
     http://www.blogjava.net/dreamstone                                  1/21 

 
Ant 介绍 
 
1,什么是 ant 
 ant 是构建工具 
2,什么是构建 
 概念到处可查到，形象来说，你要把代码从某个地方拿来，编译，再拷贝到某个地方去

等等操作，当然不仅与此，但是主要用来干这个 
3,ant 的好处 
 跨平台  --因为 ant 是使用 java 实现的，所以它跨平台 
 使用简单--与 ant 的兄弟 make 比起来 
 语法清晰--同样是和 make 相比 
 功能强大--ant 能做的事情很多，可能你用了很久，你仍然不知道它能有多少功能。当

你自己开发一些 ant 插件的时候，你会发现它更多的功能。 
4,ant 的兄弟 make 
 ant 做的很多事情，大部分是曾经有一个叫 make 的所做的，不过对象不同，make 更多

应用于 c/c++ ,ant 更多应用于 Java。当然这不是一定的，但大部分人如此。 
下边开始一步步的带你走进 ant 的世界 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ant 安装 

http://www.blogjava.net/dreamstone
 

                                  1/21 



     http://www.blogjava.net/dreamstone                                  2/21 

1、到http://ant.apache.org/bindownload.cgi
下載 Ant，我使用的版本是 1.70 

解压缩下载文件到你的工作目录，这里以 d:\ant_home 为例  

2,如图新增系统变量  

新增系统变量：ANT_HOME，内容：d:\ant_home\apache-ant-1.70 

 

在 PATH 环境变量中加入 Ant 的 bin 目錄：%ANT_HOME%\bin  

 

如果要让 Ant 能支持 JUnit，需要直接將 JUnit 的 junit.jar 放置在 Ant 的 l ib 目錄，并记

得改变 CLASSPATH 中原先有关于 JUnit 的设定，例如：%ANT_HOME\lib\junit.jar，虽

然也有其它的方式可以設定，但這是最快最簡單的方法。   

 

如果是 Windows 2000/XP，请在 [系统内容 /高级 /环境变量 ]中设置 [系统变量 ]，以完成以

上的设定，例如：   

 

 
3、测试安装 
CMD 进入命令行界面，运行 Ant  
出现如下提示，说明安装成功 
E:\srcgen\webwork>ant 
Buildfile: build.xml does not exist! 
Build failed 
 
二、第一个 ant 脚本 

http://www.blogjava.net/dreamstone
 

                                  2/21 

http://ant.apache.org/bindownload.cgi


     http://www.blogjava.net/dreamstone                                  3/21 

使用 ant 来达成目的，完成一件事情的实例 
1、目的： 

 编写一个程序 
 编译它们 
 把它打包成 jar 包 
 把他们放在应该放置的地方 
 运行它们 

我们用文本编辑器编写一个 HelloWorld 如下 
这里为了简单起见只写一个程序，就是 HelloWorld.java 程序代码如下： 
package test.ant; 
public class HelloWorld{ 
 public static void main(String[] args){ 
  System.out.println("Hello world1"); 
 } 
}; 
2,然后用 ant 完成剩下的步骤。 
建立一个 build.xml 文件,内容如下 
<?xml version="1.0" encoding="UTF-8" ?> 
<project name="HelloWorld" default="run" basedir="."> 
 <property name="src" value="src"/> 
 <property name="dest" value="classes"/> 
 <property name="hello_jar" value="hello1.jar"/> 
 <target name="init"> 
  <mkdir dir="${dest}"/> 
 </target> 
 <target name="compile" depends="init"> 
  <javac srcdir="${src}" destdir="${dest}"/> 
 </target> 
 <target name="build" depends="compile"> 
  <jar jarfile="${hello_jar}" basedir="${dest}"/> 
 </target> 
 <target name="run" depends="build"> 
  <java classname="test.ant.HelloWorld" classpath="${hello_jar}"/> 
 </target> 
 <target name="clean"> 
  <delete dir="${dest}" /> 
  <delete file="${hello_jar}" /> 
 </target> 
 <target name="rerun" depends="clean,run"> 
  <ant target="clean" /> 
  <ant target="run" /> 
 </target> 
</project> 
解释上边的配置文件 

http://www.blogjava.net/dreamstone
 

                                  3/21 



     http://www.blogjava.net/dreamstone                                  4/21 

<?xml version="1.0" encoding="UTF-8" ?>  
build.xml 中的第一句话，没有实际的意义,指定一下 encoding，几乎所有的 xml 的第一行 
 
<project name="HelloWorld" default="run" basedir="."> 
</project> 
ant 的所有内容必须包含在这个里边，name 是你给它取的名字，basedir 故名思意就是工作的

根目录 .代表当前目录。default 代表默认要做的事情。 
 
<property name="src" value="src"/> 
类似程序中的变量，为什么这么做想一下变量的作用 
 
<target name="compile" depends="init"> 
  <javac srcdir="${src}" destdir="${dest}"/> 
</target> 
把你想做的每一件事情写成一个 target ，它有一个名字，depends 是它所依赖的 target，在执

行这个 target 例如这里的 compile 之前 ant 会先检查 init 是否曾经被执行过，如果执行过则

直接直接执行 compile，如果没有则会先执行它依赖的 target 例如这里的 init，然后在执行这

个 target 
 
如我们的计划 
编译： 
<target name="compile" depends="init"> 
 <javac srcdir="${src}" destdir="${dest}"/> 
</target> 
 
做 jar 包: 
<target name="build" depends="compile"> 
 <jar jarfile="${hello_jar}" basedir="${dest}"/> 
</target> 
运行： 
<target name="run" depends="build"> 
 <java classname="test.ant.HelloWorld" classpath="${hello_jar}"/> 
</target> 
为了不用拷贝，我们可以在最开始定义好目标文件夹，这样 ant 直接把结果就放在目标文件

夹中了 
新建文件夹: 
<target name="init"> 
 <mkdir dir="${dest}"/> 
</target> 
为了更多一点的功能体现，又加入了两个 target 
 
 
 
删除生成的文件 

http://www.blogjava.net/dreamstone
 

                                  4/21 



     http://www.blogjava.net/dreamstone                                  5/21 

<target name="clean"> 
 <delete dir="${dest}" /> 
 <delete file="${hello_jar}" /> 
</target> 
再次运行，这里显示了如何在一个 target 里边调用其他的 target 
<target name="rerun" depends="clean,run"> 
 <ant target="clean" /> 
 <ant target="run" /> 
</target> 
好了，解释完成了，下边检验一下你的 ant 吧 
新建一个 src 的文件夹，然后把 HelloWorld.java 按照包目录放进去 
做好 build.xml 文件 
在命令行下键入 ant ,你会发现一个个任务都完成了。每次更改完代码只需要再次键入 ant 
 
有的时候我们可能并不想运行程序，只想执行这些步骤中的某一两个步骤，例如我只想重新

部署而不想运行，键入 
ant build 
 
ant 中的每一个任务都可以这样调用 ant + target name 
好了，这样一个简单的 ant 任务完成了。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
整合 ant 

http://www.blogjava.net/dreamstone
 

                                  5/21 



     http://www.blogjava.net/dreamstone                                  6/21 

进一步学习一个稍微复杂一点点的 ant 
在实际的工作过程中可能会出现以下一些情况，一个项目分成很多个模块，每个小组或者部

门负责一个模块，为了测试，他们自己写了一个 build.xml,而你负责把这些模块组合到一起

使用，写一个 build.xml 
这个时候你有两种选择： 
1,自己重新写一个 build.xml ，这将是一个麻烦的事情 
2,尽量利用他们已经写好的 build.xml，减少自己的工作 
 
举个例子： 
假设你下边有三个小组，每个小组负责一个部分，他们分别有一个 src 和一个写好的

build.xml 
这个时候你拿到他们的 src，你需要做的是建立三个文件夹 src1 ,src2, src3 分别把他们的 src
和 build.xml 放进去，然后写一个 build.xml 
 
<?xml version="1.0" encoding="UTF-8" ?> 
<project name="main" default="build" basedir="."> 
 <property name="bin" value="${basedir}\bin" />  
 <property name="src1" value="${basedir}\src1" />  
 <property name="src2" value="${basedir}\src2" />  
 <property name="src3" value="${basedir}\src3" />  
 <target name="init"> 
  <mkdir dir="${bin}" /> 
 </target> 
 <target name="run"> 
  <ant dir="${src1}" target="run" /> 
  <ant dir="${src2}" target="run" /> 
  <ant dir="${src3}" target="run" /> 
 </target> 
 <target name="clean"> 
  <ant dir="${src1}" target="clean" /> 
  <ant dir="${src2}" target="clean" /> 
  <ant dir="${src3}" target="clean" /> 
 </target>  
 <target name="build" depends="init,call"> 
  <copy todir="${bin}"> 
   <fileset dir="${src1}"> 
    <include name="*.jar" /> 
   </fileset> 
   <fileset dir="${src2}"> 
    <include name="*.jar" /> 
   </fileset> 
   <fileset dir="${src3}"> 
    <include name="*.jar" /> 
   </fileset> 

http://www.blogjava.net/dreamstone
 

                                  6/21 



     http://www.blogjava.net/dreamstone                                  7/21 

  </copy> 
 </target> 
 <target name="rebuild" depends="build,clean"> 
  <ant target="clean" /> 
  <ant target="build" /> 
 </target> 
</project> 
 
ok 你的任务完成了。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ant 进阶 

http://www.blogjava.net/dreamstone
 

                                  7/21 



     http://www.blogjava.net/dreamstone                                  8/21 

上边你完成了任务，但是你是否有些感触呢，在那些 build.xml 中，大多数是重复的，而且

更改一次目录需要更改不少东西。是否能让工作做的更好一点呢，答案是肯定的。 
引入两个东西： 
1,propery 
2,xml include 
 
这两个东西都有一个功能，就是能把 build.xml 中<propery />中的内容分离出来，共同使用 
除此之外它们各有特点： 
 
propery 的特点是维护简单，只需要简单的键值对，因为并不是所有人都喜欢 xml 的格式 
 
xml include 的特点是不单可以提取出属性来，连 target 也可以。 
 
还是以前的例子： 
例如我们想把 src1 src2 src3 这三个属性从 xml 中提出来，可以新建一个文件叫 all.properties 
里边的内容 
src1=D:\\study\\ant\\src1 
src2=D:\\study\\ant\\src2 
src3=D:\\study\\ant\\src3 
然后你的 build.xml 文件可以这样写，别人只需要更改配置文件，而不许要更改你的 build.xml
文件了 
 
<?xml version="1.0" encoding="UTF-8" ?> 
<project name="main" default="build" basedir="."> 
 <property file="all.properties" />  
 <property name="bin" value="${basedir}\bin" />  
 <target name="init"> 
  <mkdir dir="${bin}" /> 
 </target> 
 <target name="run"> 
  <ant dir="${src1}" target="run" /> 
  <ant dir="${src2}" target="run" /> 
  <ant dir="${src3}" target="run" /> 
 </target> 
 <target name="clean"> 
  <ant dir="${src1}" target="clean" /> 
  <ant dir="${src2}" target="clean" /> 
  <ant dir="${src3}" target="clean" /> 
 </target>  
 <target name="build" depends="init,call"> 
  <copy todir="${bin}"> 
   <fileset dir="${src1}"> 
    <include name="*.jar" /> 
   </fileset> 

http://www.blogjava.net/dreamstone
 

                                  8/21 



     http://www.blogjava.net/dreamstone                                  9/21 

   <fileset dir="${src2}"> 
    <include name="*.jar" /> 
   </fileset> 
   <fileset dir="${src3}"> 
    <include name="*.jar" /> 
   </fileset> 
  </copy> 
 </target> 
 <target name="rebuild" depends="build,clean"> 
  <ant target="clean" /> 
  <ant target="build" /> 
 </target> 
 <target name="test"> 
  <ant dir="${src1}" target="test" /> 
  <ant dir="${src2}" target="test" /> 
  <ant dir="${src3}" target="test" /> 
 </target> 
</project> 
如果你自己看的话你会看到这样一个 target 
<target name="test"> 
 <ant dir="${src1}" target="test" /> 
 <ant dir="${src2}" target="test" /> 
 <ant dir="${src3}" target="test" /> 
</target> 
有的时候你想给每个小组的 build.xml 加入几个 target，一种做法是每个里边写，然后在这里

调用 
但是有一种更好的方法。 
你可以写一个 include.xml 文件，内容如下 
<?xml version="1.0" encoding="UTF-8" ?> 
<property name="src" value="src"/> 
<property name="dest" value="classes"/> 
<target name="test" > 
 <ant target="run" /> 
</target> 
然后更改你三个小组的 build.xml 文件,每个里边加入如下内容 
<!--include a xml file ,it can be common propery ,can be also a target  --> 
<!DOCTYPE project [ 
<!ENTITY share-variable SYSTEM "file:../include.xml"> 
]> 
&share-variable; 
变成如下的样子 
这个时候，你只要在 include.xml 添加 propery , 添加 target，三个 build.xml 会同时添加这些

propery 和 target 
而且不会让三个组的 build.xml 变得更复杂。 

http://www.blogjava.net/dreamstone
 

                                  9/21 



     http://www.blogjava.net/dreamstone                                  10/21 

 
<?xml version="1.0" encoding="UTF-8" ?> 
<!--include a xml file ,it can be common propery ,can be also a target  --> 
<!DOCTYPE project [ 
<!ENTITY share-variable SYSTEM "file:../include.xml"> 
]> 
<project name="HelloWorld" default="run" basedir="."> 
 <!--use the include  --> 
 &share-variable; 
 <!--defined the property--> 
 <!--via include 
 <property name="src" value="src"/> 
 <property name="dest" value="classes"/> 
 --> 
 <property name="hello_jar" value="hello1.jar"/> 
 <!--define the op--> 
 <target name="init"> 
  <mkdir dir="${dest}"/> 
 </target> 
 <target name="compile" depends="init"> 
  <javac srcdir="${src}" destdir="${dest}"/> 
 </target> 
 <target name="build" depends="compile"> 
  <jar jarfile="${hello_jar}" basedir="${dest}"/> 
 </target> 
 <target name="run" depends="build"> 
  <java classname="test.ant.HelloWorld" classpath="${hello_jar}"/> 
 </target> 
 <target name="clean"> 
  <delete dir="${dest}" /> 
  <delete file="${hello_jar}" /> 
 </target> 
 <target name="rerun" depends="clean,run"> 
  <ant target="clean" /> 
  <ant target="run" /> 
 </target> 
</project> 
 
 
 
 
 
 
Ant 常用 task 

http://www.blogjava.net/dreamstone
 

                                  10/21 



     http://www.blogjava.net/dreamstone                                  11/21 

好了，看完上边的内容，你应该知道怎么构建一个 ant 的骨架，但具体做起来才才发现很多

东西不知道该如何写。下边介绍一下常用的 ant task。在 ant 手册中跟这些叫 core task 
 
这里打乱一下顺序，不按照文档中的顺序来介绍，而是按照需求来介绍。 
使用 classpath 
<target> 

    <javac> 

      <classpath refid="project.class.path"/> 

    </javac> 

 </target> 

 

设置 classpath 
<classpath id=” project.class.path”> 

      <pathelement path="${classpath}"/> 

      <fileset dir="lib"> 

        <include name="**/*.jar"/> 

      </fileset> 

      <pathelement location="classes"/> 

      <dirset dir="build"> 

        <include name="apps/**/classes"/> 

        <exclude name="apps/**/*Test*"/> 

      </dirset> 

      <filelist refid="third-party_jars"/> 

 </classpath> 

 
输出信息 
<echo message=”xxx” /> 
引入一个 xml 文件 
<import file="../common-targets.xml"/> 

拷贝一个文件 

<copy file="myfile.txt" tofile="mycopy.txt"/> 

拷贝一个文件到指定目录 

<copy file="myfile.txt" todir="../some/other/dir"/> 

拷贝一个目录到另一个目录 

<copy todir="../new/dir"> 

    <fileset dir="src_dir"/> 

</copy> 

 

 

 

 

 

 

 

http://www.blogjava.net/dreamstone
 

                                  11/21 



     http://www.blogjava.net/dreamstone                                  12/21 

拷贝一个文件集合到一个目录 

<copy todir="../dest/dir"> 

    <fileset dir="src_dir"> 

      <exclude name="**/*.java"/> 

    </fileset> 

  </copy> 

 

  <copy todir="../dest/dir"> 

    <fileset dir="src_dir" excludes="**/*.java"/> 

  </copy> 

 

拷贝一个文件集合到一个目录，同时建立备份文件 

<copy todir="../backup/dir"> 

    <fileset dir="src_dir"/> 

    <globmapper from="*" to="*.bak"/> 

  </copy> 

拷贝一个集合的文件到一个目录，并替换掉@ TITLE @ 

<copy todir="../backup/dir"> 

    <fileset dir="src_dir"/> 

    <filterset> 

      <filter token="TITLE" value="Foo Bar"/> 

    </filterset> 

  </copy> 

拷贝一个目录下的东西到另一个目录下，includes 加入，excludes 排除 

<copydir src="${src}/resources" 

           dest="${dist}" 

           includes="**/*.java" 

           excludes="**/Test.java" 

  /> 

执行程序 

<target name="help"> 

  <exec executable="cmd"> 

    <arg value="/c"/> 

    <arg value="ant.bat"/> 

    <arg value="-p"/> 

  </exec> 

</target> 

出现一个错误 

<fail>Something wrong here.</fail>或者 

<fail message=” Something wrong here.” /> 

 

 
 
打 jar 包 

http://www.blogjava.net/dreamstone
 

                                  12/21 



     http://www.blogjava.net/dreamstone                                  13/21 

<jar destfile="${dist}/lib/app.jar" basedir="${build}/classes"/> 
或者 
<jar destfile="${dist}/lib/app.jar" 

       basedir="${build}/classes" 

       includes="mypackage/test/**" 

       excludes="**/Test.class" 

  /> 

运行 jar 包： 

<java classname="test.Main"> 

     <arg value="-h"/> 

     <classpath> 

       <pathelement location="dist/test.jar"/> 

<pathelement path="/Users/antoine/dev/asf/ant-core/bootstrap/lib/ant-launcher.jar /> 
</classpath> 

</java> 

或者设置一下运行的 jvm 的最大内存，来运行 
 
<java classname="test.Main" 

  dir="${exec.dir}" 

           jar="${exec.dir}/dist/test.jar" 

           fork="true" 

           failonerror="true" 

           maxmemory="128m" 

           > 

     <arg value="-h"/> 

     <classpath> 

       <pathelement location="dist/test.jar"/> 

<pathelement path="/Users/antoine/dev/asf/ant-core/bootstrap/lib/ant-launcher.jar /> 
</classpath> 

</java> 

 
编译程序 
<javac srcdir="${src}" 

         destdir="${build}" 

         classpath="xyz.jar" 

         debug="on" 

         source="1.4" 

  /> 

 

 

 

 

 

制作 Javadoc 

http://www.blogjava.net/dreamstone
 

                                  13/21 



     http://www.blogjava.net/dreamstone                                  14/21 

<javadoc ... > 

     <doclet name="theDoclet" 

             path="path/to/theDoclet"> 

        <param name="-foo" value="foovalue"/> 

        <param name="-bar" value="barvalue"/> 

     </doclet> 

  </javadoc> 

 
定义一个新的 task 类库 
<taskdef name="myjavadoc" classname="com.mydomain.JavadocTask"/> 
 
运行 sql 
<sql 

    driver="org.database.jdbcDriver" 

    url="jdbc:database-url" 

    userid="sa" 

    password="pass" 

    > 

insert 

into table some_table 

values(1,2,3,4); 

 

truncate table some_other_table; 

</sql> 

 
解压缩 
<unzip src="apache-ant-bin.zip" dest="${tools.home}"> 

    <patternset> 

        <include name="apache-ant/lib/ant.jar"/> 

    </patternset> 

    <mapper type="flatten"/> 

</unzip> 

压缩 
<zip destfile="${dist}/manual.zip" 

       basedir="htdocs/manual" 

       includes="api/**/*.html" 

       excludes="**/todo.html" 

  /> 

 

还有很多，可以参考 ant 手册的 ant core task 

 

 

 

 

http://www.blogjava.net/dreamstone
 

                                  14/21 



     http://www.blogjava.net/dreamstone                                  15/21 

打 war 包： 

<war destfile="myapp.war" webxml="src/metadata/myapp.xml"> 

  <fileset dir="src/html/myapp"/> 

  <fileset dir="src/jsp/myapp"/> 

  <lib dir="thirdparty/libs"> 

    <exclude name="jdbc1.jar"/> 

  </lib> 

  <classes dir="build/main"/> 

  <zipfileset dir="src/graphics/images/gifs" 

              prefix="images"/> 

</war> 

 
 
 
在 ant 中控制流程(if else ) 
<?xml version="1.0" encoding="UTF-8"?> 

<project basedir="." name="learn" default="run"> 

 <property name="db.type" value="oracle" /> 

 <import file="properties.xml" /> 

 <taskdef resource="net/sf/antcontrib/antcontrib.properties" 

classpath="${ant-contrib.jar}" /> 

 <target name="run"> 

  <if> 

   <equals arg1="${db.type}" arg2="mysql" /> 

   <then> 

    <echo message="The db is mysql" /> 

   </then> 

   <else> 

    <echo message="the db is oralce" /> 

   </else> 

  </if> 

 </target> 

</project> 

 
 
 
 
 
 
 
 
 
 
 

http://www.blogjava.net/dreamstone
 

                                  15/21 



     http://www.blogjava.net/dreamstone                                  16/21 

实例分析: 
从开源框架中拿出一部分来分析一下： 
我接触的一些开源程序的 ant 中,appfuse 是比较复杂的，Jpetstore 是最简单的。 
这里拿一个最简单的出来，然后一路注释过去。（想挑战一下的去看 appfuse 的。） 
<project name="JPetStore" default="all" basedir="."> 
<!—定义属性  
  <property name="web" value="../web"/> 
  <property name="src" value="../src"/> 
  <property name="test" value="../test"/> 
  <property name="lib" value="../lib"/> 
  <property name="devlib" value="../devlib"/> 
 
  <property name="wars" value="wars"/> 
  <property name="warfile" value="${wars}/jpetstore.war"/> 
 
  <property name="webapp" value="webapp"/> 
  <property name="weblib" value="${webapp}/WEB-INF/lib/"/> 
  <property name="webclasses" value="${webapp}/WEB-INF/classes/"/> 
 
  <property name="reports" value="reports"/> 
  <property name="junitreports" value="${reports}/junit/"/> 
  <property name="coveragereports" value="${reports}/coverage/"/> 
 
  <property name="work" value="work"/> 
  <property name="classes" value="${work}/classes/"/> 
  <property name="testclasses" value="${work}/testclasses/"/> 
  <property name="instrumentedclasses" value="${work}/instrumentedclasses/"/> 
 
 
<!—定义 classpath  
  <path id="classpath"> 
    <pathelement location="${instrumentedclasses}"/> 
    <pathelement location="${classes}"/> 
    <pathelement location="${testclasses}"/> 
    <pathelement location="${src}"/> 
    <pathelement location="${test}"/> 
    <fileset dir="${lib}" includes="**/*.jar"/> 
    <fileset dir="${devlib}" includes="**/*.jar"/> 
  </path> 
<!—引入新的 ant task 包,可以使用一些 ant 默认没有的 tag 和 task  
  <taskdef name="junit" classname="org.apache.tools.ant.taskdefs.optional.junit.JUnitTask"/> 
  <taskdef resource="emma_ant.properties" classpathref="classpath"/> 
 
 

http://www.blogjava.net/dreamstone
 

                                  16/21 



     http://www.blogjava.net/dreamstone                                  17/21 

<!—定义删除文件的 target，清除  
  <target name="clean"> 
    <delete dir="${reports}"/> 
    <delete dir="${work}"/> 
    <delete dir="${wars}"/> 
    <delete dir="${webapp}"/> 
    <delete file="coverage.ec"/> 
    <delete> 
      <fileset dir="${src}"> 
        <include name="**/*.class"/> 
      </fileset> 
    </delete> 
    <delete> 
      <fileset dir="${test}"> 
        <include name="**/*.class"/> 
      </fileset> 
    </delete> 
  </target> 
 
<!—创建所需的文件夹  
  <target name="prepare" depends="clean"> 
    <mkdir dir="${classes}"/> 
    <mkdir dir="${testclasses}"/> 
    <mkdir dir="${instrumentedclasses}"/> 
 
    <mkdir dir="${junitreports}"/> 
    <mkdir dir="${coveragereports}"/> 
 
    <mkdir dir="${webclasses}"/> 
    <mkdir dir="${weblib}"/> 
 
    <mkdir dir="${wars}"/> 
  </target> 
<!—编译  
  <target name="compile" depends="prepare"> 
    <javac srcdir="${src}" destdir="${classes}" deprecation="on" debug="on"> 
      <classpath refid="classpath"/> 
    </javac> 
    <javac srcdir="${test}" destdir="${testclasses}" deprecation="on" debug="on"> 
      <classpath refid="classpath"/> 
    </javac> 
  </target> 
 
 

http://www.blogjava.net/dreamstone
 

                                  17/21 



     http://www.blogjava.net/dreamstone                                  18/21 

<!--###########  
  <target name="coverage.instrument" depends="compile"> 
    <emma enabled="yes"> 
      <instr instrpath="${classes}" 
        destdir="${instrumentedclasses}" 
        metadatafile="./coverage.ec" 
        merge="true" 
        > 
      </instr> 
    </emma> 
  </target> 
 
 
<!—测试  
  <target name="test" depends="coverage.instrument"> 
    <junit printsummary="yes" haltonfailure="no"> 
      <classpath refid="classpath"/> 
 
      <formatter type="xml"/> 
 
      <batchtest fork="yes" todir="${junitreports}"> 
        <fileset dir="${test}"> 
          <include name="**/*Test*.java"/> 
          <exclude name="**/AllTests.java"/> 
        </fileset> 
      </batchtest> 
    </junit> 
  </target> 
 
<!—测试报告  
  <target name="test.report" depends="test" > 
    <junitreport todir="${junitreports}"> 
      <fileset dir="${junitreports}"> 
        <include name="TEST-*.xml"/> 
      </fileset> 
      <report format="frames" todir="${junitreports}"/> 
    </junitreport> 
  </target> 
 
 
 
 
 
 

http://www.blogjava.net/dreamstone
 

                                  18/21 



     http://www.blogjava.net/dreamstone                                  19/21 

  <target name="coverage.report" depends="test" > 
    <emma enabled="yes"> 
      <report sourcepath="${src}" 
        sort="+block,+name,+method,+class" 
        metrics="method:70,block:80,line:80,class:100" 
        > 
        <fileset dir="./"> 
          <include name="*.ec"/> 
        </fileset> 
        <html outfile="${coveragereports}/coverage.html" 
          depth="method" 
          columns="name,class,method,block,line" 
          /> 
      </report> 
    </emma> 
  </target> 
 
 
 
 <!—拷贝到一起  
 <target name="assemble" depends="test"> 
    <copy todir="${webclasses}"> 
      <fileset dir="${src}"> 
        <exclude name="**/*.java"/> 
        <exclude name="**/*.class"/> 
      </fileset> 
    </copy> 
    <copy todir="${webclasses}"> 
      <fileset dir="${classes}"/> 
    </copy> 
    <copy todir="${weblib}"> 
      <fileset dir="${lib}"/> 
    </copy> 
    <copy todir="${webapp}"> 
      <fileset dir="${web}"/> 
    </copy> 
  </target> 
 
  <target name="assembleWebapp"> 
    <copy todir="${webapp}"> 
      <fileset dir="${web}"/> 
    </copy> 
  </target> 
 

http://www.blogjava.net/dreamstone
 

                                  19/21 



     http://www.blogjava.net/dreamstone                                  20/21 

<!—打 war 包  
  <target name="war" depends="assemble"> 
    <jar jarfile="${warfile}"> 
      <fileset dir="${webapp}"> 
        <include name="**/*"/> 
      </fileset> 
    </jar> 
  </target> 
 
  <target name="all" depends="test.report, coverage.report, war"/> 
</project> 
 
如何继续学习 
掌握了上边的那些内容之后，你就知道如何去写一个好的 ant，但是你会发现当你真的想去

做的时候，你不能马上作出好的 build.xml，因为你知道太少的 ant 的默认提供的命令.这个

时候如果你想完成任务，并提高自己，有很多办法： 
1,很多开源的程序都带有 build.xml，看看它们如何写的 
2,ant 的 document，里边详细列写了 ant 的各种默认命令，及其丰富 
3,google，永远不要忘记它 
ok,在这之后随着你写的 ant build 越来越多，你知道的命令就越多，ant 在你的手里也就越来

越强大了。 
这个是一个慢慢积累的过程。 
 
Ant 使用 cvs 的实例 
ant 的例子很好找，各种开源框架都会带有一个 build.xml 仔细看看，会有很大收获 
另外一个经常会用到的，但是在开远框架的 build.xml 一般没有的是 cvs 
 
如果使用的是远程的 cvs，可以这样使用 
<?xml version="1.0" encoding="utf-8"?> 
<project> 
 <property name="cvsroot" value=":pserver:wang:@192.168.1.2:/cvsroot"/> 
 <property name="basedir" value="/tmp/testant/"/> 
 <property name="cvs.password" value="wang"/> 
 <property name="cvs.passfile" value="${basedir}/ant.cvspass"/> 
 <target name="initpass"> 
   <cvspass cvsroot="${cvsroot}" password="${cvs.password}" passfile="${cvs.passfile}"/> 
 </target> 
 <target name="checkout" depends="initpass"> 
   <cvs cvsroot="${cvsroot}" command="checkout" cvsrsh="ssh" package="myproject" 
dest="${basedir}" passfile="${cvs.passfile}"/> 
 </target> 
</project> 
 
 

http://www.blogjava.net/dreamstone
 

                                  20/21 



     http://www.blogjava.net/dreamstone                                  21/21 

QA： 
1、 如果执行 ant 过程中出现 Outofmemory 的错误怎么办？ 
答：加大内存，设置环境变量 ANT_OPTS=-Xms128m -Xmx256m 

http://www.blogjava.net/dreamstone
 

                                  21/21 


