JavaF K IETFIXTTIKIE

=y,
WMiIRETE, AANFEZTHE

RNEIIZR

1.
2
EN
4.
5.
6+
7~
8~
9.

fF RN, RELM. MNP, ffHThreadlocal

Executor : ExecutorServicefFuture ¥x v ¥<

SHZERA\ A : putFitake. offerflpoll. drainTo

2R PR T BE: lock. condition. wait. notify. notifyAll ¥ ¥ ¥
Lock-free: atomic. concurrentMap.putlfAbsent. CopyOnWriteArrayList v % v<
KTHEHPIA LA

R ARSI FB: CountDownlatch. Barrier

E Bf 28: ScheduledExecutorService. NI E B} 25 TimerWheel

&k =RKEH: Amdahl. Gustafson. Sun-Ni

10, AFIE A
11, MR KB GPGPU. OpenCL
12, B>

ZH, FEHEREIBRPNOOE, %2k, iY@
S R P

s

Alibaba Group

IR YR IR Y SR T I]

Thread thread = new Thread("thread name") {
public void run() {

// do xxx
}
}.

thread.start();

public class MyThread extends Thread {
public MyThread() {

super("thread name");
}
public void run() {

// do xxx
}

}
MyThread thread = new MyThread ();

thread.start();

Thread thread = new Thread() {
public void run() {

// do xxx
}
|5

thread.setName("thread name");
thread.start();

Thread thread = new Thread(task); // 1% AT 5%
thread.setName(“thread name");
thread.start();

Thread thread = new Thread(task, “thread name");

thread.start(); ®

ETHFIN, Ao~ ARKHE, REBLTANLET/ A4 NBB&
$RBEEAR M. ZAHHAHEN, LA LA IBEINEBORA

=y

Alibaba Group

e A £ TR P WT

thread.interrupt();

Thread thread = new Thread("interrupt test") {
public void run() {

for (;;) {
doXXX();
if (Thread.interrupted()) {
break;
}
}

}
2
thread.start();

public void foo() throws InterruptedException {
if (Thread.interrupted()) {

throw new InterruptedException();
}
}

Thread thread = new Thread("interrupt test") {
public void run() {
for (;;) {

try {
doXXX();

} catch (InterruptedException e) {
break;

} catch (Exception e) {
// handle Exception

}
}

}
2
thread.start();

AAZAR KBS H R R s bR L ézl“

Alibaba Group

ThreadLocal

ThreadLocal<T> B4 B8 X € Rlocal variable (ZFR2RHEE) . BHIZIAIE
ERH, AR - MEAZRENSEARE—IREE

il B, R MR DS S E SR, TR
fet(T'vaIue) %ﬁﬁ?ﬁ%ﬁﬁ‘]gﬂziﬁ?%o Mzﬁﬁﬂgﬁgga ﬁﬁ@ﬁ—/l\
remove() %E%ﬂ%é%ﬁﬁﬁ%o

15 %

To keep state with a thread (user-id, transaction-id, logging-id)
To cache objects which you need frequently

AL

#i&: #MThreadlocal, ~MAMAPHABEAEES, LRLH
@A) st ThreadLocal ® L. F MR Lremoved it , L EFHAHE N

%.
£

Alibaba Group

ESIMREFORITE

5138 FARG0ES, AAT—#HENALRTMA 5N, 2 AExecutor,
G, RSRIALTERAHBENEE, cR2F8, LY T H4.

ExecutorService

Task Submitter Executor
Thread

>

. Executor
Ta S k S u b m |tte r Task Task Task Task Task Thread

>

Executor
Task Submitter Thread

>

java.util.concurrent.ExecutorsfZExecutor) T.J 28, it Executorst] LABIE /R ITH B
Executor.

ESMREFORITEH IE BB/ T * **

ExecutorService executor = Executors.newSingleThreadExecutor();

Callable<Object> task = new Callable<Object>() {
public Object call() throws Exception {
Object result ="...";
return result;

|5

Future<Object> future = executor.submit(task);
future.get();

Task Submitter

Future<Object> future = executor.submit(task);

/] e BN AT Se ERIR R 45 3R
// WA S PAT H 4, J_E/\TMExecution Exception
future.get();

[/5ER5380, MBI 5 2 i TimeoutException
future.get(3, TimeUnit.SECONDS);

Future<T>

cancel(boolean) : boolean
isCancelled() : boolean
isDone() : boolean

get(): T

KRS get(long, TimeUnit) : T
Runnable
Callable

Callabled & & @ (£ & 12 5

Task Executor

» Callable<Object> task = new Callable<Object>() {

public Object call() throws Exception {
Object result = ...;
return result;

Task Submitterde (i %3t % #4-Executor® 4, &MN2 Q& £~
BNF R, ERHFROLAEN, @59 #Future, Futured %
#,¥get (MEEMRS %K) , cancel, get(timeout) (% #—
B @Q) 3%, Futurex RFF I ERQ 5% i

FALZREA 3

producer consumer
S S
V7R YNGR S for (;;) {
blockingQ.put(object); blockingQ.take(); // 114 A A1 7 I BH ZE

}

WERH, A-RFROALLERY, SAFLSF
% - % % % &' iqx o
fRlJavad, FEZHEZRGRLEAR
ArrayBlockingQueue
LinkedBlockingQueue

SynchronousQueue g?/

Alibaba Group

TE AR ZREN 3

Queue<E>
) oo i HiBlockingQueue MR 1, & Rt A~ il MhQueuedk & R 1)
remove() : E < Jiik, S NEE R 25 T Blocking 4R T s
poll() : E
element() : E
peek() : E

A

BlockingQueue<E>

ut(E) #£BlockingQueue, ZA# Hputflitake, TidFofferflpoll. 15
Itoake():E < ELAF FHofferfpoll, 12 B8 FH Ay S 45 i) 18] 2 2 offer Tpoll .

offer(E, long, TimeUnit) : boolean
poll(long, TimeUnit) : E
remainingCapacity()

drainTo(Collection<? super E>) : int < i Fi drainTodtk Btk 72 KL b (g N 25, BEs TRk /b B 1 VoL

drainTo(Collection<? super E>, int) : int

Alibaba Group

TEFAERZREN 3

final BlockingQueue<Object> blockingQ = new ArrayBlockingQueue<Object>(10);
Thread thread = new Thread("consumer thread") {
public void run() {

for (;;) {

Object object = blockingQ.poll(); // #-F, A2 Ar 25 LIk [

handle(object);

final BlockingQueue<Object> blockingQ = new ArrayBlockingQueue<Object>(10);
Thread thread = new Thread("consumer thread") {
public void run() {
for (;;) {
try {
Object object = blockingQ.take(); // &5 21| 47 £ 45 4 2k 28
handle(object);
} catch (InterruptedException e) {
break;
} catch (Exception e) {
// handle exception

}

TEFAERZREN3Y

final BlockingQueue<Object> blockingQ = new ArrayBlockingQueue<Object>(10);
Thread thread = new Thread("consumer thread") {
public void run() {

for (;;) {

try {
Object object = blockingQ.poll(1, TimeUnit.SECONDS); // V7 1[- 71 <%
if (object == null) {

continue; // BV HAD AL P

}

} catch (InterruptedException e) {
break;

} catch (Exception e) {
// handle exception

}

Alibaba Group

= —p & A] iiﬁ.i%ﬁf-%mi
SR~ R aY BRI BAZY (1) P B DA B

class BlockingQ {
private Object notEmpty = new Object();
private Queue<Object> linkedList = new LinkedList<Object>();

public Object take() throws InterruptedException {

synchronized (notEmpty) { B TwaithefF, BAUEIE % S8
if (linkedList.size() == 0) {
} notEmpty.wait(); < HUTwaiti(E 2 Ji, BRI
return linkedList.poll(); WRER 2 B, e TR

} b N O

}

public void offer(Object object) {
synchronized (notEmpty) {

if (linkedList.size() == 0) { g‘i‘ffkﬁnotifyﬁnOtiva”T?T%T/E, HR A2 5 BY
notEmpty.notifyAll(); FFIZT A8
}

linkedList.add(object);

3 RBELERFvait. notfiy. notifyAll s 5%

SR~ TSR EY R EA 3 (2)

class BlockingQ {
private Object notEmpty = new Object();
private Object notFull = new Object();
private Queue<Object> linkedList = new LinkedList<Object>();
private int maxLength = 10;

public Object take() throws InterruptedException {

synchronized (notEmpty) { <
if (linkedList.size() == 0) {
notEmpty.wait();

}

A EAGRGEE
ARl 2% 0 K % Fedn

3 75 B S notEmpty Al notFul L4

synchronized (notFull) { <
if (linkedList.size() == maxLength) {
notFull.notifyAll();

}
return linkedList.poll();

}

}
public void offer(Object object) throws InterruptedException {

synchronized (notEmpty){ <&
if (linkedList.size() == 0) {
notEmpty.notifyAll();
}

53] 75 B X notEmpty Al notFull 118

synchronized (notFull) { <
if (linkedList.size() == maxLength) {
notFull.wait();

}
linkedList.add(object);

=y

Alibaba Group

S —~~ T ey RN S (3)

class BlockingQ {

private Lock lock = new ReentrantLock(); <

private Condition notEmpty = lock.newCondition(); <&
private Condition notFull = lock.newCondition(); <&

private Queue<Object> linkedList = new LinkedList<Object>();
private int maxLength = 10;
public Object take() throws InterruptedException {

lock.lock();

try {
if (linkedList.size() == 0) {

A EAGRGEE
XL X ¢ T

— A] PLAIEE 22 > Condition

notEmpty.await(); <

}
if (linkedList.size() == maxLength) {

notFull.signalAll();

}
return linkedList.poll();
}Hfinally {
lock.unlock();
}
}
public void offer(Object object) throws InterruptedException {
lock.lock();
try {

if (linkedList.size() == 0) {

HEHATawaitiE, 2L ES1Z Condition 8 .
HATawaitEEE 2 5, B RE.

WMRZ HY, T E SR8

notEmpty.signalAll(); <&

}

if (linkedList.size() == maxLength) {
notFull.await();

}

linkedList.add(object);

}Hinally {
lock.unlock();

;! WA AMRLARFavait,

T ATsignal flsignal AlEEAE, AR LIS EL
2 G

signal. siganlAll 4 $¢ § %

Monitorayz2 it as

The Owner
Entry Set Wait Set

emcl O ac cﬂ”}' Ieleuse Q Q
|Q D \, @ O

release and

exit) (3)
/

O A Waiting Thread
O An Active Thread

http://en.wikipedia.org/wiki/Monitor (synchronization)

In concurrent programming, a monitor is an object intended to be used safely by more than one thread. The defining characteristic of a monitor
is that its methods are executed with mutual exclusion. That is, at each point in time, at most one thread may be executing any of its methods.
This mutual exclusion greatly simplifies reasoning about the implementation of monitors compared with code that may be executed in parallel.

Monitors also provide a mechanism for threads to temporarily give up exclusive access, in order to wait for some condition to be met, before
regaining exclusive access and resuming their task. Monitors also have a mechanism for signaling other threads that such conditions have been
met.

Monitors were invented by C.A.R. Hoare [1] and Per Brinch Hansen, [2] and were first implemented in Brinch Hansen's Concurrent Pascal
language.

http://en.wikipedia.org/wiki/Monitor_(synchronization)

ReentrantLock#=Synchronized

2. 0.0 ¢

Synchronized& Lock#@ —# R £, —ALockT 282 $ A
Condition, #synchronizedfeLock#eCondition& %, —A

synchronized Lock® & & — ACondition, T «24§Synchronized&

Lockd) 4w ¥a % o

A.JDK S, Synchronized @& ebLockik /8 3, 2 & A JDK6d, =M#

SFEXS

0..*

Condition

synchronzied

lock();
unlock();
wait();

await();
signal(); <

signalAll();

notify();
notifyAll();

% & fLock%$eCondition X & B wait. notiffy. notifyAll% & /

awati -> wait
singal -> notify
singalAll-> notifyAll

=y

Alibaba Group

MAAtomicInteger

class Counter {
private volatile int count = 0;

public synchronized void increment() { g B L APATHAT count++, 75 BN
count++;

}

publicint getCount() {
return count;
}
}

class Counter {
private Atomiclnteger count = new Atomiclnteger();

public void increment() {

count.incrementAndGet(); < 1 F AtomicintegerZ J5, ANFEEINE, WA LL
} SEINEFE 24

publicint getCount() {
return count.get();
}
}

BAAGENREEFREBAEZRG. AR RHNESIOHALT, F
HREA, REEP, Java.util. concurrent TN WA FHEE 8
-

AtomicBoolean. AtomicInteger. AtomicLong. AtomicReference

A Lock-Freeds

class Counter {
private volatile int max = 0; Fr— po— —
public synchronized void set(int value) { < IR A, TE N
if (value > max) {
max = value;

}
}
publicint getMax() {
return max;
}
}

class Counter {
private Atomiclnteger max = new Atomiclnteger();

P — "
public void set(int value) { < LockFreeﬁYi, ANCE e
T e o1 (;7) {
int current = max.get(); @%%B%E/I\%Bﬁ\éﬁﬁi
if (value > current) { @O 1EF
CAS P if (max.compareAndSet(current, value)) { @ CAS (CompareAndSet)
[EIBIES » break; @ [[E
}else {
continue;
}

} else { break; }
}

}
publicint getMax() { .
return max.get();

I Alibaba Group

t—~F1EALock-Free#k 84549

class BeanManager {
private Map<String, Object> map = new HashMap<String, Object>();

public Object getBean(String key) {
synchronized (map) {
Object bean = map.get(key);
if (bean == null) {
map.put(key, createBean());
bean = map.get(key);
}

return bean;

}

class BeanManager {
private ConcurrentMap<String, Object> map = new ConcurrentHashMap<String, Object>();

public Object getBean(String key) {
Object bean = map.get(key);

if (bean == null) { -
map.putlfAbsent(key, createBean()); < 1EH§Confurrewntl\/‘l,ap, %%E
bean = map.get(key); A BT, Bl ARSIk

} B,

return bean;

}

ConcurrentHashMap % 8 & £ #.Lock-Free, R A B R T4 4 ¥ >
@Ay IH s ANriterk %, ConcurrentHashMap® & @ R £
L X R

4589 B & A FF AT EIE BRI

public class SequenceDao extends SqlMapClientDaoSupport {
public boolean compareAndSet(String name, int value, int expect) {
Map<String, Object> parameters = new HashMap<String, Object>();
parameters.put("name", name);
parameters.put("value", value);
parameters.put("expect”, expect);

// UPDATE t_sequence SET value = #value#t WHERE name = #name#IAND value = #expect#
int updateCount = getSqlMapClientTemplate().update("Sequence.compareAndSet", parameters);

return updateCount == 1; \ i# T UpdateCount >k 523
) CompareAndSet

public class SequenceService {
@Transactional(propagation = Propagation.NOT_SUPPORTED)

public synchronized void increment(String sequenceName) { NN
for (;;) { < =l ,”BJJ :
int value = dao.getValue(sequenceName); @© EHA
if (dao.compareAndSet(sequenceName, value + 1, value)) { @ CAS (CompareAndSet)
break; @ [HiB
}
}
}

’/.i '& P & %ﬁ N &' m & m / @Transactional(propagation = Propagation.NOT_SUPPORTED)

sHe . THH AR AR A

public class SequenceDao extends SqlMapClientDaoSupport {

public int getValueForUpdate(String name) {
// SELECT value FROM t_sequence WHERE name = #fname#t FOR UPDATE
return (Integer) getSqlMapClientTemplate().queryForObject("Sequence.getValueForUpdate", name);

}

public void set(String name, int value) {
Map<String, Object> parameters = new HashMap<String, Object>();

parameters.put("name", name);
parameters.put("value", value);

// UPDATE t_sequence SET value = #valuet WHERE name = #name#
getSqlMapClientTemplate().update("Sequence.set", parameters);

public class SequenceService {
@Transactional(propagation = Propagation.REQUIRED)
public synchronized void increment2(String sequenceName) { - - PR
int value = dao.getValueForUpdate(sequenceName); < I%HVYHHL , B UE In .
dao.set(sequenceName, value + 1);

Lock-Free &, TARALEAR, LEHRRAFZIORE, ¢
L@ RK, RHFHRRA, REE®

T ACopyOnWriteArrayList

class Engine {
private List<Listener> listeners = new ArrayList<Listener>();

public boolean addListener(Listener listener) {
synchronized (listeners) {
return listeners.add(listener);
}
}

public void doXXX() {
synchronized (listeners) {
for (Listener listener : listeners) {
listener.handle();

}

class Engine {
private List<Listener> listeners = new CopyOnWriteArrayList <Listener>();

public boolean addListener(Listener listener) {
return listeners.add(listener); <

}

1& 241§ Fl CopyOnWriteArraylist, AETEHE S

public void deXX() {. N AR R,
for (Listener listener : listeners) {

listener.handle();

}

B TEA

@@@@@

{3 F SCRFCASH B IR 4t 1), eS8 B, e
AtomicXXX. ConcurrentMap. CopyOnWriteList. ConcurrentLinkedQueue

—E BB R, EESASURINNY, ARS8, 5US 27 2L A

FEBNZE T e Tovk e), B8 5 SRS AR 22 FEAAE 2 TR A

I DumpZk F2) StackTrace, il fllinux N34T A2 kill -3 <pid>, B #& jstack —| <pid>,
5 % FJconsolei®#2 I - A 5 2 2 IStackTrace, HH IR W R4 1n) @l

A B 5 AN BB, B an s e B

€L

Alibaba Group

H-H Rz -1 A CoutDownLatch

final int COUNT = 10;
final CountDownLatch completelLatch = new CountDownLatch(COUNT);

for (inti=0; i< COUNT; ++i) {
Thread thread = new Thread("worker thread " +1i) {

public void run() {

/1 do xxxx
completelLatch.countDown(); <

}
b
thread start(); MURREEN T — R, REETHATE R,
} e, CountDownLatchtB 2 — ME 18+

completelatch.await(); <&

final CountDownLatch startLatch = new CountDownlatch(1);

for (inti=0;i< 10; ++i) {
Thread thread = new Thread("worker thread " + i) {
public void run() {
try {

startLatch.await(); €=
} catch (InterruptedException e) {

return; MIRIB IR Z G, IR T X L 2 P S5 21 38 S
i/doxxxx Ja A B IEFF4E, CountDownLatchth /2 — MR
} — ISRt lTpvirE N

|5

thread.start(); a
})
// do xxx

startLatch.countDown(); < Alibaba GI’OI.IP

Barrier

® &
(8

© - ©
1| @

time

Barrer
Barrer
Barrer

@0 @&

v

A barrier: A barrier is a coordination mechanosm (an algorithm) that forces
process which participate in a concurrent (or distributed) algorithm to
wait until each one of them has reached a certain point in its program. The
collection of these coordination points is called the barrier. Once all the
processes have reached the barrier, they are all permitted to continue past
the barrier.

SR IpM-ACycliBarrier

class PerformaceTest {
private int threadCount;
private CyclicBarrier barrier;
private int loopCount = 10;

public PerformaceTest(int threadCount) {
this.threadCount = threadCount;
barrier = new CyclicBarrier(threadCount, new Runnable() {
public void run() {
collectTestResult();
}
1;
for (inti=0; i< threadCount; ++i) {
Thread thread = new Thread("test-thread " + i) {
public void run() {
for (intj = 0; j < loopCount; ++j) {

doTest();

try {
barrier.await(); <

} catch (InterruptedException e) {
return;

} catch (BrokenBarrierException e) {
return;

}

}
2
thread.start();
}
}
private void doTest() { /* do xxx */ }
private void collectTestResult() { /* do xxx */ }

5 FH Barrier K SZ 3 3 & 14 5
MR ET R A

=y

Alibaba Group

TEA 52838

ScheduledExecutorService

schedule(Runnable command, long delay, TimeUnit unit) : ScheduledFuture
schedule(Callable<V> callable, long delay, TimeUnit unit) : ScheduledFuture

scheduleAtFixedRate(Runnable comand, long initDelay, long period, TimeUnit unit) : ScheduledFuture
scheduleWithFixedDelay(Runnable command, long initDelay, long delay, TimeUnit unit) : ScheduledFuture

ScheduledTask Submitter

ScheduledExecutorService

ScheduleFuture<Object> future = scheduler.schedule(task, 1, TimeUnit.SECONDS); =)y
DelayedWorkQueue

/] E 1 BUESS AT e BE IR [m] 45 5
/] WRAE S AT A, X H 2 HExecutionException
future.get();

[/BUH AT S5

future.cancel();

Task

Task

Task

Task

Task

Q

java.util.concurrent.Executorss&ScheduledExecutorService)) 2%, it Executors, fRHA]

LRI AR BT 3 2 i) ScheduledExecutorService -

JIDK 1.52 J5F T ScheduledExecutorService, AEIAREE FHjava.util.Timer, FEAETLIL

ThEe Mk e & A~ i ScheduledExecutorService .

AR oeed28TimerWheel

FAE—F IR TimerWheel , EH T RABK R #EP . XA BiER BRI ARSE
DL BSD X ER 23K, JERA) 2 BAEBREU ACE FHER S, X BSD FAMHEIRLZ
;Zﬁﬁﬁ-’ﬁ‘ Xt R I 3 22K MBRER R W B R N, H AR ZIRE 51T

€L

Alibaba Group

H-E=RNEHF

s
 Amdahl B
— Gene Amdahl KITETHHENAL R BT iE R+,

TR IR B AN SR LA AN 5 2
ERRE. XA RBURR KA) Amdahl €1

» Gustafson B

— Gustafsonfi a5 AL BESS DN BRI, AT S
FATHFE S B AT DI . Gustafsoni®
) NINE 2B LT R A PR ES AN BB b,
RIS L ATE Gustafson TE R BT HE K45,
fE;A B PP 1 B T DA I o AL AN H R 1 i v
Ho

e Sun-Ni &

— R M A ST SRR, R K)
PR L A B e/ SR B P

PRERRONEE, AR
-/l e8 % ¢ F 4.

SERAONEE, o E ¢
L3P S

B RRGLENEERAF
%, it @ ko

Alibaba Group

Doug Lea - Mr. concurrency , {45 B3 AR R IHUIRSEIK, FHPEHE. B2
util.concurrenttL P YEE, JSR1I66FVE K& . K432 /E (Concurrent Programming in
Java: Design Principles and Patterns) . FL” A Scalable Elimination-based Exchange

Channel”f1” Scalable Synchronous Queues” P4 ks 12 X %1 N AEBH 2E [F] 20 HyE 4 i &

EZTiiT

JAVA @@M@@N@V IN PRACTICE

DDDDDDDDDDDD

Brian Goetz Tim Peierls
(%] JoshuaBloch Joseph Bowbeer ¥
David Holmes Doug Lea

" oW 5 ¥ ¥

iFares

Gadi Taubenfeld

Synchronization
Algorithms
Concurrent

Programming

http://www.faculty.idc.ac.il/gadi/book.htm

1000000

100000 +——

10000 +

1000 1+—

100 +

10 +

1971 1975 1979 1983 1987 1991 1995 1993 2003 2007

ZAVA K% A 10GHZ % B/

{EIDFO5 (Intel Developer Forum 2005) I, IntelH i #44T E Craig
Barrett L HUIHAGHZ:U: v vH R —3, P HDusE T IR T B2 .

Donald Knuth
HA MG EY R X

ERRE K, MR (FFK)EZE 8D A& BT
HE el 7 S801, TR Moore g 5%
P TTATHERRZE A K

Donald Knuth 200847 A #52 Andrew BinstockJj iR

A Brief History of Time

Introduced Adopted in
mainstream

GUIs 1973 (Xerox Alto) ~1984-89 (Mac)
~1990-95 (Win3.x)
Objects 1967 (Simular) ~1993-98 (C++, Java)
Garbage Collection 1958 (Lisp) ~1995-2000 (Java)
Generic Types 1967 (Strachey) ~198x (US DoD, Ada)
~1995-2000 (C++)
Internet 1967+ (ARPAnet) ~1995-2000

Concurrency 1964 (CDC 6600) ~2007-2012

GPU Performance = End of the CPU? NO! “’,!Pﬂ

- %od
® /] parallel
E o b aralle
.g 150 o
&
190 T
Scquential
) 4
b il
0 7 =t t— i ! f
1998 1999 2000 2001 00 2003 204 005 2008
n Octabanr 20 Ut ho Procansing Puwor
The Data Efficiency Benefits AMDZ

TN CrOoh

of Silicon-Level Integration

Graphics Memory |

Main Memory

..........................

oo vvrereeeesssved

...........................

DO RBAE: EirL 1.206P, § &3P, HAFDH LR,

For Enterprise IT: Petascale Processing AMDZI\
for the Masses S

©
S00

SUPERCOMPUTER SITES

48 GPU Pipes
X 8 Flops/cycle
x 3 GHz

Over half of the top 500
supercomputers today
use over 1000

processors* @ G 00 Sl ¢

- Octobey 2006 Unleashing the By occssing Powerhouse

The Data Efficiency Benefits AMDZ1
of Silicon-Level Integration

CPU(s) |

—
@
e

e
@ =
& =3
8 O
= c
C e
| =
[}
=

Planned step-function improvement in

power/performance with cost reduction
opportunities

Octobuy 2006 Unbeashing the Procdssing Powerhouss

AMD Radeon HD 5970

37

GPU KRBT I
;:F %E—H-ﬂ\—n *@

B Thread: ITHIEAR BAL e nevies
m Thread block: EAf&fEfmLREA -

’ Block Block Block

® Cooperative Thread Array (CTA) el (0,0)

® VI Block’

® T tREILE AT B 2A

® El‘lf’ﬁ% %mﬁﬁﬁ "(Gm,‘l'!

® BLHFH2MERE e —-‘-—b ,f
B Grid: —#lthread block) A /i

® Ll14Emi24EeH 4R Block (1, 1)

® LHALR/NEF

B Kernel: ZEGPU_LEFHATHIZ LIEF

® One kernel «> one grid

Block '. Block
, 1.1) ‘~ (2, 1)

Processor Parallelism

CPUs GPUs

Multiple cores driving Emerging Increasingly general purpose
performance increases Intersection data-parallel computing
Improving numerical
precision

OpenCL

Heterogenous
Multi-processor Computing Graphics APIs
programming — and Shading
e.g. OpenMP Languages

OpenCL — Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous
parallel computing CPUs, GPUs, and other processors

A AT E

/\

o1k &4 S
® i i
® 5117)3

#ilinms Word
® < H 14N H

i 4n

Debugger

S = 1P

1.
2
3
4.
5.
6+
7
8~
9.

LRI W EAFR. W lr. {8 HThreadlocal

Executor : ExecutorServiceflFuture ¥¥ v ¥¢

SHZERA\ A1 : putFitake. offerflpoll. drainTo

2R FRER P HFBL: lock. condition. wait. notify. notifyAll Y& Y vs
Lock-free: atomic. concurrentMap.putlfAbsent. CopyOnWriteArraylList 3% % %
KTBHE L4

W RAEESTB: CountDownlatch. Barrier

5E B} #8: ScheduledExecutorService. KNI E B} 25 TimerWheel

R =KEMHE: Amdahl. Gustafson. Sun-Ni

10. 4 AFTE] 3
11. MR A EE M GPGPU. OpenCL

T

//I..I

/
&

.'I:.\l:lll [| .‘. ! | II:E:' st | ﬁ’_‘-‘ a1l -ﬁ
AlIIDADd Grou -

HIE

@ AL T a4

l. Future 2 #k+t 2 A &7

2. Lock%esynchronizedié & | & 4+ 4 7
3 1+ 4 A CAS?

4. Lock-Freef iz b Z AN R34 A4+ A7

