
Java并发程序设计教程

温绍锦（昵称：温少）

旧时王谢堂前燕，飞入寻常百姓家。

邮箱:szujobs@hotmail.com
旺旺:shaojinwensj
QQ: 1420452
Blog:http://www.cnblogs.com/jobs/

版本: 2010-07-29

内容列表

1、使用线程的经验：设置名称、响应中断、使用ThreadLocal
2、Executor ：ExecutorService和Future ☆☆☆
3、阻塞队列 : put和take、offer和poll、drainTo
4、线程间的协调手段：lock、condition、wait、notify、notifyAll ☆☆☆
5、Lock-free: atomic、concurrentMap.putIfAbsent、CopyOnWriteArrayList ☆☆☆
6、关于锁使用的经验介绍
7、并发流程控制手段：CountDownlatch、Barrier
8、定时器: ScheduledExecutorService、大规模定时器TimerWheel
9、并发三大定律：Amdahl、Gustafson、Sun-Ni
10、神人和图书
11、业界发展情况: GPGPU、OpenCL
12、复习题

学习的过程，着重注意红星标识☆的内容，学完之后，要求能够回
答复习题。

启动线程的注意事项

无论何种方式，启动一个线程，就要给它一个名字！这对排错诊断
系统监控有帮助。否则诊断问题时，无法直观知道某个线程的用途。

Thread thread = new Thread("thread name") {
public void run() {

// do xxx
}

};
thread.start();

Thread thread = new Thread() {
public void run() {

// do xxx
}

};
thread.setName("thread name");
thread.start();

public class MyThread extends Thread {
public MyThread() {

super("thread name");
}
public void run() {

// do xxx
}

}
MyThread thread = new MyThread ();
thread.start();

Thread thread = new Thread(task); // 传入任务
thread.setName(“thread name");
thread.start();

Thread thread = new Thread(task, “thread name");
thread.start();

1 3

2
4

5

要响应线程中断

程序应该对线程中断作出恰当的响应。

Thread thread = new Thread("interrupt test") {
public void run() {

for (;;) {
doXXX();
if (Thread.interrupted()) {

break;
}

}
}

};
thread.start();

Thread thread = new Thread("interrupt test") {
public void run() {

for (;;) {
try {

doXXX();
} catch (InterruptedException e) {

break;
} catch (Exception e) {

// handle Exception
}

}
}

};
thread.start();

public void foo() throws InterruptedException {
if (Thread.interrupted()) {

throw new InterruptedException();
}

}

1

2

3

thread.interrupt();

ThreadLocal

ThreadLocal<T>

initialValue() : T
get() : T
set(T value)
remove()

顾名思义它是local variable（线程局部变量）。它的功用非

常简单，就是为每一个使用该变量的线程都提供一个变量值
的副本，是每一个线程都可以独立地改变自己的副本，而不
会和其它线程的副本冲突。从线程的角度看，就好像每一个
线程都完全拥有该变量。

使用场景
To keep state with a thread (user-id, transaction-id, logging-id)
To cache objects which you need frequently
隐式传参

注意：使用ThreadLocal，一般都是声明在静态变量中，如果不断
的创建ThreadLocal而且没有调用其remove方法，将会导致内存泄
露。

ExecutorService

Executor
Thread

Executor
Thread

Executor
Thread

Task Task Task Task Task

Task Submitter

任务的提交者和执行者

Task Submitter

Task Submitter

为了方便并发执行任务，出现了一种专门用来执行任务的实现，也就是Executor。
由此，任务提交者不需要再创建管理线程，使用更方便，也减少了开销。

java.util.concurrent.Executors是Executor的工厂类，通过Executors可以创建你所需要的
Executor。

Task ExecutorTask Submitter

任务的提交者和执行者之间的通讯手段
ExecutorService executor = Executors.newSingleThreadExecutor();

Callable<Object> task = new Callable<Object>() {
public Object call() throws Exception {

Object result = "...";
return result;

}
};

Future<Object> future = executor.submit(task);
future.get();

Future<Object> future = executor.submit(task);

// 等待到任务被执行完毕返回结果
// 如果任务执行出错，这里会抛ExecutionException
future.get();

//等待3秒，超时后会抛TimeoutException
future.get(3, TimeUnit.SECONDS);

Callable<Object> task = new Callable<Object>() {
public Object call() throws Exception {

Object result = …;
return result;

}
};

Task Submitter把任务提交给Executor执行，他们之间需要一种
通讯手段，这种手段的具体实现，通常叫做Future。Future通常
包括get（阻塞至任务完成）， cancel，get(timeout)（等待一
段时间）等等。Future也用于异步变同步的场景。

有两种任务：

Runnable
Callable

Callable是需要返回值的任务

Future<T>

cancel(boolean) : boolean
isCancelled() : boolean
isDone() : boolean
get() : T
get(long, TimeUnit) : T

阻塞队列

producer consumer

for (;;) {
blockingQ.take(); // 如果队列空则阻塞

}

// 如果队列满则阻塞
blockingQ.put(object);

阻塞队列，是一种常用的并发数据结构，常用于生产
者-消费者模式。
在Java中，有三种常用的阻塞队列：

ArrayBlockingQueue
LinkedBlockingQueue
SynchronousQueue

BlockingQueue<E>

put(E)
take() : E
offer(E, long, TimeUnit) : boolean
poll(long, TimeUnit) : E
remainingCapacity()
drainTo(Collection<? super E>) : int
drainTo(Collection<? super E>, int) : int

在BlockingQueue中，要使用put和take，而非offer和poll。如果
要使用offer和poll，也是要使用带等待时间参数的offer和poll。

使用drainTo批量获得其中的内容，能够减少锁的次数。

使用阻塞队列

Queue<E>

add(E) : boolean
offer() : boolean
remove() : E
poll() : E
element() : E
peek() : E

使用BlockingQueue的时候，尽量不要使用从Queue继承下来的
方法，否则就失去了Blocking的特性了。

final BlockingQueue<Object> blockingQ = new ArrayBlockingQueue<Object>(10);
Thread thread = new Thread("consumer thread") {

public void run() {
for (;;) {

Object object = blockingQ.poll(); // 杯具，不等待就会直接返回
handle(object);

}
}

};

使用阻塞队列

final BlockingQueue<Object> blockingQ = new ArrayBlockingQueue<Object>(10);
Thread thread = new Thread("consumer thread") {

public void run() {
for (;;) {

try {
Object object = blockingQ.take(); // 等到有数据才继续
handle(object);

} catch (InterruptedException e) {
break;

} catch (Exception e) {
// handle exception

}
}

}
};

X
1

2

使用阻塞队列

final BlockingQueue<Object> blockingQ = new ArrayBlockingQueue<Object>(10);
Thread thread = new Thread("consumer thread") {

public void run() {
for (;;) {

try {
Object object = blockingQ.poll(1, TimeUnit.SECONDS); //防止死等
if (object == null) {

continue; // 或者做其他处理
}

} catch (InterruptedException e) {
break;

} catch (Exception e) {
// handle exception

}
}

}
}; 3

class BlockingQ {
private Object notEmpty = new Object();
private Queue<Object> linkedList = new LinkedList<Object>();

public Object take() throws InterruptedException {
synchronized (notEmpty) {

if (linkedList.size() == 0) {
notEmpty.wait();

}
return linkedList.poll();

}
}

public void offer(Object object) {
synchronized (notEmpty) {

if (linkedList.size() == 0) {
notEmpty.notifyAll();

}
linkedList.add(object);

}
}

}

实现一个简单的阻塞队列(1)

要执行wait操作，必须先取得该对象的锁。

执行wait操作之后，锁会释放。

被唤醒之前，需要先获得锁。

要执行notify和notifyAll操作，都必须先取
得该对象的锁。

未取得锁就直接执行wait、notfiy、notifyAll会抛异常

通过实现简单的阻塞
队列来学习并发知识

class BlockingQ {
private Object notEmpty = new Object();
private Object notFull = new Object();
private Queue<Object> linkedList = new LinkedList<Object>();
private int maxLength = 10;

public Object take() throws InterruptedException {
synchronized (notEmpty) {

if (linkedList.size() == 0) {
notEmpty.wait();

}
synchronized (notFull) {

if (linkedList.size() == maxLength) {
notFull.notifyAll();

}
return linkedList.poll();

}
}

}
public void offer(Object object) throws InterruptedException {

synchronized (notEmpty) {
if (linkedList.size() == 0) {

notEmpty.notifyAll();
}
synchronized (notFull) {

if (linkedList.size() == maxLength) {
notFull.wait();

}
linkedList.add(object);

}
}

}
}

实现一个简单的阻塞队列(2)

分别需要对notEmpty和notFull加锁

分别需要对notEmpty和notFull加锁

通过实现简单的阻塞
队列来学习并发知识

class BlockingQ {
private Lock lock = new ReentrantLock();
private Condition notEmpty = lock.newCondition();
private Condition notFull = lock.newCondition();
private Queue<Object> linkedList = new LinkedList<Object>();
private int maxLength = 10;
public Object take() throws InterruptedException {

lock.lock();
try {

if (linkedList.size() == 0) {
notEmpty.await();

}
if (linkedList.size() == maxLength) {

notFull.signalAll();
}
return linkedList.poll();

} finally {
lock.unlock();

}
}
public void offer(Object object) throws InterruptedException {

lock.lock();
try {

if (linkedList.size() == 0) {
notEmpty.signalAll();

}
if (linkedList.size() == maxLength) {

notFull.await();
}
linkedList.add(object);

} finally {
lock.unlock();

}
}

}

实现一个简单的阻塞队列(3)

要执行await操作，必须先取得该Condition的锁。

执行await操作之后，锁会释放。

被唤醒之前，需要先获得锁。

一个锁可以创建多个Condition

注意：未锁就直接执行await、signal、siganlAll会抛异常

要执行signal和signalAll操作，都必须先取
得该对象的锁。

通过实现简单的阻塞
队列来学习并发知识

In concurrent programming, a monitor is an object intended to be used safely by more than one thread. The defining characteristic of a monitor
is that its methods are executed with mutual exclusion. That is, at each point in time, at most one thread may be executing any of its methods.
This mutual exclusion greatly simplifies reasoning about the implementation of monitors compared with code that may be executed in parallel.

Monitors also provide a mechanism for threads to temporarily give up exclusive access, in order to wait for some condition to be met, before
regaining exclusive access and resuming their task. Monitors also have a mechanism for signaling other threads that such conditions have been
met.

Monitors were invented by C.A.R. Hoare [1] and Per Brinch Hansen, [2] and were first implemented in Brinch Hansen's Concurrent Pascal
language.

http://en.wikipedia.org/wiki/Monitor_(synchronization)

Monitor的理论模型

http://en.wikipedia.org/wiki/Monitor_(synchronization)

ReentrantLock和Synchronized

Synchronized是Lock的一种简化实现，一个Lock可以对应多个
Condition，而synchronized把Lock和Condition合并了，一个
synchronized Lock只对应一个Condition，可以说Synchronized是
Lock的简化版本。

在JDK 5，Synchronized要比Lock慢很多，但是在JDK 6中，它们的
效率差不多。

Lock

lock();
Unlock();

Condition

await();
signal();
signalAll();

synchronzied

lock();
unlock();
wait();
notify();
notifyAll();

1 0..*

awati -> wait
singal -> notify
singalAll-> notifyAll

不要在Lock和Condition上使用wait、notiffy、notifyAll方法！

使用AtomicInteger

class Counter {
private AtomicInteger count = new AtomicInteger();

public void increment() {
count.incrementAndGet();

}

public int getCount() {
return count.get();

}
}

class Counter {
private volatile int count = 0;

public synchronized void increment() {
count++;

}

public int getCount() {
return count;

}
}

若要线程安全执行执行count++，需要加锁

使用AtomicInteger之后，不需要加锁，也可以
实现线程安全。

这是由硬件提供原子操作指令实现的。在非激烈竞争的情况下，开
销更小，速度更快。Java.util.concurrent中实现的原子操作类包
括：
AtomicBoolean、AtomicInteger、AtomicLong、AtomicReference

1

2

class Counter {
private volatile int max = 0;
public synchronized void set(int value) {

if (value > max) {
max = value;

}
}
public int getMax() {

return max;
}

}

class Counter {
private AtomicInteger max = new AtomicInteger();

public void set(int value) {
for (;;) {

int current = max.get();
if (value > current) {

if (max.compareAndSet(current, value)) {
break;

} else {
continue;

}
} else { break; }

}
}
public int getMax() {

return max.get();
}

}

1

2

若要线程安全，需要加锁

LockFree算法，不需要加锁。

通常都是三个部分组成：
① 循环
② CAS (CompareAndSet)
③ 回退

循环

CAS
回退

使用Lock-Free算法

进一步使用Lock-Free数据结构
class BeanManager {

private Map<String, Object> map = new HashMap<String, Object>();

public Object getBean(String key) {
synchronized (map) {

Object bean = map.get(key);
if (bean == null) {

map.put(key, createBean());
bean = map.get(key);

}
return bean;

}
}

}

class BeanManager {
private ConcurrentMap<String, Object> map = new ConcurrentHashMap<String, Object>();

public Object getBean(String key) {
Object bean = map.get(key);
if (bean == null) {

map.putIfAbsent(key, createBean());
bean = map.get(key);

}
return bean;

}
}

使用ConcurrentMap，避免直

接使用锁，锁由数据结构来
管理。

ConcurrentHashMap并没有实现Lock-Free，只是使用了分离锁的办
法使得能够支持多个Writer并发。 ConcurrentHashMap需要使用更
多的内存。

public class SequenceDao extends SqlMapClientDaoSupport {
public boolean compareAndSet(String name, int value, int expect) {

Map<String, Object> parameters = new HashMap<String, Object>();
parameters.put("name", name);
parameters.put("value", value);
parameters.put("expect", expect);

// UPDATE t_sequence SET value = #value# WHERE name = #name# AND value = #expect#
int updateCount = getSqlMapClientTemplate().update("Sequence.compareAndSet", parameters);

return updateCount == 1;
}

}

public class SequenceService {
@Transactional(propagation = Propagation.NOT_SUPPORTED)
public synchronized void increment(String sequenceName) {

for (;;) {
int value = dao.getValue(sequenceName);
if (dao.compareAndSet(sequenceName, value + 1, value)) {

break;
}

}
}

}

同样的思路用于更新数据库-乐观锁

通过UpdateCount来实现
CompareAndSet

三个部分：
① 循环
② CAS (CompareAndSet)
③ 回退

注意，乐观锁时必须使用：@Transactional(propagation = Propagation.NOT_SUPPORTED)

public class SequenceDao extends SqlMapClientDaoSupport {
public int getValueForUpdate(String name) {

// SELECT value FROM t_sequence WHERE name = #name# FOR UPDATE
return (Integer) getSqlMapClientTemplate().queryForObject("Sequence.getValueForUpdate", name);

}

public void set(String name, int value) {
Map<String, Object> parameters = new HashMap<String, Object>();
parameters.put("name", name);
parameters.put("value", value);

// UPDATE t_sequence SET value = #value# WHERE name = #name#
getSqlMapClientTemplate().update("Sequence.set", parameters);

}
}

public class SequenceService {
@Transactional(propagation = Propagation.REQUIRED)
public synchronized void increment2(String sequenceName) {

int value = dao.getValueForUpdate(sequenceName);
dao.set(sequenceName, value + 1);

}
}

对比，使用悲观锁版本

读取时，就开始加锁。

Lock-Free算法，可以说是乐观锁，如果非激烈竞争的时候，不需
要使用锁，从而开销更小，速度更快。

使用CopyOnWriteArrayList
class Engine {

private List<Listener> listeners = new ArrayList<Listener>();

public boolean addListener(Listener listener) {
synchronized (listeners) {

return listeners.add(listener);
}

}

public void doXXX() {
synchronized (listeners) {

for (Listener listener : listeners) {
listener.handle();

}
}

}
}

class Engine {
private List<Listener> listeners = new CopyOnWriteArrayList <Listener>();

public boolean addListener(Listener listener) {
return listeners.add(listener);

}

public void doXXX() {
for (Listener listener : listeners) {

listener.handle();
}

}
}

适当使用CopyOnWriteArrayList，能够提高
读操作时的效率。

1

2

锁的使用

使用支持CAS的数据结构，避免使用锁，如：
AtomicXXX、ConcurrentMap、CopyOnWriteList、ConcurrentLinkedQueue

一定要使用锁的时候，注意获得锁的顺序，相反顺序获得锁，就容易产生死锁。

死锁经常是无法完全避免的，鸵鸟策略被很多基础框架所采用。

通过Dump线程的StackTrace，例如linux下执行命令 kill -3 <pid>，或者jstack –l <pid>，
或者使用Jconsole连接上去查看线程的StackTrace，由此来诊断死锁问题。

外部锁常被忽视而导致死锁，例如数据库的锁

1

2

3

4

5

final int COUNT = 10;
final CountDownLatch completeLatch = new CountDownLatch(COUNT);

for (int i = 0; i < COUNT; ++i) {
Thread thread = new Thread("worker thread " + i) {

public void run() {
// do xxxx
completeLatch.countDown();

}
};
thread.start();

}

completeLatch.await();

并发流程控制-使用CoutDownLatch

当你启动了一个线程，你需要等它执行结束，
此时，CountDownLatch也许是一个很好的选择。

final CountDownLatch startLatch = new CountDownLatch(1);

for (int i = 0; i < 10; ++i) {
Thread thread = new Thread("worker thread " + i) {

public void run() {
try {

startLatch.await();
} catch (InterruptedException e) {

return;
}
// do xxxx

}
};
thread.start();

}
// do xxx
startLatch.countDown();

当你启动很多线程，你需要这些线程等到通知
后才真正开始，CountDownLatch也许是一个很
好的选择。

Barrier

A

B

C

D

B
ar

re
r

A

B

C

D

B
ar

re
r

A

B

C

D

B
ar

re
r

time

A barrier: A barrier is a coordination mechanosm (an algorithm) that forces
process which participate in a concurrent (or distributed) algorithm to
wait until each one of them has reached a certain point in its program. The
collection of these coordination points is called the barrier. Once all the
processes have reached the barrier, they are all permitted to continue past
the barrier.

并发流程控制-使用CycliBarrier
class PerformaceTest {

private int threadCount;
private CyclicBarrier barrier;
private int loopCount = 10;

public PerformaceTest(int threadCount) {
this.threadCount = threadCount;
barrier = new CyclicBarrier(threadCount, new Runnable() {

public void run() {
collectTestResult();

}
});
for (int i = 0; i < threadCount; ++i) {

Thread thread = new Thread("test-thread " + i) {
public void run() {

for (int j = 0; j < loopCount; ++j) {
doTest();
try {

barrier.await();
} catch (InterruptedException e) {

return;
} catch (BrokenBarrierException e) {

return;
}

}
}

};
thread.start();

}
}
private void doTest() { /* do xxx */ }
private void collectTestResult() { /* do xxx */ }

}

使用Barrier来实现并发性能
测试的聚合点。

使用定时器

ScheduledExecutorService

schedule(Runnable command, long delay, TimeUnit unit) : ScheduledFuture
schedule(Callable<V> callable, long delay, TimeUnit unit) : ScheduledFuture
scheduleAtFixedRate(Runnable comand, long initDelay, long period, TimeUnit unit) : ScheduledFuture
scheduleWithFixedDelay(Runnable command, long initDelay, long delay, TimeUnit unit) : ScheduledFuture

java.util.concurrent.Executors是ScheduledExecutorService的工厂类，通过Executors，你可
以创建你所需要的ScheduledExecutorService 。

JDK 1.5之后有了ScheduledExecutorService，不建议你再使用java.util.Timer，因为它无论
功能性能都不如ScheduledExecutorService。

ScheduledExecutorServiceScheduledTask Submitter

ScheduleFuture<Object> future = scheduler.schedule(task, 1, TimeUnit.SECONDS);

// 等待到任务被执行完毕返回结果
// 如果任务执行出错，这里会抛ExecutionException
future.get();

//取消调度任务
future.cancel();

Task Task Task Task Task

DelayedWorkQueue

大规模定时器TimerWheel

存在一种算法 TimerWheel ，适用于大规模的定时器实现。这个算法最早是被设计用来实
现 BSD 内核中定时器的，后来被广泛移植到诸如 ACE 等框架中，堪称 BSD 中经典算法之
一，能针对定时器的各类常见操作提供接近常数时间的响应，且能根据需要很容易进行
扩展。

1

2

3

45

6

7

0

• Amdahl 定律
– Gene Amdahl 发现在计算机体系架构设计过程中，

某个部件的优化对整个架构的优化和改善是有
上限的。这个发现后来成为知名的 Amdahl 定律。

• Gustafson 定律
– Gustafson假设随着处理器个数的增加，并行与

串行的计算总量也是可以增加的。Gustafson定

律认为加速系数几乎跟处理器个数成正比，如
果现实情况符合Gustafson定律的假设前提的话，

那么软件的性能将可以随着处理个数的增加而
增加。

• Sun-Ni 定律
– 充分利用存储空间等计算资源，尽量增大问题

规模以产生更好/更精确的解。

即使你有10个老婆，也不能
一个月把孩子生下来。

当你有10个老婆，就会要生
更多的孩子。

你要设法让每个老婆都在干
活，别让她们闲着。

并发三大定律

拜
神

Doug Lea - Mr. concurrency ，当今世界上并发程序设计领域的先驱，著名学者。他是
util.concurrent包的作者，JSR166规范的制定。图书著作《Concurrent Programming in
Java: Design Principles and Patterns》。其” A Scalable Elimination-based Exchange
Channel”和”Scalable Synchronous Queues”两篇论文列为非阻塞同步算法的经典文章

推荐图书

http://www.faculty.idc.ac.il/gadi/book.htm

我们今天没有10GHz芯片!

在IDF05（Intel Developer Forum 2005）上，Intel首席执行官Craig
Barrett就取消4GHz芯片计划一事，半开玩笑当众单膝下跪致歉。

Donald Knuth
世界顶级计算机科学家

在我看来，这种现象(并发)或多或少是由于硬件设
计者已经无计可施了导致的，他们将Moore定律失
效的责任推脱给软件开发者。

Donald Knuth 2008年7月接受Andrew Binstock访谈

Introduced Adopted in
mainstream

GUIs 1973 (Xerox Alto) ~1984-89 (Mac)
~1990-95 (Win3.x)

Objects 1967 (Simular) ~1993-98 (C++, Java)

Garbage Collection 1958 (Lisp) ~1995-2000 (Java)

Generic Types 1967 (Strachey) ~198x (US DoD, Ada)
~1995-2000 (C++)

Internet 1967+ (ARPAnet) ~1995-2000

Concurrency 1964 (CDC 6600) ~2007-2012

A Brief History of Time

中国的超级计算机：天河1号 1.206P，星云3P，都是异构计算体系。

AMD Radeon HD 5970

Radeon™ HD 5970

$299

928 GFLOPS

725 MHz

3200

GDDR5

4 GB

294 W

双精度浮点处理能力

核心频率

处理器核心数量

内存类型

显存容量

最大功耗

显存带宽 256 GB/sec

37

单精度浮点处理能力 4.64 TFLOPS

GPU大规模并行计算

Processor Parallelism

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general purpose

data-parallel computing
Improving numerical

precision

Graphics APIs
and Shading
Languages

Multi-processor
programming –
e.g. OpenMP

Emerging
Intersection

OpenCL
Heterogenous

Computing

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous

parallel computing CPUs, GPUs, and other processors

操作系统
递归算法
桌面应用

例如MS Word
交互性应用

例如
Debugger
…

CPU
GPU

油气勘探
金融分析
医疗成像
有限元
基因分析
物理模拟
地理信息系统

热点
搜索引擎
数据库、数据挖掘
数理统计分析
生物医药工程
导航识别
军事模拟
无线射频模拟
图像语音识别
…

潜在

适用的应用范围

内容回顾

1、使用线程的经验：设置名称、响应中断、使用ThreadLocal
2、Executor ：ExecutorService和Future ☆☆☆
3、阻塞队列 : put和take、offer和poll、drainTo
4、线程间的协调手段：lock、condition、wait、notify、notifyAll ☆☆☆
5、Lock-free: atomic、concurrentMap.putIfAbsent、CopyOnWriteArrayList ☆☆☆
6、关于锁使用的经验介绍
7、并发流程控制手段：CountDownlatch、Barrier
8、定时器: ScheduledExecutorService、大规模定时器TimerWheel
9、并发三大定律：Amdahl、Gustafson、Sun-Ni
10、神人和图书
11、业界发展情况: GPGPU、OpenCL

复习题

请回答以下问题：

1. Future是做什么用的？

2. Lock和synchronized的区别是什么？

3. 什么是CAS？

4、Lock-Free算法的三个组成部分是什么？

谢谢！

