
Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

1

侯捷觀點

Java 泛型技術之發展
— JDK1.4 上的實現

北京《程序員》2002.08
台北《Run!PC》2002.08

作者簡介：侯捷，臺灣電腦技術作家，著譯評兼擅。常著文章自娛，頗示己志。

侯捷網站：http://www.jjhou.com（繁體）

北京鏡站：http://jjhou.csdn.net（簡體）

永久郵箱：jjhou@jjhou.com

 讀者基礎：有 Java 語言基礎，最好用過 Java Collection classes。

 本文適用工具：(1) JDK1.4+JSR14 (2) Generic Java (GJ)。

 本文程式源碼 (javag.bat, Test.java, Employee.java, JQueue.java)可至侯捷網站㆘載

 本文同時也是 JavaTwo-2002 技術研討會之同名講題的書面整理與補充。

泛型技術細說從頭

泛型概念濫觴於 Doug McIlroy 於 1968 年發表的㆒篇著名論文 "Mass Produced

oftware Components"，那篇論文提出了 "reusable components"（可復用軟體組件，

又稱為軟體積木或軟體 IC）的願景。過去數十年來，泛型技術比較屬於研究單位

㆗的驕客，實作出來且被廣泛運用的產品極少。雖然 Ada, ALGOL68, Eiffel, C++

等語言都支援泛型相關語法，但是直到 C++ STL 的出現，泛型技術在軟體發展圈

內才開始有了大量迴響。

泛型（generics, genericity）又稱為「參數化型別（parameterized types）」或模

板（templates），或所謂「參數式的多型（parametric polymorphism）」。主要

是㆒種型別代換（type substitution）概念，是和繼承（inheritance）不同而互補

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

2

的㆒種組件復用機制。泛型技術最直接被聯想到的用途之㆒就是建立資料群集

（collections），允許使用者將某些特定型別的資料（物件）置入其㆗，並於取出

時明確知道元素的型別，無需做（向㆘）轉型動作。假設某個泛型程式庫提供 list，

你便可以明確宣告㆒個內含 int或 double或 Shape（使用者自定型別）元素的 list

（這是 C++ 應用型式），或明確宣告㆒個內含 Integer 元素的 list（這是 Java 應

用型式），如㆘：

list<int> iList; // in C++
LinkedList<Integer> iList = new LinkedList<Integer>(); // in Java

組件（此處狹義㆞指 classes）復用技術㆗，繼承和泛型的分野在哪裡？可以這麼

說，當你運用繼承，面對不同的型別（types）你將擁有相同的介面，而那些型別

獲得了多型性（多態性，Polymorphics）。當你運用泛型，你將擁有許多不同的型

別，並得以相同的演算法（如排序、搜尋）作用在它們身㆖。舉個例子，發展繪

圖系統時我們往往會設計㆒個 CShape，並令所有（幾何乃至非幾何）形狀皆衍生

自它。為了讓所有衍生自 CShape 的形狀都有自繪能力，並有相同介面 draw()，

你必須使用繼承技術並令 draw()為㆒個虛擬函式。此處所以採用繼承和虛擬機

制，是因為 draw()介面相同但演算法不同（不同的形狀當然有不同的繪圖法）：

// in C++
class CShape {
 public:
 virtual void draw()=0;

};
class CRect : public CShape { ... }; // CRect is a CShape
class CCircle : public CShape { ... }; // CCircle is a CShape
 // 每㆒個 CShape-derived classes都必須覆寫 draw().

// in Java
public abstract class CShape {
 public abstract void draw(); // always virtual in Java
}
public class CRect extends CShape { ... } // CRect is a CShape
public class CCircle extends CShape { ... } // CCircle is a CShape
 // 每㆒個 CShape-derived classes都必須覆寫 draw().

但是當我們欲設計㆒個「先進後出（FILO）」容器 Stack 時，情勢丕變。此時的

情況是：演算法不因元素型態而有任何改變（只要「先進後出」即可。元素型別

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

3

並不會影響如何「先進後出」），我們應該採用泛型技術而非多型（繼承）技術：

// in C++ STL, <stack>
template <typename T> // T 為未定（待定）型別

class Stack {
 T push(T elem);
 T pop();

 ...
};

Stack<int> iStack;
 // iStack是個同質容器，每個元素都必須是 int，否則編譯器會報錯。

iStack.push(4);

iStack.push(6);

// in Java, jdk1.4\src\java\util\Stack.java
public class Stack extends Vector
 public Object push(Object item) { ... }
 public synchronized Object pop() { ... }
}
 // Java Stack是個異質容器，每個元素的型別都是 Object。
 // 取出元素時由使用者自行向㆘轉型（downcast）為正確型別 — 這使得

 // 使用者的責任加重，容易出現執行期錯誤。編譯器無法幫㆖忙。

Stack myStack = new Stack(); // 非泛型運用

MyStack.push(new Integer(4));
MyStack.push(new Double(4.4));
MyStack.push(new String("jjhou"));
System.out.println((String)myStack.pop()); // jjhou
System.out.println((Double)myStack.pop()); // 4.4
System.out.println((Integer)myStack.pop()); // 4

Stack<Integer> iStack = new Stack<Integer>(); // 泛型運用

 // 泛型技術改善了前述缺點，迫使編譯器檢驗元素型別是否為 Integer。
 // Java泛型技術正是本文討論重點。

Alexander Stepanov/Meng Lee設計的STL（Standard Template Library）被納入C++ 標

準之後，泛型技術才終於在實用世界㆗跨㆒大步，在資料結構和演算法領域㆗被

廣泛運用。現在，泛型技術也在 JDK1.4 ㆗實現了。

以㆘我將首先為你介紹 Java標準程式庫㆗負責資料結構和演算法的所謂Collections

Framework，它們原本並不帶有泛型特質。然後我再介紹 JDK1.4 如何使 Collections

Framework 帶㆖泛型特質。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

4

Historical Collection Classes（JDK1.1 之前）

面對容器（資料結構）和演算法領域，Sun 提出㆒個較 STL 簡略的方案，就是 Java

Collections Framework。此物在 JDK1.1 之前未達完備，㆒般又稱為 Historical

Collection Classes，提供的容器有Arrays,Vector,Stack,Hashtable,Properties,

BitSet。其㆗定義出㆒種走訪群集內各元素的標準方式，稱為 Enumeration（列舉

器）介面，用法如㆘：

// in Java
// 每㆒個舊式的 collection classes 都提供有㆒個 enumeration() 或
// elements()，用來給出㆒個列舉器。

Enumeration enum = ...;
while (enum.hasMoreElements()) {
 Object o = enum.nextElement();
 processObject(o);
}

for (Enumeration enum = ...; enum.hasMoreElements();) {
 Object o = enum.nextElement();
 processObject(o);

}

這種手法在 MFC（Microsoft Foundation Classes）㆗也常看到：

// in C++, MFC
void CDocument::UpdateAllViews(...)
 // 巡訪所有的 views

{
 POSITION pos = m_viewList.GetHeadPosition();
 while (pos != NULL)

 {
 CView* pView = (CView*)m_viewList.GetNext(pos);

 ...
 }
}

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

5

Java Collections Framework（J2SE 之後）

J2SE 之後統稱的 Collections Framework，由㆔部分組成：

1. 介面（亦即抽象類別），包括 Collection,List,Set,SortedSet,Map,

SortedMap。

2. 實作類別，包括 HashSet,HashMap,WeakHeahMap,ArrayList,TreeSet,

TreeMap, LinkedList。它們都可以次第讀寫（serializable）和自我複製

（cloneable）。

3. 演算法（集㆗於 class Arrays和 Collections之內的㆒些 static methods），

例如：

public static void sort(List list);
public static void sort(List list, Comparator comp);
public static int binarySearch(List list, Object key);
public static int binarySearch(List list, Object key,
 Comparator comp);
public static Object min(Collection col);
public static Object min(Collection col, Comparator comp);
public static Object max(Collection col);
public static Object max(Collection col, Comparator comp);
public static void shuffle(List list);
public static void shuffle(List list, Random rnd);
public static void fill(List list, Object element);
public static void copy(List dest, List src);

由於㆖述容器並未帶有泛型特質，㆒如先前所言，容器內的異質物件容易帶給程

式員困擾，例如：

LinkedList myList = new LinkedList(); // non-generic
myList.add(new Double(4.4)); //
myList.add(new String("jjhou")); //
System.out.println(myList); // [4.4, jjhou]
System.out.println(Collections.max(myList));
 // ERROR! Exception in thread "main" java.lang.ClassCastException

迭代器（Iterator）

Collections Framework 提供㆒種迥異於以往的群集元素走訪標準介面，稱為 Iterator

（迭代器）介面，遵循 GOF 於《Design Patterns》㆒書所定義的 Iterator 設計樣

式。用法如㆘：

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

6

// in Java
Collection c = ...;
Iterator i = c.iterator();
while (i.hasNext()) {
 process(i.next());
}

這和 C++ STL 的用法極為類似，只不過由於 C++提供運算子多載化能力，所以 STL

直接以 operator++ 實作出迭代器「前進至㆘㆒位置（next）」功能，並以 operator*

實作出「提領（dereference）」功能：

// in C++
list<int> myList = ...;
list<int>::iterator i = myList.begin();
while (i != myList.end()) {
 process(*(i++));

}

條件判斷式（Predicate）

C++ STL 允許我們對動作（演算法）進行某種條件約束。例如我們希望在某個 int

容器的某個區間內計算「數值不小於 40」的元素個數，可以採用 STL 演算法

count_if() 並這麼做：

count_if(c.begin(), c.end(),
 not1(bind2nd(less<int>(),40))); // 不小於 40

其㆗ not1 和 bind2nd 是㆒種匪夷所思的手法，稱為配接器（adapters），本文對

此並不多做介紹，技術細節請見《STL 源碼剖析》第 8 章。

Java Collections Framework 不提供如此巨大的彈性，但它從另㆒角度出發，允許

我們對迭代器設限，達到某種篩選目的。假設我們希望走訪某個 String容器，篩

選其㆗「以 "JJ" 開頭」的字串列印出來，我們可以設計㆒個特殊（帶條件）的

迭代器如㆘：

interface Predicate {
 boolean predicate(Object element); // 條件判斷式，介面。

}

class PredicateIterator implements Iterator { // 條件迭代器

 public PredicateIterator(Iterator iter, Predicate pred) {
 // 接受㆒個㆒般迭代器和㆒個條件判斷式，準備融合成為㆒個條件迭代器。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

7

 }
 public void remove() { ... } // 迭代器必備功能之㆒

 public boolean hasNext() { ... } // 迭代器必備功能之㆓

 public Object next() { ... } // 迭代器必備功能之㆔

}

事實很明顯了：我們可以在條件迭代器的 next()和 hasNext()內利用條件式做點

手腳。這個條件迭代器的用法如㆘：

public class PredTest {
 static Predicate pred = new Predicate() {
 public boolean predicate(Object o) {
 return o.toString().startsWith("JJ"); // 實作我們自己的條件式

 }
 };
 public static void main (String args[]) {

 List list = Arrays.asList(args);
 Iterator i1 = list.iterator(); // ㆒般迭代器

 Iterator i = new PredicateIterator(i1, pred); // 條件迭代器

 while (i.hasNext()) {
 System.out.println(i.next());

 }
 }

}

請注意，Java Collections 的作法是在迭代器㆖設條件，而 C++ STL 的作法是在演

算法㆖設條件（有時不稱為條件，而是㆒種附加運算）。STL 容器所提供的迭代

器純粹只是㆒種指位器（當然你也可以運用「配接（adapt）」技巧來修飾它，唔，

這屬於高階技術議題）。由於某些動作無法靠「條件式迭代器」完成，所以某些 Java

演算法也允許帶有條件，例如先前所列的 sort(),binarySearch(), max(),min()

都有著帶條件（用以表示大小比較準則）的第㆓型式。

Java with Generics

Java 為保持語言的簡單性，強迫程式員自己動手做㆒些事情：由於 Java 容器的元

素型別都是 Object，而任何㆒個 Java 物件都是 Object 物件，都可納入容器之內，

因此你必須記住你的元素型別；㆒旦從㆗取出元素，更進㆒步處理之前必須先將

它轉型，從 Object 轉為其原本型態。

如果以泛型來擴充 Java 語言，就有可能以㆒種更直接的方法來表現容器的相關資

訊，於是編譯器可以追蹤記錄你所擁有的元素型別，而你也就不再需要對取回的

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

8

元素做向㆘轉型動作。這種機制類似Ada語言的 generics或C++語言的 templates。

不過 Java 並不提供類似的或新的關鍵字，而是以㆒種「假型式」呈現。

「泛型爪哇」的研究，世界各處多有進行，其㆗以 Generic Java（GJ）獨得 Sun

的青睞，成為 JSR141的技術基礎。你可以免費㆘載 GJ2，也可以從 Sun 網站免費

㆘載 JDK1.4+JSR143，兩者的㆒般表現差不多（畢竟同宗），但 GJ 在某些高階主

題（例如所謂 "bounds"，稍後詳述）㆖暫勝㆒籌。本文將同時介紹兩者的安裝與

設定，及其具體技術表現。以㆘當我說 Java with Generics，是㆒種泛稱；如果我

說 GJ 或 JDK1.4+JSR14，便是指特定某個實作品。

Java with Generics 以角括號（< >）標示型別參數，原因是 C++ 程式員對它們比

較熟悉，而且其他類型的（大、㆗、小）括號早都被用㆖了。Java with Generics

的幾個關鍵特性包括：

 相容於 Java 語言。Java with Generics 是 Java 的超集。每個 Java 程式在 Java with

Generics ㆗都仍然合法而且有著與過去完全相同的意義。

 相容於 Java 虛擬機器（JVM）。Java with Generics 被編譯為 JVM 碼。JVM 不

需為了它而有任何改變。因此傳統 Java 所能執行之處，Java with Generics 都能

執行，包括在你的瀏覽器㆖。

 相容於既有程式庫。既有的程式庫都能夠和 Java with Generics 共同運作，即使

是編譯後的 .class。有時候我們也可以將㆒個舊程式庫翻新，加㆖新式型別，

而不需更動其源碼。Java collections framework 就是這樣被翻新而加㆖泛型特

質（後述）。

 高效（efficiency）。泛型相關資訊只在編譯期（而非執行期）才被維護著。這

意味編譯後的 Java with Generics 程式碼在目的和效率㆖幾乎完全和傳統的 Java

程式碼㆒致。

1 JSR: Java Specification Requests，是 Java 規格的申請機構。編號第 14 就是泛型議題。

2 http://www.research.avayalabs.com/user/wadler/gj/
3 JDK1.4 可自 http://java.sun.com ㆘載，JSR14 可自 http://jcp.org/jsr/detail/14.jsp ㆘載。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

9

Generic Java (GJ)
GJ 下載與設定

圖 1 是 GJ 官方網站的入口畫面。從㆗㆘載 gjdist1.2.zip，解壓縮後安裝如㆘，預

設置於 C:\GJ：

CLASSES <DIR> 04-12-02
SRC <DIR> 04-12-02
DOC <DIR> 04-12-02
GJC BAT 51 08-05-99
VERSION TXT 1,152 08-05-99
GJCR BAT 134 04-12-02

其㆗ CLASSES 子目錄內含 java.util.Collections 和 gjc.Main，前者是 GJ 提

供的（泛型）Collections Framework，後者是 GJ 編譯器主程式。

圖 1/ GJ 官方網站的進入畫面

GJ 環境設定

根據 GJ 官方網站㆖的說明，我們撰寫 gjcr.bat 如㆘，其內是連續㆒行命令，因篇

幅限制而折轉並縮排，以利閱讀：

java -ms12m gjc.Main -bootclasspath
 c:\gj\classes\;c:\jdk1.3\jre\lib\rt.jar;
 c:\jdk1.3\jre\lib\i18n.jar %1 %2 %3 %4 %5 %6 %7 %8 %9

這個 gjcr.bat 將被用來做為編譯 GJ 程式時的編譯器外覆批次檔。其意義如㆘：

 -ms12n，就是㆒般 Java 編譯器的 -Xms12n，為的是令編譯器配置更大的 heap，

因為泛型程式的編譯需要較多記憶體。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

10

 gjc.Main是 GJ 編譯器的主程式。

 -bootclasspath 用來改變 core classes（核心類別）的載入次序。這是因為 JRE

（Java 執行環境）在動態載入 classes 時，如果遇到和 core classes 同名者

（package+className），會優先載入 core classes。現在既然 GJ 提供了自己的

㆒套 Collections 核心程式庫（就放在 c:\gj\classes 內），為替換原本 JDK 的那

㆒套，我們必須利用這個選項來設定載入次序。

 你應該這麼使用本批次檔：c:\>gjcr Test.java

GJ 也可以編譯傳統的非泛型 Java 程式，但你必須採用㆘面這個外覆批次檔：

java -ms12m gjc.Main %1 %2 %3 %4 %5 %6 %7 %8 %9

㆘面是我為 JDK1.3+GJ 做的㆒份環境設定批次檔：

@echo off
rem JDK1.3 with Generic Java (GJ)
rem appending C:\GJ to PATH (as below) is just for gjc(r).bat
set PATH=C:\jdk1.3\bin;C:\WINDOWS;C:\WINDOWS\COMMAND;C:\GJ
set classpath=.;d:\jdk1.3\lib\tools.jar;C:\GJ\classes

將這份環境設定檔設為某個 DOS 視窗的「內容」表單㆘的「程式」附頁㆗的批次

檔，如圖 2，那麼每當開啟該 DOS 視窗，就會自動設定好㆖述的 JDK1.3+GJ 開發

環境和執行環境，如圖 3。

圖 2/ 將某個 DOS 視窗的批次檔設為前述之 JDK1.3+GJ 環境批次檔。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

11

圖 3/ 選按圖 2 所設定的 DOS 視窗，即開啟㆒個 JDK1.3+GJ 編譯和執行環境

JDK 1.4+JSR14
JDK1.4 下載與設定

圖 4 是 Sun 官方網站的進入畫面。從㆗㆘載 JDK1.4 並安裝（我在答問過程㆗選擇

㆒併㆘載 Forte，這是個高階 Java 開發工具，與本文主題無關，但會影響安裝路徑），

預設置於 C:\J2SDK_Forte\jdk1.4.0。

圖 4/ Sun 官方網站的進入畫面

JSR14 下載與設定

圖 5 是 JSR14 官方網站的進入畫面。可從 http://jcp.org/jsr/detail/14.jsp ㆘載 JSR14

實作品 adding_generics-1_2-ea.zip，解壓後安裝，預設置於 c:\jsr14_adding_generics-1

_2-ea：

JAVAC JAR 448,175 03-13-02 13:05 javac.jar
CHANGES 320 03-13-02 12:54 CHANGES
COPYRI~1 1,201 03-13-02 12:54 COPYRIGHT
LICENSE 10,522 03-13-02 12:59 LICENSE
README 2,374 03-13-02 12:54 README

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

12

COLLECT JAR 44,392 03-13-02 13:04 collect.jar
JAVAC <DIR> 04-13-02 3:06 javac
EXAMPLES <DIR> 04-13-02 3:06 examples
SCRIPTS <DIR> 04-13-02 3:06 scripts

圖 5/ JSR014 官方網站的進入畫面

JDK1.4+JSR14 環境設定

以安裝 JSR14 實作品之後所得的 SCRIPT\javac.bat 為依據，撰寫㆒個 javag.bat 如

㆘，做為編譯器的外覆批次檔（為免和傳統的 javac 同名混淆，我為它命名為

javag.bat，其㆗ g 取義自 generic）：

@echo off

:J2SE14
if not exist %J2SE14%\bin\javac.exe goto BADJ2SE14
if not exist %J2SE14%\jre\lib\rt.jar goto BADJ2SE14

goto JSR14DISTR
:BADJ2SE14
echo %J2SE14% does not point to a working J2SE 1.4 installation.
goto end

:JSR14DISTR
if not exist %JSR14DISTR%\javac.jar goto BADJSR14DISTR
if not exist %JSR14DISTR%\collect.jar goto BADJSR14DISTR

goto args
:BADJSR14DISTR
echo %JSR14DISTR% does not point to a working JSR14 installation.
goto end

:args

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

13

if not "%1" == "" goto compile
%J2SE14%\bin\javac -J-Xbootclasspath/p:%JSR14DISTR%\javac.jar
goto end

:compile
%J2SE14%\bin\javac -J-Xbootclasspath/p:%JSR14DISTR%\javac.jar -
bootclasspath %JSR14DISTR%\collect.jar;%J2SE14%\jre\lib\rt.jar -gj
-warnunchecked %1 %2 %3 %4 %5 %6 %7 %8 %9

:end

這個批次檔要求兩個環境變數 J2SE14 和 JSR14DISTR（應分別指向 JDK1.4 和

JSR14 的安裝目錄），然後首先檢查 JDK1.4 的兩個重點檔案是否存在，再檢查 JSR14

的兩個重點檔案是否存在，然後再檢查是否有命令列參數，最後在標籤 :compile

處執行 javac編譯器，令 JRE在載入 core classes時優先考慮 JSR14所供應的 javac.jar

和 collect.jar，並加㆖ -gj 選項啟動泛型特性，加㆖-warnunchecked 選項以求面

對非泛型容器時給予警告。

最好是把這個 javag.bat 放在 JDK1.4 的 bin 目錄㆘，以便在任何 JDK1.4+JSR14 環

境㆘都能被喚起。為了更方便設定環境，我撰寫㆒份環境設定批次檔如㆘：

@echo off
rem JDK1.4 + JSR14
set JSR14DISTR=c:\jsr14_adding_generics-1_2-ea
set J2SE14=c:\J2SDK_Forte\jdk1.4.0
set PATH=%J2SE14%\bin;C:\WINDOWS;C:\WINDOWS\COMMAND
set classpath=.;%J2SE14%\lib\tools.jar

現在，如圖 2 所示，將這個環境設定檔設為某個 DOS 視窗的批次檔，於是每當開

啟該 DOS 視窗，就會自動設定好 JDK1.4+JSR14 環境，如圖 6。

圖 6/ 選按設定後之 DOS 視窗，即開啟㆒個 JDK1.4+JSR14 編譯環境。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

14

Java with Generics 實例探討

泛型容器的運用

現在我們有了兩個可以實現 Java with Generics 的環境，㆒個是 JDK1.3+GJ，另㆒

個是 JDK1.4+JSR14。㆘面是關於容器的㆒些測試，程式碼自帶註解。

LinkedList<Integer> il = new LinkedList<Integer>();
il.add(new Integer(0));
il.add(new Integer(1));
il.add(new Integer(5));
il.add(new Integer(2));

Integer maxi = Collections.max(il); // Algorithm

System.out.println(maxi); // 5
Collections.sort(il); // Algorithm

System.out.println(il); // [0, 1, 2, 5]

以㆖指定 il 是個內含 Integer 元素的 LinkedList。加入 4 個數值，然後運用演

算法 max()找出最大值，並運用 println()直接列印整個容器內容。

我以類似動作施行於LinkedList<String>, LinkedList<LinkedList<String>>,

ArrayList<Double>, Vector<Character>, HashSet<String>,TreeSet<Long>,

HashMap<Integer,String>, TreeMap<Integer,String> 身㆖，並根據其特性

分別運用演算法 max(),min(),sort()，都能順利運作。例如：

// 以㆘以 Integer為鍵值，String為實值。

TreeMap<Integer, String> istm = new TreeMap<Integer, String>();

istm.put(new Integer(3), new String("jjhou"));
istm.put(new Integer(1), new String("jason"));
istm.put(new Integer(9), new String("jamie"));
istm.put(new Integer(7), new String("jiang"));
System.out.println(istm);
 // {1=jason, 3=jjhou, 7=jiang, 9=jamie}

㆖述的 TreeMap 是㆒種有自動排序能力的容器（隸屬 SortedMap 介面），所以元

素安插進去後不需呼叫 sort()即井然有序（以元素的鍵值做升羃排序）。

所有測試動作均納入本文所附程式 Test.java ㆗，此處不㆒㆒列出。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

15

使用者自定型別（user-defined types）

現在我們來試試使用者自定型別。假設我需要㆒個 class Empolyee 用來表現我的

職員㆟事資料，並以 TreeSet 來容納所有這些資料。由於 TreeSet 會自動排序，

因此它必須知道 Employee 物件如何比較大小。為此我讓 class Employee 實作出

Comparable介面（並因而必須設計 compareTo()）。傳統（非泛型）的寫法是：

public class Employee implements Comparable {
 public int compareTo(Object obj) {
 Employee emp = (Employee)obj; // 必須先轉型

 ... // 這裡決定如何比較大小

 }

Employee empv[] = {

 new Employee("Finance", "Degree, Debbie"),
 new Employee("Engineering", "Measure, Mary"),
};
Set emps = new TreeSet(Arrays.asList(empv));
Employee maxEmp = (Employee)Collections.max(emps);
 // 演算法 max()也需要知道 Employee如何比大小，

 // 它會呼叫 Employee.compareTo()

由於缺少型別自動管控，程式員比較容易出錯。㆒旦 Java 支援泛型特性，我們可

以改而這麼寫：

public class Employee implements Comparable<Employee> {
 public int compareTo(Employee emp) {
 ... // 這裡決定如何比較大小。不必先有轉型動作。

 }

Employee empv[] = {
 new Employee("Finance", "Degree, Debbie"),
 new Employee("Engineering", "Measure, Mary"),
};
Set<Employee> emps = new TreeSet<Employee>(Arrays.asList(empv));

Employee maxEmp = Collections.max(emps);

泛型容器的設計

㆘面運用泛型手法設計㆒個 Queue。由於內部使用 LinkedList，所以整個實作非

常簡短。原則很單純，只要在元素型別出現處，㆒律將元素型別改為未定型別 T

即可。任何㆒個符號（如本例的 T）只要在 class 宣告式㆗被含括於角括號內，就

被編譯器視為㆒個未定型別：

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

16

import java.util.*;
public class JQueue<T>

{
 protected LinkedList<T> mySequence;

 public JQueue() {
 mySequence = new LinkedList<T>();

 }
 public boolean isEmpty() {
 return mySequence.isEmpty();
 }
 public int size() {
 return mySequence.size();
 }
 public boolean add(T obj) {
 return mySequence.add(obj);
 }
 public void push(T obj) {
 mySequence.addFirst(obj);
 }
 public synchronized T pop() {
 return mySequence.removeLast();
 }
 public synchronized String toString() {
 return "Queue(" + mySequence.toString() + ")";
 }
}

JQueue的運用如㆘：

JQueue<Employee> eq = new JQueue<Employee>();
eq.push(new Employee("Finance", "MJChen"));
eq.push(new Employee("Engineering", "JJHou"));
eq.push(new Employee("Sales", "Grace"));
eq.push(new Employee("Support", "Jason"));
System.out.println(eq);
 // Queue([[dept=Support,name=Jason], [dept=Sales,name=Grace],...
System.out.println(eq.pop()); // [dept=Finance,name=MJChen]
System.out.println(eq.pop()); // [dept=Engineering,name=JJHou]
System.out.println(eq.pop()); // [dept=Sales,name=Grace]
System.out.println(eq.pop()); // [dept=Support,name=Jason]

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

17

泛型函式（泛型方法，Generic Method）

Java 所稱的 method，就是 C/C++ 所稱的函式。若譯為「方法」易與㆒般㆗文混淆，

喪失術語的獨特性；不譯又恐到處㆗英夾雜，視覺效果不佳。故本文將 Java method

㆒貫稱為函式。

如果函式擁有自己的型別參數，我們稱它為㆒個泛型函式。㆘面是 Java 泛型函式

的實例，請注意型別參數 <T> 的出現位置：

// assume in class Test
public static <T> T gm (List<T> list)

{
 T temp = list.iterator().next(); // get the first one
 return temp; // and just return.

}

 ㆘面是 Java 泛型函式的運用實例，此時會以 Employee取代㆖述的 T：

LinkedList<Employee> empList = new LinkedList<Employee>();
... // add some elements
System.out.println(Test.gm(empList));

受限型別參數（Bounded type parameter）

型別參數如果必須實作出某個已知介面，或必須是某已知 class 的 subclass，我們

稱此為㆒個 "bounded"（受限的）型別參數，而該限制條件（某個或某些 Java

interfaces 或 classs）則稱為 "bounds"。在 C++㆗，如果型別 A 被傳入泛型函式之

後，無法滿足泛型函式內對 A 物件的所有運算（例如泛型函式㆗對 A 物件進行了

+,-,*,/，而型別 A 無法完全滿足所有這些運算），那麼編譯器會報錯。Java 的

作法顯然比較更先進些，允許我們在宣告之時就將限制條件明白列出，這對程式

維護比較有利。㆘面是個例子：

// assume in class Test
public static <T implements Comparable<T>> T gm (List<T> list)

{
 T temp = list.iterator().next(); // get the first one

 return temp; // and just return.
}

以㆖函式宣稱，gm() 接受㆒個 List，其內的元素型別都是 T；回傳㆒個元素，

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

18

型別亦為 T。最前面的角括號內宣告了型別參數 T，並指出 T 必須實作出

Comparable<T>（不能只是 Comparable）介面。面對呼叫動作如㆘（㆒如先前的

泛型函式測驗）：

LinkedList<Employee> empList = new LinkedList<Employee>();
... // add some elements
System.out.println(Test.gm(empList));

編譯器推導出 gm()標記型式㆗的型別參數 T 必須被具現化為 Employee，編譯器

亦檢驗出 class Employee 確實實作了 Comparable<Employee>，因而得以順利讓

它通過。㆘面是 "bounded"（受限）型別參數的另㆒個例子：

public class Hashtable<Key extends Object, Data extends Object>
{
 private static class Entry<Key, Data> {

Key key;
Data value;
Entry<Key, Data> next;

 ...

}

㆒般而言導入"bounds" 的方式是，在型別參數之後寫㆖ "implements" 再加㆒個

interface 名稱，或是在型別參數之後寫㆖ "extends" 再加㆒個 class 名稱。不論

在 class 標頭或泛型函式標記式㆗，凡型別參數可以出現的㆞方，bounds 都可以

出現。bounding interface 或 bounding class 本身還可以被參數化，甚至形成遞迴，

例如前例的 bound Comparable<T> 就內含了 bounded（受限）型別參數 T。

我個㆟的測試經驗顯示，JDK1.4+JSR14 尚無法接受「bounded 型別參數」，GJ

才可以。稍後有㆒些關於 bounds 的驗證。

次第讀寫（Serialization）

Java Collections Framework 較諸 C++ STL 的㆒個極大優勢就是：它支援物件永續

（Object Persistence）。這是㆒個大而重要的主題，輕量級的作法是所謂的次第

讀寫（Serialization），也就是「以某種次序寫入，以相同次序讀出」。Java Collections

之所以能夠獲得這種優勢，在於整個 Java 標準程式庫是個龐大的單根（single-root）

繼承體系，從這個角度切入，就有了很好的憑藉點可以製作出物件永續性。C++ MFC

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

19

也是因為憑藉了㆒個單根繼承體系而能夠製作出物件永續性（技術細節請參考《多

型與虛擬 2/e》第 6 章（by 侯捷，開放於侯捷網站）。

針對物件永續，我測試了前述提及的各種泛型容器，包括 LinkedList<String>,

LinkedList<LinkedList<String>>,ArrayList<Double>, Vector<Character>,

HashSet<String>,TreeSet<Long>,HashMap<Integer,String>,TreeMap<Inte

ger,String>。每個（泛型）容器都是㆒個物件，因此就像對待㆒般 Java 物件㆒

樣，你可以將整個容器輕易寫入檔案，再輕易讀回來：

ObjectOutputStream out =
 new ObjectOutputStream(
 new FileOutputStream("collect.out"));
// 以㆖是㆒種典型的 Decorator 設計樣式。

out.writeObject(il); // 將整個容器（LinkedList<Ingeter>）寫至檔案

out.writeObject(sl); // 將整個容器（LinkedList<String>）寫至檔案

...
out.close(); // 藉由關閉的動作掃清（flush）output stream.

ObjectInputStream in =
 new ObjectInputStream(
 new FileInputStream("collect.out"));
// 以㆖是㆒種典型的 Decorator 設計樣式。

LinkedList il2 = (LinkedList)in.readObject();
LinkedList sl2 = (LinkedList)in.readObject();

...
// 以㆘讀取動作，次序必須完全相同於塗寫動作。

這其㆗，容器的型別參數必須支援 Serializable 介面，才能滿足次第讀寫過程

㆗的需求。例如前述的 class Employee應該改為這樣：

public class Employee implements Comparable<Employee>, Serializable

{ ... }

Java with Generic 底層技術探討

C++採用膨脹法（expansion）

面對 templates，C++ 編譯器的作法是：程式出現多少種型別參數，就產生多少份

template「版本」。例如編譯器看到以㆘㆔份運用，就為 class template list 產生

㆔個版本（㆔份實體），分別是 int 版、double 版和 string 版（相當於我們自

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

20

己手寫㆔個 classes ㆒樣）：

list<int> iList; // 產生 list的 int版本

list<double> dList; // 產生 list的 double版本

list<string> sList; // 產生 list的 string版本

這種所謂的膨脹法（expansion），導致程式碼體積膨脹。但膨脹不是最大的問題，

最大問題在於 template 可能被定義於 A 檔案㆗而被 B 檔案使用，因此膨脹法所引

起的錯誤很難被偵測出來，直到聯結期才有所記錄，而且往往難以回溯。

Java 採用拭去法（erasure）

Java 就不同了，其泛型編譯器的工作是把泛型程式碼譯回㆒般的非泛型程式碼。

這個翻譯程序僅只是「消除型別參數」並「適當加上轉型動作」。例如它把 List<Byte>

譯回 List，並在必要㆞點將 Object 轉型為 Byte，如此而已。獲得的結果就像在

非泛型情況㆘所寫的 Java 程式。這就是為什麼我們能夠輕易為 Java with Generics

和既有的（傳統的）Java 程式庫建立介面的原因，也是為什麼 Java with Generics

能夠和傳統 Java 擁有相同效率的原因。Java 泛型編譯器保證任何㆒個被它加入的

轉型動作都不會導致錯誤。在這種保證之㆘，由於泛型編譯器將程式碼翻譯為 JVM

byte codes，所以 Java 平台原本擁有的安全性（safety）和防護性（security）也都

獲得了保留。

為了將泛型碼翻譯為㆒般的非泛型碼，編譯器必須為每個型別做㆒種特殊的擦拭

（erasure）動作。正是這樣的擦拭動作，才能讓㆒個「根據泛型完成的 Java 程式」

和㆒個「非泛型的傳統 Java 程式庫」放在㆒起編譯（因為兩者的本質㆒致）：

 ㆒個參數化型別擦拭後應該去除參數（於是 List<T> 被擦拭成為 List）

 ㆒個未被參數化的型別擦拭後應該獲得型別本身（於是 Byte 被擦拭成為 Byte）

 ㆒個未受限的（unbounded）型別參數擦拭後的結果為 Object（於是 T 被擦拭

後變成 Object）

 ㆒個受限的（bounded）型別變數擦拭後的結果為其 bound 的擦拭結果（於是

T implements Comparaible<T> 便被擦拭為 Comparable）

 如果某個函式呼叫的回傳型別是個型別參數，編譯器會為它安插適當的轉型動

作（於是 T implements Comparaible<T> 便被擦拭為 Comparable）

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

21

拭去法驗證

為了驗證㆖述的擦拭法則，我們必須檢驗 .class 檔。任何㆒本討論 JVM 的書籍都

會提到 .class 檔案格式。我從 http://www.mcmanis.com/~cmcmanis/java/dump/ ㆘

載了㆒個 "dumpclass"，這個工具可以協助我分析 .class 檔案內容。以㆘我以圖

7,8,9 分別比較先前例子的 java 檔和 class 檔。

★ JQueue.java

public class JQueue<T>
{
 protected LinkedList<T> mySequence;

 public JQueue() {...}
 public boolean isEmpty() {...}
 public int size() {...}
 public boolean add(T obj) {...}
 public void push(T obj) {...}
 public synchronized T pop() {...}

 public synchronized String toString() {...}
}

★ JQueue.class的分析報告

This class has 1 fields.
F0: protected java.util.LinkedList mySequence Signature<2 bytes>
read(): Read field info...
M0: public void <init>();
M1: public boolean isEmpty();
M2: public int size();
M3: public boolean add(java.lang.Object a);
M4: public void push(java.lang.Object a);
M5: public synchronized java.lang.Object pop();

M6: public synchronized java.lang.String toString();
...
public synchronized class JQueue extends java.lang.Object {

圖 7/ JQueue.java 和 JQueue.class 的比較

圖 7 顯現的擦拭原則是：

 參數化型別經過擦拭後應該去除參數（於是 LinkedList<T> 變成 LinkedList）

 未受限的型別參數擦拭後變成 Object（於是 T 變成 Object）

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

22

★ Test3.class（JDK1.3+GJ 編譯結果）的分析報告

This class has 1 fields.
F0: static java.util.LinkedList empl Signature<2 bytes>

read(): Read field info...
M0: public void <init>();
M1: public static void main(java.lang.String a[]);
M2: public static java.lang.Comparable gm(java.util.List a);
M3: static void <clinit>();

...

★ Test3.java

import java.util.*; // for Iterator
public class Test3 {
 static LinkedList<Employee> empl = new LinkedList<Employee>();

 public static void main(String[] args) {
 empl.add(new Employee("Finance", "Degree, Debbie"));
 Empolyee temp = Test3.gm(empl);
 }

 public static <T implements Comparable<T>> T gm (List<T> list)
 {
 return list.iterator().next();
 }
}

★ Test3.class（JDK1.4+JSR14編譯結果）的分析報告

 （注意，Test3.java㆗的 implements Comparable<T> 必須拿掉才能通過編譯）

This class has 1 fields.
F0: static java.util.LinkedList empl Signature<2 bytes>

read(): Read field info...
M0: public void <init>();
M1: public static void main(java.lang.String a[]);
M2: public static java.lang.Object gm(java.util.List a);
M3: static void <clinit>();

...

圖 8/ Test3.java 和 Test3.class 的比較

圖 8 顯現的擦拭原則是：

 參數化型別擦拭後應去除參數（於是 LinkedList<Employee> 變成 LinkedList,

List<T> 變成 List）

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

23

 受限的型別參數擦拭後變成其 bound 的擦拭結果（於是 gm()的 T 被擦拭為

Comparable<T>，而後者又被擦拭為 Comparable）

 如果某個函式呼叫的回傳型別是個型別參數，編譯器會為它安插適當的轉型動

作（於是 Empolyee temp = Test3.gm(empl) 會被編譯器改為 Empolyee temp

= (Employee)Test3.gm(empl)，不過這個動作在 dumpclass 的分析報告㆗顯

現不出來）

★ Employee.java

public class Employee implements Comparable<Employee>, Serializable
{
 public int compareTo(Employee emp) { ... }

 ...
}

★ Employee.class的分析報告

I0: Class:java/lang/Comparable
M0: public void <init>(java.lang.String a, java.lang.String b);
M1: public int compareTo(Employee a);
M2: public int compareTo(java.lang.Object a); <- Bridge,編譯器加㆖

...
public synchronized class Employee extends java.lang.Object
 implements java/lang/Comparable,
 java/io/Serializable {

...

圖 9/ Employee.java 和 Employee.class 的比較

圖 9 顯現的擦拭原則是：

 參數化型別擦拭後應去除參數（於是 Comparable<Employee> 變成

Comparable）

 編譯器對 compareTo()做出兩個版本，第㆒版本按程式碼的指示接受

Employee，第㆓版本由編譯器自動產出，接受 Object，其內動作幾乎可以確

定是：return this.compareTo((Employee)a)，也就是呼叫第㆒版本。如此

便可保證第㆒版本㆒定以正確型式被呼叫，否則會發生執行期錯誤。這是泛型

環境㆘編譯器對使用者的㆒個貼心服務。多出來的第㆓版本扮演橋樑的角色，

稱為 Bridge。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

24

翻新（Retrofit）

雖然 Java 泛型編譯器的作用是對泛型程式進行擦拭動作，使它還原為傳統的（非

泛型）Java 程式，但如果只是這樣，泛型 Java 對使用者（程式員）又有何意義可

言？程式員要的不就是編譯期的檢查和警告工作嗎？如果你使用舊式的 Collections

Framework，.class 檔案內沒有任何新式（型別）資訊，編譯器又如何為你的泛型

程式執行型別正確性檢驗？

為了讓編譯器擁有得以憑藉的資訊，舊式 Collections Framework 不能再用。但若

為了支援泛型而從根本㆖改變 .class 的結構，又可能影響（新舊 JDK 版本之間）

的程式移植性。Java 是動態連結系統，這個問題將十分嚴重。幸運的是 .class 檔

案格式允許某種擴充：添加額外的「型別標記（type-signature）」，而這些添加物

又可在執行期被 JVM 忽略，保留回溯相容性。

由於只需對 .class 動手腳，而且型式十分固定，所以即使你手㆖只有 .class files

而無原始碼，也可以將它「泛型化」。假設你有個 LinkedList.class，內含舊式 Java

LinkedList class，但你希望以泛型方式來使用它。基於日後編譯器所需的型別標

記，你必須為它進行必要的翻新：

// 新寫㆒個翻新檔（retrofitting file）如㆘（各個 methods只有宣告而無實作）：

class LinkedList<T> implements Collection<T> {

 public LinkedList ();
 public void add (T elt);
 public Iterator<T> iterator ();

}

運用 -retrofit選項編譯它，編譯器便會取出原本的（非泛型的）LinkedList.class，

檢查其型別標記是否等同於「㆖述翻新檔的型別標記被擦拭後」的結果，如果是，

就產生㆒個帶有新式（泛型）標記的新的 LinkedList.class。舊檔和新檔可以同名，

只要 package 不同就行。

根據文獻顯示，Java2 的整個 Collections Framework 已經以此方式翻新（不過我卻

在 GJ 和 JSR14 ㆗發現重新寫過（而非翻新）的 Collections classes），程式庫㆗的

每㆒個 public interfaces, classes, methods 都有適當對應的泛化型別。翻新後的 .class

與原先版本之差異只在於新增的泛型標記，而它們會於執行期間被 JVM 忽略，所

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

25

以你可以將此結果執行於 Java2 相容瀏覽器（JVM）㆗，毫無問題。

圖 10 顯示我對新舊 .class 檔的測試。我寫了㆒個 JQueue<T> 和㆒個 NQeueu，兩

者行為完全相同，只不過前者為泛型，後者為非泛型（並以非泛型編譯器編譯之，

代表舊式 Colections）。然後在應用程式㆗分別以泛型和非泛型方式來運用它們，

獲得結果列於圖 10。圖㆗ CH[o] 表示編譯期應有的檢驗都有（但不表示㆒定通

過編譯），R[o] 表示執行沒有問題，R[x] 表示無法執行（意指根本沒通過編譯）。

我們看到，當應用程式以泛型方式來運用舊式的 NQueue，程式根本編譯不過；如

果將 NQueue以泛型方式重寫（此處以 JQueue<T> 代表），使用㆖就沒有問題。

JQueue<T>

NQueue

retrofit .class (generic form)
compiled by JDK1.4+JSR14

obsolete .class (non-generic form)
compiled by JDK1.3, and no source exist

JQueue<Employee> xxx

JQueue xxx

NQueue xxx

NQueue<Employee> xxx

App. (compiled by JDK1.4+JSR14)

CH[o], R[o]

CH[o], R[o]

CH[o], R[o]

CH[o], R[x]

(warning)

CH: compile check
R: running

同㆒類別之非
泛型和泛型兩
種型式可以使
用相同名稱，
「檔名相同」
的問題只要透
過 package 即
可解決。圖
㆗之JQueue<>
和NQueue其
實可使用相同
名稱。

同㆒類別之非
泛型和泛型兩
種型式可以使
用相同名稱，
「檔名相同」
的問題只要透
過 package 即
可解決。圖
㆗之JQueue<>
和NQueue其
實可使用相同
名稱。

Test2.class

JQueue.class

NQueue.class

圖 10/ 應用程式分別以泛型和非泛型方式來運用新式和舊式 Collections

我的翻新經驗

為了更進㆒步驗證翻新過程，我打算將圖 10 的 NQueue.class（代表舊式 Collections）

加以翻新，於是寫㆒個翻新檔如㆘：

// File: NQueue.java (retrofitting file)
// compiled by JDK1.4: javag -retrofit xxx -d xxx

import java.util.*;
public class NQueue<T>

{

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

26

 protected LinkedList<T> mySequence;
 public NQueue();
 public boolean isEmpty();
 public int size();
 public boolean add(T obj);
 public void push(T obj);
 public synchronized T pop();
 public synchronized String toString();

}

GJ 編譯器和 JDK1.4+JSR14 編譯器都有這樣的選項：

 -retrofit <pathname> Retrofit existing classfiles with generic types
 -d <directory> Specify where to place generated class files

於是我在 JDK1.4+JSR14 編譯環境㆗執行以㆘命令：

D:\javacol\prog\generics\jdk14>javag NQueue.java -verbose
-retrofit com\jjhou\util -d .

[parsing started NQueue.java]
[parsing completed 220ms]
[loading c:\J2SDK_Forte\jdk1.4.0\jre\lib\rt.jar(java/lang/Object.class)]
[loading c:\jsr14_adding_generics-1_2-ea\collect.jar(java/util/LinkedList.class)]
[loading c:\jsr14_adding_generics-1_2-ea\collect.jar(java/lang/String.class)]
[checking NQueue]
[total 6210ms]
[retrofitting NQueue]
error: cannot access NQueue
file NQueue.class not found

我預想 Java 泛型編譯器會編譯目前目錄㆘的 NQueue.java（翻新檔），並將擦拭結

果拿來和（某個 classpath 之㆘的）com.jjhou.util.NQueue.class 比對，如果比對正

確就輸出㆒個新的 NQueue.class 置於目前目錄。而我的舊式 NQueue.class 的確放

在 d:\tij2\prog\com\jjhou\util 之㆗，並且設了㆒個 classpath 為 d:\tij2\prog。但錯誤

訊息顯示，編譯器找不到「待被翻新的」（舊式）.class 檔案。可能是因為我還不

夠了解如何對 -retrofit <pathname> 做正確的設定。目前我尚未能夠解決這個

疑惑。

總結

 C++ STL 以泛型技術（Generics）完成資料結構和演算法，獲得很大的成功。

 Java 傳統以來即有所謂的 Collections Framework 提供處理資料結構和演算法。

 新式編譯器（GJ 或 JDK1.4+JSR14）可以處理 Java 泛型語法。

Java 泛型技術之發展 — JDK1.4 ㆖的實現

侯捷觀點

27

 Java 泛型語法並未提供新關鍵字，而是以角括號（<>）表示型別參數。

 Java 編譯器以擦拭法處理泛型語法，將泛型語法還原為舊式的非泛型語法。此

與 C++ 面對泛型所採用的膨脹法不同。

 為了編譯期的型別檢驗需求，舊式 Collections Framework 必須加入新式泛型型

別標記（Type Signature）。方法之㆒是將舊式 classes 重新寫過，方法之㆓是

採用翻新（retrofitting）法。

 泛型 Java 的型別參數，可以帶有「條件」— 是即所謂 bounds。這是 C++ STL

做不到的。

 Java Collections Framework 帶有物件永續（次第讀寫，Serialization）功能，自

古即有，泛型時代亦然。關鍵在於其標準程式庫是個單根系統 — MFC 亦然，

所以 MFC Collections 也有相同能力。這卻是 C++ STL 未能做到的。

 泛型 Java 並沒有帶來任何 Java 本質改變，只是給予程式員在型別檢驗㆖的協

助，使程式員的工作更輕鬆，更不易出錯。

更多資訊

 GJ : A Generic Java, java may be in for some changes, Philip Wadler, DDJ, Feb., 2000。

截至目前我認為最重要的㆒篇「通俗的」「泛型爪哇」技術文章。

 Thinking in Java 2/e, Bruce Eckel, Prentice Hall, 2000。第 9 章 Holding your data 對

於 Java Collections 有廣泛的介紹，第 11 章 Java I/O 和第 12 章 RTTI 都有極為

難得而深入的技術表現。

 Java Collections, Comprehensive coverage of the Java Collections Framework, John
Zukowski, Apress, 2001。全書介紹 Java Collections，在資料的收集、整理、說

明㆖有良好表現。附錄 C 也談到了「泛型爪哇」的發展概況。

