1. Java基础部分
基础部分的顺序：基本语法，类相关的语法，内部类的语法，继承相关的语法，异常的语法，线程的语法，集合的语法，io的语法，虚拟机方面的语法。
1、一个".java"源文件中是否可以包括多个类（不是内部类）？有什么限制？

可以有多个类，但只能有一个public的类，并且public的类名必须与文件名相一致。

2、Java有没有goto?

java中的保留字，现在没有在java中使用。

3、说说&和&&的区别。

&和&&都可以用作逻辑与的运算符，表示逻辑与（and），当运算符两边的表达式的结果都为true时，整个运算结果才为true，否则，只要有一方为false，则结果为false。

&&还具有短路的功能，即如果第一个表达式为false，则不再计算第二个表达式。
&还可以用作位运算符，当&操作符两边的表达式不是boolean类型时，&表示按位与操作。
4、在JAVA中如何跳出当前的多重嵌套循环？

在Java中，要想跳出多重循环，可以在外面的循环语句前定义一个标号，然后在里层循环体的代码中使用带有标号的break语句，即可跳出外层循环。
5、switch语句能否作用在byte上，能否作用在long上，能否作用在String上?

在switch（expr1）中，expr1只能是一个整数表达式或者枚举常量（更大字体），整数表达式可以是int基本类型或Integer包装类型，由于，byte,short,char都可以隐含转换为int，所以，这些类型以及这些类型的包装类型也是可以的。显然，long和String类型都不符合switch的语法规定，并且不能被隐式转换成int类型，所以，它们不能作用于swtich语句中。
6、short s1 = 1; s1 = s1 + 1;有什么错? short s1 = 1; s1 += 1;有什么错?

对于short s1 = 1; s1 = s1 + 1;由于s1+1运算时会自动提升表达式的类型，所以结果是int型，再赋值给short类型s1时，编译器将报告需要强制转换类型的错误。

对于short s1 = 1; s1 += 1;由于 +=是java语言规定的运算符，java编译器会对它进行特殊处理，因此可以正确编译。

7、char型变量中能不能存贮一个中文汉字?为什么?

char型变量是用来存储Unicode编码的字符的，unicode编码字符集中包含了汉字，所以，char型变量中当然可以存储汉字啦。不过，如果某个特殊的汉字没有被包含在unicode编码字符集中，那么，这个char型变量中就不能存储这个特殊汉字。补充说明：unicode编码占用两个字节，所以，char类型的变量也是占用两个字节。

8、用最有效率的方法算出2乘以8等於几?

2 << 3，
10、使用final关键字修饰一个变量时，是引用不能变，还是引用的对象不能变？

使用final关键字修饰一个变量时，是指引用变量不能变，引用变量所指向的对象中的内容还是可以改变的。
11、"=="和equals方法究竟有什么区别？

==操作符专门用来比较两个变量的值是否相等，也就是用于比较变量所对应的内存中所存储的数值是否相同，要比较两个基本类型的数据或两个引用变量是否相等，只能用==操作符。

如果一个变量指向的数据是对象类型的，那么，这时候涉及了两块内存，对象本身占用一块内存（堆内存），变量也占用一块内存，例如Objet obj = newObject();变量obj是一个内存，new Object()是另一个内存，此时，变量obj所对应的内存中存储的数值就是对象占用的那块内存的首地址。对于指向对象类型的变量，如果要比较两个变量是否指向同一个对象，即要看这两个变量所对应的内存中的数值是否相等，这时候就需要用==操作符进行比较。

equals方法是用于比较两个独立对象的内容是否相同，就好比去比较两个人的长相是否相同，它比较的两个对象是独立的。例如，对于下面的代码：

String a=new String("foo");

String b=new String("foo");

两条new语句创建了两个对象，然后用a/b这两个变量分别指向了其中一个对象，这是两个不同的对象，它们的首地址是不同的，即a和b中存储的数值是不相同的，所以，表达式a==b将返回false，而这两个对象中的内容是相同的，所以，表达式a.equals(b)将返回true。

12、静态变量和实例变量的区别？

在语法定义上的区别：静态变量前要加static关键字，而实例变量前则不加。

在程序运行时的区别：实例变量属于某个对象的属性，必须创建了实例对象，其中的实例变量才会被分配空间，才能使用这个实例变量。静态变量不属于某个实例对象，而是属于类，所以也称为类变量，只要程序加载了类的字节码，不用创建任何实例对象，静态变量就会被分配空间，静态变量就可以被使用了。
总之，实例变量必须创建对象后才可以通过这个对象来使用，静态变量则可以直接使用类名来引用。

13、是否可以从一个static方法内部发出对非static方法的调用？

不可以。因为非static方法是要与对象关联在一起的，必须创建一个对象后，才可以在该对象上进行方法调用，而static方法调用时不需要创建对象，可以直接调用。也就是说，当一个static方法被调用时，可能还没有创建任何实例对象，如果从一个static方法中发出对非static方法的调用，那个非static方法是关联到哪个对象上的呢？这个逻辑无法成立，所以，一个static方法内部发出对非static方法的调用。

14、Integer与int的区别

int是java提供的8种原始数据类型之一。Java为每个原始类型提供了封装类，Integer是java为int提供的封装类。int的默认值为0，而Integer的默认值为null，即Integer可以区分出未赋值和值为0的区别，int则无法表达出未赋值的情况。例如，要想表达出没有参加考试和考试成绩为0的区别，则只能使用Integer。
在JSP开发中，Integer的默认为null，所以用el表达式在文本框中显示时，值为空白字符串，而int默认的默认值为0，所以用el表达式在文本框中显示时，结果为0，所以，int不适合作为web层的表单数据的类型。
在Hibernate中，如果将OID定义为Integer类型，那么Hibernate就可以根据其值是否为null而判断一个对象是否是临时的，如果将OID定义为了int类型，还需要在hbm映射文件中设置其unsaved-value属性为0。

另外，Integer提供了多个与整数相关的操作方法，例如，将一个字符串转换成整数，Integer中还定义了表示整数的最大值和最小值的常量。

15、Math.round(11.5)等於多少? Math.round(-11.5)等於多少?

Math类中提供了三个与取整有关的方法：ceil、floor、round，这些方法的作用与它们的英文名称的含义相对应，例如，ceil的英文意义是天花板，该方法就表示向上取整，Math.ceil(11.3)的结果为12,Math.ceil(-11.3)的结果是-11；floor的英文意义是地板，该方法就表示向下取整，Math.ceil(11.6)的结果为11,Math.ceil(-11.6)的结果是-12；最难掌握的是round方法，它表示“四舍五入”，算法为Math.floor(x+0.5)，即将原来的数字加上0.5后再向下取整，所以，Math.round(11.5)的结果为12，Math.round(-11.5)的结果为-11。

16、下面的代码有什么不妥之处?

1. if(username.equals(“zxx”)){}

 2. int x = 1;

 return x==1?true:false;
回答一问题：如果username初值为null在编译的时候会有警告，运行的时候抛出异常

如果username写在后面即使初值为null也不会抛异常

回答问题二：代码冗余无需还要三木运算符判断是否为true或者false,直接返回boolean类型就可以了

17、请说出作用域public，private，protected，以及不写时的区别

这四个作用域的可见范围如下表所示。

说明：如果在修饰的元素上面没有写任何访问修饰符，则表示friendly。
作用域 当前类 同一package 子孙类 其他package

public √ √ √ √

protected √ √ √ ×

friendly √ √ × ×

private √ × × ×

18、Overload和Override的区别。Overloaded的方法是否可以改变返回值的类型?

重载Overload表示同一个类中可以有多个名称相同的方法，但这些方法的参数列表各不相同（即参数个数或类型不同）。

重写Override表示子类中的方法可以与父类中的某个方法的名称和参数完全相同，通过子类创建的实例对象调用这个方法时，将调用子类中的定义方法，这相当于把父类中定义的那个完全相同的方法给覆盖了，这也是面向对象编程的多态性的一种表现。
在覆盖要注意以下的几点：

1、覆盖的方法的标志必须要和被覆盖的方法的标志完全匹配，才能达到覆盖的效果；

2、覆盖的方法的返回值必须和被覆盖的方法的返回一致；

3、覆盖的方法所抛出的异常必须和被覆盖方法的所抛出的异常一致，或者是其子类；

4、被覆盖的方法不能为private，否则在其子类中只是新定义了一个方法，并没有对其进行覆盖。
在使用重载要注意以下的几点：

1、在使用重载时只能通过不同的参数样式。例如，不同的参数类型，不同的参数个数，不同的参数顺序（当然，同一方法内的几个参数类型必须不一样，例如可以是fun(int,float)，但是不能为fun(int,int)）；

2、不能通过访问权限、返回类型、抛出的异常进行重载；
3、方法的异常类型和数目不会对重载造成影响；

4、对于继承来说，如果某一方法在父类中是访问权限是priavte，那么就不能在子类对其进行重载，如果定义的话，也只是定义了一个新方法，而不会达到重载的效果。

如果几个Overloaded的方法的参数列表不一样，它们的返回者类型当然也可以不一样。如果两个方法的参数列表完全一样，是否可以让它们的返回值不同来实现重载Overload。这是不行的
19、构造器Constructor是否可被override?

构造器Constructor不能被继承，因此不能重写Override，但可以被重载Overload。

20、接口是否可继承接口?抽象类是否可实现(implements)接口?抽象类是否可继承具体类(concrete class)?抽象类中是否可以有静态的main方法？

接口可以继承接口。抽象类可以实现(implements)接口，抽象类是否可继承具体类。抽象类中可以有静态的main方法。

只有记住抽象类与普通类的唯一区别就是不能创建实例对象和允许有abstract方法。

21、写clone()方法时，通常都有一行代码，是什么？

clone 有缺省行为，super.clone();因为首先要把父类中的成员复制到位，然后才是复制自己的成员。

22、面向对象的特征有哪些方面

面向对象的编程语言有4个主要的特征。

1封装：封装是保证软件部件具有优良的模块性的基础，封装的目标就是要实现软件部件的“高内聚、低耦合”，防止程序相互依赖性而带来的变动影响。把握一个原则：把对同一事物进行操作的方法和相关的方法放在同一个类中，把方法和它操作的数据放在同一个类中。
抽象：抽象就是找出一些事物的相似和共性之处，然后将这些事物归为一个类，这个类只考虑这些事物的相似和共性之处，并且会忽略与当前主题和目标无关的那些方面，将注意力集中在与当前目标有关的方面。
继承：在定义和实现一个类的时候，可以在一个已经存在的类的基础之上来进行，把这个已经存在的类所定义的内容作为自己的内容，并可以加入若干新的内容，或修改原来的方法使之更适合特殊的需要，这就是继承。继承是子类自动共享父类数据和方法的机制，这是类之间的一种关系，提高了软件的可重用性和可扩展性。
多态：多态是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定，而是在程序运行期间才确定，即一个引用变量倒底会指向哪个类的实例对象，该引用变量发出的方法调用到底是哪个类中实现的方法，必须在由程序运行期间才能决定。因为在程序运行时才确定具体的类，这样，不用修改源程序代码，就可以让引用变量绑定到各种不同的类实现上，从而导致该引用调用的具体方法随之改变，即不修改程序代码就可以改变程序运行时所绑定的具体代码，让程序可以选择多个运行状态，这就是多态性。多态性增强了软件的灵活性和扩展性。

23、java中实现多态的机制是什么？

靠的是父类或接口定义的引用变量可以指向子类或具体实现类的实例对象，而程序调用的方法在运行期才动态绑定，就是引用变量所指向的具体实例对象的方法，也就是内存里正在运行的那个对象的方法，而不是引用变量的类型中定义的方法。

24、abstract class和interface有什么区别?

含有abstract修饰符的class即为抽象类，abstract类不能创建的实例对象。含有abstract方法的类必须定义为abstract class，abstract class类中的方法不必是抽象的。abstract class类中定义抽象方法必须在具体(Concrete)子类中实现，所以，不能有抽象构造方法或抽象静态方法。如果的子类没有实现抽象父类中的所有抽象方法，那么子类也必须定义为abstract类型。

接口（interface）可以说成是抽象类的一种特例，接口中的所有方法都必须是抽象的。接口中的方法定义默认为public abstract类型，接口中的成员变量类型默认为public static final。

下面比较一下两者的语法区别：

1.抽象类可以有构造方法，接口中不能有构造方法。

2.抽象类中可以有普通成员变量，接口中没有普通成员变量

3.抽象类中可以包含非抽象的普通方法，接口中的所有方法必须都是抽象的，不能有非抽象的普通方法。

4. 抽象类中的抽象方法的访问类型可以是public，protected和（默认类型,虽然eclipse下不报错，但应该也不行），但接口中的抽象方法只能是public类型的，并且默认即为public abstract类型。

5. 抽象类中可以包含静态方法，接口中不能包含静态方法

6. 抽象类和接口中都可以包含静态成员变量，抽象类中的静态成员变量的访问类型可以任意，但接口中定义的变量只能是public static final类型，并且默认即为public static final类型。

7. 一个类可以实现多个接口，但只能继承一个抽象类。
25、abstract的method是否可同时是static,是否可同时是native，是否可同时是synchronized?

abstract的method不可以是static的，因为抽象的方法是要被子类实现的，而static与子类扯不上关系！

native方法表示该方法要用另外一种依赖平台的编程语言实现的，不存在着被子类实现的问题，所以，它也不能是抽象的，不能与abstract混用。

关于synchronized与abstract合用的问题，我觉得也不行，因为在我几年的学习和开发中，从来没见到过这种情况，并且我觉得synchronized应该是作用在一个具体的方法上才有意义。而且，方法上的synchronized同步所使用的同步锁对象是this，而抽象方法上无法确定this是什么。

26、什么是内部类？Static Nested Class和Inner Class的不同。

内部类就是在一个类的内部定义的类，内部类中不能定义静态成员，内部类可以直接访问外部类中的成员变量，内部类可以定义在外部类的方法外面，也可以定义在外部类的方法体中。

在方法外部定义的内部类前面可以加上static关键字，从而成为Static Nested Class，它不再具有内部类的特性，所有，从狭义上讲，它不是内部类。Static Nested Class与普通类在运行时的行为和功能上没有什么区别，只是在编程引用时的语法上有一些差别，它可以定义成public、protected、默认的、private等多种类型，而普通类只能定义成public和默认的这两种类型。在外面引用Static Nested Class类的名称为“外部类名.内部类名”。在外面不需要创建外部类的实例对象，就可以直接创建Static Nested Class，例如，假设Inner是定义在Outer类中的Static Nested Class，那么可以使用如下语句创建Inner类：

Outer.Inner inner = newOuter.Inner();

由于static Nested Class不依赖于外部类的实例对象，所以，static Nested Class能访问外部类的非static成员变量。当在外部类中访问Static Nested Class时，可以直接使用Static Nested Class的名字，而不需要加上外部类的名字了，在Static Nested Class中也可以直接引用外部类的static的成员变量，不需要加上外部类的名字。

在静态方法中定义的内部类也是Static Nested Class，这时候不能在类前面加static关键字，静态方法中的Static Nested Class与普通方法中的内部类的应用方式很相似，它除了可以直接访问外部类中的static的成员变量，还可以访问静态方法中的局部变量，但是，该局部变量前必须加final修饰符。

27、内部类可以引用它的包含类的成员吗？有没有什么限制？

完全可以。如果不是静态内部类，那没有什么限制！

如果你把静态嵌套类当作内部类的一种特例，那在这种情况下不可以访问外部类的普通成员变量，而只能访问外部类中的静态成员，

28、Anonymous Inner Class (匿名内部类)是否可以extends(继承)其它类，是否可以implements(实现)interface(接口)?

可以继承其他类或实现其他接口。不仅是可以，而是必须!

29、super.getClass()方法调用

下面程序的输出结果是多少？

importjava.util.Date;

public class Testextends Date{

 public static voidmain(String[] args) {

 new Test().test();

 }

 public void test(){

 System.out.println(super.getClass().getName());

 }

}

结果是Test。在test方法中，直接调用getClass().getName()方法，返回的是Test类名，由于getClass()在Object类中定义成了final，子类不能覆盖该方法，所以，在test方法中调用getClass().getName()方法，其实就是在调用从父类继承的getClass()方法，等效于调用super.getClass().getName()方法，所以，super.getClass().getName()方法返回的也应该是Test。如果想得到父类的名称，应该用如下代码：getClass().getSuperClass().getName();

30、String是最基本的数据类型吗?

基本数据类型包括byte、int、char、long、float、double、boolean和short。

java.lang.String类是final类型的，因此不可以继承这个类、不能修改这个类。为了提高效率节省空间，我们应该用StringBuffer类

31、String s = "Hello";s = s + " world!";这两行代码执行后，原始的String对象中的内容到底变了没有？

没有。因为String被设计成不可变(immutable)类，所以它的所有对象都是不可变对象。在这段代码中，s原先指向一个String对象，内容是 "Hello"，然后我们对s进行了+操作，那么s所指向的那个对象是否发生了改变呢？答案是没有。这时，s不指向原来那个对象了，而指向了另一个 String对象，内容为"Hello world!"，原来那个对象还存在于内存之中，只是s这个引用变量不再指向它了。
32、是否可以继承String类?

String类是final类故不可以继承。
33、String s = new String("xyz");创建了几个String Object?二者之间有什么区别？

两个或一个，”xyz”对应一个对象，这个对象放在字符串常量缓冲区，常量”xyz”不管出现多少遍，都是缓冲区中的那一个。New String每写一遍，就创建一个新的对象，它一句那个常量”xyz”对象的内容来创建出一个新String对象。如果以前就用过’xyz’，这句代表就不会创建”xyz”自己了，直接从缓冲区拿。

34、String和StringBuffer的区别

JAVA平台提供了两个类：String和StringBuffer，它们可以储存和操作字符串，即包含多个字符的字符数据。这个String类提供了数值不可改变的字符串。而这个StringBuffer类提供的字符串进行修改。当你知道字符数据要改变的时候你就可以使用StringBuffer。典型地，你可以使用StringBuffers来动态构造字符数据。另外，String实现了equals方法，new String(“abc”).equals(newString(“abc”)的结果为true,而StringBuffer没有实现equals方法，所以，new StringBuffer(“abc”).equals(newStringBuffer(“abc”)的结果为false。

接着要举一个具体的例子来说明，我们要把1到100的所有数字拼起来，组成一个串。

StringBuffer sbf = new StringBuffer();

for(int i=0;i<100;i++)

{

 sbf.append(i);

}

上面的代码效率很高，因为只创建了一个StringBuffer对象，而下面的代码效率很低，因为创建了101个对象。

String str = new String();

for(int i=0;i<100;i++)

{

 str = str + i;

}

String覆盖了equals方法和hashCode方法，而StringBuffer没有覆盖equals方法和hashCode方法，所以，将StringBuffer对象存储进Java集合类中时会出现问题。

35、如何把一段逗号分割的字符串转换成一个数组?

如果不查jdk api，我很难写出来！我可以说说我的思路：

1
用正则表达式，代码大概为：String [] result = orgStr.split(“,”);

2
用 StingTokenizer ,代码为：StringTokenizer tokener = StringTokenizer(orgStr,”,”);

String [] result =new String[tokener .countTokens()];

Int i=0;

while(tokener.hasNext(){result[i++]=toker.nextToken();}

36、数组有没有length()这个方法? String有没有length()这个方法？

数组没有length()这个方法，有length的属性。String有有length()这个方法。
37、下面这条语句一共创建了多少个对象：String s="a"+"b"+"c"+"d";

答：对于如下代码：

String s1 = "a";

String s2 = s1 + "b";

String s3 = "a" + "b";

System.out.println(s2 == "ab");

System.out.println(s3 == "ab");

第一条语句打印的结果为false，第二条语句打印的结果为true，这说明javac编译可以对字符串常量直接相加的表达式进行优化，不必要等到运行期去进行加法运算处理，而是在编译时去掉其中的加号，直接将其编译成一个这些常量相连的结果。

题目中的第一行代码被编译器在编译时优化后，相当于直接定义了一个”abcd”的字符串，所以，上面的代码应该只创建了一个String对象。写如下两行代码，

 String s ="a" + "b" + "c" + "d";

 System.out.println(s== "abcd");

最终打印的结果应该为true。

38、try {}里有一个return语句，那么紧跟在这个try后的finally {}里的code会不会被执行，什么时候被执行，在return前还是后?

结论：finally中的代码比return和break语句后执行

40、final, finally, finalize的区别。

final 用于声明属性，方法和类，分别表示属性不可变，方法不可覆盖，类不可继承。

内部类要访问局部变量，局部变量必须定义成final类型。
finally是异常处理语句结构的一部分，表示总是执行。
finalize是Object类的一个方法，在垃圾收集器执行的时候会调用被回收对象的此方法，可以覆盖此方法提供垃圾收集时的其他资源回收，例如关闭文件等。JVM不保证此方法总被调用

41、运行时异常与一般异常有何异同？

异常表示程序运行过程中可能出现的非正常状态，运行时异常表示虚拟机的通常操作中可能遇到的异常，是一种常见运行错误。java编译器要求方法必须声明抛出可能发生的非运行时异常，但是并不要求必须声明抛出未被捕获的运行时异常。

42、error和exception有什么区别?

error 表示恢复不是不可能但很困难的情况下的一种严重问题。比如说内存溢出。不可能指望程序能处理这样的情况。 exception表示一种设计或实现问题。也就是说，它表示如果程序运行正常，从不会发生的情况。

43、Java中的异常处理机制的简单原理和应用。

异常是指java程序运行时（非编译）所发生的非正常情况或错误。Java对异常进行了分类，不同类型的异常分别用不同的Java类表示，所有异常的根类为java.lang.Throwable，Throwable下面又派生了两个子类：Error和Exception，Error表示应用程序本身无法克服和恢复的一种严重问题，程序只有死的份了，例如，说内存溢出和线程死锁等系统问题。Exception表示程序还能够克服和恢复的问题，其中又分为系统异常和普通异常，系统异常是软件本身缺陷所导致的问题，也就是软件开发人员考虑不周所导致的问题，软件使用者无法克服和恢复这种问题，但在这种问题下还可以让软件系统继续运行或者让软件死掉，例如，数组脚本越界（ArrayIndexOutOfBoundsException），空指针异常（NullPointerException）、类转换异常（ClassCastException）；普通异常是运行环境的变化或异常所导致的问题，是用户能够克服的问题，例如，网络断线，硬盘空间不够，发生这样的异常后，程序不应该死掉。

java为系统异常和普通异常提供了不同的解决方案，编译器强制普通异常必须try..catch处理或用throws声明继续抛给上层调用方法处理，所以普通异常也称为checked异常，而系统异常可以处理也可以不处理，所以，编译器不强制用try..catch处理或用throws声明，所以系统异常也称为unchecked异常。

44、请写出你最常见到的5个runtime exception。

所谓系统异常，就是…..，它们都是RuntimeException的子类，在jdk doc中查RuntimeException类，就可以看到其所有的子类列表，也就是看到了所有的系统异常。我比较有印象的系统异常有：NullPointerException、ArrayIndexOutOfBoundsException、ClassCastException。

45、JAVA语言如何进行异常处理，关键字：throws,throw,try,catch,finally分别代表什么意义？在try块中可以抛出异常吗？

46、java中有几种方法可以实现一个线程？用什么关键字修饰同步方法? stop()和suspend()方法为何不推荐使用？
java5以前，有如下两种：

第一种：

new Thread(){}.start();这表示调用Thread子类对象的run方法，new Thread(){}表示一个Thread的匿名子类的实例对象，子类加上run方法后的代码如下：

new Thread(){

 public void run(){

 }

}.start();

第二种：

new Thread(new Runnable(){}).start();这表示调用Thread对象接受的Runnable对象的run方法，new Runnable(){}表示一个Runnable的匿名子类的实例对象,runnable的子类加上run方法后的代码如下：

new Thread(new Runnable(){

 public voidrun(){

 }

 }

).start();

从java5开始，还有如下一些线程池创建多线程的方式：

ExecutorService pool = Executors.newFixedThreadPool(3)

for(int i=0;i<10;i++)

{

 pool.execute(newRunable(){public void run(){}});

}

Executors.newCachedThreadPool().execute(new Runable(){publicvoid run(){}});

Executors.newSingleThreadExecutor().execute(new Runable(){publicvoid run(){}});

有两种实现方法，分别使用new Thread()和new Thread(runnable)形式，第一种直接调用thread的run方法，所以，我们往往使用Thread子类，即new SubThread()。第二种调用runnable的run方法。

有两种实现方法，分别是继承Thread类与实现Runnable接口

用synchronized关键字修饰同步方法

反对使用stop()，是因为它不安全。它会解除由线程获取的所有锁定，而且如果对象处于一种不连贯状态，那么其他线程能在那种状态下检查和修改它们。结果很难检查出真正的问题所在。suspend()方法容易发生死锁。调用suspend()的时候，目标线程会停下来，但却仍然持有在这之前获得的锁定。此时，其他任何线程都不能访问锁定的资源，除非被"挂起"的线程恢复运行。对任何线程来说，如果它们想恢复目标线程，同时又试图使用任何一个锁定的资源，就会造成死锁。所以不应该使用suspend()，而应在自己的Thread类中置入一个标志，指出线程应该活动还是挂起。若标志指出线程应该挂起，便用wait()命其进入等待状态。若标志指出线程应当恢复，则用一个notify()重新启动线程。

47、sleep()和 wait()有什么区别?

 （网上的答案：sleep是线程类（Thread）的方法，导致此线程暂停执行指定时间，给执行机会给其他线程，但是监控状态依然保持，到时后会自动恢复。调用sleep不会释放对象锁。 wait是Object类的方法，对此对象调用wait方法导致本线程放弃对象锁，进入等待此对象的等待锁定池，只有针对此对象发出notify方法（或notifyAll）后本线程才进入对象锁定池准备获得对象锁进入运行状态。）

48、同步和异步有何异同，在什么情况下分别使用他们？举例说明。

如果数据将在线程间共享。例如正在写的数据以后可能被另一个线程读到，或者正在读的数据可能已经被另一个线程写过了，那么这些数据就是共享数据，必须进行同步存取。

当应用程序在对象上调用了一个需要花费很长时间来执行的方法，并且不希望让程序等待方法的返回时，就应该使用异步编程，在很多情况下采用异步途径往往更有效率。

49. 下面两个方法同步吗？（自己发明）

 class Test

{

synchronizedstatic voidsayHello3()

 {

 }

 synchronizedvoid getX(){}

}

50、多线程有几种实现方法?同步有几种实现方法?

多线程有两种实现方法，分别是继承Thread类与实现Runnable接口

同步的实现方面有两种，分别是synchronized,wait与notify

wait():使一个线程处于等待状态，并且释放所持有的对象的lock。

sleep():使一个正在运行的线程处于睡眠状态，是一个静态方法，调用此方法要捕捉InterruptedException异常。

notify():唤醒一个处于等待状态的线程，注意的是在调用此方法的时候，并不能确切的唤醒某一个等待状态的线程，而是由JVM确定唤醒哪个线程，而且不是按优先级。

Allnotity():唤醒所有处入等待状态的线程，注意并不是给所有唤醒线程一个对象的锁，而是让它们竞争
51、启动一个线程是用run()还是start()? .

启动一个线程是调用start()方法，使线程就绪状态，以后可以被调度为运行状态，一个线程必须关联一些具体的执行代码，run()方法是该线程所关联的执行代码。

52、当一个线程进入一个对象的一个synchronized方法后，其它线程是否可进入此对象的其它方法?

分几种情况：

 1.其他方法前是否加了synchronized关键字，如果没加，则能。

 2.如果这个方法内部调用了wait，则可以进入其他synchronized方法。

 3.如果其他个方法都加了synchronized关键字，并且内部没有调用wait，则不能。

 4.如果其他方法是static，它用的同步锁是当前类的字节码，与非静态的方法不能同步，因为非静态的方法用的是this。

53、线程的基本概念、线程的基本状态以及状态之间的关系
一个程序中可以有多条执行线索同时执行，一个线程就是程序中的一条执行线索，每个线程上都关联有要执行的代码，即可以有多段程序代码同时运行，每个程序至少都有一个线程，即main方法执行的那个线程。如果只是一个cpu，它怎么能够同时执行多段程序呢？这是从宏观上来看的，cpu一会执行a线索，一会执行b线索，切换时间很快，给人的感觉是a,b在同时执行，好比大家在同一个办公室上网，只有一条链接到外部网线，其实，这条网线一会为a传数据，一会为b传数据，由于切换时间很短暂，所以，大家感觉都在同时上网。

 状态：就绪，运行，synchronize阻塞，wait和sleep挂起，结束。wait必须在synchronized内部调用。

 调用线程的start方法后线程进入就绪状态，线程调度系统将就绪状态的线程转为运行状态，遇到synchronized语句时，由运行状态转为阻塞，当synchronized获得锁后，由阻塞转为运行，在这种情况可以调用wait方法转为挂起状态，当线程关联的代码执行完后，线程变为结束状态。

54、简述synchronized和java.util.concurrent.locks.Lock的异同？

主要相同点：Lock能完成synchronized所实现的所有功能

主要不同点：Lock有比synchronized更精确的线程语义和更好的性能。synchronized会自动释放锁，而Lock一定要求程序员手工释放，并且必须在finally从句中释放。Lock还有更强大的功能，例如，它的tryLock方法可以非阻塞方式去拿锁。

55、设计4个线程，其中两个线程每次对j增加1，另外两个线程对j每次减少1。写出程序。以下程序使用内部类实现线程，对j增减的时候没有考虑顺序问题。

56、子线程循环10次，接着主线程循环100，接着又回到子线程循环10次，接着再回到主线程又循环100，如此循环50次，请写出程序。

57、介绍Collection框架的结构

答：随意发挥题，天南海北谁便谈，只要让别觉得你知识渊博，理解透彻即可。

58、Collection框架中实现比较要实现什么接口

comparable/comparator

59、ArrayList和Vector的区别

答：这两个类都实现了List接口（List接口继承了Collection接口），他们都是有序集合，即存储在这两个集合中的元素的位置都是有顺序的，相当于一种动态的数组，我们以后可以按位置索引号取出某个元素，，并且其中的数据是允许重复的，这是HashSet之类的集合的最大不同处，HashSet之类的集合不可以按索引号去检索其中的元素，也不允许有重复的元素（本来题目问的与hashset没有任何关系，但为了说清楚ArrayList与Vector的功能，我们使用对比方式，更有利于说明问题）。

接着才说ArrayList与Vector的区别，这主要包括两个方面：.

（1）同步性：

 Vector是线程安全的，也就是说是它的方法之间是线程同步的，而ArrayList是线程序不安全的，它的方法之间是线程不同步的。如果只有一个线程会访问到集合，那最好是使用ArrayList，因为它不考虑线程安全，效率会高些；如果有多个线程会访问到集合，那最好是使用Vector，因为不需要我们自己再去考虑和编写线程安全的代码。

备注：对于Vector&ArrayList、Hashtable&HashMap，要记住线程安全的问题，记住Vector与Hashtable是旧的，是java一诞生就提供了的，它们是线程安全的，ArrayList与HashMap是java2时才提供的，它们是线程不安全的。所以，我们讲课时先讲老的。

（2）数据增长：

 ArrayList与Vector都有一个初始的容量大小，当存储进它们里面的元素的个数超过了容量时，就需要增加ArrayList与Vector的存储空间，每次要增加存储空间时，不是只增加一个存储单元，而是增加多个存储单元，每次增加的存储单元的个数在内存空间利用与程序效率之间要取得一定的平衡。Vector默认增长为原来两倍，而ArrayList的增长策略在文档中没有明确规定（从源代码看到的是增长为原来的1.5倍）。ArrayList与Vector都可以设置初始的空间大小，Vector还可以设置增长的空间大小，而ArrayList没有提供设置增长空间的方法。

 总结：即Vector增长原来的一倍，ArrayList增加原来的0.5倍。

60、HashMap和Hashtable的区别

（条理上还需要整理，也是先说相同点，再说不同点）

HashMap是Hashtable的轻量级实现（非线程安全的实现），他们都完成了Map接口，主要区别在于HashMap允许空（null）键值（key）,由于非线程安全，在只有一个线程访问的情况下，效率要高于Hashtable。

HashMap允许将null作为一个entry的key或者value，而Hashtable不允许。

HashMap把Hashtable的contains方法去掉了，改成containsvalue和containsKey。因为contains方法容易让人引起误解。

Hashtable继承自Dictionary类，而HashMap是Java1.2引进的Map interface的一个实现。

最大的不同是，Hashtable的方法是Synchronize的，而HashMap不是，在多个线程访问Hashtable时，不需要自己为它的方法实现同步，而HashMap就必须为之提供外同步。

Hashtable和HashMap采用的hash/rehash算法都大概一样，所以性能不会有很大的差异。

就HashMap与HashTable主要从三方面来说。

一.历史原因:Hashtable是基于陈旧的Dictionary类的，HashMap是Java 1.2引进的Map接口的一个实现

二.同步性:Hashtable是线程安全的，也就是说是同步的，而HashMap是线程序不安全的，不是同步的

三.值：只有HashMap可以让你将空值作为一个表的条目的key或value

61、List和 Map区别?

一个是存储单列数据的集合，另一个是存储键和值这样的双列数据的集合，List中存储的数据是有顺序，并且允许重复；Map中存储的数据是没有顺序的，其键是不能重复的，它的值是可以有重复的。

62、List, Set, Map是否继承自Collection接口?

 List，Set是，Map不是

63、List、Map、Set三个接口，存取元素时，各有什么特点？

首先，List与Set具有相似性，它们都是单列元素的集合，所以，它们有一个功共同的父接口，叫Collection。Set里面不允许有重复的元素，所谓重复，即不能有两个相等（注意，不是仅仅是相同）的对象
 List表示有先后顺序的集合，注意，不是那种按年龄、按大小、按价格之类的排序。当我们多次调用add(Obj e)方法时，每次加入的对象就像火车站买票有排队顺序一样，按先来后到的顺序排序。有时候，也可以插队，即调用add(int index,Obj e)方法，就可以指定当前对象在集合中的存放位置。一个对象可以被反复存储进List中，每调用一次add方法，这个对象就被插入进集合中一次，其实，并不是把这个对象本身存储进了集合中，而是在集合中用一个索引变量指向这个对象，当这个对象被add多次时，即相当于集合中有多个索引指向了这个对象。List除了可以以Iterator接口取得所有的元素，再逐一遍历各个元素之外，还可以调用get(index i)来明确说明取第几个。

 Map与List和Set不同，它是双列的集合，其中有put方法，定义如下：put(obj key,objvalue)，每次存储时，要存储一对key/value，不能存储重复的key，这个重复的规则也是按equals比较相等。取则可以根据key获得相应的value，即get(Object key)返回值为key所对应的value。另外，也可以获得所有的key的结合，还可以获得所有的value的结合，还可以获得key和value组合成的Map.Entry对象的集合。

List 以特定次序来持有元素，可有重复元素。Set无法拥有重复元素,内部排序。Map保存key-value值，value可多值。

HashSet按照hashcode值的某种运算方式进行存储，而不是直接按hashCode值的大小进行存储。例如，"abc"---> 78，"def" ---> 62，"xyz" ---> 65在hashSet中的存储顺序不是62,65,78，这些问题感谢以前一个叫崔健的学员提出，最后通过查看源代码给他解释清楚，看本次培训学员当中有多少能看懂源码。LinkedHashSet按插入的顺序存储，那被存储对象的hashcode方法还有什么作用呢？学员想想!hashset集合比较两个对象是否相等，首先看hashcode方法是否相等，然后看equals方法是否相等。new两个Student插入到HashSet中，看HashSet的size，实现hashcode和equals方法后再看size。

同一个对象可以在Vector中加入多次。往集合里面加元素，相当于集合里用一根绳子连接到了目标对象。往HashSet中却加不了多次的。

64、说出ArrayList,Vector, LinkedList的存储性能和特性

ArrayList和Vector都是使用数组方式存储数据，此数组元素数大于实际存储的数据以便增加和插入元素，它们都允许直接按序号索引元素，但是插入元素要涉及数组元素移动等内存操作，所以索引数据快而插入数据慢，Vector由于使用了synchronized方法（线程安全），通常性能上较ArrayList差，而LinkedList使用双向链表实现存储，按序号索引数据需要进行前向或后向遍历，但是插入数据时只需要记录本项的前后项即可，所以插入速度较快。

LinkedList也是线程不安全的，LinkedList提供了一些方法，使得LinkedList可以被当作堆栈和队列来使用。

65、去掉一个Vector集合中重复的元素

Vector newVector = new Vector();

For (int i=0;i<vector.size();i++)

{

Object obj = vector.get(i);

 if(!newVector.contains(obj);

 newVector.add(obj);

}

还有一种简单的方式，HashSet set = new HashSet(vector);

66、Collection和 Collections的区别。

Collection是集合类的上级接口，继承与他的接口主要有Set和List.

Collections是针对集合类的一个帮助类，他提供一系列静态方法实现对各种集合的搜索、排序、线程安全化等操作。

67、Set里的元素是不能重复的，那么用什么方法来区分重复与否呢?是用==还是equals()?它们有何区别?

Set里的元素是不能重复的，元素重复与否是使用equals()方法进行判断的。equals()和==方法决定引用值是否指向同一对象equals()在类中被覆盖，为的是当两个分离的对象的内容和类型相配的话，返回真值
68、你所知道的集合类都有哪些？主要方法？
最常用的集合类是 List 和 Map。 List的具体实现包括 ArrayList和 Vector，它们是可变大小的列表，比较适合构建、存储和操作任何类型对象的元素列表。 List适用于按数值索引访问元素的情形。

Map 提供了一个更通用的元素存储方法。 Map集合类用于存储元素对（称作"键"和"值"），其中每个键映射到一个值。

ArrayList/VectoràList

 àCollection

HashSet/TreeSetàSet

PropetiesàHashTable

 àMap

 Treemap/HashMap

我记的不是方法名，而是思想，我知道它们都有增删改查的方法，但这些方法的具体名称，我记得不是很清楚，对于set，大概的方法是add,remove, contains；对于map，大概的方法就是put,remove，contains等，因为，我只要在eclispe下按点操作符，很自然的这些方法就出来了。我记住的一些思想就是List类会有get(int index)这样的方法，因为它可以按顺序取元素，而set类中没有get(int index)这样的方法。List和set都可以迭代出所有元素，迭代时先要得到一个iterator对象，所以，set和list类都有一个iterator方法，用于返回那个iterator对象。map可以返回三个集合，一个是返回所有的key的集合，另外一个返回的是所有value的集合，再一个返回的key和value组合成的EntrySet对象的集合，map也有get方法，参数是key，返回值是key对应的value。

69、两个对象值相同(x.equals(y) == true)，但却可有不同的hash code，这句话对不对?

对。如果对象要保存在HashSet或HashMap中，它们的equals相等，那么，它们的hashcode值就必须相等。

如果不是要保存在HashSet或HashMap，则与hashcode没有什么关系了，这时候hashcode不等是可以的，例如arrayList存储的对象就不用实现hashcode，当然，我们没有理由不实现，通常都会去实现的。

70、TreeSet里面放对象，如果同时放入了父类和子类的实例对象，那比较时使用的是父类的compareTo方法，还是使用的子类的compareTo方法，还是抛异常！

（应该是没有针对问题的确切的答案，当前的add方法放入的是哪个对象，就调用哪个对象的compareTo方法，至于这个compareTo方法怎么做，就看当前这个对象的类中是如何编写这个方法的）

71、说出一些常用的类，包，接口，请各举5个

要让人家感觉你对java ee开发很熟，所以，不能仅仅只列core java中的那些东西，要多列你在做ssh项目中涉及的那些东西。就写你最近写的那些程序中涉及的那些类。
常用的类：BufferedReader BufferedWriter FileReader FileWirter String Integer

java.util.Date，System，Class，List,HashMap
常用的包；java.lang java.io java.util java.sql,javax.servlet,org.apache.strtuts.action,org.hibernate

常用的接口：Remote List Map Document NodeList,Servlet,HttpServletRequest,HttpServletResponse,Transaction(Hibernate)、Session(Hibernate),HttpSession

72、java中有几种类型的流？JDK为每种类型的流提供了一些抽象类以供继承，请说出他们分别是哪些类？

字节流，字符流。字节流继承于InputStream OutputStream，字符流继承于InputStreamReaderOutputStreamWriter。在java.io包中还有许多其他的流，主要是为了提高性能和使用方便。

73、字节流与字符流的区别

 要把一片二进制数据数据逐一输出到某个设备中，或者从某个设备中逐一读取一片二进制数据，不管输入输出设备是什么，我们要用统一的方式来完成这些操作，用一种抽象的方式进行描述，这个抽象描述方式起名为IO流，对应的抽象类为OutputStream和InputStream，不同的实现类就代表不同的输入和输出设备，它们都是针对字节进行操作的。

 在应用中，经常要完全是字符的一段文本输出去或读进来，用字节流可以吗？计算机中的一切最终都是二进制的字节形式存在。对于“中国”这些字符，首先要得到其对应的字节，然后将字节写入到输出流。读取时，首先读到的是字节，可是我们要把它显示为字符，我们需要将字节转换成字符。由于这样的需求很广泛，人家专门提供了字符流的包装类。

 底层设备永远只接受字节数据，有时候要写字符串到底层设备，需要将字符串转成字节再进行写入。字符流是字节流的包装，字符流则是直接接受字符串，它内部将串转成字节，再写入底层设备，这为我们向IO设别写入或读取字符串提供了一点点方便。

74、什么是java序列化，如何实现java序列化？或者请解释Serializable接口的作用。
我们有时候将一个java对象变成字节流的形式传出去或者从一个字节流中恢复成一个java对象，例如，要将java对象存储到硬盘或者传送给网络上的其他计算机，这个过程我们可以自己写代码去把一个java对象变成某个格式的字节流再传输，但是，jre本身就提供了这种支持，我们可以调用OutputStream的writeObject方法来做，如果要让java帮我们做，要被传输的对象必须实现serializable接口，这样，javac编译时就会进行特殊处理，编译的类才可以被writeObject方法操作，这就是所谓的序列化。需要被序列化的类必须实现Serializable接口，该接口是一个mini接口，其中没有需要实现的方法，implementsSerializable只是为了标注该对象是可被序列化的。
例如，在web开发中，如果对象被保存在了Session中，tomcat在重启时要把Session对象序列化到硬盘，这个对象就必须实现Serializable接口。如果对象要经过分布式系统进行网络传输或通过rmi等远程调用，这就需要在网络上传输对象，被传输的对象就必须实现Serializable接口。

75、描述一下JVM加载class文件的原理机制?

JVM中类的装载是由ClassLoader和它的子类来实现的,Java ClassLoader是一个重要的Java运行时系统组件。它负责在运行时查找和装入类文件的类。

76、heap和stack有什么区别。

java的内存分为两类，一类是栈内存，一类是堆内存。栈内存是指程序进入一个方法时，会为这个方法单独分配一块私属存储空间，用于存储这个方法内部的局部变量，当这个方法结束时，分配给这个方法的栈会释放，这个栈中的变量也将随之释放。

堆是与栈作用不同的内存，一般用于存放不放在当前方法栈中的那些数据，例如，使用new创建的对象都放在堆里，所以，它不会随方法的结束而消失。方法中的局部变量使用final修饰后，放在堆中，而不是栈中。

77、GC是什么?为什么要有GC?

GC是垃圾收集的意思（Gabage Collection）,内存处理是编程人员容易出现问题的地方，忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃，Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的，Java语言没有提供释放已分配内存的显示操作方法。

78、垃圾回收的优点和原理。并考虑2种回收机制。

Java语言中一个显著的特点就是引入了垃圾回收机制，使c++程序员最头疼的内存管理的问题迎刃而解，它使得Java程序员在编写程序的时候不再需要考虑内存管理。由于有个垃圾回收机制，Java中的对象不再有"作用域"的概念，只有对象的引用才有"作用域"。垃圾回收可以有效的防止内存泄露，有效的使用可以使用的内存。垃圾回收器通常是作为一个单独的低级别的线程运行，不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清楚和回收，程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。回收机制有分代复制垃圾回收和标记垃圾回收，增量垃圾回收。

79、垃圾回收器的基本原理是什么？垃圾回收器可以马上回收内存吗？有什么办法主动通知虚拟机进行垃圾回收？

对于GC来说，当程序员创建对象时，GC就开始监控这个对象的地址、大小以及使用情况。通常，GC采用有向图的方式记录和管理堆(heap)中的所有对象。通过这种方式确定哪些对象是"可达的"，哪些对象是"不可达的"。当GC确定一些对象为"不可达"时，GC就有责任回收这些内存空间。可以。程序员可以手动执行System.gc()，通知GC运行，但是Java语言规范并不保证GC一定会执行。

81、java中会存在内存泄漏吗，请简单描述。

所谓内存泄露就是指一个不再被程序使用的对象或变量一直被占据在内存中。java中有垃圾回收机制，它可以保证一对象不再被引用的时候，即对象编程了孤儿的时候，对象将自动被垃圾回收器从内存中清除掉。由于Java使用有向图的方式进行垃圾回收管理，可以消除引用循环的问题，例如有两个对象，相互引用，只要它们和根进程不可达的，那么GC也是可以回收它们的
82、能不能自己写个类，也叫java.lang.String？
可以，但在应用的时候，需要用自己的类加载器去加载，否则，系统的类加载器永远只是去加载jre.jar包中的那个java.lang.String。由于在tomcat的web应用程序中，都是由webapp自己的类加载器先自己加载WEB-INF/classess目录中的类，然后才委托上级的类加载器加载，如果我们在tomcat的web应用程序中写一个java.lang.String，这时候Servlet程序加载的就是我们自己写的java.lang.String，但是这么干就会出很多潜在的问题，原来所有用了java.lang.String类的都将出现问题。

例如，运行下面的程序：

package java.lang;

publicclass String {

 public static voidmain(String[] args) {

 // TODO Auto-generated method stub

 System.out.println("string");

 }
}

报告的错误如下：

java.lang.NoSuchMethodError:main

Exception inthread "main"

这是因为加载了jre自带的java.lang.String，而该类中没有main方法。

83. Java代码查错

1.

abstract class Name {

 private String name;

 public abstract boolean isStupidName(String name) {}

}

大侠们，这有何错误?

答案: 错。abstract method必须以分号结尾，且不带花括号。
2.

public class Something {

 void doSomething () {

 private String s = "";

 int l = s.length();

 }

}

有错吗?

答案: 错。局部变量前不能放置任何访问修饰符 (private，public，和protected)。final可以用来修饰局部变量

(final如同abstract和strictfp，都是非访问修饰符，strictfp只能修饰class和method而非variable)。

3.

abstract class Something {

 private abstract String doSomething ();

}

这好像没什么错吧?

答案: 错。abstract的methods不能以private修饰。abstract的methods就是让子类implement(实现)具体细节的，怎么可以用private把abstract

method封锁起来呢? (同理，abstract method前不能加final)。

4.

public class Something {

 public int addOne(final int x) {

 return ++x;

 }

}

这个比较明显。

答案: 错。int x被修饰成final，意味着x不能在addOne method中被修改。

5.

public class Something {

 public static void main(String[] args) {

 Other o = new Other();

 new Something().addOne(o);

 }

 public void addOne(final Other o) {

 o.i++;

 }

}

class Other {

 public int i;

}

和上面的很相似，都是关于final的问题，这有错吗?

答案: 正确。在addOne method中，参数o被修饰成final。如果在addOne method里我们修改了o的reference

(比如: o = new Other();)，那么如同上例这题也是错的。但这里修改的是o的member vairable

(成员变量)，而o的reference并没有改变。

6.

class Something {

 int i;

 public void doSomething() {

 System.out.println("i = "+ i);

 }

}

有什么错呢? 看不出来啊。

答案: 正确。输出的是"i = 0"。int i属於instant variable (实例变量，或叫成员变量)。instant variable有default value。int的default value是0。

7.

class Something {

 final int i;

 public void doSomething() {

 System.out.println("i = "+ i);

 }

}

和上面一题只有一个地方不同，就是多了一个final。这难道就错了吗?

答案: 错。final int i是个final的instant variable (实例变量，或叫成员变量)。final的instant variable没有default value，必须在constructor (构造器)结束之前被赋予一个明确的值。可以修改为"final int i =0;"。

8.

public class Something {

 public static void main(String[] args) {

 Something s = new Something();

 System.out.println("s.doSomething() returns " + doSomething());

 }

 public String doSomething() {

 return "Do something ...";

 }

}

 看上去很完美。

答案: 错。看上去在main里call doSomething没有什么问题，毕竟两个methods都在同一个class里。但仔细看，main是static的。static method不能直接call non-staticmethods。可改成"System.out.println("s.doSomething()returns " + s.doSomething());"。同理，static method不能访问non-static instant variable。

9.

此处，Something类的文件名叫OtherThing.java

class Something {

 private static void main(String[] something_to_do){

 System.out.println("Dosomething ...");

 }

}

 这个好像很明显。

答案: 正确。从来没有人说过Java的Class名字必须和其文件名相同。但public class的名字必须和文件名相同。

10．

interface A{

 int x = 0;

}

class B{

 int x =1;

}

class C extends B implements A {

 public void pX(){

 System.out.println(x);

 }

 public static void main(String[] args) {

 new C().pX();

 }

}

答案：错误。在编译时会发生错误(错误描述不同的JVM有不同的信息，意思就是未明确的x调用，两个x都匹配（就象在同时import java.util和java.sql两个包时直接声明Date一样）。对于父类的变量,可以用super.x来明确，而接口的属性默认隐含为 public staticfinal.所以可以通过A.x来明确。

11.

interface Playable {

 void play();

}

interface Bounceable {

 void play();

}

interface Rollable extends Playable, Bounceable {

 Ball ball = new Ball("PingPang");

}

class Ball implements Rollable {

 private String name;

 public String getName() {

 return name;

 }

 public Ball(String name) {

 this.name =name;

 }

 public void play() {

 ball = newBall("Football");

 System.out.println(ball.getName());

 }

}

这个错误不容易发现。

答案: 错。"interfaceRollable extends Playable, Bounceable"没有问题。interface可继承多个interfaces，所以这里没错。问题出在interface Rollable里的"Ball ball =new Ball("PingPang");"。任何在interface里声明的interface variable (接口变量，也可称成员变量)，默认为public static final。也就是说"Ball ball = new Ball("PingPang");"实际上是"public staticfinal Ball ball = new Ball("PingPang");"。在Ball类的Play()方法中，"ball = newBall("Football");"改变了ball的reference，而这里的ball来自Rollable interface，Rollable interface里的ball是public static final的，final的object是不能被改变reference的。因此编译器将在"ball = newBall("Football");"这里显示有错。

四. Java web部分

1、Tomcat的优化经验

答:去掉对web.xml的监视，把jsp提前编辑成Servlet。有富余物理内存的情况，加大tomcat使用的jvm的内存
2、HTTP请求的GET与POST方式的区别

答:servlet有良好的生存期的定义，包括加载和实例化、初始化、处理请求以及服务结束。这个生存期由javax.servlet.Servlet接口的init,service和destroy方法表达。
3、解释一下什么是servlet;

答:servlet有良好的生存期的定义，包括加载和实例化、初始化、处理请求以及服务结束。这个生存期由javax.servlet.Servlet接口的init,service和destroy方法表达。

4、说一说Servlet的生命周期?

答:servlet有良好的生存期的定义，包括加载和实例化、初始化、处理请求以及服务结束。这个生存期由javax.servlet.Servlet接口的init,service和destroy方法表达。
Servlet被服务器实例化后，容器运行其init方法，请求到达时运行其service方法，service方法自动派遣运行与请求对应的doXXX方法（doGet，doPost）等，当服务器决定将实例销毁的时候调用其destroy方法。

web容器加载servlet，生命周期开始。通过调用servlet的init()方法进行servlet的初始化。通过调用service()方法实现，根据请求的不同调用不同的do***()方法。结束服务，web容器调用servlet的destroy()方法。
5、Servlet的基本架构

继承HttpServlet，并实现doget() 和 dopost()方法。
6、SERVLET API中forward()与redirect()的区别？

答:前者仅是容器中控制权的转向，在客户端浏览器地址栏中不会显示出转向后的地址；后者则是完全的跳转，浏览器将会得到跳转的地址，并重新发送请求链接。这样，从浏览器的地址栏中可以看到跳转后的链接地址。所以，前者更加高效，在前者可以满足需要时，尽量使用forward()方法，并且，这样也有助于隐藏实际的链接。在有些情况下，比如，需要跳转到一个其它服务器上的资源，则必须使用

sendRedirect()方法。

7、什么情况下调用doGet()和doPost()？

Jsp页面中的FORM标签里的method属性为get时调用doGet()，为post时调用doPost()。

8、Request对象的主要方法：

setAttribute(String name,Object)：设置名字为name的request的参数值

getAttribute(String name)：返回由name指定的属性值

getCookies()：返回客户端的所有Cookie对象，结果是一个Cookie数组

getCharacterEncoding()：返回请求中的字符编码方式

getHeader(String name)：获得HTTP协议定义的文件头信息

getParameter(String name)：获得客户端传送给服务器端的有name指定的参数值

getRequestURI()：获取发出请求字符串的客户端地址

getRemoteAddr()：获取客户端的IP地址

getRemoteHost()：获取客户端的名字

getSession([Boolean create])：返回和请求相关Session

getServerName()：获取服务器的名字

getServletPath()：获取客户端所请求的脚本文件的路径

getServerPort()：获取服务器的端口号

removeAttribute(String name)：删除请求中的一个属性

9、forward和redirect的区别

forward是服务器请求资源，服务器直接访问目标地址的URL，把那个URL的响应内容读取过来，然后把这些内容再发给浏览器，浏览器根本不知道服务器发送的内容是从哪儿来的，所以它的地址栏中还是原来的地址。

 redirect就是服务端根据逻辑,发送一个状态码,告诉浏览器重新去请求那个地址，一般来说浏览器会用刚才请求的所有参数重新请求，所以session,request参数都可以获取。

10、request.getAttribute()和 request.getParameter()有何区别?

11. jsp有哪些内置对象?作用分别是什么?分别有什么方法？

答:JSP共有以下9个内置的对象：
request表示HttpServletRequest对象。它包含了有关浏览器请求的信息，并且提供了几个用于获取cookie, header,和session数据的有用的方法。

response表示HttpServletResponse对象，并提供了几个用于设置送回浏览器的响应的方法（如cookies,头信息等）
out对象是javax.jsp.JspWriter的一个实例，并提供了几个方法使你能用于向浏览器回送输出结果。

 pageContext表示一个javax.servlet.jsp.PageContext对象。它是用于方便存取各种范围的名字空间、servlet相关的对象的API，并且包装了通用的servlet相关功能的方法。

 session表示一个请求的javax.servlet.http.HttpSession对象。Session可以存贮用户的状态信息

 applicaton 表示一个javax.servle.ServletContext对象。这有助于查找有关servlet引擎和servlet环境的信息

 config表示一个javax.servlet.ServletConfig对象。该对象用于存取servlet实例的初始化参数。

 page表示从该页面产生的一个servlet实例

 exception 针对错误网页，未捕捉的例外

15、两种跳转方式分别是什么?有什么区别?

（下面的回答严重错误，应该是想问forward和sendRedirect的区别，毕竟出题的人不是专业搞文字艺术的人，可能表达能力并不见得很强，用词不一定精准，加之其自身的技术面也可能存在一些问题，不一定真正将他的意思表达清楚了，严格意思上来讲，一些题目可能根本就无人能答，所以，答题时要掌握主动，只要把自己知道的表达清楚就够了，而不要去推敲原始题目的具体含义是什么，不要一味想着是在答题）

答：有两种，分别为：

<jsp:include page=included.jsp flush=true>

<jsp:forward page= nextpage.jsp/>

前者页面不会转向include所指的页面，只是显示该页的结果，主页面还是原来的页面。执行完后还会回来，相当于函数调用。并且可以带参数.后者完全转向新页面，不会再回来。相当于go to 语句。

16、页面间对象传递的方法

request，session，application，cookie等

17、JSP和Servlet有哪些相同点和不同点，他们之间的联系是什么？

JSP是Servlet技术的扩展，本质上是Servlet的简易方式，更强调应用的外表表达。JSP编译后是"类servlet"。Servlet和JSP最主要的不同点在于，Servlet的应用逻辑是在Java文件中，并且完全从表示层中的HTML里分离开来。而JSP的情况是Java和HTML可以组合成一个扩展名为.jsp的文件。JSP侧重于视图，Servlet主要用于控制逻辑。

18、MVC的各个部分都有那些技术来实现?如何实现?

答:MVC是Model－View－Controller的简写。Model代表的是应用的业务逻辑（通过JavaBean，EJB组件实现），View是应用的表示面（由JSP页面产生），Controller是提供应用的处理过程控制（一般是一个Servlet），通过这种设计模型把应用逻辑，处理过程和显示逻辑分成不同的组件实现。这些组件可以进行交互和重用。

19、我们在web应用开发过程中经常遇到输出某种编码的字符，如iso8859-1等，如何输出一个某种编码的字符串？

 Public String translate(String str) {

 String tempStr ="";

 try {

 tempStr = newString(str.getBytes("ISO-8859-1"), "GBK");

 tempStr =tempStr.trim();

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 }

 return tempStr;

 }

五.数据库部分

4、数据库三范式是什么?

第一范式（1NF）：字段具有原子性,不可再分。所有关系型数据库系统都满足第一范式）

 数据库表中的字段都是单一属性的，不可再分。例如，姓名字段，其中的姓和名必须作为一个整体，无法区分哪部分是姓，哪部分是名，如果要区分出姓和名，必须设计成两个独立的字段。

 第二范式（2NF）：要求数据库表中的每个实例或行必须可以被惟一地区分。通常需要为表加上一个列，以存储各个实例的惟一标识。这个惟一属性列被称为主关键字或主键。

第二范式（2NF）要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性，如果存在，那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体，新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列，以存储各个实例的惟一标识。简而言之，第二范式就是非主属性非部分依赖于主关键字。

 第三范式的要求如下：

满足第三范式（3NF）必须先满足第二范式（2NF）。简而言之，第三范式（3NF）要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。

所以第三范式具有如下特征：

 1，每一列只有一个值

 2，每一行都能区分。

 3，每一个表都不包含其他表已经包含的非主关键字信息。

例如，帖子表中只能出现发帖人的id，而不能出现发帖人的id，还同时出现发帖人姓名，否则，只要出现同一发帖人id的所有记录，它们中的姓名部分都必须严格保持一致，这就是数据冗余。

5、说出一些数据库优化方面的经验?

用PreparedStatement一般来说比Statement性能高；
有外键约束会影响插入和删除性能，如果程序能够保证数据的完整性，那在设计数据库时就去掉外键。

看mysql帮助文档子查询章节的最后部分，例如，根据扫描的原理，下面的子查询语句要比第二条关联查询的效率高：

1. select e.name,e.salarywhere e.managerid=(select id from employee where name='zxx');

2. select e.name,e.salary,m.name,m.salary fromemployees e,employees m where

 e.managerid = m.id andm.name='zxx';

表中允许适当冗余，譬如，主题帖的回复数量和最后回复时间等

将姓名和密码单独从用户表中独立出来。这可以是非常好的一对一的案例哟！

sql语句全部大写，特别是列名和表名都大写。特别是sql命令的缓存功能，更加需要统一大小写，sql语句à发给oracle服务器à语法检查和编译成为内部指令à缓存和执行指令。根据缓存的特点，不要拼凑条件，而是用?和PreparedStatment

还有索引对查询性能的改进也是值得关注的。

23、JDBC中的PreparedStatement相比Statement的好处

答：一个sql命令发给服务器去执行的步骤为：语法检查，语义分析，编译成内部指令，缓存指令，执行指令等过程。

select * from student where id =3----缓存--àxxxxx二进制命令

select * from student where id =3----直接取-àxxxxx二进制命令

select * from student where id =4--- -à会怎么干？

如果当初是select * from student where id =?--- -à又会怎么干？

 上面说的是性能提高

可以防止sql注入。

25、Class.forName的作用?为什么要用?

答：按参数中指定的字符串形式的类名去搜索并加载相应的类，如果该类字节码已经被加载过，则返回代表该字节码的Class实例对象，否则，按类加载器的委托机制去搜索和加载该类，如果所有的类加载器都无法加载到该类，则抛出ClassNotFoundException。加载完这个Class字节码后，接着就可以使用Class字节码的newInstance方法去创建该类的实例对象了。

有时候，我们程序中所有使用的具体类名在设计时（即开发时）无法确定，只有程序运行时才能确定，这时候就需要使用Class.forName去动态加载该类，这个类名通常是在配置文件中配置的，例如，spring的ioc中每次依赖注入的具体类就是这样配置的，jdbc的驱动类名通常也是通过配置文件来配置的，以便在产品交付使用后不用修改源程序就可以更换驱动类名。

28、这段代码有什么不足之处?

try {

Connection conn = ...;

Statement stmt = ...;

ResultSet rs =stmt.executeQuery("select * from table1");

while(rs.next()) {

}

} catch(Exception ex) {

}

答：没有finally语句来关闭各个对象，另外，使用finally之后，要把变量的定义放在try语句块的外面，以便在try语句块之外的finally块中仍可以访问这些变量。

30、为什么要用 ORM? 和 JDBC有何不一样?

orm是一种思想，就是把object转变成数据库中的记录，或者把数据库中的记录转变成objecdt，我们可以用jdbc来实现这种思想，其实，如果我们的项目是严格按照oop方式编写的话，我们的jdbc程序不管是有意还是无意，就已经在实现orm的工作了。

现在有许多orm工具，它们底层调用jdbc来实现了orm工作，我们直接使用这些工具，就省去了直接使用jdbc的繁琐细节，提高了开发效率，现在用的较多的orm工具是hibernate。也听说一些其他orm工具，如toplink,ojb等。

六.流行的框架与新技术

1、谈谈你对Struts的理解。

答1. struts是一个按MVC模式设计的Web层框架，其实它就是一个大大的servlet，这个Servlet名为ActionServlet，或是ActionServlet的子类。我们可以在web.xml文件中将符合某种特征的所有请求交给这个Servlet处理，这个Servlet再参照一个配置文件（通常为/WEB-INF/struts-config.xml）将各个请求分别分配给不同的action去处理。

一个扩展知识点：struts的配置文件可以有多个，可以按模块配置各自的配置文件，这样可以防止配置文件的过度膨胀；

2.ActionServlet把请求交给action去处理之前，会将请求参数封装成一个formbean对象（就是一个java类，这个类中的每个属性对应一个请求参数），封装成一个什么样的formbean对象呢？看配置文件。

3.要说明的是， ActionServlet把formbean对象传递给action的execute方法之前，可能会调用formbean的validate方法进行校验，只有校验通过后才将这个formbean对象传递给action的execute方法，否则，它将返回一个错误页面，这个错误页面由input属性指定，（看配置文件）作者为什么将这里命名为input属性，而不是error属性，我们后面结合实际的运行效果进行分析。

4.action执行完后要返回显示的结果视图，这个结果视图是用一个ActionForward对象来表示的，actionforward对象通过struts-config.xml配置文件中的配置关联到某个jsp页面，因为程序中使用的是在struts-config.xml配置文件为jsp页面设置的逻辑名，这样可以实现action程序代码与返回的jsp页面名称的解耦。

你对struts可能还有自己的应用方面的经验，那也要一并说出来。

2、谈谈你对Hibernate的理解。

答:

1. 面向对象设计的软件内部运行过程可以理解成就是在不断创建各种新对象、建立对象之间的关系，调用对象的方法来改变各个对象的状态和对象消亡的过程，不管程序运行的过程和操作怎么样，本质上都是要得到一个结果，程序上一个时刻和下一个时刻的运行结果的差异就表现在内存中的对象状态发生了变化。

2.为了在关机和内存空间不够的状况下，保持程序的运行状态，需要将内存中的对象状态保存到持久化设备和从持久化设备中恢复出对象的状态，通常都是保存到关系数据库来保存大量对象信息。从Java程序的运行功能上来讲，保存对象状态的功能相比系统运行的其他功能来说，应该是一个很不起眼的附属功能，java采用jdbc来实现这个功能，这个不起眼的功能却要编写大量的代码，而做的事情仅仅是保存对象和恢复对象，并且那些大量的jdbc代码并没有什么技术含量，基本上是采用一套例行公事的标准代码模板来编写，是一种苦活和重复性的工作。

3.通过数据库保存java程序运行时产生的对象和恢复对象，其实就是实现了java对象与关系数据库记录的映射关系，称为ORM（即Object RelationMapping），人们可以通过封装JDBC代码来实现了这种功能，封装出来的产品称之为ORM框架，Hibernate就是其中的一种流行ORM框架。使用Hibernate框架，不用写JDBC代码，仅仅是调用一个save方法，就可以将对象保存到关系数据库中，仅仅是调用一个get方法，就可以从数据库中加载出一个对象。

4.使用Hibernate的基本流程是：配置Configuration对象、产生SessionFactory、创建session对象，启动事务，完成CRUD操作，提交事务，关闭session。

5.使用Hibernate时，先要配置hibernate.cfg.xml文件，其中配置数据库连接信息和方言等，还要为每个实体配置相应的hbm.xml文件，hibernate.cfg.xml文件中需要登记每个hbm.xml文件。

6.在应用Hibernate时，重点要了解Session的缓存原理，级联，延迟加载和hql查询。

3、AOP的作用。

IOC：控制反转，是一种设计模式。一层含义是控制权的转移：由传统的在程序中控制依赖转移到由容器来控制；第二层是依赖注入：将相互依赖的对象分离，在spring配置文件中描述他们的依赖关系。他们的依赖关系只在使用的时候才建立。简单来说就是不需要NEW一个对象了。
AOP：面向切面，是一种编程思想，OOP的延续。将系统中非核心的业务提取出来，进行单独处理。比如事务、日志和安全等。这个简单来说就是可以在一段程序之前或者之后做一些事。
Spring 的AOP和IOC都是为了解决系统代码耦合度过高的问题。使代码重用度高、易于维护。
不过AOP和IOC并不是spring中特有的，只是spring把他们应用的更灵活方便
4、你对Spring的理解。

1.Spring实现了工厂模式的工厂类（在这里有必要解释清楚什么是工厂模式），这个类名为BeanFactory（实际上是一个接口），在程序中通常BeanFactory的子类ApplicationContext。Spring相当于一个大的工厂类，在其配置文件中通过<bean>元素配置用于创建实例对象的类名和实例对象的属性。

2. Spring提供了对IOC良好支持，IOC是一种编程思想，是一种架构艺术，利用这种思想可以很好地实现模块之间的解耦。IOC也称为DI（Depency Injection），什么叫依赖注入呢？

}

另外两种方式都由依赖，第一个直接依赖于目标类，第二个把依赖转移到工厂上，第三个彻底与目标和工厂解耦了。在spring的配置文件中配置片段如下：

<bean id=”computer” class=”cn.itcast.interview.Computer”>

</bean>

<bean id=”programmer” class=”cn.itcast.interview.Programmer”>

 <property name=”computer” ref=”computer”></property>

</bean>

3. Spring提供了对AOP技术的良好封装， AOP称为面向切面编程，就是系统中有很多各不相干的类的方法，在这些众多方法中要加入某种系统功能的代码，例如，加入日志，加入权限判断，加入异常处理，这种应用称为AOP。实现AOP功能采用的是代理技术，客户端程序不再调用目标，而调用代理类，代理类与目标类对外具有相同的方法声明，有两种方式可以实现相同的方法声明，一是实现相同的接口，二是作为目标的子类在，JDK中采用Proxy类产生动态代理的方式为某个接口生成实现类，如果要为某个类生成子类，则可以用CGLI B。在生成的代理类的方法中加入系统功能和调用目标类的相应方法，系统功能的代理以Advice对象进行提供，显然要创建出代理对象，至少需要目标类和Advice类。spring提供了这种支持，只需要在spring配置文件中配置这两个元素即可实现代理和aop功能，例如，

<bean id=”proxy” type=”org.spring.framework.aop.ProxyBeanFactory”>

 <property name=”target”ref=””></property>

 <property name=”advisor”ref=””></property>

</bean>

5、谈谈Struts中的Action servlet。

6、Struts优缺点

优点：

 1. 实现MVC模式，结构清晰,使开发者只关注业务逻辑的实现.

2．有丰富的tag可以用 ,Struts的标记库(Taglib)，如能灵活动用，则能大大提高开发效率

3. 页面导航

 使系统的脉络更加清晰。通过一个配置文件，即可把握整个系统各部分之间的联系，这对于后期的维护有着莫大的好处。尤其是当另一批开发者接手这个项目时，这种优势体现得更加明显。

4. 提供Exception处理机制 .

5. 数据库链接池管理

6. 支持I18N

缺点

一、 转到展示层时，需要配置forward，如果有十个展示层的jsp，需要配置十次struts，而且还不包括有时候目录、文件变更，需要重新修改forward，注意，每次修改配置之后，要求重新部署整个项目，而tomcate这样的服务器，还必须重新启动服务器

二、 二、 Struts的Action必需是thread－safe方式，它仅仅允许一个实例去处理所有的请求。所以action用到的所有的资源都必需统一同步，这个就引起了线程安全的问题。

三、 测试不方便. Struts的每个Action都同Web层耦合在一起，这样它的测试依赖于Web容器，单元测试也很难实现。不过有一个Junit的扩展工具Struts TestCase可以实现它的单元测试。

四、 类型的转换. Struts的FormBean把所有的数据都作为String类型，它可以使用工具Commons-Beanutils进行类型转化。但它的转化都是在Class级别，而且转化的类型是不可配置的。类型转化时的错误信息返回给用户也是非常困难的。

五、 对Servlet的依赖性过强. Struts处理Action时必需要依赖ServletRequest和ServletResponse，所有它摆脱不了Servlet容器。

六、 前端表达式语言方面.Struts集成了JSTL，所以它主要使用JSTL的表达式语言来获取数据。可是JSTL的表达式语言在Collection和索引属性方面处理显得很弱。

七、 对Action执行的控制困难. Struts创建一个Action，如果想控制它的执行顺序将会非常困难。甚至你要重新去写Servlet来实现你的这个功能需求。

八、 对Action执行前和后的处理. Struts处理Action的时候是基于class的hierarchies，很难在action处理前和后进行操作。

九、 对事件支持不够.在struts中，实际是一个表单Form对应一个Action类(或DispatchAction)，换一句话说：在Struts中实际是一个表单只能对应一个事件，struts这种事件方式称为application event，application event和component event相比是一种粗粒度的事件

7、STRUTS的应用(如STRUTS架构)

Struts是采用Java Servlet/JavaServer Pages技术，开发Web应用程序的开放源码的framework。采用Struts能开发出基于MVC(Model-View-Controller)设计模式的应用构架。 Struts有如下的主要功能：一.包含一个controller servlet，能将用户的请求发送到相应的Action对象。二.JSP自由tag库，并且在controller servlet中提供关联支持，帮助开发员创建交互式表单应用。三.提供了一系列实用对象：XML处理、通过Java reflection APIs自动处理JavaBeans属性、国际化的提示和消息。

8、说说struts1与struts2的区别。

1.都是MVC的WEB框架,

2 struts1的老牌框架，应用很广泛，有很好的群众基础，使用它开发风险很小，成本更低！struts2虽然基于这个框架，但是应用群众并多，相对不成熟，未知的风险和变化很多，开发人员相对不好招，使用它开发项目的风险系数更大，用人成本更高！

3.struts2毕竟是站在前辈的基础设计出来，它会改善和完善struts1中的一些缺陷，struts1中一些悬而未决问题在struts2得到了解决。

4.struts1的前端控制器是一个Servlet，名称为ActionServlet，struts2的前端控制器是一个filter，在struts2.0中叫FilterDispatcher，在struts2.1中叫StrutsPrepareAndExecuteFilter。

5.struts1的action需要继承Action类，struts2的action可以不继承任何类；struts1对同一个路径的所有请求共享一个Action实例，struts2对同一个路径的每个请求分别使用一个独立Action实例对象，所有对于struts2的Action不用考虑线程安全问题。

6.在struts1中使用formbean封装请求参数，在struts2中直接使用action的属性来封装请求参数。

7.struts1中的多个业务方法放在一个Action中时（即继承DispatchAction时），要么都校验，要么都不校验；对于struts2，可以指定只对某个方法进行校验，当一个Action继承了ActionSupport且在这个类中只编写了validateXxx()方法，那么则只对Xxx()方法进行校验。

与Struts1不同，Struts2对用户的每一次请求都会创建一个Action，所以Struts2中的Action是线程安全的。

给我印象最深刻的是：struts配置文件中的redirect视图的url不能接受参数，而struts2配置文件中的redirect视图可以接受参数。

9、hibernate中的update()和saveOrUpdate()的区别，session的load()和get()的区别。

update针对的是已存在的实体对象，saveOrUpdate()对象存在与否都不会有任何影响。load是只在缓存中加载数据，get是先缓存中查找或者缓存中没有到数据库中查找
10、简述 Hibernate和 JDBC的优缺点?如何书写一个 one to many配置文件.
 Hibernate比JDBC方便，可以提高数据库的应用效率。
11、iBatis与Hibernate有什么不同?

相同点：屏蔽jdbc api的底层访问细节，使用我们不用与jdbc api打交道，就可以访问数据。

jdbc api编程流程固定，还将sql语句与java代码混杂在了一起，经常需要拼凑sql语句，细节很繁琐。

ibatis的好处：屏蔽jdbc api的底层访问细节；将sql语句与java代码进行分离;提供了将结果集自动封装称为实体对象和对象的集合的功能，queryForList返回对象集合，用queryForObject返回单个对象；提供了自动将实体对象的属性传递给sql语句的参数。

Hibernate是一个全自动的orm映射工具，它可以自动生成sql语句,ibatis需要我们自己在xml配置文件中写sql语句，hibernate要比ibatis功能负责和强大很多。因为hibernate自动生成sql语句，我们无法控制该语句，我们就无法去写特定的高效率的sql。对于一些不太复杂的sql查询，hibernate可以很好帮我们完成，但是，对于特别复杂的查询，hibernate就很难适应了，这时候用ibatis就是不错的选择，因为ibatis还是由我们自己写sql语句。

12、写Hibernate的一对多和多对一双向关联的orm配置?

9、hibernate的inverse属性的作用?

解决方案一，按照Object[]数据取出数据，然后自己组bean

解决方案二，对每个表的bean写构造函数，比如表一要查出field1,field2两个字段，那么有一个构造函数就是Bean(type1filed1,type2

field2) ，然后在hql里面就可以直接生成这个bean了。

13、在DAO中如何体现DAO设计模式?

解决方案一，按照Object[]数据取出数据，然后自己组bean

解决方案二，对每个表的bean写构造函数，比如表一要查出field1,field2两个字段，那么有一个构造函数就是Bean(type1filed1,type2

field2) ，然后在hql里面就可以直接生成这个bean了。

14、spring+Hibernate中委托方案怎么配置?

解决方案一，按照Object[]数据取出数据，然后自己组bean

解决方案二，对每个表的bean写构造函数，比如表一要查出field1,field2两个字段，那么有一个构造函数就是Bean(type1filed1,type2

field2) ，然后在hql里面就可以直接生成这个bean了。

15、spring+Hibernate中委托方案怎么配置?

解决方案一，按照Object[]数据取出数据，然后自己组bean

解决方案二，对每个表的bean写构造函数，比如表一要查出field1,field2两个字段，那么有一个构造函数就是Bean(type1filed1,type2

field2) ，然后在hql里面就可以直接生成这个bean了。

16. hibernate进行多表查询每个表中各取几个字段，也就是说查询出来的结果集没有一个实体类与之对应如何解决；
解决方案一，按照Object[]数据取出数据，然后自己组bean

解决方案二，对每个表的bean写构造函数，比如表一要查出field1,field2两个字段，那么有一个构造函数就是Bean(type1filed1,type2

field2) ，然后在hql里面就可以直接生成这个bean了。

17.介绍一下Hibernate的二级缓存

按照以下思路来回答：（1）首先说清楚什么是缓存，（2）再说有了hibernate的Session就是一级缓存，即有了一级缓存，为什么还要有二级缓存，（3）最后再说如何配置Hibernate的二级缓存。

（1）缓存就是把以前从数据库中查询出来和使用过的对象保存在内存中（一个数据结构中），这个数据结构通常是或类似Hashmap，当以后要使用某个对象时，先查询缓存中是否有这个对象，如果有则使用缓存中的对象，如果没有则去查询数据库，并将查询出来的对象保存在缓存中，以便下次使用。
（2）Hibernate的Session就是一种缓存，我们通常将之称为Hibernate的一级缓存，当想使用session从数据库中查询出一个对象时，Session也是先从自己内部查看是否存在这个对象，存在则直接返回，不存在才去访问数据库，并将查询的结果保存在自己内部。由于Session代表一次会话过程，一个Session与一个数据库连接相关连，所以Session最好不要长时间保持打开，通常仅用于一个事务当中，在事务结束时就应关闭。并且Session是线程不安全的，被多个线程共享时容易出现问题。通常只有那种全局意义上的缓存才是真正的缓存应用，才有较大的缓存价值，因此，Hibernate的Session这一级缓存的缓存作用并不明显，应用价值不大。Hibernate的二级缓存就是要为Hibernate配置一种全局缓存，让多个线程和多个事务都可以共享这个缓存。我们希望的是一个人使用过，其他人也可以使用，session没有这种效果。

（3）二级缓存是独立于Hibernate的软件部件，属于第三方的产品，多个厂商和组织都提供有缓存产品，例如，EHCache和OSCache等等。在Hibernate中使用二级缓存，首先就要在hibernate.cfg.xml配置文件中配置使用哪个厂家的缓存产品，接着需要配置该缓存产品自己的配置文件，最后要配置Hibernate中的哪些实体对象要纳入到二级缓存的管理中。明白了二级缓存原理和有了这个思路后，很容易配置起Hibernate的二级缓存。扩展知识：一个SessionFactory可以关联一个二级缓存，也即一个二级缓存只能负责缓存一个数据库中的数据，当使用Hibernate的二级缓存后，注意不要有其他的应用或SessionFactory来更改当前数据库中的数据，这样缓存的数据就会与数据库中的实际数据不一致。

18、Spring的依赖注入是什么意思?给一个 Bean 的 message属性,字符串类型,注入值为"Hello"的 XML配置文件该怎么写?

19、Jdo是什么?

JDO是Java对象持久化的新的规范，为java data object的简称,也是一个用于存取某种数据仓库中的对象的标准化API。JDO提供了透明的对象存储，因此对开发人员来说，存储数据对象完全不需要额外的代码（如JDBC API的使用）。这些繁琐的例行工作已经转移到JDO产品提供商身上，使开发人员解脱出来，从而集中时间和精力在业务逻辑上。另外，JDO很灵活，因为它可以在任何数据底层上运行。JDBC只是面向关系数据库（RDBMS）JDO更通用，提供到任何数据底层的存储功能，比如关系数据库、文件、XML以及对象数据库（ODBMS）等等，使得应用可移植性更强。

20、什么是spring的IOC AOP

21、STRUTS的工作流程！

22、spring与EJB的区别！！

八.软件工程与设计模式

2、j2ee常用的设计模式？说明工厂模式。

总共23种，分为三大类：创建型，结构型，行为型

我只记得其中常用的6、7种，分别是：

创建型（工厂、工厂方法、抽象工厂、单例）

结构型（包装、适配器，组合，代理）

行为（观察者，模版，策略）

然后再针对你熟悉的模式谈谈你的理解即可。

Java中的23种设计模式：

Factory（工厂模式）， Builder（建造模式）， Factory Method（工厂方法模式），

Prototype（原始模型模式），Singleton（单例模式）， Facade（门面模式），

Adapter（适配器模式）， Bridge（桥梁模式）， Composite（合成模式），

Decorator（装饰模式）， Flyweight（享元模式）， Proxy（代理模式），

Command（命令模式）， Interpreter（解释器模式）， Visitor（访问者模式），

Iterator（迭代子模式）， Mediator（调停者模式）， Memento（备忘录模式），

Observer（观察者模式）， State（状态模式）， Strategy（策略模式），

Template Method（模板方法模式）， Chain Of Responsibleity（责任链模式）

工厂模式：工厂模式是一种经常被使用到的模式，根据工厂模式实现的类可以根据提供的数据生成一组类中某一个类的实例，通常这一组类有一个公共的抽象父类并且实现了相同的方法，但是这些方法针对不同的数据进行了不同的操作。首先需要定义一个基类，该类的子类通过不同的方法实现了基类中的方法。然后需要定义一个工厂类，工厂类可以根据条件生成不同的子类实例。当得到子类的实例后，开发人员可以调用基类中的方法而不必考虑到底返回的是哪一个子类的实例。

3、开发中都用到了那些设计模式?用在什么场合?

每个模式都描述了一个在我们的环境中不断出现的问题，然后描述了该问题的解决方案的核心。通过这种方式，你可以无数次地使用那些已有的解决方案，无需在重复相同的工作。主要用到了MVC的设计模式。用来开发JSP/Servlet或者J2EE的相关应用。简单工厂模式等。

九. j2ee部分

1、BS与CS的联系与区别。

C/S是Client/Server的缩写。服务器通常采用高性能的PC、工作站或小型机，并采用大型数据库系统，如Oracle、Sybase、InFORMix或 SQL Server。客户端需要安装专用的客户端软件。

B/Ｓ是Brower/Server的缩写，客户机上只要安装一个浏览器（Browser），如Netscape Navigator或Internet Explorer，服务器安装Oracle、Sybase、InFORMix或 SQL Server等数据库。在这种结构下，用户界面完全通过WWW浏览器实现，一部分事务逻辑在前端实现，但是主要事务逻辑在服务器端实现。浏览器通过Ｗeb Server同数据库进行数据交互。

C/S 与 B/S区别：

１．硬件环境不同:

C/S 一般建立在专用的网络上,小范围里的网络环境,局域网之间再通过专门服务器提供连接和数据交换服务.

B/S 建立在广域网之上的,不必是专门的网络硬件环境,例与电话上网,租用设备.信息自己管理.有比C/S更强的适应范围,一般只要有操作系统和浏览器就行

２．对安全要求不同

C/S 一般面向相对固定的用户群,对信息安全的控制能力很强.一般高度机密的信息系统采用C/S结构适宜.可以通过B/S发布部分可公开信息.

B/S 建立在广域网之上,对安全的控制能力相对弱,可能面向不可知的用户。

３．对程序架构不同

C/S 程序可以更加注重流程,可以对权限多层次校验,对系统运行速度可以较少考虑.

B/S 对安全以及访问速度的多重的考虑,建立在需要更加优化的基础之上.比C/S有更高的要求 B/S结构的程序架构是发展的趋势,从MS的.Net系列的BizTalk 2000Exchange 2000等,全面支持网络的构件搭建的系统. SUN和IBM推的JavaBean构件技术等,使 B/S更加成熟.

４．软件重用不同

C/S 程序可以不可避免的整体性考虑,构件的重用性不如在B/S要求下的构件的重用性好.

B/S 对的多重结构,要求构件相对独立的功能.能够相对较好的重用.就入买来的餐桌可以再利用,而不是做在墙上的石头桌子

５．系统维护不同

C/S 程序由于整体性,必须整体考察,处理出现的问题以及系统升级.升级难.可能是再做一个全新的系统

B/S 构件组成,方面构件个别的更换,实现系统的无缝升级.系统维护开销减到最小.用户从网上自己下载安装就可以实现升级.

６．处理问题不同

C/S 程序可以处理用户面固定,并且在相同区域,安全要求高需求,与操作系统相关.应该都是相同的系统

B/S 建立在广域网上,面向不同的用户群,分散地域,这是C/S无法作到的.与操作系统平台关系最小.

７．用户接口不同

C/S 多是建立的Window平台上,表现方法有限,对程序员普遍要求较高

B/S 建立在浏览器上,有更加丰富和生动的表现方式与用户交流.并且大部分难度减低,减低开发成本.

８．信息流不同

C/S 程序一般是典型的中央集权的机械式处理,交互性相对低

B/S 信息流向可变化, B-B B-C B-G等信息、流向的变化,更像交易中心。

2、应用服务器与WEB SERVER的区别？

应用服务器：Weblogic、Tomcat、Jboss

WEB SERVER：IIS、 Apache

3、应用服务器有那些？

BEA WebLogic Server，IBM WebSphere Application Server，Oracle9i ApplicationServer，jBoss，Tomcat

4、J2EE是什么？

答:Je22是Sun公司提出的多层(multi-diered),分布式(distributed),基于组件(component-base)的企业级应用模型(enterpriese applicationmodel).在这样的一个应用系统中，可按照功能划分为不同的组件，这些组件又可在不同计算机上，并且处于相应的层次(tier)中。所属层次包括客户层(clietn tier)组件,web层和组件,Business层和组件,企业信息系统(EIS)层。

一个另类的回答：j2ee就是增删改查。

5、J2EE是技术还是平台还是框架？什么是J2EE

 J2EE本身是一个标准，一个为企业分布式应用的开发提供的标准平台。

6、四种会话跟踪技术

会话作用域ServletsJSP页面描述

page否是代表与一个页面相关的对象和属性。一个页面由一个编译好的 Java servlet类（可以带有任何的include指令，但是没有 include动作）表示。这既包括 servlet又包括被编译成 servlet的 JSP页面

request是是代表与 Web客户机发出的一个请求相关的对象和属性。一个请求可能跨越多个页面，涉及多个Web组件（由于 forward指令和 include动作的关系）

session是是代表与用于某个 Web客户机的一个用户体验相关的对象和属性。一个 Web会话可以也经常会跨越多个客户机请求

application是是代表与整个 Web应用程序相关的对象和属性。这实质上是跨越整个 Web应用程序，包括多个页面、请求和会话的一个全局作用域

3

