

 E-Mail：mldnqa@163.com

Spring Ioc 技术

Ioc：控制反转（依赖注入）
 通过配置文件进行 Bean 的设置

SimpleBean.java
 · name
 · password

将此 JavaBean 作为 Spring 组件进行管理（简单的应用）

package cn.mldn.lxh.demo02;

public class SimpleBean {

 private String name ;

 private String password ;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 E-Mail：mldnqa@163.com

 }

}

<beans>

 <bean id="fru" class="cn.mldn.lxh.demo01.Orange"></bean>

 <bean id="simple" class="cn.mldn.lxh.demo02.SimpleBean"></bean

</beans>

package cn.mldn.lxh.demo02;

import org.springframework.context.ApplicationContext;

import

org.springframework.context.support.ClassPathXmlApplicationConte

public class TestDemo02 {

 /**

 * @param args

 */

 public static void main(String[] args) {

 ApplicationContext context = null ;

 context = new

ClassPathXmlApplicationContext("applicationContext.xml") ;

 E-Mail：mldnqa@163.com

 SimpleBean simple = (SimpleBean)context.getBean("simple") ;

 simple.setName("李兴华") ;

 simple.setPassword("www.MLDN.cn") ;

 System.out.println("姓名："+simple.getName()) ;

 System.out.println("密码："+simple.getPassword()) ;

 }

}

问题？
 虽然在程序中提倡使用 POJO 类，可是有些时候更希望可以在对象实例化时通过构造方法实例化。

通过在配置文件中增加一个参数，同时 Bean 中增加一个构造方法

在 Spring 中如果需要使用构造，则加入 constrator-arg 元素进行配置。

package cn.mldn.lxh.demo02;

public class SimpleBean {

 private String name ;

 private String password ;

 public SimpleBean(String name,String password)

 {

 this.setName(name) ;

 E-Mail：mldnqa@163.com

 this.setPassword(password) ;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

}

 <bean id="simple"

class="cn.mldn.lxh.demo02.SimpleBean">

 <constructor-arg index="0">

 <value>LiXingHua</value>

 </constructor-arg>

 E-Mail：mldnqa@163.com

 <constructor-arg index="1"

value="www.MLDN.cn"></constructor-arg>

 </bean>

A 类中的属性 B 类对象
通过 Spring 中的 ref 可以引用一个其他已经声明过的对象

package cn.mldn.lxh.demo03;

import java.util.Date;

public class RefBean {

 private String name ;

 // 此类现在没有被实例化，通过Spring的IOC进行实例化

 private Date date ;

 public Date getDate() {

 return date;

 }

 public void setDate(Date date) {

 this.date = date;

 }

 public String getName() {

 return name;

 }

 E-Mail：mldnqa@163.com

 public void setName(String name) {

 this.name = name;

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="datebean" class="java.util.Date"></bean>

 <bean id="ref" class="cn.mldn.lxh.demo03.RefBean">

 <property name="name">

 <value>LiXingHua</value>

 </property>

 <property name="date">

 <ref bean="datebean" />

 </property>

 </bean>

</beans>

package cn.mldn.lxh.demo03;

 E-Mail：mldnqa@163.com

import org.springframework.context.ApplicationContext;

import

org.springframework.context.support.ClassPathXmlApplicationConte

public class TestDemo03 {

 /**

 * @param args

 */

 public static void main(String[] args) {

 ApplicationContext context = null ;

 context = new

ClassPathXmlApplicationContext("applicationContext.xml") ;

 RefBean rb = (RefBean)context.getBean("ref") ;

 System.out.println("姓名："+rb.getName()) ;

 System.out.println("日期："+rb.getDate()) ;

 }

}

Spring 中除了之前可以使用的通过 ref 进行绑定之外，还提供了一种自动绑定机制，通过 autowire 完成。
简化之前的代码：

<?xml version="1.0" encoding="UTF-8"?>

 E-Mail：mldnqa@163.com

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="datebean" class="java.util.Date"></bean>

 <bean id="ref" class="cn.mldn.lxh.demo03.RefBean"

 autowire="byType">

 <property name="name">

 <value>LiXingHua</value>

 </property>

 </bean>

</beans>

按类型自动寻找

另外一种属性：byName，自动按名称进行设置。

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="date" class="java.util.Date"></bean>

 <bean id="ref" class="cn.mldn.lxh.demo03.RefBean"

 autowire="byName">

 <property name="name">

 E-Mail：mldnqa@163.com

 <value>LiXingHua</value>

 </property>

 </bean>

</beans>

按属性的名称进行设置，byName

在构造方法处绑定，例如将 Date 类型通过构造方法绑定。
Constractor 通过构造方法进行绑定

package cn.mldn.lxh.demo03;

import java.util.Date;

public class RefBean {

 private String name ;

 // 此类现在没有被实例化，通过Spring的IOC进行实例化

 private Date date ;

 // 在构造方法中要实例化date属性

 public RefBean(Date date)

 {

 this.setDate(date) ;

 }

 public Date getDate() {

 return date;

 E-Mail：mldnqa@163.com

 }

 public void setDate(Date date) {

 this.date = date;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="date" class="java.util.Date"></bean>

 <bean id="ref" class="cn.mldn.lxh.demo03.RefBean"

 autowire="constructor">

 <property name="name">

 <value>LiXingHua</value>

 </property>

 E-Mail：mldnqa@163.com

 </bean>

</beans>

即：Spring 中通过各种 IOC 注入方法完成对 Bean 的统一管理。

下次：关于集合数据的注入，Hibernate 也要使用集合类型。

