我现在正在做一个J2EE的OA项目，基于安全保密考虑，项目名称以下称为J2EEOA。现在，项目的系统需求和设计阶段都已做完，正处在编码阶段。在这个过程中有很多开发心得和体会，不吐不快。在这里，整理出来与大家一同分享。

文章中应用大量专业术语，所以在阅读前，您应有一定的基础知识，如java language、jsp、servlet、j2ee、ejb、ejb-ql、structs(MVC)、jboss、ant等。为了帮助大家更好的阅读，把相关知识链接列在下面。

1．JBoss Application Server :
http://www.jboss.org/
或者http://sourceforge.net/projects/jboss/
2．Java Language Specification
http://java.sun.com/docs/books/jls/
或者http://java.sun.com/products/javahelp/whitepaper.html
3．JDK
http://java.sun.com/j2se
4．J2EE
http://java.sun.com/j2ee
5．ANT
http://jakarta.apache.org/ant/index.html
6．Structs
http://jakarta.apache.org/struts/
7．JSP
http://java.sun.com/products/jsp/
8．Servlet
http://java.sun.com/products/servlet/
9．EJB
http://java.sun.com/products/ejb/
10．EJB-QL
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/EJBQL.html
安装和配置JBoss Application Server

今天的工作主要是安装JBoss。下面在介绍JBoss之后重点讲解配置JBoss Application Server后我总结出的经验。
为什么要选择JBoss作应用服务器？

JBoss是一个符合标准的开放源码的J2EE应用服务器套件的名称，当前最新版本为3.0。JAS套件包括JBossServer EJB v2.0 Container 和server, JBossMQ JMS 1.0 implemetation, JBossNS JNDI implemetation,JBossCMP advanced O/R mapper和JDBC data object storage implemetation以及JAAS-based JBossSX security frameeork。所有的JBoss应用程序都是100%纯java应用程序。

JBoss 3.0包括最新的微型JMX内核、完整的HTTP Server(Jetty或Tomcat)、JCA、EJB2.0，是一个完整的、丰富的基于J2EE规范的应用服务器。

JBoss3.0遵循EJB1.1规范和部分EJB2.0规范。在这方面，它类似Sun's 'J2SDK Enterprise Edition' (J2EE)，但JBoss服务器内核仅支持EJB服务器。JBoss内核不包括支持Severlet/JSP的WEB包容器，尽管它捆扎了Tomcat或Jetty。最小内核需要是指JBoss要求的最小内存和磁盘空间。JBoss可以运行在内存为64MRAM的机器上，要求很少的磁盘空间（包括源代码）。Sun's J2EE要求最少128MRAM、31M磁盘空间。由于要求较小内存方面的原因，JBoss启动比Sun J2EE快10倍并自带了一个数据库服务器(Hypersonic SQL Server)，在JBoss启动时数据库服务器自动启动（Sun's J2EE也自带了一个CloudScape SQL server，但CloudScape SQL server必须同Sun's J2EE分开启动）。

JBoss完美的功能之一是它支持“热”部署。这个意思是部署一个Bean就是拷贝JAR文件到部署目录那么简单。如果你正在Bean已经部署的情况下进行这个操作，JBoss自动卸载Bean，再部署新版本的Bean。JBoss是基于LGPL的分发，也就是说它是完全免费的。

(编译自：http://www.jboos.org)
安装JAS3.0

首先在Windows下安装JAS，安装成功后，再将JAS移植到Linux服务器上。

·安装JDK1.3，在安装JAS之前，必须在JAS服务器上安装JDK。

·下载JAS3.0的安装程序

首先去JBoss站点下载JAS3.0的安装程序,文件名jboss-3.0.0_tomcat-4.0.31.zip

下载地址1: http://www.jboss.org/downloads.jsp

下载地址2: http://sourceforge.net/projects/jboss/

·释放安装程序

下载后，使用压缩工具WinRAR，把jboss-3.0.0_tomcat-4.0.31.zip释放到c:\，释放之后，在c：下出现jboss-3.0.0_tomcat-4.0.3目录，它就是JAS的主目录。

·运行JAS

JAS的主目录下有一个bin目录，它是JAS的运行入口，run.bat是JAS的windows版运行程序，ruh.sh是JAS的unix版（包括linux、solaris等操作系统）运行程序。双击run.bat文件，弹出运行窗口。

图片1 刚开始运行JAS的窗口
[image: image1.jpg]camcat 100 1wt jor
Ruinboptover] Searting deplosment of packase: file:/c:/hol
A 1D Savak, serviat o
" ih0s2-3.0.0 ancat 1 dauanc sorent-dur

206 47 INFD. (hninbeploser Seareing deploymant of pachages £1lc/C:/3he]

5700, Corcac Aih alan-Sar
4200557300 WK Maisboplayer) The manifest entry fn £ila:C:/Shors-3.9.0.
Al o eferents R 15 e 0.0 o1 ih reee

Uhuinboptayer) Searting deplosmant of puckase: fi1e:/c1/sho

a0 HES huiseplorer Suceesstuly compl y "

:/C:/fhoss-3.0.0_toncat /) fhrcounterplugin . ar

07,148 INF0. (aiabeployer) Start ing depisyment of package: ile:/c:dho
oot sty

oL Shase-3-0.0 tomcat Vbt dor

(67508 NP0 Unaiabepiover] Siareing deplayment of packages 1les/c:dho

567558 AP (hlabepicyen) Sscessfuly comploced dapl £ pacha
fhass3.0.0.toncac 1 ihdpose-gace-dar

67,578 INFD. Uhninbeploses) Searting deplogment of packages F1les/C:/3ho]

图片2 运行中的JAS窗口

JAS运行成功后，8080端口被Tomcat的Servlet引擎占用，8082端口被JBoss的代理管理占用。Tomcat占用的8080端口可以被修改的，下面将会介绍到。

JAS的目录及其描述

约定说明：在下面，我将JAS中的一些目录进行说明和描述。

JAS的主目录描述为${jboss.home}

·JAS的bin目录名称为bin，描述为${jboss.bin}，它用来存放JAS的启动程序和运行时的包，在Windows下JAS的启动程序为run.bat，在Unix下JAS的启动程序为run.sh。

·JAS的client目录名称为client，描述为${jboss.client}，它用来存放JAS所用的一些包。

·J2EE Application 所在目录名称描述为${jboss.configuration}，JAS在缺省状态下的名称为default，可以通过在运行启动程序时加上参数“-c”来指定名称。例如：

	run.bat -c J2EEOA

·JAS的库目录描述为${jboss.home}/server/${jboss.configuration}/lib，在JAS启动时，JAS会自动加载此目录下所有的库文件（扩展名为JAR的压缩文件）。

·JAS的部署目录描述为${jboss.home}/server/${jboss.configuration}/deploy，此目录存放J2EE Application、EJB和一些配置文件，如mysql-service.xml、mail-service.xml、tomcat4-service.xml、jms-service.xml等。

·JAS的配置目录描述为${jboss.home}/server/${jboss.configuration}/conf，此目录存放JAS的配置文件，如jboss-service.xml、log4j.xml、standardjaws.xml、standardjboss.xml、standardjbosscmp-jdbc.xml等。

·JAS日志目录描述为${jboss.home}/server/${jboss.configuration}/log，JAS在缺省状态下的日志文件名为server.log。，可以通过在修改log4j.xml来指定日志文件名，如下所示：

	<appender name="FILE" class=

 "org.jboss.logging.appender.DailyRollingFileAppender">

 <param name="File" value="${jboss.server.home.dir}/log/server.log"/>

<param name="Append" value="false"/>

…

 </appender>

[image: image2.jpg]£ 2033 ABY Hrdw W

<pran = Convarsianpattor” va
o

图片3 修改log4j.xml指定日志文件

·JAS的Tomcat目录描述为${jboss.home}/catalina，它用来提供Servlet/JSP引擎。

·下面是一个简单的JBoss目录结构图：

	\

|--bin

|--client

|--server

 |--${jboss.configuration}

|--conf

|--deploy

|--log

…

…

让JBoss和自带的Tomcat同时运行

JAS3.0自带了一个Tomcat Web包容器，但初装时，Tomcat是不能单独启动的，必须在JAS内运行。通过如下配置可以让Tomcat单独运行。

·修改JAS下的tomcat4-service.xml文件，将Tomcat的Http端口设为9090，下面是tomcat4-service.xml的部分代码：

	<!-- A HTTP Connector on port 9090 -->

 <Connector className =

"org.apache.catalina.connector.http.HttpConnector"

 port = "9090" minProcessors = "3" maxProcessors = "10"

 enableLookups = "true"

 acceptCount = "10" debug = "0" connectionTimeout = "60000"/>

[image: image3.jpg]DefaultContext
Host

connector
Port = "9030" minproc
acceptcount = *10" debug connec

图片4 修改Tomcat的Http端口

· 拷贝${jboss.home}/lib目录下的两个JAR文件jaxp.jar、crimson.jar到${jboss.home}/catalina/common/lib目录。

· 分别启动Tomcat和JBoss。在${jboss.home}/catalina/bin目录下输入startup.bat。tomcat运行了，它占用了8080端口。在${jboss.home}/bin目录下输入run.bat，JBoss也运行了，它的HTTP 引擎占用了9090端口。

到此JAS已经可以用了，下面来配置JAS连接数据库。
连接数据库

说明：项目要求的数据库为Mysql数据库，故必须将JAS和mysql数据库服务器连接起来。

下载mysql的jdbc驱动程序

由于用jdbc连接mysql要使用org.gjt.mm.mysql.Driver驱动程序，故先下载mysql的jdbc驱动程序，按下面的地址将文件mm.mysql-2.0.13-you-must-unjar-me.jar下载下来。

下载地址：http://sourceforge.net/projects/mmmysql/

释放驱动程序

上面下载的驱动程序包括了mm.mysql-2.0.13-bin.jar、开放的源代码和一个LICENSE，用WinRAR释放压缩文件，其中mm.mysql-2.0.13-bin.jar就是mysql的jdbc驱动程序，驱动程序文件名中的2.0.13是驱动程序的版本号。

配置驱动程序

·方法一：（推荐使用此方法）

将mm.mysql-2.0.13-bin.jar拷贝到JAS的库目录即${jboss.home}/server/${jboss.configuration}/lib

·方法二：

在系统变量中加入JBOSS_CLASSPATH，值为mm.mysql-2.0.13-bin.jar的位置：

例如：

	在Windows操作系统下

set JBOSS_CLASSPATH= c:\J2EE\jdbc\mm.mysql-2.0.13\mm.mysql-2.0.13-bin.jar

[image: image4.jpg]_ el
o 1 D — 21

FHamn

T I masnlen |AeRze 20 |
| Cop —

N —
=m0

图片5 设置系统变量JBOSS_CLASSPATH
	在Unix操作系统下

setenv JBOSS_CLASSPATH /usr/local/jdbc/mm.mysql-2.0.13-bin.jar

	在Linux操作系统下

JBOSS_CLASSPATH=/usr/local/jdbc/mm.mysql-2.0.13-bin.jar

export JBOSS_CLASSPATH

安装Mysql服务

${jboss.home}\docs\examples\jca目录存放着JAS提供的数据库映射服务配置文件，包括Oracle、DB2、Informix、MsSQL、Mysql、Hypersonic SQL、Postgres SQL等很多期望的数据库。将mysql-service.xml文件拷贝到${jboss.home}/server/${jboss.configuration}/deploy目录。

配置mysql-service.xml

在mysql-service.xml中修改以下几项的值，其它项是否要改根据情况而定。

·JndiName

·ConnectionURL

·DriverClass

·UserName

·Password

	<depends optional-attribute-name="ManagedConnectionFactoryName">

 <!--embedded mbean-->

 <mbean code="org.jboss.resource.connectionmanager.RARDeployment"

 name="jboss.jca:service=LocalTxDS,name=MySqlDS">

 <attribute name="JndiName"> myProjectDS</attribute>

 <attribute name="ManagedConnectionFactoryProperties">

 <properties>

 <config-property name="ConnectionURL" type="java.lang.String">

jdbc:mysql://192.168.0.6/myProject</config-property>

 <config-property name="DriverClass"

type="java.lang.String">org.gjt.mm.mysql.Driver</config-property>

 <!--set these only if you want only default logins, not through JAAS -->

 <config-property name="UserName"

type="java.lang.String">test</config-property>

 <config-property name="Password"

type="java.lang.String">test</config-property>

 </properties>

 </attribute>

<!--Below here are advanced properties -->

 <!--hack-->

 <depends optional-attribute-name="OldRarDeployment">

jboss.jca:service=RARDeployment,name=JBoss LocalTransaction JDBC Wrapper</depends>

 </mbean>

</depends>

源代码：立即下载

到此，所有的准备工作都做好了，现在只需运行JAS，看一看这台连接Mysql数据库的JAS是否配好了。

如果JAS在Windows下运行正常，就把JAS移植到Linux服务器上。在Linux 服务器上运行JAS要用run.sh来启动。
开发前的约定（1）

今天进入可开发前的准备阶段。在开发项目前，要求每位开发小组成员都必须先阅读以下约定，严格按以下约定来进行开发。
系统框架

·系统总框架采用SUN J2EE框架，使用JAVA/XML技术和组件技术， 基于Application server开发。

·项目中的程序必须严格按J2EE1.3规范来编码，EJB建议采用2.0规范编码，尽可能多使用EJB 模式设计，参考技术文档如下：

1.《J2EE Tutorial》

j2ee-1_3-doc-tutorial-draft5.pdf

2.《JBoss 3.0Quick Start Guide》

3.《EJB Design Patterns》
开发环境

·测试用Application server采用JAS，JAS 配置于Linux OS下，IP地址：192.168.0.6。登录用户名：J2EEOA，密码：J2EEOA。登录ftp工具建议使用SSH Secure Shell或LeapFTP，ftp地址为192.168.0.6:22。

·项目开发源码目录为/home/local/jboss/applications/J2EEOA/src，项目开发文档目录为/home/product/J2EEOA/。

· 数据库服务器IP为192.168.0.222，数据库采用Mysql，管理工具为phpadmin，登录数据库的用户名为test，密码为test。
源代码目录规范

每位开发小组成员一定要绝对遵守以下创建源代码目录的规范。

项目开发目录结构简图：

	\

|--apps

 |--J2EEOA

 |--admin

|--components

 |--a component

|--modules

 |--a module

|--lib

 |--ant

|--build.properties

[image: image5.jpg]EIEe

L apps

1 components.
Clib

1 modules.

图片6 项目开发目录结构图

项目开发目录结构说明：

	\ (说明：根目录)

|--apps (说明：此目录下放应用程序的代码)

 |--J2EEOA (说明：此目录为放J2EEOA应用程序的代码)

 |--admin (说明：此目录为放项目的admin应用程序的代码)

|--components (说明：此目录下放应用程序组件的代码)

 |--a component (说明：此目录为放一个组件的代码)

|--modules (说明：此目录下放应用程序模块的代码)

 |--a module (说明：此目录为放一个模块的代码)

|--lib (说明：此目录下放项目开发工具)

 |--ant (说明：Ant工具，包括bin和lin目录)

|--build.properties

(说明：此文件定义项目开发共用的环境变量，

如jboss.home、jboss.configuration、servlet-lib.path等)

模块、组件开发目录结构简图：

	\

|--build

|--etc

 |--multi-langs

|--lib

 |--docs

 |--ejb

 |-- META-INF

 |--j2ee

|--META-INF

 |--web

 |--WEB-INF

|--src

 |--ejb

 |--javabean

 |--servlet

 |--web

|--build.bat

|--build.sh

|--build.xml

[image: image6.jpg]=] components

buld
Q0 etc
21 mutiangs
=00
=0 docs
Clapl
=0eb
23 com
1 META-INF
0 joee
1 META-INF
=0 web
£ skin
21 WEB-INF

Qs

= main
Cleip
20 serviet
21 web

图片7 模块、组件目录结构图

说明：src、etc目录和build.bat、build.sh、build.xml为开发人员建立的目录，build和lib目录为由ant工具生成的目录。

模块、组件开发目录结构说明

	\ (说明：一个模块或一个组件的根目录)

|--build (说明：保存由ant工具生成的扩展名为jar、war、ear等文件)

|--etc

(说明：存放部署文件，如web.xml、ejb-jar.xml、application.xml、

jaws.xml、jbosscmp-jdbc.xml等)

 |--multi-langs (说明：存放多语言资源文件，扩展名为properties，)

|--lib (说明：保存由ant工具生成的API文件、class文件等)

 |--docs

 |--api

 |--ejb

 |-- META-INF

 |--j2ee

|--META-INF

 |--web

 |--WEB-INF

|--src (说明：存放源代码，包括java和jsp代码，下面有四个目录。)

 |--ejb (说明：采用EJB进行开发，存放EJB和Helper Classes源代码。)

 |--javabean (说明：采用Javabean进行开发，存放Javabean和Helper Classes源代码。)

 |--servlet (说明：存放Servlet源代码。)

 |--web (说明：存放JSP源代码。)

|--build.bat (说明：在Window OS下，进行build的文件。)

|--build.sh (说明：在Unix OS下，进行build的文件。)

|--build.xml (说明：Ant工具要build的目标文件。)

应用程序开发目录结构简图：

	\

|--build

|--etc

|--lib

 |--docs

 |--ejb

 |-- META-INF

 |--j2ee

|--META-INF

 |--web

 |--WEB-INF

|--team

 |--a member

|--ejb

|--javabean

|--web

|--build.bat

|--build.sh

|--build.xml

|--build.properties

[image: image7.jpg]Gremee

图片8 应用程序目录结构图

应用程序开发目录结构

1. 由于项目由多个程序员一起来进行编码，所以应用程序开发目录结构和模块、组件开发目录结构的不一样。

2. 应用程序开发目录结构没有src目录，但多了一个team目录，此目录存放所有程序员的classes和Jsp代码。

3. 应用程序开发目录结构下build.xml和模块、组件开发目录结构下的build.xml有很大不同。

4. 由项目组长负责管理etc目录、build.xml、build.bat、build.sh、build.properties，程序员分别管理team目录下的属于自己的目录，如程序员tom管理team/tom目录。
开发前的约定（2）

build.xml编码规范

· 应用程序目录下的build.xml

源代码：应用程序目录下的build.xml规范模板

说明：在建立build.xml时，组长只需修改创建的时间和变量ProjectName等。

模块、组件目录下的build.xml

源代码：模块、组件目录下的build.xml规范模板

说明：在建立build.xml时，开发人员只需修改创建的时间和和变量ProjectName、componentName等。
编码规范

· 项目中的JAVA源代码必须按《JAVA开发规范》。

·项目中的JSP代码必须按《JSP开发规范》。

· 每位开发小组成员在开发项目时都严格按此规范来进行编写程序，让项目中所有的文档都看起来像一个人写的，增加可读性，减少项目组中因为换人而带来的损失。

· 每位开发小组成员一定要绝对遵守这个规范。当实际应用与下面的规范相抵触时，记录下原因、潜在后果，以及符合规范需要的条件，但必须是在让程序有良好的可读性的前提下。
功能模块

在做业务逻辑模块前，先把一些准备工作做出来：

建立一些公用的bean（项目中称为系统控制器controller），包名为com.cwap.oa.controller.*，提供给系统各模块使用。包括对时间、字符的操作，调试器，软件国际化，多语言版本，系统的WEB外壳，MVC模式的Servlet和Action，对WEB页面显示的控制如树结构、路径结构；等等。

建立一个序列发生器，包名为com.cwap.oa.sequencegenerator.*，提供给bean使用，它用来产生一个唯一的ID，而且也可用来计数，也就是把它当成计数器使用。介绍如何取id的方法的文字要写在bean的代码内，以便生成API后供其它开发人员参阅。

建立一个ServerFacade，它为EJB Home提供统一的接口。ServerFacade为程序要用到的所有EJB的home handle提供缓存，提高访问效率。以后查找JNDI Name的方法都应写在接口里，调用时直接从接口调用。

建立一个翻页控制器，包名为com.cwap.oa.controller.web.page*，用来进行分页显示的管理，以后页面中的分页都由翻页控制器管理。
异常处理和日志

· 程序中所有的异常处理使用统一的调试器，bean的名称为com.cwap.oa.controller.util.Debug，用法见项目API。

· 程序中所有的日志使用Jakarta-log4j管理，包的名称为log4j-1.2.5.jar

官方URL：http://jakarta.apache.org/log4j/docs/index.html
Session

· 放在session中的变量统一放在一个bean里存储，不直接把session变量名称放在JSP、Servlet或Bean内，存储session变量名称的bean为com.cwap.oa.controller.web.util.WebKeys，取session变量名的方法为getXX()。

· 取session变量的值的方法统一放在一个bean里，bean的名称为com.cwap.oa.controller.web.util.JSPUtil，取session变量值的方法为getXX()，之后要取session变量值就调用JSPUtil中对应的方法。

· 当前系统中已知的session变量名有"userid"、"userName"、"locale"、"skin"等，userid为用户标识，userName为用户名称，locale为用户选择的地域，skin为用户选择的界面风格。
DAO

使用DAO封装SQL语言对数据库的直接操作，DAO采用Factory模式编写。
组件

所有的业务逻辑使用组件技术。每个组件内同时提供EJB版本和DAO版本两种的方法,不推荐直接使用EJB版本和DAO版本的方法。
多语言版本

· Bean、Servlet、JSP中的多语言文字采用分离技术，将多语言文字放在资源文件中，保存目录为/WEB-INF/classes/multi-langs或其它目录。

· 当前支持的语言有三种：简体中文（zh_CN）、繁体中文（zh_HK）、英文（en_US）。

· 多语言管理器的名称为com.cwap.oa.controller.util.MultiLangsString，使用方法见本项目API。
WEB外壳

· JSP页面中的图片、CSS、JS等文件都应放在统一目录，目录为/skin/skinName/skinLanguage，其中skinName为外壳名称，skinLanguage为外壳语言版本，例如/skin/green/zh_CN

· 图片放在images目录里，CSS文件放在css目录里，JS脚本放在js目录里，其它资源(如声音、视频、Flash文件等)存放方法见项目API。

· 外壳管理器为com.cwap.oa.controller.web.skin.WebSkin，调用方法统一接口为com.cwap.oa.controller.web.util.JSPUtil。
在线帮助

· 在线帮助管理器为com.cwap.oa.help.*，调用方法统一接口为com.cwap.oa.help.client.HelpClientHelper。

· 每一个JSP页面中提供一个在线帮助链接，用户点击它直接进入到在线帮助中心。
用户管理

· 建立一个取用户名称的页面，功能包括只取一个用户和取多个用户。

· 打开取用户名称页面的方法，使用页面脚本，"javascript:return openWinToGetEmployee(frame,id,name,num)"，当num为0，代表可以取多个用户，否则，只能取1个用户。
权限管理

· 调用方法统一接口为com.cwap.oa.controller.web.util.JSPUtil，检查用户是否有权限的方法为JSPUtil.isPermission(userid, permissions)

· JSP中检验用户身份采用include方式，include的文件为checkUser.jsp

检验用户身份是否是一般用户，调用方法为

	<jsp:include page="../include/checkUser.jsp">

 <jsp:param name="type" value="user" />

</jsp:include>

检验用户身份是否是管理员，调用方法为

	<jsp:include page="../include/checkUser.jsp">

 <jsp:param name="type" value="manager" />

</jsp:include>

检验用户身份是否是超级管理员，调用方法为

	<jsp:include page="../include/checkUser.jsp">

 <jsp:param name="type" value="administrator" />

</jsp:include>

如何完成多语言和多界面风格

今天在开发过程中遇到了些小麻烦：在需求分析中，有这样一个功能“网页风格个性化功能：用户可以选择网页的风格、颜色等”。为了实现此功能，系统中设计了一个外壳管理器。用户选择外壳和语言后，把参数保存在session中，外壳管理器定位JSP页面中图片等资源的路径。美工在设计Demo时，将页面设计成若干界面风格，如包括天蓝色、银白色、翡翠绿、粉红色、紫罗兰、金属、古典、现代等。

系统如何支持多语言版本呢？多语言资源包括文字、标点符号、日期、货币符号、包含文字的图片、声音、视频、图形等。

1.文字、标点符号、日期、货币符号等资源放入资源文件中，由多语言管理器进行统一管理。

2.包含文字的图片、声音、视频、图形等资源放在WEB外壳中，由外壳管理器进行管理。

由外壳管理的资源也可采用多语言管理器来管理。这里采用外壳管理器管理的原因，主要是考虑到WEB页面风格的因素以及WEB的易维护性。

这里以显示多语言文字做一个简单的示例：

	import com.cwap.oa.controller.util.MultiLangsString;

import com.cwap.oa.controller.util.MultiLangsUtil;

public class MultiLangsDemo{

 public static void main(String argv[]){

 MultiLangsString multiLangs;

 if(argv.length>0){

multiLangs = new MultiLangsString("main",argv[0]);

}else{

multiLangs = new MultiLangsString("main","en_US");

}

if(multiLangs != null){

System.out.println(multiLangs.getStringWithConvert("MAIN_SYSTEM_BUSILY"));

}

 }

}

运行结果画面：

[image: image8.jpg]fc : \nb>java MultiLangsDemo
systen busily ...

o :\nb>java MultilangsDemo en_US
systen husily

o1 \nb>java MultilangsDemo zh CN

RGET, FREHIR..

显示多语言文字的Demo程序

源代码：立即下载

这里以在JSP文件中显示多语言图片做一个简单的示例：

	<%@ page language="java"%>

<%@ page contentType="text/html;charset=GB2312"%>

<%@ page import="com.cwap.oa.controller.web.skin.WebSkin" %>

<%@ page import="com.cwap.oa.controller.web.skin.WebSkinUtil" %>

<%

WebSkin webSkin = new WebSkin("a","zh_CN");

if(webSkin != null)

{

 out.print("简体版本:<img

src=\""+request.getContextPath()+webSkin.getImagesDir()+"/title.jpg\"

border=0>
");

}

WebSkin webSkin_en_US =new WebSkin("a","en_US");

if(webSkin_en_US != null)

{

 out.print("英文版本:<img

src=\""+request.getContextPath()+webSkin_en_US.getImagesDir()+"/title.jpg\"

border=0>
");

}

WebSkin webSkin_zh_HK = new WebSkin("a","zh_HK");

if(webSkin_zh_HK != null)

{

 out.print("繁体版本:<img

src=\""+request.getContextPath()+webSkin_zh_HK.getImagesDir()+"/title.jpg\"

border=0>
");

}

%>

运行结果画面：

[image: image9.jpg]Ttk WEL

S5y Mootng Contr
s TREL

显示多语言图片的例子

源代码：立即下载

下面是将用户喜爱的外壳放在session中，JSP文件中动态显示多语言图片：

	<%@ page language="java"%>

<%@ page contentType="text/html;charset=GB2312"%>

<%@ page import="com.cwap.oa.controller.web.skin.WebSkin" %>

<%@ page import="com.cwap.oa.controller.web.skin.WebSkinUtil" %>

<%

String skin = (String) session.getAttribute("SKIN");//取用户自定义的外壳

if(skin == null)

{

 skin = "a_zh_CN";

}

WebSkin webSkin = WebSkinUtil.getWebSkinFromString(skin);

if(webSkin != null)

{

 out.print("<img

src=\""+request.getContextPath()+webSkin.getImagesDir()+"/title.jpg\"

border=0>");

}

%>

一个CMP型EJB的例子

在我接手的这个项目中有大量的实体Bean，大部分都采用CMP2.X规范来写的，写多后觉得有总结一下的必要。

下面我就以一个CMP2.X版本的序列发生器的为例，详细讲解编写实体Bean。序列发生器用来提供一个唯一的ID，也可做为一个计数器来使用。
序列发生器实体的分析

实体描述
	实体
	描述

	[SequenceGenerator]
	序列发生器用来提供一个唯一的ID，也可做为一个计数器来使用。

属性描述

	属性
	名称
	属性描述
	数据类型
	SPM（bytes）

	|--name
	名称
	序列发生器的名称
	字符串
	25

	|--count
	序列值
	序列发生器中当前的序列值
	正整数
	21

序列发生器的设计

下面分别创建序列发生器的一个Bean实体、一个Home接口、一个远程接口、一个Helper类。

Bean实体(the bean implementation)

类
	类
	SequenceGeneratorEJB

	声明
	public abstract class

	描述
	序列发生器用来提供一个唯一的ID，也可做为一个计数器来使用。实体如果有自动增加的主键，可通过此类获得唯一的ID。调用时要借助一个Helper类，通过SequenceGeneratorClientHelper.getNextID()方法。

	超类
	javax.ejb.EntityBean

	执行
	

构造器

	构造器
	构造器描述

	[SequenceGeneratorEJB]
	

	|--SequenceGeneratorEJB()
	初始化一个序列发生器实体

	
	
	
	

方法

	方法
	方法描述
	返回值

	[SequenceGeneratorEJB]
	
	

	|--getName()
	获得序列发生器的名称
	public abstract String

	|--setName(String name)
	设置序列发生器的名称
	

	|--getCount()
	获得序列发生器的序列值
	public abstract long

	|--setCount(long count)
	获得序列发生器的序列值
	public abstract void

	|--ejbCreate(String name)
	创建一个序列发生器，创建时的序列值为0
	public String

下面是必须定义的方法

	|--ejbLoad()

|--ejbStore()

|--ejbActivate()

|--ejbPassivate()

|--ejbRemove()

|--setEntityContext(EntityContext context)

|--unsetEntityContext()

Home接口(the home interface)

·接口

接口：SequenceGeneratorHome

声明：public interface

描述：这是SequenceGeneratorEJB的Home接口。

超类：javax.ejb.EJBHome

执行

·方法

	方法
	方法描述
	返回值

	[SequenceGeneratorHome]
	
	

	|--create(String name)
	创建一个序列发生器
	public abstract SequenceGenerator

	|-- findByPrimaryKey(String name)
	通过主键查找一个Remote接口
	public abstract SequenceGenerator

远程接口(the remote interface)

·接口

	接口
	SequenceGenerator

	声明
	public interface

	描述
	这是SequenceGeneratorEJB的Remote接口

	超类
	javax/ejb.EJBObiect

	执行
	

·方法

	方法
	方法描述
	返回值

	[SequenceGenerator]
	
	

	|--getName()
	获得序列发生器的名称
	public abstract String

	|--getCount()
	获得序列发生器的序列值
	public abstract long

	|--setCount(long count)
	设置序列发生器的序列值
	public abstract void

Helper类

Helper类可以用Session Bean实现，也可以用JavaBean实现，这里使用JavaBean来实现。

·类

	类
	SequenceGeneratorClientHelper

	声明
	public class

	描述
	通过SequenceGeneratorClientHelper.getNextID(String name)方法可以获得一个唯一的ID。

	超类
	

	执行
	java.io.Serializable

·构造器

	构造器
	构造器描述

	[SequenceGeneratorClientHelper]
	

	|-- SequenceGeneratorClientHelper ()
	初始化Bean，获得Home接口。

·方法

	方法
	方法描述
	返回值

	[SequenceGeneratorClientHelper]
	
	

	|--getSequenceGeneratorHome
	获得Home接口
	private static SequenceGeneratorHome

	|--getSequenceGenerator (String name)
	获得Remote接口
	private static SequenceGenerator

	|--getNextID(String name)
	获得一个唯一的ID
	public static long

序列发生器的编码

在编码过程中为序列发生器定义了其它辅助类，如JNDINames.java用来保存序列发生器的Home对象的JNDI名称、SequenceGeneratorClientException.java用来捕捉SequenceGeneratorClientHelper.getNextID(String name)的异常。

写完EJB后，必须为EJB建立部署文件，ejb-jar.xml，关于ejb-jar.xml的编写规范请参照文件http://java.sun.com/dtd/ejb-jar_2_0.dtd

在JAS中部署，必须建立如下部署文件，jboss.xml和jaws.xml或jbosscmp-jdbc.xml, ，关于jboss.xml、jaws.xml和jbosscmp-jdbc.xml的编写规范请分别参照文件http://www.jboss.org/j2ee/dtd/jboss.dtd、http://www.jboss.org/j2ee/dtd/jaws_3_0.dtd和http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_0.dtd。
序列发生器组件的源代码

·SequenceGeneratorEJB.java

·SequenceGeneratorHome.java

·SequenceGenerator.java

·SequenceGeneratorClientHelper.java

·SequenceGeneratorClientException.java

·JNDINames.java

·ejb-jar.xml

·jboss.xml

·jasw.xml

源代码：序列发生器的源代码
序列发生器的调用

下面是一个序列发生器的源代码在Servlet中调用的示例，只列出部分代码：

	…

//导入类SequenceGeneratorClientHelper

import com.cwap.oa.sequencegenerator.client.SequenceGeneratorClientHelper;

…

public void doCreateProcess(HttpServletRequest request, HttpServletResponse

response)
throws IOException, ServletException {

…

//获得一个唯一的ID，第一次调用的值为1，之后自动加1

Long lonTmp = new Long(SequenceGeneratorClientHelper.getNextID("meeting"));

meetingModel.setId(lonTmp.toString());

…

}

提高EJB性能的十大技巧

项目进行到这里，开始出现新的问题。EJB调用是耗时、费力的。怎么提高EJB的性能？我们为解决这一问题，开始边写边讨论。等到完成了，我才发现，我们所应用的技巧总结一下，竟有十条。把提高EJB性能的这些技巧总结一下，为以后的项目做参考。

1.用一个Session Bean封装多个Entity Bean，将原来的多个Entity Bean的Remote调用和Local调用封装在一个Session Bean中。所以建立一个ServerFacade，它为多个对象提供统一获取EJB Home和获取对象的接口。ServerFacade为程序要用到的所有EJB的home handle提供缓存，提高访问JNDI Name的时间，达到提高访问效率的目的。以后查找JNDI Name的方法都应写在接口里，调用时直接从接口调用。

2.在EJB的Remote接口中使用粗粒度的方法，不推荐使用细粒度方法。

3.如果EJB的Remote接口获取成功，应不再使用Remote接口，而是将Remote接口构造成一个一般的JAVA对象，通过调用一般的JAVA对象的方法来达到减少对网络的访问。

4.如果你部署EJB客户端和EJB在相同的JVM上，建设使用EJB2.0规范的Local接口代替Remote接口。

5.用"transient"关键字声明不必要的数据变量，替代以前的"public"、"private"等，避免不必要的数据变量占用网络资源。示例：

	public class DemoCMP implements EntityBean {

 transient EntityContext entCtx;

 transient InitialContext initCtx;

 public String id;

 public String description;

…

}

6.在ejb-jar.xml部署文件中，对Session Bean中非事务的方法，将trans-attribute属性赋为"NotSupported"或"Never"

	<ejb-jar>

 …

 <assembly-descriptor>

 <container-transaction>

 <method>

 <ejb-name>abookesessionBean</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>NotSupported</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

7. 设置事务的超时时间，在JBoss中，要修改${jboss.home}/server/${jboss.configuration}/conf/jboss-service.xml ，如下所示：

	<server>

…

 <mbean code="org.jboss.tm.TransactionManagerService"

 name="jboss:service=TransactionManager">

<attribute name="TransactionTimeout">300</attribute>

 </mbean>

…

</server>

8.当事务锁定数据库的行记录时，事务应跨越可能的最小的时间。

9.调整EJB 服务器的各种参数，如线程数、EJB池大小、连接池参数等。以在JBoss修改连接池参数为示例，进行说明。如果JBoss和Mysql相连，配置${jboss.home}/server/${jboss.configuration}/deploy/mysql-service.xml，来修改连接池参数，包括MinSize、MaxSize、BlockingTimeoutMillis、IdleTimeoutMinutes、Criteria等，各参数的含义如下所示：

i.MinSize ：连接池保持的最小连接数。

ii. MaxSize ：连接池保持的最大连接数。

iii. BlockingTimeoutMillis ：抛出异常前最大的等待连接时间。

iv. IdleTimeoutMinutes ：关闭连接前连接空闲的最大时间。

v. Criteria ：有ByContainerAndApplication、ByContainer、ByApplication和ByNothing等值。

下面是一个例子：

	<depends optional-attribute-name="ManagedConnectionPool">

 <!--embedded mbean-->

 <mbean code="org.jboss.resource.connectionmanager.JBossManagedConnectionPool"

name="jboss.jca:service=LocalTxPool,name=MySqlDS">

 <attribute name="MinSize">0</attribute>

 <attribute name="MaxSize">50</attribute>

 <attribute name="BlockingTimeoutMillis">5000</attribute>

 <attribute name="IdleTimeoutMinutes">15</attribute>

 <attribute name="Criteria">ByContainer</attribute>

 </mbean>

 </depends>

10.对于数据库事务，应选择较低成本的事务等级，避免造成坏数据。递增成本的事务等级包括：

	TRANSACTION_READ_UNCOMMITED,

TRANSACTION_READ_COMMITED,

TRANSACTION_REPEATABLE_READ,

TRANSACTION_SERIALIZABLE

如何解决EJB-QL的功能不足

我们在这个项目中使用了EJB-QL。在使用中，发现它有很多SQL语法不能用，例如执行一个计数运算，如下面这段示例：

1.这是我在CMP型ABook EJB的部署文件ejb-jar.xml中的一段EJB-QL，它已经被我注释掉了。

	<!--

This has been deprecated.

<query>

<query-method>

<method-name>findCountByBookId</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>select count(*) from ABook a where a.bookId = ?1 </ejb-ql>

<query-spec></query-spec>

</query>

 -->

2.这是我在CMP型ABook EJB的Home接口中的一段，也被我注释掉了。

	/**

 * Note : This method has been deprecated.

 * Reason : The EJB-QL isn't support the following syntax

 * select count(*) from ABook a where a.bookId = ?1

 public int findCountByBookId(String bookId)

 throws RemoteException,FinderException;

 */

由于EJB-QL语法不是很丰富，像上面简单的的计数计算都不能做，使我在开发中遇到很多的麻烦。我不得不用其它途径来解决问题，下面是解决CMP型EJB的计数计算的解决办法：

1． 通过Home接口将要计数的记录全部取到，放入Collection对象，然后用进行一些判断，如果Collection为空，count=0，否则，count=Collection.size()

2． 使用DAO来计数，使用Factary模式建立ABookDAOImpl.java，在类中建立getCountOfABookByBookId()方法，代码如下：

	public int getCountOfABookByBookId(String bookId)

 throws ABookDAOSysException {

 Connection con = null;

 PreparedStatement pstmt = null;

 ResultSet rs = null;

 Page ret = null;

 String strSql="";

 try {

 con = getDataSource().getConnection();

 // Count.

 strSql="select COUNT(*) "

 +"from "+DatabaseNames.ABOOK_TABLE+" "

 +"where bookId = ?";

 pstmt=con.prepareStatement(strSql,ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 pstmt.setString(1, bookId);

 rs = pstmt.executeQuery();

 rs.first();

 int total = rs.getInt(1);

 rs.close();

 pstmt.close();

 con.close();

 return total;

 }catch (SQLException se) {

 //throw new ABookDAOSysException("SQLException: "

 // + se.getMessage() + " "

 //
 + "SQL = "+strSql+" ");

 return 0;

 }

 }

3． 使用BMP型EJB来计数，BMP型EJB中应采用DAO技术实现，所以BMP型EJB中的方法基本和上面用DAO中的方法差不多，这里就不写了。

注：在JBoss中，我曾试着用jaws.xml中的finder方法来解决问题，但也失败了。

在EJB-QL中还存在其它问题，如无法进行排序查询的问题等。一旦你在EJB中采用了DAO技术，用EJB-QL不能做的是现在都可以做了。如何用EJB进行关键字搜索？以前我想尽办法，都无法实现得很好，在采用DAO技术后，问题一下子就解决了。随着EJB-QL功能的加强，以后像计数、求和、关键字搜索等问题都会解决，但写CMP型EJB时一定要给出DAO版本的逻辑方法，以保证程序向上兼容。
用env-entry建立可维护系统

EJB的ejb-jar.xml中为开发人员提供了一个“env-entry”元素。用它开发出来的系统可维护性好、可移植性强。当然我们也可以不使用ejb-jar.xml，而是自定义XML文件。我在开发时，利用它定义一些系统缺省的常量，例如系统的缺省用户为guest、系统的缺省用户的职位为employee等。下面是我在做借阅管理时的一个文件ejb-jar.xml的部分代码：

	<!--

读者借阅权限,读者的最大借阅数量,系统默认的值,单位本,如3,表示读者最多能借3本书

-->

<env-entry>

<env-entry-name>param/Qualification/DefaultMaxNumber</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>3</env-entry-value>

</env-entry>

<!--

读者借阅权限,读者的最大借阅天数,系统默认的值,单位天,如60,表示读者每本书最多能借60天

-->

<env-entry>

<env-entry-name>param/Qualification/DefaultMaxDay</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>60</env-entry-value>

</env-entry>

用ANT构造Application
Ant简介

Ant是Apache提供给Java开发人员的构建工具，它可以在Windows OS和Unix OS下运行，它不仅开放源码并且还是一个非常好用的工具。我强烈建议在进行JavaBean、EJB等开发时安装，不建议安装make、makefile等建立在shell思想上的构建工具。

下载Ant

官方网址: http://jakarta.apache.org/ant/

下载URL: http://jakarta.apache.org/builds/jakarta-ant/release/

安装Ant

设置ANT_HOME系统变量和PATH系统变量

· Windows

假如ant安装目录为c:\ant，按下面方法设置

set ANT_HOME=c:\ant

set JAVA_HOME=c:\jdk1.3

set PATH=%PATH%;%ANT_HOME%\bin

· Unix

假如ant安装目录为/usr/local/ant，按下面方法设置

	export ANT_HOME=/usr/local/ant

export JAVA_HOME=/usr/local/jdk1.3

export PATH=${PATH}:${ANT_HOME}/bin

运行Ant

前面说Ant"是一个非常好用的工具"，就是因为运行它很简单，只要在命令行输入"ant"，ant就运行了。我以构建序列发生器SequenceGenerator进行示例，

在控制台显示的构建信息：查看详细内容。

控制台快照，见下图：

[image: image10.jpg]aateted Dolacing divecsory Gisprodusssewmpensibosst.drescompanente sraue]

irkdin) Created dies Goredetscumponhes

Takiir) Created dir: Crspraductscunponsibosst.
corstibads

(akdin) resced afe: Cpradcescusponsihasss
cor b TR N

(akdin) Crented airt Ci\praducescunponsihosst

i Crelied s Gooduct cnpmaoses

cing directory G:productscumpansibosst.Iarercompnsnts asaue

构建序列发生器的第一屏
[image: image11.jpg]Selasses
Tinvas) compiling 7 s
Nseuncsdsnamataradiared

rsataiar
Teony) Copping 1 File o G:\arobueticvapmaibasst. Iarercompansnts ereuss
acar ASbes ShETA K

o
i saaing gar G uraductscupansihoset erescamponent s euencen

etions

Far3 Buttaing gor: e

构建序列发生器的第二屏
Ant的命令行参数

Ant也可以通过命令行参数 -buildfile <file> 来指定其他目标文件，其中，<file>是你要采用的目标文件名。Ant还有很多命令行可选参数，如下所示：

命令行可选参数摘要：

	ant [options] [target [target2 [target3] ...]]

Options:

-help print this message

-projecthelp print project help information

-version print the version information and exit

-quiet be extra quiet

-verbose be extra verbose

-debug print debugging information

-emacs produce logging information without adornments

-logfile file use given file for log output

-logger classname the class that is to perform logging

-listener classname add an instance of class as a project listener

-buildfile file use specified buildfile

-find file search for buildfile towards the root of the filesystem and

use the first one found

-Dproperty=value set property to value

编写build.xml

Ant的buildfile是用XML写的。每个buildfile含有一个project。

buildfile中每个任务元素可以有一个id属性，可以用这个id值引用指定的任务。这个值必须是唯一的。

下面是Ant中常用的元素和任务：

常用的元素有"project"、"target"、"path"、"property"等。

常用的任务有"ant"、"mkdir"、"delete"、"copy"、"javac"、"jar"、"javadoc"、"echo"等。

（注：它们的详细用法，我不再详述，请参阅下载ant时ant中自带的用户手册。）

我以下面的build_for_ejb_templet.xml为示例，讲解Ant中常用的元素和任务。

约定：

1. 每行代码的前部分为"数字"+"."，数字表示在XML文件中的行号

2. "…"表示这里有很多代码，未列出

build_for_ejb_templet.xml任务的分为以下几大部分

i. 开始

ii. 初始化

iii. 定义classpath

iv. 为编译作准备

v. 编译EJB部分

vi. 编译WEB部分

vii. 编译J2EE Application

viii. 部署Application

ix. 创建组件的API

x. 确定build的目标

build_for_ejb_templet.xml的讲解

开始

1.
	<?xml version="1.0" encoding="UTF-8"?>

讲解：encoding="UTF-8"表示XML文件采用UTF-8编码格式，如果要使用GBK编码，

需定义为encodeing="GBK"。

3. <!--

4. Build file for 'componentName'

5. Creation date : $Date: yyyy-m-d $

6. Updated date : $Date: yyyy-m-d $

7. Author: developerName

8. Copyright 2002 CompanyName, Inc. All rights reserved.

9. -->

讲解：此部分为文件内容的简介，包括文件名称、创建日期、最后修改日期、创建文件的作者、版权。

componentName 表示 文件名称

yyyy-m-dd 表示 创建日期、最后修改日期的格式，如2002-5-1

developerName 表示 创建文件的作者

CompanyName 表示 公司名称或URL

11. <project name="componentName" default="core" basedir=".">

…

254. </project>

讲解：此部分定义了一个名称为componentName的项目元素，缺省的任务为"core"任务，

根目录为当前目录。componentName表示组件的名称，这里指EJB的名称。

初始化

	17. <target name="init">

…

63. </target>

讲解：此部分用于初始化所有的变量

18. <property file="../../build.properties" />

讲解：导入项目根目录下build.properties中的全局变量，开发人员也可以在此文件中重新定义全局变量。

19. <property name="jboss.lib" value="${jboss.home}/lib" />

20. <property name="jboss.client" value="${jboss.home}/client" />

21. <property name="jboss.deploy"

value="${jboss.home}/server/${jboss.configuration}/deploy" />

…

27. <property name="jboss.dir" value="${jboss.home}" />

…

41. <property name="deploy.ormi" value=""/>

42. <property name="deploy.username" value=""/>

43. <property name="deploy.password" value=""/>

讲解：定义和Jboss Application Server有关的变量，包括lib目录、client目录、

deploy目录和J2EE Application部署要用到的一些变量。

22. <property name="name" value="componentName" />

讲解：定义组件的名称

23. <property name="src.dir" value="${basedir}/src" />

讲解：定义源代码目录路径

24. <property name="etc.dir" value="${basedir}/etc" />

讲解：定义资源目录路径

25. <property name="lib.dir" value="${basedir}/lib" />

讲解：定义库目录路径

26. <property name="build.dir" value="${basedir}/build" />

讲解：定义build目录路径

28.
<property name="src.main.dir" value="${src.dir}/main"/>

讲解：定义源代码的主目录路径

29.
<property name="src.ejb.dir" value="${src.main.dir}/ejb"/>

讲解：定义存放EJB的源代码目录路径

30.
<property name="src.javabean.dir" value="${src.main.dir}/javabean"/>

讲解：定义存放JavaBean的源代码目录路径

31.
<property name="src.servlet.dir" value="${src.main.dir}/servlet"/>

讲解：定义存放Servlet的源代码目录路径

32.
<property name="src.web.dir" value="${src.main.dir}/web"/>

讲解：定义存放WEB部分文件（包括JSP程序、HTML文件、图片、CSS文件、JS脚本等）的目录路径

33. <property name="javadoc.dir" value="${lib.dir}/docs/api" />

讲解：定义存放组件API的开发文件目录路径

34. <property name="ejb-classes.dest" value="${lib.dir}/ejb" />

讲解：定义存放EJB的编译代码目录路径

35.
<property name="javabean-classes.dest" value="${lib.dir}/javabean" />

讲解：定义存放JavaBean的编译代码目录路径

36.
<property name="web-classes.dest" value="${lib.dir}/web/WEB-INF/classes" />

讲解：定义WEB目录的类目录路径

37. <property name="web-lib.dest" value="${lib.dir}/web/WEB-INF/lib" />

讲解：定义WEB目录的库目录名称

38. <property name="pkg-dist.name" value="${name}-pkg" />

讲解：定义压缩文档的名称

45. <property name="ProjectName.components.home" value="../../components" />

讲解：定义项目的组件目录路径

47. <!-- Define componentName Component -->

讲解：这段为注释，说明以下是定义当前组件的变量

48. <property name="ProjectName.componentName.name" value="componentName"/>

讲解：定义当前组件的名称

49.<property name="ProjectName.componentName.home"

value="${ProjectName.components.home}/componentName"/>

讲解：定义当前组件的目录路径

50.<property name="ProjectName.componentName.classbindir"

value="${ProjectName.componentName.home}/lib/ejb"/>

讲解：定义当前组件的EJB编译目录路径

51.<property name="ProjectName.componentName.ejbjar"

value="${ProjectName.componentName.home}/build/componentName-ejb.jar"/>

讲解：定义当前组件内的EJB包的路径

52. <property name="ProjectName.componentName.ejbjar.client"

value="${ProjectName.componentName.home}/build/componentName-ejb-client.jar"/>

讲解：定义当前组件内的EJB客户端包的路径

54. <!-- Define referencesComponentName Component -->

讲解：这段为注释，说明以下是定义引入其它组件的变量

55. <property name="ProjectName.referencesComponentName.name"

value="referencesComponentName"/>

讲解：定义指定组件的名称

56. <property name="ProjectName.referencesComponentName.home"

value="${ProjectName.components.home}/referencesComponentName"/>

讲解：定义指定组件的目录路径

57. <property name="ProjectName.referencesComponentName.classbindir"

value="${ProjectName.referencesComponentName.home}/lib/ejb"/>

讲解：定义指定组件的EJB编译目录路径

58. <property name="ProjectName.referencesComponentName.ejbjar"

value="${ProjectName.referencesComponentName.home}

/build/referencesComponentName-ejb.jar"/>

讲解：定义指定组件内的EJB包的路径

59. <property name="ProjectName.referencesComponentName.ejbjar.client"

value="${ProjectName.referencesComponentName.home}

/build/referencesComponentName-ejb-client.jar"/>

讲解：定义指定组件内的EJB客户端包的路径

61. <property name="build.classpath"

value="${jboss.client}/jboss-j2ee.jar:${jboss.client}

/jnp-client.jar:${jboss.client}/jnp-client.jar:${jboss.client}

/jbossmq-client.jar:${jboss.client}/jbosssx-client.jar:${jboss.client}

/concurrent.jar:${jboss.client}/jaas.jar:${jboss.lib}

/jboss-jmx.jar:${jboss.home}/server/${jboss.configuration}

/lib/jbosssx.jar:${jboss.home}/server/${jboss.configuration}

/lib/mail.jar:${servlet-lib.path}:${ejb-classes.dest}:

${web-classes.dest}:${ProjectName.componentName.classbindir}:

${ProjectName.componentName.ejbjar.client}:

${ProjectName.referencesComponentName.classbindir}:

${ProjectName.referencesComponentName.ejbjar.client}" />

讲解：定义classpath，编译bean时要用到。这是定义classpath的一种方法，下面还有另一种方法。

定义classpath

	<!-- == -->

 <!-- Define the classpath for compile the component -->

 <!-- == -->

 <path id="base.path">

 <pathelement location="${jboss.client}/jboss-j2ee.jar" />

 <pathelement location="${jboss.client}/jnp-client.jar" />

 <pathelement location="${jboss.client}/jbossmq-client.jar" />

 <pathelement location="${jboss.client}/jbosssx-client.jar" />

 <pathelement location="${jboss.client}/concurrent.jar" />

 <pathelement location="${jboss.client}/jaas.jar" />

 <pathelement location="${jboss.lib}/jboss-jmx.jar" />

 <pathelement

location="${jboss.home}/server/${jboss.configuration}/lib/jbosssx.jar" />

 <pathelement

location="${jboss.home}/server/${jboss.configuration}/lib/mail.jar" />

 </path>

讲解：此段定义应用服务器中包文件，如支持ejb的jboss-j2ee.jar、

支持客户端程序的jnp-client.jar、jbossmq-client.jar、jbosssx-client.jar、

支持JavaMail的mail.jar等。

 <path id="project.path">

 <path refid="base.path"/>

 <pathelement location="${ProjectName.componentName.classbindir}"/>

 <pathelement location="${ProjectName.componentName.ejbjar.client}"/>

 <pathelement location="${ProjectName.referencesComponentName.classbindir}"/>

 <pathelement location="${ProjectName.referencesComponentName.ejbjar.client}"/>

 </path>

讲解：此段定义项目中要用到的包文件。

 <path id="web.path">

 <path refid="project.path"/>

 <pathelement location="${servlet-lib.path}"/>

 <pathelement location="${ejb-classes.dest}"/>

 </path>

讲解：此段定义在编译servlet时的classpath，${ servlet-lib.path }是系统指定的Servlet引擎包。

为编译作准备工作

	<!-- == -->

 <!-- Removes all created files and directories -->

 <!-- == -->

 <target name="clean" depends="init">

 <delete dir="${lib.dir}" />

 <delete dir="${build.dir}" />

 </target>

讲解：清除build、lib目录下的所有文件和目录。

 <!-- == -->

 <!-- Makes sure the needed directory structure is in place -->

 <!-- == -->

 <target name="prepare" depends="init,clean">

 <mkdir dir="${lib.dir}" />

 <mkdir dir="${lib.dir}/ejb" />

 <mkdir dir="${lib.dir}/ejb/META-INF" />

 <mkdir dir="${lib.dir}/web" />

 <mkdir dir="${lib.dir}/web/WEB-INF" />

 <mkdir dir="${lib.dir}/web/WEB-INF/classes" />

 <mkdir dir="${lib.dir}/web/WEB-INF/lib" />

 <mkdir dir="${lib.dir}/j2ee" />

 <mkdir dir="${lib.dir}/META-INF" />

 <mkdir dir="${lib.dir}/docs/api" />

 <mkdir dir="${build.dir}" />

 </target>

讲解：创建build中要用到的所有目录，根据需要可以加入自定义的目录如：

 <mkdir dir="${lib.dir}/javabean/ " />

编译EJB部分
	<!-- == -->

 <!-- Compilation of the EJB part of the application -->

 <!-- == -->

 <target name="ejb-classes" depends="prepare">

 <javac srcdir="${src.ejb.dir}"

 destdir="${ejb-classes.dest}"

 includes="com/**"

 classpathref="base.path" />

 </target>

讲解：此小段用来完成编译ejb和其它help classes。根据需要可以加入一个非常有用的元素：

 encoding="${javac.encoding}"

 <target name="ejb-meta-inf" depends="prepare">

 <copy file="${etc.dir}/ejb-jar.xml"

 tofile="${lib.dir}/ejb/META-INF/ejb-jar.xml" />

 <copy file="${etc.dir}/jaws.xml"

 tofile="${lib.dir}/ejb/META-INF/jaws.xml" />

 <copy file="${etc.dir}/jboss.xml"

 tofile="${lib.dir}/ejb/META-INF/jboss.xml" />

 <copy file="${etc.dir}/jbosscmp-jdbc.xml"

 tofile="${lib.dir}/ejb/META-INF/jbosscmp-jdbc.xml" />

 </target>

讲解：此小段用来拷贝EJB部署文件，

在JAS中EJB部署文件有jaws.xml、jboss.xml、jbosscmp-jdbc.xml。

 <target name="ejb-jar" depends="ejb-classes,ejb-meta-inf">

 <jar jarfile="${build.dir}/${name}-ejb.jar"

 basedir="${lib.dir}/ejb" />

 </target>

讲解：此小段用来把class和部署文件压缩成包文件，这个包文件就是一个EJB组件。

 <target name="ejbclientjar" depends="ejb-jar,web-classes">

 <copy

file="${ProjectName.referencesComponentName.home}/build/

${ProjectName.referencesComponentName.name}-ejb-client.jar"

 tofile="${build.dir}/${ProjectName.referencesComponentName.name}

 -ejb-client.jar" />

 <jar jarfile="${build.dir}/${name}-ejb-client.jar"

 basedir="${lib.dir}/ejb"

 excludes="com/ProjectName/componentName/ejb/ComponentNameEJB.class" />

 </target>

讲解：此小段用来把class和部署文件压缩成包文件，以支持客户端运行。

编译WEB部分
	<!-- == -->

 <!-- Compilation of the web part of the application -->

 <!-- == -->

 <target name="web-classes" depends="prepare,ejb-jar">

 <javac srcdir="${src.servlet.dir}"

 destdir="${lib.dir}/web/WEB-INF/classes"

 includes="com/**"

 classpath="${build.classpath}" />

 </target>

讲解：此小段用来完成编译servlet。

 <target name="web-web-inf" depends="prepare">

 <copy file="${etc.dir}/jboss-web.xml"

 tofile="${lib.dir}/web/WEB-INF/jboss-web.xml" />

 <copy file="${etc.dir}/web.xml"

 tofile="${lib.dir}/web/WEB-INF/web.xml" />

 </target>

讲解：此小段用来拷贝WEB部署文件，在JAS中WEB部署文件有jboss-web.xml。

 <target name="war" depends="web-classes,web-web-inf">

 <copy todir="${lib.dir}/web" >

 <fileset dir="${src.web.dir}"/>

 </copy>

 <copy

file="${build.dir}/${ProjectName.referencesComponentName.name}-ejb-client.jar"

tofile="${lib.dir}/web/WEB-INF/lib/${ProjectName.referencesComponentName.name}

-ejb-client.jar" />

 <jar jarfile="${build.dir}/${name}-web.war"

 basedir="${lib.dir}/web" />

 </target>

讲解：此小段用来把所有的JSP程序、Html、Css、图片和部署文件等压缩成WAR文件。

编译J2EE Application
	<!-- == -->

 <!-- Compilation of the complete J2EE application (both web and EJB) -->

 <!-- == -->

 <target name="j2ee-meta-inf" depends="prepare">

 <copy file="${etc.dir}/application.xml"

 tofile="${lib.dir}/j2ee/META-INF/application.xml" />

 </target>

讲解：此小段用来拷贝Application的部署文件。

 <target name="ear" depends="ejb-jar,war,j2ee-meta-inf">

 <copy file="${build.dir}/${name}-ejb.jar"

 tofile="${lib.dir}/j2ee/${name}-ejb.jar" />

 <copy file="${build.dir}/${name}-web.war"

 tofile="${lib.dir}/j2ee/${name}-web.war" />

 <jar jarfile="${build.dir}/${name}.ear"

 basedir="${lib.dir}/j2ee" />

 </target>

讲解：此小段用来把EJB组件、支持客户端运行的包和部署文件压缩成EAR文件，它就是一个J2EE

Application。这里要说明，在进行build时，根据需要可以不生成EAR文件。

部署Application
	<!-- === -->

 <!-- Deploy EAR file -->

 <!-- === -->

 <target name="deploy-server" depends="ear,war">

 <copy todir="${jboss.deploy}">

 <fileset dir="${build.dir}" includes="*.ear">

 </fileset>

 </copy>

 </target>

讲解：此小段用来部署Application，在JAS3.0中${jboss.deploy}是JAS的热部署目录。

创建组件的API
	<!-- === -->

 <!-- Create class and package usage pages -->

 <!-- === -->

 <target name="docs" depends="init">

 <javadoc locale="${javadoc.locale}" packagenames="${package.names}.${name}.*"

 destdir="${javadoc.dir}"

 classpath="${build.classpath}"

 encoding="${javadoc.encoding}"

 author="${javadoc.author}" version="${javadoc.version}"

use="${javadoc.usage}"

 windowtitle="${project.name} ${name} Component API"

 doctitle="${project.name} ${name} Component"

 bottom="Copyright ${sign.copyright} ${project.date}

${company.signature}. All Rights Reserved.">

<classpath >

 <pathelement path="${lib.dir}/ejb"/>

 </classpath>

 <sourcepath>

 <pathelement path="${src.main.dir}/ejb"/>

 </sourcepath>

 </javadoc>

 </target>

讲解：此小段用来创建组件的API。这里强烈要求类设计人员和编码人员按照Javadoc定义的标签对源代码进行注释。

确定build的目标
	<target name="startbanner">

 <echo>+---------------------------------------+</echo>

 <echo>+ Building ${name} Component +</echo>

 <echo>+---------------------------------------+</echo>

 </target>

 <target name="endbanner" depends="main" >

 <echo>+---------------------------------------+</echo>

 <echo>+ Finished ${name} Component +</echo>

 <echo>+---------------------------------------+</echo>

 </target>

 <target name="main" depends="startbanner, ejb-jar, ejbclientjar" />

 <target name="main2" depends="startbanner, ejb-jar, ejbclientjar,war" />

 <target name="main3" depends="startbanner, ejb-jar,

ejbclientjar,war,ear,deploy-server" />

 <target name="core" depends="ejb-war" />

 <target name="ejb-war" depends="main2,endbanner" />

 <target name="deploy" depends="main3,endbanner" />

 <target name="all" depends="core, docs" />

讲解：此小段用来确定build的目标。缺省目录为core，所以在build不加参数时，系统将只生成jar文件和war文件。如果build时加上参数，系统将根据需要来生成文件，例如：在命令行输入ant deploy，系统将生成jar文件、war文件、ear文件，同时将ear文件进行部署。

开发Java项目的Build规范

在项目的根目录下定义文件build.properties，文件中定义了项目的共用变量，提供给所有开发人员使用。

在开发一个Java项目时，所有的项目build.properties必须以下面的build.properties为模板。

build.properties

·开发JavaBean的build.xml规范

在开发JavaBean时，所有的JavaBean必须以下面的build.xml为模板。

JavaBean build.xml模板

·开发EJB的build.xml规范

在开发EJB时，所有的EJB必须以下面的build.xml为模板。

开发EJB的build.xml模板

· 开发Components的build.xml规范

在开发Components时，所有的Components必须以下面的build.xml为模板。

Components的build.xml模板

· 开发Application的build.xml规范

a) 在Application的根目录下定义文件build.properties，文件中定义了Application的共用变量，提供给所有开发人员使用。

在开发一个Application时，Application下的build.properties必须以下面的build.properties为模板。

Application下的build.properties模板

b)在开发Application时，所有的Application必须以下面的build.xml为模板。

Application下的build.xml模板
在JBoss中布署EJB

在JBoss中，EJB部署文件除了ejb-jar.xml，还有jboss.xml、jaws.xml、jbosscmp-jdbc.xml。下面将一一介绍它们的编写。

1.ejb-jar.xml

ejb-jar.xml如何编写？这里只对以下几点进行重点讲解：

·cmp-version元素

指出当前EJB参照的规范版本，如1.x、2.x，建议使用EJB2.0规范写EJB。

·abstract-schema-name元素

指出在EJB QL查询中和实体Bean对应的数据表名，示例：

	在ABookEJB组件的ejb-jar.xml中

<abstract-schema-name>ABook</abstract-schema-name>

…

<!--

通过书号精确查询图书，下面字符串"ABook"对大小写敏感，不能写成abook。

-->

<query>

<query-method>

<method-name>findByCode</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>select object(a) from ABook a where a.code = ?1 </ejb-ql>

<query-spec></query-spec>

</query>

源代码：立即下载

jboss.xml

jboss.xml是用来定义EJB的JNDI名字的部署文件。在JAS3.0中

·缺省的JNDI名字为ejb-jar.xml中在ejb-name元素定义的名字。示例：

在SequenceGeneratorEJB的ejb-jar.xml中，SequenceGeneratorEJB的缺省JNDI名字为"com.cwap.oa.sequencegenerator.ejb.SequenceGeneratorEJB"。下面给出在ejb-jar.xml中的部分代码：

	<entity>

 <display-name>SequenceGeneratorEJB</display-name>

 <ejb-name>com.cwap.oa.sequencegenerator.ejb.SequenceGeneratorEJB</ejb-name>

 <home>com.cwap.oa.sequencegenerator.ejb.SequenceGeneratorHome</home>

 <remote>com.cwap.oa.sequencegenerator.ejb.SequenceGenerator</remote>

<ejb-class>com.cwap.oa.sequencegenerator.ejb.SequenceGeneratorEJB</ejb-class>

…

</entity>

我们直接将只包括ejb-jar.xml的SequenceGenerator部署在JBoss中，看下图SequenceGenerator已部署成功了。

[image: image12.jpg]L aepiosss b marsgensnt - Sar
20114 500 INFD. (Rninbeploper) Searsing daplosmant f pachages 1 1hes/Cr/ghors]
0 Concac 4.0, soreansdf slc deplaysseuancossnarator 43 sar
2016579 1AFD (Esaie) Ereating
20115409 INFO (Eibedule) Deploying con.cusp.on.sequsncegonsracor.osh.Soaue

(Eppodute) crented
e
Zoiir ars Mo Raiaiepteper) &
s 30,0 om0 3 seroer Ao e Beplepsse s pene st or e b

rear-176.3 surann st seontJhass 0

图 SequenceGenerator成功部署在JBoss中

通过JBoss的8082端口，我们可以看到缺省的JNDI名字：
[image: image13.jpg]e e
s 3.

itee
EervicesEADeployer
indilane=con cuep, os, seuencepenerator, b, SequenceGeneratart

ol] 1c4/08 boss- -
S0/ Serves/deganls/deploy/e bwenagenent tax
168/ boss 5,00 temcat=

图 SequenceGeneratorEJB的缺省JNDI名字

· 自定义JNDI名字

通过jboss.xml可以重新定义缺省的JNDI名字。示例：在SequenceGeneratorEJB的jboss.xml中，SequenceGeneratorEJB的自定义JNDI名字为"ejb/SequenceGeneratorEJB"。下面给出在jboss.xml中的部分代码：

	<jboss>

 <enterprise-beans>

 <entity>

 <ejb-name>com.cwap.oa.sequencegenerator.ejb.SequenceGeneratorEJB

</ejb-name>

 <jndi-name>ejb/SequenceGenerator</jndi-name>

 </entity>

 </enterprise-beans>

</jboss>

源代码：立即下载

通过JBoss的8082端口，我们可以查看自定义的JNDI名字：

[image: image14.jpg]Jmm—ﬂmmumlw W

D4 owe aw gre S Sm-Hw

Serviceos o, ndilanese b/SequenceGenerator
SErviceot B indiNapemc b/ izn/c b Adspter
T Byt
S0/ cerves/degont/deploy/e bpenagenent_lax
o srvicest ot e, =6 1oA/O Tonge. 0.0 toneat=

图 SequenceGeneratorEJB的自定义JNDI名字

jaws.xml

jaws.xml用来设定EJB实体属性与数据库字段对应信息（CMP中使用）和定义finder方法等。

· JAWS是JBoss管理CMP型实体EJB的O/R映射管理器。在JAS3.0中JAWS是在standardjaws.xml中进行配置，standardjaws.xml文件被放在conf/config-name目录下。缺省的config-name为default。

· standardjaws.xml配置整个jboss中的JAWS，你可以在每个应用程序中通过jaws.xml扩展这个配置。

· standardjaws.xml / jaws.xml可以帮助你来做以下几件事情：

i. 指定数据源及其映射类型

ii. 设置一串关于jaws方法的选项

iii. 指定JAWS如何创建和使用数据表

iv. 定义finder方法存取实体EJB

v. 定义各种数据库的映射类型

· 下面以SequenceGeneratorEJB的jaws.xml为示例，具体讲解：

	<jaws>

 <datasource>DefaultDS</datasource>

讲解：指定数据源DefaultDS

 <enterprise-beans>

 <entity>

 <ejb-name>com.cwap.oa.sequencegenerator.ejb.SequenceGeneratorEJB</ejb-name>

讲解：指定EJB为SequenceGeneratorEJB

 <cmp-field>

<field-name>name</field-name>

讲解：实体EJB的属性名称

<column-name>name</column-name>

讲解：映射到数据库中字段的名字

<jdbc-type>VARCHAR</jdbc-type>

讲解：实体EJB的属性的JDBC类型

<sql-type>VARCHAR(255) BINARY</sql-type>

讲解：映射到数据库中字段的类型

 </cmp-field>

 <cmp-field>

 <field-name>count</field-name>

 <column-name>count</column-name>

<jdbc-type>BIGINT</jdbc-type>

<sql-type>BIGINT</sql-type>

 </cmp-field>

 <table-name>sequencegenerator</table-name>

讲解：实体EJB映射到数据库中的数据表名

 <create-table>true</create-table>

讲解：部署EJB时，是否创建数据表，为true,表示部署EJB时创建数据表。

在JAS3.0中，如果创建数据表时数据表已经存在，系统将不会执行创建命令，同时给出信息"Table

'sequencegenerator' already exists"。

 <remove-table>false</remove-table>

讲解：JBoss卸载EJB时，是否删除数据表，为true,表示卸载EJB时删除数据表。

 <row-locking></row-locking>

讲解：在JBoss装载EJB时，是否对数据表进行封锁，为true,表示装载EJB时封锁对数据表的任何存取操作。

 </entity>

 </enterprise-beans>

</jaws>

源代码：立即下载

jbosscmp-jdbc.xml

· standardjbosscmp-jdbc.xml是JAS3.0提供的JBossCMP-JDBC配置文件，提供类似standardjaws.xml的配置。standardjbosscmp-jdbc.xml 文件被放在conf/config-name目录下。

· standardjbosscmp-jdbc.xml配置整个jboss中的JBossCMP-JDBC，你可以在每个应用程序中通过jbosscmp-jdbc.xml扩展这个配置。

· standardjbosscmp-jdbc.xml / jbosscmp-jdbc.xml用来完成以下设置：

i. 设置一些关于实体Bean和关联的缺省值

ii. 指定查寻数据源的JNDI名字及其映射类型

iii. 设置实体EJB的配置

iv. 配置实体EJB之间的关联

v. 设置已知的依赖类

vi. 定义各种数据库的映射类型

· 下面以SequenceGeneratorEJB的jbosscmp-jdbc.xml为示例，具体讲解：

	<jbosscmp-jdbc>

 <enterprise-beans>

 <entity>

 <ejb-name>com.cwap.oa.sequencegenerator.ejb.SequenceGeneratorEJB</ejb-name>

 <create-table>true</create-table>

 <remove-table>false</remove-table>

 <table-name>sequencegenerator_test</table-name>

 <cmp-field>

 <field-name>name</field-name>

 <column-name>name</column-name>

 <not-null />

 <jdbc-type>VARCHAR</jdbc-type>

 <sql-type>VARCHAR(255) BINARY</sql-type>

 </cmp-field>

 <cmp-field>

 <field-name>count</field-name>

 <column-name>count</column-name>

 <not-null />

 <jdbc-type>BIGINT</jdbc-type>

 <sql-type>BIGINT</sql-type>

 </cmp-field>

 </entity>

 </enterprise-beans>

<dependent-value-classes>

</dependent-value-classes>

</jbosscmp-jdbc>

源代码：立即下载

掌握了以上三个文件的编写之后，将EJB部署在JAS中将是非常容易的事。
使用MVC模型

Model-View-Controller (MVC) 开发模式可以分离数据访问和数据表现，让开发人员可以开发一个可伸缩性的强、便于扩展的控制器，来维护整个流程。MVC模式可以被映射到多层企业级的J2EE应用上。整个模式的结构图如下：
[image: image15.jpg]s

) 1
Viewl jsp ’
Viewzjn M mainjsp
View3 jsp ‘

;

MVC模型结构图
什么是MVC模式(Model-View-Controller)？

模式(Model) 这是数据与业务逻辑元件，封装的是数据源和所有基于对这些数据的操作。

视图(View) 这是表示元件，也称为用户接口元件，封装的是对数据源Model的一种显示，一个模式可以用于多个视图。

控制器(Controller) 这是响应用户输入的元件，封装的是外界作用于模型的操作。控制器将用户接口转化为模式的变化，并定义用户接口对这些事件的响应方法。用户接口可包括处理多种协议的操作，如HTTP、WAP等。
MVC模式的解决方案有哪些？

使用Struts，Struts是Jakarta项目的一部分，可访问以下官方网址来获取信息：http://jakarta.apache.org/struts。它是采用Java Servlet/JavaServer Pages技术，开发Web应用程序的开放源码的framework，重点在JSP和Servlet。

使用Cocoon，Cocoon 是一个开放源码项目，它是作为 Apache XML 工作的一部分开发的。Cocoon 是一种 Java 服务器框架，它允许使用 XSLT转换动态发布 XML 内容。通过依靠 XML 描述内容，使用 XSLT 将内容转换成多种格式，Cocoon 提供了用于构建内容、逻辑和表示在很大程度上彼此分离的应用程序的平台。

本项目基于MVC设计，但没有采用Struts和Cocoon技术实现MVC，而是自行开发了一套基于Servlet技术的MVC规范（取名叫NoTag-Struts），思想取自Struts技术。

· 没有采用Struts技术实现MVC的主要原因是在Struts技术中大量使用了JSP标签，使得美工和网页设计人员在制作项目Demo后，必须把Demo中的HTML标签转成JSP标签。这样做其实没有什么问题，但是如果遇到要修改Demo时，麻烦就大了，页面在美工或网页设计人员的可视化网页工具中将显示的是一大堆代码，美工将无法编辑。

· NoTag-Struts技术定义了Form、Action和Contoller等类，但没有定义JSP标签，JSP中依然采用大量的HTML标签。
JSP及JSP页面的翻页

在以列表的形式显示数据时需要对页面进行翻页控制，基本在项目的各模块中都会用到。为了最大限度地实现翻页的可重用和易移植，利用组件的形式对翻页逻辑进行封装。

翻页控制器的分析

描述：

翻页控制器用来实现对WEB页面的翻页内容的显示和翻页的各种操作的控制。通过JSP调用，将分页内容显示到WEB页面。它支持多种方式和风格的显示。

翻页控制器的设计

下面分别创建翻页控制器的一个PageConfig类、一个Page类、一个PageView类。

· PageConfig.java

类
	类
	PageConfig

	声明
	public class

	描述
	这个类用来保存页面属性的值,如每页显示几行等。

	超类
	

	执行
	

属性描述

	属性
	属性描述
	定义

	[PageConfig]
	
	

	|--PAGE_SIZE
	页大小
	public static final int

	|--PAGE_SIZE_SMALL
	小型页面的大小
	public static final int

	|--PAGE_SIZE_NORMAL
	正常页面的大小
	public static final int

	|--PAGE_SIZE_BIG
	大型页面的大小
	public static final int

	|--PAGE_SIZE_BIGGER
	较大页面的大小
	public static final int

	|--PAGE_SIZE_BIGGEST
	最大页面的大小
	public static final int

· Page.java

类

	类
	Page

	声明
	public class

	描述
	这个类用来保存页面属性的值,如每页显示几行等。

	超类
	

	执行
	java.lang.Serializable

属性描述

	属性
	名称
	属性描述
	数据类型

	|--EMPTY_PAGE
	空白页面
	描述一个空白页面，即不含内容的页面。
	Page对象

	|--objects
	结果集列表
	结果集列表
	java.util.List或java.util.Vector

	|--start
	开始记录号
	开始记录号，从0开始
	正整数和0

	|--end
	结束记录号
	结束记录号
	正整数和0

	|--viewStart
	显示在页面开始记录号
	显示在页面开始记录号，从1开始
	正整数

	|--viewEnd
	显示在页面结束记录号
	显示在页面结束记录号
	正整数

	|--hasPrevious
	是否有上一页的开关
	是否有上一页的开关
	布尔值

	|--previousPageNumber
	上一页的页码
	上一页的页码
	正整数和0

	|--hasNext
	是否有下一页的开关
	是否有下一页的开关
	布尔值

	|--nextPageNumber
	下一页的页码
	下一页的页码
	正整数和0

	|--total
	总行数
	一共有多少行记录
	正整数和0

	|--totalPage
	总页数
	一共有多少页
	

	|--currentPageNumber
	当前页
	描述当前是第几页
	正整数和0

	|--pageSize
	页大小
	描述每页有多少行
	正整数和0

构造器

	构造器
	构造器描述
	参数

	[Page]
	
	

	|--Page(List l, int s, boolean hasNext)
	创建页面
	l 结果集s 开始记录号，从0开始hasNext 是否有下一页的开关

	|--Page(List l, int s, boolean hasNext, int total)
	创建页面
	l 结果集s 开始记录号，从0开始hasNext 是否有下一页的开关total 一共有多少行记录

	|--Page(List l, int s, int size, boolean hasNext, int total)
	创建页面
	l 结果集s 开始记录号，从0开始size 每页有多少行hasNext 是否有下一页的开关total 一共有多少行记录

	|-- Page(List l, int num, int size, int total)
	创建页面
	l 结果集num 当前是第几页size 每页有多少行total 一共有多少行记录

	|-- Page(List l)
	创建页面,不进行分页
	l 结果集

方法

	方法
	方法描述
	返回值

	[Page]
	
	

	|--autoCalculate ()
	自动计算，根据当前页、页大小、总行数计算出其它属性的值
	private void

	|--getList()
	获得结果集
	public List

	|--getViewStart()
	获得显示在页面的开始记录号，从1开始
	public int

	|--getViewEnd()
	获得显示在页面的结束记录号
	public int

	|--hasNextPage()
	是否有下一页
	public boolean

	|--hasPreviousPage ()
	是否有上一页
	public boolean

	|--getPreviousPageNumber ()
	获得上一页的页码
	public int

	|--getNextPageNumber ()
	获得下一页的页码
	public int

	|--getTotal ()
	获得结果集中记录总行数
	public int

	|--getTotalPage ()
	获得总页数
	public int

	|--getCurrentPageNumber ()
	获得当前页码
	public int

	|--getPageSize ()
	获得每页多少行记录
	public int

	|--getStartOfNextPage ()
	获得下一页在结果集中开始的记录号，从0开始
	public int

	|--getStartOfPreviousPage ()
	获得上一页在结果集中开始的记录号，从0开始
	public int

	|--getSize()
	获得当前页包括的记录行数
	public int

	|--isEmpty()
	判断当前页面是否是空白页面,如果当前页面是空白页面,返回true,否则,返回false
	public boolean

PageView.java

类

	类
	PageView

	声明
	public class

	描述
	通过JSP调用，将分页内容显示到WEB页面。不支持图片、按钮等，只支持文字。用法:在JSP页面按如下形式定义:<% PageView view = new PageView(request,out,page); %>按缺省形式显示<% view.setVisible(true); %>按指定形式显示<% view.setVisible(true,0,1); %>

	超类
	

	执行
	

属性描述

	属性
	名称
	属性描述
	数据类型

	[PageView]
	
	
	

	|--currentUrl
	当前页面的URL
	当前页面的URL
	字符串

	|--style
	风格
	风格
	字符串

	|--useSquareBrackets
	是否加[]的开关
	在"上一页"两边是否加上"["和"]"
	布尔值

	|--page
	WEB页面
	WEB页面
	Page对象

构造器

	构造器
	构造器描述
	参数

	[PageView]
	
	

	|-- PageView (HttpServletRequest request,JspWriter out,Page page))
	创建一个分页内容
	request 客户端请求out 页面输出对象page WEB页面

方法

	方法
	方法描述
	返回值

	[PageView]
	
	

	|--setVisible(boolean visible)
	按缺省形式显示分页内容,如果visible为true,则显示分页内容,否则,不显示分页内容
	public void

	|--setVisible(boolean visible,int style,int order)
	按指定形式显示分页内容,如果visible为true,则显示分页内容,否则,不显示分页内容
	public void

	|--setVisible(boolean visible,boolean useSquareBrackets,int style,int order)
	按指定形式显示分页内容,如果visible为true,则显示分页内容,否则,不显示分页内容
	public void

	|--viewPage(boolean useSquareBrackets,int style,int order)
	按指定形式显示分页内容,order为0,表示完整形式,按如下顺序显示:共计:18 分页:2 当前页:1 每页:10 首页 前页 后页 尾页 转到□□□□order为1,表示简洁形式,按如下顺序显示:前页 后页 尾页 1/2order为2,表示完整形式2,按如下顺序显示:共计:18 每页:10 转到□□□□ 首页 前页 后页 尾页 1/2
	public void

翻页控制器的编码

只需按翻页控制器的设计进行编码，这里不用再讲了。

翻页控制器组件的源代码

a)PageConfig.java

b)Page.java

c)PageView.java

源代码：立即下载

翻页控制器的调用

翻页控制器的调用实在太简单了，调用方法：

· 导入翻页控制器包

	<%@ page import="java.util.List,com.cwap.oa.controller.web.page.Page,

com.cwap.oa.controller.web.page.PageView"%>

· 创建一个Page对象，Page.EMPTY_PAGE为空白页面

	Page page = Page.EMPTY_PAGE;

· 创建一个PageView对象

	<% PageView view = new PageView(request,out,page); %>

· 显示分页的内容：

按缺省形式显示

	<% view.setVisible(true); %>

按指定形式显示

	<% view.setVisible(true,0,1); %>

· 调用翻页控制器的例子

下面是在论坛板块中的一个JSP中调用的示例，用来显示所有的论坛板块列表，下面只列出部分代码：

	<%@ page language="java"%>

<%@ page contentType="text/html; charset=GBK"%>

<%@ page import="java.util.List,

com.cwap.oa.controller.web.page.PageView,com.cwap.oa.controller.web.page.Page"%>

<jsp:useBean id="forumBoardHelper" scope="page"

class="com.club8090.forum.forumboard.client.ForumBoardClientHelper"/>

<%

String tmp=request.getParameter("pageNumber");

int pageNumber = 0;

if(tmp==null || tmp.equals("")){

pageNumber = 1;

}else{

try {

 pageNumber = Integer.parseInt(tmp);

}catch(java.lang.NullPointerException npe){

 pageNumber = 1;

}catch(java.lang.NumberFormatException nfe){

 pageNumber = 1;

}

}

Page page = Page.EMPTY_PAGE;//page初始化为Page.EMPTY_PAGE空白页面

page = forumBoardHelper.getAllForumBoards(pageNumber);

%>

…

<table>

<tr>

<td>NO.</td>

<td>名称</td>

<td>描述摘要</td>

</tr>

<%

List items = page.getList();

if(items.isEmpty()) {

out.println("<tr colspan=3>没有记录存在</tr>");

}else{

 int no;//页面中显示的行数

 for (int i = 0; i < items.size(); i++) {

 ForumBoardModel forumBoardModel = (ForumBoardModel)items.get(i);

 no = page.getViewStart() + i;

%>

//显示记录列表

<tr>

<td><%= no %></td>

<td><%= forumBoardModel.getName() %></td>

<td><%= forumBoardModel.getSummary() %></td>

</tr>

<%

 }

 PageView view = new PageView(request,out,page);

 view.setVisible(true,0,1);

}

%>

</table>

…

附件:

A.开发机器配置

1．硬件列表：

操作系统：Miscosoft Windows 2000 Professional

内存：132M

硬盘：20G（C盘10G、D盘10G）

操作系统目录：d:\winnt

2．系统变量

SET ANT_HOME=c:\j2ee\jakarta-ant-1.4.1

SET CATALINA_HOME=C:\jboss-3.0.0_tomcat-4.0.3\catalina

SET J2EE_HOME=c:\j2ee\j2eesdk

SET JAVA_HOME=c:\j2ee\jdk1.3

SET JDBC_CLASSPATH=c:\J2EE\jdbc\mm.mysql-2.0.13\mm.mysql-2.0.13-bin.jar;c:\J2EE\jdbc\oracle8\classes12.jar

SET CLASSPATH=%J2EE_HOME%\lib\j2ee.jar;%J2EE_HOME%\lib\tools.jar;%JAVA_HOME%\jre\lib;%JDBC_CLASSPATH%;%ANT_HOME%\lib\ant.jar;%ANT_HOME%\lib\crimson.jar;%ANT_HOME%\lib\jaxp.jar

SET PATH=C:\oracle\ora81\bin;D:\Program Files\Oracle\jre\1.1.7\bin;%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%JAVA_HOME%\bin;%ANT_HOME%\bin;

3．软件列表

J2SE：1.3 ， 目录：C:\J2EE\JDK1.3

J2EE：1.3 ， 目录：C:\J2EE\j2eesdk

Ant：1.4.1 ， 目录：C:\J2EE\jakarta-ant-1.4.1

JDBC：mm.mysql-2.0.13-bin.jar、oracle-classes12.jar， 目录：C:\J2EE\jdbc

应用服务器：JAS3.0 ，目录：C:\ jboss-3.0.0_tomcat-4.0.3

编辑器：Editplus v2.10c

B.应用服务器配置

1．硬件列表：

操作系统：RedHat Linux 7.3

内存：2G

硬盘：20G

2．系统变量

ANT_HOME=/home/ant

export ANT_HOME

CATALINA_HOME=/home/tomcat4

export CATALINA_HOME

CLASSPATH=/home/j2ee/lib/j2ee.jar:/home/j2ee/lib/tools.jar:/home/jdk1.3/jre/lib:/home/jdk1.3/lib/mail.jar:/home/jdk1.3/lib/activation.jar:/home/ant/ant.jar:/home/ant/lib/crimson.jar:/home/ant/lib/jaxp.jar:.

export CLASSPATH

JAVA_HOME=/home/jdk1.3

export JAVA_HOME

J2EE_HOME=/home/j2ee

export J2EE_HOME

PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/bin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/usr/X11R6/bin:/home/wudi/bin:/home/jdk1.3:/home/jdk1.3/bin:/home/jdk1.3/jre/bin:/home/jdk1.3/jre/lib/sparc

export PATH

3．软件列表

J2SE：1.3 ， 目录：/home/jdk1.3

J2EE：1.3 ， 目录：/home/j2ee

Ant：1.4.1 ， 目录：/home/ant

JDBC：mm.mysql-2.0.13-bin.jar、oracle-classes12.jar， 目录：/home/jdbc

应用服务器：JAS3.0 ，目录：/home/jboss

Web服务器：Tomcat4.0 ，目录：/home/tomcat4

C.数据库服务器配置

1．
硬件列表：

操作系统：RedHat Linux 7.3

内存：1G

硬盘：40G

2．系统变量

CATALINA_HOME=/home/tomcat4

export CATALINA_HOME

CLASSPATH=/home/jdk1.3/lib/:/home/jdk1.3/lib/tools.jar:/home/jdk1.3/jre/lib:/home/jdk1.3/lib/mail.jar:/home/jdk1.3/lib/activation.jar:.

export CLASSPATH

JAVA_HOME=/home/jdk1.3

export JAVA_HOME

PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/bin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/usr/X11R6/bin:/home/wudi/bin:/home/jdk1.3:/home/jdk1.3/bin:/home/jdk1.3/jre/bin:/home/jdk1.3/jre/lib/sparc

export PATH

3．
软件列表

J2SE：1.3 ， 目录：/home/jdk1.3

数据库：Mysql3.23.31 ，目录：/usr/local/mysql

 Oracle8i ，目录：/home/local/oracle

数据库工具：phpadmin ，目录：/home/webroot/html/phpadmin

Web服务器：Apache HTTP Server ，目录：/usr/local/apache

