extremely
verbose, so it’s a good idea to set it back to warning or error after it has helped you
locate the cause of your problem.

Characterize the Problem

When you’re trying to diagnose a problem, here is a question you should ask yourself:
“What is the current behavior, and in what ways is it different from the expected or
desired behavior?”

If you ask this question, a natural successive question is: “What could cause the current
behavior?”

Between the answers to these two questions often lies a “Eureka!” moment. At the very
least, they narrow your area of research.

Debugging the Configuration

When diagnosing a problem by examining your server’s configuration, be sure to
examine all of the files involved. In particular, look for files identified in Include direc-
tives, as well as those in the main httpd.conf file and in .htaccess files.

If you’re editing the server-wide configuration files, be sure to restart the server after-
ward to make the changes take effect!

If editing a configuration or .htaccess file seems to have no effect, test that it’s actually
being processed by putting a line of gibberish into the file and trying again.

If it seems that a .htaccess file is being ignored, even when you insert gibberish, it
indicates that it’s within the scope of an AllowOverride None directive.

Debugging Premature End of Script Headers

When you’re working with CGI scripts, certain messages can quickly become extremely
familiar and tiresome; typically the output in the browser window will be either a blank
page or an Internal Server Error page.

This message has several different possible causes. These include, but are not necessa-
rily limited to:

* The CGI script is either not emitting any output at all, or it is emitting content
before the required header lines, or it’s neglecting to emit the obligatory blank line
between the header and the content.

* The script encountered an error and emitted the error message instead of its
expected output.

272 | Appendix B: Troubleshooting

* You’'re using suexec and one or more of the suexec constraints has been violated.

To test to see if the problem is an error condition or improper CGI response formatting,
run the script interactively from the command line to verify that it is emitting content
in compliance with the CGI rules.

If you're using suexec, check the suexec logfile to see if there are security constraints
being violated.

You can tell if you’re using suexec with the following command:

% httpd -1
Compiled-in modules:

http core.c

mod so.c
suexec: disabled; invalid wrapper /var/www/apache/bin/suexec

If you get a message that says that suexec is disabled, you can ignore that as a possible
cause of the script’s execution problems.

If suexec is enabled, though, you should look at its logfile to get more details about the
problem. You can find the logfile with:

suexec -V

-D DOC_ROOT="/usr/local/apache/htdocs"

-D GID MIN=100

-D HTTPD USER="www"

-D LOG_EXEC="/usr/local/apache/logs/suexec.log"
-D SAFE PATH="/usr/local/bin:/usr/bin:/bin"

-D UID MIN=100

-D USERDIR SUFFIX="public html"

The important line is -D LOG_EXEC="/usr/local/apache/logs/suexec.log"; it
tells you exactly where suexec is recording its errors.

You can find out more about CGI and suexec here:
* The CGI specification at http://www.ietf.org/rfc/rfc3875
¢ Recipe 8.13

* The suexec manpage

Common Problems on Windows

Windows has its own distinct set of problem areas that don’t apply to Unixish
environments.

Cannot Determine Hostname

When trying to start Apache from a DOS window, you receive a message like, “Cannot
determine hostname. Use ServerName directive to set it manually.”

Common Problems on Windows | 273

http://www.ietf.org/rfc/rfc3875

If you don’t explicitly supply Apache with a name for your system, it tries to figure it
out. This message is the result of that process failing.

The cure for this is really quite simple: edit your conf\httpd.conf file, look for the string
ServerName, and make sure there’s an uncommented directive such as:

ServerName localhost

or:

ServerName www.foo.com

in the file. Correct it if there is one there with wrong information, or add one if you
don’t already have one.

Also, make sure that your Windows system has DNS enabled. See the TCP/IP setup
component of the Networking or Internet Options control panel.

After verifying that DNS is enabled and that you have a valid hostname in your
ServerName directive, try to start the server again.

Finding WS2_32.DLL on Windows

When trying to start Apache on Windows 95, a message like, “Unable To Locate
WS2_32.DLL...” appears. This file is necessary for Apache to function properly.

Prior to Version 1.3.9, Apache for Windows used Winsock 1.1. Beginning with Version
1.3.9, Apache began using Winsock 2 features (specifically,
WSADuplicateSocket ()). WS2_32.DLL implements the Winsock 2 API. Winsock 2
ships with Windows NT 4.0 and Windows 98. Some of the earlier releases of Windows
95 did not include Winsock 2.

To fix it, install Winsock 2, which is available at http://www.microsoft.com/windows95/
downloads/. Then restart your server, and the problem should be gone.

Fixing WSADuplicateSocket Errors

If, when trying to start Apache on Windows, it fails and the Apache error log contains
this message:

[crit] (10045) The attempted operation is not supported for the type of
referenced: Parent: WSADuplicateSocket failed for socket ###

it indicates that your system is using a firewall product that has inserted itself into the
network software but doesn’t fully provide all the functionality of the native network
calls.

To get rid of the problem, you need to reconfigure, disable, or remove the firewall
product that is running on the same box as the Apache server.

This problem has been seen when Apache is run on systems along with Virtual Private
Networking (VPN) clients such as Aventail Connect. Aventail Connect is a Layered
Service Provider (LSP) that inserts itself, as a shim, between the Winsock 2 API and

274 | Appendix B: Troubleshooting

object

http://www.microsoft.com/windows95/downloads/
http://www.microsoft.com/windows95/downloads/

Windows’ native Winsock 2 implementation. The Aventail Connect shim does not
implement WSADuplicateSocket, which is the cause of the failure.

The shim is not unloaded when Aventail Connect is shut down. Once observed, the
problem persists until the shim is either explicitly unloaded or the machine is rebooted.

Another potential solution (not tested) is to add apache.exe to the Aventail Connect
exclusion list (see below).

Apache is affected in a similar way by any firewall program that isn’t correctly config-
ured. Assure you exclude your Apache server ports (usually port 80) from the list of
ports to block. Refer to your firewall program’s documentation for the how-to.

Relevant information specific to Aventail Connect can be found at How to Add an
Application to Aventail Connect’s Application Exclusion List at http://support.aven
tail.com/akb/article00586.html.

Handling System Error 1067

Sometimes, when starting Apache on Windows, you might get a message like “System
error 1067 has occurred. The process terminated unexpectedly.” This
uninformative message means that the Web server was unable to start correctly as a
service for one reason or another.

As with any error, the first step should be to check your Apache error log. If that doesn’t
reveal anything useful, try checking the Windows application event log to find out why
Apache won’t start. If that doesn’t help, try:

D:\>c:

C:\>cd "\Program Files\Apache Group\Apache"
C:\Program Files\Apache Group\Apache>apache

(If you don’t get the prompt back, hit Ctrl-C to cause Apache to exit.)

This will run Apache interactively rather than as a service; any error messages should
show up on your screen rather than being concealed behind a System Error 1067
alert box.

Fixing Build-Time Error Messages

__inet Symbols

If you have installed BIND-8, then this is normally because of a conflict between your
include files and your libraries. BIND-8 installs its include files and libraries in /usr/
localfinclude/ and /usr/local/lib/, whereas the resolver that comes with your system is
probably installed in /usr/include/ and /usr/lib/.

If your system uses the header files in /ust/local/include/ before those in /usr/include/ but
you do not use the new resolver library, then the two versions will conflict. To resolve

Fixing Build-Time Error Messages | 275

http://support.aventail.com/akb/article00586.html
http://support.aventail.com/akb/article00586.html

this, you can either make sure you use the include files and libraries that came with
your system, or make sure to use the new include files and libraries.

If you’re using Apache 2.0 or later, or Apache 1.3 with the APACT build script, you can
make changes to the library search lists by defining them on the ./configure command
line:

% LIBS=-lbind ./configure ...

If you’re using Apache 1.3 or earlier and controlling the build process by editing the
Configuration file directly, just add -1bind to the EXTRA LDFLAGS line in the file.

After making the appropriate change to your build configuration process, Apache
should build with the correct library.

Apache versions 1.2 and earlier use EXTRA LFLAGS in the Configura
tion file instead.
&

As of BIND 8.1.1, the bind libraries and files are installed under /usr/local/bind by
default, so you should not run into this problem. Should you want to use the bind
resolvers, you’ll have to add the following to the respective lines:

* For Apache 1.3 with APACI, or 2.0 and later:

% CFLAGS=-I/usr/local/bin/include \
> LDFLAGS=/usr/local/bind/1lib LIBS=-1lbind \
>./configure ...
* For Apache 1.2 or 1.3 with direct editing of Configuration, add/change the
following lines in the file:
EXTRA_CFLAGS=-I/usr/local/bind/include

EXTRA_LDFLAGS=-L/usr/local/bind/lib
EXTRA LIBS=-lbind

Getting Server-Side Includes to Work

The solution is to make sure that Options Includes is turned on and that either
XBitHack is turned On, or that you have the appropriate AddHandler directives set on
the file type that you are using.

As discussed in Recipe 8.9, there are a number of ways to enable SSI. If the unparsed
SSI directives are appearing in the HTML when the page is loaded, this is a clear
indication that SSI execution is not enabled for the document in question.

If the server has difficulty parsing an SSI directive, it will substitute the phrases “An
error occurred while processing this directive” in its place in the response. If this

276 | Appendix B: Troubleshooting

happens, the cause of the problem should be listed in the server’s error log. See also
Recipe 8.13.

Debugging Rewrites That Result in “Not
Found” Errors

If your RewriteRule directives keep resulting in 404 Not Found error pages, add the
pT (PassThrough) flag to the RewriteRule line. Without this flag, Apache won’t process
a lot of other factors that might apply, such as Alias settings.

You can verify that this is the cause of your problem by cranking the mod_rewrite
logging level up to 9 and seeing that the entries relating to the RewriteRule mention
something about prefixes with document_root:

RewriteLog logs/rewrite-log
RewriteLogLevel 9

)

% tail logs/rewrite log

ip-address - - [date] [reqid] (2) prefixed with document root to
/usr/local/apache/htdocs/robots. text
ip-address - - [date] [regid] (1) go-ahead with

/usr/local/apache/htdocs/robots.text [OK]

B
)

Don’t forget to turn off the RewriteLog directive, or possibly just turn
down the logging level, after you’ve done your checking! Otherwise,
s your disk space may disappear like the snows of yesteryear.

Without the PT flag, mod_rewrite assumes that any rewriting it does will be the last
URL manipulation the server needs to do for the request. Because mod_rewrite direc-
tives are handled very early in request processing, this can mean that Alias, ScriptA-
lias and other URL manipulations may not get executed. Specifying the flag tells
mod_rewrite to not short-circuit processing but to let it continue as usual.

.htaccess Files Having No Effect

Make sure that AllowOverride is set to an appropriate value. Then, to make sure that
the .htaccess file is being parsed at all, put the following line in the file and ensure that
it causes a server error page to show up in your browser:

Garbage Goes Here
.htaccess files override the settings in the main server configuration file. Because this is

frequently an undesired thing, .htaccess files are frequently disabled, which will cause
your .htaccess file to be ignored.

Debugging Rewrites That Result in “Not Found” Errors | 277

.htaccess files are enabled using the AllowOverride directive, which lists categories of
directives that may appear in an .htaccess file. For example, if you wish to put
authentication-related directives in an . htaccess file, you will need to put the following
line in the main server configuration file:

AllowOverride AuthConfig

AllowOverrideAll permits any directive to be put in the . htaccess file, while the directive
AllowOverride None means, “Please ignore my .htaccess files.”

Thus, the most common cause of an .htaccess file being ignored is simply that your
configuration file tells Apache to ignore it.

If you put garbage in your .htaccess file, this should generate a Server Error message in
the browser, which will verify that Apache is indeed looking at the contents of your
file. However, if such a message is not displayed, this is a sure sign that your .htaccess
file is being completely ignored.

Address Already in Use

If, when attempting to start your Apache server, you get the following error message:

[Thu May 15 01:23:40 2003] [crit] (98)Address already in use: make sock:

bind to port 80
one of three things is happening:

* You are attempting to start the server as a nonroot user. Become the root user and
try again.

* There is already some process running (perhaps another Apache server) using port
80. Run netstat, or perhaps look at the process list and kill any process that seems
to fill this role.

* You have more than one Listen directive in your configuration file pointing to the
same port number. Find the offending duplicate directive and remove it.

In the case of the first condition, you will need to become the root user in order to start
Apache. By long tradition, only the root user may bind to any port lower than 1025.
Because Apache typically runs on port 80, this requires root privileges.

The second condition can be a little trickier. Sometimes a child process will refuse to
die and will remain running after Apache has been shut down. There are numerous
reasons this might happen. Most of the time, you can kill this process forcibly using
kill or kill -9 while logged in as root. As long as this process is running and has the port
occupied, you will be unable to start anything else wanting to bind to that same port.

In the case of the third condition, the second Listen directive attempts to bind to port
80, which has already been taken by the first Listen directive. Simply removing one of
the Listen directives will clear up this problem.

278 | Appendix B: Troubleshooting

could not

Symbols

#exec directive, 184

#include directive, 184

%A format effector, 61

%a format effector, 51

%h format effector, 50-51
%htdigest command, 120
%htpasswd command, 117

% {UNIQUE_ID}e format effector, 51
-signkey argument, 159
default keyword, 74
<Directory> container, 86—87
<DirectoryMatch> directive, 238
<Files> container, 123
<FilesMatch> container, 193
<LimitExcept> container, 150
<Perl> configuration directive, 88
<VirtualHost> container, 70

[H] flag, 96

[N] flag, 96

[R] flag, 100

[T] flag, 96

A
ab, benchmarking and, 217-218
address-based virtual hosts, 73
addresses, displaying same content on multiple,
81

aliases, 83

URLs, several with one directive, 89
AliasMatch, 105-106
Andrews, Bryan, 14
Apache

building from sources, 13

Index

restarting, 16—-17
starting, 16-17
at boot, 22
stopping, 16-17
uninstalling, 17-18
versions, 20
apachectl script, 16-17
ApacheToolbox, installation with, 14-15
arguments, turning document names into, 103
authentication
digest authentication
password files and, 119-120
versus basic, 129
migrating to 2.2, 148-149
passwords, obtaining, 127
proxy servers, 210
SSL, certificates, 163
strong, requiring, 116-117
system account information and, 109-110
usernames, accessing, 126
weak, requiring, 116-117

B

benchmarking, ab and, 217-218

boot, starting Apache at, 22

browser, software name, logging, 62
brute-force password attacks, preventing, 128
building Apache from sources, 13

C

caching proxy servers, configuring, 208-209
CAs (Certificate Authorities), trusted,

generating, 160-161
case-insensitive URLs, 94

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

279

Cal
form parameters, reading, 176-178
invoking for certain content types, 179—
180
parsing output, SSIs and, 190
program output, 184
testing setup, 173-175
CGI arguments, rewriting path information,
97
CGl directories
creating for each user, 90-91
default documents, specifying, 169-170
enabling, 167
CGI programs
launching, Windows file extensions, 171-
172
mod_perl and, 233-234
CGlI scripts
enabling, non-ScriptAliased directories,
168-169
extensions, 172—-173
response status, 196-197
running as different user, suexec and, 184—
186
chroot, mod_security and, 147-148
clients, proxied, logging IP addresses, 50-51
config.nice, 21
configure script, options, 23-24
content negotiation, disabling, 225-226
Content-Type headers, 259
cookies, logging, 51-53
CPAN, installing mod_perl handler, 186-187
credentials, accessing, embedded in URLs,
130

D

databases
MySQL, logging activity, 64-65
virtual hosts, 81
date, last modified, 182
Debian, packages, installation from, 3—4
digest authentication
password files and, 119-120
versus basic, 129
directives, placement of, 253-255
directories
aliases in, 252
caching, 232
CGI

creating for each user, 90
enabling, 167
client-specified formatting, 244-245
client-specified sort order, 242
column suppression, 251
document titles, autogenerated, 246
end-user modification, 250
files
descriptions, 245
searching for, 241
version number, 248
version number sorting, 248
folders at top, 247
formatting, 244
generating, 237-238, 256
headers/footers, 239
hiding items, 240
icons, 246247
password-protected files, 251
rewriting hostnames to, 104
sorting, 242
subdirectories, relaxing security in, 120—
122
turning into hostnames, 101
URLs
mapping, 83-85
mapping to same CGI directory, 89-90
user control of output, 249
DNS lookups, avoiding, 221-222
documents
CGl directories, specifying, 169-170
default, alternate, 260
error documents, multiple languages, 198—
199
footers, 183
headers, 183
names, turning into arguments, 103
titles, autogenerated, 246
DoS attacks, mod_evasive and, 145
downloads
ApacheToolbox, 14
sources, 11-12
dynamic content, caching, 235

E

error documents, multiple languages, 198-199
error handling
CGI scripts, response status, 196-197

280 | Index

displaying error page, Internet Explorer and,
200-201
error messages, customized, 197
host fields, missing, 195-196
notification on error conditions, 201-202
redirecting, invalid URLs, 199-200
error log, details, 47—49
error messages, customized, 197
expiring passwords, 111-112

F

favicon, default, 261
files
descriptions, 245
frequently viewed, caching, 229
location, 25
outside Web root, restricting access, 142
ownership, authorizing, 124
permissions, setting, 137-139
servers, malicious scripts and, 136
version number listing, 248
wrappers, 134-135
filters, proxied content, 209—210
folders, listings, generating, 237-238, 256
frequently viewed files, caching, 229
FTP, refusing to proxy, 213

H

host fields, missing, 195-196
Host: header field, 259-260
hostnames
logging, 56-57
rewriting to directory, 104
turning directories into, 101
.htaccess files, 223-225
enabling, 263
renaming, 255
.htpasswd files, 117-119
HTTP, status codes, 45

icons, directory listings, 246—247
images, restricting off-site use, 115
installation
ApacheToolbox and, 14-15
from Debian packages, 3—4
modules, third-party, 28
mod_dav

Unix, 28-30
Windows, 31-33
mod_perl, Unix, 33-34
mod_php
Unix, 35
Windows, 36-37
mod_security, 39-40
mod_ssl, 37-38
from Red Hat Linux packages, 2-3
SSL, 153-155
on Windows, 155
on Windows, 4-10
Internet Explorer, displaying error page, 200—
201
IP addresses
logging, proxied clients, 50-51
servers, logging, 60—61

K

KeepAlive settings, 218-219

L

last modified date, 182
links, symbolic, avoiding, 222-223
load balancing
distributing evenly between servers, 231—
232
mod_proxy_balancer and, 211-212
logfiles
splitting, 79
logs
arbitrary request header fields, 63
arbitrary response header fields, 64
browser software name, 62
cookies, 51-53
entries, details, 4647
error, details, 47—49
errors, virtual hosts, multiple files, 59-60
hostnames, 56-57
image requests, local pages, 53-54
logfiles, rotating at specific times, 54—55
MAC addresses, 51
MySQL database activity, 64—65
POST contents, 49
proxied clients, IP addresses, 50-51
proxy requests, 58—59
referring page, 61-62
rotating, 55

Index | 281

server IP addresses, 6061

split-logfile, 57

to syslog, 65-66

user directories, 67—-68

virtual hosts, 78-79
separate logs, 57-58

M
MAC, addresses, logging, 51
mapping, URLs, to directories, 83-85
memory, determining need, 216
methods, limiting, 143
module sets, running minimal, 140-141
modules
locating, modules.apache.org, 38-39
third-party, 28
troubleshooting, 40
modules.apache.org, 38-39
mod_dav
Unix, 28-30
Windows, 31-33
mod_evasive, DoS attacks and, 145
mod_perl
CGI programs and, 233-234
handler
installing from CPAN, 186-187
writing, 187-188
Perl scripts and, 192
proxying content to another server, 207—
208
Unix, 33-34
mod_php
Unix, 35
Windows, 36-37
mod_proxy_balancer, load balancing and,
211-212
mod_rewrite, 77-78
mod_security
chroot and, 147-148
worms and, 149
mod_ssl, 37-38
mod_vhost_alias, 75-77
MySQL
database, logging activity, 64—65
user credentials, 125-126

N

name-based virtual hosts

default, 72
setup, 70-72
netware MPM, 229

o)

off-site use of images, restricting, 115
ownerhips of files, authorizing, 124

P

packages
Debian, installation from, 3—4
Red Hat Linux, installation from, 2-3
passwords
brute-force attacks, preventing, 128
digest authentication and, 119-120
expiring, 111-112
.htpasswd files, 117-119
obtaining, 127
single-use, 110-111
Perl
CGlI programs, mod_perl and, 233-234
scripts, mod_perl and, 192
permissions, setting, 137-139
PHP
installation, verifying, 190
script handling, enabling, 189
source, highlighted without symlinking, 94—
96
port-based virtual hosts, 80
POST, contents, logging, 49
process creation, optimizing, 227
proxies
clients, logging IP addresses, 5051
filtering proxied content, 209-210
FTP, refusing to proxy, 213
mod_perl content to another server, 207—
208
mod_proxy_balancer, load balancing and,
211-212
requests, logging, 58—-59
server
blocking requests to certain places, 207
caching, configuring, 208-209
preventing use as open mail relay, 205
securing, 203-204
servers, authentication, 210
URL access, restricting, 133—-134
virtual hosts and, 212

282 | Index

Python, enabling script handling, 193

Q

query arguments, turning URL segments into,
105
query strings, rewriting based on, 100

R

range requests, restricting, 144
read-only access, Subversion repository and,

150-151
Red Hat Linux, packages, installation from, 2—
3

redirecting, 83
permanent, forbidden URLs and, 151-152
requests to single host, 102
to SSL, 100
unreferred requests to explanation page, 99
URLs
to another location, 91-93
to same destination, 93
RedirectMatch, 105-106
regular expressions, 265-266
misspellings, catching, 270
pitfalls, 267
POSIX classes, 268
predefined, 268
redirecting URLs, 269
vocabulary, 266267
request header, arbitrary fields, logging, 63
requests
redirecting to single host, 102
unreferred
denying access to, 98
redirecting to explanation page, 99
response header, arbitrary fields, logging, 64
restarting Apache, 16-17
rewriting, 83
based on query string, 100
hostnames to directories, 104
path information to CGI arguments, 97
URL elements between path and query
string, 103

S

ScriptAlias
indexing, 261
output, parsing for SSIs, 191-192

ScriptAliasMatch, 105-106
security, 107-108
authentication, 108
digest authentication, 129
migrating to 2.2, 148-149
proxy servers, 210
requiring weak and strong, 116-117
system account information and, 109—
110
username access, 126
authorization, 108
credentials embedded in URLs, 130
DoS attacks, mod_evasive and, 145
file ownership, authorizing, 124
file permissions, setting, 137-139
files, outside Web root, restricting access,
142
lifting restrictions selectively, 122-123
methods, limiting, 143
module sets, running minimal, 140-141
mod_security, chroot and, 147-148
passwords
expiring, 111-112
.htpasswd files, 117-119
obtaining, 127
preventing brute-force attacks, 128
single-use, 110-111
range requests, restricting, 144
relaxing in subdirectories, 120-122
server files, protecting, 136
user credentials, MySQL databases, 125—
126
WebDAV, 131
worms, mod_security and, 149
wrappers, 134-135
self-signed SSL certificates, 155-159
server-status handler, 219-220
servers
files, malicious scripts and, 136
IP addresses, logging, 60—61
load, evenly distributing, 231-232
proxy
authentication, 210
blocking requests to certain places, 207
caching, configuring, 208-209
preventing use as open mail relay, 205
securing, 203-204
requests, forwarding to another server, 205—
210

Index | 283

SetEnv directive, 58-59
single-use passwords, 110-111
slashes, trailing in URLs, 257-258
software, browser, logging name, 62
sources
building Apache from, 13
downloading, 11-12
split-logfile, 57
SSIs (Server-Side Includes), 180-182
IBM/Lotus, converting to Apache, 264
parsing CGI output for, 190
ScriptAlias output, 191-192
SSL (Secure Socket Layers)
CAs, trusted, generating, 160161
certificates
authentication and, 163
self-signed, 155-159
wild card, 166
installation, 153—-155
on Windows, 155
mod_ssl, 37-38
portion of site available via, 161-163
redirecting to, 100
virtual hosts, 164—165
starting Apache, 16-17
at boot, 22
stopping Apache, 16-17
strong authentication, requiring, 116-117
stylesheets, applying, 240
subdirectories, relaxing security in, 120-122
Subversion
downloading sources, 11
read-only access, 150-151
write access, 150—151
symbolic links, optimizing, 222-223
symlinking, highlighted PHP source without,
94-96

T

third-party modules, 28
thread creation, 228-229
trailing slashes in URLs, 257-258
troubleshooting
address already in use, 278
debugging
configuration, 272
premature end of script headers, 272—
273
error messages, build-time, 275

.htaccess files, 277-278
methodology
error log, 271-272
problem characterization, 272
Not Found errors, 277
SSls, 276277
Windows
hostname determination, 273-274
System Error 1067, 275
WS2_32.DLL, 274
WSADuplicateSocket errors, 274-275

U

uninstalling Apache, 17-18
Unix
mod_dav, 28-30
mod_perl, 33-34
mod_php, 35
unreferred requests
denying access to, 98
redirecting to explanation page, 99
upgrades, config.nice and, 21
uploads, size, limiting, 113-114
URLs (Uniform Resource Locators)
aliasing, one directive, 89
case-insensitive, 94
credentials embedded in, 130
elements, rewriting between path and query
string, 103
forbidden, permanent redirects, 151-152
mapping to directories, 8385
same CGI directory, 89—90
new, creating for existing content, 85
proxy access, restricting, 133-134
redirecting invalid, 199-200
replacing text in requested, 96
segments, turning into query arguments,
105
trailing slashes, 257-258
users having own URLs, 86-89
usernames, authenticated, accessing, 126

\'

virtual hosts, 69-70
address-based
default, 74
mixing with name-based, 74-75
setup, 73

284 | Index

defining in database, 81
logfiles, splitting, 79
logging for, 78-79
mass
mod_rewrite, 77-78
mod_vhost_alias and, 75-77
mod_vhost_alias, 75-77
name-based
default, 72
mixing with address-based, 7475
setup, 70-72
port-based, 80
proxies and, 212
SSL, 164-165

W

weak authentication, requiring, 116-117
WebDAV, 28-30
enabling, writable files and, 132
security, 131
wild card certificates, 166
Windows
CGI programs, launching, 171-172
installation on, 4-10
mod_dav, 31-33
mod_php, 36-37
SSL installation, 155
worms, mod_security and, 149
wrappers, 134-135
write access, Subversion repository and, 150—
151

Index | 285

About the Authors

Ken Coar is a member of the Apache Software Foundation, the body that oversees
Apache development. He is the author of Apache Server for Dummies (Wiley) and co-
author of Apache Server Unleashed (Sams). Ken has been responsible for fielding email
sent to the Apache project, and his experience with that mailing list provided a foun-
dation for this book.

Rich Bowen is a member of the Apache Software Foundation, working primarily on
the documentation for the Apache Web Server. He is a coauthor of Apache
Administrator’s Handbook. Rich lives in Lexington, Kentucky, where he spends his free
time GeoCaching. He also enjoys flying kites and reading stuff by Charles Dickens and
his contemporaries.

Rich, or DrBacchus—his handle on IRC—also spends entirely too much time on
#apache. You can find him on the web at http://www.drbacchus.com/journal.

Colophon

The animal on the cover of Apache Cookbook, Second Edition, is a moose. The moose
roams the forests of North America, Europe, and Russia. It’s the largest of the deer
family, and the largest moose of all—Alces alces gigas—is found throughout Alaska.
That particular moose, in fact, is so ubiquitous that it has played an important role in
the development of the state—although the relationship between moose and men is
often adversarial.

Moose have a high reproductive potential and can quickly fill a range to capacity. In
Alaska, the removal of mature timber through logging and fire has benefited them by
providing new stands of young timber—high-quality moose food. Unfortunately,
moose get to be a pain when they eat crops, stand on airfields, wander the city streets,
and collide with cars and trains.

But, in general, these animals are good for the state’s economy. Moose are an essential
part of the Alaskan landscape, providing tourista with photo opportunities when the
animals feed along the highway. Residents and out-of-state hunters harvest 6,000 to
8,000 moose annually—approximately 3.5 million pounds of meat. The future for these
animals in Alaska is reasonably bright because humans are learning how to manage
moose habitat with wildlife and how to mitigate factors that affect moose populations,
such as hunting and predation by wolves and bears.

The cover image is an original engraving from The Illustrated Natural History:
Mammalia. The cover font is Adobe’s ITC Garamond. The text font is Linotype Birka,
the heading fontis Adobe Myriad Condensed, and the code fontis LucasFont’s TheSans
Mono Condensed.

http://www.drbacchus.com/journal

	Table of Contents
	Preface
	What’s in This Book
	Platform Notes
	Other Books
	Other Sources
	How This Book Is Organized
	Conventions Used in This Book
	Programming Conventions
	Typesetting Conventions
	Documentation Conventions
	The online manual (“man”) pages on a Unixish system
	The Apache Web server documentation

	Using Code Examples
	We’d Like to Hear from You
	Safari® Enabled
	Acknowledgments
	Ken Coar
	Rich Bowen

	Chapter 1. Installation
	1.1 Installing from Red Hat Linux’s Packages
	Problem
	Solution
	Discussion
	See Also

	1.2 Installing from Debian Packages
	Problem
	Solution
	Discussion
	See Also

	1.3 Installing Apache on Windows
	Problem
	Solution
	Discussion
	See Also

	1.4 Downloading the Apache Sources
	Problem
	Solution
	Discussion
	See Also

	1.5 Building Apache from the Sources
	Problem
	Solution
	Discussion
	See Also

	1.6 Installing with ApacheToolbox
	Problem
	Solution
	Discussion
	See Also

	1.7 Starting, Stopping, and Restarting Apache
	Problem
	Solution
	Discussion
	See Also

	1.8 Uninstalling Apache
	Problem
	Solution
	Discussion
	See Also

	1.9 Which Version of Apache to Use
	Problem
	Solution
	Discussion
	See Also

	1.10 Upgrading Using config.nice
	Problem
	Solution
	Discussion
	See Also

	1.11 Starting Apache at Boot
	Problem
	Solution
	Discussion
	See Also

	1.12 Useful configure Options
	Problem
	Solution
	Discussion
	See Also

	1.13 Finding Apache’s Files
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Adding Common Modules
	2.1 Installing a Generic Third-Party Module
	Problem
	Solution
	Discussion
	See Also

	2.2 Installing mod_dav on a Unixish System
	Problem
	Solution
	Discussion
	See Also

	2.3 Installing mod_dav on Windows
	Problem
	Solution
	Discussion
	Using Windows Explorer to test mod_dav

	See Also

	2.4 Installing mod_perl on a Unixish System
	Problem
	Solution
	Discussion
	See Also

	2.5 Installing mod_php on a Unixish System
	Problem
	Solution
	Discussion
	See Also

	2.6 Installing mod_php on Windows
	Problem
	Solution
	Discussion
	See Also

	2.7 Installing mod_ssl
	Problem
	Solution
	Discussion
	See Also

	2.8 Finding Modules Using modules.apache.org
	Problem
	Solution
	Discussion
	See Also

	2.9 Installing mod_security
	Problem
	Solution
	Discussion
	See Also

	2.10 Why Won’t This Module Work?
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Logging
	3.1 Getting More Details in Your Log Entries
	Problem
	Solution
	Discussion
	See Also

	3.2 Getting More Detailed Errors
	Problem
	Solution
	Discussion
	See Also

	3.3 Logging POST Contents
	Problem
	Solution
	Discussion
	See Also

	3.4 Logging a Proxied Client’s IP Address
	Problem
	Solution
	Discussion
	See Also

	3.5 Logging Client MAC Addresses
	Problem
	Solution
	Discussion
	See Also

	3.6 Logging Cookies
	Problem
	Solution
	Discussion
	See Also

	3.7 Not Logging Image Requests from Local Pages
	Problem
	Solution
	Discussion
	See Also

	3.8 Rotating Logfiles at a Particular Time
	Problem
	Solution
	Discussion
	See Also

	3.9 Rotating Logs on the First of the Month
	Problem
	Solution
	Discussion
	See Also

	3.10 Logging Hostnames Instead of IP Addresses
	Problem
	Solution
	Discussion
	See Also

	3.11 Maintaining Separate Logs for Each Virtual Host
	Problem
	Solution
	Discussion
	See Also

	3.12 Logging Proxy Requests
	Problem
	Solution
	Discussion
	See Also

	3.13 Logging Errors for Virtual Hosts to Multiple Files
	Problem
	Solution
	Discussion
	See Also

	3.14 Logging Server IP Addresses
	Problem
	Solution
	Discussion
	See Also

	3.15 Logging the Referring Page
	Problem
	Solution
	Discussion
	See Also

	3.16 Logging the Name of the Browser Software
	Problem
	Solution
	Discussion
	See Also

	3.17 Logging Arbitrary Request Header Fields
	Problem
	Solution
	Discussion
	See Also

	3.18 Logging Arbitrary Response Header Fields
	Problem
	Solution
	Discussion
	See Also

	3.19 Logging Activity to a MySQL Database
	Problem
	Solution
	Discussion
	See Also

	3.20 Logging to syslog
	Problem
	Solution
	Discussion
	See Also

	3.21 Logging User Directories
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Virtual Hosts
	4.1 Setting Up Name-Based Virtual Hosts
	Problem
	Solution
	Discussion
	See Also

	4.2 Designating One Name-Based Virtual Host as the Default
	Problem
	Solution
	Discussion
	See Also

	4.3 Setting Up Address-Based Virtual Hosts
	Problem
	Solution
	Discussion
	See Also

	4.4 Creating a Default Address-Based Virtual Host
	Problem
	Solution
	Discussion
	See Also

	4.5 Mixing Address-Based and Name-Based Virtual Hosts
	Problem
	Solution
	Discussion
	See Also

	4.6 Mass Virtual Hosting with mod_vhost_alias
	Problem
	Solution
	Discussion
	See Also

	4.7 Mass Virtual Hosting Using Rewrite Rules
	Problem
	Solution
	Discussion
	See Also

	4.8 Logging for Each Virtual Host
	Problem
	Solution
	Discussion
	See Also

	4.9 Splitting Up a Logfile
	Problem
	Solution
	Discussion
	See Also

	4.10 Port-Based Virtual Hosts
	Problem
	Solution
	Discussion
	See Also

	4.11 Displaying the Same Content on Several Addresses
	Problem
	Solution
	Discussion
	See Also

	4.12 Defining Virtual Hosts in a Database
	Problem
	Solution
	Discussion

	Chapter 5. Aliases, Redirecting, and Rewriting
	5.1 Mapping a URL to a Directory
	Problem
	Solution
	Discussion
	See Also

	5.2 Creating a New URL for Existing Content
	Problem
	Solution
	Discussion
	See Also

	5.3 Giving Users Their Own URLs
	Problem
	Solution
	Discussion
	See Also

	5.4 Aliasing Several URLs with a Single Directive
	Problem
	Solution
	Discussion
	See Also

	5.5 Mapping Several URLs to the Same CGI Directory
	Problem
	Solution
	Discussion
	See Also

	5.6 Creating a CGI Directory for Each User
	Problem
	Solution
	Discussion
	See Also

	5.7 Redirecting to Another Location
	Problem
	Solution
	Discussion
	See Also

	5.8 Redirecting Several URLs to the Same Destination
	Problem
	Solution
	Discussion
	See Also

	5.9 Permitting Case-Insensitive URLs
	Problem
	Solution
	Discussion
	See Also

	5.10 Showing Highlighted PHP Source without Symlinking
	Problem
	Solution
	Alternate Solution
	Discussion
	See Also

	5.11 Replacing Text in Requested URLs
	Problem
	Solution
	Discussion
	See Also

	5.12 Rewriting Path Information to CGI Arguments
	Problem
	Solution
	Discussion
	See Also

	5.13 Denying Access to Unreferred Requests
	Problem
	Solution
	Discussion
	See Also

	5.14 Redirecting Unreferred Requests to an Explanation Page
	Problem
	Solution
	Discussion
	See Also

	5.15 Rewriting Based on the Query String
	Problem
	Solution
	Discussion
	See Also

	5.16 Redirecting All—or Part—of Your Server to SSL
	Problem
	Solution
	Discussion
	See Also

	5.17 Turning Directories into Hostnames
	Problem
	Solution
	Discussion
	See Also

	5.18 Redirecting All Requests to a Single Host
	Problem
	Solution
	Discussion
	See Also

	5.19 Turning Document Names into Arguments
	Problem
	Solution
	Discussion
	See Also

	5.20 Rewriting Elements between Path and Query String
	Problem
	Solution
	Discussion
	See Also

	5.21 Rewriting a Hostname to a Directory
	Problem
	Solution
	Discussion
	See Also

	5.22 Turning URL Segments into Query Arguments
	Problem
	Solution
	Discussion
	See Also

	5.23 Using AliasMatch, ScriptAliasMatch, and RedirectMatch
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Security
	6.1 Using System Account Information for Web Authentication
	Problem
	Solution
	Discussion
	See Also

	6.2 Setting Up Single-Use Passwords
	Problem
	Solution
	Discussion
	See Also

	6.3 Expiring Passwords
	Problem
	Solution
	Discussion
	See Also

	6.4 Limiting Upload Size
	Problem
	Solution
	Discussion
	See Also

	6.5 Restricting Images from Being Used Off-Site
	Problem
	Solution
	Discussion
	See Also

	6.6 Requiring Both Weak and Strong Authentication
	Problem
	Solution
	Discussion
	See Also

	6.7 Managing .htpasswd Files
	Problem
	Solution
	Discussion
	See Also

	6.8 Making Password Files for Digest Authentication
	Problem
	Solution
	Discussion
	See Also

	6.9 Relaxing Security in a Subdirectory
	Problem
	Solution
	Discussion
	See Also

	6.10 Lifting Restrictions Selectively
	Problem
	Solution
	Discussion
	See Also

	6.11 Authorizing Using File Ownership
	Problem
	Solution
	Discussion
	See Also

	6.12 Storing User Credentials in a MySQL Database
	Problem
	Solution
	Discussion
	See Also

	6.13 Accessing the Authenticated Username
	Problem
	Solution
	Discussion
	See Also

	6.14 Obtaining the Password Used to Authenticate
	Problem
	Solution
	Discussion
	See Also

	6.15 Preventing Brute-Force Password Attacks
	Problem
	Solution
	Discussion
	See Also

	6.16 Using Digest Versus Basic Authentication
	Problem
	Solution
	Discussion
	See Also

	6.17 Accessing Credentials Embedded in URLs
	Problem
	Solution
	Discussion
	See Also

	6.18 Securing WebDAV
	Problem
	Solution
	Discussion
	See Also

	6.19 Enabling WebDAV Without Making Files Writable by the Web User
	Problem
	Solution
	Discussion
	See Also

	6.20 Restricting Proxy Access to Certain URLs
	Problem
	Solution
	Discussion
	See Also

	6.21 Protecting Files with a Wrapper
	Problem
	Solution
	Discussion
	See Also

	6.22 Protecting Server Files from Malicious Scripts
	Problem
	Solution
	Discussion
	See Also

	6.23 Setting Correct File Permissions
	Problem
	Solution
	Discussion
	See Also

	6.24 Running a Minimal Module Set
	Problem
	Solution
	Discussion
	Apache 1.3
	Apache 2.x

	See Also

	6.25 Restricting Access to Files Outside Your Web Root
	Problem
	Solution
	Discussion
	See Also

	6.26 Limiting Methods by User
	Problem
	Solution
	Discussion
	See Also

	6.27 Restricting Range Requests
	Problem
	Solution
	Discussion
	See Also

	6.28 Rebutting DoS Attacks with mod_evasive
	Problem
	Solution
	Discussion
	See Also

	6.29 Chrooting Apache with mod_security
	Problem
	Solution
	Discussion
	See Also

	6.30 Migrating to 2.2 Authentication
	Problem
	Solution
	Discussion
	See Also

	6.31 Blocking Worms with mod_security
	Problem
	Solution
	Discussion
	See Also

	6.32 Mixing Read-Only and Write Access to a Subversion Repository
	Problem
	Solution
	Discussion
	See Also

	6.33 Using Permanent Redirects to Obscure Forbidden URLs
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. SSL
	7.1 Installing SSL
	Problem
	Solution
	Discussion
	See Also

	7.2 Installing SSL on Windows
	Problem
	Solution
	Discussion

	7.3 Generating Self-Signed SSL Certificates
	Problem
	Solution
	Discussion
	Generating the private key
	Generating the certificate signing request
	Removing the passphrase
	Signing your key
	Configuring the server
	The easy way

	See Also

	7.4 Generating a Trusted CA
	Problem
	Solution
	Discussion
	Importing the CA

	See Also

	7.5 Serving a Portion of Your Site via SSL
	Problem
	Solution
	Discussion
	See Also

	7.6 Authenticating with Client Certificates
	Problem
	Solution
	Discussion
	See Also

	7.7 SSL Virtual Hosts
	Problem
	Solution
	Discussion
	Ignore the problem
	Use one certificate on several hosts
	Use more than one address

	7.8 Wildcard Certificates
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Dynamic Content
	8.1 Enabling a CGI Directory
	Problem
	Solution
	Discussion
	See Also

	8.2 Enabling CGI Scripts in Non-ScriptAliased Directories
	Problem
	Solution
	Discussion
	See Also

	8.3 Specifying a Default Document in a CGI Directory
	Problem
	Solution
	Discussion
	See Also

	8.4 Using Windows File Extensions to Launch CGI Programs
	Problem
	Solution
	Discussion
	See Also

	8.5 Using Extensions to Identify CGI Scripts
	Problem
	Solution
	Discussion
	See Also

	8.6 Testing that CGI Is Set Up Correctly
	Problem
	Solution
	Discussion
	See Also

	8.7 Reading Form Parameters
	Problem
	Solution
	Discussion
	See Also

	8.8 Invoking a CGI Program for Certain Content Types
	Problem
	Solution
	Discussion
	See Also

	8.9 Getting SSIs to Work
	Problem
	Solution
	Discussion
	See Also

	8.10 Displaying Last Modified Date
	Problem
	Solution
	Discussion
	See Also

	8.11 Including a Standard Header
	Problem
	Solution
	Discussion
	See Also

	8.12 Including the Output of a CGI Program
	Problem
	Solution
	Discussion
	See Also

	8.13 Running CGI Scripts as a Different User with suexec
	Problem
	Solution
	Discussion
	See Also

	8.14 Installing a mod_perl Handler from CPAN
	Problem
	Solution
	Discussion
	See Also

	8.15 Writing a mod_perl Handler
	Problem
	Solution
	Discussion
	See Also

	8.16 Enabling PHP Script Handling
	Problem
	Solution
	Discussion
	See Also

	8.17 Verifying PHP Installation
	Problem
	Solution
	Discussion
	See Also

	8.18 Parsing CGI Output for Server Side Includes
	Problem
	Solution
	Discussion
	See Also

	8.19 Parsing ScriptAlias Script Output for Server-Side Includes
	Problem
	Solution
	Discussion
	See Also

	8.20 Getting mod_perl to Handle All Perl Scripts
	Problem
	Solution
	Discussion
	See Also

	8.21 Enabling Python Script Handling
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Error Handling
	9.1 Handling a Missing Host Field
	Problem
	Solution
	Discussion
	See Also

	9.2 Changing the Response Status for CGI Scripts
	Problem
	Solution
	Discussion
	See Also

	9.3 Customized Error Messages
	Problem
	Solution
	Discussion
	See Also

	9.4 Providing Error Documents in Multiple Languages
	Problem
	Solution
	Discussion
	See Also

	9.5 Redirecting Invalid URLs to Some Other Page
	Problem
	Solution
	Discussion
	See Also

	9.6 Making Internet Explorer Display Your Error Page
	Problem
	Solution
	Discussion
	See Also

	9.7 Notification on Error Conditions
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Proxies
	10.1 Securing Your Proxy Server
	Problem
	Solution
	Discussion
	See Also

	10.2 Preventing Your Proxy Server from Being Used as an Open Mail Relay
	Problem
	Solution
	Discussion
	See Also

	10.3 Forwarding Requests to Another Server
	Problem
	Solution
	Discussion
	See Also

	10.4 Blocking Proxied Requests to Certain Places
	Problem
	Solution
	Discussion
	See Also

	10.5 Proxying mod_perl Content to Another Server
	Problem
	Solution
	Discussion
	See Also

	10.6 Configuring a Caching Proxy Server
	Problem
	Solution
	Discussion
	See Also

	10.7 Filtering Proxied Content
	Problem
	Solution
	Discussion
	See Also

	10.8 Requiring Authentication for a Proxied Server
	Problem
	Solution
	Discussion
	See Also

	10.9 Load Balancing with mod_proxy_balancer
	Problem
	Solution
	Discussion
	See Also

	10.10 Proxied Virtual Host
	Problem
	Solution
	Discussion
	See Also

	10.11 Refusing to Proxy FTP
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Performance
	11.1 Determining How Much Memory You Need
	Problem
	Solution
	Discussion
	See Also

	11.2 Benchmarking Apache with ab
	Problem
	Solution
	Discussion
	See Also

	11.3 Tuning KeepAlive Settings
	Problem
	Solution
	Discussion
	See Also

	11.4 Getting a Snapshot of Your Site’s Activity
	Problem
	Solution
	Discussion
	See Also

	11.5 Avoiding DNS Lookups
	Problem
	Solution
	Discussion
	HostNameLookups
	Allow and Deny from hostnames

	See Also

	11.6 Optimizing Symbolic Links
	Problem
	Solution
	Discussion
	See Also

	11.7 Minimizing the Performance Impact of .htaccess Files
	Problem
	Solution
	Discussion
	See Also

	11.8 Disabling Content Negotiation
	Problem
	Solution
	Discussion
	See Also

	11.9 Optimizing Process Creation
	Problem
	Solution
	Discussion
	See Also

	11.10 Tuning Thread Creation
	Problem
	Solution
	Discussion
	Setting the number of threads on single-child MPMs
	Number of threads when using the worker MPM
	Setting the number of threads when using netware or the perchild MPM

	See Also

	11.11 Caching Frequently Viewed Files
	Problem
	Solution
	Discussion
	See Also

	11.12 Distributing Load Evenly Between Several Servers
	Problem
	Solution
	Discussion
	See Also

	11.13 Caching Directory Listings
	Problem
	Solution
	Discussion
	See Also

	11.14 Speeding Up Perl CGI Programs with mod_perl
	Problem
	Solution
	Discussion
	See Also

	11.15 Caching Dynamic Content
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Directory Listings
	12.1 Generating Directory/Folder Listings
	Problem
	Solution
	Discussion
	Enabling directory listings
	Disabling directory indexing below an enabled directory

	See Also

	12.2 Display a Standard Header and Footer on Directory Listings
	Problem
	Solution
	Discussion
	See Also

	12.3 Applying a Stylesheet
	Problem
	Solution
	Discussion
	See Also

	12.4 Hiding Things from the Listing
	Problem
	Solution
	Discussion
	See Also

	12.5 Searching for Certain Files in a Directory Listing
	Problem
	Solution
	Discussion
	See Also

	12.6 Sorting the List
	Problem
	Solution
	Discussion
	See Also

	12.7 Allowing a Client-Specified Sort Order
	Problem
	Solution
	Discussion
	See Also

	12.8 Specifying How the List Will Be Formatted
	Problem
	Solution
	Discussion
	See Also

	12.9 Allowing the Client to Specify the Formatting
	Problem
	Solution
	Discussion
	See Also

	12.10 Adding Descriptions to Files
	Problem
	Solution
	Discussion
	See Also

	12.11 Autogenerated Document Titles
	Problem
	Solution
	Discussion
	See Also

	12.12 Changing the Listing Icons
	Problem
	Solution
	Discussion
	See Also

	12.13 Listing the Directories First
	Problem
	Solution
	Discussion
	See Also

	12.14 Ordering by Version Number
	Problem
	Solution
	Discussion
	See Also

	12.15 Allowing the End User to Specify Version Sorting
	Problem
	Solution
	Discussion
	See Also

	12.16 Complete User Control of Output
	Problem
	Solution
	Discussion
	See Also

	12.17 Don’t Allow the End User to Modify the Listing
	Problem
	Solution
	Discussion
	See Also

	12.18 Suppressing Certain Columns
	Problem
	Solution
	Discussion
	See Also

	12.19 Showing Forbidden Files
	Problem
	Solution
	Discussion
	See Also

	12.20 Aliases in Directory Listings
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Miscellaneous Topics
	13.1 Placing Directives Properly
	Problem
	Solution
	Discussion
	See Also

	13.2 Renaming .htaccess Files
	Problem
	Solution
	Discussion
	See Also

	13.3 Generating Directory/Folder Listings
	Problem
	Solution
	Discussion
	Enabling directory listings
	Disabling directory indexing below an enabled directory

	See Also

	13.4 Solving the “Trailing Slash” Problem
	Problem
	Solution
	Discussion
	Incorrect ServerName
	Invalid Alias directive

	See Also

	13.5 Setting the Content-Type According to Browser Capability
	Problem
	Solution
	Discussion
	See Also

	13.6 Handling Missing Host: Header Fields
	Problem
	Solution
	Discussion
	See Also

	13.7 Alternate Default Document
	Problem
	Solution
	Discussion
	See Also

	13.8 Setting Up a Default “Favicon”
	Problem
	Solution
	Discussion
	See Also

	13.9 Directory Listings in ScriptAliased Directories
	Problem
	Solution
	Discussion
	See Also

	13.10 Enabling .htaccess Files
	Problem
	Solution
	Discussion
	See Also

	13.11 Converting IBM/Lotus Server-Side Includes to Apache
	Problem
	Solution
	Discussion
	See Also

	Appendix A. Using Regular Expressions in Apache
	What Directives Use Regular Expressions?
	Regular Expression Basics
	Examples
	Redirecting several URLs
	Catching common misspellings

	For More Information

	Appendix B. Troubleshooting
	Troubleshooting Methodology
	In the Error Log
	Characterize the Problem

	Debugging the Configuration
	Debugging Premature End of Script Headers
	Common Problems on Windows
	Cannot Determine Hostname
	Finding WS2_32.DLL on Windows
	Fixing WSADuplicateSocket Errors
	Handling System Error 1067

	Fixing Build-Time Error Messages
	__inet Symbols

	Getting Server-Side Includes to Work
	Debugging Rewrites That Result in “Not Found” Errors
	.htaccess Files Having No Effect
	Address Already in Use

	Index

