

LEARNING FROM DATA

LEARNING FROM DATA

Concepts, Theory, and Methods

Second Edition

VLADIMIR CHERKASSKY
FILIP MULIER

WILEY-INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright � 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to

the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax

978-750-4470, or on the web at www.copyright.com.Requests to the Publisher for permission should be

addressed to teh Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher nor

author shall be liable for any loss of profit or any other commerical damages, including but not limited to

special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact

our Customer Care Department within the United States at 877-762-2974, outside the United States

at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data:

Cherkassky, Vladimir S.

Learning from data : concepts, theory, and methods / by Vladimir Cherkassky,

Filip Mulier. – 2nd ed.

p. cm.

ISBN 978-0-471-68182-3 (cloth)

1. Adaptive signal processing. 2. Machine learning. 3. Neural networks

(Computer science) 4. Fuzzy systems. I. Mulier, Filip. II. Title.

TK5102.9.C475 2007

006.301–dc22 2006038736

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

CONTENTS

PREFACE xi

NOTATION xvii

1 Introduction 1

1.1 Learning and Statistical Estimation, 2

1.2 Statistical Dependency and Causality, 7

1.3 Characterization of Variables, 10

1.4 Characterization of Uncertainty, 11

1.5 Predictive Learning versus Other Data Analytical Methodologies, 14

2 Problem Statement, Classical Approaches, and Adaptive Learning 19

2.1 Formulation of the Learning Problem, 21

2.1.1 Objective of Learning, 24

2.1.2 Common Learning Tasks, 25

2.1.3 Scope of the Learning Problem Formulation, 29

2.2 Classical Approaches, 30

2.2.1 Density Estimation, 30

2.2.2 Classification, 32

2.2.3 Regression, 34

2.2.4 Solving Problems with Finite Data, 34

2.2.5 Nonparametric Methods, 36

2.2.6 Stochastic Approximation, 39

v

2.3 Adaptive Learning: Concepts and Inductive Principles, 40

2.3.1 Philosophy, Major Concepts, and Issues, 40

2.3.2 A Priori Knowledge and Model Complexity, 43

2.3.3 Inductive Principles, 45

2.3.4 Alternative Learning Formulations, 55

2.4 Summary, 58

3 Regularization Framework 61

3.1 Curse and Complexity of Dimensionality, 62

3.2 Function Approximation and Characterization of Complexity, 66

3.3 Penalization, 70

3.3.1 Parametric Penalties, 72

3.3.2 Nonparametric Penalties, 73

3.4 Model Selection (Complexity Control), 73

3.4.1 Analytical Model Selection Criteria, 75

3.4.2 Model Selection via Resampling, 78

3.4.3 Bias–Variance Tradeoff, 80

3.4.4 Example of Model Selection, 85

3.4.5 Function Approximation versus Predictive Learning, 88

3.5 Summary, 96

4 Statistical Learning Theory 99

4.1 Conditions for Consistency and Convergence of ERM, 101

4.2 Growth Function and VC Dimension, 107

4.2.1 VC Dimension for Classification and Regression Problems, 110

4.2.2 Examples of Calculating VC Dimension, 111

4.3 Bounds on the Generalization, 115

4.3.1 Classification, 116

4.3.2 Regression, 118

4.3.3 Generalization Bounds and Sampling Theorem, 120

4.4 Structural Risk Minimization, 122

4.4.1 Dictionary Representation, 124

4.4.2 Feature Selection, 125

4.4.3 Penalization Formulation, 126

4.4.4 Input Preprocessing, 126

4.4.5 Initial Conditions for Training Algorithm, 127

4.5 Comparisons of Model Selection for Regression, 128

4.5.1 Model Selection for Linear Estimators, 134

4.5.2 Model Selection for k-Nearest-Neighbor Regression, 137

4.5.3 Model Selection for Linear Subset Regression, 140

4.5.4 Discussion, 141

4.6 Measuring the VC Dimension, 143

4.7 VC Dimension, Occam’s Razor, and Popper’s Falsifiability, 146

4.8 Summary and Discussion, 149

vi CONTENTS

5 Nonlinear Optimization Strategies 151

5.1 Stochastic Approximation Methods, 154

5.1.1 Linear Parameter Estimation, 155

5.1.2 Backpropagation Training of MLP Networks, 156

5.2 Iterative Methods, 161

5.2.1 EM Methods for Density Estimation, 161

5.2.2 Generalized Inverse Training of MLP Networks, 164

5.3 Greedy Optimization, 169

5.3.1 Neural Network Construction Algorithms, 169

5.3.2 Classification and Regression Trees, 170

5.4 Feature Selection, Optimization, and Statistical Learning Theory, 173

5.5 Summary, 175

6 Methods for Data Reduction and Dimensionality Reduction 177

6.1 Vector Quantization and Clustering, 183

6.1.1 Optimal Source Coding in Vector Quantization, 184

6.1.2 Generalized Lloyd Algorithm, 187

6.1.3 Clustering, 191

6.1.4 EM Algorithm for VQ and Clustering, 192

6.1.5 Fuzzy Clustering, 195

6.2 Dimensionality Reduction: Statistical Methods, 201

6.2.1 Linear Principal Components, 202

6.2.2 Principal Curves and Surfaces, 205

6.2.3 Multidimensional Scaling, 209

6.3 Dimensionality Reduction: Neural Network Methods, 214

6.3.1 Discrete Principal Curves and Self-Organizing

Map Algorithm, 215

6.3.2 Statistical Interpretation of the SOM Method, 218

6.3.3 Flow-Through Version of the SOM and

Learning Rate Schedules, 222

6.3.4 SOM Applications and Modifications, 224

6.3.5 Self-Supervised MLP, 230

6.4 Methods for Multivariate Data Analysis, 232

6.4.1 Factor Analysis, 233

6.4.2 Independent Component Analysis, 242

6.5 Summary, 247

7 Methods for Regression 249

7.1 Taxonomy: Dictionary versus Kernel Representation, 252

7.2 Linear Estimators, 256

7.2.1 Estimation of Linear Models and Equivalence

of Representations, 258

7.2.2 Analytic Form of Cross-Validation, 262

CONTENTS vii

7.2.3 Estimating Complexity of Penalized Linear Models, 263

7.2.4 Nonadaptive Methods, 269

7.3 Adaptive Dictionary Methods, 277

7.3.1 Additive Methods and Projection

Pursuit Regression, 279

7.3.2 Multilayer Perceptrons and Backpropagation, 284

7.3.3 Multivariate Adaptive Regression Splines, 293

7.3.4 Orthogonal Basis Functions and Wavelet

Signal Denoising, 298

7.4 Adaptive Kernel Methods and Local Risk Minimization, 309

7.4.1 Generalized Memory-Based Learning, 313

7.4.2 Constrained Topological Mapping, 314

7.5 Empirical Studies, 319

7.5.1 Predicting Net Asset Value (NAV) of Mutual Funds, 320

7.5.2 Comparison of Adaptive Methods for Regression, 326

7.6 Combining Predictive Models, 332

7.7 Summary, 337

8 Classification 340

8.1 Statistical Learning Theory Formulation, 343

8.2 Classical Formulation, 348

8.2.1 Statistical Decision Theory, 348

8.2.2 Fisher’s Linear Discriminant Analysis, 362

8.3 Methods for Classification, 366

8.3.1 Regression-Based Methods, 368

8.3.2 Tree-Based Methods, 378

8.3.3 Nearest-Neighbor and Prototype Methods, 382

8.3.4 Empirical Comparisons, 385

8.4 Combining Methods and Boosting, 390

8.4.1 Boosting as an Additive Model, 395

8.4.2 Boosting for Regression Problems, 400

8.5 Summary, 401

9 Support Vector Machines 404

9.1 Motivation for Margin-Based Loss, 408

9.2 Margin-Based Loss, Robustness, and Complexity Control, 414

9.3 Optimal Separating Hyperplane, 418

9.4 High-Dimensional Mapping and Inner Product Kernels, 426

9.5 Support Vector Machine for Classification, 430

9.6 Support Vector Implementations, 438

9.7 Support Vector Regression, 439

9.8 SVM Model Selection, 445

9.9 Support Vector Machines and Regularization, 453

viii CONTENTS

9.10 Single-Class SVM and Novelty Detection, 460

9.11 Summary and Discussion, 464

10 Noninductive Inference and Alternative Learning Formulations 467

10.1 Sparse High-Dimensional Data, 470

10.2 Transduction, 474

10.3 Inference Through Contradictions, 481

10.4 Multiple-Model Estimation, 486

10.5 Summary, 496

11 Concluding Remarks 499

Appendix A: Review of Nonlinear Optimization 507

Appendix B: Eigenvalues and Singular Value Decomposition 514

References 519

Index 533

CONTENTS ix

PREFACE

There are two problems in modern science:

� too many people use different terminology to solve the same problems;

� even more people use the same terminology to address completely different

issues.

Anonymous

In recent years, there has been an explosive growth of methods for learning

(or estimating dependencies) from data. This is not surprising given the prolifera-

tion of

� low-cost computers (for implementing such methods in software)

� low-cost sensors and database technology (for collecting and storing data)

� highly computer-literate application experts (who can pose ‘‘interesting’’

application problems)

A learning method is an algorithm (usually implemented in software) that esti-

mates an unknown mapping (dependency) between a system’s inputs and outputs

from the available data, namely from known (input, output) samples. Once such

a dependency has been accurately estimated, it can be used for prediction of future

system outputs from the known input values. This book provides a unified descrip-

tion of principles and methods for learning dependencies from data.

Methods for estimating dependencies from data have been traditionally explored

in diverse fields such as statistics (multivariate regression and classification), engi-

neering (pattern recognition), and computer science (artificial intelligence, machine

xi

learning, and, more recently, data mining). Recent interest in learning from data has

resulted in the development of biologically motivated methodologies, such as

artificial neural networks, fuzzy systems, and wavelets.

Unfortunately, developments in each field are seldom related to other fields,

despite the apparent commonality of issues and methods. The mere fact that

hundreds of ‘‘new’’ methods are being proposed each year at various conferences

and in numerous journals suggests a certain lack of understanding of the basic

issues common to all such methods.

The premise of this book is that there are just a handful of important principles

and issues in the field of learning dependencies from data. Any researcher or

practitioner in this field needs to be aware of these issues in order to successfully

apply a particular methodology, understand a method’s limitations, or develop new

techniques.

This book is an attempt to present and discuss such issues and principles (com-

mon to all methods) and then describe representative popular methods originating

from statistics, neural networks, and pattern recognition. Often methods developed

in different fields can be related to a common conceptual framework. This approach

enables better understanding of a method’s properties, and it has methodological

advantages over traditional ‘‘cookbook’’ descriptions of various learning algo-

rithms.

Many aspects of learning methods can be addressed under a traditional statistical

framework. At the same time, many popular learning algorithms and learning

methodologies have been developed outside classical statistics. This happened

for several reasons:

1. Traditionally, the statistician’s role has been to analyze the inferential

limitations of the structural model constructed (proposed) by the applica-

tion-domain expert. Consequently, the conceptual approach (adopted in

statistics) is parameter estimation for model identification. For many real-

life problems that require flexible estimation with finite samples, the

statistical approach is fundamentally flawed. As shown in this book, learning

with finite samples should be based on the framework known as risk

minimization, rather than density estimation.

2. Statisticians have been late to recognize and appreciate the importance of

computer-intensive approaches to data analysis. The growing use of compu-

ters has fundamentally changed the traditional boundaries between a statis-

tician (data modeler) and a user (application expert). Nowadays, engineers

and computer scientists successfully use sophisticated empirical data-

modeling techniques (i.e., neural nets) to estimate complex nonlinear

dependencies from the data.

3. Statistics (being part of mathematics) has developed into a closed discipline,

with its own scientific jargon and academic objectives that favor analytic

proofs rather than practical methods for learning from data.

xii PREFACE

Historically, we can identify three stages in the development of predictive learn-

ing methods. First, in 1985–1992 classical statistics gave way to neural networks

(and other empirical methods, such as fuzzy systems) due to an early enthusiasm

and naive claims that biologically inspired methods (i.e., neural nets) can achieve

model-free learning not subject to statistical limitations. Even though such claims

later proved to be false, this stage had a positive impact by showing the power and

usefulness of flexible nonlinear modeling based on the risk minimization approach.

Then in 1992–1996 came the return of statistics as the researchers and practitioners

of neural networks became aware of their statistical limitations, initiating a trend

toward interpretation of learning methods using a classical statistical framework.

Finally, the third stage, from 1997 to present, is dominated by the wide popularity

of support vector machines (SVMs) and similar margin-based approaches (such as

boosting), and the growing interest in the Vapnik–Chervonenkis (VC) theoretical

framework for predictive learning.

This book is intended for readers with varying interests, including researchers/

practitioners in data modeling with a classical statistics background, researchers/

practitioners in data modeling with a neural network background, and graduate

students in engineering or computer science.

The presentation does not assume a special math background beyond a good

working knowledge of probability, linear algebra, and calculus on an undergraduate

level. Useful background material on optimization and linear algebra is included in

Appendixes A and B, respectively. We do not provide mathematical proofs, but,

whenever possible, in place of proofs we provide intuitive explanations and argu-

ments. Likewise, mathematical formulation and discussion of the major concepts

and results are provided as needed. The goal is to provide a unified treatment of

diverse methodologies (i.e., statistics and neural networks), and to that end we

carefully define the terminology used throughout the book. This book is not easy

reading because it describes fairly complex concepts and mathematical models for

solving inherently difficult (ill-posed) problems of learning with finite data. To aid

the reader, each chapter starts with a brief overview of its contents. Also, each

chapter is concluded with a summary containing an overview of open research

issues and pointers to other (relevant) chapters.

Book chapters are conceptually organized into three parts:

� Part I: Concepts and Theory (Chapters 1–4). Following an introduction and

motivation given in Chapter 1, we present formal specification of the inductive

learning problem in Chapter 2 that also introduces major concepts and issues

in learning from data. In particular, it describes an important concept called an

inductive principle. Chapter 3 describes the regularization (or penalization)

framework adopted in statistics. Chapter 4 describes Vapnik’s statistical

learning theory (SLT), which provides the theoretical basis for predictive

learning with finite data. SLT, aka VC theory, is important for understanding

various learning methods developed in neural networks, statistics, and pattern

recognition, and for developing new approaches, such as SVMs

PREFACE xiii

(described in Chapter 9) and noninductive learning settings (described in

Chapter 10).

� Part II: Constructive Learning Methods (Chapters 5–8). This part describes

learning methods for regression, classification, and density approximation

problems. The objective is to show conceptual similarity of methods originat-

ing from statistics, neural networks, and signal processing and to discuss their

relative advantages and limitations. Whenever possible, we relate constructive

learning methods to the conceptual framework of Part I. Chapter 5 describes

nonlinear optimization strategies commonly used in various methods. Chapter

6 describes methods for density approximation, which include statistical,

neural network, and signal processing techniques for data reduction and

dimensionality reduction. Chapter 7 provides descriptions of statistical and

neural network methods for regression. Chapter 8 describes methods for

classification.

� Part III: VC-Based Learning Methodologies (Chapters 9 and 10). Here we

describe constructive learning approaches that originate in VC theory. These

include SVMs (or margin-based methods) for several inductive learning

problems (in Chapter 9) and various noninductive learning formulations

(described in Chapter 10).

The chapters should be followed in a sequential order, as the description of con-

structive learning methods is related to the conceptual framework developed in the

first part of the book. A shortened sequence of Chapters 1–3 followed by Chapters

5, 6, 7 and 8 is recommended for the beginning readers who are interested only in

the description of statistical and neural network methods. This sequence omits the

mathematically and conceptually challenging Chapters 4 and 9. Alternatively, more

advanced readers who are primarily interested in SLT and SVM methodology may

adopt the sequence of Chapters 2, 3, 4, 9, and 10.

In the course of writing this book, our understanding of the field has changed.

We started with the currently prevailing view of learning methods as a collection of

tricks. Statisticians have their own bag of tricks (and terminology), neural networks

have a different set of tricks, and so on. However, in the process of writing this

book, we realized that it is possible to understand the various heuristic methods

(tricks) by a sound general conceptual framework. Such a framework is provided

by SLT developed mainly by Vapnik over the past 35 years. This theory combines

fundamental concepts and principles related to learning with finite data, well-

defined problem formulations, and rigorous mathematical theory. Although SLT

is well known for its mathematical aspects, its conceptual contributions are not

fully appreciated. As shown in our book, the conceptual framework provided by

SLT can be used for improved understanding of various learning methods even

where its mathematical results cannot be directly applied. Modern learning methods

(i.e., flexible approaches using finite data) have slowly drifted away from the

original problem statements posed in classical statistical decision and estimation

theory. A major conceptual contribution of SLT is in revisiting the problem

xiv PREFACE

statement appropriate for modern data mining applications. On the very basic level,

SLT makes a clear distinction between the problem formulation and a solution

approach (aka inductive principle) used to solve a problem. Although this distinc-

tion appears trivial on the surface, it leads to a fundamentally new understanding of

the learning problem not explained by classical theory. Although it is tempting to

skip directly to constructive solutions, this book devotes enough attention to the

learning problem formulation and important concepts before describing actual

learning methods.

Over the past 10 years (since the first edition of this book), we have witnessed

considerable growth of interest in SVM-related methods. Nowadays, SVM (aka

kernel) methods are commonly used in data mining, statistics, signal processing,

pattern recognition, genomics, and so on. In spite of such an overwhelming suc-

cess and wide recognition of SVM methodology, many important VC theoretical

concepts responsible for good generalization of SVMs (such as margin, VC

dimension) remain rather poorly understood. For example, many recent mono-

graphs and research papers refer to SVMs as a ‘‘special case of regularization.’’

So in this second edition, we made a special effort to emphasize the conceptual

aspects of VC theory and to contrast the VC theoretical approach to learning

(i.e., system imitation) versus the classical statistical and function approxima-

tion approach (i.e., system identification). Accurate interpretation of VC theore-

tical concepts is important for improved understanding of inductive learning

algorithms, as well as for developing emerging state-of-the-art approaches

based on noninductive learning settings (as discussed in Chapter 10). In this

edition, we emphasize the philosophical interpretation of predictive learning,

in general, and of several VC theoretical concepts, in particular. These philoso-

phical connections appear to be quite useful for understanding recent advanced

learning methods and for motivating new noninductive types of inference.

Moreover, philosophical aspects of predictive learning can be immediately

related to epistemology (understanding of human knowledge), as discussed in

Chapter 11.

Many people have contributed directly and indirectly to this book. First and

foremost, we are greatly indebted to Vladimir Vapnik of NEC Labs for his funda-

mental contributions to SLT and for his patience in explaining this theory to us. We

would like to acknowledge many people whose constructive feedback helped

improve the quality of the second edition, including Ella Bingham, John Boik,

Olivier Chapelle, David Hand, Nicol Schraudolph, Simon Haykin, David Musicant,

Erinija Pranckeviciene, and D. Solomatine—all of whom provided many useful

comments.

This book was used in the graduate course ‘‘Predictive Learning from Data’’

at the University of Minnesota over the past 10 years, and we would like to thank

students who took this course for their valuable feedback. In particular, we

acknowledge former graduate students X. Shao, Y. Ma, T. Xiong, L. Liang,

H Gao, M. Ramani, R. Singh, and Y. Kim whose research contributions are

incorporated in this book in the form of several fine figures and empirical

PREFACE xv

comparisons. Finally, we would like to thank our families for their patience

and support.

Vladimir Cherkassky

Filip Mulier

Minneapolis, Minnesota

March 2007

xvi PREFACE

NOTATION

The following uniform notation is used throughout the book. Scalars are indicated

by script letters such as a. Vectors are indicated by lowercase bold letters such as w.

Matrices are given using uppercase bold letters V. When elements of a matrix are

accessed individually, we use the corresponding lowercase script letter. For example,

the ði; jÞ element of the matrix V is vij. Common notation for all chapters is as follows:

Data

n Number of samples

d Number of input variables

X ¼ ½x1; . . . ; xn� Matrix of input samples

y ¼ ½y1; . . . ; yn� Vector of output samples

Z ¼ ½X; y� Combined input–output training data or

Z ¼ ½z1; . . . ; zn� Representation of data points in a feature space

Distribution

P Probability

FðxÞ Cumulative probability distribution function (cdf)

pðxÞ Probability density function (pdf)

pðx; yÞ Joint probability density function

pðx;oÞ Probability density function, which is parameterized

pðyjxÞ Conditional density

tðxÞ Target function

Approximating Functions

f ðx;oÞ A class of approximating functions indexed by abstract

parameter o (o can be a scalar, vector, or matrix). Interpre-

tation of f ðx;oÞ depends on the particular learning problem

xvii

f ðx;o0Þ The function that minimizes the expected risk (optimal

solution)

f ðx;o�Þ Estimate of the optimal solution obtained from finite data

f ðx;w;VÞ ¼ Basis function expansion of approximating functions with

bias termP

m

i¼1
wigiðx; viÞ þ b

giðx; vÞ Basis function in a basis function expansion

w;w;W Parameters of approximating function

v; v;V Basis function parameters

m Number of basis functions

� Set of parameters, as in w 2 �

� Margin distance

tðxÞ Target function

x Error between the target function and the approximating

function, or error between model estimate and time output

Risk Functionals

Lðy; f ðx;oÞÞ Discrepancy measure or loss function

L2 Squared discrepancy measure

QðoÞ A set of loss functions

R Risk or average loss

RðoÞ Expected risk as a function of parameters

RempðoÞ Empirical risk as a function of parameters

Kernel Functions

Kðx; x0Þ General kernel function (for kernel smothing)

Sðx; x0Þ Equivalent kernel of a linear estimator

Hðx; x0Þ Inner product kernel

Miscellaneous

ða � bÞ Inner (dot) product of two vectors

IðÞ Indicator function of a Boolean argument that takes the

value 1 if its argument is true and 0 otherwise. By conven-

tion, for a real-valued argument, IðxÞ ¼ 1 for x > 0, and

IðxÞ ¼ 0 for x � 0

f½f ðx;oÞ� Penalty functional

l Regularization parameter

h VC dimension

gk Learning rate for stochastic approximation at iteration step k

½a�þ Positive argument, equals max (a, 0)

L Lagrangian

In addition to the above notation used throughout the book, there is chapter-specific

notation, which will be introduced locally in each chapter.

xviii NOTATION

1
INTRODUCTION

1.1 Learning and statistical estimation

1.2 Statistical dependency and causality

1.3 Characterization of variables

1.4 Characterization of uncertainty

1.5 Predictive learning versus other data analytical methodologies

Where observation is concerned, chance favors only the prepared mind.

Louis Pasteur

This chapter describes the motivation and reasons for the growing interest in

methods for learning (or estimation of empirical dependencies) from data and

introduces informally some relevant terminology.

Section 1.1 points out that the problem of learning from data is just one part of the

general experimental procedure used in different fields of science and engineering.

This procedure is described in detail, with emphasis on the importance of other steps

(preceding learning) for overall success. Two distinct goals of learning from data, pre-

dictive accuracy (generalization) and interpretation (explanation), are also discussed.

Section 1.2 discusses the relationship between statistical dependency and

the notion of causality. It is pointed out that causality cannot be inferred from

data analysis alone, but must be demonstrated by arguments outside the statistical

analysis. Several examples are presented to support this point.

Section 1.3 describes different types of variables for representing the inputs and

outputs of a learning system. These variable types are numeric, categorical, peri-

odic, and ordinal.

Section 1.4 overviews several approaches for describing uncertainty. These

include traditional (frequentist) probability corresponding to measurable frequencies,

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

1

Bayesian probability quantifying subjective belief, and fuzzy sets for characteriza-

tion of event ambiguity. The distinction and similarity between these approaches

are discussed. The difference between the probability as characterization of event

randomness and fuzziness as characterization of the ambiguity of deterministic

events is explained and illustrated by examples.

This book is mainly concerned with estimation of predictive models from data.

This framework, called Predictive Learning, is formally introduced in Chapter 2.

However, in many applications data-driven modeling pursues different goals (other

than prediction). Several major data analytic methodologies are described and con-

trasted to Predictive Learning in Section 1.5.

1.1 LEARNING AND STATISTICAL ESTIMATION

Modern science and engineering are based on using first-principle models to

describe physical, biological, and social systems. Such an approach starts with a

basic scientific model (e.g., Newton’s laws of mechanics or Maxwell’s theory of

electromagnetism) and then builds upon them various applications in mechanical

engineering or electrical engineering. Under this approach, experimental data

(measurements) are used to verify the underlying first-principle models and to esti-

mate some of the model parameters that are difficult to measure directly. However,

in many applications the underlying first principles are unknown or the systems

under study are too complex to be mathematically described. Fortunately, with

the growing use of computers and low-cost sensors for data collection, there is

a great amount of data being generated by such systems. In the absence of

first-principle models, such readily available data can be used to derive models

by estimating useful relationships between a system’s variables (i.e., unknown

input–output dependencies). Thus, there is currently a paradigm shift from the

classical modeling based on first principles to developing models from data.

The need for understanding large, complex, information-rich data sets is com-

mon to virtually all fields of business, science, and engineering. Some examples

include medical diagnosis, handwritten character recognition, and time series pre-

diction. In the business world, corporate and customer data are becoming recog-

nized as a strategic asset. The ability to extract useful knowledge hidden in these

data and to act on that knowledge is becoming increasingly important in today’s

competitive world.

Many recent approaches to developing models from data have been inspired by

the learning capabilities of biological systems and, in particular, those of humans.

In fact, biological systems learn to cope with the unknown statistical nature of the

environment in a data-driven fashion. Babies are not aware of the laws of

mechanics when they learn how to walk, and most adults drive a car without

knowledge of the underlying laws of physics. Humans as well as animals also

have superior pattern recognition capabilities for tasks such as face, voice, or smell

recognition. People are not born with such capabilities, but learn them through

2 INTRODUCTION

data-driven interaction with the environment. Usually humans cannot articulate the

rules they use to recognize, for example, a face in a complex picture. The field of

pattern recognition has a goal of building artificial pattern recognition systems that

imitate human recognition capabilities. Pattern recognition systems are based on

the principles of engineering and statistics rather than biology. There always has

been an appeal to build pattern recognition systems that imitate human (or animal)

brains. In the mid-1980s, this led to great enthusiasm about the so-called (artificial)

neural networks. Even though most neural network models and applications have

little in common with biological systems and are used for standard pattern recogni-

tion tasks, the biological terminology still remains, sometimes causing considerable

confusion for newcomers from other fields. More recently, in the early 1990s,

another biologically inspired group of learning methods known as fuzzy systems

became popular. The focus of fuzzy systems is on highly interpretable representa-

tion of human application-domain knowledge based on the assertion that human

reasoning is ‘‘naturally’’ performed using fuzzy rules. On the contrary, neural net-

works are mainly concerned with data-driven learning for good generalization.

These two goals are combined in the so-called neurofuzzy systems.

The authors of this book do not think that biological analogy and terminology

are of major significance for artificial learning systems. Instead, the book concen-

trates on using a statistical framework to describe modern methods for learning

from data. In statistics, the task of predictive learning (from samples) is called sta-

tistical estimation. It amounts to estimating properties of some (unknown) statistical

distribution from known samples or training data. Information contained in the

training data (past experience) can be used to answer questions about future sam-

ples. Thus, we distinguish two stages in the operation of a learning system:

1. Learning/estimation (from training samples)

2. Operation/prediction, when predictions are made for future or test samples

This description assumes that both the training and test data are from the same

underlying statistical distribution. In other words, this (unknown) distribution is

fixed. Specific learning tasks include the following:

� Classification (pattern recognition) or estimation of class decision boundaries

� Regression: estimation of unknown real-valued function

� Probability density estimation (from samples)

A precise mathematical formulation of the learning problem is given in Chapter 2.

There are two common types of the learning problems discussed in this

book, known as supervised learning and unsupervised learning. Supervised learning

is used to estimate an unknown (input, output) mapping from known (input,

output) samples. Classification and regression tasks fall into this group. The term

‘‘supervised’’ denotes the fact that output values for training samples are known

(i.e., provided by a ‘‘teacher’’ or a system being modeled). Under the unsupervised

LEARNING AND STATISTICAL ESTIMATION 3

learning scheme, only input samples are given to a learning system, and there is no

notion of the output during learning. The goal of unsupervised learning may be to

approximate the probability distribution of the inputs or to discover ‘‘natural’’ struc-

ture (i.e., clusters) in the input data. In biological systems, low-level perception and

recognition tasks are learned via unsupervised learning, whereas higher-level cap-

abilities are usually acquired through supervised learning. For example, babies

learn to recognize (‘‘cluster’’) familiar faces long before they can understand

human speech. On the contrary, reading and writing skills cannot be acquired in

unsupervised manner; they need to be taught. This observation suggests that biolo-

gical unsupervised learning schemes are based on powerful internal structures (for

optimal representation and processing of sensory data) developed through the years

of evolution, in the process of adapting to the statistical nature of the environment.

Hence, it may be beneficial to use biologically inspired structures for unsupervised

learning in artificial learning systems. In fact, a well-known example of such an

approach is the popular method known as the self-organizing map for unsupervised

learning described in Chapter 6. Finally, it is worth noting here that the distinction

between supervised and unsupervised learning is on the level of problem statement

only. In fact, methods originally developed for supervised learning can be adapted

for unsupervised learning tasks, and vice versa. Examples are given throughout the

book.

It is important to realize that the problem of learning/estimation of dependencies

from samples is only one part of the general experimental procedure used by scien-

tists, engineers, medical doctors, social scientists, and others who apply statistical

(neural network, machine learning, fuzzy, etc.) methods to draw conclusions from

the data. The general experimental procedure adopted in classical statistics involves

the following steps, adapted from Dowdy and Wearden (1991):

1. State the problem

2. Formulate the hypothesis

3. Design the experiment/generate the data

4. Collect the data and perform preprocessing

5. Estimate the model

6. Interpret the model/draw the conclusions

Even though the focus of this book is on step 5, it is just one step in the proce-

dure. Good understanding of the whole procedure is important for any successful

application. No matter how powerful the learning method used in step 5 is, the

resulting model would not be valid if the data are not informative (i.e., gathered

incorrectly) or the problem formulation is not (statistically) meaningful. For exam-

ple, poor choice of the input and output variables (steps 1 and 2) and improperly

chosen encoding/feature selection (step 4) may adversely affect learning/inference

from data (step 5), or even make it impossible. Also, the type of inference proce-

dure used in step 5 may be indirectly affected by the problem formulation in step 2,

experiment design in step 3, and data collection/preprocessing in step 4.

4 INTRODUCTION

Next, we briefly discuss each step in the above general procedure.

Step 1: Statement of the problem. Most data modeling studies are performed in a

particular application domain. Hence, domain-specific knowledge and experi-

ence are usually necessary in order to come up with a meaningful problem

statement. Unfortunately, many recent application studies tend to focus on the

learning methods used (i.e., a neural network) at the expense of a clear

problem statement.

Step 2: Hypothesis formulation. The hypothesis in this step specifies an unknown

dependency, which is to be estimated from experimental data. At this step, a

modeler usually specifies a set of input and output variables for the unknown

dependency and (if possible) a general form of this dependency. There may

be several hypotheses formulated for a single problem. Step 2 requires

combined expertise of an application domain and of statistical modeling. In

practice, it usually means close interaction between a modeler and application

experts.

Step 3: Data generation/experiment design. This step is concerned with how

the data are generated. There are two distinct possibilities. The first is when the

data generation process is under control of a modeler—it is known as the

designed experiment setting in statistics. The second is when the modeler

cannot influence the data generation process—this is known as the observa-

tional setting. An observational setting, namely random data generation, is

assumed in this book. We will also refer to a random distribution used to

generate data (inputs) as a sampling distribution. Typically, the sampling

distribution is not completely unknown and is implicit in the data collection

procedure. It is important to understand how the data collection affects the

sampling distribution because such a priori knowledge can be very useful for

modeling and interpretation of modeling results. Further, it is important to

make sure that past (training) data used for model estimation, and the future

data used for prediction, come from the same (unknown) sampling distribu-

tion. If this is not the case, then (in most cases) predictive models estimated

from the training data alone cannot be used for prediction with the future data.

Step 4: Data collection and preprocessing. This step has to do with both data

collection and the subsequent preprocessing of data. In the observational

setting, data are usually ‘‘collected’’ from the existing databases. Data

preprocessing includes (at least) two common tasks: outlier detection/removal

and data preprocessing/encoding/feature selection.

Outliers are unusual data values that are not consistent with most

observations. Commonly, outliers are due to gross measurement errors,

coding/recording errors, and abnormal cases. Such nonrepresentative samples

can seriously affect the model produced later in step 5. There are two

strategies for dealing with outliers: outlier detection and removal as a part

of preprocessing, and development of robust modeling methods that are (by

design) insensitive to outliers. Such robust statistical methods (Huber 1981)

LEARNING AND STATISTICAL ESTIMATION 5

are not discussed in this book. Note that there is a close connection between

outlier detection (in step 4) and modeling (in step 5).

Data preprocessing includes several steps such as variable scaling and

different types of encoding techniques. Such application-domain-specific

encoding methods usually achieve dimensionality reduction by providing a

small number of informative features for subsequent data modeling. Once

again, preprocessing steps should not be considered completely independent

from modeling (in step 5): There is usually a close connection between the

two. For example, consider the task of variable scaling. The problem of

scaling is due to the fact that different input variables have different natural

scales, namely their own units of measurement. For some modeling methods

(e.g., classification trees) this does not cause a problem, but other methods

(e.g., distance-based methods) are very sensitive to the chosen scale of input

variables. With such methods, a variable characterizing weight would have

much larger influence when expressed in milligrams rather than in pounds.

Hence, each input variable needs to be rescaled. Commonly, such rescaling is

done independently for each variable; that is, each variable may be scaled by

the standard deviation of its values. However, independent scaling of vari-

ables can lead to suboptimal representation for many learning methods.

Preprocessing/encoding step often includes selection of a small number of

informative features from a high-dimensional data. This is known as feature

selection in pattern recognition. It may be argued that good preprocessing/

data encoding is the most important part in the whole procedure because it

provides a small number of informative features, thus making the task of

estimating dependency much simpler. Indeed, the success of many applica-

tion studies is usually due to a clever preprocessing/data encoding scheme

rather than to the learning method used. Generally, a good preprocessing

method provides an optimal representation for a learning problem, by

incorporating a priori knowledge in the form of application-specific encoding

and feature selection.

Step 5: Model estimation. Each hypothesis in step 2 corresponds to unknown

dependency between the input and output features representing appropriately

encoded variables. These dependencies are quantified using available data and

a priori knowledge about the problem. The main goal is to construct models for

accurate prediction of future outputs from the (known) input values. The goal

of predictive accuracy is also known as generalization capability in biologi-

cally inspired methods (i.e., neural networks). Traditional statistical methods

typically use fixed parametric functions (usually linear in parameters) for

modeling the dependencies. In contrast, more recent methods described in this

book are based on much more flexible modeling assumptions that, in principle,

enable estimating nonlinear dependencies of an arbitrary form.

Step 6: Interpretation of the model and drawing conclusions. In many cases,

predictive models developed in step 5 need to be used for (human) decision

making. Hence, such models need to be interpretable in order to be useful

6 INTRODUCTION

because humans are not likely to base their decisions on complex ‘‘black-

box’’ models. Note that the goals of accurate prediction and interpretation are

rather different because interpretable models would be (necessarily) simple

but accurate predictive models may be quite complex. The traditional

statistical approach to this dilemma is to use highly interpretable (structured)

parametric models for estimation in step 5. In contrast, modern approaches

favor methods providing high prediction accuracy, and then view interpreta-

tion as a separate task.

Most of this book is on formal methods for estimating dependencies from data

(i.e., step 5). However, other steps are equally important for an overall application

success. Note that the steps preceding model estimation strongly depend on the

application-domain knowledge. Hence, practical applications of learning methods

require a combination of modeling expertise with application-domain knowledge.

These issues are further explored in Section 2.3.4.

As steps 1–4 preceding model estimation are application domain dependent,

they cannot be easily formalized, and they are beyond the scope of this book.

For this reason, most examples in this book use simulated data sets, rather than

real-life data.

Notwithstanding the goal of an accurate predictive model (step 5), most scien-

tific research and practical applications of predictive learning also result in gaining

better understanding of unknown dependencies (step 6). Such understanding can be

useful for

� Gaining insights about the unknown system

� Understanding the limits of applicability of a given modeling method

� Identifying the most important (relevant) input variables that are responsible

for the most variation of the output

� Making decisions based on the interpretation of the model.

It should be clear that for real-life applications, meaningful interpretation of the

predictive learning model usually requires a good understanding of the issues

and choices in steps 1–4 (preceding to the learning itself).

Finally, the interpretation formalism adopted in step 6 often depends on the

target audience. For example, standard interpretation methods in statistics (i.e.,

analysis of variance decomposition) may not be familiar to an engineer who may

instead prefer to use fuzzy rules for interpretation.

1.2 STATISTICAL DEPENDENCY AND CAUSALITY

Statistical inference and learning systems are concerned with estimating unknown

dependencies hidden in the data, as shown in Fig. 1.1. This procedure corresponds

to step 5 in the general procedure described in Section 1.1, but the input and output

variables denote preprocessed features of step 4. The goal of predictive learning is

STATISTICAL DEPENDENCY AND CAUSALITY 7

to estimate unknown dependency between the input ðxÞ and output ðyÞ variables,
from a set of past observations of ðx; yÞ values. In Fig. 1.1, the other set of variables

labeled z denotes all other factors that affect the outputs but whose values are not

observed or controlled. For example, in manufacturing process control, the quality

of the final product (output y) can be affected by nonobserved factors such as var-

iations in the temperature/humidity of the environment or small variations in

(human) operator actions. In the case of economic modeling based on the analysis

of (past) economic data, nonobserved and noncontrolled variables include, for

example, the black market economy, as well as quantities that are inherently diffi-

cult to measure, such as software productivity. Hence, the knowledge of observed

input values ðxÞ does not uniquely specify the outputs ðyÞ. This uncertainty in the

outputs reflects the lack of knowledge of the unobserved factors ðzÞ, and it results in
statistical dependency between the observed inputs and output(s). The effect of

unobserved inputs can be characterized by a conditional probability distribution

pðyjxÞ, which denotes the probability that y will occur given the input x.

Sometimes the existence of statistical dependencies between system inputs and

outputs (see Fig 1.1) is (erroneously) used to demonstrate cause-and-effect relation-

ship between variables of interest. Such misinterpretation is especially common in

social studies and political arguments. We will discuss the difference between sta-

tistical dependency and causality and show some examples. The main point is that

causality cannot be inferred from data analysis alone; instead, it must be assumed

or demonstrated by an argument outside the statistical analysis.

For example, consider ðx; yÞ samples shown in Fig. 1.2. It is possible to interpret

these data in a number of ways:

� Variables ðx; yÞ are correlated

� Variable x statistically depends on y, that is, x ¼ gðyÞ þ error

Each formulation is based on different assumptions (about the nature of the data),

and each would require different methods for dependency estimation. However,

System

x
y

z

FIGURE 1.1 Real systems often have unobserved inputs z.

x

* * *

* *
*

*
*

y

* *
*

*

* *
* *

*
*

*

FIGURE 1.2 Scatterplot of two variables that have a statistical dependency.

8 INTRODUCTION

statistical dependency does not imply causality. In fact, causality is not necessary

for accurate estimation of the input–output dependency in either formulation.

Meaningful interpretation of the input and output variables, in general, and specific

assumptions about causality, in particular, should be made in step 1 or 2 of the gen-

eral procedure discussed in Section 1.1. In some cases, these assumptions can be

supported by the data, but they should never be deduced from the data alone.

Next, we consider several common instances of the learning problem shown in

Fig. 1.1 along with their application-specific interpretation. For example, in manu-

facturing process control the causal relationship between controlled input variables

and the output quality of the final product is based on understanding of the physical

nature of the process. However, it does not make sense to claim causal relationship

between person’s height and weight, even though statistical dependency (correlation)

between height and weight can be easily demonstrated from data. Similarly, it is

well known that people in Florida are older (on average) than those in the rest of

the United States. This observation does not imply, however, that the climate of

Florida causes people to live longer (people just move there when they retire).

The next example is from a real-life study based on the statistical analysis of life

expectancy for married versus single men. Results of this study can be summarized

as follows: Married men live longer than single men. Does it imply that marriage is

(causally) good for one’s health; that is, does marriage increase life expectancy?

Most likely not. It can be argued that males with physical problems and/or socially

deviant patterns of behavior are less likely to get married, and this explains why

married men live longer. If this explanation is true, the observed statistical depen-

dency between the input (person’s marriage status) and the output (life expectancy)

is due to other (unobserved) factors such as person’s health and social habits.

Another interesting example is medical diagnosis. Here the observed symptoms

and/or test results (inputs x) are used to diagnose (predict) the disease (output y).

The predictive model in Fig. 1.1 gives the inverse causal relationship: It is the

output (disease) that causes particular observed symptoms (input values).

We conclude that the task of learning/estimation of statistical dependency

between (observed) inputs and outputs can occur in the following situations:

� Outputs causally depend on the (observed) inputs

� Inputs causally depend on the output(s)

� Input–output dependency is caused by other (unobserved) factors

� Input–output correlation is noncausal

� Any combination of them

Nevertheless, each possibility is specified by the arguments outside the data.

The preceding discussion has a negative bearing on naive approaches by some

proponents of automatic data mining and knowledge discovery in databases. These

approaches advocate the use of automatic tools for discovery of meaningful

associations (dependencies) between variables in large databases. However, mean-

ingful dependencies can be extracted from data only if the problem formulation is

STATISTICAL DEPENDENCY AND CAUSALITY 9

meaningful, namely if it reflects a priori knowledge about the application domain.

Such commonsense knowledge cannot be easily incorporated into general-purpose

automatic knowledge discovery tools.

One situation when a causal relationship can be inferred from the data is when

all relevant input factors (affecting the outputs) are observed and controlled in the

formulation shown in Fig. 1.1. This is a rare situation for most applications of

predictive learning and data mining. As a hypothetical example, consider again

the life expectancy study. Let us assume that we can (magically) conduct a con-

trolled experiment where the life expectancy is observed for the two groups of

people identical in every (physical and social) respect, except that men in one group

get married, and in the other stay single. Then, any different life expectancy in the

two groups can be used to infer causality. Needless to say, such controlled experi-

ments cannot be conducted for most social systems or physical systems of practical

interest.

1.3 CHARACTERIZATION OF VARIABLES

Each of the input and output variables (or features) in Fig. 1.1 can be of several

different types. The two most common types are numeric and categorical. Numeric

type includes real-valued or integer variables (age, speed, length, etc.). A numeric

feature has two important properties: Its values have an order relation and a

distance relation defined for any two feature values. In contrast, categorical (or

symbolic) variables have neither their order nor distance relation defined. The

two values of a categorical variable can be either equal or unequal. Examples

include eye color, sex, or country of citizenship. Categorical outputs in Fig. 1.1

occur quite often and represent a class of problems known as pattern recognition,

classification, or discriminant analysis. Numeric (real-valued) outputs correspond to

regression or (continuous) function estimation problems. Mathematical formulation

for classification and regression problems is given in Chapter 2, and much of the

book deals with approaches for solving these problems.

A categorical variable with two values can be converted, in principle, to a

numeric binary variable with two values (0 or 1). A categorical variable with J

values can be converted into J binary numeric variables, namely one binary variable

for each categorical value. Representing a categorical variable by several binary

variables is known as ‘‘dummy variables’’ encoding in statistics. In the neural net-

work literature this method is known as 1-of-J encoding, indicating that each of the

J binary variables encodes one feature value.

There are two other (less common) types of variables: periodic and ordinal. A

periodic variable is a numeric variable for which the distance relation exists, but

there is no order relation. Examples are day of the week, month, or year. An ordinal

variable is a categorical variable for which an order relation is defined but no

distance relation. Examples are gold, silver, and bronze medal positions in a sport

competition or student ranking within a class. Typically, ordinal variables encode

(map) a numeric variable onto a small set of overlapping intervals corresponding to

10 INTRODUCTION

the values (labels) of an ordinal variable. Ordinal variables are closely related to

linguistic or fuzzy variables commonly used in spoken English, for example,

AGE (with values young, middle-aged, and old) and INCOME (with values low,

middle-class, upper-middle-class, and rich). There are two reasons why the distance

relation for the ordinal or fuzzy values is not defined. First, these values are often

subjectively defined by humans in a particular context (hence known as linguistic

values). For example, in a recent poll caused by the debate over changes in the U.S.

tax code, families with an annual income between $40,000 and $50,000 classified

incomes over $100,000 as rich, whereas families with an income of $100,000

defined themselves as middle-class. The second reason is that (even in a fixed con-

text) there is usually no crisp boundary (distinction) between the two closest values.

Instead, ordinal values denote overlapping sets. Figure 1.3 shows possible reason-

able assignment values for an ordinal feature weight where, for example, the weight

of 120 pounds can be encoded as both medium and light weight but with a different

degree of membership. In other words, a single (numeric) input value can belong

(simultaneously) to several values of an ordinal or fuzzy variable.

1.4 CHARACTERIZATION OF UNCERTAINTY

The main formalism adopted in this book (and most other sources) for describing

uncertainty is based on the notions of probability and statistical distribution.

Standard interpretation/definition of probability is given in terms of (measurable)

frequencies, that is, a probability denotes the relative frequency of a random experi-

ment with K possible outcomes, when the number of trials is very large (infinite).

This traditional view is known as a frequentist interpretation. The ðx; yÞ observa-
tions in the system shown in Fig. 1.1 are sampled from some (unknown) statistical

M
e
m

b
e
rs

h
ip

 v
a
lu

e

Weight (lb)

75 100 125 150 175 200 225

HEAVYMEDIUMLIGHT

FIGURE 1.3 Membership functions corresponding to different fuzzy sets for the feature

weight.

CHARACTERIZATION OF UNCERTAINTY 11

distribution, under the frequentist interpretation. Then, learning amounts to estimat-

ing parameters and/or structure of the unknown input–output dependency (usually

related to the conditional probability pðyjxÞ) from the available data. This approach

is introduced in Chapter 2, and most of the book describes concepts, theory, and

methods based on this formulation. In this section, we briefly mention two other

(alternative) ways of describing uncertainty.

Sometimes the frequentist interpretation does not make sense. For example, an

economist predicting 80 percent chance of an interest rate cut in the near future

does not really have in mind a random experiment repeated, say, 1000 times. In

this case, the term probability is used to express a measure of subjective degree

of belief in a particular outcome by an observer. Assuming events with disjoint out-

comes (as in the frequentist interpretation), it is natural to encode subjective beliefs

as real numbers between 0 and 1. The value of 1 indicates complete certainty that

an event will occur, and 0 denotes complete certainty that an event will not occur.

Then, such degrees of belief (provided they satisfy some natural consistency pro-

perties) can be viewed as conventional probabilities. This is known as the Bayesian

interpretation of probabilities. The Bayesian interpretation is often used in statisti-

cal inference for specifying a priori knowledge (in the form of subjective prior

probabilities) and combining this knowledge with available data via the Bayes the-

orem. The prior probability encodes our knowledge about the system before the

data are known. This knowledge is encoded in the form of a prior probability dis-

tribution. The Bayes formula then provides a rule for updating prior probabilities

after the data are known. This is known as Bayesian inference or the Bayesian

inductive principle (discussed later in Section 2.3.3).

Note that probability is used tomeasure uncertainty in the event outcome. However,

an event A itself can either occur or not. This is reflected in the probability identities:

PðAÞ þ PðAcÞ ¼ 1; PðAAcÞ ¼ 0;

where Ac denotes a complement of A, namely Ac ¼ not A, and PðAÞ denotes the

probability that event A will occur.

These properties hold for both the frequentist and Bayesian views of probability.

This view of uncertainty is applicable if an observer is capable of unambiguously

recognizing occurrence of an event. For example, an ‘‘interest rate cut’’ is an unam-

biguous event. However, in many situations the events themselves occur to a certain

subjective degree, and (useful) characterization of uncertainty amounts to specify-

ing a degree of such partial occurrence. For example, consider a feature weight

whose values light, medium, and heavy correspond to overlapping intervals

as shown in Fig. 1.3. Then, it is possible to describe uncertainty of a statement like

Person weighing x pounds is HEAVY

by a number (between 0 and 1), and denoted as mHðxÞ. This is known as a

fuzzy membership function, and it is used to quantify the degree of subjective

belief that the above statement is true, that a person belongs to a (fuzzy) set

HEAVY. Ordinal values LIGHT, MEDIUM, and HEAVY are examples of the

12 INTRODUCTION

fuzzy sets (values), and the membership function is used to specify the degree of

partial membership (i.e., of a person weighing x pounds in a fuzzy set HEAVY). As

the membership functions corresponding to different fuzzy sets can overlap (see

Fig. 1.3), a person weighing 170 pounds belongs to two fuzzy sets, H(eavy) and

M(edium), and the sum of the two membership functions does not have to add

up to 1. Moreover, a person weighing 170 pounds can belong simultaneously to

fuzzy set HEAVY and to its complement not HEAVY. This type of uncertainty can-

not be properly handled using probabilistic characterization of uncertainty, where a

person cannot be HEAVY and not HEAVY at the same time. A description of

uncertainty related to partial membership is provided by fuzzy logic (Zadeh

1965; Zimmerman 1996).

A continuous fuzzy set (linguistic variable) A is specified by the fuzzy member-

ship function mAðxÞ that gives partial degree of membership of an object x in A. The

fuzzy membership function, by definition, has values in the interval ½0; 1�, to denote

partial membership. The value mAðxÞ ¼ 0 means that an object x is not a member of

the set A, and the value 1 indicates that x entirely belongs to A.

It is usually assumed that an object is (uniquely) characterized by a scalar feature

x, so the fuzzy membership function mAðxÞ effectively represents a univariate func-

tion such that 0 � mAðxÞ � 1. Figure 1.4 illustrates the difference between the fuzzy

set (or partial membership) and the traditional ‘‘crisp’’ set membership using dif-

ferent ways to define the concept ‘‘boiling temperature’’ as a function of the water

temperature. Note that ordinary (crisp) sets can be viewed as a special case of fuzzy

sets with only two (allowed) membership values mAðxÞ ¼ 1 or mAðxÞ ¼ 0.

There are numerous proponents and opponents of the Bayesian and fuzzy char-

acterization of uncertainty. As both the frequentist view and (subjective) Bayesian

view of uncertainty can be described by the same axioms of probability, it has lead

to the view (common among statisticians) that any type of uncertainty can be fully

described by probability. That is, according to Lindley (1987), ‘‘probability is the

Fuzzy set

1

0
120100800

T (°C)

Crisp value

(Yes) 1

(No) 0

120100800
T (°C)

Crisp set

(Yes) 1

(No) 0

120100800 T (°C)

FIGURE 1.4 Fuzzy versus crisp definition of a boiling temperature.

CHARACTERIZATION OF UNCERTAINTY 13

only sensible description of uncertainty and is adequate for all problems involving

uncertainty. All other methods are inadequate.’’ However, probability describes

randomness, that is, uncertainty of event occurrence. Fuzziness describes uncer-

tainty related to event ambiguity, that is, the subjective degree to which an event

occurs. This is an important distinction. Moreover, there are recent claims that

probability theory is a special case of fuzzy theory (Kosko 1993).

In the practical context of learning systems, both Bayesian and fuzzy approaches

are useful for specification of a priori knowledge about the unknown system.

However, both approaches provide subjective (i.e., observer-dependent) character-

ization of uncertainty. Also, there are practical situations where multiple types of

uncertainty (frequentist probability, Bayesian probability, and fuzzy) can be

combined. For example, a statement ‘‘there is an 80 percent chance of a happy

marriage’’ describes a (Bayesian) probability of a fuzzy event.

Finally, note that mathematical tools for describing uncertainty (i.e., probability

theory and fuzzy logic) have been developed fairly recently, even though humans

have dealt with uncertainty for thousands of years. In practice, uncertainty cannot

be separated from the notion of risk and risk taking. In a way, predictive learning

methods described in this book can be viewed as a general framework for risk man-

agement, using empirical models estimated from past data. This view is presented

in the last chapter of this book.

1.5 PREDICTIVE LEARNING VERSUS OTHER DATA

ANALYTICAL METHODOLOGIES

The growing uses of computers and database technology have resulted in the explo-

sive growth of methods for learning (or estimating) useful models from data.

Hence, a number of diverse methodologies have emerged to address this problem.

These include approaches developed in classical statistics (multivariate regression/

classification, Bayesian methods), engineering (statistical pattern recognition),

signal processing, computer science (AI and machine learning), as well as many

biologically inspired developments such as artificial neural networks, fuzzy logic,

and genetic algorithms. Even though all these approaches often address similar

problems, there is little agreement on the fundamental issues involved, and it

leads to many heuristic techniques aimed at solving specific applications. In this

section, we identify and contrast major methodologies for empirical learning that

are often obscured by terminology and minor (technical) details in the implementa-

tion of learning algorithms.

At the present time, there are three distinct methodologies for estimating

(learning) empirical models from data:

� Statistical model estimation, based on extending a classical statistical and

function approximation framework (rooted in a density estimation approach)

to developing flexible (adaptive) learning algorithms (Ripley 1995; Hastie

et al. 2001).

14 INTRODUCTION

� Predictive learning: This approach has originally been developed by practi-

tioners in the field of artificial neural networks in the late 1980s (with no

particular theoretical justification). Under this approach, the main focus is on

estimating models with good generalization capability, as opposed to esti-

mating ‘‘true’’ models under a statistical model estimation methodology. The

theoretical framework for predictive learning called Statistical Learning

Theory or Vapnik–Chervonenkis (VC) theory (Vapnik 1982) has been

relatively unknown until the wide acceptance of its practical methodology

called Support Vector Machines (SVMs) in late 1990s (Vapnik 1995). In this

book, we use the terms VC theory and predictive learning interchangeably, to

denote a methodology for estimating models from data.

� Data mining: This is a new practical methodology developed at the intersec-

tion of computer science (database technology), information retrieval, and

statistics. The goal of data mining is sometimes stated generically as

estimating ‘‘useful’’ models from data, and this includes, of course, predictive

learning and statistical model estimation. However, in a more narrow sense,

many data mining algorithms attempt to extract a subset of data samples

(from a given large data set) with useful (or interesting) properties. This goal

is conceptually similar to exploratory data analysis in statistics (Hand 1998;

Hand et al. 2001), even though the practical issues are quite different due to

huge data size that prevents manual exploration of data (commonly used by

statisticians). There seems to be no generally accepted theoretical framework

for data mining, so data mining algorithms are initially introduced (by

practitioners) and then ‘‘justified’’ using formal arguments from statistics,

predictive learning, and information retrieval.

There is a significant overlap between these methodologies, and many learning

algorithms (developed in one field) have been universally accepted by practitioners

in other fields. For example, classification and regression trees (CART) developed

in statistics later became very popular in data mining. Likewise, SVMs, originally

developed under the predictive learning framework (in VC theory), have been later

used (and reformulated) under the statistical estimation framework, and also used

in data mining applications. This may give a (misleading) impression that there are

only superficial (terminological) differences between these methodologies. In order

to understand their differences, we focus on the main assumptions underlying each

approach.

Let us relate the three methodologies (statistical model estimation, predictive

learning, and data mining) to the general experimental procedure for estimating

empirical dependencies from data discussed in Section 1.1. The goal of any data-

driven methodology is to estimate (learn) a useful model of the unknown system

(see Fig. 1.1) from available data. We can clearly identify three distinct concepts

that help to differentiate between learning methodologies:

1. ‘‘Useful’’ model: There are several commonly used criteria for ‘‘usefulness.’’

The first is the prediction accuracy (aka generalization), related to the

PREDICTIVE LEARNING VERSUS OTHER DATA 15

capability of the model (obtained using available or training data) to provide

accurate estimates (predictions) for future data (from the same statistical

population). The second criterion is accurate estimation of the ‘‘true’’

underlying model for data generation, that is, system identification (in Fig. 1.1).

Note that correct system identification always implies accurate prediction

(but the opposite is not true). The third criterion of the model’s ‘‘usefulness’’

relates to its explanatory capabilities; that is, its ability to describe available

data in a manner leading to better understanding or interpretation of available

data. Note that the goal of obtaining good ‘‘descriptive’’ models is usually

quite subjective, whereas the quality of ‘‘predictive’’ models (i.e., general-

ization) can be objectively evaluated, in principle, using independent (test)

data. In the machine learning and neural network literature, predictive methods

are also known as ‘‘supervised learning’’ because a predictive model has a

unique ‘‘response’’ variable (being predicted by the model). In contrast,

descriptive models are referred to as ‘‘unsupervised learning’’ because there

is no predefined variable central to the model.

2. Data set (used for model estimation): Here we distinguish between the two

possibilities. In predictive learning and statistical model estimation, the data

set is given explicitly. In data mining, the data set (used for obtaining a useful

model) often is not given but must be extracted from a large (given) data set.

The term ‘‘data mining’’ suggests that one should search for this data set

(with useful properties), which is hidden somewhere in available data.

3. Formal problem statement providing (assumed) statistical model for data

generation and the goal of estimation (learning). Here we may have two

possibilities. That is, when the problem statement is formally well defined

and given a priori (i.e., independent of the learning algorithm). In predictive

learning and statistical model estimation, the goal of learning can be formally

stated, that is, there exist mathematical formulations of the learning problem

(e.g., see Section 2.1). On the contrary, the field of data mining does not seem

to have a single clearly defined formal problem statement because it is mainly

concerned with exploratory data analysis.

The existence of the learning problem statement separate from the solution

approach is critical for meaningful (scientific) comparisons between different learn-

ing methodologies. (It is impossible to rigorously compare the performance of

methods if each is solving a different problem.) In the case of data mining, the

lack of formal problem statement does not suggest that such methods are ‘‘inferior’’

to other approaches. On the contrary, successful applications of data mining to a

specific problem may imply that existing learning problem formulations (adopted

in predictive learning and statistical model estimation) may not be appropriate for

certain data mining applications.

Next, we describe the three methodologies (statistical model estimation, predic-

tive learning, and data mining), in terms of their learning problem statement and

solution approaches.

16 INTRODUCTION

Statistical model estimation is the use of a subset of a population (called a

sample) to estimate an underlying statistical model, in order to make conclusions

about the entire population (Petrucelli et al. 1999). Classical statistics assumes that

the data are generated from some distribution with known parametric form, and the

goal is to estimate certain properties (of this distribution) useful for specific appli-

cations (problem setting). Frequently, this goal is stated as density estimation. This

goal is achieved by estimating parameters (of unknown distributions) using avail-

able data. This goal (probability density estimation) is achieved by maximum-

likelihood methods (solution approach). The theoretical analysis underlying

statistical inference relies heavily on parametric assumptions and asymptotic argu-

ments (i.e., statistically ‘‘optimal’’ properties are proved in an asymptotic case

when the sample size is large). For example, applying the maximum-likelihood

approach to linear regression with normal independent and identically distributed

(iid) noise leads to parameter estimation via least squares. In many applications,

however, the goal of learning can be stated as obtaining models with good predic-

tion (generalization) capabilities (for future samples). In this case, the approach

based on density estimation/function approximation may be suboptimal because

it may be possible to obtain good predictive models (reflecting certain properties

of the unknown distributions), even when accurate estimation of densities is impos-

sible (due to having only a finite amount of data). Unfortunately, the statistical

methodology remains deeply rooted in density estimation/function approximation

theoretical framework, which interprets the goal of learning as accurate estimation

of the unknown system (in Fig. 1.1), or accurate estimation of the unknown statis-

tical model for data generation, even when application requirements dictate a pre-

dictive learning setting. It may be argued that system identification or density

estimation is not as prevalent today, because the ‘‘system’’ itself is too complex

to be identified, and the data are often collected (recorded) automatically for pur-

poses other than system identification. In such real-life applications, often the only

meaningful goal is the prediction accuracy for future samples. This may be con-

trasted to a classical statistical setting where the data are manually collected on a

one-time basis, typically under experimental design setting, and the goal is accurate

estimation of a given prespecified parametric model.

Predictive learning methodology also has a goal of estimating a useful model

using available training data. So the problem formulation is often similar to the

one used under the statistical model estimation approach. However, the goal of

learning is explicitly stated as obtaining a model with good prediction (generali-

zation) capabilities for future (test) data. It can be easily shown that estimating a

good predictive model is not equivalent to the problem of density estimation

(with finite samples). Most practical implementations of predictive learning are

based on the idea of obtaining a good predictive model via fitting a set of possible

models (given a priori) to available (training) data, aka minimization of empirical

risk. This approach has been theoretically described in VC learning theory, which

provides general conditions under which various estimators (implementing empiri-

cal risk minimization) can generalize well. As noted earlier, VC theory is, in fact, a

mathematical theory formally describing the predictive learning methodology.

PREDICTIVE LEARNING VERSUS OTHER DATA 17

Historically, many practical predictive learning algorithms (such as neural net-

works) have been originally introduced by practitioners, but later have been

‘‘explained’’ or ‘‘justified’’ by researchers using statistical model estimation (i.e.,

density estimation) arguments. Often this leads to certain confusion because such

an interpretation creates a (false) impression that the methodology itself (the goal of

learning) is based on statistical model estimation. Note that by choosing a simpler

but more appropriate problem statement (i.e., estimating relevant properties

of unknown distributions under the predictive learning approach), it is possible to

make some gains on the inherent stumbling blocks of statistical model estimation

(curse of dimensionality, dealing with finite samples, etc.). Bayesian approaches in

statistical model estimation can be viewed as an alternative approach to this issue

because they try to fix statistical model estimation by including information outside

of the data to improve on these stumbling blocks.

Data mining methodology is a diverse field that includes many methods developed

under statistical model estimation and predictive learning. There exist two classes of

data mining techniques, that is, methods aimed at building ‘‘global’’ models (describ-

ing all available data) and ‘‘local’’ models describing some (unspecified) portion of

available data (Hand 1998, 1999). According to this taxonomy, ‘‘global’’ data mining

methods are (conceptually) identical to methods developed under predictive learning

or statistical model estimation. On the contrary, methods for obtaining ‘‘local’’ mod-

els aim at discovering ‘‘interesting’’ models for (unspecified) subsets of available

data. This is clearly an ill-posed problem, and any meaningful solution will require

either (1) exact specification of the portion of the data for which a model is sought or

(2) specification of the model that describes the (unknown) subset of available data.

Of course, the former leads again to the predictive learning or the statistical model

estimation paradigm, and only the latter represents a new learning paradigm.

Hence, the data mining paradigm amounts to selecting a portion of data samples

(from a given data set) that have certain predefined properties. This paradigm covers

a wide range of problems (i.e., data segmentation), and it can also be related to

information retrieval, where the ‘‘useful’’ information is specified by its ‘‘predefined

properties.’’

This book describes learning (estimation) methods using mainly the predictive

learning methodology following concepts developed in VC learning theory.

Detailed comparisons between the predictive learning and statistical model estima-

tion paradigms are presented in Sections 3.4.5, 4.5 and 9.9.

18 INTRODUCTION

2
PROBLEM STATEMENT, CLASSICAL
APPROACHES, AND ADAPTIVE
LEARNING

2.1 Formulation of the learning problem

2.1.1 Objective of learning

2.1.2 Common learning tasks

2.1.3 Scope of the learning problem formulation

2.2 Classical approaches

2.2.1 Density estimation

2.2.2 Classification

2.2.3 Regression

2.2.4 Solving problems with finite data

2.2.5 Nonparametric methods

2.2.6 Stochastic approximation

2.3 Adaptive learning: concepts and inductive principles

2.3.1 Philosophy, major concepts, and issues

2.3.2 A priori knowledge and model complexity

2.3.3 Inductive principles

2.3.4 Alternative learning formulations

2.4 Summary

All models are wrong, but some are useful.

George Box

Chapter 2 starts with mathematical formulation of the inductive learning problem in

Section 2.1. Several important instances of this problem, such as classification,

regression, density estimation, and vector quantization, are also presented. An impor-

tant point is made that with finite samples, it is always better to solve a particular

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

19

instance of the learning problem directly, rather than trying to solve amoregeneral (and

much more difficult) problem of joint (input, output) density estimation.

Section 2.2 presents an overview and gives representative examples of the clas-

sical statistical approaches to estimation (learning) from samples. These include

parametric modeling based on the maximum likelihood (ML) and Empirical Risk

Minimization (ERM) inductive principles and nonparametric methods for density

estimation. It is noted that the classical methods may not be suitable for many appli-

cations because parametric modeling (with finite samples) imposes very rigid

assumptions about the unknown dependency; that is, it specifies its parametric

form. This tends to introduce large modeling bias, namely the discrepancy between

the assumed parametric model and the (unknown) truth. Likewise, classical non-

parametric methods work only in an asymptotic case (very large sample size),

and we never have enough samples to satisfy these asymptotic conditions with

high-dimensional data.

The limitations of classical approaches provide motivation for adaptive (or flexi-

ble) methods. Section 2.3 provides the philosophical interpretation of learning and

defines major concepts and issues necessary for understanding various adaptive

methods (presented in later chapters). The formulation for predictive learning

(given in Section 2.1) is naturally related to the philosophical notions of induction

and deduction. The role of a priori assumptions (i.e., knowledge outside the data) in

learning is also examined. Adaptive methods achieve greater flexibility by specify-

ing a wider class of approximating functions (than parametric methods). The pre-

dictive model is then selected from this wide class of functions. The main problem

becomes choosing the model of optimal complexity (flexibility) for the finite data at

hand. Such a choice is usually achieved by introducing constraints (in the form of a

priori knowledge) on the selection of functions from this wide class of potential

solutions (functions). This brings immediately several concerns:

� How to incorporate a priori assumptions (constraints) into learning?

� How to measure model complexity (i.e., flexibility to fit the training data)?

� How to find an optimal balance between the data and a priori knowledge?

These issues are common to all methods for learning from samples. Even though

there are thousands of known methods, there are just a handful of fundamental

issues. Frequently, they are hidden in the details of a method. Section 2.3 presents

a general framework for dealing with such important issues by introducing distinct

concepts such as a priori knowledge, inductive principle (type of inference), and

learning methods. Section 2.3 concludes with description of major inductive prin-

ciples and discussion of their advantages and limitations.

Even though standard inductive learning tasks (described in Section 2.1) are

commonly used for many applications, Section 2.3.4 takes a broader view, arguing

that an appropriate learning formulation should reflect application-domain require-

ments, which often leads to ‘‘non-standard’’ formulations.

Section 2.4 presents the summary.

20 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

2.1 FORMULATION OF THE LEARNING PROBLEM

Learning is the process of estimating an unknown (input, output) dependency or

structure of a System using a limited number of observations. The general learning

scenario involves three components (Fig. 2.1): aGenerator of random input vectors, a

System that returns an output for a given input vector, and the Learning Machine that

estimates an unknown (input, output) mapping of the System from the observed

(input, output) samples. This formulation is very general and describes many practi-

cal learning problems found in engineering and statistics, such as interpolation,

regression, classification, clustering, and density estimation. Before we look at the

learning machine in detail, let us clearly describe the roles of each component in

mathematical terms:

Generator: The generator (or sampling distribution) produces random vectors

x 2 <d drawn independently from a fixed probability density pðxÞ, which is

unknown. In statistical terminology, this situation is called observational. It

differs from the designed experiment setting, which involves creating a deter-

ministic sampling scheme optimal for a specific analysis according to experi-

ment design theory. In this book, the observational setting is usually assumed;

that is, a modeler (learning machine) has had no control over which input values

were supplied to the System.

System: The system produces an output value y for every input vector x

according to the fixed conditional density pðyjxÞ, which is also unknown.

Note that this description includes the specific case of a deterministic

system, where y ¼ tðxÞ, as well as the regression formulation of

y ¼ tðxÞ þ x, where x is random noise with zero mean. Real systems rarely

have truly random outputs; however, they often have unmeasured inputs

(Fig. 1.1). Statistically, the effect of these changing unobserved inputs on the

output of the System can be characterized as random and represented as a

probability distribution.

Learning Machine: In the most general case, the Learning Machine is capable of

implementing a set of functions f ðx;oÞ, o 2 V, where V is a set of abstract

Generator

of samples

Learning

machine

System

x

y

ŷ

FIGURE 2.1 A Learning Machine using observations of the System to form an

approximation of its output.

FORMULATION OF THE LEARNING PROBLEM 21

parameters used only to index the set of functions. In this formulation, the set

of functions implemented by the Learning Machine can be any set of

functions, chosen a priori, before the formal inference (learning) process

has begun. Let us look at some simple examples of Learning Machines and

how they fit this formal description. The examples chosen are all solutions to

the regression problem, which is only one of the four most common learning

tasks (Section 2.1.2). The examples illustrate the notion of a set of functions

(of a Learning Machine) and not the mechanism by which the Learning

Machine chooses the best approximating function from this set.

Example 2.1: Parametric regression (fixed-degree polynomial)

In this example, the set of functions is specified as a polynomial of fixed degree and

the training data have a single predictor variable ðx 2 <1Þ. The set of functions

implemented by the Learning Machine is

f ðx;wÞ ¼
X

M�1

i¼0
wix

i; ð2:1Þ

where the set of parameters � takes the form of vectors w ¼ ½w0; . . . ;wM�1� of
fixed length M.

Example 2.2: Semiparametric regression (polynomial of arbitrary degree)

One way to provide a wider class of functions for the Learning Machine is to

remove the restriction of fixed polynomial degree. The degree of the polynomial

now becomes another parameter that indexes the set of functions

fmðx;wmÞ ¼
X

m�1

i¼0
wix

i: ð2:2Þ

Here the set of parameters � takes the form of vectors wm ¼ ½w0; . . . ;wm�1�, which
have an arbitrary length m.

Example 2.3: Nonparametric regression (kernel smoothing)

Additional flexibility can also be achieved by using a nonparametric approach like

kernel averaging to define the set of functions supported by the Learning Machine.

Here the set of functions is

f aðx;wnjxnÞ ¼

P

n

i¼1
wiKaðx; xiÞ
P

n

i¼1
Kaðx; xiÞ

; ð2:3Þ

where n is the number of samples and Kaðx; x0Þ is called the kernel function with

bandwidth a. For the general case x 2 <d, the kernel function K ðx; x0Þ obeys the
following properties:

22 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

1. Kðx; x0Þ takes on its maximum value when x0 ¼ x

2. jKðx; x0Þj decreases with jx� x0j
3. Kðx; x0Þ is in general a symmetric function of 2d variables

Usually, the kernel function is chosen to be radially symmetric, making it a function

of one variable KðZÞ, where Z is the scaled distance between x and x0:

Z ¼ jx� x0j
sðxÞ :

The scale factor sðxÞ defines the size (or width) of the region around x for which K

is large. It is common to set the scale factor to a constant value sðxÞ ¼ a, which is

the form of the kernel used in our example equation (2.3). An example of a typical

kernel function is the Gaussian

Kaðx; x0Þ ¼ exp �ðx� x0Þ2
2a2

 !

: ð2:4Þ

In this Learning Machine, the set of parameters � takes the form of vectors

½a;w1; . . . ;wn� of a fixed length that depends on the number of samples n. In this

example, it is assumed that the input samples xn ¼ ½x1; . . . ; xn� are used in the spe-

cification of the set of approximating functions of the Learning Machine. This is

formally stated in (2.3) by having the set of approximating functions conditioned

on the given vector of predictor sample values. The previous two examples did not

use input samples for specifying the set of functions.

Choice of approximating functions: Ideally, the choice of a set of approximat-

ing functions reflects a priori knowledge about the System (unknown dependency).

However, in practice, due to complex and often informal nature of a priori knowl-

edge, such specification of approximating functions may be difficult or impossible.

Hence, there may be a need to incorporate a priori knowledge into the learning

method with an already given set of approximating functions. These issues are dis-

cussed in more detail in Section 2.3. There is also an important distinction between

two types of approximating functions: linear in parameters or nonlinear in para-

meters. Throughout this book, learning (estimation) procedures using the former

are also referred to as linear, whereas those using the latter are called nonlinear.

We point out that the notion of linearity is with respect to parameters rather than

input variables. For example, polynomial regression (2.2) is a linear method.

Another example of a linear class of approximating functions (for regression) is

the trigonometric expansion

fmðx; vm;wmÞ ¼
X

m�1

j¼1
ðvj sinðjxÞ þ wj cosðjxÞÞ þ w0:

FORMULATION OF THE LEARNING PROBLEM 23

On the contrary, multilayer networks of the form

fmðx;w;VÞ ¼ w0 þ
X

m

j¼1
wjg v0j þ

X

d

i¼1
xivij

 !

provide an example of nonlinear parameterization because it depends nonlinearly

on parameters V via nonlinear basis function g (usually taken as the so-called

sigmoid activation function).

The distinction between linear and nonlinear methods is important in practice

because learning (estimation) of model parameters amounts to solving a linear or

nonlinear optimization problem, respectively.

2.1.1 Objective of Learning

As noted in Section 1.5, there may be two distinct interpretations of the goal of

learning for generic system shown in Fig. 2.1. Under statistical model estimation

framework, the goal of learning is accurate identification of the unknown system,

whereas under predictive learning the goal is accurate imitation (of a system’s output).

It should be clear that the goal of system identification is more demanding than the

goal of system imitation. For instance, accurate system identification does not

depend on the distribution of input samples, whereas good predictive model is

usually conditional upon this (unknown) distribution. Hence, an accurate model

(in the sense of system’s identification) would certainly provide good generalization

(in the predictive sense), but the opposite may not be true. The mathematical treat-

ment of system identification leads to the function approximation framework and to

fundamental problems of estimating multivariate functions known as the curse of

dimensionality (see Chapter 3). On the contrary, the goal of predictive learning

leads to Vapnik–Chervonenkis (VC) learning theory described later in Chapter 4.

This book advocates the setting of predictive learning, which formally defines

the notion of accurate system imitation (via minimization of prediction risk) as

described in this section. We contrast the function approximation approach versus

predictive learning throughout the book, in particular, using empirical comparisons

in Section 3.4.5.

The problem encountered by the Learning Machine is to select a function (from

the set of functions it supports) that best approximates the System’s response. The

Learning Machine is limited to observing a finite number (n) of examples in order

to make this selection. These training data as produced by the Generator and

System will be independent and identically distributed (iid) according to the joint

probability density function (pdf)

pðx; yÞ ¼ pðxÞpðyjxÞ: ð2:5Þ

The finite sample (training data) from this distribution is denoted by

ðxi; yiÞ; ði ¼ 1; . . . ; nÞ: ð2:6Þ

24 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

The quality of an approximation produced by the Learning Machine is measured

by the loss Lðy; f ðx;oÞÞ or discrepancy between the output produced by the System

and the Learning Machine for a given input x. By convention, the loss takes on non-

negative values, so that large positive values correspond to poor approximation. The

expected value of the loss is called the risk functional:

RðoÞ ¼
ð

Lðy; f ðx;oÞÞ pðx; yÞdxdy: ð2:7Þ

Learning is the process of estimating the function f ðx;o0Þ, which minimizes the

risk functional over the set of functions supported by the Learning Machine

using only the training data (pðx; yÞ is not known). With finite data we cannot

expect to find f ðx;o0Þ exactly, so we denote f ðx;o�Þ as the estimate of the optimal

solution obtained with finite training data using some learning procedure. It is clear

that any learning task (regression, classification, etc.) can be solved by minimizing

(2.7) if the density pðx; yÞ is known. This means that density estimation is the most

general (and hence most difficult) type of learning problem. The problem of learn-

ing (estimation) from finite data alone is inherently ill posed. To obtain a useful

(unique) solution, the learning process needs to incorporate a priori knowledge in

addition to data. Let us assume that a priori knowledge is reflected in the set of

approximating functions of a Learning Machine (as discussed earlier in this sec-

tion). Then the next issue is: How should a Learning Machine use training data?

The answer is given by the concept known as an inductive principle. An inductive

principle is a general prescription for obtaining an estimate f ðx;o�Þ of the ‘‘true

dependency’’ in the class of approximating functions from the available (finite)

training data. An inductive principle tells us what to do with the data, whereas

the learning method specifies how to obtain an estimate. Hence, a learning method

(or algorithm) is a constructive implementation of an inductive principle for select-

ing an estimate f ðx;o�Þ from a particular set of functions f ðx;oÞ. For a given

inductive principle, there are many learning methods corresponding to a different

set of functions of a learning machine. The distinction between inductive principles

and learning methods is further discussed in Section 2.3.

2.1.2 Common Learning Tasks

The generic learning problem can be subdivided into four classes of common pro-

blems: classification, regression, density estimation, and clustering/vector quantiza-

tion. For each of these problems, the nature of the loss function and the output (y)

differ. However, the goal of minimizing the risk functional based only on training

data is common to all learning problems.

Classification

In a (two-class) classification problem, the output of the system takes on only

two (symbolic) values y ¼ f0; 1g corresponding to two classes (as discussed in

Section 1.3). Hence, the output of the Learning Machine needs to only take on

FORMULATION OF THE LEARNING PROBLEM 25

two values as well, so the set of functions f ðx;oÞ, o 2 �, becomes a set of

indicator functions. A commonly used loss function for this problem measures

the classification error

Lðy; f ðx;oÞÞ ¼ 0; if y ¼ f ðx;oÞ;
1; if y 6¼ f ðx;oÞ:

�

ð2:8Þ

Using this loss function, the risk functional

RðoÞ ¼
ð

Lðy; f ðx;oÞÞpðx; yÞdxdy ð2:9Þ

quantifies the probability of misclassification. Learning then becomes the problem

of estimating the indicator function f ðx;o0Þ (classifier) that minimizes the prob-

ability of misclassification (2.9) using only the training data.

Regression

Regression is the process of estimating a real-valued function based on a finite set

of noisy samples. The output of the System in regression problems is a random vari-

able that takes on real values and can be interpreted as the sum of a deterministic

function and a random error with zero mean:

y ¼ tðxÞ þ x; ð2:10Þ

where the deterministic function is the mean of the output conditional probability

tðxÞ ¼
ð

ypðyjxÞdy: ð2:11Þ

The set of functions f ðx;oÞ, o 2 �, supported by the Learning Machine may or

may not contain the regression function (2.11). A common loss function for regres-

sion is the squared error

Lðy; f ðx;oÞÞ ¼ ðy� f ðx;oÞÞ2: ð2:12Þ

Learning then becomes the problem of finding the function f ðx;o0Þ (regressor) that
minimizes the risk functional

RðoÞ ¼
ð

ðy� f ðx;oÞÞ2pðx; yÞdxdy ð2:13Þ

using only the training data. This risk functional measures the accuracy of the

Learning Machine’s predictions of the System output. Under the assumption that

26 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

the noise is zero mean, this risk can also be written in terms of the Learning Machi-

ne’s accuracy of approximation of the function tðxÞ, as detailed next. The risk is

RðoÞ ¼
ð

ðy� tðxÞ þ tðxÞ � f ðx;oÞÞ2pðx; yÞdxdy

¼
ð

ðy� tðxÞÞ2pðx; yÞdxdyþ
ð

ðf ðx;oÞ � tðxÞÞ2pðxÞdx

þ 2

ð

ðy� tðxÞÞðtðxÞ � f ðx;oÞÞpðx; yÞdxdy:

ð2:14Þ

Assuming that the noise has zero mean, the last summand in (2.14) is

ð

ðy� tðxÞÞðtðxÞ � f ðx;oÞÞpðx; yÞdxdy

¼
ð

xðtðxÞ � f ðx;oÞÞpðyjxÞpðxÞdxdy

¼
ð

ðtðxÞ � f ðx;oÞÞ
ð

x pðyjxÞdy
� �

pðxÞdx

¼
ð

ðtðxÞ � f ðx;oÞÞExðxjxÞpðxÞdx ¼ 0:

ð2:15Þ

Therefore, the risk can be written as

RðoÞ ¼
ð

ðy� tðxÞÞ2pðx; yÞdxdyþ
ð

ðf ðx;oÞ � tðxÞÞ2pðxÞdx: ð2:16Þ

The first summand does not depend on the approximating function f ðx;oÞ and can

be written in terms of the noise variance

ð

ðy� tðxÞÞ2pðx; yÞdxdy ¼
ð

x2pðyjxÞpðxÞdxdy

¼
ð ð

x2pðyjxÞdy
� �

pðxÞdx

¼
ð

Exðx2jxÞpðxÞdx:

ð2:17Þ

Substituting (2.17) into (2.16) gives an equation for the risk

RðoÞ ¼
ð

Exðx2jxÞpðxÞdxþ
ð

ðf ðx;oÞ � tðxÞÞ2pðxÞdx: ð2:18Þ

Therefore, the risk for the regression problem (assuming L2 loss and zero

mean noise) has a contribution due to the noise variance and a contribution

FORMULATION OF THE LEARNING PROBLEM 27

due to function approximation accuracy. As the noise variance does not

depend on o, minimizing just the second term in (2.18) would be equivalent to

minimizing (2.13); that is, the goal of obtaining smallest prediction risk is equiva-

lent to the most accurate estimation of the unknown function tðxÞ by a Learning

Machine.

Density Estimation

For estimating the density of x, the output of the System is not used. The output of

the Learning Machine now represents density, so f ðx;oÞ, o 2 �, becomes a set of

densities. For this problem, the natural criterion is ML, or equivalently, minimiza-

tion of the negative log-likelihood. Using the loss function

Lðf ðx;oÞÞ ¼ � ln f ðx;oÞ ð2:19Þ

in the risk functional (2.7) gives

RðoÞ ¼
ð

�ln f ðx;oÞpðxÞdx; ð2:20Þ

which is a common risk functional used for density estimation. Minimizing (2.20)

using only the training data x1; . . . ; xn leads to the density estimate f ðx;o0Þ.

Clustering and Vector Quantization

Say, the goal is optimal partitioning of the unknown distribution in x-space into a

prespecified number of regions (clusters) so that future samples drawn from a part-

icular region can be approximated by a single point (cluster center or local proto-

type). Here the set of vector-valued functions fðx;oÞ, o 2 �, are vector quantizers.

A vector quantizer provides the mapping

x���!fðx;oÞ
cðxÞ; ð2:21Þ

where cðxÞ denotes the cluster center coordinates. In this way, continuous inputs x

are mapped onto a discrete number of centers in x-space. The vector quantizer is

completely described by the cluster center coordinates and the partitioning of the

input vector space. A common loss function in this case would be the squared error

distortion

Lðfðx;oÞÞ ¼ ðx� fðx;oÞÞ � ðx� fðx;oÞÞ; ð2:22Þ

where � denotes the inner product. Minimizing the risk functional

RðoÞ ¼
ð

ðx� fðx;oÞÞ � ðx� fðx;oÞÞpðxÞdx ð2:23Þ

28 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

would give an optimal vector quantizer based on the observed data. Note that

the vector quantizer minimizing this risk functional is designed to optimally

quantize future data generated from a density pðxÞ. In this context, vector quanti-

zation is a learning problem. This objective differs from another common

objective of optimally quantizing (compressing) a given finite data set. Vector

quantization has a goal of data reduction. Another important problem (discussed

in this book) is dimensionality reduction. The problem of dimensionality

reduction is that of finding low-dimensional mappings of a high-dimensional

distribution. These low-dimensional mappings are often used as features for other

learning tasks.

2.1.3 Scope of the Learning Problem Formulation

The mathematical formulation of the learning problem may give the unintended

impression that learning algorithms do not require human intervention, but this is

clearly not the case. Even though available research literature (and most descrip-

tions in this book) is concerned with formal description of learning methods,

there is an equally important informal part of any practical learning system. This

part involves practical issues such as selection of the input and output variables,

data encoding/representation, and incorporating a priori domain knowledge into

the design of a learning system. As discussed in Section 1.1, this (informal) part

is often more critical for an overall success than the design of a learning machine

itself. Indeed, if the wrong (uninformative) input variables are used in modeling,

then no learning method can provide an accurate prediction. Thus, one must

keep in mind the conceptual range of the formal learning model and the role of

the human participant during an informal stage.

There are also many practical situations that do not fit the inductive

learning formulation because they violate the assumptions imposed on the

generator distribution. Recall that the generator is assumed to produce indepen-

dently drawn samples from a fixed probability distribution. For example, in the

problem of time series prediction, samples are assumed to be generated by a

dynamic system, and so they are not independent. This does not make time series

prediction a completely different problem. Many of the learning approaches in

this book have been used for practical applications of time series prediction

with good results. Another assumption that may not hold for practical problems

is that of an unchanging generator distribution. One simple practical example

that violates this assumption is when designed experiment data are used to

train a Learning Machine for predicting future observational data. Another exam-

ple is the design of a classifier using data that do not reflect future prior probabil-

ities. More complicated issues arise when the Generator distribution is modified

by the Learning Machine. This would occur in problems of pedagogical pattern

selection (Cachin 1994), where the Learning Machine actively explores the

input space. These practical learning problems present open theoretical

issues, yet good practical solutions can be achieved using heuristics and clever

engineering.

FORMULATION OF THE LEARNING PROBLEM 29

2.2 CLASSICAL APPROACHES

The classical approach, as proposed by Fisher (1952), divides the learning problem

into two parts: specification and estimation. Specification consists in determining

the parametric form of the unknown underlying distributions, whereas estimation

is the process of determining parameters of these distributions. Classical theory

focuses on the problem of estimation and sidesteps the issue of specification.

Classical approaches to the learning problem depend on much stricter assump-

tions than those posed in the general learning formulation because they assume that

functions are specified up to a fixed number of parameters. The two inductive prin-

ciples that are most commonly used in the classical learning process are Empirical

Risk Minimization (ERM) and Maximum Likelihood (ML). ML is a specific form

of the more general ERM principle obtained when using particular loss functions.

These two inductive principles will be described using the classical solutions for the

common learning tasks presented in Section 2.1.2.

2.2.1 Density Estimation

The classical approach for density estimation restricts the class of density functions

supported by the learning machine to a parametric set. That is, pðx;wÞ, w 2 �, is a

set of densities, where w is an M-dimensional vector (� is contained in <M , M is

fixed). Let us assume that the unknown density pðx;w0Þ belongs to this class. Given
a set of iid training data X ¼ ½x1; . . . ; xn�, the probability of seeing this particular

data set as a function of w is

PðXjwÞ ¼
Y

n

i¼1
pðxi;wÞ; ð2:24Þ

and this is called the likelihood function. The ML inductive principle states that we

should choose the parameters w that maximize the likelihood function. This corre-

sponds to choosing a w�, and therefore the distribution model pðx;w�Þ, which is

most likely to generate the observed data. To make the problem more tractable,

the log-likelihood function is maximized. This is equivalent to minimizing the

ML risk functional

RMLðwÞ ¼ �
X

n

i¼1
ln pðxi;wÞ: ð2:25Þ

On the contrary, using the ERM inductive principle, one empirically estimates

the risk function using the training data. The empirical risk is the average risk

for the training data. This estimate, called the empirical risk, is then minimized

by choosing the appropriate parameters. For density estimation, the expected risk

is given by

RðwÞ ¼
ð

Lðpðx;wÞÞpðxÞdx:

30 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

This expectation is estimated by taking an average of the risk over the training data:

RempðwÞ ¼
1

n

X

n

i¼1
Lðpðxi;wÞÞ: ð2:26Þ

Then the optimum parameter values w� are found by minimizing the empirical risk

(2.26) with respect to w. Notice that ERM is a more general inductive principle than

the ML principle because it does not specify the particular form of the loss function.

If the loss function is

Lðpðx;wÞÞ ¼ � ln pðx;wÞ; ð2:27Þ

then the ERM inductive principle is equivalent to the ML inductive principle for

density estimation. Let us now look at two examples of classical density estimation.

Example 2.4: Estimating the parameters of the normal distribution using

finite data

We have observed n samples of x, denoted by x1; . . . ; xn, that were generated

according to the normal distribution

pðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �ðx� mÞ2

2s2

()

; ð2:28Þ

where the mean m and variance s2 are the two unknown parameters. The log-

likelihood function for this problem is

PðXjm; s2Þ ¼ � 1

2
n lnð2pÞ � n lnðsÞ � 1

2s2

X

n

i¼1
ðxi � mÞ2: ð2:29Þ

This can be maximized by taking partial derivatives, leading to the estimates

m̂ ¼ 1

n

X

n

i¼1
xi;

ŝ2 ¼ 1

n

X

n

i¼1
ðxi � m̂Þ2:

ð2:30Þ

Example 2.5: Mixture of normals (Vapnik 1995)

Now, let us perform the estimation for a more complicated density. Let n samples of

x, denoted by x1; . . . ; xn, be generated according to the distribution

pðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �ðx� mÞ2

2s2

()

þ 1

2
ffiffiffiffiffiffi

2p
p exp � x2

2

� �

: ð2:31Þ

CLASSICAL APPROACHES 31

In this case, only the parameters m and s2 of the first density are unknown. The log-

likelihood function for this problem is

PðXjm; s2Þ ¼
X

n

i¼1
ln

1

2
ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �ðxi � mÞ2

2s2

()

þ 1

2
ffiffiffiffiffiffi

2p
p exp � x2i

2

� �

 !

: ð2:32Þ

The ML inductive principle tells us that we should find values of m and s2 that max-

imize (2.32). We can show that for certain values of m and s2 there does not exist a

global maximum, indicating that the ML procedure fails to provide a definite solu-

tion. Specifically, if m is set to the value of any training data point, then there is no

value of s2 that gives a global maximum. Let us attempt to evaluate the likelihood

for the choice m ¼ x1:

PðXjm ¼ x1; s
2Þ ¼ ln

1

2
ffiffiffiffiffiffiffiffiffiffi

2ps2
p þ 1

2
ffiffiffiffiffiffi

2p
p exp � x21

2

� �� �

þ
X

n

i¼2
ln

1

2
ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �ðxi � x1Þ2

2s2

()

þ 1

2
ffiffiffiffiffiffi

2p
p exp � x2i

2

� �

 !

:

ð2:33Þ

Because we would like to maximize this quantity, we consider a lower bound by

assuming that some of the terms take on their minimum values:

PðXjm ¼ x1;s
2Þ > ln

1

2
ffiffiffiffiffiffiffiffiffiffi

2ps2
p þ 0

� �

þ
X

n

i¼2
ln 0þ 1

2
ffiffiffiffiffiffi

2p
p exp � x2i

2

� �� �

;

PðXjm ¼ x1;s
2Þ > � ln s�

X

n

i¼2

x2i
2
� n lnð2

ffiffiffiffiffiffi

2p
p
Þ:

ð2:34Þ

The lower bound of the likelihood continues to increase for decreasing s, which

means that a global maximum does not exist. Note that this argument applies for

choosing m equal to any of the training data points xi. This example shows how the

ML inductive principle can fail to provide a solution for estimation of fairly simple

densities (mixture of Gaussians).

2.2.2 Classification

The classical classification problem is a special case of the general classification

problem, introduced in Section 2.1.2, based on the following restricted learning

model: The conditional densities for each class pðxjy ¼ 0Þ and pðxjy ¼ 1Þ are esti-
mated via classical (parametric) density estimation and the ML inductive principle.

These estimates will be denoted as p0ðx; a�Þ and p1ðx; b�Þ, respectively, to indicate

that they are parametric functions with parameters chosen via ML. The probability

32 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

of occurrence of each class, called prior probabilities, Pðy ¼ 0Þ and Pðy ¼ 1Þ, is
assumed to be known or estimated, namely as a fraction of samples from a parti-

cular class in the training set. Using Bayes theorem, it is possible with these quan-

tities to determine for a given observation x the probability of that observation

belonging to each class. These probabilities, called posterior probabilities, can be

used to construct a discriminant rule that describes how an observation x should be

classified so as to minimize the probability of error. This rule chooses the output

class that has the maximum posterior probability. First, Bayes rule is used to cal-

culate the posterior probabilities for each class:

Pðy ¼ 0jxÞ ¼ p0ðx; a�ÞPðy ¼ 0Þ
pðxÞ ;

Pðy ¼ 1jxÞ ¼ p1ðx; b�ÞPðy ¼ 1Þ
pðxÞ :

ð2:35Þ

The denominator of these equations is a normalizing constant, which can be

expressed in terms of the prior probabilities and class conditional densities as

pðxÞ ¼ p0ðx; a�ÞPðy ¼ 0Þ þ p1ðx; b�ÞPðy ¼ 1Þ: ð2:36Þ

Note that there is usually no need to compute this normalizing constant because the

decision rule is a comparison of the relative magnitudes of the posterior probabil-

ities. Once the posterior probabilities are determined, the following decision rule is

used to classify x:

f ðxÞ ¼ 0; if p0ðx; a�ÞPðy ¼ 0Þ > p1ðx; b�ÞPðy ¼ 1Þ;
1; otherwise:

�

ð2:37Þ

Equivalently, the rule can be written as

f ðxÞ ¼ I ln p1ðx; b�Þ � ln p0ðx; a�Þ þ ln
Pðy ¼ 1Þ
Pðy ¼ 0Þ > 0

� �

; ð2:38Þ

where Ið Þ is the indicator function that takes the value 1 if its argument is true and

0 otherwise. Note that in the above expressions, the class labels are denoted by

f0; 1g. Sometimes, for notational convenience, the class labels f�1;þ1g are

used. In order to determine this rule using the classical approach for classification,

the conditional class densities need to be estimated. This approach corresponds to

determining the parameters a� and b� using the ML or ERM inductive principles.

Therefore, we apply the ERM inductive principle indirectly to first estimate the

densities and then use them to formulate the decision rule. This differs from apply-

ing the ERM inductive principle directly to minimize the empirical risk

RempðwÞ ¼
1

n

X

n

i¼1
Iðyi ¼ f ðxi;wÞÞ ð2:39Þ

CLASSICAL APPROACHES 33

by estimating the expected risk functional for classification (2.9) using average of

the empirical risk (2.39).

2.2.3 Regression

In the classical formulation of the regression problem, we seek to estimate a vector

of parameters of an unknown function f ðx;w0Þ by making measurements of the

function with error at any point xk:

yk ¼ f ðxk;w0Þ þ xk; ð2:40Þ

where the error is independent of x and is distributed according to a known density

pxðxÞ. Based on the observation of data Z ¼ fðxi; yiÞ; i ¼ 1; . . . ; ng, the likelihood
is given by

PðZjwÞ ¼
X

n

i¼1
ln pxðyi � f ðxi;wÞÞ: ð2:41Þ

Assuming that the error is normally distributed with zero mean and fixed variance

s, the likelihood is given by

PðZjwÞ ¼ � 1

2s2

X

n

i¼1
ðyi � f ðxi;wÞÞ2 � n ln ð

ffiffiffiffiffiffi

2p
p

sÞ: ð2:42Þ

Maximizing the likelihood in this form (2.42) is equivalent to minimizing the

functional

RempðwÞ ¼
1

n

X

n

i¼1
ðyi � f ðxi;wÞÞ2; ð2:43Þ

which is in fact the risk functional obtained by using the ERM inductive principle

for the squared loss function.

Note that the squared loss function is, strictly speaking, appropriate only for

Gaussian noise. However, it is often used in practical applications where the noise

is not Gaussian.

2.2.4 Solving Problems with Finite Data

When solving a problem based on finite information, one should keep in mind the

following general commonsense principle: Do not attempt to solve a specified pro-

blem by indirectly solving a harder general problem as an intermediate step. In

Section 2.1.1, we saw that density estimation is the universal solution to the learn-

ing problem. This means that once the density is known (or accurately estimated),

all specific learning tasks can be solved using that density. However, being the most

34 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

general learning problem, density estimation requires a larger number of samples

than a problem-specific formulation (i.e., regression, classification). As we are ulti-

mately interested in solving a specific task, we should solve it directly. Concep-

tually, this means that instead of estimating the joint pdf (2.5) fully, we should

only estimate those features of the density that are critical for solving our particular

problem. Posing the problem directly will then require fewer observations for the

specified level of solution accuracy. The following is an example with finite sam-

ples that shows how better results can be achieved by solving a simpler more direct

problem.

Example 2.6: Discriminant analysis

We wish to build a two-class classifier from data, where it is known that the data are

generated according to the multivariate normal probability distributions Nðm0;
P

0Þ
and Nðm1;

P

1Þ. In the classical procedure, the parameters of the densities

m0; m1;
P

0; and
P

1 are estimated using the ML based on the training data. The den-

sities are then used to construct a decision rule. For two known multivariate normal

distributions, the optimal decision rule is a polynomial of degree 2 (Fukunaga

1990):

f ðxÞ ¼ I 1
2
ðx� m0ÞT��10 ðx� m0Þ � 1

2
ðx� m1ÞT��11 ðx� m1Þ þ c > 0g;

n

ð2:44Þ

where

c ¼ ln
detð

P

0Þ
detð

P

1Þ
� ln

Pðy ¼ 0Þ
Pðy ¼ 1Þ : ð2:45Þ

The boundary of this decision rule is a paraboloid. To produce a good decision rule,

we must estimate the two d � d covariance matrices accurately because it is their

inverses that are used in the decision rule. In practical problems, there are often not

enough data to provide accurate estimates, and this leads to a poor decision rule.

One solution to this problem is to impose the following artificial constraint:
P

0 ¼
P

1 ¼
P

, which leads to the linear decision rule

f ðxÞ¼ I ðm0 � m1ÞT��1xþ
1

2
mT1�

�1m1
	

� 1

2
mT0�

�1m0
	

� ln
Pðy ¼ 0Þ
Pðy ¼ 1Þ>0

� �

:

ð2:46Þ

This decision rule requires estimation of two means m0 and m1 and only one covar-

iance matrix
P

. In practice, the simpler linear decision rule often performs better

than the quadratic decision rule, even when it is known that
P

0 6¼
P

1. To

CLASSICAL APPROACHES 35

demonstrate this phenomenon, consider 20 data samples (10 per class) generated

according to the following two class distributions:

Class 0 Class 1

N ½0; 0�; 1 0

0 1

� �� �

N ½2; 0�; 1 0:5
0:5 1

� �� �

Assume that it is known that class densities are Gaussian, but that the means

and covariance matrices are unknown. These data will be separated using both

the quadratic decision rule and the linear decision rule. Note that the linear decision

rule, which assumes equal covariances, does not match the underlying class

distributions. However, the first-order model provides the lowest classification

error (Fig. 2.2).

2.2.5 Nonparametric Methods

The development of nonparametric methods was an attempt to deal with the main

shortcoming of classical techniques: that of having to specify the parametric form

of the unknown distributions and dependencies. Nonparametric techniques require

few assumptions for developing estimates; however, this is at the expense of requir-

ing a large number of samples. First, nonparametric methods for density estimation

are developed. From these, nonparametric regression and classification approaches

can be constructed.

Nonparametric Density Estimation

The most commonly used nonparametric estimator of density is the histogram. The

histogram is obtained by dividing the sample space into bins of constant width and

determining the number of samples that fall into each bin (Fig. 2.3). One of the

drawbacks of this approach is that the resulting density is discontinuous. A more

sophisticated approach is to use a sliding window kernel function to bin the data,

which results in a smooth estimate.

The general principle behind nonparametric density estimation is that of solving

the integral equation defining the density:

ð

x

�1

pðuÞdu ¼ FðxÞ; ð2:47Þ

where FðxÞ is the cumulative distribution function (cdf). As the cdf is unknown, the

right-hand side of (2.47) is approximated by the empirical cdf estimated from the

training data:

FnðxÞ ¼
X

n

i¼1
Iðx 	 xiÞ; ð2:48Þ

36 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

where Ið Þ is the indicator function that takes the value 1 if its argument is true and

0 otherwise. It is a fundamental fact of statistics that the empirical cdf uniformly

converges to the true cdf as the number of samples tends to infinity. All nonpara-

metric density estimators depend on this asymptotic assumption to make estimates

because they solve the integral equation (2.47) using the empirical cdf. Note that

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

–1 0 1 2 43

(a)

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

–1 0 1 2 43

(b)

FIGURE 2.2 Discriminant analysis using finite data. (a) The linear decision rule has an

accuaracy rate of 83 percent. (b) The quadratic decision rule has an accuracy of 77 percent

(note that the parabolic decision boundary has been truncated in the plot). Out of 100

repetitions of the experiment, the linear decision boundary is better than the quadratic

73 percent of the time.

CLASSICAL APPROACHES 37

this problem cannot be solved in a straightforward manner because the empirical

cdf has discontinuities (taking the derivative would lead to a sum of Dirac functions

located at each data point), whereas the solution pðxÞ is (by definition) continuous.

One approach used to find a continuous solution to the density is to replace the

Dirac function with a continuous function so that the resulting density is continu-

ous. This is the approach used in kernel density estimation. Here we approximate

the density as a sum of kernel functions located at each data point:

pðxÞ ¼ 1

n

X

n

i¼1
Kaðx; xiÞ; ð2:49Þ

0

100

200

300

400

500

–3 –2 –1 0 1 2 43

0

20

40

60

80

100

–3 –2 –1 0 1 2 43

FIGURE 2.3 Density estimation using the histogram. One thousand samples were

generated according to the standard normal distribution. Histograms of 5 and 30 bins are used

to model the distribution.

38 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

where Kaðx; x0Þ is a kernel function as defined in Example 2.3. This approximation

results in a density that is continuous.

One of the major drawbacks of nonparametric estimators for density is their poor

scaling properties for high-dimensional data. These estimators are based on enclos-

ing a local volume of data to make an estimate. For practical (finite) high-

dimensional data sets, a volume that encloses enough data points to make an

accurate estimate is often not local anymore. Indeed, the radius of this volume

can be a significant fraction of the total range of the data; sparseness of high-dimen-

sional samples is discussed in more detail in Chapter 3. Classical nonparametric

methods are based on asymptotic assumptions; they were not designed for small

number of samples, so the results are poor in practical situations where data are

limited.

2.2.6 Stochastic Approximation

Stochastic approximation (Robbins and Monroe 1951) is an approach in which the

parameters in an approximating function are estimated sequentially. For each indi-

vidual data sample presented, a new parameter estimate is produced. Under some

mild conditions this approach is consistent, meaning that as the number of samples

presented becomes large, the empirical risk and expected risk converge to the mini-

mum possible risk. To demonstrate the method of stochastic approximation, we will

look at the general expected risk functional

RðoÞ ¼
ð

Lðz;oÞpðzÞdz: ð2:50Þ

The stochastic approximation procedure for minimizing this risk with respect to the

parameters o is

oðk þ 1Þ ¼ oðkÞ � gkgradoLðzk;oðkÞÞ; k ¼ 1; . . . ; n; ð2:51Þ

where z1; . . . ; zn is the sequence of data samples presented. This estimate is proved

consistent provided that gradoLðz;oÞ and gk meet some general conditions.

Namely, the learning rate gk must obey

lim
k!1

gk ¼ 0;

X

1

k¼1
gk ¼ 1;

X

1

k¼1
g2k <1:

ð2:52Þ

The initial motivation for this approach was to generate parameter estimates in a

‘‘real-time’’ fashion as data are collected. This differs from the more common

‘‘batch’’ forms of estimation, where a finite number of samples are all required

CLASSICAL APPROACHES 39

at the same instant to form an estimate. Some practical benefits of stochastic approx-

imation are that large amounts of data need not be stored at one time and that the esti-

mates are capable of adapting to slowly changing data-generating systems.

In many applications, however, stochastic approximation is applied even when

the data have not been received sequentially. A stored batch of data is presented

sequentially to the stochastic approximation algorithm a number of times. This is

known as recycling, and each cycle is often called an epoch. Such repeated presen-

tations of the (finite) training data produce an asymptotically large training

sequence necessary for stochastic approximation to work. Stochastic approximation

algorithms are usually computationally less complicated than their batch counter-

parts, essentially consisting of many repetitions of a simple update formula. The

major practical issue that exists with stochastic approximation is that of when to

stop the updating process. One approach is to monitor the gradient for each pre-

sented sample. If the gradient falls below a small threshold, parameter estimates

stabilize and learning effectively stops. In this stopping approach, stochastic

approximation obeys the ERM inductive principle. However, if learning is halted

early, before small gradients are seen, the stochastic approximation will not perform

ERM. It can be shown (Friedman 1994a) that such early stopping approach effec-

tively implements the regularization inductive principle, which will be discussed in

Chapter 3.

2.3 ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE

PRINCIPLES

This section provides motivation and conceptual framework for flexible (or adap-

tive) learning methods. Here ‘‘flexibility’’ means a method’s capability to estimate

arbitrary dependencies from finite data. Parametric methods impose very stringent

assumptions and are likely to fail if the true parametric form of a dependency is not

known. On the contrary, classical nonparametric methods do not depend on para-

metric assumptions, but they generally fail for high-dimensional problems with

finite samples. Adaptive methods use flexible (very wide) class of approximating

functions that can, in principle, approximate any continuous function with a prespe-

cified accuracy. This is known as universal approximation property. However, due

to finiteness of available (training) data, this wide set of functions needs to be some-

how constrained in order to produce a unique solution. There are several

approaches (known as inductive principles) that provide a framework for selecting

a unique solution from a wide class of functions using finite data. This section starts

with general (philosophical) description of concepts related to learning and then

proceeds with description and comparison of inductive principles.

2.3.1 Philosophy, Major Concepts, and Issues

Let us relate the problem of learning from samples to the general notion of

inference in classical philosophy following Vapnik (1995). There are two steps

40 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

in predictive learning:

1. Learning (estimating) unknown dependency from samples

2. Using dependency estimated in (1) to predict output(s) for future input values

These two steps (shown in Fig. 2.4) correspond to the two classical types of infer-

ence known as induction, that is, progressing from particular cases (training data)

to general (estimated dependency or model) and deduction, that is, progressing

from general (model) to particular (output values).

In Section 2.1, we saw that the traditional formulation of predictive learning

implies estimating an unknown function everywhere (i.e., for all possible input

values). The goal of global function estimation may be overkill because many prac-

tical problems require one (in the deduction step) to estimate outputs only for a few

given input values. Hence, a better approach may be to estimate the outputs of the

unknown function for several points of interest directly from the training data (see

Fig. 2.4). Such a transductive approach can, in principle, provide better estimates

than the standard induction/deduction approach (Vapnik 1995). A special case of

transduction is local estimation, when the prediction is made at a single point.

This leads to the local risk minimization formulation (Vapnik 1995) described in

Chapter 7. To differentiate between transduction and local estimation, we assume

that the transduction refers to predictions at two or more input values simultaneously.

The formulation of the learning problem given in Section 2.1 does not apply to

transductive inference. For example, the very notion of minimizing expected risk

reflects an assumption about the large number of unknown future samples because

the expectation (averaging) is taken over some (unknown) distribution. This goal

does not apply in situations where the predictions have to be made at known input

points. The mathematical formulation for transductive inference is given later in Chap-

ter 10. Most existing learning methods (including methods discussed in this book) are

based on the standard inductive formulation given in Section 2.1.

Obviously, in predictive learning only the first (inductive) step is the challenging

one because the second (deductive) step involves simply calculating the value of a

function obtained in the inductive step. Induction (learning) amounts to forming gen-

eralizations from particular true facts, that is, training data. This is an inherently diffi-

cult (ill-posed) problem, and its solution requires a priori knowledge in addition to data.

A priori knowledge
assumptions

Estimated
model

Training
data

Predicted
output

Induction Deduction

Transduction

FIGURE 2.4 Two types of inferences: induction–deduction and transduction.

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 41

As mentioned earlier, all learning methods use a priori knowledge in the form of

the (given) class of approximating functions of a Learning Machine, f ðx;oÞ,
o 2 �. For example, parametric methods use a very restricted set of approximating

functions of prespecified parametric form, so only a fixed number of parameters

need to be determined from data. In this book, we are interested in flexible methods

that use a wide set of functions (universal approximators) capable of approximating

any continuous mapping. The class of approximating functions used by flexible

methods is thus very wide (overparameterized) and allows for multiple solutions

when a model is estimated with finite data. Hence, additional a priori knowledge is

needed for imposing additional constraints (penalty) on a potential of a function

(within a class fðx;oÞ,o 2 �) to be a solution to the learning problem. Let us clearly

distinguish between two types of a priori knowledge used in flexible methods:

� Choosing a (wide, flexible) set of approximating functions of a Learning

Machine

� Imposing additional constraints on the functions within this set

In the rest of this book, the expression ‘‘a priori knowledge’’ is used only to denote

the second type of knowledge, that is, any information used to constrain the func-

tions within a given set of approximating functions. The choice of the set itself is

important in practice, but it is outside the scope of learning theory discussed in the

first part of this book. Various learning methods differ mainly on the basis of the

chosen set of approximating functions, and they are discussed in the second part of

the book.

In summary, in order to form a unique generalization (model) from finite data,

any learning process requires the following:

1. A (wide, flexible) set of approximating functions f ðx;oÞ, o 2 �.

2. A priori knowledge (or assumptions) used to impose constraints on a potential

of a function from the class (1) to be a solution. Usually, such a priori

knowledge provides, explicitly or implicitly, ordering of the functions

according to some measure of their flexibility to fit the data.

3. An inductive principle (or inference method), namely a general prescription

for combining a priori knowledge (2) with available training data in order to

produce an estimate of (unknown) true dependency. An inductive principle

specifies what needs to be done; it does not say how to do it; inductive

principles for adaptive methods are discussed in Section 2.3.3.

4. A learning method, namely a constructive (computational) implementation of

an inductive principle for a given class of approximating functions.

The distinction between the inductive principles and learning methods is crucial

for understanding and further advancement of the methods. For a given inductive

principle, there may be (infinitely) many learning methods, corresponding to

different classes of approximating functions and/or different optimization techni-

ques. For example, under the ERM inductive principle presented in Section 2.2,

42 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

one seeks to find a solution f ðx;o�Þ that minimizes the empirical risk (training

error) as a substitute for (unknown) expected risk (true error). Depending on the

chosen loss function and the chosen class of approximating functions, the

ERM inductive principle can be implemented by a variety of methods (i.e., ML

estimators, linear regression, polynomial methods, fixed-topology neural networks,

etc.). The ERM inductive principle is typically used in a classical (parametric) set-

ting where the model is given (specified) first and then its parameters are estimated

from the data. This approach works well only when the number of training samples

is large relative to the (prespecified) model complexity (or the number of free

parameters).

Another important issue for learning methods is an optimization procedure used

for parameter estimation. Parametric methods usually postulate a parametric model

linear in parameters. An example is polynomial regression where the order of poly-

nomial is given a priori, but its parameters (coefficients) are estimated from training

data (by a least-squares fit). Here the inductive (learning) step is simple and

amounts to parameter estimation in a linear model. In many situations, there is a

mismatch between parametric assumptions and the true dependency. Such discre-

pancy is referred to as modeling bias in statistics. Parametric methods can produce

a large bias (inaccurate estimates), even when the number of samples is fairly large.

Flexible methods, however, overcome the modeling bias by using a very flexible

class of approximating functions. For example, a flexible approach to regression

may seek an estimate in the class of all polynomials (of arbitrary degree m). Hence,

the problem here is to estimate both the model flexibility or complexity (i.e., the

polynomial degree) and its parameters (coefficients). The problem of choosing

(optimally) the model complexity (i.e., polynomial degree) from data is called model

selection.
1 Hence, flexible methods reduce the bias by adapting the model complex-

ity to the training samples at hand. They are also called semiparametric because

they use a family of parametric models (i.e., polynomials of variable degree) to esti-

mate an unknown function. Flexible methods differ mainly on the basis of the par-

ticular class of approximating functions used by a method. Most practical flexible

methods developed in statistics and neural networks use classes of functions that are

nonlinear in parameters. Hence, in flexible methods the inductive (learning) step is

quite complex; it involves estimating both the model structure and model para-

meters (via nonlinear optimization).

2.3.2 A Priori Knowledge and Model Complexity

Entities should not be multiplied beyond necessity

‘‘Occam’s razor’’ principle attributed to William of Occam c. 1280–1349

There is a general belief that for flexible learning methods with finite samples, the

best prediction performance is provided by a model of optimum complexity. Thus,

1In this book, the terms ‘‘model selection’’ and ‘‘complexity control’’ are used interchangeably.

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 43

the problem of model selection gives us a good example of the general philosophi-

cal principle known as Occam’s razor. According to this principle, we should seek

simpler models over complex ones and optimize the tradeoff between model com-

plexity and the accuracy of model’s description of the training data. Models that are

too complex (i.e., that fit the training data very well) or too simple (i.e., that fit the

data poorly) provide poor prediction for future data. Model complexity is usually

controlled by a priori knowledge. However, by the Occam’s razor principle, such a

priori knowledge cannot assume the model of fixed complexity. In other words,

even if the true parametric form of a model is known a priori, it should not be auto-

matically used for predictive learning with finite samples. This point is illustrated

by the following example.

Example 2.7: Parametric estimation for finite data

Let us consider a parametric regression problem where 10 data points are generated

according to the function

y ¼ x2 þ x;

where the noise is Gaussian with zero mean and variance s2 ¼ 0:25. The quantity x

has a uniform distribution on ½0; 1�. Assume that it is known that a polynomial of

second order has generated the data but that the coefficients of the polynomial are

unknown. Both a first-order polynomial and a second-order polynomial will be used

to fit the data. As the second-order polynomial model matches the true (underlying)

dependency, one would expect it to provide the best approximation. However, it

turns out that the first-order model provides the lowest risk (Fig. 2.5). This example

FIGURE 2.5 For finite data, limiting model complexity is more important than using true

assumptions. The solid curve is the true function, the asterisks are data points with noise, the

dashed line is a first-order model (mse¼ 0.0596), and the dotted curve is a second-order

model (mse¼ 0.0845).

44 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

demonstrates the point that for finite data it is not the validity of the assumptions but

the complexity of the model that determines prediction accuracy. To convince the

reader that this experiment was not a fluke, it was repeated 100 times. The first-

order model was better than the second-order model 71 percent of the time.

There are two conclusions evident from this example:

1. An optimal tradeoff between the model complexity and available (finite) data

is important even when the parametric form of the model is known. For

instance, if the above example uses 500 training samples, then the best

predictive model would be the second-order polynomial. However, with

five samples the best model would be just a mean estimate (zero-order

polynomial).

2. A priori knowledge can be useful for learning predictive models only if it

controls (explicitly or implicitly) the model complexity.

The last point is especially important because various learning methods and

inductive principles use different ways to represent a priori knowledge. This knowl-

edge effectively controls the model complexity. Hence, we should favor such meth-

ods and principles that provide explicit control of the model complexity. This brings

about two (interrelated) issues: How to define and measure the model complexity

and how to provide ‘‘good’’ parameterization for a family of approximating func-

tions of a learning machine. Such a parameterization should enable quantitative

characterization and control of complexity. Both issues are addressed by the statis-

tical learning theory (see Chapters 4 and 9).

2.3.3 Inductive Principles

In this section, we describe inductive principles for learning from finite samples.

Recall that in a classical (parametric) setting, the model is given (specified) first

and then its parameters are estimated from data using the ERM inductive principle,

as described in Section 2.2. However, with flexible modeling methods, the under-

lying model is not known, and it is estimated using a large (infinite) number of

candidate models (i.e., approximating functions of a learning machine) to describe

available data. The main issue here is choosing the candidate model of the right

complexity to describe the training data, as stated (qualitatively) by the Occam’s

razor principle. There are several inductive principles that provide different quan-

titative interpretation of Occam’s principle. These inductive principles differ in

terms of representation (encoding) of a priori knowledge, applicability (of a prin-

ciple) when the true model does not belong to the set of approximating functions,

mechanism for combining a priori knowledge with training data, and availability of

constructive procedures (learning algorithms) for a given principle.

In the current literature, there is considerable confusion on the relative strength

and limitations of different inductive principles. This is mainly due to highly

specialized terminology and the lack of meaningful comparisons. This section

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 45

provides an overview of inductive principles. We emphasize relative advantages

and shortcomings of different principles. Two commonly used inductive principles,

penalization and structural risk minimization (SRM), will be discussed in greater

detail in Chapters 3 and 4, respectively.

Penalization (Regularization) Inductive Principle

Under this approach, one assumes a flexible (i.e., with many ‘‘free’’ parameters)

class of approximating functions f ðx;oÞ;o 2 �, where � is a set of abstract para-

meters. However, in order to restrict the solutions, a penalization (regularization)

term is added to the empirical risk to be minimized:

RpenðoÞ ¼ RempðoÞ þ lf½ f ðx;oÞ�: ð2:53Þ

Here RempðoÞ denotes the usual empirical risk and the penalty f½f ðx;oÞ� is a non-
negative functional associated with each possible estimate f ðx;oÞ. Parameter

l > 0 controls the strength of the penalty relative to the term RempðoÞ. Note
that the penalty term is independent of the training data. Under this framework,

a priori knowledge is included in the form of the penalty term, and the strength of

such knowledge is controlled by the value of regularization parameter l. For

example, if l is very large, then the result of minimizing RpenðoÞ does not depend
on the data, whereas for small l the final model does not depend on the penalty

functional. For many common classes of approximating functions, it is possible

to develop functionals f½f ðx;oÞ� that measure complexity (see Chapter 3). The

optimal value of l (providing smallest prediction risk) is usually chosen using

resampling methods. Thus, under this approach the optimal model estimate is

found as a result of a tradeoff between fitting the data and a priori knowledge

(i.e., a penalty term).

Early Stopping Rules

A heuristic inductive principle often used in the applications of neural networks

is the early stopping rule. A popular training (parameter estimation) procedure

for neural networks employs gradient-descent (stochastic optimization) techni-

ques for minimizing the empirical risk functional. One way to avoid overfitting

with overparameterized models, such as neural networks, is to stop the training

early, that is, before reaching minimum. Such early stopping can be interpreted

as an implicit form of penalization, where a penalty is defined on a path (in the

space of model parameters) corresponding to the successive model estimates

obtained during gradient-descent training. The solutions are penalized according

to the number of gradient descent steps taken along this curve, namely the dis-

tance from the starting point (initial conditions) in the parameter space. This kind

of penalization depends heavily on the particular optimization technique used, on

the training data, and on the choice of (random) initial conditions. Hence, it is

difficult to control and interpret such ‘‘penalization’’ via early stopping rules

(Friedman 1994a).

46 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

Structural Risk Minimization

Under SRM, approximating functions of a learning machine are ordered according

to their complexity, forming a nested structure:

S0
 S1
 S2
 � � � : ð2:54Þ

For example, in the class of polynomial approximating functions, the elements of a

structure are polynomials of a given degree. Condition (2.54) is satisfied because

polynomials of degree m are a subset of polynomials of degree ðmþ 1Þ. The
goal of learning is to choose an optimal element of a structure (i.e., polynomial

degree) and estimate its coefficients from a given training sample. For approximat-

ing functions linear in parameters such as polynomials, the complexity is given by

the number of free parameters. For functions nonlinear in parameters, the complex-

ity is defined as VC dimension (see Chapter 4). The optimal choice of model com-

plexity provides the minimum of the expected risk. Statistical earning theory

(Vapnik 1995) provides analytic upper-bound estimates for expected risk. These

estimates are used for model selection, namely choosing an optimal element of a

structure under the SRM inductive principle.

Bayesian Inference

Bayesian type of inference uses additional a priori information about approximating

functions in order to obtain a unique predictive model from finite data. This knowl-

edge is in the form of the so-called prior probability distribution, which is the prob-

ability of any function (from the set approximating functions) being the true

(unknown) function. Note that the prior distribution usually reflects subjective

degree of belief (in the sense described in Section 1.4). This adds subjectivity to

the design of a learning machine because the final model depends largely on a

good choice of priors. Moreover, the very notion that the prior distribution ade-

quately captures prior knowledge may not be acceptable in many situations, namely

where we need to estimate a constant (but unknown) parameter. However, the

Bayesian approach provides an effective way of encoding prior knowledge, and

it can be a powerful tool when used by experts.

Bayesian inference is based on the classical Bayes formula for updating prior

probabilities using the evidence provided by the data:

P½modeljdata� ¼ P½datajmodel�P½model�
P½data� ; ð2:55Þ

where P½model� is the prior probability (before the data are observed), P½data� is the
probability of observing training data, P½modeljdata� is the posterior probability of

a model given the data, and P½datajmodel� is the probability that the data are gen-

erated by a model, also known as the likelihood.

Let us consider the general case of (parametric) density estimation where the

class of density functions supported by the learning machine is a parametric set,

namely pðx;wÞ, w 2 �, is a set of densities, where w is an m-dimensional vector

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 47

of ‘‘free’’ parameters (m is fixed). It is also assumed that the unknown density

pðx;w0Þ belongs to this class. Given a set of iid training data X ¼ ½x1; . . . ; xn�,
the probability of seeing this particular data set as a function of w is

P½datajmodel� ¼ PðXjwÞ ¼
Y

n

i¼1
pðxi;wÞ: ð2:56Þ

(Recall that choosing the model, i.e., parameter w�, maximizing likelihood PðXjwÞ
amounts to ML inference discussed in Section 2.2.1.)

The a priori density function

P½model� ¼ pðwÞ ð2:57Þ

gives the probability of any (implementable) density pðx;wÞ, w 2 � being the true

one. Then Bayes formula gives

pðwjXÞ ¼ PðXjwÞpðwÞ
PðXÞ : ð2:58Þ

Usually, the prior distribution is taken rather broadly, reflecting general uncer-

tainty about ‘‘correct’’ parameter values. Having observed the data, this prior dis-

tribution is converted into posterior distribution according to Bayes formula. This

posterior distribution will be more narrow, reflecting the fact that it is consistent

with the observed data; see Fig. 2.6.

There are two distinct ways to use Bayes formula for obtaining an estimate

of unknown pdf. The true Bayesian approach is to average over all possible

0
w

P model

P [model data]

FIGURE 2.6 After observing the data, the wide prior distribution is converted into the

more narrow posterior distribution using Bayes rule.

48 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

models (implementable by a learning machine), which gives the following pdf

estimate:

�ðxjXÞ ¼
ð

pðx;wÞpðwjXÞdw; ð2:59Þ

where pðwjXÞ is given by the Bayes formula (2.58). Equation (2.59) provides an

example of an important technique in Bayesian inference called marginalization,

which involves integrating out redundant variables, such as parameters w. The

estimator �ðxjXÞ has many attractive properties (Bishop 1995). In particular,

the final model is a weighted sum of all possible predictive models, with

weights given by the evidence (or posterior probability) that each model is cor-

rect. However, multidimensional integration (due to the large number of para-

meters w) presents a challenging problem. Standard numerical integration is

impossible, whereas analytic evaluation may be possible only under restrictive

assumptions when the posterior density has the same form as a prior (typically

assumed to be Gaussian) and pðx;wÞ is linear in parameters w. When Gaussian

assumptions do not hold, various forms of random sampling also known as

Monte Carlo methods have been proposed to evaluate integrals (2.59) directly

(Bishop 1995).

Another (simpler) way to implement Bayesian approach is to choose an estimate

f ðx;w�Þ maximizing posterior probability pðwjXÞ. This is known as the maximum a

posterior probability (MAP) estimate. This is mathematically equivalent to the

penalization formulation, as explained next.

Let us consider regression formulation of the learning problem, namely the train-

ing data ðxi; yiÞ generated according to

y ¼ tðxÞ þ x

¼ f ðx;w0Þ þ x:
ð2:60Þ

To estimate an unknown function from the training data Z ¼ ½X; y�, where

X ¼ ½x1; . . . ; xn� and y ¼ ½y1; . . . ; yn�, we need to assume that the set of parametric

functions (of a learning machine) f ðx;wÞ contains the true one, f ðx;w0Þ ¼ tðxÞ. In
addition, under Bayesian approach we need to know a priori density pðwÞ specify-
ing the probability of any admissible f ðx;wÞ to be the true one. The Bayes formula

gives a posterior probability that parameter w specifies the unknown function

pðwjZÞ ¼ PðZjwÞpðwÞ
PðZÞ ; ð2:61Þ

where the probability that the training data is generated by the model f ðx;wÞ is

PðZjwÞ ¼
Y

n

i¼1
pðxi; yiÞ ¼ PðXÞ

Y

n

i¼1
pðyi � f ðxi;wÞÞ: ð2:62Þ

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 49

Substituting (2.62) into (2.61), taking the logarithm of both sides, and discarding

terms that do not depend on parameters w give an equivalent functional for MAP

estimation:

RmapðwÞ ¼
X

ln pðyi � f ðxi;wÞÞ þ ln pðwÞ: ð2:63Þ

The value of w� maximizing this functional gives maximum posterior probability.

Further, assume that error has a Gaussian distribution:

xi ¼ yi � f ðxi;w0Þ � Nð0; s2Þ; ð2:64Þ

then

ln pðyi � f ðxi;wÞÞ ¼ �
ðyi � f ðxi;wÞÞ2

2s2
� lnðs

ffiffiffiffiffiffi

2p
p
Þ: ð2:65Þ

So

RmapðwÞ ¼ �
1

n

X

ðyi � f ðxi;wÞÞ2 þ
2s2

n
ln pðwÞ: ð2:66Þ

Thus, MAP formulation is equivalent to the penalization formulation (2.53) with

an explicit form of regularization parameter (reflecting the knowledge of noise

variance). If the noise variance is not known, it can be estimated (from data),

and this is equivalent to estimating the regularization parameter (using resampling

methods). Hence, the penalization formulation has a natural Bayesian interpreta-

tion, so the choice of a penalty term corresponds to a priori information about

the target function, and the choice of the regularization parameter reflects knowl-

edge (or an estimate) of the amount of noise (i.e., its variance). For very large noise,

the prior knowledge completely specifies the MAP solution; for zero noise, the

solution is completely determined by the data (interpolation problem).

Choosing the value of regularization parameter is equivalent to finding a ‘‘good’’

prior. There has been some work done to tailor priors to the data, namely the so-

called type II maximum likelihood or MLII techniques (Berger 1985). However,

tailoring priors to the data contradicts the original notion of data-independent prior

knowledge. On the one hand, the prior distribution is (by definition) independent of

the data (i.e., the number of samples). On the other hand, the prior effectively con-

trols model complexity, as is evident from the connection between MAP and pena-

lization formulation. The optimal prior is equivalent to the choice of the

regularization parameter, which clearly depends on the sample size as in (2.66).

Although the penalization inductive principle can, in some cases, be interpreted

in terms of a Bayesian formulation, penalization and Bayesian methods have a dif-

ferent motivation. The Bayesian methodology is used to encode a priori knowledge

about multiple, general, user-defined characteristics of the target function. The goal

50 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

of penalization is to perform complexity control by encoding a priori knowledge

about function smoothness in terms of a penalty functional. Bayesian model

selection tends to penalize more complex models in choosing the model with

the largest evidence, but this does not guarantee the best generalization perfor-

mance (or minimum prediction risk). On the contrary, formulations provided

by penalization framework and SRM are based on the explicit minimization of

the prediction risk.

Bayesian approach can also be used to compare several (potential) classes of

approximating functions. For example, let us consider two (parametric) classes of

models

M1 ¼ f1ðx;w1Þ and M2 ¼ f2ðx;w2Þ:

Say, these models are feedforward networks with a different number of hidden

units. Our problem is to choose the best model to describe a given (training) data

set Z: By Bayes formula (2.55), we can estimate relative plausibilities of the two

models using the so-called Bayes factor:

PðM1jZÞ
PðM2jZÞ

¼ PðZjM1ÞPðM1Þ
PðZjM2ÞPðM2Þ

; ð2:67Þ

where PðM1Þ and PðM2Þ are the prior probabilities assigned to each model (usually

assumed to be the same) and PðZjMiÞ is the ‘‘evidence’’ of the modelMi calculated

as

PðZjMiÞ ¼
ð

PðZ;wijMiÞdwi ¼
ð

PðZjwi;MiÞpðwijMiÞdwi: ð2:68Þ

Thus, the Bayesian approach enables, in principle, model selection without resort-

ing to data-driven (resampling) techniques. However, the difficulty of multidimen-

sional integration (2.68) limits practical applicability of this approach.

Minimum Description Length (MDL)

The MDL principle is based on the information-theoretic analysis of the random-

ness concept. In contrast to all other inductive principles, which use statistical dis-

tributions to describe an unknown model, this approach regards models as codes,

that is, as encodings of the training data. The main idea is that any data set can

be appropriately encoded, and its code length represents an inherent property of

the data, which is directly related to the generalization capability of the model

(i.e., code).

Kolmogorov (1965) introduced the notion of algorithmic complexity for charac-

terization of randomness of a data set. He defined the algorithmic complexity of a

data set to be the shortest binary code describing this data. Further, the randomness

of a data set can be related to the length of the binary code; that is, the data samples

are random if they cannot be compressed significantly. Rissanen (1978) proposed

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 51

using Kolmogorov’s characterization of randomness as tool for inductive inference;

this is known as the MDL principle.

To illustrate the MDL inductive principle, we consider the training data set

ðxi; yiÞ; ði ¼ 1; . . . ; nÞ;

where samples ðxi; yiÞ are drawn randomly and independently from some

(unknown) distribution. Let us further assume that training data correspond to a

classification problem, where the class label y ¼ f0; 1g and x is d-dimensional fea-

ture vector. The problem of estimating dependency between x and y can be formu-

lated under the MDL inductive principle as follows: Given a data object

X ¼ ðx1; . . . ; xnÞ, is a binary string y1; . . . ; yn random?

The binary string y ¼ ðy1; . . . ; ynÞ can be encoded using n bits. However, if there

is a systematic dependency in the data captured by the model y ¼ f ðxÞ, we can

encode the output string y by a possibly shorter code that consists of two parts:

the model having code length LðmodelÞ and the error term specifying how the

actual data differs from the model predictions, with a code length LðdatajmodelÞ.
Hence, the total length l of such a code for representing binary string y is

l ¼ LðmodelÞ þ LðdatajmodelÞ ð2:69Þ

and the coefficient of compression for this string is

KðmodelÞ ¼ l

n
: ð2:70Þ

If the coefficient of compression is small, then the string is not random, and the

model captures significant dependency between x and y.

Let us briefly discuss how such a code can be constructed based on the general

formulation of the learning problem in Section 2.1. Technically, a family of approx-

imating functions f ðx;wÞ of a learning machine can be represented as a fixed code-

book with m (lookup) tables Ti, i ¼ 1; . . . ;m, where each table performs a mapping

of a data string x onto a binary string y:

y ¼ TðxÞ: ð2:71Þ

For the MDL approach to work, it is essential that the number of tables m be much

smaller than 2n. These tables encode binary functions of real-valued arguments.

Hence, the finite number of tables provides some quantization of these functions.

Under MDL, the goal is to achieve good quantization, that is, a codebook with a

small number of tables that also provides accurate representation of the data (i.e.,

small quantization error). A table T� that describes the output string y in the best

possible way is chosen from the codebook so that for a given input x it gives the

output y� with minimum Hamming distance between y and y�. As the codebook is

fixed, we only need to encode the index of an optimal table T�, in order to encode

52 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

the binary string of outputs. The smallest number of bits needed to encode any m

possible numbers is dlog2 me. Hence,

LðmodelÞ ¼ dlog2 me: ð2:72Þ

Further, to encode e possible errors between the output string provided by the opti-

mal table T� and the true output where e is unknown to the decoder, we need the

following:

� dlog2 ee bits to encode the value of e (number of errors).

� 2 log2 log2 eþ 2 bits to encode the precision of e (number of bits used to

encode the number of errors) using the code explained next. For example, if

five bits are required to encode the value of e, we could start the bit stream

with 11001101 to unambiguously indicate 5 (here 00 indicates zero, 11

indicates one, and 01 indicates end of word). As the precision of e is unknown

to the decoder, it must be unambiguously specified in the error bit stream for

proper decoding of the rest of the bit stream.

� dlog2Ce
ne bits to specify e corrections in the string of n bits.

Hence, description length of the error term is (Vapnik 1995)

LðdatajmodelÞ ¼ jlog2 Ce
nj þ dlog2 ee þ 2 log2 log2 eþ 2: ð2:73Þ

Note that the MDL formulation can also be related to Occam’s razor; that is, the

optimal (MDL) model achieves balance between the complexity of the model and

the error term in (2.69). It can be intuitively expected that the shortest description

length model provides accurate representation of the unknown dependency and

hence minimum prediction risk. Vapnik (1995) gives formal proof of the theorem

that justifies the MDL principle (for classification problems): Minimizing the coef-

ficient of compression corresponds to minimizing the probability of misclassifica-

tion (for future data).

Theorem (Vapnik 1995)

If a given codebook provides compression coefficient K for the training data ðxi; yiÞ
ði ¼ 1; . . . ; nÞ, then the probability of misclassification (prediction risk) for future

data using this codebook is bounded by

RðTÞ < 2 KðTÞ ln 2� ln Z

n

� �

; ð2:74Þ

where the above bound holds with probability of at least 1� Z.

The MDL approach provides very general conceptual framework for learning

from samples. In fact, the notion of compression coefficient (responsible for

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 53

generalization) does not depend on the knowledge of the codebook structure, the

number of tables in the codebook, the number of training samples, and so on. More-

over, the MDL inductive principle does not even use the notion of a statistical dis-

tribution and thus avoids the controversy between the Bayesian and frequentist

interpretation of probability. Unfortunately, the MDL framework does not tell us

how to construct ‘‘good’’ codebooks with a small number of tables, yet accurate

representation of the training data. In practice, MDL can be used for model selec-

tion for restricted types of models that allow simple characterization of the model

description length, such as decision trees (Rissanen 1989). However, application of

MDL to other types of models, namely to models with continuous parameterization,

has not been successful due to difficulty in developing optimal quantization of the

large number of continuous parameters.

We conclude this section by summarizing properties of various inductive princi-

ples (see Table 2.1). All inductive principles use a (given) class of approximating

functions. In flexible methods, this class is typically overparameterized, and it

allows for multiple solutions when a model is estimated with finite data. As noted

in Section 2.3.1, a priori knowledge effectively constrains functions in this class in

order to produce a unique predictive model. Usually, a priori knowledge enables

ordering of the approximating functions according to their flexibility to fit the

data. Penalization and Bayesian inference use various forms of a priori knowledge

to control complexity, whereas SRM and MDL provide explicit characterization of

complexity for the class of approximating functions. Different ways to represent a

priori knowledge and model complexity are indicated in the first row of the

table. The second row describes constructive procedures for complexity control.

For example, under the Bayesian approach, the posterior distribution reflects both

the prior knowledge and the evidence provided by the data. Under penalization,

the objective is to minimize the sum of empirical risk (depending on the

data) and a penalty term (reflecting prior knowledge). Note that MDL lacks a

TABLE 2.1 Features of Inductive Principles

Penalization SRM Bayes MDL

Representation of Penalty Structure Prior Codebook

a priori knowledge term distribution

or complexity

Constructive Minimum of Optimal element A posteriori Not

procedure for penalized of a structure distribution defined

complexity control risk

Method for model Resampling Analytic bound on Marginalization Minimum

selection prediction risk code length

Applicability when Yes Yes No Yes

the true model does

not belong to the set

of approximating

functions

54 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

constructive mechanism for obtaining a good codebook for a given data set. In

terms of methods for model selection, there is a wide range of possibilities. Pena-

lization methods usually choose the value of the regularization parameter via

resampling. SRM provides analytic bounds on prediction risk. Bayesian inference

employs the method of marginalization (i.e., integrating out regularization para-

meters) in order to select the optimal model. Under MDL, the best model is chosen

on the basis of the minimum length of data encoding. Finally, the last row of the

table indicates applicability of each inductive method when there is a mismatch

between a priori knowledge and the truth, that is, in situations where the set of

approximating functions does not include the true dependency. In the case of a mis-

match, the Bayes inference is not applicable (because the prior probability of the

truth is zero), although all other inductive principles will still work.

2.3.4 Alternative Learning Formulations

Recall that estimation of predictive models from data involves two distinct

steps:

� Problem specification, that is, mapping application requirements onto a

‘‘standard’’ statistical formulation. This step reflects commonsense and

application-domain knowledge, and it cannot be formalized.

� Statistical inference, learning, or model estimation, that is, applying con-

structive learning methodologies to estimate a predictive model using avail-

able data.

Many learning methods discussed in this book are based on the standard (inductive)

formulation of the learning problem presented in Section 2.1. That is, a given appli-

cation is usually formalized as either standard classification or regression problem,

even when such standard formulations do not reflect application requirements. In

such cases, inadequacies of standard formulations are compensated by various pre-

processing techniques and/or heuristic modifications of a learning algorithm (for

classification or regression). A better approach may be, first, to introduce an appro-

priate learning formulation (reflecting application requirements), and second, to

develop learning algorithms for this formulation. This often leads to ‘‘nonstandard’’

learning formulations. Several general possibilities for such alternative formula-

tions are discussed next.

Recall that a generic learning system (shown in Fig. 2.1) corresponds to func-

tion estimation using finite (training) data. The quality of ‘‘useful’’ models is

measured in terms of their generalization capability, that is, well-defined predic-

tion risk. Standard inductive formulations, such as classification and regression,

assume that

1. The input x-values of future (test) samples are unknown and the number of

samples is very large, as specified in the expression for risk (2.7)

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 55

2. The goal of learning is to model or explain the training data using a single

(albeit complex) model

3. The learning machine (in Fig. 2.1) has a univariate output

4. Specific loss functions are used for classification and regression problems

These assumptions may not hold for many applications. For example, if the input

values of the test samples are known (given), then an appropriate goal of learning

may be to predict outputs only at these points. This leads to the transduction for-

mulation introduced earlier in Fig. 2.4. Detailed treatment of transduction (for clas-

sification problems) will be given in Chapter 10. Standard inductive formulations

assume that all available (training) data can be described by a single model. For

example, under the classification setting, the goal is to estimate a single decision

boundary (which may be complex or nonlinear). Likewise, under the regression for-

mulation, the goal is to estimate a single real-valued function from finite noisy sam-

ples. Relaxing the assumption about estimating (learning) a single model leads to

multiple model estimation formulation presented in Chapter 10. Further, it may be

possible to relax the assumption about a univariate output under standard super-

vised learning settings. In many applications, it is necessary to estimate multiple

outputs (multivariate functions) of the same input variables. Such methods (for esti-

mating multiple output functions) have been widely used by practitioners, that is,

partial least squares (PLS) regression in chemometrics (Frank and Friedman 1993).

However, there is no general theory extending the approach of risk minimization to

systems with multivariate outputs.

Further, standard loss functions (in classification or regression formulations)

may not be appropriate for many applications. Consider general setting in

Fig. 2.1, where the system’s output y is continuous (as in regression), but the learn-

ing machine needs to estimate the sign of y, that is, an indicator function (as in clas-

sification). For example, in financial engineering applications, a trading system

(learning machine) tries to predict the daily price movement (UP or DOWN) of

the stock market (the output y of unknown system), based on a number of prese-

lected input indicators. In this case, the goal of learning is to estimate an indicator

function (i.e., BUY or SELL decision), but the loss/gain associated with this deci-

sion is continuous (i.e., the dollar value of daily gain or loss). A block diagram of

such a learning system is shown in Fig. 2.7, where the output of a learning machine

Generator

of samples
Learning

machine

System

x f(x,w)
Loss

L(f(x,w),y)

y

FIGURE 2.7 Predictive learning view: Learning Machine tries to ‘‘imitate’’ unknown

System in order to minimize loss.

56 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

is a binary function f ðx;oÞ (generating BUYor SELL signal at certain prespecified

times, say in the beginning of each trading day) and the system’s output represents

the price of a tradable security at some prespecified future time moments (say, at the

end of each trading day). In this case, the system’s output y can be conveniently

encoded as the percentage of daily gain (or loss) of a tradable security for each trad-

ing day. The binary output of a learning machine f ðx;oÞ is þ1 for the BUY signal

and �1 for the SELL signal. Then an appropriate (continuous) loss function is

Lðf ðx;oÞ; yÞ ¼ yf ðx;oÞ. This function shows the amount of gain (loss) in the trad-

ing account at the end of each day when the learning machine has made a trading

decision (prediction) f ðx;oÞ. The goal is to minimize total loss (or maximize gain)

over many trading days. Of course, this application can also be formalized as stan-

dard regression problem, where the goal is accurate estimation of a real-valued

function representing daily (percentage) price changes of tradable security, or as

a classification formulation, where the goal is accurate prediction of direction

(UP/DOWN) of daily price changes. However, for learning with finite samples it

is always better to use direct (most appropriate) learning problem formulation.

Note that the system in Fig. 2.7 can be viewed as a generalization of Fig. 2.1, in

the sense that the goal of system ‘‘imitation’’ should be understood very broadly as

the minimization of some loss function, which is defined based on application

requirements. The block diagram in Fig. 2.7 emphasizes the role of (application-

specific) loss function in predictive learning. In addition, the learning system in

Fig. 2.7 clearly suggests the goal of system ‘‘imitation’’ (in the sense of risk mini-

mization). In contrast, the learning system in Fig. 2.1 can be ambiguously inter-

preted either under system identification or under system imitation setting.

Even though the problem specification step cannot be formalized, we can sug-

gest several useful guidelines to aid practitioners in the formalization process. The

block diagram for mapping application requirements onto a learning formulation

(shown in Fig. 2.8) illustrates the top-down process for specifying three important

components of the problem formulation (loss function, input/output variables, and

training/test data) based on application needs. In particular, this may include

1. Quantitative or qualitative description of a suitable loss function, and how this

loss function relates to ‘‘standard’’ learning formulations.

2. Description of the input and output variables, including their type, range, and

other statistical characteristics. In addition to these variables, some applica-

tions may have other variables that cannot be measured (observed) directly or

can only be partially observed. The knowledge of such variables is also

beneficial, as a part of a priori knowledge.

3. Detailed characterization of the training and test data.This includes information

about the size of the data sets, knowledge about data generation/collection

procedures, and so on. More importantly, it is important to describe (and

formalize) the use of training and test data in an application-specific context.

Based on understanding and specification of these three components

(specified above), it is usually possible to specify a set of admissible models

ADAPTIVE LEARNING: CONCEPTS AND INDUCTIVE PRINCIPLES 57

(or approximating functions) shown in Fig. 2.8. Finally, the formal learning pro-

blem statement needs to be related to some theoretical framework (denoted as

Learning Theory in Fig. 2.8). Of course, in practice the formalization process

involves a number of iterations, simplifications, and tradeoffs. The framework

shown in Fig. 2.8 is useful for understanding the relationship between the learning

formulation, application needs, and assumed theoretical paradigm or Learning

Theory (i.e., Statistical Learning Theory is used throughout this book). Such an

understanding is critical for evaluating the quality of predictive models and inter-

pretation of empirical comparisons between different learning algorithms. Several

examples of alternative learning formulations are presented in Chapter 10.

2.4 SUMMARY

In this chapter, we have provided the conceptual background for understanding the

various learning methods presented in this book. Our formulation of the learning

problem mainly follows Vapnik (1995). This formulation is based on the notion

of underlying (unknown) statistical distribution and the expected risk, that is, the

mean prediction error for this distribution. However, this formulation can be chal-

lenged on (at least) two accounts.

First is the problem of whether the underlying distribution is real or just a math-

ematical construct. The fundamental problem is: Does statistics/probability theory

provide adequate characterization of the real-world uncertainty? We can only argue

that for learning problems the statistical formulation is the best known mechanism

Application needs

Loss

function
Input, output,

other variables

Training/

test data

Admissible

models

Formal problem statement

Learning theory

FIGURE 2.8 Mapping application requirements onto a formal learning problem

formulation.

58 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

for describing uncertainty. It may be interesting to note here that the MDL inference

does not rely on the concept of a statistical distribution.

The second problem lies with the notion of prediction risk as a (globally) aver-

aged error. This notion originates from the traditional large-sample statistical

theory. However, in many applications we are only interested in predictions at a

few specific points (of the input space). Clearly, for such applications global mea-

sures (of prediction error) are not appropriate; instead, the transductive formulation

should be used (see Chapter 10).

It is also important to bear in mind that in the formulation of a learning problem,

unknown distributions (dependencies) are fixed (or stationary). This assumption

usually holds in physical systems, where the nature of dependencies does not

depend on the observer’s knowledge about the system. However, social systems

strongly depend on the beliefs of human observers who also participate in system’s

operation. The future behavior of the social systems can be affected by the partici-

pants’ decisions based on the predictive models. As stated by Soros (1991),

‘‘Nature operates independently of our wishes; society, however, can be influenced by

the theories that relate to it. In natural science theories must be true to be effective; not

so in the social sciences. There is a shortcut: people can be swayed by theories.’’

Hence, the assumption about the stationarity of an unknown distribution cannot

hold, and the framework of predictive learning, strictly speaking, cannot be applied

to social systems. In practice, methods for predictive learning are still being widely

applied to social systems, namely by technical analysts in predicting the stock mar-

ket, with varying degrees of success.

Section 2.2 gave an overview of the classical statistical estimation methods.

More comprehensive treatment can be found in the classical texts on pattern recog-

nition (Duda and Hart 2001; Devijver and Kittler 1982; Fukunaga 1990) and kernel

estimation (Hardle 1990). Following Vapnik (1995), we emphasize that for estima-

tion with finite samples it is always better to solve a specific estimation problem

(i.e., classification, regression) rather than solving a general density estimation

problem. This point, although obvious, has not been clearly stated in the classical

texts on statistical estimation and pattern recognition.

Section 2.3 defined and described major concepts for all learning approaches. An

important distinction between a priori knowledge, the inductive principle, and a

learning method is made based on the work in statistics (Friedman 1994a) and

VC theory (Vapnik 1995).

Section 2.3.3 described major inductive principles that form a basis for various

adaptive methods. An obvious question is: Which inductive principle is best for the

problem of learning from samples? Unfortunately, there is no clear answer. Every

major inductive principle has its school of followers who claim its superiority and

generality over all others. For example, Bishop (1995) suggests that MDL can be

viewed as an approximation to Bayesian inference. On the contrary, Rissanen

(1989) claims that the MDL approach ‘‘provides a justification for the Bayesian

techniques, which often appear as innovative but arbitrary and sometimes

SUMMARY 59

confusing.’’ Vapnik (1995) suggests SRM to be superior to Bayesian inference and

demonstrates the close connection between the analytic estimates for prediction risk

obtained using SRM and the MDL inductive principle. This situation is clearly

unsatisfactory. Meaningful (empirical) comparisons could be helpful, but are not

readily available, mainly because each inductive approach comes with its

own set of assumptions and specialized terminology. At the end of Section 2.3.3,

Table 2.1 compares inductive principles, suggesting some similarities for future

reference. Each inductive principle when reasonably applied often yields a good

practical solution. Hence, experts tend to promote their particular approach as

the best.

In learning with finite samples, the use of prior knowledge plays a critical role.

We would like to point out that a priori knowledge can be incorporated in the var-

ious steps of the general procedure given in Section 1.1. This can be done during the

informal stages preceding the mathematical formulation of the learning problem

(given in Section 2.1), which includes specification of the input/output variables,

preprocessing, feature selection, and the choice of approximating functions (of a

learning machine). In this chapter, we were only concerned with including a priori

knowledge for the already defined learning problem. Such knowledge effectively

enforces some ordering on a set of approximating functions, and hence is used to

select a model of optimal flexibility for the given data. Different inductive princi-

ples use different formal representations of a priori knowledge (Table 2.1). Notably,

under the regularization framework (described in Chapter 3), a priori knowledge is

defined in the form of the smoothness properties of admissible models (functions).

Another (more general) approach is SRM (discussed in Chapter 4), where a set of

admissible models forms a nested structure. The concept of structure is very gen-

eral, and the search for universal structures providing good generalization for var-

ious finite data sets is the main practical goal of statistical learning theory. An

example of such a good universal structure (based on a concept of ‘‘margin’’) is

Support Vector Machines (see Chapter 9). However, in many applications a priori

knowledge is qualitative and difficult to formalize. Then the solution may be to gen-

erate additional ‘‘virtual examples’’ that reflect a priori knowledge about an

unknown dependency and to use them as ‘‘hints’’ for training (Abu-Mostafa 1995).

In such a case, the number of virtual examples relative to the size of the original training

sample is used to control the model complexity (see also Section 7.2.1).

Finally, there is an interesting and deep connection between the classical philo-

sophy of science and statistical learning. That is, concepts developed in predictive

learning (such as a priori knowledge, generalization, and characterization of com-

plexity) often have direct (or similar) counterparts in the philosophy of science

(Cherkassky and Ma 2006; Vapnik 2006). We only briefly touched upon this con-

nection in Section 2.3.1. This topic will be further explored in Chapter 4, where we

discuss different interpretations of complexity (VC falsifiability, Popper’s falsifia-

bility, and parsimony), and in Chapter 10 describing new (noninductive) types of

inference.

60 PROBLEM STATEMENT, CLASSICAL APPROACHES, AND ADAPTIVE LEARNING

3
REGULARIZATION FRAMEWORK

3.1 Curse and complexity of dimensionality

3.2 Function approximation and characterization of complexity

3.3 Penalization

3.3.1 Parametric penalties

3.3.2 Nonparametric penalties

3.4 Model selection (complexity control)

3.4.1 Analytical model selection criteria

3.4.2 Model selection via resampling

3.4.3 Bias–variance tradeoff

3.4.4 Example of model selection

3.4.5 Function approximation versus predictive learning

3.5 Summary

When the man lies down on the Bed and it begins to vibrate, the Harrow is

lowered onto his body. It regulates itself automatically so that the needles barely

touch his skin; once contact is made the ribbon stiffens immediately into a rigid

band. And then the performance begins . . . Wouldn’t you care to come a little nearer

and have a look at the needles?

Franz Kafka

In this chapter, we describe the motivation and theory behind the inductive principle

of regularization. Under this approach, the learning machine has a wide (flexible)

class of approximating functions. In order to produce a unique solution for a learn-

ing problem with finite data, this set needs to be somehow constrained. This is done

by penalizing the functions (potential solutions) that are too complex. The formal

procedure amounts to adding a penalization term to the empirical risk to be

minimized. The choice of a penalty is equivalent to supplying a priori (outside

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

61

the data) information about the true (target) function under Bayesian interpretation

(see Section 2.3.3).

Section 3.1 describes the curse and complexity of dimensionality, namely the

inherent difficulty of a high-dimensional function approximation. Using geometri-

cal arguments, it is shown that many intuitive notions (describing sample distribu-

tion and smoothness) valid for low dimensions do not hold in high dimensions.

Section 3.2 provides summary of results from the function approximation

theory and describes a number of measures for function complexity. These measures

will be used to specify the penalty term in the regularization inductive

principle. Namely, complexity constraints on parameters of a set of approximating

functions lead to the so-called parametric penalties (Section 3.3.1), whereas complex-

ity characterization of the frequency domain of a function results in nonparametric

penalties (Section 3.3.2).

The task of choosing the model of optimal complexity for the given data (model

selection) in the framework of regularization is discussed in Section 3.4. Model

selection amounts to choosing the value of the regularization parameter that con-

trols the strength of a priori knowledge (penalty) relative to the (available) data.

An optimal choice provides minimum of the prediction risk. As the prediction

risk is unknown, model selection depends on obtaining accurate estimates of pre-

diction risk. Two distinct approaches to estimating prediction risk, namely analyti-

cal and resampling methods, are presented in Sections 3.4.1 and 3.4.2. Model

selection can also be justified from the frequentist point of view, which is known

as the bias–variance tradeoff, discussed in Section 3.4.3. An example of model

selection for a simple regression problem (polynomial fitting) is presented in Sec-

tion 3.4.4. The regularization approach is commonly applied under predictive learn-

ing setting; however, it has been originally developed under model identification

(function approximation) setting. The distinction between the two approaches

(introduced in Sections 1.5 and 2.1.1) is further explored in Section 3.4.5,

which shows how the two goals of learning may affect the model complexity

control. Section 3.5 provides a summary.

3.1 CURSE AND COMPLEXITY OF DIMENSIONALITY

In the learning problem, the goal is to estimate a function using a finite number

of training samples. The finite number of training samples implies that any esti-

mate of an unknown function is always inaccurate (biased). Meaningful estima-

tion is possible only for sufficiently smooth functions, where the function

smoothness is measured with respect to sampling density of the training data.

For high-dimensional functions, it becomes difficult to collect enough samples

to attain this high density. This problem is commonly referred to as the ‘‘curse

of dimensionality.’’

In the absence of any assumptions about the nature of the function (its behavior

between the samples), the learning problem is ill posed. As an extreme example, let

us look at the regression learning problem using the empirical risk minimization

62 REGULARIZATION FRAMEWORK

(ERM) inductive principle, where the set of approximating functions is all contin-

uous functions. For training data with n samples, the empirical risk is

Remp ¼
1

n

X

n

i¼1
ðyi � f ðxiÞÞ2; ð3:1Þ

where f ðxÞ is selected from the class of all continuous functions.

The solution that minimizes the empirical risk is not unique because there are an

infinite number of functions, from the class of continuous functions, that can inter-

polate the data points yielding the minimum solution. For noise-free data one of

these solutions is the target function, but for noisy data this may not be the case.

Note that the set of approximating functions used in this example is very general

(all continuous functions). In practice, a more restricted set of approximating func-

tions is used. For example, given a set of flexible functions (i.e., a set of large-

degree polynomials or a neural net with a large number of hidden units), there

are still infinitely many solutions under the ERM principle with finite samples.

Hence, with flexible (adaptive) methods there is a need to impose smoothness con-

straints on possible solutions in order to come up with a unique solution. A smooth-

ness constraint essentially defines possible function behavior in local

neighborhoods of the input space. For example, the constraint could simply be

that f ðxÞ should be nearly constant or linear within a given neighborhood. The

strength of the constraint can be controlled by changing the neighborhood size.

The most direct example of this is nearest-neighbor regression. Here, the neighbor-

hood is defined by nearness within the sample space. The k training samples nearest

(in x-space) to the point of estimation are averaged to produce the estimate.

For the general learning problem, the smoothness constraints describe how indi-

vidual samples in the training data are combined by the learning method in order to

form the function estimate. It is obvious that the accuracy of function estimation

depends on having enough samples within the neighborhood specified by smooth-

ness constraints. However, as the number of dimensions increases, the number of

samples needed to give the same density increases exponentially. This could be off-

set by increasing the neighborhood size with dimensionality (increasing the number

of samples falling within the neighborhood), but this is at the expense of imposing

stronger (possibly incorrect) constraints. This is the essence of the ‘‘curse of dimen-

sionality.’’ High-dimensional learning problems are more difficult in practice

because low data density requires the user to specify stronger, more accurate con-

straints on the problem solution.

The ‘‘curse of dimensionality’’ is due to the geometry of high-dimensional

spaces. The properties of high-dimensional spaces often appear counterintuitive

because our experience with the physical world is in a low-dimensional space. Con-

ceptually, objects in high-dimensional spaces have a larger amount of surface area

for a given volume than objects in low-dimensional spaces. For example, high-

dimensional distribution (i.e., hypercube), if it could be visualized, would look

like a porcupine as in Fig. 3.1. As the dimensionality grows larger, the edges

grow longer relative to the size of a central spherical part of the distribution in

CURSE AND COMPLEXITY OF DIMENSIONALITY 63

Fig. 3.1. Following are four properties of high-dimensional distributions that con-

tribute to this problem (Friedman 1994a):

1. Sample sizes yielding the same density increase exponentially with dimension.

Let us assume that for <1, a sample containing n data points is considered a

dense sample. To achieve the same density of points in d dimensions, we need

nd data points.

2. A large radius is needed to enclose a fraction of the data points in a high-

dimensional space. Consider points taken from a d-dimensional uniform

distribution on the unit hypercube. Imagine using another hypercube within

this point cloud to contain a certain fraction of the samples (see Fig. 3.2 for a

low-dimensional example). For a given fraction of samples, it is possible to

determine the edge length of this hypercube using the formula

edðpÞ ¼ p1=d; ð3:2Þ

where p is the (prespecified) fraction of samples. In a 10-dimensional space

(d ¼ 10) if one wishes to enclose 10 percent of the samples, the edge length is

e10ð0:1Þ ¼ 0:80. This shows that very large neighborhoods are required to

capture even small portions of the data.

3. Almost every point is closer to an edge than to another point. Consider a

situation where n data points are uniformly distributed in a d-dimensional ball

FIGURE 3.1 Conceptually, high-dimensional data look like a porcupine.

FIGURE 3.2 Both gray regions enclose 10 percent of the samples, but the edge length of

the regions increases with increasing dimensionality.

64 REGULARIZATION FRAMEWORK

with unit radius. For these data, the median distance between the center of the

distribution (the origin) and the closest data point is (Hastie et al. 2001)

Dðd; nÞ ¼ 1� 1

2

1=n� �1=d

: ð3:3Þ

For 200 samples in a 10-dimensional space, the median distance

Dð10; 200Þ � 0:57, so the nearest point to the origin tends to be over half

way from the origin to the radius, and therefore closer to the boundary of

the data. Note that a hypercube distribution would exhibit even higher median

distances due to its shape.

Aside: This so-called curse of high-dimensional spaces is actually a boon

in the field of signal processing/communications. Digital signals transmitted

over a band-limited channel (i.e., telephone lines) can be viewed geometri-

cally as a constellation of points in d-dimensional space. Higher bit transmis-

sion rates can be achieved (at a given error rate) by using signal constellations

with large interpoint distances. The speed gains in present-day modems are

due in large part to the discovery of high-dimensional signal constellations.

4. Almost every point is an outlier in its own projection. This is illustrated

conceptually in Fig. 3.1. To someone standing on the end of a ‘‘quill’’ of the

porcupine, facing the center of the distribution, all the other data samples will

appear far away and clumped near the center. For a numerical example,

consider points in the input space taken from the standard normal distribution,

x�Nð0; IdÞ, where Id is the d-dimensional identity matrix. The Euclidean

distance squared from any point to the origin follows a chi-squared distribu-

tion with d degrees of freedom (Hoel et al. 1971). The expected Euclidean

distance is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d � 1=2
p

and the standard deviation is 1=
ffiffiffi

2
p

. Let us assume now

that we have some training data, where n points in the input space are selected

based on the standard normal distribution xi; i ¼ 1; . . . ; n. Assume that we

have a single data point x0, also selected from the standard normal distribu-

tion, at which we would like to make a prediction. Consider a unit vector

a ¼ x0=jx0j in the direction defined by the prediction point and the origin. Let

us project the training data onto this direction:

zi ¼ aTxi; i ¼ 1; . . . ; n: ð3:4Þ

Using the chi-squared distribution, the expected location of the prediction

point in this projection is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d � 1=2
p

with a standard deviation of 1=
ffiffiffi

2
p

.

The projected training data points will follow a standard normal distribution

zi � Nð0; 1Þ because the training points are unrelated to the direction of the

projection. As the dimension of the input space increases, the distance

between the prediction point and the cluster of projected training points

increases. For example, when d ¼ 10, the expected value of the prediction

point is 3.1 standard deviations away from the center of the training data in

CURSE AND COMPLEXITY OF DIMENSIONALITY 65

this projection. When d ¼ 20, the distance is 4.4 standard deviations. From

this standpoint, the prediction point looks like an outlier of the training data.

This curse of dimensionality has serious consequences when dealing with finite

number of samples in a high-dimensional space. From properties 1 and 2, we see

the difficulty in making local estimates for high-dimensional samples. Properties 3

and 4 indicate the difficulty in predicting a response at a given point because any

point will on average be closer to an edge than to the training data point and thus

require extrapolation by the learning machine.

There are some mathematical theorems of function approximation theory that,

on first glance, seem to contradict the curse of dimensionality. For example, Kol-

mogorov’s theorem states that any continuous function of multiple arguments can

be written as a function of a single argument

f ðx1; . . . ; xdÞ ¼
X

2dþ1

j¼1
gf

X

k

i¼1
aigjðxiÞ

 !

; ð3:5Þ

where the univariate function gf completely specifies the function f . This theorem

indicates that describing a function using multiple arguments (high dimensions)

versus one argument is simply a choice of representation The fact that any high-

dimensional function can be written as a decomposition of univariate functions

seems to imply that the curse of dimensionality does not exist. However, an impor-

tant point missing in this argument is the issue of function complexity. The com-

plexity of a function can be described in terms of its smoothness because for

smoother functions fewer data points are required for an accurate estimation.

There is no reason to assume (within the space of all continuous functions) that

one-dimensional functions are less complex, and therefore easier to approximate,

than functions of higher dimensions. Equation (3.5) indicates that multidimensional

functions can be written in terms of one-dimensional functions, but it says nothing

about the resulting complexity of these one-dimensional functions. Hence, the Kol-

mogorov theorem has little relevance to understanding learning systems.

We can conclude the following:

� A function’s dimensionality is not a good measure of its complexity.

� High-dimensional functions have the potential to be more complex than low-

dimensional functions.

� There is a need to provide a characterization of a function’s complexity that

takes into account its smoothness and dimensionality.

3.2 FUNCTION APPROXIMATION AND CHARACTERIZATION

OF COMPLEXITY

In this section, we present a summary of important results from the field of func-

tion approximation. This field is concerned with representation (approximation) of

66 REGULARIZATION FRAMEWORK

functions (from a wide class) using some specified class of ‘‘basis’’ functions.

A classical example is the well-known Weierstrass theorem stating that

any continuous function on a compact set can be uniformly approximated by a

polynomial; in other words, for any such function f ðxÞ and any positive e,

there exists a polynomial of degree m, pmðxÞ, such that k f ðxÞ � pmðxÞ k< e for

every x.

There are two types of approximation theory results relevant to the problem of

learning from samples:

1. Universal approximation results, stating that any (continuous) function can be

accurately approximated by another function from a given class (i.e., as in the

Weierstrass theorem stated above). There are many classes of functions that

have such a universal approximation property. Most universal approximators

discussed in this book (and elsewhere) represent a linear combination of basis

functions:

fmðx;wÞ ¼
X

i¼0
wigiðxÞ; ð3:6Þ

where gi are the basis functions and w ¼ ½w0; . . . ;wm�1� are parameters.

Universal approximators include these specific types:

� Algebraic polynomials

fmðx;wÞ ¼
X

i¼0
wix

i: ð3:7Þ

� Trigonometric polynomials

fmðx; vm;wmÞ ¼
X

i¼1
vi sinðixÞ þ

X

i¼1
wi cosðixÞ þ w0: ð3:8Þ

� Multilayer networks

fmðx;w;VÞ ¼ w0 þ
X

m

j¼1
wj g v0j þ

X

d

i¼1
xivij

 !

: ð3:9Þ

� Local basis function networks

fmðx; v;wÞ ¼
X

i¼0
wi Ki

k x� vi k
a

� �

: ð3:10Þ

FUNCTION APPROXIMATION AND CHARACTERIZATION OF COMPLEXITY 67

The semiparametric characterization (3.6) is also known as the dictionary

method (Friedman 1994a) because the choice of the type of basis functions

corresponds to a particular dictionary.

In the context of learning from finite samples, one needs to estimate an

unknown (target) function in the class of approximating functions (specified

a priori). Hence, the universal approximation property is a necessary condi-

tion for a set of approximating functions of the learning machine in the gen-

eral formulation in Chapter 2. However, this property is not sufficient for

accurate learning with finite samples.

2. Rate-of-convergence results, which relate the (best achievable) accuracy of

function approximation with some measure of the (target) function smoothness

(complexity) and its dimensionality. These results provide very crude estimates

for the problem of learningwith finite samples. Ourmain interest here is to show

how various characterizations of function’s complexity affect its approximation

accuracy, especially in high-dimensional settings, as discussed next.

Classical approaches to characterization of a function’s complexity are based on

the following framework:

1. Define the measure of complexity for a class of target functions. This class of

functions should be very general, so that it is likely to include most target

functions in real-life applications.

2. Specify a class of approximating functions of a learning machine. For

example, choose a particular dictionary in representation (3.6). This dic-

tionary should have ‘‘the universal approximation’’ property. Flexibility of

approximating functions is specified by the number of basis functions m.

3. Estimate the (best possible) asymptotic rate of convergence, defined as the

accuracy of approximating an arbitrary function (1) in the class (2); in other

words, estimate how quickly the approximation error of a method (2) goes to

zero when the number of its parameters grows large. It is of particular interest

to see how the rate of convergence depends on the dimensionality of the class

of functions (1). It should be emphasized that here the focus is on the

approximation of functions (i.e., the goal is to approximate a function from

space 1 by the functions from space 2), rather than the usual goal of function

estimation from finite noisy samples. Good (fast) asymptotic rate of conver-

gence is not a sufficient condition for accurate estimation from finite samples.

The first classical measure of function’s complexity uses the number s of con-

tinuous derivatives of a function to characterize its smoothness. Extensive known

results for approximating such functions using a class of approximating functions

parameterized by m parameters (Lorentz 1986; DeVore 1991; Girosi et al. 1995) are

summarized next.

For approximating a d-variable function with continuous derivatives, the best

achievable approximation accuracy (rate of convergence) is Oðm�s=dÞ. This bound

68 REGULARIZATION FRAMEWORK

has been originally derived for estimators (step 2) linear in parameters (i.e., poly-

nomial or trigonometric expansions) but also holds true for nonlinear estimators.

Note that for a given approximation error the number of parameters exponen-

tially increases with d (for a fixed measure of ‘‘complexity’’ s). It implies that

the number of samples needed for accurate estimation of m parameters also grows

exponentially with dimensionality d. This result constitutes the curse of dimension-

ality (Bellman 1961). It is perhaps more accurate to view the ratio d=s as the com-

plexity index of the possible tradeoff between the smoothness and dimensionality.

Fast rate of convergence for high-dimensional problems can be obtained, in princi-

ple, by imposing stronger smoothness constraints.

Another measure of function’s complexity uses a frequency content of a target

function (signal) as a measure of its wiggliness/smoothness. It may be instructive

here to recall the standard procedure for recovering a bandwidth-limited continuous

signal (univariate function) from samples. The sampling theorem states that a (uni-

variate) function f ðxÞ can be recovered from samples if the sampling frequency is

(at least) twice the largest frequency (i.e., the bandwidth) of a signal. Let us inter-

pret this result in the context of learning from samples. The sampling theorem

establishes a connection between the (known) complexity of a target function

(i.e., its bandwidth) and the minimum number of samples needed for the function’s

unique and accurate estimation (recovery). The actual estimation procedure is based

on Fourier transform and can be found in any standard text on signal processing.

Note that sampling rates defined for univariate (time) signals can be extended to

multivariate functions. In particular, consider a function of d variables on a [0, 1]

hypercube that contains no frequency components larger than cmax in each input

dimension. We need ½2cmax�d samples to restore the function. This result is a resta-

tement of the curse of dimensionality: We need to increase the number of samples

exponentially with dimensionality. Equivalently, in order to be able to estimate

high-dimensional functions with limited samples, their bandwidth needs to decrease

as the dimensionality of the input space is increased.

There are two major assumptions behind the sampling theorem: fixed sampling

rate (i.e., samples uniformly sampled in x-space) and noise-free training data. These

assumptions do not hold for the learning problem, that is, the training samples are

generated according to (unknown) distribution in x, and the y-values of training

samples are corrupted by noise (with unknown distribution). Hence, in the general

setting of the learning problem, accurate reconstruction of the target function from

samples is not possible, even for bandwidth-limited signals.

Another characterization of a function’s smoothness in terms of the properties of

its Fourier transform is due to Barron (1993), who defines smooth functions as func-

tions with a bounded first absolute moment of the Fourier transform:

Cf ¼
ð

js k ~f ðsÞjds; ð3:11Þ

where the tilde indicates a Fourier transform. Under this condition, the approxima-

tion error achieved by the feedforward neural network estimator is Oð1= ffiffiffiffi

m
p Þ

FUNCTION APPROXIMATION AND CHARACTERIZATION OF COMPLEXITY 69

(independent of dimensionality!). This result is often compared with classical rate

of convergence Oðm�s=dÞ and then (erroneously) interpreted as an indication that

neural networks can overcome the curse of dimensionality. In fact, this conclusion

is not true because the condition Cf <1 imposes increasingly stronger smoothness

constraints as the dimensionality increases. The connection with classical results

becomes clear by noting that functions satisfying Barron’s condition are those

that have dd=2e þ 2 continuous derivatives (Barron 1993). Hence, Barron’s results

simply quantify the tradeoff between the smoothness and dimensionality.

We can conclude that the classical definitions of smoothness (complexity) via

fixed number of continuous derivatives, and more recent notions of smoothness

based on the magnitude of Fourier transform, scale very poorly with dimensionality.

This problem seems to result from extending the global complexity measures ori-

ginally proposed for low-dimensional functions to high-dimensional settings.

Hence, the convergence rate estimates are based on the worst-case assumption

that a function has a given level of smoothness everywhere in x-space. For a given

(fixed) level of smoothness, the function’s complexity grows exponentially with

dimensionality because the volume of high-dimensional space grows exponentially

with d.

Hence, under function approximation framework, accurate estimation of high-

dimensional target functions with finite data becomes possible only by imposing

stringent restrictions on function’s smoothness in high dimensions (Barron 1993).

Another approach is to adopt the predictive learning framework, where the goal

of learning is system imitation rather than system identification. Then, the flexibil-

ity of approximating functions can be measured in terms of their ability to fit the

finite data. This leads to the measure of complexity called the Vapnik–Chervonen-

kis (VC) dimension described in Chapter 4. As shown later in Chapters 4 and 9, the

notion of VC dimension is more suitable for learning problems than classical com-

plexity measures discussed in this section.

3.3 PENALIZATION

The penalization approach provides a formalism for adjusting (controlling) com-

plexity of approximating functions to fit available (finite) data. It is typically

employed with adaptive methods using wide (flexible) set of approximating func-

tions in situations where the true parametric form is unknown. However, as shown

in Section 2.3.2, penalization may also be useful when the parametric model is

known, but the number of samples is small.

In Section 2.3.3, we introduced the regularization (or penalization) inductive

principle. In this approach, a wide (flexible) set of functions is used for the approx-

imation with additional constraints (penalties) based on the complexity of each

member of the set. The risk (to be minimized) for the regularization inductive prin-

ciple is formulated as

RpenðoÞ ¼ RempðoÞ þ lf½f ðx;oÞ�: ð3:12Þ

70 REGULARIZATION FRAMEWORK

This risk is written as the sum of the empirical risk for the specific learning task

(regression, classification, or density estimation) and a penalty term. The functional

f½f ðx;oÞ� assigns a nonnegative number for each function supported by the learn-

ing machine. The penalty functional is constructed so that it has smaller values for

smooth functions and larger values for nonsmooth functions f ðx;oÞ. The first term
in (3.12) is enforcing closeness of the approximating function to the data, and the

second term is enforcing smoothness, as measured by the penalty functional. The

regularization parameter l gives an adjustment of the strength of the penalty criter-

ion and controls the tradeoff between the two terms in (3.12). For a given value of l,

the risk Rpen is minimized based on the training data. The optimal value of the reg-

ularization term l is chosen using estimates for the prediction risk based on analy-

tical arguments or data resampling (described in Section 3.4).

In summary, in the penalization approach there are four distinct issues related to

the following choices:

1. Class of approximating functions f ðx;oÞ: The usual choices are between a

class of all continuous functions and a (wide) class of parametric functions.

2. Type of penalty functional: Different penalty functionals can be used to

control function smoothness. They fall into two classes, parametric and

nonparametric, which are used to constrain the class of parametric approx-

imating functions and the class of continuous functions, respectively. The

parametric penalty functionals measure the smoothness or complexity of a

function indirectly by imposing constraints on the parameters of approximat-

ing functions. Nonparametric penalties are functionals that measure function

smoothness directly based on differential operators. Despite the different

mathematical description, there is a close connection between the two types

of penalties because the choice of particular nonparametric penalties deter-

mines the class of approximating functions supported by a Learning Machine.

A priori knowledge about the target function is necessary in order to make a

specific penalty functional choice, which is outside the scope of the (formal)

regularization framework.

3. Method for (nonlinear) optimization or minimization of Rpen: For a given

value of l, optimization gives a solution flðx;w�Þ providing the minimum of

(3.12). There are several types of methods for nonlinear optimization, none of

which usually guarantees a globally optimal solution. Optimization methods

are closely related to specific learning methods (i.e., a chosen class of

approximating functions) and hence will be discussed in later chapters.

4. Method for complexity control: For a given (prespecified) penalty f½f �, the
model complexity is controlled by the choice of regularization parameter l.

An optimal choice of model complexity (parameter l) corresponds to solution

flðx;w�Þ providing minimal prediction risk. As the prediction risk is

unknown, it needs to be estimated from available (finite) data. Hence,

methods for model selection (discussed in Section 3.4) are concerned with

accurate estimation of prediction risk.

PENALIZATION 71

3.3.1 Parametric Penalties

Let us assume that the learning machine implements a set of functions f ðx;wÞ,
w 2 �, where � is a set of parameters that take the form of vectors

w ¼ ½w0; . . . ;w� of length mþ 1. As the parameters w 2 � completely specify

each supported function, the penalty functional can be written as a function of

these parameters:

f½f ðx;wmÞ� ¼ fðwmÞ: ð3:13Þ

Two popular examples of penalty functions in this form are

frðwmÞ ¼
X

i¼1
w2
i ‘‘ridge; ’’ ð3:14Þ

fsðwmÞ ¼
X

i¼1
Iðwi 6¼ 0Þ ‘‘subset selection; ’’ ð3:15Þ

where I() denotes the indicator function. Here we assume that w0 is the bias term

and so does not affect the penalty function. The ridge penalty encourages solutions

that have small parameter values. In the Bayesian interpretation of penalty func-

tions (given in Section 2.3.3), this would correspond to a Gaussian prior probability

distribution on the parameters centered at zero, with covariance matrix lI, where I

is the identity matrix. The subset selection penalty encourages solutions that have a

large number of parameters with zero value. For practical applications, penalty

functions are chosen so that they provide a reasonable estimate of function com-

plexity and are compatible with numerical optimization approaches. The ridge pen-

alty function is a continuous function of the parameters, so it will be compatible

with numerical optimization provided that RempðwmÞ is a continuous function of

continuous valued parameters wm. As the subset selection penalty function is dis-

continuous (due to the indicator function), combinatorial optimization is required to

obtain a solution. One way to avoid the combinatorial problem is to approximate

the discontinuous penalty by a continuous one (Friedman 1994a). Two examples

are

fpðwmÞ ¼
X

i¼1
jwijp ‘‘bridge; ’’ ð3:16Þ

fqðwmÞ ¼
X

i¼1

ðwi=qÞ2

1þ ðwi=qÞ2
‘‘weight decay:’’ ð3:17Þ

These penalties are of a general form, with the ridge and subset selection penalties

as special cases. For example, the bridge penalty is equivalent to the ridge penalty

when p ¼ 2, and it is equivalent to the subset selection penalty when p! 0. Like-

wise, the weight decay penalty approaches the ridge penalty as q!1 and

72 REGULARIZATION FRAMEWORK

approaches the subset selection penalty as q! 0. During the optimization process,

the parameter p or q can be adjusted so that the solution gradually approaches to the

one given by subset selection. However, subset selection should not be approached

too closely because many local minima in the objective function can lead to diffi-

cult numerical optimization.

3.3.2 Nonparametric Penalties

Nonparametric penalties attempt to measure the smoothness of a function directly

using a differential operator. To define such a penalty, the meaning of smoothness

must be defined. The smoothness can be defined in terms of the wiggliness of a

function measured in the frequency domain (Girosi et al. 1995). The number of

high-frequency components measures the function smoothness. In this case,

smoothness is measured by applying a high-pass filter to the function and determin-

ing the signal output power. This is represented by the functional

f½f � ¼
ð

<d

j~f ðsÞj2
~GðsÞ

ds; ð3:18Þ

where the tilde indicates the Fourier transform and 1=~G is the transform function of

a high-pass filter. Under certain conditions on G, it can be shown that the functions

that minimize the regularization risk

Rregðf Þ ¼
X

n

i¼1
½f ðxiÞ � y1�2 þ lf½f ðxÞ� ð3:19Þ

correspond to commonly used classes of basis functions for learning machines

(Girosi et al. 1995). This implies that each different method (functional) for

measuring complexity leads to a different set of approximating functions. For

example, a rotationally invariant functional that satisfies the equation

f½f ðxÞ� ¼ f½f ðRxÞ� ð3:20Þ

for any rotation matrix R corresponds to approximating functions constructed from

radial basis functions Gðk x kÞ. Similar equivalence between approximating class

and penalty functionals has been shown for tensor products and additive functions

(Girosi et al. 1995). This interpretation leads to an interesting insight into the selec-

tion of the class of approximating functions. Namely, the selection of a class of

functions for a learning machine implicitly defines a regularization procedure

(for continuous functions) with a penalty functional.

3.4 MODEL SELECTION (COMPLEXITY CONTROL)

Model selection is the task of choosing a model of optimal complexity for the given

(finite) data. Under the penalization formulation, the complexity is determined by

MODEL SELECTION (COMPLEXITY CONTROL) 73

the choice of a penalty lf½f � in (3.12). The selection of appropriate penalty func-

tional f½f � and the value of regularization parameter l should be made in such a

way that an estimate found by minimizing functional (3.12) provides minimum

of the prediction risk.

Solution f ðx;o�Þ found by minimizing (3.12) depends on the first (data) term

and the second (penalty) term. The best penalty functional f½f � should reflect

(known a priori) properties of a target function so that the penalty is small when

f ðx;o�Þ is close to the target function, and large otherwise. However, a priori

knowledge cannot completely determine the target function, otherwise there is no

need for predictive learning. Under the classical Bayesian paradigm, both f½f � and
l are chosen based on a priori knowledge, so by definition the observed data are not

used for model selection. Recall that in classical estimation theory the task of spe-

cification is left to the user. This approach assumes a correctly specified prior dis-

tribution that is quite difficult to accomplish in practice. Usually, we have little

knowledge about the unknown function, and such a priori knowledge is difficult

to describe formally in terms of a penalty. Moreover, even when a priori knowledge

completely specifies the parametric form, one still needs to adjust model complex-

ity to finite data (as pointed out in Section 2.3.2).

To make learning machines more ‘‘data-driven’’ and flexible, the observed data

are used to select the regularization parameter l, whereas the penalty functional

f½f � is user-defined. Hence, model selection amounts to choosing the value of l

from data so as to minimize an estimate of the prediction risk. Under this approach,

called ‘‘empirical’’ Bayesian, the observed data are used to regulate the strength of

the a priori assumptions through (data-driven) selection of l. This makes the learn-

ing procedure more forgiving to incorrect a priori assumptions. Hence, the task of

model selection under the regularization inductive principle is to determine the

value of l such that minimization of the functional (3.12) produces a solution

f ðx;o�Þ that has minimal prediction risk. The problem, of course, is how to esti-

mate the prediction risk from (finite) data. There are several general approaches for

doing this. One is to use analytical results based on asymptotic (as n!1) esti-

mates of the prediction risk as a function of the empirical risk (training error) pena-

lized (adjusted) by some measure of model complexity. The other approach is based

on data resampling (cross-validation). Both approaches (analytic and resampling)

are discussed later in this chapter. A different approach providing guaranteed

(upper-bound) estimates of prediction risk is developed in statistical learning theo-

ry, as discussed in Chapter 4. Once a method for estimating prediction risk is cho-

sen, it can be used for model selection by minimizing the functional (3.12) for a

sequence of l-values and choosing the value of l that produces a solution

flðx;o�Þ corresponding to minimal (estimated) prediction risk.

For finite samples, accurate model selection is a difficult statistical problem. The

variability between the regularization parameter l* chosen via an estimate of the

prediction risk and the best parameter l0 that minimizes the prediction risk is large.

This is due to the inherent variability of finite samples: Results of any model

selection procedure depend on the training data. A different sample (from the

same distribution) can produce a very different model.

74 REGULARIZATION FRAMEWORK

With most practical learning methods, the penalty f½f � is not explicitly defined

using penalization formulation (3.12) but is implicit in the choice (parameteriza-

tion) of approximating functions f ðx;oÞ. In particular, many popular methods

use semiparametric characterization as a linear combination of basis functions,

such as (3.6)–(3.10). In such methods, the parametric form of the basis functions

corresponds to the choice of a penalty, whereas the number of terms (basis func-

tions) in a linear combination (3.6) controls flexibility (complexity) of a model,

and hence corresponds to the regularization parameter l.

3.4.1 Analytical Model Selection Criteria

Analytical model selection is based on using analytical estimates of the prediction

risk. In the statistical literature, a number of these prediction risk estimates have

been proposed for model selection. The form of these estimates is dependent on

the class of approximating functions supported by the learning machine. The

most commonly known criteria apply to linear estimators for regression. With lin-

ear estimators, it is possible to determine the effective number of free parameters

(degrees of freedom), which is a requirement for most analytical selection criteria.

We will discuss linear estimators (for regression) in Section 7.2 but provide a brief

introduction here in order to explain the analytical model selection technique. A

regression estimator is linear if it obeys the superposition principle, namely

f0ðay0 þ by00jXÞ ¼ a f1ðy0jXÞ þ b f2ðy00jXÞ ð3:21Þ

holds for nonzero a and b, where f0, f1, and f2 are three estimates from the same set

of approximating functions (of the learning machine), X ¼ ðx1; . . . ; xnÞ are predic-
tor samples, and y0 ¼ ðy01; . . . ; y0nÞ and y00 ¼ ðy001; . . . ; y00nÞ are two response values.

The approximations provided by the linear estimator for the training data can be

written as

f ðX;oÞ ¼ Sy; ð3:22Þ

where the vector y ¼ ðy1; . . . ; ynÞ contains the n response samples, the matrix

X ¼ ðx1; . . . ; xnÞ contains the predictor samples, and the matrix S is an n� n

matrix that transforms the response values into estimates for each sample. The

matrix S is often called the ‘‘hat’’ matrix because it transforms responses into esti-

mates. Linear estimators include two practically important classes of functions:

functions linear in parameters and kernel smoothers (with fixed kernel width).

For kernel smoothers, each element of the matrix Sa corresponds to the kernel func-

tion (with bandwidth a) evaluated at all predictor pairs:

ðSaÞij ¼ Kaðxi; xjÞ; i ¼ 1; . . . ; n; j ¼ 1; . . . ; n: ð3:23Þ

For estimators linear in parameters, the matrix S is determined using the data via

S ¼ XðXTXÞ�1XT: ð3:24Þ

MODEL SELECTION (COMPLEXITY CONTROL) 75

The rows of this matrix can be interpreted as the equivalent kernels for the

estimator.

When regularization is applied to linear estimators, the resulting estimation pro-

cedure may still be linear, depending on the choice of penalty functional. For exam-

ple, consider the ridge regression risk functional

RridgeðwÞ ¼
1

n

X

n

i¼1
ðyi � w � xiÞ2 þ

l

n
ðw � wÞ: ð3:25Þ

For a given penalty strength l, the solution that minimizes (3.25) is a linear estima-

tor with the ‘‘hat’’ matrix

Sl ¼ XðXTXþ lIÞ�1XT: ð3:26Þ

Using the theory of linear estimators, it is possible to develop measures of

the number of degrees of freedom based on the matrix Sl (see Section 7.2). One

measure is the number of degrees of freedom given by

DoF ¼ traceðSlSTl Þ: ð3:27Þ

Based on the theory of linear estimators, both the kernel width a of a kernel esti-

mator and the penalty strength l of ridge regression (3.25) directly relate to the

degrees of freedom DoF for a specific data set (Hastie and Tibshirani 1990). In

practice, degree of freedom DoF is often used to parameterize complexity, instead

of a or l, because this quantity (DoF) can be determined for any type of linear esti-

mator. Therefore, model selection for linear estimators corresponds to choosing the

correct number of degrees of freedom to minimize an estimate of expected risk.

Many analytical model selection criteria (i.e., estimates of expected risk) for lin-

ear regression estimators can be written as a function of the empirical risk penalized

(adjusted) by some measure of model complexity:

RðoÞ ffi r
DoF

n

� �

Remp; ð3:28Þ

where r is a monotonically increasing function of the ratio of degrees of freedom

DoF and the training sample size n (Hardle et al. 1988). The empirical risk Remp is

the mean squared error for training data. The function r is often called a penaliza-

tion function1 because it inflates the empirical risk for increasingly complex mod-

els. The following forms of r have been proposed in the statistical literature:

� Final prediction error (fpe; Akaike 1970)

rðpÞ ¼ ð1þ pÞð1� pÞ�1: ð3:29Þ

1Not to be confused with the penalization functional used in regularization.

76 REGULARIZATION FRAMEWORK

� Schwartz criterion (sc; Schwartz 1978)

rðp; nÞ ¼ 1þ pð1� pÞ�1 ln n: ð3:30Þ

� Generalized cross-validation (gcv; Craven and Wahba 1979)

rðpÞ ¼ ð1� pÞ�2: ð3:31Þ

� Shibata’s model selector (sms; Shibata 1981)

rðpÞ ¼ 1þ 2p; ð3:32Þ

where p ¼ DoF=n.

These criteria are based on information theory (such as sc and fpe) or statistical

arguments (gcv, sms, and sc). The gcv criterion is an analytical estimate of the pre-

diction risk as estimated via cross-validation. Most model selection criteria have

been derived under probabilistic (density estimation) framework and have an addi-

tive form, that is, error termþ penalty. These general criteria can be adapted to

regression problems (with additive Gaussian noise), leading to multiplicative

form (3.28) with specific penalization factors (3.29)–(3.32). All these criteria are

motivated by asymptotic arguments (as sample size n!1) for linear estimators

and therefore apply well for large training sets. In fact, for large n, prediction esti-

mates provided by fpe, gcv, and sms are asymptotically equivalent and have a Tay-

lor expansion of the form

rðpÞ ¼ 1þ 2pþ Oðp2Þ: ð3:33Þ

These estimates are asymptotically unbiased under the assumptions that the noise is

independent and identically distributed (iid) and that the estimation method is

unbiased; that is, the set of approximating functions contains the true one. However,

these criteria are also applied in practical situations when the underlying assump-

tions do not hold. In particular, they are applied when the model may be biased and

the number of samples is finite.

For finite samples, the variability between the degrees of freedom DoF* chosen

via any of the above criteria and the best parameter DoF0 that minimizes the pre-

diction risk is large. For nonparametric kernel smoothing, this effect has been quan-

tified via an analytical proof. In terms of the bandwidth of kernel estimators, it can

be shown (Hardle et al. 1988) that the relative difference between the optimal band-

width and the bandwidth selected via any (asymptotic) model selection technique is

of the order n�1=10, where n is the sample size. This indicates that extremely large

increases in sample size are needed for minor improvements in finding DoF* for

these model selection techniques. An important area of current research is the

development of criteria for finite samples. Most notable are the bounds on general-

ization provided by statistical learning theory presented in Section 4.3.

MODEL SELECTION (COMPLEXITY CONTROL) 77

3.4.2 Model Selection via Resampling

Resampling methods make no assumptions on the statistics of the data or on the

type of a target function (being estimated). The basic approach is first to estimate

a model using a portion of the training data and then to use the remaining samples

to estimate the prediction risk for this model. The first portion of the data (nl sam-

ples used for model estimation or learning) is called a learning set, and the second

portion of the data with nv ¼ n� nl samples is a validation set. The various imple-

mentations of resampling differ according to strategies used to divide the training

data.

The simplest approach is to split the data (randomly) into two portions (i.e., 70

percent for learning and 30 percent for validation). The prediction risk is then esti-

mated using the average loss on the validation set, or validation error:

RðoÞ ffi RvðoÞ ¼
1

nv

X

nv

i¼1
Lðyi; flðxi;o�ÞÞ; ð3:34Þ

where flðx;o�Þ is the model estimated using the learning set, namely the solution

found by minimizing (3.12) for a given value of l. The goal is to find l such that the

corresponding model estimate flðx;o�Þ provides smallest prediction risk given by

(3.34).

The above (naive) strategy is based on the assumption that the learning set and

the validation set chosen in this manner are representative of the (unknown) distri-

bution pðx; y. This is usually true for large data sets, but the strategy has an obvious

disadvantage that only part of all data is used for training. With smaller number of

samples, the specific method of splitting the data (choice of nl, and particular sam-

ple partitioning) starts to have an impact on the accuracy of an estimate (3.34). One

approach to make this estimate invariant to a particular partitioning of the samples

is to perform this estimate for all
n

nl

� �

possible partitionings and average these

estimates. This strategy is called cross-validation. From a computational point of

view, it is usually impractical, except in the case of nv ¼ 1 (called leave-one-out

cross-validation). An even more practical approach (known as k-fold cross-valida-

tion) is to divide the data into k (randomly selected) disjoint subsamples of roughly

equal size nv ¼ n=k. Typical choices for k are 5 and 10. Note that leave-one-out

cross-validation is a special case of k-fold cross-validation. Following is an algo-

rithmic description of k-fold cross-validation given training data Z ¼ ½X; y�, where
X ¼ ½x1; . . . ; xn� and y ¼ ½y1; . . . ; yn� of sample size n, and assuming the squared

error loss function.

1. Divide the training data Z into k disjoint samples of roughly equal size,
Z1;Z2; . . . ;Zk .

2. For each validation sample Zi of size n=k ,

(a) Use the remaining data, Zl ¼ [
j 6¼i
Zj to construct an estimate f i .

78 REGULARIZATION FRAMEWORK

(b) For the regression estimate f i , sum the empirical risk for the data Zi

‘‘left out’’:

ri ¼
k

n

X

zi

ðfiðxÞ � yÞ2 :

3. Compute the estimate for the prediction risk by averaging the empirical
risk sums for Z1;Z2; . . . ;Zk :

RðoÞ ffi RcvðoÞ ¼
1

k

X

k

i¼1
r i :

There is empirical evidence that k-fold cross-validation gives better results than

leave-one-out (Breiman and Spector 1992). This is rather surprising because the

leave-one-out approach is computationally more expensive (by a factor n=k).
The main advantage of using resampling approaches for model selection over the

analytical approaches mentioned in the previous section is that they do not depend

on assumptions about the statistics of the data or specific properties of approximat-

ing functions. The main disadvantages of cross-validation are high computational

effort and variability of estimates, depending on the strategy for choosing nl.

This section describes the application of resampling methods for model selec-

tion, that is, choosing the value of regularization parameter l for a given type of

penalty f½f � in formulation (3.12). This is the problem of choosing the optimal

model complexity for a given learning method defined by a class of approximating

functions (of a learning machine). However, resampling methods are also often

used for comparing different learning methods, namely solutions to the learning

problem (3.12) for different penalties f½f � or different classes of approximating

functions. It is important to keep in mind that for such comparison (of methods)

resampling serves two distinct purposes:

� Model selection (complexity control) for each method

� Comparisons among the methods (or types of penalties in penalization

formulation)

In particular, one cannot use the minimum value of prediction risk Rregðl�Þ found
for model selection for comparing prediction accuracy of several methods. Such an

estimate of prediction risk Rregðl�Þ tends to be optimistic. An honest estimate of the

prediction risk for a given method can be found by the following ‘‘double-resam-

pling’’ procedure (Friedman 1994a):

� Step 1: Divide the available data into a training sample and a test sample. The

training sample is used for learning (model estimation), whereas the test

sample is used only for estimating the prediction risk of the final model.

� Step 2: In selecting a model of optimal complexity, divide the training sample

into a learning sample and a validation sample. The learning sample is used to

MODEL SELECTION (COMPLEXITY CONTROL) 79

estimate model parameters (via ERM), and the validation sample is used for

selecting an optimal model complexity (usually via cross-validation).

This double-resampling procedure provides an unbiased estimate of the

prediction risk; however, it may be highly variable due to variability of finite

samples and the choice of data partitioning.

In this section, distinction between training and test data is introduced assuming a

given (inductive) learning problem setting, that is, a regression problem. However,

recall that the notions of training and future (test) data are also important on the level

of the learning problem formulation (as discussed in Section 2.3.4). This distinction is

conceptually very important, as it may lead to novel learning formulations and non-

inductive learning settings i.e, transduction. See Section 10.2 later. On the contrary,

partitioning of the training data into learning and validation subsets simply reflects

technical implementation of model complexity control (adopted by a particular learn-

ing method). In particular, with analyticmodel selection, there is no need for the sec-

ond step (i.e., resampling for complexity control); however, partitioning into training/

test data samples is still necessary for evaluating predictive models. For these reasons,

in the rest of this book we adopt a commonly used terminology training/validation/

test data, where the validation samples may be independently generated (i.e., with

synthetic data) or are obtained via resampling (from the training data).

3.4.3 Bias–Variance Tradeoff

The bias–variance decomposition of the approximation error is a useful principle

for understanding the effect of different values of l for a particular learning

machine. For the regression learning problem using L2 (squared error) loss, the

approximation error can be decomposed as the sum of two terms that quantify

the error due to estimation from finite samples (variance) and error due to mismatch

between target function and approximating function (bias squared or simply bias).

The training set used by the learning machine is only one realization of the possible

data sets that can be produced by the generator of input samples (see Fig. 2.1).

Naturally, different training sets from the same generator will yield different esti-

mates provided by the learning machine. In order to take this into account, the bias

and the variance errors are measured over the distribution of all possible training

sets of the same fixed size n. Note that in most practical (finite-sample, unknown

sampling distribution) learning problems, it is not possible to determine the bias

and variance. The following example demonstrates bias and variance error.

Example 3.1: Bias and variance

Artificial data were generated according to the third-order polynomial target function

y ¼ xþ 20ðx� 0:5Þ3 þ ðx� 0:2Þ2 þ x; ð3:35Þ

where the noise x is zero mean Gaussian, with variance s2 ¼ 0:125. The predictor
variable x had a uniform random distribution in the range [0, 1]. Five data sets were

80 REGULARIZATION FRAMEWORK

generated with 50 samples each. Two different procedures were used to determine

the regression estimates.

Procedure 1: Gaussian kernel smoothing is used to perform the regression

estimate. The regularization parameter for the method is adjusted to create

approximations with a low degree of complexity (high smoothness). For this

procedure the kernel width is 80 percent, yielding approximately two degrees

of freedom. This is less than required for the target third-order polynomial.

Procedure 2: Gaussian kernel smoothing is used again in this procedure, but the

regularization parameter is set so that the resulting approximations have a high

degree of complexity. The number of degrees of freedom is about 10 (kernel

width 10 percent), which is more than necessary for the target polynomial.

Figure 3.3 shows the approximations obtained using procedure 1 for each of the

five data sets. Notice the common consistent errors made when applying this pro-

cedure to the random process. Most of the approximation error exhibited here is

bias error. On the contrary, notice the large amount of variability between the

five approximations created using procedure 2 (Fig. 3.4). This variability of the

model for different realizations of the training data is quantified by the variance.

The condition shown in Fig. 3.4 is often called ‘‘overfitting’’ because the approx-

imations of procedure 2 are dependent on a specific realization of the training data.

Let us now consider applying each of these procedures to a very large number (e.g.,

10,000) of training sets (of the same size 50 samples) and taking an average of the

approximations. Figure 3.5 shows the average of all the approximations for proce-

dure 1. Notice that this procedure provides an incorrect approximation, on average.

Figure 3.6 shows the average approximation for procedure 2. On average, the

approximations with high variability (procedure 2) fit the target function exactly.

In this example, procedure 1 had a high bias error, so it ‘‘underfits’’ the data. It

will not be a good predictor because the target complexity is greater than the model

–3

–2

–1

0

1

2

3

4

5

0 0.2 0.4 0.6 10.8

FIGURE 3.3 The solid line indicates the target function and the dashed lines indicate

regression estimates using procedure 1 for five different data sets. Notice the consistent over-

and undershoot of the estimates, indicating a high bias error.

MODEL SELECTION (COMPLEXITY CONTROL) 81

complexity. Procedure 2 had a high variance error (‘‘overfitting’’). It will not be a

good predictor because the results vary too much with the training set, although it is

correct, ‘‘on average.’’

Recall that for the regression learning problem using L2 (squared error) loss, the

goal of minimizing the approximation error for a given probability distribution is

equivalent to minimizing the prediction risk under certain assumptions about the

noise (Eq. 2.18). The approximation error between an estimate f ðx;oÞ and the

true function tðxÞ (mean squared error, or mse) can be presented in the following

form (Friedman 1994a):

Enbðf ðx;oÞ � tðxÞÞ2c ¼ Enbðf ðx;oÞ � En½f ðx;oÞ�Þ2c ‘‘variance’’

þ ðtðxÞ � En½f ðx;oÞ�Þ2 ‘‘bias2’’
ð3:36Þ

–4

–2

0

2

4

6

8

0 0.2 0.4 0.6 10.8

FIGURE 3.4 The solid line indicates the target function and the dashed lines indicate

regression estimates using procedure 2 for five different data sets. Notice the high variability

of the individual estimates, although, on average, they tend to follow the target function. This

indicates that variance error dominates.

–3

–2

–1

0

1

2

3

4

5

0 0.2 0.4 0.6 10.8

FIGURE 3.5 The solid line indicates the target function and the dashed line indicates the

average of a large number of approximations using procedure 1. Notice that the bias remains.

82 REGULARIZATION FRAMEWORK

at any value of x. Note that here the expected value E[] represents an average over

all training samples of size n, which could be realized, based on the regression pro-

blem assumptions (Section 2.1.2). For the global average over x, the mean squared

error, bias, and variance are defined as

mseðf ðx;oÞÞ ¼
ð

E½ðtðxÞ � f ðx;oÞÞ2�pðxÞdx;

bias2ðf ðx;oÞÞ ¼
ð

ðtðxÞ � E½f ðx;oÞ�Þ2pðxÞdx;

varðf ðx;oÞÞ ¼
ð

E½ðf ðx;oÞ � E½f ðx;oÞ�Þ2�pðxÞdx: ð3:37Þ

This allows the approximation error to be written as

mseðf ðx;oÞÞ ¼ bias2ðf ðx;oÞÞ þ varðf ðx;oÞÞ: ð3:38Þ

For a given penalty functional, increasing the value of l tends to decrease the

variance because this increases the effect of the penalty term relative to the random

training data. On the contrary, a model that is increasingly based on the training

data (small l) will have a high variance error because the model is dependent on

a specific training data set. Note that if the a priori assumptions are incorrect,

increasing l may lead to increasing bias because incorrect assumptions will

cause a consistent error. Because of the relationship between the two error portions

(bias and variance) and the two pieces of knowledge (data and assumptions), low-

ering the bias tends to increase the variance (see Fig. 3.7). Note that the bias and

variance, like the prediction risk, depend on the unknown sampling density pðxÞ. So
unless these quantities can be estimated, the bias and variance cannot be evaluated

–3

–2

–1

0

1

2

3

4

5

0 0.2 0.4 0.6 10.8

FIGURE 3.6 The solid line indicates the target function and the dashed line indicates the

average of a large number of approximations using procedure 2. Notice that, on average,

procedure 2 fits the target function exactly.

MODEL SELECTION (COMPLEXITY CONTROL) 83

for practical problems. For artificially generated data sets, where the target function

is known, the bias and variance can be empirically determined by taking averages

over a large number of training sets of fixed size n taken from the same generating

distribution.

From the bias–variance dilemma, it follows that one class of approximating

functions will not give superior estimation accuracy for all learning problems

(Friedman 1994a). One can attempt to create a learning machine capable of solving

a wide class of problems by using a very flexible class of functions. Unfortunately,

this may result in estimates with high variability. Variability could be reduced for a

given problem by using a priori knowledge to choose the class of approximating

functions to match the target function. However, if this set of functions is applied

to another problem outside of its domain, the approximation may have a high bias

error.

Bias and variance are useful for conceptual understanding, but they usually

cannot be used for practical implementation of model selection. The bias and var-

iance depend on the (typically unknown) sampling density pðxÞ and properties of

the target function. Unfortunately, even if pðxÞ is estimated, the relationship

between bias and l for a given class of approximating functions is often compli-

cated, making bias estimation difficult. Analytical estimates for variance (useful

for model selection) exist for linear estimators. Consider the linear estimator

(3.22) discussed in Section 3.4.1. It can be shown (Section 7.2.3) that the variance,

varðf ðx;oÞÞ, is

varðf ðx;oÞÞ ¼ s2

n
traceðSSTÞ: ð3:39Þ

Note that in practical application the noise variance s2 must be estimated. One

approach is to fit the regression using a linear estimator that is assumed to have

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 10.8

R
is

k

bias2

var

mse

Regularization parameter (l)

FIGURE 3.7 The approximation risk (mse) is the sum of bias2 and the variance.

84 REGULARIZATION FRAMEWORK

negligible bias. Small bias can be obtained by setting the regularization para-

meter so that the estimate is very flexible (with relatively little smoothing).

The estimated function would not be useful, but the empirical risk of this estima-

tor becomes an estimate for the noise variance. This estimate of the noise

variance is then used in (3.39) for estimating the variance of the linear estimator

with more reasonable complexity settings. In practice, model selection is per-

formed directly, using data resampling techniques to estimate the prediction

risk. The bias–variance formulation provides explanation/justification of these

methods for model selection. In contrast, Statistical Learning Theory (described

in Chapter 4) provides both an explanation and a constructive procedure for

model complexity control.

3.4.4 Example of Model Selection

In this example, we will go through the steps of model selection as would be

encountered in practice. An artificial data set of 25 samples is used in the example.

These data were generated according to the target function

y ¼ sin2ð2pxÞ þ x; ð3:40Þ

where the noise x is zero mean Gaussian with variance s2 ¼ 0:1. The predictor

variable x had a uniform random distribution in the range [0, 1]. Note that a priori

knowledge of the target function and noise variance will not be used in the example.

Only the training data will be used to develop the estimate.

Let us consider estimating the data using the set of polynomial approximating

functions of arbitrary degree.

fmðx;wmÞ ¼
X

m�1

i¼0
wix

i:

Here, the set of parameters takes the form of vectors wm ¼ ½w0; . . . ;wm�1� that have
an arbitrary length m. For practical purposes, we will limit the polynomial degree

m � 10. For any value of m, it is possible to estimate the model parameters wm by

using the ERM inductive principle. For the squared error loss, this is a linear esti-

mation problem. The task of model selection is to choose the value of m that pro-

vides the lowest estimated expected risk.

Analytical Model Selection

In this example, it is practical to estimate the model parameters for all possible

choices of m, because there are only 10, and then choose the best according to

the analytical model selection criteria. Let us assume then that we have 10 potential

models, fmðx;wmÞ;m ¼ 1; . . . ; 10, each estimated via ERM using all the training

data. For each of these candidate models, it is possible to calculate the analytical

estimate of expected risk. We can then choose the model that minimizes this

MODEL SELECTION (COMPLEXITY CONTROL) 85

estimated risk. The number of degrees of freedom for the set of approximating

functions is

DoF ¼ m:

Let us consider using fpe (3.29) as an estimate for the expected risk. Table 3.1

shows the polynomial degree, the empirical risk, the fpe penalty function, and

the risk estimated via fpe. The table indicates that a polynomial with m ¼ 6 pro-

vides the best estimated risk, according to the fpe criterion. Figure 3.8 is a plot

of this polynomial.

Model Selection via Resampling

For this example, model selection can also be performed using cross-validation.

Again, let us assume that we have 10 potential models, fmðx;wmÞ;m ¼ 1; . . . ; 10,
each estimated via ERM using all the training data. For each of these candidate

models, we must calculate the empirical risk estimate given by cross-validation.

The model with the best empirical risk estimate is then selected. Here, we

will use fivefold cross-validation. Following the procedure of Section 3.4.2,

we first divide the training data into five disjoint validation sets of equal size. As

there are 25 samples in the training set, each validation set will have five samples.

Table 3.2 indicates the construction of the validation sets from the training data.

For each value of m in 1,. . .,10, we will construct five polynomial estimates, one

for each of the validation sets. Each estimate will be constructed using four valida-

tion sets as the training set. The remaining validation set will be used to estimate the

expected risk. Table 3.3 enumerates the data sets used for training and for estimat-

ing the risk for a single value of m.

In this way, a risk estimate can be determined for each candidate polynomial

order m ¼ 1; . . . ; 10, as indicated in the Table 3.4.

The table indicates that a polynomial with m ¼ 5 provides the best estimated

risk according to the cross-validation criteria. Figure 3.9 gives a plot of this

polynomial.

TABLE 3.1 Model Selection Using fpe for Estimating Prediction Risk

m Remp Final Prediction Error rðm=nÞ Estimated R via fpe

1 0.1892 1.0833 0.2049

2 0.1400 1.1739 0.1644

3 0.1230 1.2727 0.1565

4 0.1063 1.3810 0.1468

5 0.0531 1.5000 0.0797

6 0.0486 1.6316 0.0792

7 0.0485 1.7778 0.0863

8 0.0418 1.9412 0.0812

9 0.0417 2.1250 0.0886

10 0.0406 2.3333 0.0947

86 REGULARIZATION FRAMEWORK

TABLE 3.2 Validation Sets for Fivefold Cross-Validation

Validation set Samples from training set

Z1 [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5)]

Z2 [(x6, y6), (x7, y7), (x8, y8), (x9, y9), (x10, y10)]

Z3 [(x11, y11), (x12, y12), (x13, y13), (x14, y14), (x15, y15)]

Z4 [(x16, y16), (x17, y17), (x18, y18)(x19, y19)(x20, y20)]

Z5 [(x21, y21), (x22, y22), (x23, y23), (x24, y24), (x25, y25)]

TABLE 3.3 Calculation of the Risk Estimate via Fivefold Cross-Validation

Polynomial estimate Data to construct Validation set Estimate of expected

of degree polynomial to estimate risk for each

m estimate risk validation set

f1ðxÞ [Z2, Z3, Z4, Z5] Z1 r1 ¼ 1
5

P

5

i¼1
ðf1ðxiÞ � yiÞ2

f2ðxÞ [Z1, Z3, Z4, Z5] Z2 r2 ¼ 1
5

P

10

i¼6
ðf2ðxiÞ � yiÞ2

f3ðxÞ [Z1, Z2, Z4, Z5] Z3 r3 ¼ 1
5

P

15

i¼11
ðf3ðxiÞ � yiÞ2

f4ðxÞ [Z1, Z2, Z3, Z5] Z4 r4 ¼ 1
5

P

20

i¼16
ðf4ðxiÞ � yiÞ2

f5ðxÞ [Z1, Z2, Z3, Z4] Z5 r5 ¼ 1
5

P

25

i¼21
ðf5ðxiÞ � yiÞ2

Risk estimate RcvðmÞ ¼ 1
5

P

5

i¼1
ri

TABLE 3.4 Prediction Risk Estimates Found Using

Cross-Validation

m Estimated R via cross-validation

1 0.2000

2 0.1782

3 0.1886

4 0.1535

5 0.0726

6 0.1152

7 0.1649

8 0.0967

9 0.0944

10 0.5337

MODEL SELECTION (COMPLEXITY CONTROL) 87

3.4.5 Function Approximation Versus Predictive Learning

Let us recall the distinction between the framework of predictive learning and

model identification (function approximation). As discussed in Sections 1.5 and

2.1.1, the goal of predictive learning is risk minimization, whereas the goal of

model identification is accurate estimation of the true model. Note that the goal

of model identification leads to the framework of function approximation and

related complexity indices discussed in Sections 3.1 and 3.2. Moreover, the goal

of function approximation results in the curse of dimensionality, whereas accurate

learning (generalization) may still be possible with finite high-dimensional data.

Historically, the method of regularization has been introduced under a clearly stated

–0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 10.8

FIGURE 3.9 A polynomial of degree m ¼ 5 provided the best estimated risk, according to

cross-validation model selection. The curve indicates the polynomial and the (þ) symbols

indicate the training data points.

–0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 10.8

FIGURE 3.8 A polynomial with m ¼ 6 provided the best estimated risk according to the

final prediction error analytical criterion. The curve indicates the polynomial and the (þ)
symbols indicate the training data points.

88 REGULARIZATION FRAMEWORK

function approximation setting (Tikhonov 1963; Tikhonov and Arsenin 1977), and

then later applied as a purely constructive methodology for predictive learning. The

Structural Risk Minimization (SRM) approach has been developed under the risk

minimization framework (for learning with finite samples). However, SRM allows

interpretation in the form of a penalization functional (3.12), leading to various mis-

leading claims that SRM is a special case of regularization (Evgeniou et al. 2000;

Hastie et al. 2001; Poggio and Smale 2003). On a historical note, recall that regu-

larization had been used in the context of function estimation long before recent

advances in risk minimization techniques (i.e., neural networks and support vector

machines). In particular, the regularization approach had been widely used only in

low-dimensional settings such as splines and various signal denoising methods.

Quoting Ripley (1996): ‘‘Since splines are so useful in one dimension, they

might appear to be the obvious methods in more. In fact, they appear to be rather

restricted and little used.’’

In this section, we contrast the two goals of learning (risk minimization versus

function approximation) for regression formulation with squared loss. Recall that

under the regression formulation (see Fig. 2.1), the System’s output y is real-valued

and the statistical model for data generation is given by

y ¼ tðxÞ þ x; ð3:41Þ

where x is random noise with zero mean and symmetric probability density

function (pdf). Here, the (unknown) target function actually represents the condi-

tional expectation, that is, tðxÞ ¼ EðyjxÞ. Thus, we may have two different goals of

learning:

� Under the statistical model estimation/function approximation setting, the

goal is accurate identification of the unknown System, that is, accurate

approximation of the unknown target function EðyjxÞ (Barron et al. 1999;

Hastie et al. 2001; Poggio and Smale 2003).

� According to the predictive learning framework, the goal is to imitate

the operation of the unknown system, under the specific environment

provided by the generator of input samples (Vapnik 1982, 1995). This

leads to the goal of estimating certain properties of the unknown function

tðxÞ ¼ EðyjxÞ, corresponding to minimization of the prediction risk

functional (2.13).

These are two different learning problems. Clearly, the problem of imitation (of the

unknown system) is much easier to solve, and for this problem a nonasymptotic

theory (VC theory) can be developed (Vapnik 1998). In contrast, the problem of

system identification (or function approximation) is intrinsically much harder,

and for this problem only an asymptotic theory can be developed (due to the

curse of dimensionality). In other words, generalization (with finite samples) may

be possible if the goal of learning is minimization of prediction risk, but it can

only be asymptotically possible (requiring a large number of samples) if the goal

MODEL SELECTION (COMPLEXITY CONTROL) 89

is accurate function approximation. However, the solutions for both problems are

based on similar general principles:

� Regularization method for solving ‘‘ill-posed’’ function interpolation pro-

blems. Classical regularization theory (Tikhonov 1963; Tikhonov and Arsenin

1977) is concerned with solving operator equations of the type �x ¼ y, where

� is a continuous operator performing one-to-one mapping from a normed

space X onto another normed space Y. This (direct) mapping is known as a

direct or ‘‘well-posed’’ problem. The inverse problem of finding the mapping

��1 : Y ! X is ‘‘ill-posed’’ and its solution can be found using the regular-

ization approach;

� Structural risk minimization method for solving the problem of minimization

of prediction risk (i.e., system imitation setting) using finite data (Vapnik et al.

1979; Vapnik 1982).

Application of each theory (SRM and regularization) to each corresponding learn-

ing problem results in the same technical problem of minimization of a penalized

risk functional. Under the regularization approach (Tikhonov 1963; Tikhonov

and Arsenin 1977), given a noisy function yðxÞ and a positive l (regularization

parameter), the goal is to find function f ðx;o0Þ that minimizes (over all possible

parameters o) the functional

Rpenðw; lÞ¼k yðxÞ � f ðx;oÞ k2þl�½f ðx;wÞ�: ð3:42Þ

Here the objective is to find an accurate estimate of the target function tðxÞ, in the

sense of

ð

ðf ðx;wÞ � tðxÞÞ2dx! min : ð3:43Þ

This goal of accurate function approximation (3.43) is explicitly stated in

(Wahba 1990; DeVore 1991; Donoho and Johnstone 1994a). In contrast, the

goal of learning under the predictive learning setting is minimization of predic-

tion risk:
ð

ðf ðx;wÞ � tðxÞÞ2pðxÞdx! min; ð3:44Þ

where pðxÞ denotes unknown pdf for the input (x) values.

These goals (3.43) and (3.44) are quite different. In fact, an optimal solution

under the original regularization/function approximation setting (3.43) does not

even depend on the unknown distribution pðxÞ. Also, it is clear that accurate

90 REGULARIZATION FRAMEWORK

approximation in the sense of (3.43) implies accurate estimation in the sense

of (3.44). However, the opposite is not true. That is, with finite samples, estimates

(models) accurate in the sense of prediction risk (3.44) may be very inaccurate in

the sense of function approximation (3.43). Under both settings, the goal of learning

is to select a good function (model) from a set of admissible models (approximating

functions), based on available (finite) training data. However, the requirement of

function approximation (3.43) leads to mathematical analysis of strong conver-

gence of admissible functions to the true target function. A typical example of

strong convergence is uniform convergence and its analysis in approximation theory

(DeVore 1991; Jones 1992; Barron 1993). Classical Tikhonov’s regularization

theory and function approximation theory (used in the context of learning from

samples) aim at deriving such conditions for uniform convergence to the true func-

tion (model). In contrast, practitioners are usually interested in estimating (learning)

models providing good generalization in the sense of minimizing prediction risk

(3.44). Such a system imitation setting leads to conditions for convergence of a

risk functional that are formally analyzed in VC theory, which provides necessary

and sufficient conditions for convergence of the risk functional (3.44) to its

minimum (see Chapter 4).

Next, we present some empirical examples intended to illustrate how the dif-

ferent goals of learning (model identification versus imitation) affect the quality

of predictive models, using a univariate regression model (3.41) for data genera-

tion. Direct comparison between the two approaches to learning can be accom-

plished by considering the same penalization formulation (3.42) but with a

different strategy for selecting the regularization parameter depending on the

goal of learning (3.43) or (3.44). Let us adopt a data-driven approach for model

selection, as discussed in Section 3.4.2. That is, an independent validation set is

used for selecting the regularization parameter in (3.42). However, the different

goals of learning (3.43) and (3.44) are reflected in the input distribution of vali-

dation samples. That is, under the function approximation setting validation sam-

ples are uniformly distributed in the input (x) space, and under the predictive

learning setting validation samples are distributed according to some pdf

pðxÞ—identical to the distribution of training data. One may argue that the setup

(under the function approximation approach) with uniformly distributed valida-

tion samples is unrealistic. However, this (contrived) setting reflects exactly the

goal of function approximation stated as estimation of tðxÞ ¼ EðyjxÞ in the sense

of (3.43). This goal is implicit in all theoretical studies and results discussed in

Sections 3.1 and 3.2.

So in our comparisons, the only difference between the predictive learning and

regularization settings is the distribution of x-values of validation data used for

model selection. To summarize, we use three independent data sets: a training

set for estimating model parameters via (penalized) least squares fitting, a valida-

tion set for selecting model complexity, and a test set for estimating prediction risk

(generalization performance) of a model. Both training and test data are generated

using the same nonuniform distribution pðxÞ. However, under the regularization

MODEL SELECTION (COMPLEXITY CONTROL) 91

(function approximation) approach the validation set is generated differently, that is,

uniformly spaced in x-domain (see Table 3.5).

Specification of data sets: The data are generated according to a univariate

regression model (3.41) with additive Gaussian noise (with standard deviation

0.1), using a sine-squared target function tðxÞ ¼ sin2ð2pxÞ defined in the

x 2 ½0; 1� interval (see Fig. 3.10). Random x-values of the training and test

data are sampled in a [0, 1] interval according to the Gaussian pdf shown in

Fig. 3.11. Representative comparisons use ‘‘small’’ training and validation sets

(30 samples each), and ‘‘large’’ test set (500 samples).

Comparison methodology: All comparisons use penalized algebraic polynomials

(of degree 15) as the approximating functions and the penalization functional

(3.42) is implemented as ridge regression:

Rpen ¼
1

n

X

n

i¼1
ðyi � f15ðxi;wÞÞ2 þ l k w k2; where f15ðx;wÞ ¼

X

15

i¼1
wix

i þ w0:

ð3:45Þ

Both approaches try to estimate model parameters by fitting f ðx;wÞ to training

data (via least squares), but the choice of parameter l (model complexity)

is determined using validation sets with a different distribution of x-values

FIGURE 3.10 Sine-squared target function.

TABLE 3.5 Generation of Input Samples for Comparisons between Predictive

Learning and Function Approximation (regularization) Settings

Predictive Learning Function Approximation

Training/test data Gaussian distribution Gaussian distribution

Validation data set Gaussian distribution Uniform fixed sampling

92 REGULARIZATION FRAMEWORK

(as indicated in Table 3.5). Standard mean squared error observed in the test set is

used to compare generalization performance (prediction risk) of the two

approaches. To obtain meaningful comparisons, the experiments are repeated

300 times with different random realizations of training/validation/test data

and the results are presented using standard box-plot notation with marks at

95th, 75th, 50th, 25th and 5th percentile of an empirical distribution for predic-

tion risk (mse). Similarly, box plots are used to display the values of the regular-

ization parameter l selected by each approach.

Comparison results for estimating the sine-squared target function with

penalized polynomials using the small training set are shown in Fig. 3.12. These

comparisons indicate that the predictive learning approach yields better general-

ization than the regularization (function approximation) approach (which tends

to underfit in regions with high density of the training/test data). Visual compar-

isons between estimates obtained using these two approaches for representative

(small) data sets are shown in Fig. 3.13. Results shown in Fig. 3.13 effectively

demonstrate the phenomenon often associated with the curse of dimensionality.

That is, model estimation (under the system identification setting) produces mod-

els that are too smooth because it aims at estimating the model everywhere in the

input space. In contrast, the predictive learning setting yields more complex

models that are more accurate in the sense of prediction risk. For high-

dimensional settings, a similar effect has been known as a requirement that

only trivially smooth functions can be accurately estimated with finite samples

in high dimensions (Girosi 1994; Ripley 1996). Next, let us consider another set-

up where the training data are generated according to a nonuniform (Gaussian)

distribution, but both validation and test data samples are uniformly spaced

in x-domain. Figure 3.14 shows the box plots for ‘‘prediction risk’’ under this

set-up for models estimated with 30 training and validation samples (as in

Fig. 3.12(a)) but using the test set with x-values uniformly spaced in the [0, 1]

interval. As expected, under this setting, the function approximation approach

outperforms predictive learning; however, the prediction accuracy (mse) for

both methods in Fig. 3.14 is much worse than in Fig. 3.12(a). Direct comparison

FIGURE 3.11 Gaussian distribution (pdf) of input x.

MODEL SELECTION (COMPLEXITY CONTROL) 93

of box plots in Figs. 3.14 and 3.12(a) illustrates the main point of our

discussions. That is, the goal of accurate estimation of the target function

‘‘everywhere’’ in the input domain yields very inaccurate estimates in the regions

where the data actually are likely to appear. The same conclusion holds for high-

er-dimensional data, where nonuniform input distributions are more likely to be

observed.

Finally, note that both approaches (model identification and predictive learning)

become equivalent when the inputs are uniformly sampled in the input space. So

FIGURE 3.12 Comparison results for sine-squared target function. Training and validation

data have additive Gaussian noise with standard deviation 0.1. (a) Training size¼ 30,

validation size¼ 30. (b) Training size¼ 300, validation size¼ 300.

94 REGULARIZATION FRAMEWORK

our next comparison (in Fig. 3.15) shows model estimates obtained when both

training and validation sets are generated with inputs uniformly distributed in the

[0, 1] interval. Representative model estimates shown in Fig. 3.15 are indeed very

accurate estimates of the target function. It may be instructive to compare estimates

obtained under predictive learning setting in Figs. 3.13 and 3.15, which both use the

FIGURE 3.14 Comparison results for ‘‘prediction risk’’ obtained using test samples

uniformly spaced in the [0, 1] interval.

FIGURE 3.13 Regression estimates obtained for several random realizations of

training and validation data sets (of 30 samples each). The solid line is the true target

(sine-squared), the dotted line is an estimate obtained under predictive learning setting, and

the dashed line is an estimate obtained under function approximation setting.

MODEL SELECTION (COMPLEXITY CONTROL) 95

same target function, the same additive noise, and the same size (30) of training/

validation data sets. The only difference between data sets in these figures is in the

input distribution of data samples. Note that the model estimates are indeed very

different, even though the target function tðxÞ ¼ EðyjxÞ is the same for

both Figs. 3.13 and 3.15. This comparison clearly shows that different goals of

learning (system imitation versus system identification) yield completely different

model estimates. Also, note that a uniform distribution of input data (used in Fig.

3.15) is practical only for low-dimensional applications (such as 1D signal or 2D

image processing) but is not realistic for most applications with high-dimensional

data (due to the curse of dimensionality).

3.5 SUMMARY

The regularization (or penalization) framework presented in this chapter is

commonly used in statistical and machine learning methods. It provides a formal

mechanism to regulate the model complexity for given training data. The

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

FIGURE 3.15 Regression estimates obtained for several random realizations of uniformly

distributed training and validation data (of 30 samples each). The solid line is the true target

(sine-squared) and the dotted line is its estimate.

96 REGULARIZATION FRAMEWORK

method of regularization has been originally developed and theoretically justified

under system identification (function approximation) setting, as discussed in

Sections 3.1–3.3. However, the goal of accurate function estimation (with finite

data) leads to the curse of dimensionality, that is, the requirement that the

unknown target function should be increasingly smooth as the dimensionality

increases.

Another similar approach (to regularization) has been proposed by applied

statisticians for estimating dependencies from data using a penalized empirical

risk functional (Breiman et al. 1984). Such a ‘‘penalization’’ formulation is usually

justified/explained using a Bayesian interpretation where the penalty term reflects a

priori knowledge. Similar approaches have also been used in the artificial neural

networks, that is, the idea known as ‘‘weight decay’’ effectively incorporating

the ridge penalty into a learning algorithm. In this book, all such penalization

approaches are referred to as the ‘‘penalization inductive principle.’’ Note that

penalization methods are usually applied under predictive learning (risk minimiza-

tion) setting, even though they are often justified and analyzed under function

approximation framework.

The constructive procedure for regularization (penalization) is identical to

SRM presented later in Chapter 4. In fact, SRM has been developed and theore-

tically justified under risk minimization framework. However, the difference is

that (1) SRM uses a different notion of model complexity (called the VC dimen-

sion) and (2) SRM employs analytic upper bounds on the prediction risk devel-

oped in statistical learning theory. In situations when the VC dimension can be

accurately estimated, these analytic bounds may provide better complexity con-

trol than resampling approaches. Further, under the predictive learning, accurate

estimation of high-dimensional models may be possible, in principle. This does

not suggest, however, that the VC theoretical approach ‘‘overcomes’’ the curse of

dimensionality. It simply means that estimation of high-dimensional models pro-

viding good generalization may be possible, even when accurate estimation of

the true target function is impossible. The distinction between the model identi-

fication and risk minimization settings is discussed in Section 3.4.5. Based on

empirical comparisons presented in this section, we conclude that function

approximation (model identification) approach is not appropriate for applications

concerned with good generalization (in the sense of prediction risk). Hence, the

classical regularization framework (rooted in function approximation) is not a

good conceptual framework for such applications.

Practical implementation of regularization using resampling becomes quite

difficult with nonlinear models such as neural networks. In this case, the regulari-

zation model flðx;o�Þ is found as a solution of a nonlinear optimization problem.

This leads to two types of problems: first, the difficulties related to nonlinear

optimization, as discussed in Chapter 5, and second, the use of resampling methods

for model selection, as discussed next. An optimal solution of a nonlinear optimi-

zation problem depends (among other things) on the initial parameter values used

by an optimization algorithm. These values are often initialized randomly, which is

common in neural networks. Then for k-fold cross-validation, each estimate fi

SUMMARY 97

found in step 2(a) of the cross-validation algorithm in Section 3.4.2 corresponds to

a different local minimum found with different (random) initial conditions. Moody

(1994) describes a heuristic strategy, called nonlinear cross-validation, that attempts

to overcome this problem.

Finally, we mention another data-driven approach for estimating prediction

risk, known as bootstrap (Efron and Gong 1983). Bootstrapping is based on

the idea of resampling with replacement. It is not described in this book because,

according to Breiman and Spector (1992), bootstrap gives results similar to

cross-validation.

98 REGULARIZATION FRAMEWORK

4
STATISTICAL LEARNING THEORY

4.1 Conditions for consistency and convergence of ERM

4.2 Growth function and VC dimension

4.2.1 VC dimension for classification and regression problems

4.2.2 Examples of calculating VC dimension

4.3 Bounds on the generalization

4.3.1 Classification

4.3.2 Regression

4.3.3 Generalization bounds and sampling theorem

4.4 Structural risk minimization

4.5 Comparisons of model selection for regression

4.5.1 Model selection for linear estimators

4.5.2 Model selection for k-nearest-neighbor regression

4.5.3 Model selection for linear subset regression

4.5.4 Discussion

4.6 Measuring the VC dimension

4.7 VC dimension, Occam’s razor, and Popper’s falsifiability

4.8 Summary and discussion

The truth is rarely pure, and never simple.

Oscar Wilde

This chapter describes Statistical Learning Theory (SLT), also known as Vapnik–

Chervonenkis (VC) theory. SLT is the best currently available theory for flexible

statistical estimation with finite samples. It rigorously defines all the relevant con-

cepts, specifies learning problem setting(s), and provides mathematical proofs for

important results for predictive learning with finite samples, in contrast to other

approaches (i.e., neural networks, penalization framework, and Bayesian inference).

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

99

The conceptual approach used by SLT is different from classical statistics in that

SLT adopts the goal of system imitation rather than system identification (as dis-

cussed earlier in Sections 1.5 and 3.4.5). Hence, the VC theoretical framework is

appropriate for many applications where the practical goal is good generalization

rather than accurate identification (of the unknown system). Note that the latter goal

(system identification) may be unrealistic, in principle, for many practical multi-

variate problems, due to the curse of dimensionality.

There are three interrelated aspects of VC theory: conceptual, mathematical, and

constructive learning. The conceptual part has been developed (almost single-handedly)

by Vapnik, and it is concerned with fundamental properties of inference from finite

samples based on the idea of empirical risk minimization (ERM). The mathematical

part is concerned with formal analysis of inductive inference (based on ERM), under

finite sample settings. Hence, this theory includes (as a special case) classical statis-

tical estimation results (developed for large samples and/or strict parametric assump-

tions). It may be interesting to point out that conceptual and mathematical parts of the

VC theory have been well known since early 1980s. However, they have been largely

ignored and/or misunderstood by researchers and practitioners alike, until a recent

surge (in late 1990s) in constructive learning methods rooted in VC theory. This

book’s main focus is on the conceptual aspects of VC theory and all mathematical

results are only briefly introduced (in this chapter) without proofs, in order to explain

the relationship between several important concepts and their effect on generaliza-

tion. Throughout the book, we try to describe various constructive learning methods

(developed in statistics and neural networks) in terms of VC theoretical concepts. A

large class of methods (rooted in VC theory) called Support Vector Machines (SVMs)

is described in Chapter 9.

The VC theory forms a basis for an emerging field defined by Vapnik as empirical

inference science (Vapnik 2006). This field is broadly concerned with understanding

and development of new types of inference with finite samples, in the context of pre-

dictive learning. Recall that in Chapter 2 we described the standard setting of induc-

tive learning and also indicated the possibility of other (alternative) learning settings in

Section 2.3.4. Much of this book describes learning methods developed under such a

standard (inductive) learning setting. The original VC theory has also been developed

under standard inductive formulation, and this ‘‘classical’’ VC theory is described in

this chapter. As other methodologies for predictive learning (i.e., statistical estimation,

regularization, Bayesian, etc.) also assume an inductive problem setting, they can be

directly compared to VC based approaches via empirical comparisons (see Section

4.5). More recent developments apply VC theoretical concepts to noninductive infer-

ence settings, leading to new types of inference and completely new constructive

learning methods (Vapnik 2006). Such new noninductive settings have very interesting

and deep philosophical implications and will be discussed in Chapter 10.

This chapter describes classical VC theory under the inductive learning setting.

This theory introduces important concepts and mathematical results describing induc-

tive learning based on the ERM principle. Historically, the VC theory has been devel-

oped in an attempt to gain better theoretical understanding of simple pattern

recognition algorithms developed by physiologists and neuroscientists in 1950s and

1960s. For example, the famous perceptron algorithm (Rosenblatt 1962) constructs a

100 STATISTICAL LEARNING THEORY

hyperplane that separates available (labeled) training samples into two classes. The

success of these biologically inspired algorithms indicates that minimization of the

empirical risk may yield models with good generalization. Vapnik and Chervonenkis

(1968) developed their theory in order to theoretically justify the ERM induction

principle. They also formulated conditions for good generalization and showed that

these conditions are closely related to the existence of uniform convergence of fre-

quencies to their probabilities over a given set of events. These results provide quan-

titative description of the tradeoff between the model complexity and the available

information (i.e., finite training data). Classical VC theory consists of four parts:

1. Conditions for consistency of the ERM inductive principle (see Sections 4.1

and 4.2)

2. Bounds on the generalization ability of learning machines based on these

conditions (see Section 4.3)

3. Principles for inductive inference from finite samples based on these bounds

(see Section 4.4)

4. Constructive methods for implementing above inductive principles

Whereas a practitioner is ultimately interested in constructive learning methods,

good understanding of theoretical and conceptual parts is necessary for designing

sound constructive methods because each part is based on the preceding one.

This chapter describes theoretical parts 1 and 2 insofar as they are necessary for

presentation of constructive approaches in parts 3 and 4. Discussions in this chapter

mainly follow Vapnik (1995, 1998), which should be consulted for more details.

Even though SLT is quite general, it has been originally developed for pattern

recognition (classification). Widely known practical applications of this theory

are mainly for classification problems. However, there is a growing empirical evi-

dence of successful applications of this theory to other types of learning problems

(i.e., regression, density estimation, etc.) as well.

Section 4.4 describes the Structural Risk Minimization (SRM) inductive principle

that can be theoretically justified using VC generalization bounds presented in Sec-

tion 4.3. Section 4.5 illustrates practical applications of SRM to model selection,

mainly for linear estimators, and also describes a practical procedure for measuring

the VC dimension of an estimator. Many nonlinear learning procedures developed in

neural networks and statistics can be understood and interpreted in terms of the SRM

inductive principle. This interpretation will be given in Chapters 5–8 describing con-

structive methods for various learning problems. Chapter 9 describes a new powerful

class of learning methods called SVMs that effectively implement SRM for small-

sample problems and nonlinear estimators.

4.1 CONDITIONS FOR CONSISTENCY AND CONVERGENCE

OF ERM

Consider an inductive learning problem using slightly different notation, suitable

for the analysis of the ERM principle. Let z ¼ ðx; yÞ denote an input–output pair.

CONDITIONS FOR CONSISTENCY AND CONVERGENCE OF ERM 101

In the learning problem we are given n independent and identically distributed (iid)

(training) samples Zn ¼ fz1; z2; . . . ; zng generated according to some (unknown)

probability density function pðzÞ and a set of loss functions Qðz;oÞ;o 2 �. The

goal of predictive learning is to find a function Qðz;o0Þ that minimizes the risk

functional

RðoÞ ¼
ð

Qðz;oÞdFðzÞ or RðoÞ ¼
ð

Qðz;oÞpðzÞdz: ð4:1Þ

Here Qðz;oÞ ¼ Lðy; f ðx;oÞÞ denotes a set of loss functions corresponding to each

specific learning problem (classification, regression, etc.). For example, for regression

Qðz;oÞ ¼ ðy� f ðx;oÞÞ2

and for (binary) classification with class labels y ¼ f0; 1g

Qðz;oÞ ¼ jy� f ðx;oÞj:

Under the ERM inductive principle, minimization of the (unknown) risk functional

is replaced by minimization of the known empirical risk:

RempðoÞ ¼
X

n

i¼1
Qðzi;oÞ: ð4:2Þ

In other words, we seek to find the loss function Qðz;o�Þ minimizing the empirical

risk (4.2). Notice that the above formulation of the learning problem is given in terms

of the loss functions Qðz;oÞ, whereas the original formulation (in Chapter 2) is in

terms of approximating functions. Both are equivalent as Qðz;oÞ ¼ Lðy; f ðx;oÞÞ.
However, the formulation in terms of Qðz;oÞ is more suitable for stating general con-

ditions for consistency and convergence of the empirical risk functional. In later

chapters describing constructive learning methods and/or model interpretation, we

will use the formulation in terms of approximating functions.

The goal of predictive learning is to estimate a model (function) using available

training data. The optimal estimate corresponds to the minimum of the expected

risk functional (4.1). Of course, the problem is that the risk functional depends

on the cumulative distribution function (cdf) FðzÞ, which is unknown. The only

available information about this distribution is in the finite training sample Zn.

Recall that Section 2.2 describes two general solution approaches to the learning

problem. The classical statistical approach is to estimate unknown cdf FðzÞ from
the available data and then find an optimal estimate f ðx;o0Þ. Another approach
is to seek an estimate providing minimum of the (known) empirical risk, as a sub-

stitute for (unknown) true risk. This approach, called ERM, is widely used in pre-

dictive learning. It was also argued that with finite samples the ERM approach is

preferable to density estimation.

Although the ERM inductive principle appears intuitively obvious and is used

quite often in various learning methods, there is still a need to formally describe its

102 STATISTICAL LEARNING THEORY

properties. A general property necessary for any inductive principle is (asymptotic)

consistency, which is a requirement that estimates provided by ERM should con-

verge to the true values (or best possible values) as the number of training samples

grows large. As an example of the consistent estimate, recall the well-known law of

large numbers stating that (under fairly general conditions) the average of a random

variable converges to its expected value, as the number of samples grows large. An

initial objective of the learning theory is to formulate the conditions under which

the ERM principle is consistent.

First, let us formally define the consistency property. Consider application of the

ERM principle to the problem of predictive learning. Let Rempðo�nÞ denote the value
of the empirical risk provided by the loss function Qðz;o�nÞ minimizing empirical

risk for training sample Zn of size n and Rðo�nÞ denote the unknown value of the

true risk for the same function Qðz;o�nÞ. Note that the values of Rempðo�nÞ and
Rðo�nÞ form two random sequences (due to randomness of training sample Zn)

that are (intuitively) expected to converge to the same limit, as sample size n grows

large (see Fig. 4.1). More formally, the ERM principle is consistent if the random

sequences Rðo�nÞ and Rempðo�nÞ converge, in probability, to the same limit

Rðo0Þ ¼ min
o

RðoÞ, as the sample size n grows infinite:

Rðo�nÞ ! Rðo0Þ when n!1; ð4:3aÞ
Rempðo�nÞ ! Rðo0Þ when n!1: ð4:3bÞ

As illustrated in Fig. 4.1, the ERM method is consistent if it provides a sequence of

loss functions Qðz;o�nÞ for which both expected risk and empirical risk converge to

the same (minimal possible) value of risk. Assuming a classification problem for

the sake of discussion, the empirical risk corresponds to the probability of misclas-

sification for the training data (training error), and the expected risk is the probabil-

ity of misclassification averaged over (unknown) distribution FðzÞ. For a given

training sample, we can expect Rempðo�nÞ < Rðo�nÞ because the learning machine

always chooses a function (estimate) that minimizes empirical risk but not neces-

sarily the true risk. In other words, functions Qðz;o�nÞ produced by the ERM

min
ω

R ω()

n

Expected risk ()*

nR ω

Empirical risk ()*

nempR ω

FIGURE 4.1 Consistency of the ERM.

CONDITIONS FOR CONSISTENCY AND CONVERGENCE OF ERM 103

principle for a given sample of size n are always biased estimates of the ‘‘best’’

functions minimizing true risk. Even though it can be expected (by the law of

large numbers) that for n!1 the empirical risk converges to the expected risk

(for any fixed value of o), this by itself does not imply the consistency property

stating that the set of parameters minimizing the empirical risk will also minimize

the true risk when n!1. For example, consider a class of approximating func-

tions given by the k-nearest-neighbor classification decision rule (where the value

of k is a parameter). Clearly, one-nearest-neighbor classification always provides

minimum empirical risk (zero training error). However, this solution does not

usually correspond to the minimum of the true risk (when n!1).

The problem in the above example is due to the fact that the estimates provided

by the ERM inductive principle are always biased for a given sample, whereas the

true risk does not depend on a particular sample. To overcome this problem, con-

sistency requirements (4.3) should hold for all (admissible) approximating func-

tions to ensure that the consistency of the ERM method does not depend on the

properties of a particular element of the set of functions. This requirement is known

as nontrivial consistency (Vapnik 1995, 1998). The notion of nontrivial consistency

requires than the ERM principle remains consistent even after the best function

(which does uniformly better than all others) is removed from the admissible set.

The following theorem provides necessary and sufficient conditions for nontri-

vial consistency of the ERM inductive principle.

Key theorem of learning theory (Vapnik and Chervonenkis 1989)

For bounded loss functions, the ERM principle is consistent if and only if the

empirical risk converges uniformly to the true risk in the following sense:

lim
n!1

P½sup
o
jRðoÞ � RempðoÞj > e� ¼ 0; 8e > 0: ð4:4Þ

Here P denotes convergence in probability, RempðoÞ the empirical risk for n sam-

ples, and RðoÞ the true risk for the same parameter values o. Note that this theorem

asserts that the consistency is determined by the worst-case function, according to

(4.4), from the set of approximating functions, that is, the function providing the

largest discrepancy between the empirical risk and the true risk. This theorem

has an important conceptual implication (Vapnik 1995): Any analysis of the

ERM principle must be a ‘‘worst-case analysis.’’ In fact, this theorem holds for

any learning method that selects a model (function) from a set of approximating

functions (admissible models). In particular, any proposal to develop consistent

learning theory based on the ‘‘average-case analysis’’ for such methods (including

the ERM principle) is impossible. The key theorem, however, does not apply to

Bayesian methods that perform averaging over all admissible models.

Note that conditions for consistency (4.4) depend on the properties of a set of

functions. We cannot expect to learn (generalize) well using a very flexible set of

functions (as in the one-nearest-neighbor classification example discussed above).

The key theorem provides very general conditions on a set of functions, under

which generalization is possible. However, these conditions are very abstract and

cannot be readily applied to practical learning methods. Hence, it is desirable to

104 STATISTICAL LEARNING THEORY

formulate conditions for convergence in terms of the general properties of a set of

the loss functions. Such conditions are described next for the case of indicator loss

functions corresponding to binary classification problems. Similar conditions for

real-valued functions are discussed in Vapnik (1995).

Let us consider a class of indicator loss functions Qðz;oÞ; o 2 �, and a given

sample Zn ¼ fzi; i ¼ 1; . . . ; ng. Each indicator function Qðz;oÞ partitions this

sample into two subsets (two classes). Each such partitioning will be referred to

as dichotomy. The diversity of a set of functions with respect to a given sample

can be measured by the number NðZnÞ of different dichotomies that can be imple-

mented on this sample using functions Qðz;oÞ. Imagine that an indicator function

splits a given sample into black- and white-colored points; then the number of

dichotomies NðZnÞ is the number of different white/black colorings of a given sam-

ple induced by all possible functions Qðz;oÞ. Following Vapnik (1995), we can

further define the random entropy

HðZnÞ ¼ lnNðZnÞ:

This quantity is a random variable, as it depends on random iid samples Zn. Aver-

aging the random entropy over all possible samples of size n generated from dis-

tribution FðzÞ gives

HðnÞ ¼ EðlnNðZnÞÞ:

The quantity HðnÞ is the VC entropy of the set of indicator functions on a sample of

size n. It provides a measure of the expected diversity of a set of indicator functions

with respect to a sample of a given size, generated from some (unknown) distribu-

tion FðzÞ. This definition of entropy is given in Vapnik (1995) in the context of SLT,
and it should not be confused with Shannon’s entropy commonly used in informa-

tion theory. The VC entropy depends on the set indicator functions and on the

(unknown) distribution of samples FðzÞ.
Let us also introduce a distribution-independent quantity called the Growth Function:

GðnÞ ¼ lnmax
Zn

NðZnÞ; ð4:5Þ

where the maximum is taken over all possible samples of size n regardless of dis-

tribution. The Growth Function is the maximum number of dichotomies that can be

induced on a sample of size n using the indicator functions Qðz;oÞ from a given

set. This definition requires only one sample (of size n) to exist; it does not imply

that the maximum number of dichotomies should be induced on all samples. Note

that the Growth Function depends only on the set of functions Qðz;oÞ and provides

an upper bound for the (distribution-dependent) entropy. Further, as the maximum

number of different binary partitionings of n samples is 2n,

GðnÞ � n ln 2:

CONDITIONS FOR CONSISTENCY AND CONVERGENCE OF ERM 105

Another useful quantity is the Annealed VC entropy

HannðnÞ ¼ lnEðNðZnÞÞ:

By making use of Jensen’s inequality,

X

i

ai ln xi � ln
X

i

aixi

 !

;

it can be easily shown that

HðnÞ � HannðnÞ:

Hence, for any n the following inequality holds:

HðnÞ � HannðnÞ � GðnÞ � n ln 2: ð4:6Þ

Vapnik and Chervonenkis (1968) obtained necessary and sufficient condition for

consistency of the ERM principle in the form

lim
n!1

HðnÞ
n
¼ 0: ð4:7Þ

Condition (4.7) is still not very useful in practice. It uses the notion of VC entropy

defined in terms of an unknown distribution. Also, the convergence of the empirical

risk to the true risk may be very slow. We need the conditions under which the

asymptotic rate of convergence is fast. The asymptotic rate of convergence is called

fast if for any n > n0 the following exponential bound holds true:

PðRðoÞ � Rðo�Þ < eÞ ¼ e�cne
2

; ð4:8Þ

where c > 0 is a positive constant.

SLT provides the following sufficient condition for the fast rate of convergence:

lim
n!1

HannðnÞ
n

¼ 0 ð4:9Þ

(however, it is not known whether this condition is necessary). Note that (4.9) is a

distribution-dependent condition.

Finally, SLT provides a distribution-independent condition (both necessary and

sufficient) for consistency of ERM and fast convergence:

lim
n!1

GðnÞ
n
¼ 0: ð4:10Þ

This condition is distribution-independent because the Growth Function does not

depend on the probability measure. The same condition (4.10) also guarantees

fast rate of convergence.

106 STATISTICAL LEARNING THEORY

4.2 GROWTH FUNCTION AND VC DIMENSION

A man in the wilderness asked of me

How many strawberries grew in the sea.

I answered him and I thought good

As many as red herrings grew in the wood.

English nursery rhyme

To provide constructive distribution-independent bounds on the generalization

ability of learning machines, we need to evaluate the Growth Function in (4.10).

This can be done using the concept of VC dimension of a set of approximating

functions. First, we present this concept for the set of indicator functions.

Vapnik and Chervonenkis (1968) proved that the Growth Function is either lin-

ear or bounded by a logarithmic function of the number of samples n (see

Fig. 4.2). The point n ¼ h where the growth starts to slow down is called the

VC dimension (denoted by h). If it is finite, then the Growth Function does not

grow linearly for large enough samples and in fact is bounded by a logarithmic

function:

GðnÞ � h 1þ ln
n

h

� �

: ð4:11Þ

The VC dimension h is a characteristic of a set of functions. Finiteness of h pro-

vides necessary and sufficient conditions for the fast rate of convergence and for

distribution-independent consistency of ERM learning, in view of (4.10). On the

contrary, if the bound stays linear for any n

GðnÞ ¼ n ln 2;

nln2

h ln n h() +1()

nh

G n()

FIGURE 4.2 Behavior of the growth function.

GROWTH FUNCTION AND VC DIMENSION 107

then the VC dimension for the set of indicator functions is (by definition) infinite. In

this case, any sample of size n can be split in all 2n possible ways by the functions

of a learning machine, and no valid generalization is possible, in view of (4.10).

Next, we give an equivalent constructive definition that is useful in calculating

the VC dimension. This definition is based on the notion of shattering: If n samples

can be separated by a set of indicator functions in all 2n possible ways, then this set

of samples is said to be shattered by the set of functions.

VC dimension of a set of indicator functions: A set of functions has VC dimen-

sion h if there exist h samples that can be shattered by this set of functions but there

are no hþ 1 samples that can be shattered by this set of functions. In other words,

VC dimension is the maximum number of samples for which all possible binary

labelings can be induced (without error) by a set of functions. This definition

requires just one set of h samples to exist; it does not imply that every sample of

size h needs to be shattered.

The concept of VC dimension is very important for obtaining distribution-

independent results in the learning theory, because according to (4.10) and (4.11)

the finiteness of VC dimension provides necessary and sufficient conditions for fast

rate of convergence and consistency of the ERM. Therefore, all constructive distri-

bution-independent results include the VC dimension of a set of loss functions. In

intuitive terms, these results suggest that learning (generalization) with finite sam-

ples may be possible only if the number of samples n exceeds the (finite) VC

dimension, corresponding to the linear part of the Growth Function in Fig. 4.2. In

other words, the set of approximating functions should not be too flexible (rich),

and this notion of flexibility or capacity is precisely captured in the concept of VC

dimension h. Moreover, these results ensure that learning is possible regardless of

underlying (unknown) distributions. We can now review the hierarchy of capacity

concepts introduced in VC theory, by combining inequalities (4.6) and (4.11):

HðnÞ � HannðnÞ � GðnÞ � h 1þ ln
n

h

� �

: ð4:12Þ

According to (4.12), entropy-based capacity concepts are most accurate, but they

are distribution-dependent and hence most difficult to evaluate. On the contrary,

the VC dimension is the least accurate but most practical concept. In many practical

applications, the data are very sparse and high dimensional, that is n � d, so that

density estimation is completely out of question, and the only practical choice is to

use the VC dimension for capacity (complexity) control.

Next, we generalize the concept of VC dimension to real-valued loss functions.

Consider a set of real-valued functions Qðz;oÞ bounded by some constants

A � Qðz;oÞ � B:

For each such real-valued function, we can form the indicator function showing for

each x whether Qðz;oÞ is greater or smaller than some level b ðA � b � BÞ:

Iðz;o; bÞ ¼ I½Qðz;oÞ � b > 0�: ð4:13Þ

108 STATISTICAL LEARNING THEORY

Then VC dimension of a set of real-valued functions Qðz;oÞ is, by definition, equal
to the VC dimension of the set of indicator functions with parameters o; b. The
relationship between real function Qðz;oÞ and the corresponding indicator function
Iðz;o; bÞ is shown in Fig. 4.3.

Importance of finite VC dimension for consistency of ERM learning can be

intuitively explained and related to philosophical theories of nonfalsifiability (Vap-

nik 1995). Let us interpret the problem of learning from samples in general philo-

sophical terms. Specifically, a set of training samples corresponds to ‘‘facts’’ or

assertions known to be true. A set of functions corresponds to all possible general-

izations. Each function from this set is a model or hypothesis about unknown (true)

dependency. Generalization (on the basis of known facts) amounts to selecting a

particular model from the set of all possible functions using some inductive theory

(i.e., the ERM inductive principle). Obviously, any inductive process (theory) can

produce false generalizations (models). This is a fundamental philosophical pro-

blem in inductive theory, known as the demarcation problem:

How does one distinguish in a formal way between true inductive models for which the

inductive step is justified and false ones for which the inductive step is not justified?

This problem had been originally posed in the context of the philosophy of natural

science. Note that all scientific theories are built upon some generalizations of

observed facts, and hence represent inductive models. However, some theories

are known to be true, meaning they reflect reality, whereas others do not. For exam-

ple, chemistry is a true scientific theory, whereas alchemy is not. The question is

how to distinguish between the two. Karl Popper suggested the following criterion

for demarcation between true and false (inductive) theories (Popper 1968):

The necessary condition for the inductive theory to be true is the feasibility of its fal-

sification, i.e., the existence of certain assertions (facts) that cannot be explained by

this theory.

0

1

z

Q (z, w)

I[Q (z, w)>b]

b

FIGURE 4.3 VC dimension of the set of real-valued functions.

GROWTH FUNCTION AND VC DIMENSION 109

For example, both chemistry and alchemy describe procedures for creating new mate-

rials. However, an assertion that gold can be produced by mixing certain ingredients

and chanting some magic words is not possible according to chemistry. Hence, this

assertion falsifies this theory, for if it were to happen, chemistry will not be able to

explain it. This assertion most likely can be explained by some theory of alchemy. As

there is no example that can falsify the theory of alchemy, it is a nonscientific theory.

Next, we show that if the VC dimension of a set of functions is infinite, or

equivalently the growth function grows as n ln 2, for any n, then the ERM principle

is nonfalsifiable (for a given set of functions) and hence produces ‘‘bad’’ models

(according to Popper). The infiniteness of VC dimension implies that

lim
n!1

GðnÞ
n
¼ ln 2;

which further implies that for almost all samples Zn (for large enough n)

NðZnÞ ¼ 2n;

that is, any sample (of arbitrary size) can be split in all possible ways by the func-

tions. For this learning machine, the minimum of the empirical risk is always zero.

Such a machine can be called nonfalsifiable, as it can ‘‘explain’’ or fit any data set.

According to Popper, this machine provides false generalizations. Moreover, the

VC dimension gives a precise measure of capacity (complexity) of a set of func-

tions and can be inversely related to the degree of falsifiability. Note that in estab-

lishing the connection between the VC theory and the philosophy of science, we

had to make rather specific interpretations of vaguely defined philosophical con-

cepts. As it turns out, Popper himself tried to quantify the notion of falsifiability

(Popper 1968); however, Popper’s falsifiability is different from VC falsifiability.

We will further elaborate on these issues in Section 4.7.

4.2.1 VC Dimension for Classification and Regression Problems

All results in the learning theory use the VC dimension defined on the set of loss func-

tions Qðz;oÞ. This quantity depends on the set of approximating functions f ðx;oÞ and
on the particular type of the learning problem (classification, regression, etc.). To

apply the results of the learning theory in practice, we need to know how the VC

dimension of the loss functions Qðz;oÞ is related to the VC dimension of approximat-

ing functions f ðx;oÞ for each type of learning problem. Next, we show the connection

between the VC dimension of the loss functions Qðz;oÞ and the VC dimension of

approximating functions f ðx;oÞ, for classification and regression problems.

Consider a set of indicator functions f ðx;oÞ and a set of loss functions Qðz;oÞ,
where z ¼ ðx; yÞ. Assuming standard binary classification error (2.8), the corre-

sponding loss function is

Qðz;oÞ ¼ jy� f ðx;oÞj:

110 STATISTICAL LEARNING THEORY

Hence, for classification problems, the VC dimension of the indicator loss functions

equals the VC dimension of the approximating functions.

Next, consider regression problems with squared error loss

Qðz;oÞ ¼ ðy� f ðx;oÞÞ2;

where f ðx;oÞ is a set of (real-valued) approximating functions. Let hf denote the

VC dimension of the set f ðx;oÞ. Then, it can be shown (Vapnik 1995) that the

VC dimension h of the set of real functions Qðz;oÞ ¼ ðy� f ðx;oÞÞ2 is bounded as

hf � h � chf ; ð4:14Þ

where c is some universal constant.

In fact, according to Vapnik (1996) for practical regression applications one can

use

h � hf : ð4:15Þ

In summary, for both classification and regression problems, the VC dimension of

the loss functions Qðz;oÞ equals the VC dimension of approximating functions

f ðx;oÞ. Hence, in the rest of this book, the term VC dimension of a set of functions

applies equally to a set of approximating functions and to a set of the loss functions.

4.2.2 Examples of Calculating VC Dimension

Let us consider several examples of calculating (estimating) the VC dimension for

different sets of indicator functions. As we will see later in Section 4.3, all impor-

tant theoretical results (generalization bounds) use the VC dimension. Hence, it is

important to estimate this quantity for different sets of functions. Most examples in

this section derive analytic estimates of the VC dimension using its definition (via

shattering). Unfortunately, this approach works only for rather simple sets of func-

tions. Another general approach is based on the idea of measuring the VC dimen-

sion experimentally, as discussed in Section 4.6.

Example 4.1: VC dimension of a set of linear indicator functions

Consider

Qðz;wÞ ¼ I
X

d

i¼1
wizi þ w0 > 0

 !

ð4:16aÞ

in d-dimensional space z ¼ ðz1; z2; . . . ; zdÞ. As functions from this set can shatter at

most d þ 1 samples (see Fig. 4. 4), the VC dimension equals h ¼ d þ 1. Note that

the definition implies the existence of just one set of d þ 1 samples that can be shat-

tered, rather than every possible set of d þ 1 samples. For example, for the 2D case

GROWTH FUNCTION AND VC DIMENSION 111

shown in Fig. 4.4, any three collinear points cannot be shattered by the linear func-

tion, yet the VC dimension is 3.

Similarly, the VC dimension of a set of linear real-valued functions

Qðz;wÞ ¼
X

d

i¼1
wizi þ w0 ð4:16bÞ

in d-dimensional space is h ¼ d þ 1 because the corresponding linear indicator

functions are given by (4.16a). Note that the VC dimension in the case of linear

functions equals the number of adjustable (free) parameters.

Example 4.2: Set of univariate functions with a single parameter

Consider

f ðx;wÞ ¼ Iðsin wx > 0Þ:

This set of functions has infinite VC dimension, as one can interpolate any number

h of points of any function �1 � jðxÞ � 1 by using a high-frequency sin wx func-

tion (see Fig. 4.5). This example shows that a set of (nonlinear) functions with a

single parameter (i.e., frequency) can have infinite VC dimension.

Example 4.3: Set of rectangular indicator functions Qðz; c;wÞ

Consider

Qðz; c;wÞ ¼ 1 if and only if jzi � cij � wi ði ¼ 1; 2; . . . ; dÞ; ð4:17Þ

where c denotes the center and w is a width vector of a rectangle parallel to coor-

dinate axes. The VC dimension of such a set of functions is h ¼ 2d, where d is the

*

*

*

Z1

Z2 Z2

Z1

*
*

*

*

(b)(a)

FIGURE 4.4 VC dimension of linear indicator functions. (a) Linear functions can shatter

any three points in a two-dimensional space. (b) Linear functions cannot split four points into

two classes as shown.

112 STATISTICAL LEARNING THEORY

dimensionality of z-space. For example, in a two-dimensional space there is a set

of four points that can be shattered by rectangular functions in a manner shown in

Fig. 4.6, but no five samples can be shattered by this set of functions. Note that the

VC dimension in this case equals the number of free parameters specifying the rec-

tangle (i.e., its center and width).

Example 4.4: Set of radially symmetric indicator functions Qðz; c; rÞ

Consider

Qðz; c; rÞ ¼ 1 if and only if jjz� cjj � r ð4:18Þ

in d-dimensional space z ¼ ðz1; z2; . . . ; zdÞ, where c denotes the center and r is the

radius parameter. This set of functions implements spherical decision surfaces in

z-space. Because a d-dimensional sphere is determined by d þ 1 points, this set

–1

–0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 x

y

y = sin (wx)

FIGURE 4.5 Set of indicator functions with infinite VC dimension.

Z2

Z1

*

*

* *

FIGURE 4.6 VC dimension of a set of rectangular functions.

GROWTH FUNCTION AND VC DIMENSION 113

of functions can shatter any d þ 1 points. However, it cannot shatter d þ 2 points.

Hence, the VC dimension of this set of functions is h ¼ d þ 1, where d is the

dimensionality of z-space.

Example 4.5: Set of simplex indicator functions Qðz; cÞ in d-dimensional space

Examples include line segment (in one-dimensional space), triangle (in two-dimen-

sional space), pyramid (in three-dimensional case), and so on. Each simplex parti-

tions the input space into two classes, that is, points inside the triangle and outside

of it. Note that a simplex in d-dimensional space is defined by a set of d þ 1 points

(vertices), where each point is defined by d coordinates. Hence, the VC dimension

equals the total number of parameters, dðd þ 1Þ.

Example 4.6: Set of real-valued ‘‘local’’ functions

Consider

f ðx; c; aÞ ¼ K
jjx� cjj

a

� �

; ð4:19Þ

where k is a kernel or local function (i.e., Gaussian) specified by its center and width

parameters. For a general definition of kernel functions, see Example 2.3. The VC

dimension of this set of functions equals the VC dimension of indicator functions:

Iðx; c; a; bÞ ¼ I K
jjx� cjj

a

� �

� b

� �

: ð4:20Þ

One can see that the set of radially symmetric functions (4.20) is equivalent to the

set of functions (4.18) so that the VC dimension h ¼ d þ 1. Note that a set of func-

tions (4.20) has d þ 2 ‘‘free’’ parameters. Hence, this example shows that the VC

dimension can be lower than the number of free parameters. In other words, fixing

the width parameter in a set (4.20) does not change its VC dimension.

Example 4.7: Linear combination of fixed basis functions

Consider

Qmðz;wÞ ¼
X

m

i¼1
wig�ðzÞ þ w0; ð4:21Þ

where g�ðzÞ are fixed basis functions defined a priori. Assuming that basis functions

are linearly independent, this set of functions is equivalent to linear functions (4.16)

in m-dimensional space fg1ðzÞ; g2ðzÞ; . . . gmðzÞg. Hence, the VC dimension of this

set of functions is

h ¼ mþ 1:

114 STATISTICAL LEARNING THEORY

Example 4.8: Linear combination of adaptive basis functions nonlinear

in parameters

Consider

Qmðz;w; vÞ ¼
X

m

i¼1
wig�ðz; vÞ þ w0;

where g�ðz; vÞ are basis functions with adaptable parameters v (e.g., multilayer per-

ceptrons). Here the basis functions are nonlinear in parameters v. In this case, cal-

culating the VC dimension can be quite difficult even when the VC dimension of

individual basis functions is known. In particular, the VC dimension of the sum of

two basis functions can be infinite even if the VC dimension of each basis function

is finite.

4.3 BOUNDS ON THE GENERALIZATION

This section describes the upper bounds on the rate of uniform convergence of the

learning processes based on the ERM principle. These bounds evaluate the differ-

ence between the (unknown) true risk and the known empirical risk as a function of

sample size n , properties of the unknown distribution FðzÞ , properties of the loss

function, and properties of approximating functions. Using notation introduced in

Section 4.1, consider the loss function Qðz;o�nÞ minimizing empirical risk for a

given sample of size n. Let Rempðo�nÞ denote the empirical risk and Rðo�nÞ denote
the true risk corresponding to this loss function. Then the generalization bounds

answer the following two questions:

� How close is the true risk Rðo�nÞ to the minimal empirical risk Rempðo�nÞ?
� How close is the true risk Rðo�nÞ to the minimal possible risk Rðo0Þ ¼ min

o
RðoÞ?

These quantities can be readily seen in Fig. 4.1.

Recall that in previous sections we introduced several capacity concepts: the VC

entropy, the growth function, and the VC dimension. According to (4.12), most

accurate generalization bounds can be obtained based on the VC entropy. However,

as the VC entropy depends on the properties of (unknown) distributions, such

bounds are not constructive; that is, they cannot be readily evaluated (Vapnik

1995). In this book, we only describe constructive distribution-independent bounds,

based on the distribution-independent concepts, such as the growth function and

the VC dimension. These bounds justify the new inductive principle (SRM) and

associated constructive procedures. The description is limited to bounded nonnega-

tive loss functions (corresponding to classification problems) and unbounded non-

negative loss functions (corresponding to regression problems). Bounds for other

types of loss functions are discussed in Vapnik (1995, 1998).

BOUNDS ON THE GENERALIZATION 115

4.3.1 Classification

Consider the problem of binary classification stated in Section 2.1.2, where a

learning machine implements a set of bounded nonnegative loss functions (i.e.,

0/1 loss). In this case, the following bound for generalization ability of a learning

machine (implementing ERM) holds with probability of at least 1 � Z simulta-

neously for all functions Qðz;oÞ, including the function Qðz;o�nÞ that minimizes

empirical risk:

RðoÞ � RempðoÞ þ
e

2
1þ

ffi

1þ 4RempðoÞ
e

r
 !

; ð4:22Þ

where

e ¼ e
n

h
;
� ln Z

n

� �

¼ a1

h ln
a2n

h
þ 1

� �

� ln Z=4ð Þ
n

; ð4:23aÞ

when the set of loss functions Qðz;oÞ contains an infinite number of elements,

namely a parametric family where each element (function) is specified by contin-

uous parameter values. When the set of loss functions contains a finite number of

elements N,

e ¼ 2
lnN � ln Z

n
: ð4:23bÞ

In the rest of the book, we will use mainly expression (4.23a) because it corre-

sponds to commonly used sets of functions. Expression (4.23b) for finite number

of loss functions can be useful for analyzing methods based on the minimum

description length (MDL) approach where approximating functions are implemen-

ted as a fixed codebook. For example, an upper bound on the misclassification error

for the MDL approach (2.74) has been derived using (4.22) and (4.23b).

SLT (Vapnik 1982, 1995, 1998) proves that the values of constants a1 and a2
must be in the ranges 0 < a1 � 4 and 0 < a2 � 2. The values a1 ¼ 4 and a2 ¼ 2

correspond to the worst-case distributions (discontinuous density function), yield-

ing the following expression:

e ¼ 4

h ln
2n

h
þ 1

� �

� ln Z=4ð Þ

n
: ð4:23cÞ

For practical applications, generalization bounds with the worst-case values of con-

stants (4.23c) perform poorly, and smaller values for constants a1 and a2 (reflecting

properties of real-life distributions) can be tuned empirically. For example, for

regression problems the empirical results in Section 4.5 suggest very good model

selection using generalization bounds with values a1 ¼ 1 and a2 ¼ 1. For classifi-

cation problems, good empirical values for a1 and a2 are unknown.

116 STATISTICAL LEARNING THEORY

The following bound holds with probability of at least 1� 2Z for the function

Qðz;o�nÞ that minimizes empirical risk:

Rðo�nÞ �min
o

RðoÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi

� ln Z

2n

r

þ e

2
1þ

ffiffiffiffiffiffiffiffiffiffiffi

1þ 4

e

r

 !

: ð4:24Þ

Note that both bounds (4.22) and (4.24) grow large when the confidence level 1� Z

is high (i.e., approaches 1). This is because when Z! 0 (with other parameters

fixed), the value of e!1 in view of (4.23) and hence the right-hand sides of

both bounds grow large (infinite) and become too loose to be practically useful.

It has an obvious intuitive interpretation: Any estimate (model) obtained from finite

number of samples cannot have an arbitrarily high confidence level. There is always

a tradeoff between the accuracy provided by the bounds and the degree of confi-

dence (in these bounds). On the contrary when the number of samples grows

large (with other parameters fixed), both bounds (4.22) and (4.24) become more

tight (accurate); that is, when n!1, an empirical risk is very close to the true

risk. Hence, a reasonable way to apply these bounds in practice would be to choose

the value of the confidence interval as some function of the number of samples.

Then, when the number of samples is small, the confidence level is set low, but

when the number of samples is large, the confidence level is set high. In particular,

the following rule for choosing the confidence level is recommended in Vapnik

(1995) and adopted in this book:

Z ¼ min
4
ffiffiffi

n
p ; 1

� �

: ð4:25Þ

The bound (4.22) is of primary interest for learning with finite samples. This bound

can be presented as

RðoÞ � RempðoÞ þ FðRempðoÞ; n=h;� ln Z=nÞ; ð4:26Þ

where the second term on the right-hand side is called the confidence interval because

it estimates the difference between the training error and the true error. The confi-

dence interval F should not be confused with the confidence level 1� Z. Let us ana-

lyze the behavior of F as a function of sample size n , with all other parameters fixed.

It can be readily seen that the confidence interval mainly depends on e, which mono-

tonically decreases (to zero) with n according to (4.23a). Hence, F also monotoni-

cally decreases with n , as can be intuitively expected. For example, in Fig. 4.1

confidence interval F corresponds to the upper bound on the distance between the

two curves for any fixed n . Moreover, (4.23) clearly shows strong dependency of

the confidence interval F on the ratio n=h, and we can distinguish two main regimes:

(1) small (or finite) sample size, when the ratio of the number of training samples to

the VC dimension of approximating functions is small (e.g., less than 20), and (2)

large sample size, when this ratio is large.

BOUNDS ON THE GENERALIZATION 117

For the large sample size the value of the confidence interval becomes small, and

the empirical risk can be safely used as a measure of true risk. In this case, applica-

tion of the classical (parametric) statistical methods (based on ERM or maximum

likelihood) is justified. On the contrary, with small samples the value of the confi-

dence interval cannot be ignored, and there is a need to match complexity (capa-

city) of approximating functions to the available data. This is achieved using the

SRM inductive principle discussed in Section 4.4.

4.3.2 Regression

Consider generalization bounds for regression problems. In SLT, the regression for-

mulation corresponds to the case of unbounded nonnegative loss functions (i.e.,

mean squared error). As the bounds on the true function or the additive noise are

not known, we cannot provide finite bounds for such loss functions. In other words,

there is always a small probability of observing very large output values, resulting

in large (unbounded) values for the loss function. Strictly speaking, it is not possible

to estimate this probability from the finite training data alone. Hence, the learning

theory provides some general characterization for distributions of unbounded loss

functions where the large values of loss do not occur very often (Vapnik 1995). This

characterization describes the ‘‘tails of the distributions,’’ namely the probability of

observing large values of the loss. For distributions with the so-called ‘‘light tails’’

(i.e., small probability of observing large values), a fast rate of convergence is pos-

sible. For such distributions, the bounds on generalization are as follows.

The bound that holds with probability of at least 1� Z simultaneously for all loss

functions (including the one that minimizes the empirical risk) is

RðoÞ � RempðoÞ
ð1� c

ffiffi

e
p Þþ

; ð4:27aÞ

where e is given by (4.23a) and the value of constant c depends on the ‘‘tails of the

distribution’’ of the loss function. For most practical regression problems we can

safely assume that c ¼ 1, based on the following (informal) arguments. Consider

the case when h ¼ n. In this case, the bound should yield an uncertainty of the

type 0/0 with confidence level 1� Z ¼ 0. This will happen when c ¼ 1, assuming

practical values of constants a1 ¼ 1 and a2 ¼ 1 in the expression for e. From a prac-

tical viewpoint, the confidence level of the bound (4.27a) should depend on the sam-

ple size n; that is, for larger sample sizes we should expect higher confidence level.

Hence, the confidence level 1� Z is set according to (4.25). Making all these substi-

tutions into (4.27a) gives the following practical form of the VC bound for regression:

RðoÞ � RempðoÞ 1�
ffi

p� p ln pþ ln n

2n

r

 !�1

þ
; ð4:27bÞ

where p ¼ h=n. Note that the VC bound (4.27b) has the same form as classical

statistical bounds for model selection in Section 3.4.1. Using the terminology in

118 STATISTICAL LEARNING THEORY

Section 3.4.1, the practical VC bound (4.27b) specifies a VC penalization factor,

which we call Vapnik’s measure (vm):

rðp; nÞ ¼ 1�
ffi

p� p ln pþ ln n

2n

r

 !�1

þ
: ð4:28Þ

The bound (4.27b) can be immediately used for model selection (if the VC dimen-

sion is known or can be estimated). Several examples of practical model selection

are presented later in Section 4.5.

Also, the following bound holds with probability of at least 1� 2Z for the func-

tion Qðz;o�nÞ that minimizes the empirical risk:

Rðo�nÞ �min
o

RðoÞ
min
o

RðoÞ � c
ffiffi

e
p

ð1� c
ffiffi

e
p Þþ

þ O
1

n

� �

: ð4:29Þ

This bound estimates the difference between the empirical risk and the smallest

possible risk. For both bounds (4.27) and (4.29), one can use prescription (4.25)

for selecting the confidence level as a function of the number of samples.

The generalization bounds (4.22), (4.24), (4.27), and (4.29) are particularly

important for model selection, and they form a basis for development of the new

inductive principle (SRM) and associated constructive procedures. These general-

ization bounds can be immediately used for deriving a number of interesting results.

Here we present two. First, we will use the regression generalization bound to deter-

mine an upper limit for complexity h given sample size n and confidence level Z.

We will see that if complexity exceeds this limit, the bound on expected risk

becomes infinite. Second, we will show how the generalization bounds can be

related to the sampling theorem in signal processing.

For the regression problem, (4.27) provides an upper bound on the expected risk.

This bound approaches infinity when the denominator of (4.27) equals zero. For

c ¼ 1 this occurs when values of n, Z, and h cause e 	 1. If n and Z are held at

particular values, it is possible to determine the value of h that leads to the bound

approaching 1. This involves solving the following nonlinear equation for h:

eðhÞ ¼ a1

h ln
a2n

h
þ 1

� �

� lnðZ=4Þ
n

	 1 with a1 ¼ 1; a2 ¼ 1: ð4:30Þ

This inequality can be solved numerically, for example, using bisection. Figure 4.7

shows the resulting solutions for various values of confidence limit and sample size.

As evident from Fig. 4.7, for large n, solutions can be conveniently presented in

terms of the ratio h=n. In particular, inequality (4.30) is satisfied when

h

n
� 0:8 for Z 	 minð4=

ffiffiffi

n
p

; 1Þ: ð4:31Þ

BOUNDS ON THE GENERALIZATION 119

This bound is useful for model selection, as it provides an upper limit for complex-

ity for a given sample size and confidence level, with no assumptions about the type

of approximating function and noise level in the data. For example, if the training

set contains 50 samples and the confidence limit is 0.1, then the complexity of any

regression method should not exceed h ¼ 32 when using (4.27) for model selection

(see Fig. 4.7). Note that the bounds on h=n found by solving (4.30) are still too

loose for most practical applications. We found useful the following practical

upper bound on the complexity of an estimator: h � 0:5n.

4.3.3 Generalization Bounds and Sampling Theorem

Generalization bounds can also be related to the sampling theorem (see Section

3.2), as discussed next. According to the sampling theorem (stated for the univariate

case), one needs 2cmax samples per second to restore a bandwidth-limited signal,

where cmax is the known maximum frequency of a signal (univariate function). In

many applications, the signal bandwidth is not known, and the signal itself is cor-

rupted with high-frequency noise. Hence, the goal of filtering useful signal from

noise can be viewed as the problem of learning from samples (i.e., regression for-

mulation). However, note that in the predictive learning formulation the assump-

tions about the noise, true signal, and sampling distribution are relaxed. For large

samples, the solution to the learning problem found via ERM starts to accurately

approximate the best possible estimate according to the bound (4.29). In particular,

(4.29) can be used to determine crude bounds on the number of samples (sampling

rate) needed for accurate signal restoration. An obvious necessary condition is that

the term ð1� ffiffi

e
p Þ in the denominator of (4.29) stays positive. This leads to solving

the same nonlinear equation (4.30), which for large n has solution (4.31) as shown

above. Condition (4.31) can be interpreted as a very crude requirement on the

0

10

20

30

40

50

60

70

80

0 20 40 60 10080
n

h

h = 0.1

h = 0.01

h = 0.001

 h = min 4 n ,1)(

FIGURE 4.7 Values of n; Z, and h that cause the generalization bound to approach infinity

under real-life conditions (a1 ¼ 1; a2 ¼ 1).

120 STATISTICAL LEARNING THEORY

number of samples necessary for accurate estimation of a signal using a class of

estimators having complexity h.

Now let us relate bound (4.31) to the sampling theorem, which estimates a signal

using trigonometric polynomial expansion

f ðx; vm;wmÞ ¼ w0 þ
X

m

j¼1
wj sinð2pjxÞ þ vj cosð2pjxÞ:

Such an expansion has VC dimension h ¼ 2mþ 1 and a maximum frequency

cmax ¼ m. Hence,

cmax ¼
h� 1

2
:

The sampling theorem gives the necessary number of samples as

n 	 2cmax ¼ h� 1:

According to the sampling theorem, if the signal bandwidth and hence VC dimen-

sion of the set of approximating functions are known in advance, then the following

relationship holds:

h

n
� 1: ð4:32Þ

Compare (4.32) obtained under the restricted setting of the sampling theorem with

the bound (4.31), which is valid under most general conditions. There is a qualita-

tive similarity in a sense that in both cases the number of samples needed for accu-

rate estimation grows linearly with the complexity of the true signal (i.e., VC

dimension or maximum frequency). Also, both bounds (4.30) and (4.32) give the

same order estimates. However, it would not be sensible to compare these bounds

directly, as they have been derived under very different assumptions.

The bounds (4.27) and (4.29) can also be used to determine the number of sam-

ples needed for accurate estimation, namely for obtaining an estimate with the risk

close to the minimal possible risk. The main difficulty here is that the complexity

characterization of the true signal (i.e., VC dimension or signal bandwidth) is not

known (as in the sampling theorem) but needs to be estimated from data. For a

given sample size, a set of functions with an optimal VC dimension can be found

by minimizing the right-hand side of (4.27) as described later in Section 4.5. This

gives an optimal model (estimate) for a given sample. Then, one can use (4.29) to

estimate how the risk provided by this (optimal) model differs from the minimal

possible risk. Then the number of samples is increased, and the above procedure

is repeated until the risk provided by the model is sufficiently close to the minimal

possible. Note that according to the above procedure, it is not possible to determine

a priori the number of samples needed for accurate signal estimation because the

signal characteristics are not known and can only be estimated from samples.

BOUNDS ON THE GENERALIZATION 121

4.4 STRUCTURAL RISK MINIMIZATION

As discussed in the previous section, the ERM inductive principle is intended for

large samples, namely when the ratio n=h is large, then e � 0 in the bound (4.22)

for classification or in (4.27) for regression, and the empirical risk is close to the

true risk. Hence, a small value of the empirical risk guarantees small true risk. How-

ever, if n=h is small, namely when the ratio n=h is less than 20, then both terms on

the right-hand side of (4.22) or both (numerator and denominator) terms in (4.27)

need to be minimized. Note that the first term (empirical risk) in (4.22) depends on

a particular function from the set of functions, whereas the second term depends

mainly on the VC dimension of the set of functions. Similarly, in the multiplicative

bound for regression (4.27), the numerator depends on a particular function,

whereas the denominator depends on the VC dimension. To minimize the bound

of risk in (4.22) or (4.27) over both terms, it is necessary to make the VC dimension

a controlling variable. In other words, the problem is to find a set of functions hav-

ing optimal capacity (i.e., VC dimension) for a given training data. Note that in

most practical problems when only the data set is given but the true model com-

plexity is not known, we are faced with the small-sample estimation. In contrast,

parametric methods based on the ERM inductive principle use a set of approximat-

ing functions of known fixed complexity (i.e., the number of parameters), under the

assumption that the true model belongs to this set of functions. This parametric

approach is justified only when the above assumption holds true and the number

of samples (more accurately, the ratio n=h) is large.
The inductive principle called SRM provides a formal mechanism for choosing

an optimal model complexity for finite sample. SRM has been originally proposed

and applied for classification (Vapnik and Chervonenkis 1979); however, it is

applicable to any learning problem where the risk functional (4.1) has to be mini-

mized. Under SRM the set S of loss functions Qðz;oÞ;o 2 �, has a structure; that

is, it consists of the nested subsets (or elements) Sk ¼ fQðz;oÞ;o 2 �kg such that

S1
 S2
 � � �
 Sk
 � � � ; ð4:33Þ

where each element of the structure Sk has finite VC dimension hk; see Fig. 4.8. By

definition, a structure provides ordering of its elements according to their complex-

ity (i.e., VC dimension):

h1 � h2 � � � � � hk � � � � :

S1 S2 Sk

FIGURE 4.8 Structure of a set of functions.

122 STATISTICAL LEARNING THEORY

In addition, functions Qðz;oÞ;o 2 �k, contained in any element Sk either should be

bounded or (if unbounded) should satisfy some general conditions (Vapnik 1995) to

ensure that the risk functional does not grow too wildly without bound.

According to SRM, solving a learning problem with finite data requires a priori

specification of a structure on a set of approximating functions. Then for a given

data set, optimal model estimation amounts to two steps:

1. Selecting an element of a structure (having optimal complexity)

2. Estimating the model from this element

Note that step 1 corresponds to model selection, whereas step 2 corresponds to

parameter estimation in statistical methods.

There are two practical strategies for minimizing VC bounds (4.22) and (4.27),

leading to two constructive SRM implementations:

1. Keep the model complexity (VC dimension) fixed and minimize the empirical

error term

2. Keep the empirical error constant (small) and minimize the VC dimension,

thus effectively minimizing the confidence interval term in (4.26) for

classification, or maximizing the denominator term in (4.27) for regression

This chapter, as well as Chapters 5–8 of this book, describes learning methods

implementing the first SRM strategy. In fact, most statistical and neural network

learning methods implement this first strategy. Later in Chapters 9 and 10, we

describe methods using the second strategy.

The first SRM strategy can be described as follows: For a given training data

z1; z2; . . . ; zn, the SRM principle selects the function Qkðz;o�nÞ minimizing the

empirical risk for the functions from the element Sk. Then for each element of a struc-

ture Sk the guaranteed risk is found using the bounds provided by the right-hand side

of (4.22) for classification problems or (4.27) for regression. Finally, an optimal struc-

ture element Sopt providing minimal guaranteed risk is chosen. This subset Sopt is a set

of functions having optimal complexity (i.e., VC dimension) for a given data set.

The SRM provides quantitative characterization of the tradeoff between the

complexity of approximating functions and the quality of fitting the training data.

As the complexity (i.e., subset index k) increases, the minimum of the empirical

risk decreases (i.e., the quality of fitting the data improves), but the second additive

term (the confidence interval) in (4.22) increases; see Fig. 4.9. Similarly, for regres-

sion problems described by (4.27), with increased complexity the numerator

(empirical risk) decreases, but the denominator becomes small (closer to zero).

SRM chooses an optimal element of the structure that yields the minimal guaran-

teed bound on the true risk.

The SRM principle does not specify a particular structure. However, successful

application of SRM in practice may depend on a chosen structure. Next, we

describe examples of commonly used structures.

STRUCTURAL RISK MINIMIZATION 123

4.4.1 Dictionary Representation

Here the set of approximating functions is

fmðx;w;VÞ ¼
X

m

i¼0
wigðx; viÞ; ð4:34Þ

where gðx; viÞ is a set of basis functions with adjustable parameters vi and wi are

linear coefficients. Both wi and vi are estimated to fit the training data. By conven-

tion, the bias (offset) term in (4.34) is given by w0. Representation (4.34) defines a

structure, as

f1
 f2
 � � �
 fk
 � � � :

Hence, the number of terms m in expansion (4.34) specifies an element of a

structure.

Dictionary representation (4.34) includes, as a special case, an important class

of linear estimators, when the basis functions are fixed, and the only adjustable

FIGURE 4.9 An upperbound on the true (expected) risk and the empirical risk as a

function of h (for fixed n).

124 STATISTICAL LEARNING THEORY

parameters are linear coefficients wi. For example, consider polynomial estimators

for univariate regression:

fmðx;wÞ ¼
X

m

i¼0
wix

i: ð4:35Þ

Here the (fixed) basis functions are formed as xi. Estimating optimal degree of a

polynomial for a given data set can be performed using SRM (see the case study

in the next section).

On the contrary, general representation (4.34) with adaptive basis functions

gðx; viÞ that depend nonlinearly on parameters vi leads to nonlinear methods. An

example of a nonlinear dictionary parameterization is an artificial neural network

with a single layer of hidden units:

fmðx;w;VÞ ¼
X

m

i¼0
wigðx � viÞ; ð4:36Þ

which is a linear combination of univariate sigmoid basis functions of linear com-

binations of the input variables (denoted as a dot product x � vi). This set of func-
tions defines a family of networks indexed by the number of hidden units m. The

goal is to find an optimal number of hidden units for a given data set in order to

achieve the best generalization (minimum risk) for the future data.

Notice that representation (4.34) is defined for a set of approximating functions,

whereas the learning theory (including the SRM inductive principle) has been

formulated for a set of loss functions. This should not cause any confusion because

(as noted in Section 4.2) for practical learning problems (i.e., classification and

regression) all results of the learning theory hold true for approximating functions

as well.

4.4.2 Feature Selection

Let us consider representation (4.34), where a set of m basis functions is selected

from a larger set of M basis functions. This set ofM basis functions is usually given

a priori (fixed), and m is much smaller than M. Then parameterization (4.34) is

known as feature selection, where the model is represented as a linear combination

of m basis functions (features) selected from a large set of M features. Obviously,

the number of selected features specifies an element of a structure in SRM.

For example, consider sparse polynomials for univariate regression:

fmðx;wÞ ¼
X

m

i¼0
wix

ki ; ð4:37Þ

where ki can be any (positive) integer number. Under the SRM framework, the goal

is to select an optimal set of m features (monomials) providing minimization of

STRUCTURAL RISK MINIMIZATION 125

empirical risk (i.e., mean squared error) for each element of a structure (4.37). Note

that the problem of sparse polynomial estimation is inherently more difficult (due to

nonlinear nature of feature selection) than standard polynomial regression (4.35),

even though both use the same set of approximating functions (polynomials).

This example shows that one can define many different structures on the same

set of approximating functions. In fact, an important practical goal of VC theory

is characterization and specification of ‘‘good’’ generic structures that provide

superior generalization performance for finite-sample problems.

4.4.3 Penalization Formulation

As was presented in Chapter 3, penalization also represents a form of SRM. Con-

sider a set of functions f ðx;wÞ, where w is a vector of parameters having some fixed

length. For example, the parameters can be the weights of a neural network. Let us

introduce the following structure on this set of functions:

Sk ¼ ff ðx;wÞ; jjwjj2 � ckg; where c1 < c2 < c3 < . . . : ð4:38Þ

Minimization of the empirical risk RempðoÞ on each element Sk of a structure is a

constrained optimization problem, which is achieved by minimizing the ‘‘pena-

lized’’ risk functional

Rpenðo; lkÞ ¼ RempðoÞ þ lkjjwjj2 ð4:39Þ

with an appropriately chosen Lagrange multiplier lk, such that l1 > l2 > l3 > � � � :
Notice that (4.39) represents a familiar penalization formulation discussed in

Chapter 3. Hence, the particular structure (4.38) is equivalent to the ridge penalty

(used in statistical methods) or weight decay (used in neural networks). The VC

dimension of the ‘‘penalized’’ risk functional (4.39) or an equivalent structure

(4.38) can be estimated analytically if approximating functions f ðx;wÞ are linear

(in parameters). See Section 7.2.3 for details.

4.4.4 Input Preprocessing

Another common approach (used in image processing) is to modify the input repre-

sentation by a (smoothing kernel) transformation:

z ¼ Kðx; bÞ;

where b denotes the width of a smoothing kernel. The following structure is then

defined on a set of approximating functions f ðz;wÞ:

Sk ¼ f:f ðKðx; bÞ;wÞ; b 	 ckg;where c1 > c2 > c3 > � � � : ð4:40Þ

126 STATISTICAL LEARNING THEORY

The problem is to find an optimal element of a structure, namely the smoothing

parameter b, that provides minimum risk. For example, in image processing

input x may represent 64 pixels of a two-dimensional image. Often blurring (of

the original image) is achieved through convolution with a Gaussian kernel.

After smoothing, decimation of the input pixels can be performed without any

image degradation. Hence, such preprocessing reduces the dimensionality of the

input space by degrading the resolution. The question is how to choose an optimal

degree of smoothing (parameter b) for a given learning problem (i.e., image clas-

sification or recognition). The SRM formulation provides conceptual framework for

selecting an optimal smoother.

4.4.5 Initial Conditions for Training Algorithm

Many neural network methods effectively implement a structure via the training

(parameter estimation) procedure itself. In particular, minimization of the empirical

risk with respect to parameters (or weights) is performed using some nonlinear opti-

mization (or training) algorithm. Most nonlinear optimization algorithms require

initial parameter values (i.e., the starting point in the parameter space) and the

final (stopping) conditions for their practical implementation. For a given (fixed

model parameterization) SRM can be implemented via specification of the initial

conditions or the final conditions (stopping rules) of a training algorithm. We

have already pointed out that the early stopping rules for gradient-descent style

algorithms can be interpreted as a regularization mechanism. Next, we show that

a commonly used initialization heuristic of setting weights to small initial values

in fact implements SRM. Consider the following structure:

Sk ¼ fA : f ðx;wÞ; jjw0jj � ckg; where c1 < c2 < c3 < . . . :; ð4:41Þ

where w0 denotes a vector of initial parameter values (weights) used by an optimi-

zation procedure or algorithm A. Strictly speaking, because of the existence of mul-

tiple local minima, the results of nonlinear optimization always depend on the

initial conditions. Therefore, nonlinear optimization procedures provide only a

crude way to minimize the empirical risk. In practice, the global minimum is likely

to be found by performing minimization of the empirical risk starting with many

(random) initial conditions satisfying jjw0jj � ck and then choosing the best solu-

tion (with smallest empirical risk). Then the structure element Sk in (4.41) is spe-

cified with respect to an optimization algorithm A for parameter estimation (via

ERM) applied to a set of functions with initial conditions w0. The empirical risk

is minimized for all initial conditions satisfying jjw0jj � ck.

The above discussion also helps to explain why theoretical estimates of VC

dimension for feedforward networks (Baum and Haussler 1989) have found little

practical use. Theoretical estimates are derived for a class of functions, without tak-

ing into account properties of an actual optimization (training) procedure (i.e., initi-

alization, early stopping rules). However, these details of optimization procedures

inevitably introduce a regularization effect that is difficult to quantify theoretically.

STRUCTURAL RISK MINIMIZATION 127

To implement the SRM approach in practice, one should be able to (1) calcu-

late or estimate the VC dimension of any element Sk of the structure and (2)

minimize the empirical risk for any element Sk. This can usually be done for

functions that are linear in parameters. However, for most practical methods

using nonlinear approximating functions (e.g., neural networks) estimating the

VC dimension analytically is difficult, as is the nonlinear optimization problem

of minimizing the empirical risk. Moreover, many nonlinear learning methods

incorporate various heuristic optimization procedures that implement SRM impli-

citly. Examples of such heuristics include early stopping rules and weight initi-

alization (setting initial parameter values close to zero) frequently used in neural

networks. In such situations, the VC theory still has considerable methodological

value, even though its analytic results cannot be directly applied. In the next sec-

tion, we present an example of rigorous application of the SRM in the linear

case.

Finally, we emphasize that SRM does not specify the particular choice of

approximating functions (polynomials, feedforward nets with sigmoid units, radial

basis functions, etc.). Such a choice is outside the scope of SLT, and it should reflect

a priori knowledge or subjective bias of a human modeler.

Also, note that the SRM approach has been derived from VC bounds (4.22) and

(4.27), which hold for all loss functions Qðz;oÞ implemented by a learning

machine, not just for the function minimizing the empirical risk. Hence, these

bounds and SRM can be applied, in principle, to many practical learning methods

that do not guarantee minimization of the empirical risk. For example, many learn-

ing methods for classification use an empirical loss function (i.e., squared loss) con-

venient for optimization (parameter estimation), even though such a loss function

does not always yield minimum classification error. In the following chapters of this

book, we will often use VC theoretical and SRM framework for improved under-

standing of learning methods originally proposed in other fields (such as neural net-

works, statistics, and signal processing).

4.5 COMPARISONS OF MODEL SELECTION FOR REGRESSION

This section describes the empirical comparison of methods for model selection

for regression problems (with squared loss). Recall that the central problem in flex-

ible estimation with finite samples is model selection; that is, choosing the model

complexity optimally for a given training sample. This problem was introduced in

Chapter 2 and discussed at length in Chapter 3 under the regularization framework.

Although conceptually the regularization (penalization) approach is similar to

SRM, SRM differs in two respects: (a) SRM adopts the VC dimension as a measure

of model complexity (capacity) and (b) SRM is based on VC generalization

bounds that are different from analytic model selection criteria used under the

penalization framework. For linear estimators, the distinction (a) disappears

because the VC dimension h equals the number of free parameters or degrees of

freedom DoF.

128 STATISTICAL LEARNING THEORY

Practical implementation of model selection requires two tasks:

� Estimation of model parameters via minimization of the empirical risk

� Estimation of the prediction risk

Most comparisons presented in this section use linear estimators for which a unique

solution to the first task can be easily obtained (via linear least-squares minimiza-

tion). Then the problem of model selection is reduced to accurate estimation of the

prediction risk. As discussed in Chapter 3, there are two major approaches for esti-

mating prediction risk:

� Analytic methods, which effectively adjust (inflate) the empirical risk by

some measure of model complexity. These methods have been proposed for

linear models under certain restrictive (i.e., asymptotic) assumptions.

� Resampling or data-driven methods, which make no assumptions on the

statistics of the data or the type of the true function being estimated.

Both of these approaches work well for large samples, but with small samples they

usually exhibit poor performance, due to the large variability of estimates. On the

contrary, SLT provides upper-bound estimates on the prediction risk specifically

developed for finite samples, as discussed in Section 4.3. Here, we present empiri-

cal comparisons of the three approaches for model selection, namely of the clas-

sical analytic methods, resampling, and analytic methods derived from VC theory.

Our comparisons use the practical form of VC bound for regression (4.27b), which

has the multiplicative form RðoÞ ffi RempðoÞ � rðp; nÞ, identical to the form (3.28)

used by classical analytic criteria in Section 3.4.1. All these methods inflate

the empirical risk (or the mean-squares fitting error) by some penalization factor

rðp; nÞ that depends mainly on parameter p ¼ h=n, the ratio of the VC dimension

(or degrees of freedom) to sample size. Penalization factors for classical

model selection criteria, including final prediction error (fpe), generalized cross-

validation (gcv), and Shibata’s model selector (sms) are defined by expressions

(3.29), (3.31), and (3.32) in Section 3.4.1. The VC based approach uses a different

penalization factor (4.28) called the VC penalization factor or Vapnik’s measure

(vm):

rðp; nÞ ¼ 1�
ffi

p� p ln pþ ln n

2n

r

 !�1

þ
:

For notational convenience, in this section we use h to denote the VC dimension

and the number of free parameters (or degrees of freedom, DoF). This should not

cause any confusion because for linear methods all these complexity indices are

indeed the same. Figure 4.10 provides visual comparison of Vapnik’s measure

with some classical model selection criteria, where all methods use the same com-

plexity index h. Empirical comparisons for linear estimators presented later in this

COMPARISONS OF MODEL SELECTION FOR REGRESSION 129

section are intended to compare the analytic form of various model selection

criteria. In general, however, the VC dimension may be quite different from the

‘‘effective’’ number of parameters or DoF.

Note that analytic model selection criteria using the estimate of prediction risk in

a multiplicative form (as discussed above) do not require an estimate of additive

noise level in the data model for the regression learning problem, y ¼ tðxÞ þ x.

Many other statistical model selection approaches require the knowledge (or esti-

mation) of additive noise, that is, Akaike information criterion (AIC) and Bayesian

100

101

102

103

104

105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Analytic model selection criteria - gcv, fpe, and sms

p

g p()

g p()

gcv

fpe

sms

(a)

(b)

100

101

102

103

104

105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vapnik’s measure–vm(gcv given for reference)

p

gcvvm vm

n =10() n =100()

FIGURE 4.10 Various analytical model selection penalization functions: (a) Generalized

cross-validation (gcv), final prediction error (fpe), and Shibata’s model selector (sms). (b)

Vapnik’s measure (vm) for sample sizes indicated. The parameter p is equal to h=n.

130 STATISTICAL LEARNING THEORY

information criterion (BIC). AIC and BIC are motivated by probabilistic (maximum

likelihood) arguments. For regression problems with known Gaussian noise, AIC

and BIC have the following form (Hastie et al. 2001):

AICðhÞ ¼ RempðhÞ þ
2h

n
ŝ2; ð4:42Þ

BICðhÞ ¼ RempðhÞ þ ðln nÞ
h

n
ŝ2; ð4:43Þ

where h is the number of free parameters (of a linear estimator) and ŝ2 denotes an

estimate of noise variance. Both AIC and BIC are derived using asymptotic ana-

lysis (i.e., large sample size). In addition, AIC assumes that the correct model

belongs to the set of possible models. In practice, however, AIC and BIC are

often used when these assumptions do not hold. Note that AIC and BIC criteria

have an additive form RðoÞ ffi RempðoÞ þ rðp; ŝ2Þ. When using AIC or BIC for

practical model selection, we need to address two issues: estimation (and meaning)

of noise and estimation of model complexity. Both are difficult problems, as

detailed next:

� Estimation and meaning of (unknown) noise variance: When using a linear

estimator with h parameters, the noise variance can be estimated from the

training data as (Hastie et al. 2001)

ŝ2 ¼ n

n� h
� 1
n

X

n

i¼1
ðyi � ŷiÞ2 ¼

n

n� h
Remp: ð4:44Þ

Then one can use (4.44) in conjunction with AIC or BIC in one of the two possible

ways. Under the first approach, one estimates noise via (4.44) for each (fixed) model

complexity (Cherkassky et al. 1999; Chapelle et al. 2002a). Thus, different noise esti-

mates (4.44) are used in the AIC or BIC expression for each (chosen) model com-

plexity. For AIC, this approach leads to the multiplicative criterion known as fpe, and

for BIC it leads to Schwartz criterion (sc) introduced in Section 3.4.1. Under the

second approach one first estimates noise via (4.44) using a high-variance/low-bias

estimator, and then this noise estimate is plugged into AIC or BIC expression (4.42)

or (4.43) to select the optimal model complexity (Hastie et al. 2001). In this book, we

assume implementation of AIC or BIC model selection using the second approach

(i.e., additive form of analytic model selection), where the noise variance is known

or estimated. However, even though an estimate of noise variance can be obtained,

the very interpretation of noise becomes difficult for practical problems when the set

of possible models does not contain the true target function. In this case, it is not clear

whether the notion of ‘‘noise’’ refers to a discrepancy between admissible models and

training data, or reflects the difference between the true target function and the train-

ing data. In particular, noise estimation becomes very problematic when there is sig-

nificant mismatch between an unknown target function and an estimator. For

example, consider using a k-nearest-neighbor regression to estimate discontinuous

COMPARISONS OF MODEL SELECTION FOR REGRESSION 131

target functions. In this case, noise estimation for AIC/BIC model selection is diffi-

cult because it is well known that kernel estimators are intended for smooth target

functions (Hardle 1990). Hence, all empirical comparisons presented in this section

assume that for AIC and BIC methods the variance of the additive noise is known.

This removes the effect of noise estimation strategy on the model selection results

and gives an additional advantage to AIC/BIC versus other methods.

� Estimation of model complexity: For linear estimators, the VC dimension h is

equivalent to classical complexity indices (the number of free parameters or

DoF). For other (nonlinear) methods used in this section, we provide

reasonable heuristic estimates of model complexity (VC dimension) and

use the same estimates for AIC, BIC, and VC based model selection. So

effectively comparisons presented in this section illustrate the quality of

analytic model selection, where different criteria use the same estimates of

model complexity.

All empirical comparisons presented in this section follow the same experimental

protocol, as described next. First, a finite training data set is generated using a

target function corrupted with additive Gaussian noise. This unknown target func-

tion is estimated from training data using a set of given approximating functions

of increasing complexity (VC structure) via minimization of the empirical risk

(i.e., least-squares fitting). The various model selection criteria are used to deter-

mine the ‘‘optimal’’ model complexity for a given training sample. The quality

(accuracy) of estimated model is measured as the mean squared error (MSE) or

L2 distance between the true target function and the chosen model. This MSE

can be affected by random variability of finite training samples. To create a

valid comparison for small-size training sets, the fitting/model selection experi-

ment was repeated many times (300–400) using different random training samples

with identical statistical characteristics (i.e., sample size and noise level), and

the resulting empirical distribution of MSE or RISK is shown (for each

method) using box plots. Standard box plot notation specifies marks at 95th,

75th, 50th, 25th, and 5th percentile of an empirical distribution (as shown in

Fig. 4.11).

For example, consider regression using algebraic polynomials for a finite data set

(30 samples) consisting of pure noise. That is, the y-values of training data represent

Gaussian noise with a standard deviation of 1, and the x-values are uniformly dis-

tributed in the [0,1] interval. Empirical comparisons for various classical methods,

VC method (vm), and leave-one-out cross-validation (cv) are shown in Fig. 4.11.

These results show the box plots for the empirical distribution of the prediction

RISK (MSE) for each model selection method. Note that the RISK (MSE) axis

is in logarithmic scale. Relative performance of various model selection criteria

can be judged by comparing the box plots of each method. Box plots showing lower

values of RISK correspond to better model selection. In particular, better model

selection approaches select models providing lowest guaranteed prediction risk

132 STATISTICAL LEARNING THEORY

(i.e. with lowest risk at the 95 percent mark) and also smallest variation of the risk

(i.e., narrow box plots). As can be seen from the results reported later, the methods

providing lowest guaranteed prediction risk tend to provide lowest average risk

(i.e., lowest risk at the 50 percent mark). Another performance index,

DoF, shows the model complexity (degrees of freedom) chosen by a given method.

The DoF box plot, in combination with the RISK box plot, provides insights about

an overfitting (or underfitting) of a given method, relative to the optimally chosen

DoF.

For the pure noise example in Fig. 4.11, the vm method provides the lowest pre-

diction risk and lowest variability, among all methods (including cv), by consis-

tently selecting lower complexity models. For this data set, the true model is the

mean of training samples (DoF¼ 1); however, all classical methods detect a struc-

ture, that is, select DoF greater than 1. In contrast, VC based model selection typi-

cally selects the ‘‘correct’’ model (DoF¼ 1). It may be argued that the pure noise

data set favors the vm method, as VC bounds are known to be very conservative and

tend to favor lower-complexity models. However, additional comparisons presented

next indicate very good performance of VC based model selection for a variety of

data sets and different estimators.

FIGURE 4.11 Model selection results for pure Gaussian noise with sample size 30, using

algebraic polynomial estimators.

COMPARISONS OF MODEL SELECTION FOR REGRESSION 133

4.5.1 Model Selection for Linear Estimators

In this subsection, algebraic and trigonometric polynomials are used for estimating

an unknown univariate target function in the [0,1] interval from training samples.

That is, we use a structure defined as

fmðx;wÞ ¼ w0 þ
X

m�1

i¼1
wix

i for algebraic polynomials

or

fmðx;wÞ ¼ w0 þ
X

m�1

i¼1
wi cosð2p ixÞ for trigonometric polynomials:

Both parameterizations represent linear estimators (with m parameters), so estimat-

ing the model parameters (i.e., polynomial coefficients) from data is performed via

linear least squares. For linear estimators, the VC dimension equals the number of

free parameters (DoF), h ¼ m. The objective is to estimate an unknown target func-

tion in the [0,1] interval from training samples in the class of polynomial models.

Training samples are generated under standard regression setting (2.10), using

two univariate target functions:

� Sine-squared

y ¼ sin2ð2pxÞ þ x

� Piecewise polynomial function

tðxÞ ¼
4x2ð3� 4xÞ; x 2 ½0; 0:5�
ð4=3Þxð4x2 � 10xþ 7Þ � 3=2; x 2 ½0:5; 0:75�
ð16=3Þxðx� 1Þ2; x 2 ½0:75; 1�

8

<

:

where the noise x is Gaussian and zero mean, and x-training samples are uniform in

the [0,1] interval. Both target functions are shown in Fig. 4.12. Note that the former

(sine-squared) is an example of continuous target function, and the latter is a dis-

continuous function (that presents extra challenges for model selection using con-

tinuous approximating functions).

Experiment 1: Empirical comparisons (Cherkassky et al. 1999) used different train-

ing sample sizes (20, 30, 100, and 1000) with different noise levels. The noise is

defined in terms of the signal-to-noise ratio (SNR) as the ratio of the standard devia-

tion of the true (target function) output values for given input samples over the stan-

dard deviation of the Gaussian noise. Plotted in Figs. 4.13 and 4.14 are

representative results for the model selection criteria fpe, gcv, sms, and vm, obtained

for small sample size (30 samples) at SNR¼ 2.5.

134 STATISTICAL LEARNING THEORY

Most methods varied largely, as much as three orders of magnitude between the

top 25 percent and bottom 25 percent marks on the box plots. This was due to the

variability among the small training samples, and it motivates the use of the guar-

anteed estimates such as Vapnik’s measure. It is also interesting to note that the use

of leave-one-out cross-validation (cv) shown in Fig. 4.13 does not yield any

improvement over analytic vm model selection (for this data set). Direct compari-

son of DoF box plots for different approximating functions (polynomial versus tri-

gonometric) shown in Figs. 13 and 14, parts (a) and (b), indicates that most

methods (except vm) are quite sensitive to the type of approximating functions

used. For instance, for the sine-squared data set, the DoF box plot for the fpe

method obtained using algebraic polynomials (Fig. 4.13(a)) is quite different

from the DoF box plot for the same method using trigonometric estimation (Fig.

4.13(b)). In contrast, the DoF box plots for the vm method in Fig. 4.13 (for poly-

nomial and trigonometric estimation) are almost the same. This suggests very good

robustness of VC model selection with respect to the type of approximating func-

tions. The poor extrapolation properties of algebraic polynomials magnify the effect

of choosing the wrong model (i.e., polynomial degree) in our comparisons. Model

selection performed using trigonometric polynomials yields less severe differences

between various methods (see Figs. 13(b) and 14(b)). This can be readily explained

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Sine-squared function sin2(2p x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Piecewise polynomial

FIGURE 4.12 Two target functions used for comparisons.

COMPARISONS OF MODEL SELECTION FOR REGRESSION 135

by the bounded nature of trigonometric basis functions (versus unbounded algebraic

polynomials).

More extensive comparisons (Cherkassky et al. 1999) suggest that VC-based

model selection (vm) gave consistently good results over the range of sample sizes

and noise levels (i.e., small error as well as low spread). All other methods com-

pared showed significant failure at least once. In a few cases where vm lost on aver-

age (to another method), the loss was not significant. The relative ranking of model

selection approaches did not seem to be affected much by the noise level, though it

was affected by the sample size. For larger samples (over 100 samples, for univari-

ate data sets used in this experiment), the difference between various model selec-

tion methods becomes insignificant.

Experiment 2: Experiments were performed to compare additive model selection

methods (AIC and BIC) with VC method (vm), for estimating sine-squared target

function, using a small training sample (n ¼ 30) and a large sample size (n ¼ 100).

These comparisons use algebraic polynomials as approximating functions. The true

noise variance is used for the AIC and BIC methods. Hence, AIC and BIC have an

additional competitive ‘‘advantage’’ over vm, which does not use knowledge of the

noise variance. Figure 4.15 shows comparison results between AIC, BIC, and vm

for noise level s ¼ 0:2 ðSNR ¼ 2:23Þ. These results indicate that the vm and BIC

methods work better than AIC for small sample sizes (n ¼ 30). For large samples

(b)(a)

10–3

100

103

106

109

1012

1015

smsgcvfpe cvvm
10–3

100

103

106

109

1012

1015

smsgcvfpe vm cv

0

5

10

15

20

25

30

smsgcvfpe cvvm
0

5

10

15

20

25

30

smsgcvfpe cvvm

R
IS

K
 (

M
S

E
)

R
IS

K
 (

M
S

E
)

D
o
F

D
o
F

FIGURE 4.13 Model selection results for sine-squared function with sample size 30 and

SNR¼ 2.5. (a) Polynomial estimation. (b) Trigonometric estimation.

136 STATISTICAL LEARNING THEORY

(see Figure 4.15(b)), all methods show very similar prediction accuracy; however,

vm is still preferable to other methods as it selects lower model complexity.

4.5.2 Model Selection for k-Nearest-Neighbor Regression

Results presented in this section are for k-nearest-neighbor regression, where the

unknown function is estimated by taking a local average of k training samples near-

est to the estimation point. In this case, an estimate of effective DoF or VC dimen-

sion is not known, even though sometimes the ratio n/k is used to estimate model

complexity (Hastie et al. 2001). However, this estimate appears too crude and can

be criticized using both commonsense and theoretical arguments, as discussed next.

With the k-nearest-neighbor method, the training data can be divided into n=k
neighborhoods. If the neighborhoods were nonoverlapping, then one can fit one

parameter in each neighborhood (leading to an estimate h ffi n=k). However, the
neighborhoods are, in fact, overlapping, so that a sample point from one neighbor-

hood affects regression estimates in an adjacent neighborhood. This suggests that a

better estimate of DoF has the form h ffi n=ðc� kÞ, where c > 1. The value of c is

unknown but (hopefully) can be determined empirically or using additional theoretical

(b)(a)

10–3

100

103

106

109

1012

gcvfpe sms vm
10–3

100

103

106

109

1012

gcvfpe sms vm

0

5

10

15

20

25

30

gcvfpe sms vm
0

5

10

15

20

25

30

gcvfpe sms vm

R
IS

K
 (

M
S

E
)

R
IS

K
 (

M
S

E
)

D
O

f

D
O

f

FIGURE 4.14 Model selection results for piecewise polynomial function with sample size

30 and SNR¼ 2.5. (a) Polynomial estimation. (b) Trigonometric estimation.

COMPARISONS OF MODEL SELECTION FOR REGRESSION 137

arguments. That is, c should increase with sample size because for large n the ratio n/k

grows without bound, and using n/k as an estimate of model complexity is inconsistent

with the main result in VC theory (that the VC dimension of any estimator should be

finite). An asymptotic theory for k-nearest neighbor estimators (Hardle, 1995) provides

asymptotically optimal k-values (when n is large), namely k � n4=5. This suggests the

following (asymptotic) dependency for DoF: h � ðn=kÞ � ð1=n1=5Þ. This (asymptotic)

(a)

(b)

AIC BIC vm
0

0.1

0.2

AIC BIC vm
0

5

10

15

D
o

F

AIC BIC vm
0

0.02

0.04

R
IS

K
 (

M
S

E
)

R
IS

K
 (

M
S

E
)

AIC BIC vm
0

5

10

15

D
o

F

FIGURE 4.15 Comparison results for sine-squared target function estimated using

polynomial regression, noise level s ¼ 0:2 ðSNR ¼ 2:23Þ. (a) Small size n ¼ 30; (b) large

size n ¼ 100.

138 STATISTICAL LEARNING THEORY

formula is clearly consistent with the ‘‘commonsense’’ expression h ffi n=ðc� kÞ with
parameter c > 1. Cherkassky and Ma, (2003) found a good practical estimate of DoF

empirically by assuming the dependency

h ffi const� n4=5=k

(a)

(b)

AIC BIC vm
0

0.1

0.2

AIC BIC vm

vm

0

5

10

15

k

AIC BIC
0

0.5

0.1

R
IS

K
 (

M
S

E
)

R
IS

K
 (

M
S

E
)

AIC BIC vm
0

5

10

15

k

FIGURE 4.16 Comparison results for univariate regression using k-nearest neighbors.

Training data: n ¼ 30, noise level s ¼ 0:2; (a) sine squared target function; (b) piecewise

polynomial target function.

COMPARISONS OF MODEL SELECTION FOR REGRESSION 139

and then setting the value of const ¼ 1 based on the empirical results of a number

of data sets. This leads to the following empirical estimate for DoF:

h ffi n

k
� 1

n1=5
: ð4:45Þ

Prescription (4.45) is used as an estimate of DoF and VC dimension for k-nearest

neighbors in this section.

Empirical comparisons use 30 training samples generated using two univariate

target functions, sine-squared and piecewise polynomial (see Fig. 4.12). The

x-values of training samples are uniform in the [0,1] interval. The y-values of train-

ing samples are corrupted with additive Gaussian noise with s ¼ 0:2. Comparison

results are shown in Fig. 4.16.

4.5.3 Model Selection for Linear Subset Regression

The linear subset selection method amounts to selecting the best subset of m input

variables (or input features) for a given training sample. Here the ‘‘best’’ subset of

m variables is defined as the one that yields the linear regression model with lowest

empirical risk (MSE fitting error) among all linear models with m variables, for a

given training sample. Hence, for linear subset selection, model selection corresponds

to selecting an optimal value of m (providing minimum prediction risk). Also, note

that linear subset selection is a nonlinear estimator, even though it produces models

linear in parameters. Hence, there is a problem of estimating its model complexity

when applying AIC, BIC, or vm for model selection. We use a crude estimate of

the model complexity (DoF) as mþ 1 (where m is the number of chosen input vari-

ables) for all methods, similar to Hastie et al. (2001). Implementation of subset selec-

tion amounts to an exhaustive search over all possible subsets of m variables (out of

total d input variables) for choosing the best subset (minimizing the empirical risk).

Computationally efficient search algorithms (i.e., the leaps and bounds method) are

available for d as large as 40 (Furnival and Wilson 1974).

In order to perform meaningful comparisons for the linear subset selection meth-

od, we assume that the target function belongs to the set of possible models (i.e.,

linear approximating functions). Namely, the training samples are generated using

five-dimensional target function x 2 R5 and y 2 R, defined as

y ¼ x1 þ 2x2 þ x3 þ 0� x4 þ 0� x5 þ x;

with x-values uniformly distributed in ½0; 1�5 and the noise is Gaussian with zero

mean. The training sample size is 30 and the noise level s ¼ 0:2. Experimental

comparisons of model selection for this data set are shown in Figure 4.17.

Experimental results for k-nearest neighbors and linear subset regression suggest

that vm and BIC have similar prediction performance (both better than AIC). Recall

that our comparison assumes known noise level for AIC/BIC; hence, it favors these

methods.

140 STATISTICAL LEARNING THEORY

4.5.4 Discussion

Based on extensive empirical comparisons (Cherkassky et al. 1999; Cherkassky and

Ma 2003), analytic VC based model selection appears to be very competitive for

linear regression and penalized linear (ridge) regression (see additional results in

Section 7.2.3). The VC-based approach can also be used with other regression

methods, such as k-nearest neighbors and linear subset selection (Cherkassky and

Ma 2003). These results have an interesting conceptual implication. The SLT

approach is based on the worst-case bounds. Hence, VC-based model selection

guarantees the best worst-case estimates (i.e., at the 95 percent mark on the predic-

tion risk box plots). However, the main conclusion of these comparisons is that the

best worst-case estimates generally imply the best average-case estimates (i.e., at

the 50 percent mark). These findings contradict a widely held opinion that VC

bounds are too conservative for practical model selection (Ripley 1996; Duda

et al. 2001, Hastie et al. 2001). Hence, we discuss several common causes of this

misconception:

� VC bounds provide poor estimates of risk: Whereas it is true that VC bounds

provide conservative (upper bound) estimates of risk, it does not imply they

are not practical for model selection. In fact, accurate estimation of risk is not

necessary for good model selection. The only thing that matters (for good

model selection) is the difference between risk estimates. Detailed empirical

comparisons (Cherkassky et al. 1999) show that for finite sample settings,

there is no direct correlation between the accuracy of risk estimates and the

quality of model selection.

AIC BIC vm
0

0.02

0.04

R
IS

K
 (

M
S

E
)

AIC BIC vm

2

4

6

D
o

F

FIGURE 4.17 Comparisons results for five-dimensional target function using linear subset

selection for n ¼ 30 samples, noise level s ¼ 0:2.

COMPARISONS OF MODEL SELECTION FOR REGRESSION 141

� Using an inappropriate form of VC bounds: The VC theory provides an

analytic form of VC bounds, up to the values of theoretical constants. The

practical form, such as the bound for regression (4.27b), should be used for

regression problems. Some studies (Hastie et al. 2001) use instead the

original theoretical bound (4.27a) with the worst-case values of theoretical

constants, leading to poor performance of VC model selection (Cherkassky

and Ma 2003).

� Inaccurate estimates of the VC dimension: Obviously, a reasonably accurate

estimate of VC dimension is needed for analytic model selection using VC

bounds. For some estimators, such estimates depend on the optimization

algorithm used for ERM. Such an ‘‘effective’’ VC dimension can be

measured experimentally, as discussed in Section 4.6.

� Poorly chosen data sets: According to VC theory, generalization with finite

data is possible only when an estimator has limited capacity, and it can

provide reasonably small empirical error. Hence, a learning method should

use approximating functions appropriate for a given data set. If this

commonsense condition is ignored, it is always possible to select a

‘‘contrived’’ data set showing superiority of a particular model selection

technique. For example, consider estimation of a univariate step function

from finite samples, using k-nearest-neighbor regression. Assuming there

is no additive noise in the data (or very small noise), there is a mismatch

between the discontinuous target function and the k-nearest neighbor

method (intended for estimating continuous models from noisy data).

Consequently, the best model (for this data set) will be obtained using one-

nearest-neighbor method, and many classical model selection approaches

(that tend to overfit) will outperform the VC based method. This effect has

been observed in Fig. 4.16(b), showing model selection results for

estimating a (discontinuous) target function using k-nearest-neighbor

regression. For this data set, more conservative methods (such as the VC

based approach) tend to choose larger k-values than classical methods

(AIC and BIC).

� Inductive learning problem setting: All model selection methods discussed

in this book are derived for the standard inductive learning problem

formulation. This formulation assumes that model selection (complexity

control) is performed using only finite training data. Some studies (for

example, Sugiama and Ogawa 2002) describe approaches that (implicitly)

incorporate additional information about the distribution or x-values of

the test samples into their model selection techniques. These papers

make direct comparisons with the vm method using an experimental setup

similar to univariate polynomial regression (Cherkassky et al. 1999)

described in this section, in order to show ‘‘superiority’’ of their methods.

In fact, such claims are misleading because the use of the x-values of

test data transforms the learning problem to a different (transduction)

formulation.

142 STATISTICAL LEARNING THEORY

4.6 MEASURING THE VC DIMENSION

The practical use of VC bounds for model selection requires the knowledge of VC

dimension. Exact analytic estimates of the VC dimension are known only for a few

classes of approximating functions, that is, linear estimators. For many estimators

of practical interest, analytic estimates are not known, but can be estimated experi-

mentally following the method proposed in Vapnik et al. (1994). This approach is

based on an intuitive observation: Consider binary classification data with randomly

chosen class labels (i.e., class labels are randomly chosen, with probability 0.5, for

each data sample). Then an estimator with large VC dimension h is likely to overfit

such a finite data set (of size n), and the deviation of the expectation of the error rate

from 0.5 for finite training sample tends to increase with the VC dimension of an

estimator. This relationship is quantified in VC theory, providing a theoretically

derived formula for the maximum deviation between the frequency of errors pro-

duced by an estimator on two randomly labeled data sets, x(n), as a function of the

size of each data set n and the VC dimension h of an estimator. The experimental

procedure attempts to estimate the VC dimension indirectly, via the best fit between

the formula and a set of experimental measurements of the frequency of errors on

randomly labeled data sets of varying sizes. This approach is general and can be

applied, at least conceptually, to any estimator. Next, we briefly describe this

method and then discuss some practical issues with its implementation.

Consider a binary classification problem, where d-dimensional inputs x need to

be classified into one of the two classes (0 or 1). Let z ¼ ðx; yÞ denote an input–

output sample, and a set of n training samples is Zn ¼ fzi; i ¼ 1; . . . ; ng. Vapnik
et al. (1994) proposed a method to estimate the effective VC dimension by obser-

ving the maximum deviation xðnÞ of error rates observed on two independently

labeled data sets:

xðnÞ ¼ max
o
ðjErrorðZ1

nÞ � ErrorðZ2
nÞjÞ; ð4:46Þ

where Z1
n and Z

2
n are two sets of labeled samples of size n, ErrorðZnÞ is an empirical

error rate, and o is the set of parameters of the binary classifier. According to VC

theory, x(n) is bounded by

xðnÞ � Fðn=hÞ; ð4:47Þ
where

FðtÞ ¼
1; ifðt < 0:5Þ;

a
lnð2tÞ þ 1

t� k

ffi

1þ bðt� kÞ
lnð2tÞ þ 1

s

þ 1

 !

; otherwise;

8

>

<

>

:

ð4:48Þ

where t ¼ n=h, and the constants a ¼ 0:16 and b ¼ 1:2 have been estimated

empirically (Vapnik et al. 1994), and k ¼ 0:14928 is determined such that

Fð0:5Þ ¼ 1. Moreover, this bound (4.47) is tight, so it is assumed that

xðnÞ � Fðn=hÞ: ð4:49Þ

MEASURING THE VC DIMENSION 143

As the analytical form of F is known, the VC dimension h can be estimated from

(4.49), using experimental observations of the maximum deviation xðnÞ estimated

according to (4.46). The quantity xðnÞ can be estimated by simultaneously minimiz-

ing the (empirical) error rate of the first labeled data set and maximizing the error

rate of the second set. This leads to the following procedure (Vapnik et al. 1994):

1. Generate a random labeled set Z2n of size 2n

2. Split this set into two sets of equal size: Z1
n and Z2

n

3. Flip the class labels for the second set Z2
n

4. Merge the two sets into one training set and train the binary classifier

5. Separate the sets and flip the labels on the second set back again

6. Measure the difference between the error rates of the trained binary classifier

on the two sets: x̂ðnÞ ¼ jErrorðZ1
nÞ � ErrorðZ2

nÞj.

This procedure, shown in Fig. 4.18, gives a single estimate of xðnÞ, from which we

can obtain a single point estimate of h according to (4.49). Let us call a single appli-

cation of this procedure an experiment. In order to reduce the variability of esti-

mates due to sample size, the experiment is repeated for different data sets with

varying sample sizes n1; n2; . . . ; nk, in the range 0:5 � n=h � 30. To reduce varia-

bility due to random samples, several (mi) repeated experiments are performed for

each sample size ni. Practical implementation of this approach requires specifica-

tion of the experimental design, that is, the values ni and miði ¼ 1; . . . ; kÞ. Using the
terminology of experimental design, each ni is called a design point. The original

paper (Vapnik et al. 1994) used m1 ¼ m2 ¼ � � � ¼ mk ¼ constant, that is, a uniform

design. Further, the mean values of these repeated experiments are taken at each

design point: �xðn1Þ; . . . ; �xðnkÞ. The effective VC dimension h of the binary classifier

can then be determined by finding the parameter h� that provides the best fit

between Fðn=hÞ and �xðniÞ:

h� ¼ argmin
h

X

k

i¼1
½�xðniÞ � Fðni=hÞ�2: ð4:50Þ

According to Vapnik et al. (1994), this approach achieves accurate estimates of the

VC dimension for linear classifiers trained using squared loss. That is, the binary

classification is solved as a regression problem (with 0/1 outputs), and then the out-

put of the regression model is thresholded at 0.5 to produce class label 0 or 1.

Later work (Shao et al. 2000) addressed several practical aspects of the original

implementation:

1. The uniform design is oblivious to the fact that for smaller sample sizes the

method’s accuracy is very poor. Specifically, the theoretical formula for the

upper bound on Fðn=hÞ suggests that for small sample sizes (comparable to

the VC dimension), the maximum deviation xðnÞ approaches 1.0. Hence, xðnÞ
is upper bounded by 1.0, and it has a single-sided distribution, which

144 STATISTICAL LEARNING THEORY

effectively leads to smaller (estimated) mean values. This explains why the

VC dimension estimated using the uniform design is consistently smaller than

the true VC dimension of a linear estimator.

2. The original method employs least-squares regression for training a classifier.

This approach may yield inaccurate solutions due to numerical instability

when sample size is small, that is, n is comparable to h.

3. For practical estimators, ‘‘true’’ VC dimension is unknown, so the quality of

the proposed approach for measuring the VC dimension can be evaluated

Error_rate(set 1)

Restore the original labels

Flip the labels

Training set of size 2n

Set 2 (size n)Set 1 (size n)

Learning Machine

(trained as a binary classifier)

Error_rate(set 2)

FIGURE 4.18 Measuring the maximum deviation between the error rates observed on two

independent data sets.

MEASURING THE VC DIMENSION 145

only indirectly, that is, by incorporating the estimated VC dimension into an

analytic model selection and comparing model selection results using

different estimates for model complexity (VC dimension). For example,

one can use estimated VC dimension for penalized linear estimators, in

conjunction with analytic model selection, as described in Section 7.2.3.

Shao et al. (2000) address the first two problems by using a nonuniform design,

where the number of repeated experiments m is larger for large values of n/h. Such

a nonuniform design can be found by minimizing the following fitting error:

MSEðfittingÞ ¼ EððxðnÞ � Fðn=hÞÞ2Þ ð4:51Þ

as the criterion for optimal design. The resulting optimized (nonuniform) design is

contrasted to the original uniform design in Table 4.1, for total 320 experiments,

where m is the number of repeated experiments at each sample size. Note that

for the nonuniform design, the number of repeated experiments shown at

n=h ¼ 0:5 is zero, as at this point the design uses an analytical estimate

Fð0:5Þ ¼ 1 provided by VC theory.

Empirical results (Shao et al. 2000) suggest that by avoiding small sample

sizes and having more repeated experiments at larger sample sizes, the optimized

design approach can significantly increase the accuracy of estimation, that is, the

MSE of fitting (4.51) for the optimized design is reduced by a factor of 3, and

the estimated VC dimension is closer to its true analytic value (known for linear

estimators).

4.7 VC DIMENSION, OCCAM’S RAZOR, AND POPPER’S

FALSIFIABILITY

Many fundamental concepts developed in VC theory can be directly related to ideas

in philosophy and epistemology. There is a profound connection between predictive

learning and the philosophy of science because any scientific theory involves an

inductive step (generalization) to explain experimental data or past observations.

Earlier in Chapter 3, we mentioned Occam’s razor principle that favors simpler

TABLE 4.1 Uniform versus Nonuniform Experimental Design

Uniform design

n=h 0.5 0.65 0.8 1 1.2 1.5 2 2.8 3.8 5 6.5 8 10 15 20 30

mi 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Optimized nonuniform design

n=h 0.5 0.65 0.8 1 1.2 1.5 2 2.8 3.8 5 6.5 8 10 15 20 30

mi 0 0 0 0 0 0 0 0 0 18 20 30 34 58 80 80

146 STATISTICAL LEARNING THEORY

models over complex ones. Earlier in this chapter, we discussed the concept

of VC dimension and tried to relate it to Popper’s falsifiability. Unfortunately,

philosophical concepts are not defined in mathematical terms. For example,

Occam’s razor principle states that ‘‘Entities should not be multiplied beyond

necessity’’; however, exact meaning of the words ‘‘entities’’ and ‘‘necessity’’ is

subject to further interpretation. So, next we discuss meaningful interpretation

of the two philosophical principles (Occam’s razor and Popper’s falsifiability)

and compare them to VC theoretical concepts, following Vapnik (2006). A natural

interpretation of Occam’s razor in predictive learning is ‘‘Select the model that

explains available data and has the smallest number of (free) parameters.’’

Under this interpretation, entities correspond to model parameters, and necessity

means that the model needs to explain available data. This interpretation of

Occam’s razor is commonly used with statistical methods, where the model com-

plexity is quantified as the number of free parameters (as discussed in Chapter 3).

Note that the complexity index in VC theory, the VC dimension, generally does

not equal the number of free parameters (even though both indices coincide for

linear estimators).

The notion of VC dimension (defined via shattering) can also be viewed in gen-

eral philosophical terms, if the notion of shattering is interpreted in terms of falsi-

fication. That is, if a set of functions can shatter (explain) h data points, then these

points cannot falsify this set of functions. On the contrary, if the set of functions

cannot shatter hþ 1 data points, then these data points falsify it. This leads to

the following interpretation of VC dimension (Vapnik 1995, 2006):

A set of functions has the VC dimension h if (a) there exist h samples that cannot

falsify this set and (b) any hþ 1 samples falsify this set.

As discussed in Section 4.2, the finiteness of the VC dimension is important for

any learning method, as it forms necessary and sufficient conditions for consis-

tency of ERM learning. So this condition (finiteness of VC dimension) can be

now interpreted as VC falsifiability (Vapnik 2006). That is, a set of functions is

VC falsifiable if its VC dimension is finite, and the VC dimension is inversely

related to the degree of falsifiability. This interpretation is appealing because it

can be immediately related to Popper’s falsifiability, as discussed in Section

4.2. It may be noted that Popper introduced his notion of falsifiability mainly as

a (qualitative) property of scientific theory in many of his writings. However, in

his seminal book (Popper 1968) he tried to characterize falsifiability in quantita-

tive terms and relate it to Occam’s razor principle. In this book, Popper describes

‘‘the characteristic number of a theory with respect to a field of application’’ as

follows:

If there exists, for a theory t, a field of singular statements such that, for some number,

the theory cannot be falsified by any h-tuple of the field, although it can be falsified by

certain ðhþ 1Þ-tuples, then we call h the characteristic number of the theory with

respect to that field.

VC DIMENSION, OCCAM’S RAZOR, AND POPPER’S FALSIFIABILITY 147

Further, this characteristic number is called the dimension of theory with respect to

a field of application (Popper 1968). Popper’s definition of falsifiability can be pre-

sented in mathematical terms as follows:

A set of functions has the Popper dimension h if (a) there exists any h samples that

cannot falsify this set and (b) there exist hþ 1 samples that falsify this set.

Now we can contrast the VC dimension and Popper’s dimension, and conclude that

Popper’s definition is not meaningful, as it does not lead to any useful conditions for

generalization. In fact, for linear estimators the Popper’s dimension is at most 2,

regardless of the problem dimensionality, as a set of hyperplanes cannot shatter

three collinear points.

Further, in trying to relate the epistemological idea of simplicity (Occam’s razor)

to falsifiability, Popper equates the concept of simplicity with the degree of falsifia-

bility. This leads to a profound philosophical principle: simpler models are more

easily falsifiable. However, this principle can be practically useful only if the

notions of simplicity and falsifiability have been properly defined. Unfortunately,

Popper adopts the number of model’s parameters as the measure of falsifiability.

Consequently, his claim (simplicity is equated with degree of falsifiability) amounts

to a novel interpretation of Occam’s razor. As we already know, this interpretation

is rather trivial, as it is valid only for linear estimators (where the VC dimension

equals the number of parameters).

Popper introduced an important concept of falsifiability and applied his famous

criterion of falsifiability to the problem of demarcation in philosophy. Further, he

applied this criterion to various fields (history, science, and epistemology). However,

whenever he tried to formulate his ideas in quantitative mathematical terms, his intui-

tion failed him, leading to incorrect or incomplete statements inconsistent with VC

theory. For example, he could not properly define the degree of falsifiability for non-

linear parameterizations. As we have seen in Section 4.2, the number of free para-

meters is not a good measure of complexity for nonlinear functions. The correct

measure of falsifiability is given by the VC dimension. Based on this interpretation,

we can introduce the following principle of VC falsifiability (Vapnik 2006):

‘‘Select the model that explains available data and is easiest to falsify.’’

This principle can be contrasted to Occam’s razor, which uses the number of

parameters (entities) as a measure of model complexity. In fact, there are nonlinear

parameterizations for which the VC dimension is much larger than the number of

parameters (such as the sine function discussed in Section 4.2), where application

of Occam’s razor principle would fail to provide good generalization. We will

further explore different implementations of the principle of VC falsifiability in

Chapters 9 and 10. These implementations may differ in

� the choice of the empirical loss function, as the quality of ‘‘explaining

available data’’ is directly related to empirical loss. A new class of loss

functions (so-called margin-based loss) can be motivated by the notion of

falsifiability, as discussed in Chapter 9;

148 STATISTICAL LEARNING THEORY

� incorporation of a priori knowledge into the learning problem. Note that all

philosophical principles (Occam’s razor, Popper’s falsifiability, and VC

falsifiability) have been introduced under a standard inductive formulation.

In many applications, inductive learning needs to incorporate additional

information, besides the training data. In such cases, the principle of VC

falsifiability can be used to incorporate this prior knowledge into new

learning formulations, as discussed in Chapter 10.

4.8 SUMMARY AND DISCUSSION

This chapter provides a description of the main concepts and results in SLT. These

results form the necessary conceptual and theoretical basis for understanding con-

structive learning methods for regression and classification that will be discussed in

Chapters 7 and 8. For practitioners, the VC theoretical framework can be used in

three important ways:

1. For the interpretation and critical evaluation of empirical learning methods

developed in statistics and neural networks. This approach is frequently used

throughout this book.

2. For developing new constructive learning procedures motivated by VC

theoretical results, such as SVMs (described in Chapter 9).

3. For developing nonstandard learning formulations, such as local risk mini-

mization (see Chapter 7) and noninductive types of inference such as

transduction, semi-supervised learning, inference by contradiction, and so

on (see Chapter 10).

Direct practical applications of VC theory have been rather limited, especially com-

pared with more heuristic approaches such as neural networks. VC theoretical con-

cepts and results have been occasionally misinterpreted in the statistical and neural

network literature (Hastie et al, 2001; Cherkassky and Ma 2003). For instance, VC

generalization bounds (discussed in Section 4.3) are often applied with the upper-

bound estimates of parameter values (i.e., a1 ¼ 4; a2 ¼ 1) cited from Vapnik’s ori-

ginal books or papers. For practical problems, this leads to poor model selection. In

fact, VC theory provides an analytical form of the bounds up to the value of con-

stants. As shown in Section 4.5, analytical bounds with appropriate values for con-

stants can be successfully used for practical model selection. Another common

problem is the difficulty of estimating the VC dimension for nonlinear estimators,

that is, feedforward neural networks. Here the common approach (Baum and

Haussler 1989) is to estimate the bound on the generalization error using (theore-

tical) estimates of the VC dimension as a function of the number of parameters (or

network weights). The resulting generalization bound is then compared against the

true generalization error (measured empirically), and a conclusion is made regard-

ing the quality of VC bounds. Here, the problem is that typical network training

SUMMARY AND DISCUSSION 149

procedures inevitably introduce a regularization effect, so that the ‘‘theoretical’’ VC

dimension can be quite different from the ‘‘effective’’ VC dimension, which takes

into account the regularization effect of a training algorithm. This effective VC

dimension can be measured empirically, as discussed in Section 4.6.

In summary, we cannot expect the VC theory to provide immediate solutions to

most applications. A great deal of common sense is needed to apply theory to prac-

tical problems. By analogy, the practical field of electrical engineering is based on

Maxwell’s theory of electromagnetism. However, Maxwell’s equations are not used

directly to solve practical problems, such as antenna design. Instead, electrical engi-

neers use various empirical formulas and procedures (of course these empirical

methods should be consistent with Maxwell’s theory). Similarly, sound practical

learning methods should be consistent with the VC theoretical results. The VC the-

oretical framework is for the most part distribution independent. Incorporating

additional knowledge about the unknown distributions would result in much better

generalization bounds than the original (distribution-free) VC bounds presented in

this chapter.

This chapter described ‘‘classical’’ VC theory developed under the standard

inductive learning setting. Likewise, various statistical and neural network learning

algorithms (in Chapters 7 and 8) have been introduced under the same inductive

formulation. In many practical applications, we face two important challenges:

� First, how to formalize a given application as an inductive learning problem?

This is a common engineering problem discussed at length in Chapter 2. Such

a formalization should precede any theoretical analysis and development of

constructive learning methods. The VC theoretical framework can be very

helpful during this process because it makes a clear distinction between the

problem setting, an inductive principle, and learning algorithms.

� Second, many real-life problems involve sparse high-dimensional data. This

presents a fundamental problem for traditional statistical methodologies that

are conceptually based on function approximation and density estimation.

The VC theory deals with this challenge by introducing a structure (complex-

ity ordering) on a set of admissible models. Then, according to the SRM

principle, good generalization can be guaranteed if one can achieve small

empirical risk for an element of a structure with low capacity (VC dimen-

sion). So the practical challenge is specification of such flexible structures

where the capacity can be well controlled (independent of the problem

dimensionality). Margin-based methods (aka SVMs) are a popular example

of such a good universal structure (see Chapter 9). Moreover, the concept of a

structure has been recently used for nonstandard learning formulations

(Vapnik 2006), as discussed in Chapter 10.

150 STATISTICAL LEARNING THEORY

5
NONLINEAR OPTIMIZATION
STRATEGIES

5.1 Stochastic approximation methods

5.1.1 Linear parameter estimation

5.1.2 Backpropagation training of MLP networks

5.2 Iterative methods

5.2.1 Expectation-maximization methods for density estimation

5.2.2 Generalized inverse training of MLP networks

5.3 Greedy optimization

5.3.1 Neural network construction algorithms

5.3.2 Classification and regression trees

5.4 Feature selection, optimization, and statistical learning theory

5.5 Summary

When desire outruns performance, who can be happy?

Juvenal

Constructive implementation of an inductive principle depends on the optimization

procedure for minimizing the empirical risk functional under SRM, or the penalized

risk functional under penalization formulation, with respect to adjustable (or free)

parameters of a set of approximating functions. For many learning methods, the para-

meterization of approximating functions (and hence the risk functional) is nonlinear

in parameters. Thus, minimization of the risk functional is a nonlinear optimization

problem. ‘‘Good’’ nonlinear optimization methods are usually problem-specific and

provide, at best, locally optimal solutions. As the practical success of learning algo-

rithms depends in large part on the fast and powerful optimization approaches,

advances in optimization theory often lead to improved learning algorithms.

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

151

Finding an appropriate (nonlinear) optimization technique is an important step in

developing a learning algorithm. As noted in Chapter 2, a learning algorithm is

defined by the selection of a set of approximating functions, an inductive principle,

and an optimization method. The final success of a learning algorithm depends on

the accurate implementation of a theoretically sound inductive principle and appro-

priately chosen set of approximating functions. However, the method for nonlinear

optimization can have unintended side effects that (effectively) modify the imple-

mented inductive principle. For example, stochastic approximation can be used to

minimize the empirical risk (ERM principle), but early stopping during optimiza-

tion has a regularization effect, implementing the penalization inductive principle.

There are two sets of issues related to optimization algorithms:

� Development of powerful optimization methods for solving large nonlinear

optimization problems

� Interplay between optimization methods and inductive principles being

implemented (by these methods)

A thorough discussion of nonlinear optimization theory and methods is beyond the

scope of this book. See Bertsekas (2004) and Boyd and Vandenberghe (2004) for

complete coverage and Appendix A for a brief overview of nonlinear optimization.

The goal of this chapter is to present three basic nonlinear optimization strategies

commonly used in statistical and neural network methods. Several example methods

for each strategy are described and contrasted to one another in this chapter. Various

learning algorithms discussed later in the book also follow one of these approaches.

Our intention here is to describe optimization strategies in the context of implement-

ing inductive principles rather than to focus on the details of a given optimization

method. Detailed description of methods and application examples can be found in

Chapters 6–8 on methods for density approximation, regression, and classification.

The learning formulation leading to nonlinear optimization is as follows: Given

an inductive principle and a set of parameterized approximating functions, find the

function that minimizes a risk functional. For example, under the ERM inductive

principle, the empirical risk is

RempðoÞ ¼
X

n

i¼1
Qðzi;oÞ; ð5:1Þ

where Qðz;oÞ denotes a loss function corresponding to each specific learning pro-

blem (classification, regression, etc.). For regression, the loss function is

Qðz;oÞ ¼ ðy� f ðx;oÞÞ2; z ¼ ½x; y�: ð5:2Þ

Under ERM we seek to find the parameter values o ¼ o� that minimize the empirical

risk. Then, the solution to the learning problem is the approximating function f ðx;o�Þ
minimizing risk functional (5.1) with respect to parameters. Thus, nonlinear parame-

terization of a set of approximating functions f ðx;oÞ leads to nonlinear optimization.

152 NONLINEAR OPTIMIZATION STRATEGIES

The choice of optimization strategy suitable for a given learning problem

depends on the type of loss function and the form of the set of functions f ðx;oÞ,
o 2 �, supported by the learning machine. There are three optimization approaches

commonly used in various learning methods:

1. Stochastic approximation (or gradient descent): Given an initial guess of

parameter values o, optimal parameter values are found by repeatedly

updating the values of o so that they are moved a small distance in the

direction of steepest descent along the risk (error) surface. In order to apply

gradient descent, it must be possible to determine the gradient of the risk

functional. In Chapter 2, we described a form of gradient descent, called

stochastic approximation, that provides a sequence of estimates as individual

data samples are received. The approach of gradient descent can be applied

for density estimation, regression, and classification learning problems.

2. Iterative methods (expectation-maximization (EM) type methods): As para-

meters are estimated iteratively, at each iteration the value of empirical risk is

decreased. In contrast to stochastic approximation, iterative methods do not use

the gradient estimates, but rather they rely on a particular form of approximat-

ing functions and/or the loss function to ensure that a chosen iterative

parameter updating scheme results in the decrease of the error functional.

For example, consider a class of approximating functions in the form

f ðx; v;wÞ ¼
X

m

j¼1
wjgjðx; vjÞ; ð5:3Þ

which is a linear combination of some basis functions. Let us assume that

in (5.3) an estimate of parameters v ¼ ½v1; v2; . . . ; vm� is available. Then, as

parameterization (5.3) becomes linear, the remaining parameters

w ¼ ½w1;w2; . . . ;wm� can be easily estimated. When an estimate of para-

meters w is also available, the estimation of parameters v can be often sim-

plified. The degree of simplification depends on the form of the basis

functions in (5.3) and on a particular loss function of a learning problem.

Hence, one can suggest an iterative strategy, where the optimization algorithm

alternates between estimates of w and v. A general form of such optimization

strategy may take the following form:

Initialize parameter values ŵð0Þ; v̂ð0Þ.
Set iteration step k ¼ 0.

Iterate until some stopping condition is met:

v̂ðk þ 1Þ ¼ argmin
v

RempðvjŵðkÞÞ

ŵðk þ 1Þ ¼ argmin
w

Rempðwjv̂ðkÞÞ:

k ¼ k þ 1

NONLINEAR OPTIMIZATION STRATEGIES 153

An example of an iterative method known as generalized inverse training of

multilayer perceptron (MLP) networks with squared error loss function is dis-

cussed later in this chapter.

For density estimation problems using maximum-likelihood loss function,

a popular class of iterative parameter estimation methods is the EM type. The

basic EM method is discussed in this chapter. Also, various methods for vec-

tor quantization and clustering presented in Chapter 6 use an iterative optimi-

zation strategy similar to that of the EM approach.

3. Greedy optimization: The greedy method is used when the set of approx-

imating functions is a linear combination of the basis functions, as in (5.3),

and it can be applied for density estimation, regression, or classification.

Initially, only the first term of the approximating function is used, and the

parameter pair ðw1; v1Þ is optimized. Optimization corresponds to minimizing

the discrepancy between the training data and the (current) model estimate.

This term is then held fixed, and the next term is optimized. The optimization

is repeated until values are found for all m pairs of parameters ðwi; viÞ. It is
possible to halt the process at this point; however, many greedy approaches

either continue to cycle through the terms and revisit each estimate of

parameter pairs (called backfitting) or reverse the process and remove terms

that, according to some criteria, are not useful (called pruning). The general

approach is called greedy because at any point in time a single term is added

to the model in the form (5.3) in order to give the largest reduction in risk. In

the neural network literature, such greedy methods are known as ‘‘network

growing’’ algorithms or ‘‘constructive’’ procedures.

Note that in this chapter we consider empirical loss functions (such as squared

loss, for example), leading to unconstrained optimization. A different class of loss

functions (margin-based loss) presented in Chapter 9 results in constrained optimi-

zation formulations.

Sections 5.1–5.3 describe representative methods implementing nonlinear opti-

mization strategies. Section 5.4 interprets nonlinear optimization as nonlinear fea-

ture selection and then provides critical discussion of feature selection from the

viewpoint of Statistical Learning Theory (SLT). Section 5.5 gives a summary.

5.1 STOCHASTIC APPROXIMATION METHODS

This section describes methods based on gradient descent or stochastic approxima-

tion. As noted in Appendix A, gradient-descent methods are based on the first-order

Taylor expansion of a risk functional that we seek to minimize. These methods are

computationally simple and rather slow compared to more advanced methods uti-

lizing the information about the curvature of the risk functional. However, their

simplicity has made them popular in neural networks and online signal processing

applications. We will first describe a simple case of linear optimization in order to

introduce neural network terminology commonly used to describe such methods.

154 NONLINEAR OPTIMIZATION STRATEGIES

Then, we will describe a nonlinear parameter estimation via stochastic approxima-

tion, which is widely known as backpropagation training.

5.1.1 Linear Parameter Estimation

Consider the task of regression using a linear (in parameters) approximating function

and L2 loss function. According to the ERM inductive principle, we must minimize

RempðwÞ ¼
1

n

X

n

i¼1
Lðxi; yi;wÞ ¼

1

n

X

n

i¼1
ðyi � f ðxi;wÞÞ2; ð5:4Þ

where the approximating function is a linear combination of fixed basis functions

ŷ ¼ f ðx;wÞ ¼
X

m

j¼1
wjgjðxÞ ð5:5Þ

for some (fixed) m. From Chapter 2, the stochastic approximation update equation

for minimizing this risk with respect to the parameters w is

wðk þ 1Þ ¼ wðkÞ � gk
@

@w
LðxðkÞ; yðkÞ;wÞ; ð5:6Þ

where xðkÞ and yðkÞ are the sequences of input and output data samples presented at

iteration step k. The gradient above can be computed using the chain rule for deri-

vative calculation:

@

@wj

Lðx; y;wÞ ¼ @L

@ŷ

@ŷ

@wj

¼ 2ðŷ� yÞgjðxÞ: ð5:7Þ

Using gradient (5.7), it is possible to construct a computational procedure to mini-

mize the empirical risk. Starting with some initial values wð0Þ, the following sto-

chastic approximation procedure updates parameter values during each presentation

of kth training sample:

� Step 1: Forward pass computations.

zjðkÞ ¼ gjðxðkÞÞ; j ¼ 1; . . . ;m; ð5:8Þ

ŷðkÞ ¼
X

m

j¼1
wjðkÞzjðkÞ: ð5:9Þ

� Step 2: Backward pass computations.

dðkÞ ¼ ŷðkÞ � yðkÞ; ð5:10Þ
wjðk þ 1Þ ¼ wjðkÞ � gkdðkÞzjðkÞ; j ¼ 1; . . . ;m; ð5:11Þ

STOCHASTIC APPROXIMATION METHODS 155

where the learning rate gk is a small positive number (usually) decreasing with k as

prescribed by stochastic approximation theory, that is, condition (2.52). Note that the

factor 2 in (5.7) can be absorbed in the learning rate. In the forward pass, the output of

the approximating function is computed, storing some intermediate results. In the

backward pass, the error term (5.10) for the presented sample is calculated and

used to adjust the parameters. The error term is often called ‘‘delta’’ in the signal pro-

cessing and neural network literature, and the parameter updating scheme (5.11) is

known as the delta rule (Widrow and Hoff 1960). The delta rule effectively imple-

ments least-mean-squares (LMS) minimization in an online (or flow-through) fashion,

updating parameters with every training sample. In the ‘‘neural network’’ interpreta-

tion, parameters correspond to the (adjustable) ‘‘synaptic weights’’ of a neural network

and input/output variables are represented as network units or ‘‘neurons’’ (see Fig.

5.1). Then, according to (5.11) the change in connection strength (between a pair

of input–output units) is proportional to the error (observed by the output unit) and

to the activation of the input unit. This corresponds to the well-known Hebbian rule

describing (qualitatively) operation of the biological neurons (see Fig. 5.1).

5.1.2 Backpropagation Training of MLP Networks

As an example of stochastic approximation strategy for nonlinear approximating

functions, we consider next a popular optimization (or training) method for MLP

1 z1 k() zm k()

ŷ k()

w0 k()
w1 k()

wm k()

(a)

1 z1 k() zm k()

δ k() = ŷ k()− y k()

∆w j k() = γ kδ k()z j k()
w j k + 1() = w j k()+ ∆w j k()

x y

∆w ~ xy

w

Hebbian rule:

Synapse

(b)

FIGURE 5.1 Neural network interpretation of the delta rule: (a) forward pass; (b)

backward pass.

156 NONLINEAR OPTIMIZATION STRATEGIES

networks called backpropagation (Werbos 1974, 1994). Consider a learning machine

implementing the ERM inductive principle with L2 loss function and a set of approx-

imating functions given by

f ðx;w;VÞ ¼ w0 þ
X

m

j¼1
wjg v0j þ

X

d

i¼1
xivij

 !

; ð5:12Þ

where the function g is a differentiable monotonically increasing function called the

activation function. Parameterization (5.12) is known as MLP with a single layer of

hidden units, where a hidden unit corresponds to the basis function in (5.12). Note

that in contrast to (5.5), this set of functions is nonlinear in the parameters V. How-

ever, the gradient-descent approach can still be applied. The risk functional is

Remp ¼
X

n

i¼1
ðf ðxi;w;VÞ � yiÞ2: ð5:13Þ

The stochastic approximation procedure for minimizing this risk with respect to the

parameters V and w is

Vðk þ 1Þ ¼ VðkÞ � gkgradVLðxðkÞ; yðkÞ;VðkÞ;wðkÞÞ; ð5:14Þ
wðk þ 1Þ ¼ wðkÞ � gkgradwLðxðkÞ; yðkÞ;VðkÞ;wðkÞÞ; k ¼ 1; . . . ; n; ð5:15Þ

where xðkÞ and yðkÞ are the kth training samples, presented at iteration step k. The

loss L is

LðxðkÞ; yðkÞ;VðkÞ;wðkÞÞ ¼ 1
2
ðf ðx;w;VÞ � yÞ2 ð5:16Þ

for a given data point ðx; yÞ with respect to the parameters w and V. (The constant

1=2 is included to streamline gradient calculations). The gradient of (5.16) can be

computed via the chain rule of derivatives if the approximating function (5.12) is

decomposed as

aj ¼
X

d

i¼0
xivij; j ¼ 1; . . . ;m; ð5:17Þ

zj ¼ gðajÞ; j ¼ 1; . . . ;m; ð5:18Þ
z0 ¼ 1;

ŷ ¼
X

m

j¼0
wjzj: ð5:19Þ

To simplify notation, we drop the iteration step k and consider the gradient

calculation/parameter update for one sample at a time; the zeroth-order terms

STOCHASTIC APPROXIMATION METHODS 157

w0 and v0j have been incorporated into the summations (x0 ¼ 1). Based on the chain

rule, the relevant gradients are

@R

@vij
¼ @R

@ŷ

@ŷ

@aj

@aj
@vij

; ð5:20Þ

@R

@wj

¼ @R

@ŷ

@ŷ

@wj

: ð5:21Þ

Each of these partial derivatives can be calculated based on (5.16)–(5.19). From

(5.16), we can calculate

@R

@ŷ
¼ ŷ� y: ð5:22Þ

From (5.18) and (5.19), we determine

@ŷ

@aj
¼ g0ðajÞwj: ð5:23Þ

From (5.17), we get

@aj
@vij
¼ xi: ð5:24Þ

From (5.19), we find

@ŷ

@wj

¼ zj: ð5:25Þ

Plugging these partial derivatives into (5.20) and (5.21) gives the gradient equations

@R

@vij
¼ ðŷ� yÞg0ðajÞwjxi; ð5:26Þ

@R

@wj

¼ ðŷ� yÞzj: ð5:27Þ

With these gradients and the stochastic approximation updating equations, it is

now possible to construct a computational procedure to find the local minimum

of the empirical risk. Starting with an initial guess for values wð0Þ and Vð0Þ, the
stochastic approximation procedure for parameter (weight) updating upon pre-

sentation of a sample ðxðkÞ; yðkÞÞ at iteration step k with learning rate gk is as

follows:

158 NONLINEAR OPTIMIZATION STRATEGIES

� Step 1: Forward pass computations.

‘‘Hidden layer’’

ajðkÞ ¼
X

d

i¼0
xiðkÞvijðkÞ; j ¼ 1; . . . ;m; ð5:28Þ

zjðkÞ ¼ gðajðkÞÞ; j ¼ 1; . . . ;m;

z0ðkÞ ¼ 1: ð5:29Þ

‘‘Output layer’’

ŷðkÞ ¼
X

m

j¼0
wjðkÞzjðkÞ: ð5:30Þ

� Step 2: Backward pass computations.

‘‘Output layer’’

d0ðkÞ ¼ ŷðkÞ � yðkÞ; ð5:31Þ
wjðk þ 1Þ ¼ wjðkÞ � gkd0ðkÞzjðkÞ; j ¼ 0; . . . ;m: ð5:32Þ

‘‘Hidden layer’’

d1jðkÞ ¼ d0ðkÞg0ðajðkÞÞwjðk þ 1Þ; j ¼ 0; . . . ;m; ð5:33Þ

vijðk þ 1Þ ¼ vijðkÞ � gkd1jðkÞxiðkÞ; i ¼ 0; . . . ; d; j ¼ 0; . . . ;m: ð5:34Þ

In the forward pass, the output of the approximating function is computed, storing

some intermediate results that will be required in the next step. In the backward

pass, the error difference for the presented sample is first calculated and used to

adjust the parameters in the output layer. Via the chain rule, it is possible to relate

(or propagate) the error at the output back to an error at each of the internal nodes

aj, j ¼ 1; . . . ;m. This is called error backpropagation because it can be conveni-

ently represented in graphical form as a propagation of the (weighted) error sig-

nals from the output layer back to the input layer (see Fig. 5.2). Note that the

updating steps for the output layer ((5.31) and (5.32)) are identical to those for

the linear parameter estimation ((5.10) and (5.11)). Also, the updating rule for

the hidden layer is similar to the linear case, except for the delta term (5.33).

Hence, backpropagation update rules (5.33) and (5.34) are sometimes called the

‘‘generalized delta rule’’ in the neural network literature. The parameter update algo-

rithm presented in this section assumes a stochastic approximation setting when the

number of training samples is large (infinite). In practice, the sample size is finite, and

asymptotic conditions of stochastic approximation are (approximately) satisfied by

the repeated presentation of the finite training sample to the training algorithm.

STOCHASTIC APPROXIMATION METHODS 159

This is known as recycling, and the number of such repeated presentations of the

complete training set is called the number of cycles (or epochs). Detailed discussion

on these and other implementation details of backpropagation (initialization of

parameter values, choice of the learning rate schedule, etc.) will be presented in

Chapter 7.

The equations given above are for a single hidden layer, single (linear)

output unit network, corresponding to regression problems with a single output

variable. Obvious generalizations include networks with several output units and

networks with several hidden layers (of nonlinear units). The above backpropaga-

tion algorithm can be readily extended to these types of networks. For example,

if additional ‘‘layers’’ are added to the approximating function, then errors are

‘‘backpropagated’’ from layer to layer by repeated application of Eqs. (5.33)

and (5.34).

ŷ k()= wj k()zj k()
j=0

m

∑

W is m ×1

zj k() = g a j k()()
1 2 m

V is d × m

x1 k() x2 k() xd k()

z1 k() zm k()z2 k()
a j k() = x k() ⋅ v j k()()

(a)

d 0 k() = ŷ k()− y k()

d11 k() d12 k() d1m k() d1j k()= d 0 k() ′ ag j k()()wj k +1()

w j k + 1() = w j k()− γ kd 0 k()zj k()

vij k + 1() = vij k()− γ kd 1j k()xi k()

x1 k() x2 k() xd k()

(b)

FIGURE 5.2 Backpropagation training: (a) forward pass; (b) backward pass.

160 NONLINEAR OPTIMIZATION STRATEGIES

Note that the backpropagation training is not limited to the squared loss

error function. Other loss functions can be used as long as partial derivatives

of the risk functional (with respect to parameters) can be calculated via the chain

rule.

5.2 ITERATIVE METHODS

These methods implement iterative parameter estimation by taking advantage of the

special form of approximating functions and of the loss function. This leads to a

generic parameter estimation scheme, where the two steps (expectation and maxi-

mization) are iterated until some convergence criterion is met. Representative meth-

ods include vector quantization techniques and EM algorithms. This iterative

approach is not based on the gradient calculations as in stochastic approximation

methods. Another minor distinction is that EM-type methods are usually implemen-

ted in batch mode, whereas stochastic approximation methods are online. This is,

however, strictly an implementation consideration because iterative methods can be

implemented in either online or batch mode (see the examples in Chapter 6). This

section gives two examples of an iterative optimization strategy. First, Section 5.2.1

describes popular EM methods for density estimation. Then, Section 5.2.2

describes an iterative optimization method called generalized inverse training for

neural networks with a squared error loss function.

5.2.1 EM Methods for Density Estimation

The EM algorithm is commonly used to estimate parameters of a mixture model via

maximum likelihood (Dempster et al. 1977). We present a slightly more general

formulation consistent with the formulation of density estimation as a special

type of a learning problem (given in Chapter 2).

Assume that the data X ¼ ½x1; . . . ; xn� are generated independently from some

unknown density. This (unknown) density function is estimated using a class of

approximating functions in the mixture form

f ðx; v;wÞ ¼
X

m

j¼1
wjgjðx; vjÞ; ð5:35Þ

where vj correspond to parameters of the individual densities and wj are the mixing

weights, which sum to 1. According to the maximum-likelihood principle (a variant

of ERM for density estimation), the best estimator is the mixture density (chosen

from the class of approximating functions (5.35)) maximizing the log-likelihood

function. Let us denote this ‘‘best’’ mixture density as

pðxÞ ¼
X

m

j¼1
pðxjj; vjÞPðjÞ;

X

m

j¼1
PðjÞ ¼ 1: ð5:36Þ

ITERATIVE METHODS 161

The individual densities making up the mixture are each parameterized by vj and

indexed by j. The probability that a given data sample came from density j is PðjÞ.
The log-likelihood function for the density (5.36) is

PðXjvÞ ¼
X

n

i¼1
ln
X

m

j¼1
PðjÞpðxijj; vjÞ: ð5:37Þ

According to the maximum-likelihood principle, we must find the parameters v that

maximize (5.37). However, this function is difficult to maximize numerically because

it involves the log of a sum. The problem would be much easier to solve if the data

also contained information about which component of the mixture generated a given

data point. Using an indicator variable zij to indicate whether sample i originated

from component density j, the log-likelihood function would then be

PcðX; ZjvÞ ¼
X

n

i¼1

X

m

j¼1
zijln pðxijzi; vjÞPðziÞ; ð5:38Þ

where PcðX; ZjvÞ is the log likelihood for the ‘‘complete’’ data, where each sample

is associated with its component density. This maximization problem can be

decoupled into a set of simple maximizations, one for each of the densities making

up the mixture. Each of these densities is estimated independently using its asso-

ciated data samples. The EM algorithm is designed to operate in the situation where

the available data are incomplete, meaning that this hidden variable zij is unavail-

able (latent). As it is impossible to work with (5.38) directly, the expectation of

(5.38) with respect to Z is maximized instead. It can be shown (Dempster et al.

1977) that if a certain value of parameter vector v increases the expected value

of (5.38), then the log-likelihood function (5.38) will also increase. Hence, the fol-

lowing iterative algorithm (called EM) can be constructed. Starting with an initial

guess of the component density parameters vð0Þ and mixing weights wð0Þ, the fol-
lowing two steps are repeated until convergence in (5.38) is achieved or some other

stopping criterion is met:

Increase the iteration count k ¼ k þ 1.

� E-step

Compute expectation of the complete data log likelihood:

RMLðv; ðkÞÞ ¼
X

n

i¼1

X

m

j¼1
pij½lngjðxi; vjðkÞÞ þ lnwjðkÞ�; ð5:39Þ

where pij is the probability that component density j generated data point i

and is calculated as

pij ¼ E½zijjxi� ¼
wjðkÞgjðxi; vjðkÞÞ
P

m

l¼1
wlðkÞglðxi; vlðkÞÞ

: ð5:40Þ

162 NONLINEAR OPTIMIZATION STRATEGIES

� M-step

Find the parameters wðk þ 1Þ and vðk þ 1Þ that maximize the expected

complete data log likelihood:

wjðk þ 1Þ ¼ 1

n

X

n

i¼1
pij; ð5:41Þ

vjðk þ 1Þ ¼ arg max
vj

X

n

i¼1
pijlngjðxi; vjðkÞÞ: ð5:42Þ

As long as the sequence of likelihoods is bounded, the EM algorithm will converge

monotonically to a (local) maximum. In other words, each iteration of the algorithm

does not decrease the maximum likelihood. However, there is no guarantee that the

solution is the global maximum. In practice, the EM algorithm has shown a slow

convergence on many problems.

For a more concrete example, consider a set of approximating functions in the

form of a Gaussian mixture. Assume that each Gaussian component has a covar-

iance matrix �j ¼ s2j I. Then, the approximating density function is

f ðxÞ ¼
X

m

j¼1
wj

1

ð2ps2j Þ
d=2

exp
� k x� mj k2

2s2j

()

; ð5:43Þ

where mj and sj, j ¼ 1; . . . ;m, are the parameters of the individual densities that

require estimation and wj, j ¼ 1; . . . ;m, are the unknown mixing weights. For

this model, the E-step computes pij ¼ E½zijjxi; vðkÞ� as

pij ¼
wjs

�d
j ðkÞexp

�kx�mjðkÞk2
2s2

j
ðkÞ

� �

P

m

l¼1
wjs

�d
l ðkÞexp

�kx�mlðkÞk2
2s2

l
ðkÞ

n o

: ð5:44Þ

In the M-step, new mixing weights are estimated as well as the means and variances

of the Gaussians:

wjðk þ 1Þ ¼ 1

n

X

n

i¼1
pij; ð5:45Þ

mjðk þ 1Þ ¼

P

n

i¼1
pijxi

P

n

i¼1
pij

; ð5:46Þ

s2j ðk þ 1Þ ¼

P

n

i¼1
pij k xi � mjðk þ 1Þ k2

P

n

i¼1
pij

: ð5:47Þ

ITERATIVE METHODS 163

Notice that the new estimates for the means and variances are computed by com-

puting the sample mean and variance of the data weighted by pij.

Example 5.1: EM algorithm

Let us consider a density estimation problem where 200 data points are generated

according to the function

x ¼ ½cosð2pzÞ; sinð2pzÞ� þ x; ð5:48Þ

where z is uniformly distributed in the unit interval and the noise x is distributed

according to a bivariate Gaussian with covariance matrix � ¼ s2I, where s ¼ 0:1
(Fig. 5.3(a)). The centers mjð0Þ, j ¼ 1; . . . ; 5, are initialized using five randomly

selected data points and the sigmas were initialized using uniform random values

in the range [0.1, 0.6] (Fig. 5.3(b)) The EM algorithm as specified in (5.44)–(5.47)

was allowed to iterate 20 times. Figure 5.3(c) shows the Gaussian centers and widths

of the resulting approximation.

5.2.2 Generalized Inverse Training of MLP Networks

Consider an MLP network implementing the ERM inductive principle with L2 loss

function, as in Section 5.1.2. Such an MLP network with a set of functions (5.12)

can be equivalently presented in the form

f ðx;w;VÞ ¼
X

m

i¼1
wisðx � viÞ þ w0; ð5:49Þ

where � denotes the inner product and the nonlinear activation function s usually

takes the form of a sigmoid:

sðtÞ ¼ 1

1þ expð�tÞ ð5:50Þ

or

sðtÞ ¼ tanhðtÞ ¼ expðtÞ � expð�tÞ
expðtÞ þ expð�tÞ : ð5:51Þ

A representation in the form (5.49) can be interpreted as three successive mappings:

1. Linear mapping xV, where V ¼ ½v1jv2j� � � vm� is a d � m matrix of input-layer

weights, inputs x are encoded as row vectors, and weights vi are encoded

as column vectors. This first mapping performs linear projection from

d-dimensional input space to m-dimensional space.

164 NONLINEAR OPTIMIZATION STRATEGIES

2. Nonlinear mapping sðxVÞ, where the sigmoid nonlinear transformation s is

applied to each coordinate of vector xV. The result of this second mapping is

an m-dimensional (row) vector of the m hidden-layer unit outputs.

3. Linear mapping sðxVÞ � w, where w is a (column) vector of weights in the

second layer. In the general case of a multiple-output network with k output

units, the second-layer weights are represented by an m� k matrix W.

A general multiple-output MLP network (see Fig. 5.4) performs the following

mapping conveniently represented using matrix notation:

Fðx;W;VÞ ¼ sðxVÞW: ð5:52Þ

FIGURE 5.3 Application of the EM algorithm to mixture density estimation. (a) Two

hundred data points drawn from a doughnut distribution. (b) Initial configuration of five

Gaussian mixtures. (c) Configuration after 20 iterations of the EM algorithm.

ITERATIVE METHODS 165

Further, let ½XtjYt� be an n� ðd þ kÞ matrix of training samples, where each row

encodes one training sample. Then, the empirical risk is

Remp ¼
1

n

X

n

i¼1
k sðxiVÞW� yi k2; ð5:53Þ

where k k denotes the L2 norm, and can be written using matrix notation:

Remp ¼
1

n
k sðXtVÞW� Yt k2 : ð5:54Þ

This notation suggests the possibility of minimizing the (nonlinear) empirical risk

using an iterative two-step optimization strategy, where each step estimates a set of

parameters W (or V), whereas another set of parameters V (or W) remains fixed.

Notice that at each step parameter estimation can be done via linear least squares.

For example, suppose that in (5.54) a good guess (estimate) of V is available. Then,

using this estimate, one can find an estimate of matrix W by linear least-squares

minimization of

RempðWÞ ¼
1

n
k sðXtV̂ÞW� Yt k2 : ð5:55Þ

An optimal estimate of W is then found as

B ¼ sðXtV̂Þ; ð5:56Þ
Ŵ ¼ BþYt; ð5:57Þ

where Bþ is the (left) generalized inverse of n� m matrix B so that BþB ¼ Im
(m� m identity matrix). The generalized inverse of a matrix (Strang 1986), by defi-

nition, provides the minimum of (5.55). Note that the generalized inverse solution

1

1

2

2

k

m

x1 x2 xd

W is m × k

V = v1 v2 ...v m[]
V is d × m

s x ⋅v j()

FIGURE 5.4 A multilayer perceptron network presented in matrix notation.

166 NONLINEAR OPTIMIZATION STRATEGIES

(5.57) is unique, as in most applications n > m; that is, the number of training sam-

ples is larger than the number of hidden units.

Similarly, if an estimate of matrix W is available, the outputs of the hidden layer

B can be estimated via linear least-squares minimization of

RempðBÞ ¼k BŴ� Yt k2 : ð5:58Þ

An optimal linear estimate of B providing minimum of RempðBÞ is given by

B̂ ¼ YtŴ
þ; ð5:59Þ

where Ŵþ is the (right) generalized inverse of matrix Ŵ, so that ŴŴþ ¼ Im. Note

that the generalized inverse solution is unique only if m � k, namely when the num-

ber of hidden units does not exceed the number of output units. Otherwise, there are

infinitely many solutions minimizing (5.58), and the generalized inverse provides

the one with a minimum norm. As we will see later, the case m > k will produce

poor solutions for the learning problem.

Using an estimate of B̂, one can estimate the inputs to the hidden-layer units

through the inverse nonlinear transformation s�1ðB̂Þ applied to each component of

vector B̂. Finally, an estimate of the input-layer weights V̂ is found by minimizing

kXtV� s�1ðB̂Þk2; ð5:60Þ

which is (again) a linear least-squares problem having the solution

V̂ ¼ Xþt s
�1ðB̂Þ; ð5:61Þ

where Xþt is the (left) generalized inverse of matrix Xt.

The generalized inverse learning (GIL) algorithm (Pethel et al. 1993) is summar-

ized below (also see Fig. 5.5).

Initialize V̂ to small (random) values, Set iteration step j ¼ 0
Iterate: j ¼ j þ 1

‘‘forward pass’’

BðjÞ ¼ sðXt
^
Vðj � 1ÞÞ

ŴðjÞ ¼ BþðjÞYt

compute empirical risk Remp ðŴðjÞÞ of the model

if (Remp ðŴðjÞÞ < preset value) then STOP else CONTINUE
‘‘backward pass’’

B̂ðjÞ ¼ Yt Ŵ
þðjÞ

V̂ðjÞ ¼ Xþt s
�1ð̂BðjÞÞ

if (number of iterations j < preset limit) then go to iterate else STOP

ITERATIVE METHODS 167

Let us comment on the applicability of the GIL algorithm. First, note that

with k < m the generalized inverse solution will produce very small (in norm)

hidden-layer outputs B̂. This observation justifies the use of activation function

(5.51) rather than logistic sigmoid (5.50). More important, the case k < m has a

disastrous effect on an overall solution, as explained next. Let us analyze the

effect of the minimum-norm solution (5.59) on the input-layer weights V̂ found

via minimization of (5.60). In this case, the minimum-norm generalized

inverse solution tends to drive the hidden-layer outputs B̂ to small values. This

in turn forces the input weights to each hidden unit, which are the components

of s�1ðB̂Þ, to be small and about equal in norm. Hence, in this case (k < m) an

iterative strategy using generalized inverse optimization leads to poor neural

network solutions. We conclude that the GIL algorithm is applicable only

when m � k, that is, when the number of hidden units does not exceed the num-

ber of outputs. This corresponds to the following types of learning problems:

dimensionality reduction (discussed in Chapter 6) and classification problems,

where the number of classes (or network outputs k) is larger than or equal

to the number of hidden units. The GIL should not be used for typical regression

problems modeled as a single-output network (k ¼ 1), as described in

Section 5.1.2.

The main advantage of GIL is computational speed, especially when compared

to traditional backpropagation training. Of course, the GIL solution is still sensitive

to initial conditions.

V S W

X • VX

S
− 1 GIGI

Linear Nonlinear Linear

“Forward pass”

V̂ known,W being estimated

“Backward pass”

Ŵ known,V being estimated

Ys X ⋅ V()

FIGURE 5.5 General flow chart of the generalized inverse learning for MLP

networks.

168 NONLINEAR OPTIMIZATION STRATEGIES

5.3 GREEDY OPTIMIZATION

Greedy optimization is a popular approach used in many statistical methods. This

approach is also used in neural networks, where it is known as constructive methods

or network-growing procedures. Implementations of greedy optimization lead to

very fast learning methods; however, the quality of optimization may be subopti-

mal. In addition, methods implementing a greedy optimization strategy are often

highly interpretable. In this section, we present two examples of this approach.

First, we discuss a greedy method for neural network training in Section 5.3.1.

Then, in Section 5.3.2 we describe a popular statistical method called classification

and regression trees (CART). Additional examples, known as projection pursuit and

multivariate adaptive regression splines (MARS), will be described in Chapter 7.

5.3.1 Neural Network Construction Algorithms

Many neural network construction or network-growing algorithms are a form of

greedy optimization (Fahlman and Lebiere 1990; Moody 1994). These algorithms

use a greedy heuristic strategy to adjust the number of hidden units. Their main

motivation is computational efficiency for neural network training. Considering

the time requirements of gradient-descent training, an exhaustive search over all

network configurations would not be computationally feasible for large real-life

problems. The network-growing methods reduce training time by making incre-

mental changes to the network configuration and reusing past parameter values.

A typical growing strategy is to increase the network size by adding one hidden

unit at a time in order to use the weights of a smaller (already trained) network

for training the larger network. Computational advantages of this approach (versus

traditional backpropagation) are due to the fact that only one nonlinear term (the

basis function) in (5.12) is being estimated at any time.

One example of a greedy optimization approach used for neural network con-

struction is the sequential network construction (SNC) algorithm (Moody 1994).

Its description is given for networks with a single output for the regression formu-

lation given in Section 5.1.2. The main idea is to grow network by adding m2 hid-

den units at a time and utilizing the weights of a smaller network for training the

larger network. The approach results in a nested sequence of networks, each

described by (5.12), with increasing number of hidden units:

fkðx;wðkÞ;VðkÞÞ ¼ w0 þ
X

m1þkm2

j¼1
wjg v0j þ

X

d

i¼1
xivij

 !

; k ¼ 0; 1; 2; � � � :

ð5:62Þ

Note that in (5.62) the size of the vector wðkÞ and matrix VðkÞ increases with each

iteration step k. Also, k denotes the iteration step of this (SNC) algorithm and not

the backpropagation algorithm, which is used as a substep. In the first iteration, the

network (m ¼ mmin) is estimated via the usual gradient descent, with small random

GREEDY OPTIMIZATION 169

values used for initial parameters settings. In all further iterations, new networks are

optimized in a two-step process: First, all parameters values from the previous net-

work are used as initial values in the new network. Because the new network has

more hidden units, it will have additional parameters that require initialization.

These additional parameters are initialized with small random values. The para-

meters adopted from the previous network are then held fixed, whereas gradient

descent is used to optimize the additional parameters. Second, standard gradient-

descent training is applied to optimize all the parameters in the new network.

Given training data ðxi; yiÞ; i ¼ 1; . . . ; n, the optimization algorithm is as follows:

Initialization (k ¼ 0): For the approximating function f0ðxÞ given by (5.62),

apply the gradient-descent steps of Section 5.1.2 with initial values for para-

meters wð0Þ and Vð0Þ set to small random values.

Iterate for k ¼ 1; 2; � � �

1. Initialize the parameters wðkÞ and VðkÞ according to

wjðkÞ ¼ wjðk � 1Þ for j ¼ 0; 1; . . . ;m1 þ ðk � 1Þm2;

wjðkÞ ¼ e for j ¼ 1þ m1 þ ðk � 1Þm2; . . . ;m1 þ km2;

vijðkÞ ¼ vijðk � 1Þ for i ¼ 0; 1; . . . ; d; j ¼ 0; 1; . . . ;m1 þ ðk � 1Þm2;

vijðkÞ ¼ e for i ¼ 0; 1; . . . ; d; j ¼ 1þ m1 þ ðk � 1Þm2; . . . ;m1 þ km2;

where e indicates a small random variable.

2. Apply the backpropagation algorithm of Section 5.1.2 only to the parameters

initialized with random values in step 1: wjðkÞ, vijðkÞ, i ¼ 0; 1; . . . ; d,
j ¼ 1þ m1 þ ðk � 1Þm2; . . . ;m1 þ km2. Training is stopped using typical

termination criteria.

3. Apply the backpropagation algorithm of Section 5.1.2 to all parameters wðkÞ
and VðkÞ. Training is stopped again using typical termination criteria.

5.3.2 Classification and Regression Trees

The optimization approach used for CART (Breiman et al. 1984) is an example of a

greedy approach. Here, we only consider its version for regression problems. Also

see description of CART for classification in Section 8.3.2. The set of approximat-

ing functions for CART are piecewise constant in the form

f ðxÞ ¼
X

m

j¼1
wjIðx 2 RjÞ; ð5:63Þ

where Rj denotes a hyper-rectangular region in the input space. Each of the Rj is

characterized by a set of parameters that describes the region boundaries in <d. The

regions are disjoint. Each rectangular region can be represented in terms of a

170 NONLINEAR OPTIMIZATION STRATEGIES

product of one-dimensional indicator functions:

Iðx 2 RjÞ ¼
Y

d

l¼1
Iðajl� xl� bjlÞ; ð5:64Þ

where the 2d parameters aj and bj are the upper and lower limits of the region on each

input axis. Hence, representation (5.63) is a special case of the linear expansion of

basis functions (5.3), where parameterization of the basis functions is given by (5.64).

As the regions Rj, j ¼ 1; . . . ;m, are constrained to be disjoint, the approximating

function provides the constant estimate wj for all values of x in region Rj. If the

regions Rj are known, the best estimate for wj is an average of the y training sam-

ples in the region Rj:

wj ¼
1

nj

X

xi2Rj

yi; ð5:65Þ

where nj is the number of samples with x-values falling in region Rj. The estimates

(5.65) give the mean of the training data, which obviously provide smallest residual

error for a given partitioning into disjoint regions.

However, determining parameter values (i.e., regions) that minimize the empirical

risk is a hard (combinatorial) optimization problem. For this reason, approximate

solutions are found using greedy strategies based on recursive partitioning. The pro-

cedure of recursive partitioning goes as follows: An initial regionR0 consisting of the

entire input space is considered first. This region is optimally divided into two regions

R1 and R2 by a split on one of the input variables k 2 f1; . . . ; dg at a split point v.

This split is defined by

if x 2 R0 then
if xk�v then x 2 R1

else x 2 R2

end if

The values for k and v are chosen so that replacing the parent region R0 with its two

daughters R1 and R2 yields minimum empirical risk. For given values of k and v,

the optimum parameter values for w1 and w2 are the means of the samples

falling into the regions. This procedure is recursively applied to the daughter

regions, continuing until a relatively large number of regions (m big) are created.

These regions are then recombined through unions with adjacent regions, based on

one of the model selection criteria described in Chapter 3.

Example 5.2: CART partitioning

Consider a regression problem with two predictor variables. During operation, the

greedy optimization of CART recursively subdivides the input space (Fig. 5.6(a)).

This partitioning can also be represented as a tree (Fig. 5.6(b)). In this example, the

GREEDY OPTIMIZATION 171

first split occurs for variable x1 at value s1, resulting in two regions. In the second split,

one of these regions is further subdivided with a split for variable x2 at value s2. Each

of these regions is split again, giving a total of five piecewise-constant regions.

Example 5.3: Counterexample for CART (Elder 1993)

Greedy optimization implemented by CART may produce suboptimal solutions. A

simple example where CART fails is the problem of fitting a Boolean function

y ¼ f ða; b; cÞ given the following data set:

x1

x2

R1

R2

R3

R4
R5

s1

s2

s3

s4

(a)

split 1 x1 ,s1()

x2 ,s2()

x2 ,s3() x1 ,s4()

1

2

3 4

R1

R2 R3 R4
R5

(b)

FIGURE 5.6 An example of CART partitioning for a function of two variables: (a)

partitioning in x-space; (b) the resulting tree.

y a b c

0 0 0 0

0 1 0 0

1 0 0 1

1 1 0 1

1 0 1 0

1 1 1 0

0 1 1 1

0 1 1 1

172 NONLINEAR OPTIMIZATION STRATEGIES

For these data, CART produces an inaccurate binary tree (Fig. 5.7(a)). CARTs greedy

approach splits first on variable a, as it provides the single best explanation of y

(i.e., largest decrease in error). The values of variable a match the values of output

y more often than for variables b and c (three times versus two times for b or c).

CART then performs further splits on variables b and c. The resulting tree does

not provide an accurate representation of the function. The correct binary tree

(Fig. 5.7(b)) requires an initial split on variable c, which does not provide the largest

decrease in error. However, further splits in the correct tree reduce the error to zero.

5.4 FEATURE SELECTION, OPTIMIZATION, AND STATISTICAL

LEARNING THEORY

So far, this chapter focused on optimization strategies for minimizing a nonlinear risk

functional. However, nonlinear optimization can also be interpreted as the problem of

feature selection performed by a learning method. This view is discussed next.

Recall parameterization of approximating functions in the form

f ðx;w; vÞ ¼
X

m

i¼1
wigðx; viÞ þ w0; ð5:66Þ

a

b b

c

0

0 0

0

1

1

1

1

0 ,1 1

1

0 ,1

0 ,0

(a)

c

b b

0

0 0

1

1 1

0 ,0 0 ,01,1 1,1

(b)

FIGURE 5.7 Counterexample for CART: (a) suboptimal tree produced by CART; (b)

optimal binary tree.

FEATURE SELECTION, OPTIMIZATION, AND STATISTICAL LEARNING THEORY 173

where the basis functions themselves depend nonlinearly on parameters v. Many

practical learning methods, such as feedforward networks and statistical methods

(CART, MARS, and projection pursuit) have this parameterization known as the

dictionary representation (Friedman 1994a). An optimal model in the form (5.66)

can be viewed as a weighted combination of nonlinear features gðx; v̂iÞ estimated

from data via some optimization procedure. So nonlinear optimization is closely

related to feature selection. The number of basis functions (features) m is typically

used to control model complexity. This interpretation of learning (as nonlinear fea-

ture selection) has a goal of representing a given data set by a compact model (with

a few ‘‘informative’’ nonlinear features), which is similar to the minimum descrip-

tion length (MDL) inductive principle. In the framework of SLT, the number of

basis functions (features) m specifies an element of a structure.

Let us relate three nonlinear optimization strategies to the SRM inductive prin-

ciple. First, consider implementations of stochastic approximation and iterative

optimization strategy, where a set of approximating functions (5.66) is specified

a priori. In these methods, the task of optimization is decoupled from model selec-

tion (choice of m). For example, for MLP training, the number of hidden units is

fixed. Similarly, the degree of a sparse polynomial is fixed when estimating its

coefficients (parameters) via least squares. Further, these optimization strategies

can be related to well-known SRM structures, such as the dictionary structure,

penalization structure, and sparse feature selection structure (see Section 4.4).

For example, a neural network having m hidden units represents an element of

structure (as defined under SRM). Conceptually, these optimization strategies

minimize the empirical risk for a given element of a structure (specified by the

value of m).

On the contrary, many implementations of greedy optimization strategy do not

follow the SRM framework. That is, practical implementations (i.e., CART, MARS,

and projection pursuit) include model selection (choice of m) as a part of an opti-

mization procedure, and these methods often do not provide a priori specification of

approximating functions (as required by SRM). There are two ways to relate greedy

optimization to SRM:

� On the one hand, one could view greedy methods as a strictly computational

procedure for optimization. In this interpretation, one has to first specify an

element of a structure: a fixed number of basis functions, such as rectangular

regions (in CART) or tensor-product splines (in MARS). Then, optimization

amounts to selecting an optimal set of basis functions (features) minimizing

the empirical risk. A greedy optimization strategy effectively selects basis

functions one at a time—clearly this may not yield thorough optimization

over all basis functions. See the example shown in Fig. 5.7. Moreover, the

final model (i.e., a CART tree) would depend on the very first decision in a

greedy procedure, which can be sensitive to even small changes in the

training samples. Thus, greedy methods tend to produce unstable models that

are not robust with respect to small variations in the training data and tuning

parameters. Several strategies to alleviate an inherent instability of methods

based on greedy optimization are discussed in Section 8.4.

174 NONLINEAR OPTIMIZATION STRATEGIES

� On the other hand, one could view greedy procedures as an implementation of

a popular statistical strategy for fitting the data in an iterative fashion. Under

this approach, the training data are decomposed into structure (model fit) and

noise (residual):

(1) DATA¼ (model) FIT 1þ RESIDUAL 1,

(2) RESIDUAL 1¼ FIT 2þ RESIDUAL 2,

and so on.

The final model for the data would be

MODEL¼ FIT 1þ FIT 2þ � � � .

During each iteration, the model fit is chosen so as to minimize the residual

error or variance unexplained by the model constructed so far. This approach is

rooted in a popular statistical strategy of partitioning variability into two dis-

tinct parts: explained (by the model) and unexplained. Such data-fitting strategy

results in minimizing residual error, and hence it has superficial similarity to

minimization of empirical risk via SRM. However, under SRM a set of approx-

imating functions is specified a priori, whereas under a greedy data-fitting

approach approximating functions are added as dictated by the data. Although

such an approach is clearly useful for data fitting and exploratory data analysis,

there is no theory and little empirical evidence to suggest its validity as an

inductive principle for predictive learning. However, many greedy methods ori-

ginally proposed for data fitting have been later used for predictive learning.

For example, a method known as projection pursuit using a greedy data-fitting

strategy was originally proposed for exploratory data analysis (Friedman and

Tukey 1974). Later, the same greedy strategy was employed in projection pur-

suit regression, used for predictive learning (see Chapter 7).

5.5 SUMMARY

Implementations of adaptive learning methods lead to nonlinear optimization.

Three optimization strategies commonly used in statistical and neural network

methods are described in this chapter. However, more advanced nonlinear optimi-

zation techniques can be used as well (Bishop 1995; Bertsekas 2004; Boyd and

Vandenberghe 2004). Most nonlinear optimization approaches have one or more

of the following problems:

� Sensitivity to initial conditions: The final solution depends on the initial

values of parameters (or network weights). The effect of parameter initializa-

tion on the model complexity is further discussed in Section 7.3.2.

� Sensitivity to stopping rules: Multivariate nonlinear risk functionals often

have regions that are very flat, where some algorithms (i.e., gradient-descent

type) may become ‘‘stuck’’ for a long period of time. With poorly designed

stopping rules these regions, called saddle points, may be interpreted as local

SUMMARY 175

minima by an algorithm. Early stopping can also be used as a regularization

procedure (Friedman 1994a), as a stopping rule adopted during nonlinear

optimization affects the generalization capability of the model.

� Multiple local minima: Nonlinear functions have many local minima, and any

optimization method can find, at best, only a locally optimal solution. Various

heuristics can be used to explore the solution space for globally optimal

solution. These include the use of simulated annealing to escape from local

minima and performing nonlinear parameter estimation (training) starting

with many randomly chosen initializations (weights).

Given these inherent problems with nonlinear optimization, the prevailing view

(Bishop 1995; Ripley 1996) is that there is no single best method for all problems.

This view leads to an extensive empirical experimentation, especially in the neural

network community. There are hundreds of different implementations of backpro-

pagation motivated by various heuristic improvements. This may lead to confusion,

since each new implementation of backpropagation is effectively a new learning

algorithm. Hence, the term ‘‘backpropagation’’ no longer specifies a unique learn-

ing method. In contrast, classical statistical methods, such as linear regression,

usually denote a well-defined, unique learning procedure.

Various technical issues related to implementation of nonlinear optimization stra-

tegies (discussed in this chapter) are addressed in the description of learning methods

in Chapters 5–8. In this book, we emphasize the effect of optimization techniques on

the statistical aspects of learning methods. To this end, we commonly use the SLT

framework, in order to describe (and interpret) optimization techniques developed

in statistics and neural networks. According to the discussion in Section 5.4, methods

based on the gradient-descent and iterative optimization strategy can be readily inter-

preted via SRM. Interpretation of greedy optimization techniques via SRM may be

less obvious.

Note that many existing optimization methods are commonly incorporated into

learning algorithms for utilitarian reasons (i.e., availability of such methods and

software). This is particularly true for many least-squares optimization methods

developed in linear algebra. For example, such least-squares methods are frequently

used for classification learning methods (see Chapter 8). According to VC learning

theory, this is well justified, as long as minimization of squared loss yields small

(empirical) classification error, as discussed at the end of Section 4.4.

176 NONLINEAR OPTIMIZATION STRATEGIES

6
METHODS FOR DATA REDUCTION
AND DIMENSIONALITY REDUCTION

6.1 Vector quantization and clustering

6.1.1 Optimal source coding in vector quantization

6.1.2 Generalized Lloyd algorithm

6.1.3 Clustering

6.1.4 EM algorithm for VQ and clustering

6.1.5 Fuzzy clustering

6.2 Dimensionality reduction: statistical methods

6.2.1 Linear principal components

6.2.2 Principal curves and surfaces

6.2.3 Multidimensional scaling

6.3 Dimensionality reduction: neural network methods

6.3.1 Discrete principal curves and self-organizing map algorithm

6.3.2 Statistical interpretation of the SOM method

6.3.3 Flow-through version of the SOM and learning rate schedules

6.3.4 SOM applications and modifications

6.3.5 Self-supervised MLP

6.4 Methods for multivariate data analysis

6.4.1 Factor analysis

6.4.2 Independent component analysis

6.5 Summary

All happy families resemble one another, each unhappy family is unhappy in its own way.

Leo Tolstoy

As pointed out earlier in Section 2.2, multivariate density estimation with finite

samples is difficult to accomplish, especially for higher-dimensional problems, due

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

177

to the curse of dimensionality. Computational approaches for density estimation

based on the maximum likelihood using, for example, the expectation-maximization

(EM) algorithm are quite slow, result in many suboptimal solutions (local minima),

and depend strongly on initial conditions. However, in many practical applications

there is no need to estimate high-dimensional density explicitly because multivariate

data in<d usually have a true (or intrinsic) dimensionality much lower than d. Hence,

it may be advantageous to first map the data into a lower-dimensional space and

then solve the learning problem in this low-dimensional space rather than in the

original high-dimensional space. Even when the original data are low dimensional,

their distribution is typically nonuniform, and it is possible to provide a suitable

approximation of such nonuniform distributions. This leads to two types of methods

for density approximation described in this chapter: data reduction and dimensional-

ity reduction.

This chapter is concerned with descriptive modeling, as opposed to predictive

modeling such as regression or classification. As there is no distinction between

input and output components of the training data, these methods are also called

unsupervised learning methods, in contrast to methods for classification and regres-

sion, where the distinction between inputs and outputs exists.

Consider training samples X ¼ fx1; x2; . . . ; xng in d-dimensional sample space.

These samples originate from some distribution. The goal is to approximate the

(unknown) distribution so that samples produced by the approximation model are

‘‘close’’ (in some well-defined sense) to samples from the generating distribution.

Usually, the quality of a model is measured by its approximation accuracy for the

training data, and not for future samples. The two modeling strategies, data reduc-

tion and dimensionality reduction, result in two classes of methods:

Vector quantization (VQ) and clustering: Here the objective is to approximate a

given training sample (or unknown generating distribution) using a small number

of prototype vectors C ¼ fc1; c2; . . . ; cmg, where m� n (usually). Note that here a

distribution in a d-dimensional space is approximated by a collection of points (pro-

totypes) in the same space, leading to the so-called zero-order approximation.

Further, there is a distinction between VQ and clustering. VQ methods have an

objective of minimizing a well-defined approximation (quantization) error when

the number of prototypes m is fixed a priori. On the contrary, clustering methods

have a more vague objective of finding interesting groupings of training samples.

Often clustering algorithms also represent each group by a prototype, and such

methods have strong similarity to VQ. As the notion of what is interesting is not

(usually) defined a priori, most clustering methods are ad hoc; that is, ‘‘interesting’’

clusters are implicitly defined via the computational procedure itself. Simple exam-

ples of VQ and clustering are shown in Fig. 6.1.

Dimensionality reduction: Here, the goal is to find a mapping from a d-dimen-

sional input (sample) space <d to some m-dimensional output space <m, where

m� n,

GðxÞ: <d ! <m; ð6:1Þ

178 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

producing a low-dimensional encoding z ¼ GðxÞ for every input vector x. A

‘‘good’’ mapping G should act as a low-dimensional encoder of the original

(unknown) distribution. In particular, there should be another ‘‘inverse’’ mapping

FðzÞ: <m ! <d; ð6:2Þ

producing the decoding x0 ¼ FðzÞ of the original input x. Thus, an overall mapping

for such an encoding–decoding process is

x0 ¼ FðGðxÞÞ: ð6:3Þ

FIGURE 6.1 Examples of vector quantization (a) and clustering (b) for a two-dimensional

input space. Small points indicate the data samples and large points indicate the prototypes.

The prototypes in (a) provide a quantization and encoding of the data. The prototypes in (b)

provide an interesting clustering of the data.

METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION 179

To find the ‘‘best’’ mapping, we need to specify a class of approximating functions

(mappings):

f ðx;oÞ ¼ FðGðxÞÞ; ð6:4Þ

parameterized by parameters o and then seek a function (in this class) that mini-

mizes the risk

RðoÞ ¼
ð

Lðx; x0ÞpðxÞdx ¼
ð

Lðx; f ðx;oÞÞpðxÞdx: ð6:5Þ

Commonly, the loss function used is the squared error distortion

Lðx; f ðx;oÞÞ ¼ jjx� f ðx;oÞjj2; ð6:6Þ

where jj jj denotes the usual L2 norm. An example of dimensionality reduction

is principal component analysis (PCA), which implements a linear projection

(mapping); that is, z ¼ GðxÞ in (6.1) is a linear transformation of the input vector

x. PCAworks well for low-dimensional characterization of Gaussian distributions

but may not be suitable for modeling more general distributions, as shown in

Fig. 6.2.

Note that the VQ formulation can be formally viewed as a special case of low-

dimensional mapping/encoding, where the encoding space is zero dimensional.

However, VQ methods and low-dimensional encoding methods will be considered

separately because they deal with very different issues. Another general strategy for

approximating unknown distributions is to identify region(s) in x-space, where the

unknown density is ‘‘high.’’ This leads to the so-called ‘‘single-class learning’’ for-

mulation discussed in Chapter 9.

Further, most practical applications of methods discussed in this chapter have

goals (somewhat) different from predictive learning. For example, the practical

objective of VQ is to represent (compress) a given sample by a number of proto-

types, where the number m of prototypes is determined (prespecified) by the trans-

mission rate of a channel. With clustering methods the usual goal is interpretation,

namely finding interesting groupings in the training data, rather than prediction of

future samples. Similarly, low-dimensional encoding methods often use prespeci-

fied dimension of the encoding space (typically one or two dimensional) to ensure

good interpretation capability. Hence, many methods discussed in this chapter have

a goal of finding a mapping minimizing the empirical risk; that is,

RempðoÞ ¼
1

n

X

n

i¼1
jjxi � f ðxi;oÞjj2; ð6:7Þ

rather than the expected risk (6.5). In many cases, however, minimization of the

empirical risk (6.7) with a prespecified number of prototypes (in VQ and clustering

methods) or prespecified dimension of the encoding space leads to good solutions

in the sense of predictive formulation (6.5).

180 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

The methods discussed in this chapter can be used in several different ways:

� Data/dimensionality reduction: The methods produce a compact/low-dimen-

sional encoding of a given data set.

� Interpretation: The interpretation of a given data set usually comes as a

byproduct of data/dimensionality reduction.

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0 0.5 1 1.5

x1

x2

(a)

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0 0.5 1 1.5

x1

x2

0

1

2

3 z

x1 ,x2()

(b)

FIGURE 6.2 Example of dimensionality reduction. (a) A linear principal component and a

nonlinear principal curve fit to the data. (b) Any two-dimensional point (x1; x2) in the input

space can be projected to the nearest point on the curve z. The principal curve therefore

provides a one-dimensional mapping of the two-dimensional input space.

METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION 181

� Descriptive modeling: The training data are used to produce a good descri-

ptive model for the underlying (unknown) distribution.

� Preprocessing for supervised learning: Unsupervised methods for data/

dimensionality reduction are used to model x-distribution of the training data

in order to simplify subsequent training of a supervised method (for

classification or regression problems). This is commonly used in radial basis

function network training (discussed in Chapter 7) and in various methods for

classification (see Chapter 8). The benefits of such preprocessing are twofold:

Preprocessing reduces the effective dimensionality of the input space; this

results in smaller VC dimension of a supervised learning system using

preprocessed input features and hence may improve its generalization

capability according to statistical learning theory (see Chapter 4). When

used for supervised learning tasks, the methods presented in this chapter

roughly correspond to step 4 (i.e., preprocessing and feature extraction) in the

general experimental procedure given in Chapter 1.

� Preprocessing also reduces the number of input samples by using a smaller

number of prototypes found via VQ or clustering; this usually helps to

improve computational efficiency of some supervised learning methods (e.g.

nearest-neighbor techniques), which scale linearly with the number of

training samples.

The five objectives stated above are (usually) not distinct and/or clearly stated in

the original description of the various methods, making comparisons between them

rather subjective. We state explicitly the application objectives and assumptions when

discussing and comparing the various methods in this chapter. However, the reader

should be aware that descriptions of the same methods (presented elsewhere) under

different application objectives may lead to different comparison results.

As all methods for data/dimensionality reduction rely on the notion of distance in

the input space, they are sensitive to the scaling of input variables. The goal of scal-

ing is to ensure that rescaled inputs span similar ranges of values. Typically, input

variables are scaled independently of each other. First, for each variable, its sample

mean and variance are calculated. Then each variable is rescaled by subtracting the

mean and normalizing its standard deviation. The resulting rescaled input variables

will all have zero mean and unit standard deviation over the scaled training data.

Another common strategy is to scale each input by its range, namely the difference

between the maximum and minimum values. However, this method has a disadvan-

tage of being very sensitive to outliers. There are also more advanced linear scaling

procedures taking into account correlations between input variables. In general, a

procedure for scaling input variables reflects a priori knowledge about the problem.

For example, scaling by the standard deviation described above is equivalent to an

assumption that all input variables are equally important (for distance calculation).

Hence, the choice of scaling method is application dependent, as it reflects a priori

knowledge about an application domain. Descriptions of methods for data and/or

dimensionality reduction in this chapter assume proper scaling of input variables.

182 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

This chapter is organized as follows. Section 6.1 presents methods for vector

quantization and a brief overview of clustering methods. Methods for dimensional-

ity reduction are covered in Sections 6.2 (statistical methods) and 6.3 (neural net-

work methods). We emphasize the connection between the statistical approach

(known as principal curves (PC)) and the neural network method (self-organizing

maps (SOMs)). Section 6.3 also describes the use of self-supervised multilayer per-

ceptron (MLP) networks for dimensionality reduction. Section 6.4 describes two

methods for multivariate data analysis, factor analysis (FA) from statistics and inde-

pendent component analysis (ICA) from signal processing. Although ICA is not

typically used for dimensionality reduction, we briefly describe it in this chapter

due to its relationship to principal components. A concluding discussion is given

in Section 6.5.

6.1 VECTOR QUANTIZATION AND CLUSTERING

The description of an arbitrary real number requires an infinite number of bits, so a

finite representation will be inaccurate. The task then is to find the best possible repre-

sentation (quantization) at a given data rate. The field of information theory (speci-

fically rate-distortion theory) provides bounds on optimal quantization performance

for any given data rate (Shannon 1959; Gray 1984; Cover and Thomas 1991). The

theory also states that a joint description of real numbers (i.e., describing vectors) is

more efficient than individual descriptions, even for independent random variables.

Therefore, for most quantization problems, a sequence of individual real numbers

is often grouped in blocks of vectors, which are then quantized. The purpose of

VQ is to encode either continuous or discrete data vectors in order to transmit

them over a digital communications channel (this includes data storage/retrieval).

Compression via VQ is appropriate for applications where data must be transmitted

(or stored) with high bandwidth but tolerating some loss in fidelity. Applications in

this class are often found in speech and image processing. In this section, we focus on

a specific type of vector quantizer that is designed using training data and is based on

two necessary conditions (called Lloyd–Max conditions) for an optimal quantizer.

There are, however, many other vector quantizer designs that take into account prac-

tical constraints of hardware implementation (encoding time, complexity, etc.)

Creating a complete data compression system requires the design of both an

encoder (quantizer) and a decoder (Fig. 6.3). The input space of the vectors to be

quantized is partitioned into a fixed number of disjoint regions. For each region, a

prototype or output vector is found. When given an input vector, the encoder pro-

duces the index of the region where the input vector lies. This index, called a chan-

nel symbol, can then be transmitted over a binary channel. At the decoder, the index

is mapped to its corresponding output vector (also called a center, local prototype,

or reproduction vector). The transmission rate is dependent on the number of quan-

tization regions. Given the number of regions, the task of designing a vector quan-

tizer system is to determine the regions and output (reproduction) vectors that

minimize the distortion error.

VECTOR QUANTIZATION AND CLUSTERING 183

This section begins with the mathematical formulation of VQ. Here, we present the

Lloyd–Max conditions that guarantee vector quantizers with minimum empirical risk.

In Section 6.1.2, we show how these conditions are used to construct a procedure,

called the generalized Lloyd algorithm (GLA), for creating optimal vector quantizers

from data. The problem of VQ has some similarities with data clustering, and similar

algorithms are used to solve both types of problems. This is discussed in Section

6.1.3. In Section 6.1.4, we investigate application of the EM algorithm to VQ and

clustering. Finally, Section 6.1.5 describes fuzzy clustering methods.

6.1.1 Optimal Source Coding in Vector Quantization

A vector quantizer Q is a mapping of d-dimensional Euclidean space <d, where

d 	 2, into a finite subset C of <d. Thus,

Q : <d ! C; ð6:8Þ

where C ¼ fc1; c2; . . . ; cmg and cj, the output vector, is in <d for each j. Associated

with every m point quantizer in <d is a partition

R1; . . . ;Rm;

where

Rj ¼ Q�1ðcjÞ ¼ fx 2 <d : QðxÞ ¼ cjg: ð6:9Þ

From this definition, the regions defining the partition are nonoverlapping (disjoint)

and their union is <d, the whole input space (Fig. 6.4). A quantizer can be uniquely

defined by jointly specifying the output set C and the corresponding partition fRjg.
This definition combines the encoding and decoding steps as one operation called

quantization.

Using the general formulation of Chapter 2, the set of vector-valued approximat-

ing functions f ðx;oÞ;o 2 �, for VQ can be written as

f ðx;oÞ ¼ QðxÞ ¼
X

m

j¼1
cjIðx 2 RjÞ: ð6:10Þ

Encoder
Digital

channel
Decoder

Channel
symbols

Data

source Reproduction

x j c j′ j

FIGURE 6.3 A vector quantizer system. Real-valued vectors from the data source are

encoded or mapped to a finite set of channel symbols. The channel symbols are transmitted

over the digital channel. At the other end of the channel, each symbol is decoded or mapped

to the correct prototype center for that symbol.

184 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

At this point, we will defer the method of parameterization of the regions fRjg, as
we will see that for an optimal quantizer (one with minimum risk), the parameter-

ization is required to take a specific form.

Vector quantizer design consists of choosing the function f ðx;oÞ that minimizes

some measure of quantizer distortion. Commonly used loss function is the squared

error distortion (6.6), which is assumed in this chapter. However, for some particu-

lar applications (i.e., speech and image processing), more specialized loss functions

exist (Gray 1984). A vector quantizer is called optimal if for a given value of m, it

minimizes the risk functional

RðoÞ ¼
ð

jjx� f ðx;oÞjj2pðxÞdx: ð6:11Þ

Note that the vector quantizer minimizing this risk functional is designed to optimally

quantize future data generated from a density pðxÞ. This objective differs from another

common objective of optimally quantizing (compressing) a given finite data set.

There are two necessary conditions for an optimal vector quantizer, called the

Lloyd–Max conditions (Lloyd 1957; Max 1960). One condition defines optimality

conditions for the decoding operation, given a specific (not necessarily optimal)

encoder. The other condition defines optimality conditions for the encoding opera-

tion, given a specific decoder. Let us first consider optimality conditions for the

decoding operation. For a fixed encoder (fixed quantization regions), the decoding

operation is a linear operation. From (6.10) it is clear that QðxÞ is a linear weighted
sum of the random variables Aj,

QðxÞ ¼
X

m

j¼1
cjAj; ð6:12Þ

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

x1

x2

FIGURE 6.4 The partitions of a vector quantizer are nonoverlapping and cover the entire

input space. The optimal vector quantizer has the so-called nearest-neighbor partition, also

known as the Voronoi partition.

VECTOR QUANTIZATION AND CLUSTERING 185

where

Aj ¼ Iðx 2 RjÞ; Ai \ Aj ¼ f; for all i 6¼ j: ð6:13Þ

Determining the optimal output points cj; j ¼ 1; . . . ;m, is a standard problem in lin-

ear estimation. From the orthogonality principle of linear estimation, it follows that

the necessary condition for optimality of the output points is

E½x� QðxÞ�Aj ¼ 0 for j ¼ 1; . . . ;m; ð6:14Þ

where the expectation E is taken with respect to x and 0 denotes the zero vector in

<d . From this we get

E½xAj� ¼ E½QðxÞAj�: ð6:15Þ

As Ai is either 0 or 1, this simplifies to

E½xjAj ¼ 1�PðAj ¼ 1Þ ¼ cjPðAj ¼ 1Þ: ð6:16Þ

Hence, we have the following result:

1. Optimality condition for the decoder (determining the output vectors): For an

optimal quantizer, the output vectors must be given by the centroid of x, given

that x 2 Rj:

cj ¼ E½xjx 2 Rj�: ð6:17Þ

A second necessary condition for an optimal quantizer is obtained by taking the

output vectors as given and finding the best partition to minimize the mean squared

error. Let x be a point in some region Rj and suppose that the center ck provides a

lower quantization error for x:

jjx� cjjj > jjx� ckjj for some k 6¼ j: ð6:18Þ

Then, the error would be decreased if the partition is altered by removing the point

x from Rj and including it in Rk. Hence, we have the following.

2. Optimality condition for the encoder (determining optimal quantization

regions): For an optimal quantizer, the partition must satisfy

Rj � fx 2 <d : jjx� cjjj < jjx� ckjj; for all k 6¼ jg: ð6:19Þ

This is the so-called nearest-neighbor partition, also known as the Voronoi

partition. The regions Rj are known as the Voronoi regions (Fig. 6.4).

Note that necessary conditions (6.18) and (6.19) can be generalized for any

loss function. In that case, the output points are determined by the generalized

186 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

centroid, which is the center of mass determined using the loss function as distance

measure. The Voronoi partition is also determined using the loss function as dis-

tance measure.

Condition 2 implies that an optimal quantizer must have a Voronoi partition. In

that case, the quantization regions are defined in terms of the output points, so the

quantizer can be uniquely characterized only in terms of its output vectors:

f ðx;CÞ ¼ QðxÞ ¼
X

m

j¼1
cjIðjjx� cjjj � jjx� ckjj; for all k 6¼ jÞ; ð6:20Þ

where C ¼ fc1; . . . ; cmg:

6.1.2 Generalized Lloyd Algorithm

An algorithm for scalar quantizer design was proposed by Lloyd (1957), and later

generalized for VQ (Linde et al. 1980). This algorithm applies the two necessary

conditions to training data in order to determine empirically optimal (minimizing

empirical risk) vector quantizers. Given an initial encoder and decoder, the two

conditions are repeatedly applied to produce improved encoder/decoder pairs in

the generalized Lloyd algorithm (GLA), using the training data. Note that the

above conditions only give necessary conditions for an optimal VQ system.

Hence, the GLA solution is only locally optimum and may not be globally opti-

mum. The quality of this solution depends on the choice of initial encoder and

decoder. Given training data xi; i ¼ 1; . . . ; n, loss function L, and initial centers

cjð0Þ; j ¼ 1; . . . ;m, the GLA iteratively performs the following steps:

1. Encode (partition) the training data into the channel symbols using the
minimum distance rule. This partitioning is stored in an n �m indicator
matrix Q whose elements are defined by

qij ¼
1; if Lðxi ; cjðkÞÞ ¼ min

l
Lðxi ; clðkÞÞ;

0; otherwise:

�

ð6:21Þ

2. Determine the centroids of the training points by the channel symbol.
Replace the old reproduction vectors with these centroids:

cjðk þ 1Þ ¼

P

n

i¼1
qijxi

P

n

i¼1
qij

; j ¼ 1; . . . ;m: ð6:22Þ

3. Repeat steps 1 and 2 until the empirical risk reaches some small thresh-
old, or some other stopping condition is reached. Note that the optimality
conditions guarantee that the empirical risk never increases with each
step of the algorithm.

VECTOR QUANTIZATION AND CLUSTERING 187

The GLA requires initial values for the centers cj; j ¼ 1; . . . ;m. The quality of

the solution will depend on this initialization. Obviously, if the initial values are

near an acceptable solution, there is a better chance that the algorithm will find

an acceptable solution. One approach is to initialize the centers with random values

in the same range as the data. Another approach is to use the values of randomly

chosen data points to initialize the centers.

Example 6.1: Generalized Lloyd algorithm

Let us consider a VQ problem with the ‘‘doughnut’’ data set given for the EM

example of Chapter 5. This set consists of 200 data points generated according

to the function

x ¼ ½cosð2pzÞ; sinð2pzÞ� þ x;

where z is uniformly distributed in the unit interval and the noise x is distributed

according to a bivariate Gaussian with covariance matrix � ¼ s2I, where s ¼ 0:1
(Fig. 6.5a). The centers cjð0Þ; j ¼ 1; . . . ; 5, were initialized using five randomly

–1.5

–1

–0.5

0

0.5

1

1.5

–1 0 1
x1

x2

1
2

3

4

5

(a)

–1.5

–1

–0.5

0

0.5

1

1.5

–1 0 1
x1

x2 1

2

3

4

5

New data point

(b)

FIGURE 6.5 Centers found using the generalized Lloyd algorithm. (a) The five centers are

initialized using five randomly selected data points. (b) After 20 iterations of the algorithm,

the centers have approximated the distribution. The dashed lines indicate the Voronoi

regions. The new data point indicated would be encoded by center 2.

188 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

selected data points (Fig. 6.5(a)). The GLA was allowed to iterate 20 times. Figure

6.5(b) shows the centers for the resulting vector quantizer. Let us now consider using

this result for VQ of the point (1.0, �0.5). As indicated in Fig. 6.5(b), this point is

nearest to center number 2. This data point would, therefore, be encoded by the

channel symbol 2 and transmitted. When the decoder receives the symbol 2, it is

mapped to the location of center 2, which is (0.60, �0.75).

It is also possible to determine the optimal VQ (minimizing empirical risk) using

a stochastic approximation approach. This leads to a flow-though version of GLA

known as competitive learning algorithms in the neural network literature. Each

step of the GLA is converted into its stochastic approximation counterpart, and

then the two steps are repeatedly applied for individual data points. Given data

points xðkÞ; k ¼ 1; 2; . . ., and initial output centers cjð0Þ; j ¼ 1; . . . ;m, the stochas-
tic approximation versions of steps 1 and 2 of the GLA are as follows:

1. Determine the nearest center to the data point

j ¼ argmin
i

LðxðkÞ; ciðkÞÞ

with commonly used squared error loss; this simplifies to the nearest-
neighbor rule

j ¼ argmin
i

jjx kð Þ � ciðkÞjj: ð6:23Þ

Note: Finding the nearest center is called competition (among centers)
in neural network methods.

2. Update the output center using the equations

cj ðkj þ 1Þ ¼ cjðkjÞ � gðkjÞ gradLðxðkÞ; cjðkjÞÞ; ð6:24Þ
kj ¼ kj þ 1:

Note that each center may have its own learning rate update count
denoted by kj ; j ¼ 1; . . . ;m. Learning rate function gðkÞ should meet
the conditions for stochastic approximation given in Chapter 2. For
the squared error loss, the gradient is calculated as

@Lðx; cjÞ
@cj

¼ @

@cj
jjx� cjjj2 ¼ 2ðx� cjÞ: ð6:25Þ

With this gradient, the output centers are updated by

cjðkj þ 1Þ ¼ cjðkjÞ þ gðkjÞ½xðkÞ � cjðkjÞ�; ð6:26Þ
kj ¼ kj þ 1;

which is commonly known as competitive learning rule in neural net-
works.

VECTOR QUANTIZATION AND CLUSTERING 189

A common problem with the batch version of GLA and its flow-through version

(competitive learning) is that poorly chosen initial conditions for prototype centers

lead to ‘‘bad’’ locally optimal solutions. This is illustrated in Fig. 6.6, which shows

results of GLA application to the same data as in Fig. 6.5, except for different

(poor) initialization. The situation illustrated in Fig. 6.6 is known as the problem

of unutilized or ‘‘dead’’ units in neural networks. In signal processing, this

problem is usually cured by applying GLA many times starting with different initial

–1.5

–1

–0.5

0

0.5

1

1.5

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5

(a)

–1.5

–1

–0.5

0

0.5

1

1.5

–1.5 –1 –0.5 0 0.5 1 1.5

(b)

FIGURE 6.6 Two examples showing the effects of poor initialization of centers on the

generalized Lloyd algorithm. Open circles indicate centers that were never moved from their

initial positions. Dashed lines indicate the path taken by migrating centers. (a) Of the five

centers, three are unused after 20 iterations. (b) Of the 20 randomy initialized centers, seven

were unused after 100 iterations.

190 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

conditions and then choosing the best solution. In neural networks, several methods

have been proposed to handle this problem as well. The most popular method is the

SOM algorithm discussed in detail in Section 6.3. Another approach is called the

conscience mechanism (DeSieno 1988). This approach is a modification of a flow-

through procedure given by Eqs. (6.23) and (6.26). Each unit keeps track of the

number (or frequency) of its past winnings in step 1. Let freqjðkÞ denote the fre-

quency of past winnings (updates) of unit j at iteration k. Then, the nearest-neighbor

rule (6.23) is modified to

j ¼ argmin
i

½jjxðkÞ � ciðkÞjjfreqiðkÞ�: ð6:27Þ

The update step (6.26) does not change. The new distance measure (6.27) forces

each unit to win the same number of times (on average). In other words, frequent

winners feel guilty (have a conscience) and hence reduce their winning rate via

(6.27).

6.1.3 Clustering

The problem of clustering is that of separating a data set into a number of groups

(called clusters) based on some measure of similarity. The goal is to find a set of

clusters for which samples within a cluster are more similar than samples from

different clusters. Usually, a local prototype is also produced that characterizes

the members of a cluster as a group. The structure of the data is then inferred

by analyzing the resulting clusters (and/or its prototypes) by domain experts.

Note that the task of clustering can fall outside of the framework of predictive

learning, as the goal is to cluster the data at hand rather than to provide an accu-

rate characterization of future data generated from the same probability distribu-

tion. However, many of the same approaches used for VQ (which is a predictive

approach) are used for cluster analysis. Variations of GLA are often used for clus-

tering under the name k-means or c-means, where k (or c) denotes the number of

clusters. Commonly, clusters are allowed to merge and split dynamically by the

clustering algorithm. Cluster analysis differs from VQ design in that the similarity

measure for clustering is chosen subjectively based on its ability to create ‘‘inter-

esting’’ clusters. The clusters can be organized hierarchically and described in

terms of a hierarchical taxonomy (i.e., tree structured), or they can be purely par-

titional. Partitional methods can be further classified into two groups. In methods

exemplified by VQ-style techniques, each sample is assigned to one and only one

cluster. In the second group of methods, each sample can be associated (in some

sense) with several clusters. For example, samples can originate with a different

probability from a mixture of sources, thus leading to a statistical mixture density

formulation. Using a Gaussian mixture model, parameters of each component of a

mixture corresponding to cluster center and size (width) can be estimated via the

EM method discussed in Chapter 5. Alternatively, each sample could belong

to several clusters, but with a different degree of membership, using fuzzy

VECTOR QUANTIZATION AND CLUSTERING 191

logic framework. As shown later in Section 6.1.5, fuzzy clustering methods are

computationally very similar to VQ-style techniques.

Hierarchical clustering is often done via greedy optimization, as it is a nested

sequence of simple partitional clusters. Hierarchical clustering methods can be

either agglomerative (bottom up) or divisive (top down). An agglomerative hier-

archical method places each sample in its own cluster and gradually merges these

clusters into larger clusters until all samples are in a single cluster (the root node). A

divisive hierarchical method starts with a single cluster containing all the data and

recursively splits parent clusters into daughters. As the clustering is often used for

the interpretation of data, the similarity measure used in the clustering process is

subjectively determined. Frequently, a process of trial and error is used, where

the similarity measure is chosen (or adjusted) so that the resulting clustering

approach produces an ‘‘interesting’’ interpretation. A common strategy is to mini-

mize the squared error as is done in VQ. However, minimizing this error does not

necessarily guarantee an ‘‘interesting’’ clustering.

One can argue about the value of such (subjective) interpretation-driven

approach to clustering in high-dimensional spaces, where human expertise is

likely to be of limited value. In fact, for sparse high-dimensional data, the very

notion of locality (similarity) may be hard to define, as discussed in Section

3.1. A more systematic (though rarely pursued) approach to cluster analysis

may be, first, to define formally the notion of interesting clusters, second,

to come up with an error (loss) functional reflecting this notion, and, third, to

develop an algorithm for minimizing the loss functional. This would be more

consistent with the predictive learning formulation advocated in this book. An

example of such an approach (known as single class learning) is presented in

Chapter 9.

As the focus of this book is on predictive aspects of learning, we do not provide

detailed description of many existing clustering methods. An interested reader can

consult Fukunaga (1990) and Kaufman and Rousseeuw (1990) for details.

6.1.4 EM Algorithm for VQ and Clustering

Since the generalized Lloyd algorithm for VQ, various clustering methods, and the

EM algorithm for density estimation share the same iterative minimization strategy,

several authors (Bishop 1995; Ripley 1996) point out their similarity and equiva-

lence. Quoting Ripley (1996):

‘‘Vector quantization can be seen as a special case of a finite mixture, in which the

components are constant densities over the tiles of the Dirichlet (or Voronoi) tessella-

tion formed by the codebook.’’

However, a closer examination reveals that such claims are not true because the EM

algorithm solves a density estimation problem using maximum likelihood, whereas

GLA minimizes the empirical risk with the L2 loss function of (6.11). Moreover, the

Voronoi regions are by definition disjoint, so the individual densities can be

192 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

estimated separately. The EM algorithm is not required to solve this problem, as

suggested by the above quotation. This is formally shown next.

Define the mixture approximation according to Ripley (1996) as a sum of con-

stant densities over a set of Voronoi regions:

f ðx;C;wÞ ¼
X

m

j¼1
wjAj;where Aj ¼ Iðx 2 RjÞ and Voronoi regions are

Rj � fx 2 <d : jjx� cjjj < jjx� ckjj; for all k 6¼ jg: ð6:28Þ

The parameters w are the mixing weights. Each component density has the para-

meter cj.

Note that this function describes a density and not a vector quantizer as in (6.20).

Constructing the EM algorithm for this density using (5.40)–(5.42) gives the fol-

lowing:

� E-step:

pij ¼ E½zij xij � ¼
wjðkÞAj

P

m

l¼1
wlðkÞAl

: ð6:29Þ

Since Aj ¼ Iðx 2 RjÞ;Ai \ Aj ¼ �; for all i 6¼ j; this simplifies to

pij ¼ Iðxi 2 RjÞ; ð6:30Þ

which is the same as the first step of the GLA, namely encoding the training

data into the channel symbols using the minimum distance rule.

� M-step: Maximization step for the density (6.29) is done by computing the

mixing weights

wjðk þ 1Þ ¼ 1

n

X

n

i¼1
pij;

which are the number of samples in each Voronoi region. Then the parameters

cj are determined:

cjðk þ 1Þ ¼ argmax
cj

X

n

i¼1
pij ln Iðjjxi � cjjj < jjxi � cljj; for all l 6¼ jÞ: ð6:31Þ

Note the following features in the maximization problem of (6.31):

1. The maximum occurs when

Iðjjxi � cjjj < jjxi � cljj; for all l 6¼ jÞ ¼ 1 for all j ¼ 1; . . . ;m:

In other words, the maximum occurs when all samples are partitioned accord-

ing to Voronoi regions.

VECTOR QUANTIZATION AND CLUSTERING 193

2. The minimum occurs when

Iðjjxi � cjjj < jjxi � cljj; for all l 6¼ jÞ ¼ 0 for any j ¼ 1; . . . ;m:

In other words, the minimum occurs if any sample is not correctly parti-

tioned.

3. This function can be maximized by the solution cjðk þ 1Þ ¼ cjðkÞ, as samples

are already partitioned according to Voronoi regions from the E-step. This

means that the solution is exactly the same as the initial guess cjð0Þ.

The solution provided by EM formulation is uninteresting because of the discon-

tinuous disjoint nature of the Voronoi regions. Clearly, the loss function of VQ (6.6)

imposes additional constraints on the output centers.

A better case can be made for straightforward application of the EM algorithm

for clustering (Wolfe 1970). Here, we assume that samples come from a mixture of

sources (clusters) with unknown mixing weights and that each component has a

parameterized density (usually Gaussian) with unknown parameters. Then mixing

weights and parameters of each component are estimated via the EM algorithm

using the maximum log-likelihood criterion.

Example 6.2: Clustering

Let us consider a clustering problem where data consist of two normally distributed

clusters of 200 data points each (Fig. 6.7). One cluster comes from a distribution

with the mean at ð0; 0Þ and covariance matrix � ¼ ð1:0Þ2I. The other cluster comes

from a distribution with the mean at ð5; 5Þ and covariance matrix � ¼ ð0:3Þ2I. Let

–3

–2

–1

0

1

2

3

4

5

6

–4 –2 0 2 4 6

A

B

C

FIGURE 6.7 Application of EM algorithm to clustering data of Fig. 6.1(b). The mixture

weights for each cluster are A—50 percent, B—49 percent, C—1 percent. Even though three

mixture components were used to fit the distribution, the EM algorithm correctly identified

the two dominant clusters A and B.

194 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

us attempt to approximate this density with a mixture of three Gaussians using the

EM algorithm. Figure 6.7 and Table 6.1 show the results of applying the EM algo-

rithm with 100 iterations to these data.

Note that even though the approximating function was a mixture of three Gaus-

sians, the EM algorithm effectively used only two mixtures to approximate the dis-

tribution. This is indicated by the low mixture weight for component C in the final

model.

6.1.5 Fuzzy Clustering

I am half-American, half-Russian, half-Chinese, half-Jewish, . . ., and half-vegetarian.

Emily Cherkassky

In the partitioning methods presented in this section, such as VQ, each sample is

assigned to one and only one cluster. Similarly, under the EM approach, each sam-

ple comes from a single component of a mixture. Such methods are known as crisp

clustering. In contrast, fuzzy clustering formulation assumes that a sample can

belong simultaneously to several clusters albeit with a different degree of member-

ship. For example, in Fig. 6.8 point A belongs to both clusters according to fuzzy

clustering formulation.

Fuzzy clustering methods seek to find fuzzy partitioning by minimizing a suita-

ble (fuzzy) generalization of the squared loss cost function. The goal of minimiza-

tion is to find centers of fuzzy clusters and to assign fuzzy membership values to

data points. The resulting fuzzy algorithms are very similar to the traditional VQ

methods.

Let us use the following notation, consistent with our descriptions of VQ

methods:

TABLE 6.1 Results of the EM Algorithm

Component density Mixture weights wi Means mi Widths si

A 0.4902 (0.0329, 0.0300) 1.0259

B 0.5000 (4.9995, 4.9826) 0.2986

C 0.0098 (0.8786, 0.4782) 0.0656

A

Cluster 1 Cluster 2

FIGURE 6.8 Point A belongs to both clusters, m1ðAÞ > 0 and m2ðAÞ > 0.

VECTOR QUANTIZATION AND CLUSTERING 195

xi Training samples ði ¼ 1; ; nÞ
m Number of fuzzy clusters (centers) assumed to be known (prespecified)

cj Center of a fuzzy cluster ðj ¼ 1; ::;mÞ
mjðxiÞ Fuzzy membership of sample xi to cluster j

The goal is to find the fuzzy centers and the values of fuzzy membership mini-

mizing the following loss function:

L ¼
X

m

j¼1

X

n

i¼1
½mjðxiÞ�bjjxi � cjjj2; ð6:32Þ

where the parameter b > 1 is a fixed value specified a priori. Parameter b controls

the degree of fuzziness of the clusters found by minimizing (6.32). When b ¼ 1,

formulation (6.32) becomes the usual crisp clustering with the solution for cluster

centers given by the GLA or its variants known as k-means clustering. For large

values b!1, minimization of (6.32) leads to all cluster centers converging to

the centroid of the training data. In other words, the clusters become completely

fuzzy so that each data point belongs to every cluster to the same degree. Typically,

the value of b is chosen around 2.

Various fuzzy clustering formulations can be introduced by specifying con-

straints on the fuzzy membership functions mjðxiÞ that affect the minimization of

(6.32). For example, the popular fuzzy c-means (FCM) algorithm (Bezdek 1981)

uses the constraints

X

m

j¼1
mjðxiÞ ¼ 1 ði ¼ 1; 2; . . . ; nÞ; ð6:33Þ

where the total membership of a sample to all clusters adds up to 1. The goal of

FCM is to minimize (6.32) subject to constraints (6.33). Similar to the analysis

of VQ, we can formulate necessary conditions for an optimal solution:

@L

@cj
¼ 0 and

@L

@mj
¼ 0: ð6:34Þ

Performing differentiation (6.34) and applying the constraint (6.33) leads to the

necessary conditions

cj ¼

P

i

½mjðxiÞ�bxi
P

i

½mjðxiÞ�b
; ð6:35aÞ

mjðxiÞ ¼
ð1=djiÞ

1=ðb�1Þ

P

m

k¼1
ð1=dkiÞ

1=ðb�1Þ
; where dji ¼ jjxi � cjjj2: ð6:35bÞ

196 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

The system of nonlinear equations (6.35) cannot be solved analytically. However,

an iterative application of conditions (6.35a) and (6.35b) leads to a locally optimal

solution. This is known as the FCM algorithm:

Set the number of clusters m and parameter b.

Initialize cluster centers cj .

Repeat:

Update membership values mjðxiÞ via (6.35) using current estimates of cj

Update cluster centers cj via (6.35) using current estimates of mjðxiÞ
until the membership values stabilize; namely the local minimum of the
loss function is reached.

Note that all partitioning cluster algorithms (of fuzzy and nonfuzzy origin) have the

same generic form shown above. The difference is in the specific prescriptions for

updating the membership values and cluster centers. These algorithms implement

an iterative (nongreedy) optimization strategy described in Chapter 5. Specifically,

the optimization process alternates between estimating the cluster membership

values (for the given values of cluster centers) and estimating the cluster centers

(for the given membership values).

Deficiencies of the FCM algorithm are mainly caused by the nature of the con-

straints (6.33), which postulate that the total membership of a sample to all clusters

should add up to 1. As a result, the FCM may assign high degree of membership to

atypical samples (outliers), as shown in Fig. 6.9. Also, the membership value of a

sample in a cluster depends on the membership values in all other clusters via

(6.33). Hence, it depends indirectly on the total number of clusters. This may

A

B

Cluster 1 Cluster 2

FIGURE 6.9 According to FCM, outliers are assigned a high degree of membership,

m1ðAÞ ¼ m2ðAÞ ¼ 0:5.

VECTOR QUANTIZATION AND CLUSTERING 197

pose a serious problem when the number of clusters is specified ‘‘incorrectly.’’ See

examples in Figs. 6.10–6.12 discussed later.

These drawbacks of the FCM formulation can be cured by relaxing the con-

straint (6.33). This is done in the methods proposed by Krishnapuram and Keller

(1993) and Lee (1994). The approach due to Lee (1994) replaces (6.33) with the

constraint

X

m

j¼1

X

n

i¼1
mjðxiÞ ¼ n; ð6:36Þ

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b)

0.4

0.5

0.6

0.7

0.8

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

(c)

FIGURE 6.10 Cluster centers found using GLA (þ), FCM (�), and AFC (.) for three

different distributions.

198 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

that is, the total membership values of all samples add up to n. This is obviously a

more relaxed constraint than (6.33).

Minimization of the loss functional (6.32) under constraint (6.36) leads to the

following necessary optimality conditions:

cj ¼

P

i

½mjðxiÞ�bxi
P

i

½mjðxiÞ�b
ðthe same as in FCMÞ; ð6:37aÞ

mjðxiÞ ¼
nð1=djiÞ

1=ðb�1Þ

P

m

k¼1

P

n

l¼1
ð1=dklÞ

1=ðb�1Þ
; ð6:37bÞ

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

FIGURE 6.11 (a) Original centers; (b) GLA centers.

VECTOR QUANTIZATION AND CLUSTERING 199

which lead to the Another Fuzzy Clustering (AFC) algorithm. The AFC algorithm

has the same iterative form as the FCM, except that expressions (6.37) are used in

the updating step.

Note that expression (6.37b) gives positive membership values, which are not

constrained to be smaller than 1. If the final values mjðxiÞ need to be interpreted

as usual fuzzy memberships, one can normalize the values produced by the AFC

algorithm (Lee 1994). This normalization, however, has no effect on the final values

of the cluster centers and hence is not described here.

The AFC algorithm is capable of obtaining robust fuzzy partitioning in the

presence of noisy data and outliers. By using the relaxed constraint (6.36),

the AFC seeks a local optimum in a relatively narrow local region, whereas

the FCM is forced to find an optimum in a global region to satisfy global con-

straints (6.33). Therefore, the AFC is capable of producing stable local clusters

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b)

FIGURE 6.12 (a) Results for FCM; (b) results for AFC.

200 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

that are not sensitive to the prespecified number of clusters. However, due to

its local nature, the AFC solution may be quite sensitive to good initialization,

and any reasonable clustering method (GLA or FCM) can be used for generat-

ing initial values of cluster centers. Also, the original AFC algorithm may occa-

sionally produce ‘‘too local’’ clusters, that is, meaningless clusters consisting

of a single point. This happens when the prototype (cluster center) cj happens

to be very close to the data point xi so that dji � 0. Then the fuzzy member-

ship mjðxiÞ becomes large in view of (6.37b), leading to a situation where a

single point represents a cluster. This undesirable effect can be avoided if

the distance dji in the AFC algorithm is prevented from being too small, namely

if

dji maxðdji; dminÞ; ð6:38Þ

where dmin is a small positive constant (say, dmin ¼ 0:02).
Next, we make empirical comparisons of GLA, FCM, and AFC for simulated

data sets. The FCM and AFC algorithms use the value of parameter b set to 2.

The experimental setup is intended to show what happens when the number of

clusters is specified incorrectly, so that it does not match the number of ‘‘natural’’

clusters. Figure 6.10 shows two Gaussian clouds with a different amount of overlap

modeled using two prototypes. When the clusters are well separated, all methods

produce the same solution placing a prototype into the center of a Gaussian cloud.

However, when the clusters are heavily overlapped, as in Fig. 6.10(c), the methods

produce very different solutions. The GLA and the FCM treat the overlapped

distribution as two distinct clusters, but the AFC treats it as a single cluster. The

distribution in Fig. 6.10(c) represents the case where the number of clusters

(two) is misspecified, namely larger than the number of ‘‘natural’’ clusters (one).

Figure 6.11(a) shows a data set with four distinct Gaussian clusters. The central

cluster has twice as many samples as the other three. The number of prototypes

(three) is specified smaller than the number of natural clusters (four). In this

case, the AFC correctly assigns the prototypes to the centers of natural clusters,

whereas the GLA and the FCM may place prototypes far away from the centers

of natural clusters (see Figs. 6.11 and 6.12).

6.2 DIMENSIONALITY REDUCTION: STATISTICAL METHODS

A solution to the VQ problem is a collection of points (prototypes) in the input

space that can be viewed as a zeroth-order (mean) approximation of an underlying

distribution. More complex, say first-order, estimates (i.e., lines) can produce more

compact encoding of a nonuniform distribution. This leads to the dimensionality

reduction formulation, where the encoding is given by function G performing

mapping from the input space <d to a lower-dimensional feature space <m, and

the decoding is given by the function F mapping from <m back to the original

space <d, as stated earlier in (6.1)–(6.3). This encoding–decoding process can be

DIMENSIONALITY REDUCTION: STATISTICAL METHODS 201

represented in terms of the ‘‘information bottleneck’’ shown in Fig. 6.13. Given a

multivariate input x 2 <d, we seek to find a mapping

f ðx;oÞ ¼ FðGðxÞÞ ð6:39Þ

that minimizes the risk

RðoÞ ¼
ð

Lðx; f ðx;oÞÞpðxÞdx: ð6:40Þ

When the risk is minimized, the random variable z ¼ GðxÞ provides a representa-

tion of the original data x in the lower-dimensional feature space <m. Such low-

dimensional representation (encoding) may be more economical than the traditional

VQ codebook, and also enables better interpretation, by providing low-dimensional

representation of the original (high-dimensional) data.

This section describes statistical methods for dimensionality reduction, and Sec-

tion 6.3 describes related neural network approaches.

6.2.1 Linear Principal Components

In principal component analysis (PCA), a set of data is summarized as a linear com-

bination of an orthonormal set of vectors. The data xi ði ¼ 1; . . . ; nÞ are summar-

ized using the approximating function

f ðx;VÞ ¼ mþ ðxVÞVT; ð6:41Þ

where f ðx;VÞ is a vector-valued function, m is the mean of the data fxig, and V is a

d � m matrix with orthonormal columns. The mapping zi ¼ xiV provides a low-

dimensional projection of the vectors xi if m < d (see Fig. 6.14). The principal

component decomposition estimates the projection matrix V that minimizes the

empirical risk

Rempðx;VÞ ¼
1

n

X

n

i¼1
jjxi � f ðxi;VÞjj2; ð6:42Þ

subject to the condition that the columns of V are orthonormal. Without loss of gen-

erality, assume that the data have zero mean and set m ¼ 0. The parameter matrix V

X F(Z)ZG(X) X̂

FIGURE 6.13 Process of dimensionality reduction viewed as an ‘‘information bottleneck.’’

202 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

and projection vectors z are found using the singular value decomposition (SVD)

(Appendix B) of the n� d data matrix x, given by

X ¼ U�VT; ð6:43Þ

where the columns of U are the eigenvectors of XXT and the columns of V are the

eigenvectors of XTX. The matrix � is diagonal and its entries are the square roots of

the nonzero eigenvalues of XXT or XTX. Let us assume that the diagonal entries of

the matrix � are placed in decreasing order along the diagonal. These eigenvalues

describe the variance of each of the components. To produce a projection with

dimension m < d, which has maximum variance, all but the first m eigenvalues

are set to zero. Then the decomposition becomes

X ffi U�mV
T; ð6:44Þ

where �m denotes the modified d � d eigenvalue matrix where only the first m ele-

ments on the diagonal are nonzero. The m-dimensional projection vectors are given

by

Z ¼ XVm; ð6:45Þ

where Z is an n� m matrix whose rows correspond to the projection zi for a given

data sample xi and Vm is a d � m matrix constructed from the first m columns of V.

Principal components have the following optimal properties in the class of linear

functions f ðx;VÞ:

1. The principal components Z provide a linear approximation that represents

the maximum variance of the original data in a low-dimensional projection

(Fig. 6.14).

x1

x2

FIGURE 6.14 The first principal component is an axis in the direction of maximium

variance.

DIMENSIONALITY REDUCTION: STATISTICAL METHODS 203

2. They also provide the best low-dimensional linear representation in the sense

that the total sum of squared distances from data points to their projections in

the space is minimized (Fig. 6.15).

3. If the mapping functions F and G are restricted to the class of linear

functions, the composition FðGðxÞÞ provides the best (i.e., minimum empiri-

cal risk (6.42)) approximation to the data, where the functions F and G are

GðxÞ ¼ xVm;

FðzÞ ¼ zVT
m:

ð6:46Þ

As Vm has orthonormal columns, the left inverse of Vm is the matrix VT
m.

Therefore, the function F corresponds to the left inverse of the function G,

and the composition of F and G is a projection operation.

The PCA is most appropriate (optimal) for approximating multivariate normal dis-

tributions or, more generally, elliptically symmetric distributions. For such distribu-

tions, the low-dimensional linear projections maximizing variance of the training data

provide the best possible solution. However, the PCA is suboptimal for other types of

distributions, namely in the case of several clusters. In other words, using the PCA

roughly corresponds to a priori knowledge (assumption) about the nature of unknown

distribution. This observation leads to another class of linear methods called projec-

tion pursuit (Friedman and Tukey 1974) that seek a low-dimensional projection max-

imizing some (prespecified) performance index. The PCA is a special case of

projection pursuit where the index is variance; however, typically indexes other

than variance are used to emphasize properties different from multivariate normality.

In the field of neural networks, there are many descriptions of online methods

(or ‘‘networks’’) for the PCA. These methods can be viewed as stochastic

x1

x2

FIGURE 6.15 The first principal component minimizes the sum of squares distance

between data points and their projections on the component axis.

204 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

approximation approaches for minimizing the empirical risk (6.42), and they are

not described in this book. However, they can be useful for various online applica-

tions in signal processing, especially when the number of samples is large. See

Kung (1993) and Haykin (1994) for details.

6.2.2 Principal Curves and Surfaces

The PCA is well suited for approximating Gaussian-type distributions (as in

Fig. 6.14); however, it does not provide meaningful characterization for many other

types of distributions, for example, the doughnut-shaped cloud in Fig. 6.2. More flex-

ible nonlinear generalization of principal components can be constructed if the func-

tions F and G in the composition of (6.39) are chosen from the set of continuous

functions. There are two commonly used approaches for constructing this type of esti-

mate. One approach is to use a MLP architecture for implementing both F and G and

to estimate its parameters via empirical risk minimization (as detailed in Section

6.3.5). This approach does not take advantage of the inverse relationship between

the structure of F and the structure of G (i.e., that F and G are inverses of each

other). Another approach is to define G in terms of a suitable approximation to the

inverse of F, as is done in the principal curves approach developed in statistics and

its neural network counterpart known as the self organizing map (SOM) method.

The notion of principal curves and surfaces (or manifolds) has been introduced

in statistics by Hastie and Stuetzle (Hastie 1984; Hastie and Stuetzle 1989), in order

to approximate a scatterplot of points from an unknown probability distribution. A

smooth nonlinear curve called a principal curve is used to approximate the joint

behavior of the two or more variables (Fig. 6.16). The principal curve is a nonlinear

generalization of the first principal component (m ¼ 1), and the principal manifold

is a generalization of the first two principal components (m ¼ 2). Due to the added

flexibility (and complexity) of a nonlinear approximation, manifolds with m > 2

are not typically used.

–1.5

–1

–0.5

0

0.5

1

1.5

–0.5 0 0.5 1 1.5

FIGURE 6.16 An example of a principal curve.

DIMENSIONALITY REDUCTION: STATISTICAL METHODS 205

The principal curve (manifold) is a vector-valued function Fðz;oÞ that mini-

mizes the empirical risk

Remp ¼
1

n

X

n

i¼1
jjxi � FðGðxiÞ;oÞjj2; ð6:47Þ

subject to smoothness constraints placed on the function Fðz;oÞ. The function G is

defined in terms of a suitable numerical approximation to the inverse of F, as will

be described later. Conceptually, the principal curve is a curve that passes through

the middle of the data. For a given distribution, a particular point on the curve

is determined by the average of all data points that ‘‘project’’ onto that point.

When dealing with finite data sets, we must project onto a neighborhood of the

curve (Fig. 6.17). This self-consistency property formally defines the principal

curve. A curve is a principal curve of the density of the random variable x 2 Rj if

Eðxjz ¼ argmin
z0
jjFðz0Þ � xjj2Þ ¼ FðGðxÞÞ; ð6:48Þ

where E denotes usual expectation. The individual components of (6.48) can be

conveniently interpreted as the encoding and the decoding mappings in Fig. 6.13:

� Encoder mapping

GðxÞ ¼ argmin
z

jjFðzÞ � xjj2: ð6:49Þ

� Decoder mapping

FðzÞ ¼ EðxjzÞ: ð6:50Þ

–1.5

–1

–0.5

0

0.5

1

1.5

–0.5 0 0.5 1 1.5

F(z)

FIGURE 6.17 Self-consistency condition of principal curve. The value of a point on the

curve is the mean of all points that ‘‘project’’ onto that point.

206 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

Notice that the function G in (6.49) is defined in terms of an approximate

numerical inverse of the function F. Also note the similarity between conditions

(6.49) and (6.50) (which represent necessary conditions of an optimal principal

manifold) and the necessary conditions of an optimal vector quantizer ((6.17)

and (6.19)). The main difference between the two formulations is that G is a

continuous function, whereas the quantization regions are represented by index,

resulting in categorical variables. This means that the notion of distance does

not exist with quantization index but does exist in the space of G. There are

many possible parameterizations of a curve meeting the self-consistency property

(6.48); however, parameterization according to arc length is most natural and

commonly used.

Similarity between self-consistency conditions for principal curves and the

necessary conditions for VQ also suggests the use of a similar iterative algorithm

for estimating principal curves from data. Indeed, Hastie and Stuetzle (1989) ori-

ginally proposed the following iterative algorithm for estimating principal curves

and surfaces, which shows close similarity to GLA for VQ: Given training data

xi; i ¼ 1; . . . ; n, and an initial estimate F̂ðzÞ of the d-valued function FðzÞ, perform
the following steps (Fig. 6.18):

1. Projection: For each data point find the closest projected point on the
curve:

ẑi ¼ argmin
z
jjF̂ ðzÞ � xi jj; i ¼ 1; . . . ; n: ð6:51Þ

2. Conditional expectation: Estimate the conditional expectation (6.50)
using fẑi ; xig as the training data for the (multiple-output) regression
problem. This can be done by smoothing each coordinate of x over z via
a nonparametric regression method having some (fixed) complexity
(i.e., kernel smoother with some smoothing parameter). The resulting
estimates F̂jðzÞ are the components of the vector-valued function F ðzÞ
describing the principal curve.

3. Increasing flexibility: Decrease the smoothing parameter of the regres-
sion estimator and repeat steps 1 and 2 until the empirical risk reaches
some small threshold.

The principal curves algorithm requires an initial estimate for the principal curve

F̂ðzÞ. This function can be initialized using the linear principal components of the

data (6.41).

Example 6.3: One iteration of the principal curves algorithm

This example illustrates the results of conducting one iteration of the principal

curves algorithm on 20 samples of the ‘‘doughnut’’ distribution used in the GLA

example. The data are generated according to the function

x ¼ ½cosð2pzÞ; sinð2pzÞ� þ x;

DIMENSIONALITY REDUCTION: STATISTICAL METHODS 207

where z is uniformly distributed in the unit interval and the noise x is distributed

according to a bivariate Gaussian with covariance matrix � ¼ s2I, where

s ¼ 0:3. Notice that this function has an intrinsic dimensionality of 1, parameter-

ized by z. However, we observe only the two-dimensional data x (z is not known).

Figure 6.18(a) indicates the current state of the PC estimate. The first step of the

algorithm consists in finding the closest point on the curve for each of the 20 data

points. In this step, we are essentially computing a numerical inverse ẑi ¼ F�1ðxiÞ,
for each of the data points xi, i ¼ 1; . . . ; 20 (Fig. 6.18(a)). In the second step, we

estimate the new principal curve F̂ðzÞ using the results from the first step. The prin-

cipal curve is described by two individual functions parameterized by z. Each of

these functions is estimated from the data using a scatterplot smoother (regression)

(a)

–2

–1

0

1

2

0 0.5 1

x1

z

F1 z()

–2

–1

0

1

2

0 0.5 1

z

x2

F2 z()

(b)

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1.5 –1 –0.5 0 0.5 1 1.5

x
1

x
2

z 0

F z()

FIGURE 6.18 The two steps of the principal curves algorithm. (a) Data points are

projected to the closest point on the curve. This provides a mapping z ¼ G ðx1; x2Þ. (b)
Scatterplot smoothing is performed on the data. The z values of the data are treated as the

independent variables. The input space coordinates x1 and x2 of the data are treated as

multiple dependent variables. The resulting function approximations, F1ðzÞ and F2ðzÞ,
describe the principal curve in parametric form at the current iteration.

208 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

(Fig. 6.18(b)). Notice that each function is nearly sinusoidal and approximately

90 degrees out of phase. These functions provide an approximation to the

data-generating function. In the third step of the algorithm, the smoothing para-

meter of the regression estimator is decreased.

6.2.3 Multidimensional Scaling

The goal of multidimensional scaling (MDS) (Cox and Cox 1994; Borg and

Groenen 1997) is to produce a low-dimensional coordinate representation of

distance information. For each data sample, a corresponding location in a low-

dimensional space is determined that preserves (as much as possible) the inter-

point distances of the input data. The inputs for MDS are the pairwise distances

between the input samples. In the classical form of MDS (Shepard 1962; Kruskal

1964), least-squares error is used to measure the similarity between interpoint

distances in the input space and the Euclidean distances in the low-dimensional

space. Let dij represent the Euclidean distance between coordinate data points xi
and xj, where 1 � i; j � n, and n is the number of data samples. Classical MDS

attempts to find a set of points Z ¼ ½z1; . . . ; zn� in m-dimensional space, which

minimizes the following function, called the stress function:

Smðz1; z2; . . . ; znÞ ¼
ffi

X

i 6¼j
ðdij � jjzi � zjjjÞ2

s

: ð6:52Þ

Note that MDS uses only the interpoint distances dij in the input space and not the

input data coordinates themselves. Therefore, it is applicable in situations where the

input coordinate locations are not available. As an illustrative example, MDS could be

applied to the distance data for the cities of Table 6.2. These data reflect the traveling

distance dij between each city. The problem we would like to solve is the following:

Can we construct a map of these cities using only this pairwise distance information?

Using MDS with a two-dimensional feature space (m ¼ 2), it is possible to con-

struct a coordinate map based only on the distances between the cities

(Fig. 6.19(a)). By minimizing the stress function (6.52), the MDS map preserves

the relative distances (see Fig. 6.19(b) for comparison to actual locations). Note

TABLE 6.2 Pairwise Distances between Data Points (cities) Used as Input for MDS

Traveling distance

(miles) Washington, D.C. Charlottesville Norfolk Richmond Roanoke

Washington, D.C. 0 118 196 108 245

Charlottesville 118 0 164 71 123

Norfolk 196 164 0 24 285

Richmond 108 71 24 0 192

Roanoke 245 123 285 192 0

DIMENSIONALITY REDUCTION: STATISTICAL METHODS 209

that in this particular example, the MDS reconstruction needs to be reflected on

each axis to match the orientation of the actual map. Because pairwise distances

are invariant to translations and rotations, MDS cannot reconstruct these aspects

of the input data.

FIGURE 6.19 Coordinate reconstruction using multidimensional scaling (MDS). (a) This

plot shows the output produced by classical MDS for pairwise distance data. MDS is able to

provide a two-dimensional coordinate representation based only on pairwise traveling

distances in Table 6.1. (b) For comparison, the actual location of the cities on a map of

Virginia. Relative distances between the cities are preserved, but a reflection of coordinates is

needed to match the map.

210 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

In typical dimensionality reduction problems, the coordinate locations in the

high-dimensional input space are known. MDS can be used for dimensionality

reduction by first converting the d-dimensional input data coordinates x1; . . . ; xn
into pairwise distances dij using the Euclidean or some other distance measure.

Minimizing the stress function (6.52) with a small m results in finding a set points

z1; . . . ; zn in a low-dimensional feature space preserving the interpoint distances in

the high-dimensional input space. This implicitly produces a mapping from the

high-dimensional input space to the low-dimensional feature space at each point

i ¼ 1; . . . ; n.
For classical MDS, minimization of the stress function (6.52) can be cast in

matrix algebra and solved using eigenvalue decomposition. Classical MDS

addresses the following problem—given only the interpoint Euclidean distances

in d-dimensional space, is it possible to reconstruct the original data locations in

an m-dimensional feature space where m � d? Let us first consider the case where

m ¼ d with the following matrix equation:

B ¼ XXT; ð6:53Þ

where the unknown is the n� d data matrix X. Given the symmetric matrix B, it is

possible to solve for a data matrix X satisfying (6.53) using the eigenvalue decom-

position of B. (If B ¼ U	UT, then X ¼ U	1=2.) Note that B does not represent the

interpoint distances, but the inner products of the data points. However, under the

proper translations of the data, the inner product can be related to the squared Eucli-

dean distance. This transformation is called ‘‘double centering’’ (Torgerson 1952)

and is defined as

B ¼ 1

2
D� ðD1Þ1

T

n
� 1ðD1ÞT

n
þ 1TD1

n2

" #

; ð6:54Þ

where D is a symmetric matrix of squared distances d2ij. As translation or rotation of

a group of points does not change the interpoint distances, the double centering

transformation imposes the constraint that the means of the data in the feature

space is zero, in order to create a unique solution. Up to now we have been attempt-

ing to reconstruct the original data matrix X, given only the distances D by solving

(6.53) exactly. In MDS, we typically seek a representation of the data Z in a feature

space with a dimensionality m < d and wish to find a Z minimizing jjB� ZZTjj,
the equivalent matrix form of (6.52). The theory of eigenvalues provides a way to

create a low-dimensional representation of the data while minimizing (6.52). The

matrix 	 is diagonal and its entries are the eigenvalues of XXT. Let us assume that

the diagonal entries of the matrix 	 are placed in decreasing order along the diag-

onal. To produce a projection with dimension m < d, which minimizes (6.52), all

but the first m eigenvalues are set to zero. Then, the solution becomes

ZcMDS ¼ U	1=2
m ; ð6:55Þ

DIMENSIONALITY REDUCTION: STATISTICAL METHODS 211

where 	m denotes the modified d � d eigenvalue matrix where only the first m

elements on the diagonal are nonzero. This approach depends on input distances

being Euclidean. If input distances are not Euclidean, then some eigenvalues will

be negative (B is not nonnegative definite). In this case, the negative eigenvalues

can be set to zero, thereby using Euclidean distances that approximate the input

distances.

There is a direct connection between classical MDS and PCA, discussed in Sec-

tion 6.2.1. The principal components are determined by using the singular valne

decomposition (SVD) of the available n� d data matrix X,

X ¼ U�VT; ð6:56Þ

where the columns of U are the eigenvectors of XXT and the columns of V are the

eigenvectors of XTX. The matrix � is diagonal and its entries are the square roots of

the nonzero eigenvalues of XXT or XTX. The feature space produced by PCA is

given by

ZPCA ¼ XVm: ð6:57Þ

It is easy to see that these are the same features produced by classical MDS by plug-

ging (6.56) into (6.57):

ZPCA ¼ XVm ¼ U�VTVm ¼ U�m ¼ U	1=2
m ¼ ZcMDS; ð6:58Þ

where � ¼ 	1=2 by definition of the SVD. Note that although the same output

representation is produced by classical MDS and PCA, the input for each approach

is different. The input for PCA is the data matrix X, whereas classical MDS only

requires the interpoint distances D as input. If the interpoint distances are computed

directly from the available data using the Euclidean distance, then these two meth-

ods are equivalent.

At the heart of MDS is the so-called stress function, which describes how well

the interpoint dissimilarities in the low-dimensional space preserve those of the

data. Besides classical MDS, there are a number of variants that differ based on

the stress function used and a numerical optimizing method suitable for the stress

function. MDS approaches are applicable even when the input data dij are not true

distances (triangle inequality does not hold). In this case, the data represent the rela-

tive dissimilarity between points. There also exists stress functions for data that

represent the relative ranking of pairwise distances rather than the distances them-

selves. This is useful for situations where only the rank order of similarities is

known (i.e., objects A and B are more similar than A and C).

When other stress functions are used, it may not be possible to use the eigenva-

lue decomposition to solve for the set of points in the feature space that result in the

minimum stress. In these cases, gradient descent can be used to determine the set

of points in the feature space that minimize the stress function. For example, the

212 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

method called Sammon mapping (Sammon 1969) is a form of MDS using the stress

function:

SDðz1; z2; . . . ; znÞ ¼
X

i 6¼j

ðdij � jjzi � zjjjÞ2
dij

: ð6:59Þ

Compared to classical MDS, this stress function gives weight to representing small

dissimilarities more accurately, which makes it applicable for identifying clusters

(Ripley 1996). The gradient-descent equation for optimization is

zjðk þ 1Þ ¼ zjðkÞ � gkrzjSDðz1ðkÞ; z2ðkÞ; . . . ; znðkÞÞ; ð6:60Þ

with gradient (Sammon 1969)

rzjSDðz1ðkÞ; z2ðkÞ; . . . ; znðkÞÞ ¼ 2
X

i 6¼j

jjziðkÞ � zjðkÞjj � dij

dij
� zjðkÞ � ziðkÞ
jjziðkÞ � zjðkÞjj

:

ð6:61Þ

Note that this gradient becomes undefined when the distance in the input space or

map space becomes zero. Sammon Mapping suffers all the drawbacks inherent in

gradient descent; selection of initial conditions and learning rate are critical for

obtaining a good local minimum. In practice, the algorithm is run several times

with random initial conditions and the output with the lowest stress is selected.

MDS is similar to Principal Curves (PC) and Self Organizing Map (SOM) in that

it provides a means of representing high-dimensional data in a low-dimensional

feature space. However, MDS differs in that there is no explicit mapping from

the high-dimensional to the low-dimensional space. This is because the inputs to

MDS are the interpoint distances dij, and not coordinates xi. Each sample point

is represented by a coordinate point in the low-dimensional space, but MDS does

not provide an encoding function G performing mapping from the input space <d to

a lower-dimensional feature space <m, or a decoding function F mapping from <m

back to the original space <d. A direct consequence of this is that there is no way to

process future data, without reapplying MDS to the whole data set. Both PC and

SOM explicitly create the encoding and decoding functions. For PC, the decoding

function is a smooth parametric function, whereas for SOM it has a discrete form.

Hence, SOM and PC-like methods can be naturally used in the context of predictive

learning. MDS also differs from SOM and PC in how they preserve distance rela-

tionships within the data. For SOM and PC, points close to each other are mapped

to nearby points in the feature space, but points far away from each other may not

necessarily be far apart in the feature space. With classical MDS, explicit minimi-

zation of the stress function ensures that both large and small distances are pre-

served in the feature space. Points far apart in the input space tend to be far

apart in the feature space and points near each other in the input space tend to

be near each other in the feature space. MDS differs from clustering because in

DIMENSIONALITY REDUCTION: STATISTICAL METHODS 213

clustering the goal is to find a small set of points (cluster centers) in the original

space that ‘‘best’’ approximate the data, whereas in MDS the goal is to find a proxy

data set in a low-dimensional feature space that approximates the distance charac-

teristics of the original data.

As there is no explicit mapping between the variables of the input space to the fea-

ture space, MDS is mainly used for exploratory data analysis (Duda et al. 2001; Hand

et al. (2001)). The data are mapped to a two-dimensional space and the labeled points

are plotted. Clusters are then identified graphically. This can be a powerful technique

for quantifying subjective human judgment of similarities/differences between items

under study in the fields of psychology and marketing; for example, using MDS to

cluster food products that ‘‘taste alike’’ in order to copy a competitor’s product.

Many different stress functions have been developed for MDS (see Cox and

Cox (1994)), each designed to preserve particular aspects of distance in the low-

dimensional space. These are motivated by their ability to identify subjectively ‘‘inter-

esting’’ groupings in the training data and not by any objective predictive measure.

6.3 DIMENSIONALITY REDUCTION:

NEURAL NETWORK METHODS

This section describes two popular neural network approaches to (nonlinear)

dimensionality reduction.

The first approach, known as self organizing map (SOM), is closely related to the

principal surfaces approach discussed in the previous section. However, historically

the SOM method (like many other neural network models) was originally proposed

as an explanation for biological phenomena. The fundamental idea of self-organizing

feature maps was introduced by Marlsburg (1973) and Grossberg (1976) to explain

the formation of neural topological maps. Later, Kohonen (1982) proposed the model

known as self organizing map (SOM), which has been successfully applied to a num-

ber of pattern recognition and engineering applications. However, the relationship

between SOM and other statistical methods was not clear. Later, it was noted that

Kohonen’s method could be viewed as a computational procedure for finding discrete

approximation of principal curves (or surfaces) by means of a topological map of

units (Ritter et al. 1992; Mulier and Cherkassky 1995a). This section explains this

connection in detail. We first describe how the principal curve is discretized. This

description provides statistical motivation for the SOM algorithm. The following sec-

tions then focus on specific issues of SOM. The relationship between SOM and GLA

is addressed. The principal curves (PC) interpretation of SOM leads to some new

insights concerning the role of the neighborhood and dimensionality reduction. Final-

ly, we describe a flow-through version of the SOM algorithm and comment on var-

ious heuristic learning rate schedules.

The second approach is based on using an MLP network in a self-supervised

mode to implement the information bottleneck in Fig. 6.13. The self-supervised

or auto-associative mode of operation is used when the input and output samples

(used during training) are the same. This approach will be discussed at the end

of this section.

214 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

6.3.1 Discrete Principal Curves and Self-Organizing Map Algorithm

The SOM algorithm is usually formulated in a flow-through fashion, where indivi-

dual training samples are presented one at a time. Here, we present the batch ver-

sion (Luttrell 1990; Kohonen 1993) of the SOM algorithm, as it is more closely

related to the PC algorithm.

Referring to Fig. 6.13, the feature space <m can be discretized into a finite set of

values called the map. Vectors z in this feature space are only allowed to take values

from this set. An important requirement on this set is that distance between mem-

bers of the set exists. Typically, a set of regular, equally spaced points like those

from an m-dimensional integer lattice is used for the map (Fig. 6.20), but this is

not a requirement. The important point is that the coordinate system of the feature

space is discretized and that distances exist between all elements of the set. We will

denote the finite set of possible values of the feature space as

 ¼ fc1;c2; . . . ;cbg: ð6:62Þ

Note that elements of this set are unique, so they can be uniquely specified either by

their index or by their coordinate in the feature space. We will use the notation
ðjÞ
to indicate element cj of the set
.

Since the feature space is discretized, the principal curve or manifold Fðz;oÞ
in <d is defined only for values z 2
. Therefore, this function can be represented

as a finite set of centers (often called units) taking values from <d:

cj ¼ Fð
ðjÞ;oÞ; j ¼ 1; . . . ; b: ð6:63Þ

y
1

y
2

y
3

y
4

y
5

y
6

y
7

y
8

y
9

y
10

y
11

y
12

y
13

y
14

y
15

y
16

ℜ2

Ψ = ψ1 ,ψ2 , .. . ,ψ16{ }

z1

z2

FIGURE 6.20 The continuous feature space <2 is discretized into the space
, which

consists of only 16 possible coordinate values. In this discrete space, distance relations exist

between all pairs of the 16 possible values.

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 215

In this way, the units provide a mapping from the discrete feature space
 to the

continuous space <d. The elements of
 define the parameterization of the princi-

pal curve or manifold. The encoder function G, as defined by (6.49), is now

particularly simple to evaluate:

GðxÞ ¼
ðargmin
j

jjcj � xjj2Þ: ð6:64Þ

Discrete representation of the principal curve, along with a kernel regression

estimate for conditional expectation (6.50), results in the batch SOM algorithm

(Fig. 6.21):

The locations of the units in the feature space are fixed and take values
z 2
. The locations of the units in the input space <d will be updated itera-
tively. Given training data xi, i ¼ 1; . . . ; n, and an initial principal curve
described by the centers cjð0Þ; j ¼ 1; . . . ; b, repeat the following steps:

1. Projection: For each data point find the closest projected point on the
curve:

ẑi ¼
ðargmin
j

jjcj � xi jj2Þ; i ¼ 1; . . . ; n: ð6:65Þ

2. Conditional expectation: Determine the conditional expectation using a
kernel regression estimate

F ðz; aÞ ¼

P

n

i¼1
xiKaðz; ziÞ

P

n

i¼1
Kaðz; ziÞ

; ð6:66Þ

where Ka is a kernel function (called the neighborhood function) with
width parameter a. Note that the neighborhood (kernel) function is
defined in the (discretized) feature space rather than in the sample
(data) space. This kernel should satisfy the usual criteria as described
in Example 2.3. Typically, a rectangular or Gaussian kernel is used.
The principal curve F ðz; aÞ is then discretized by computing the centers

cj ¼ F ððjÞ; aÞ; j ¼ 1; . . . ; b: ð6:67Þ

3. Increasing flexibility: Decrease a, the width of the kernel, and repeat
until the empirical risk reaches some small threshold.

The SOM algorithm requires initial values for the units cj; j ¼ 1; . . . ; b.
One approach is to select initial values from an evenly spaced grid along the linear

principal components of the data. Another common approach is to initialize the

units using small random values.

216 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

Example 6.4: One iteration of the SOM algorithm

This example illustrates the results of conducting one iteration of the SOM algo-

rithm and parallels the example for the principal curve. Twenty samples of the

‘‘doughnut’’ distribution are generated according to the function

x ¼ ½cosð2pzÞ; sinð2pzÞ� þ x;

z = Ψ j() table

(discrete feature

space values)

j z

1 0.0

2 0.1

3 0.2

4 0.3

5 0.4

6 0.5

7 0.6

8 0.7

9 0.8

10 0.9

(a) (b)

–2

–1

0

1

2

0 0.5 1

x2

Discretevalued z

F2 z ,α()

(c)

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1.5 –1 –0.5 0 0.5 1 1.5

x
1

x
2

c
1 c

2

c
3

c
4

c
5c

6
c

7

c
8

c
9

c
10

+

+

+

+

+

+

F1 z ,α()

-2

-1

0

1

2

0 0.5 1

1

Discrete valuedz

x

FIGURE 6.21 Steps of the self-organizing map algorithm with 10 units. (a) Data points are

projected to the closest point on the curve, which is represented by the the centers c1; ::: ; c10.
(b) Each center has an associated value in the discrete feature space z. (c) Kernel smoothing

is performed on the data. The z values of the data are treated as independent variables. The

input space coordinates x1 and x2 of the data are treated as multiple dependent variables. The

resulting function approximations, F1ðzÞ and F2ðzÞ, describe the principal curve in

parametric form at the current iteration. New centers are determined by discretizing the

curves, F1ðzÞ and F2ðzÞ, indicated by �.

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 217

where z is uniformly distributed in the unit interval and the noise x is distributed

according to a bivariate Gaussian with covariance matrix � ¼ s2I, where s ¼ 0:3.
As in the principal curves example, we observe only the two-dimensional data x (z

is not known). Figure 6.21(a) indicates the current state of the SOM estimate pro-

vided by 10 centers. The SOM uses a discrete feature space. For this example, z is

only allowed to take values in the set f0:0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g.
This differs from the original SOM algorithm description, which used a discrete

feature space of integer values f1; 2; . . . ; bg. The first step of the algorithm consists

in finding the index of the closest center for each of the 20 data points, as shown in

Fig. 6.21(a). These indexes correspond to elements in the discrete feature space, as

indicated by the table in Fig. 6.21(b). By first finding the index and then the corre-

sponding feature element, we are computing a numerical inverse ẑi ¼ F�1ðxiÞ for
each of the data points xi, i ¼ 1; . . . ; 20. In the second step, we estimate the new

principal curve F̂ðzÞ using the results from the first step, just as in the PC example.

The principal curve is described by two individual functions parameterized by z.

Each of these functions is estimated from the data using a scatterplot smoother

(regression) (Fig. 6.21(c)). These functions provide the PC estimate. The centers

are then recomputed by evaluating the PC at the discrete values of the feature

space. The last step of the iteration consists in decreasing the width of the kernel

regression estimate.

In the original (neural network) description, the SOM method performs what is

called self-organization, referring to the fact that the unit coordinates tend to pro-

duce faithful approximation of the training data via the unsupervised learning algo-

rithm given above.

One unique feature of this algorithm (as well as the principal curves algorithm)

is the gradual decrease of the kernel (neighborhood) width as iterations progress.

However, the original description of the SOM algorithm as well as the PC algorithm

does not specify how the width of the neighborhood should be decreased. This

neighborhood decrease rate is usually chosen based on trial and error for a specific

application. Commonly used neighborhood function and neighborhood decrease

schedule are

KaðkÞðz; z0Þ ¼ exp � jjz� z0jj2
2a2ðkÞ

 !

; ð6:68aÞ

aðkÞ ¼ ainitialðafinal=ainitialÞk=kmax ; ð6:68bÞ

where k is the iteration step and kmax is the maximum number of iterations, which is

specified by a user. The initial neighborhood width ainitial is chosen so that the

neighborhood covers all the units. The final neighborhood width afinal controls

the smoothness of the mapping.

6.3.2 Statistical Interpretation of the SOM Method

The principal curves interpretation of the SOM algorithm leads to some interesting

insights into the nature of self-organization. The principal curves algorithm depends

218 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

on repeated application of regression estimation for determining the conditional

expectation. The regression (6.66) defines a vector-valued function, one for each

coordinate of the sample space. Each coordinate of the sample space is treated as

a ‘‘response variable’’ for a separate kernel smoother. The ‘‘predictor variables’’ for

each smoother are the coordinates of units in the feature space. The problem can be

considered a fixed design problem, as the locations of the units are fixed in the fea-

ture space and therefore the predictor variables of the regression are not random

variables. Note that this interpretation of (6.66) does not imply that the results of

the SOM as a whole are similar to the results of kernel smoothing. The SOM algo-

rithm applies kernel smoothing iteratively using a kernel span that gradually

decreases. The discrete principal curve changes with each iteration, depending on

the results of past kernel estimates. Also, the kernel smoothing is done in the feature

space, not in the sample space (Fig. 6.21(c)). Because the SOM algorithm involves

a kernel-smoothing problem, known properties of kernel smoothers can be used to

explain some of the strengths and limitations of the SOM. The vast literature deal-

ing with kernel smoothing and nonparametric regression in general can also give

suggestions on how to improve the SOM algorithm. For example, research on ker-

nel shape, span selection, confidence limit estimates, and even computational short-

cuts can be applied to the SOM. The principal curves interpretation leads to three

important insights of the SOM algorithm:

1. Continuous mapping: It can be shown that the SOM is a continuous mapping

from sample space to topological space as long as the distance measure used

in the projection step and kernel function is continuous with respect to the

Euclidean distance measure (Grunewald 1992). The units themselves describe

this mapping at discrete points in each space, but the kernel-smoothing

function (6.66) provides a continuous functional mapping between the

topological space and the sample space for any point in the topological

space (Fig. 6.21(c)). Even though the units are discrete in the feature space, it

is possible to evaluate the kernel smoothing at arbitrary points in the

topological space (between the discrete values) to determine the correspond-

ing sample space location. In this way, we can construct a continuous

mapping between the two spaces. Because of this continuous mapping, the

number of units as well as the topology of the map can be changed as self-

organization proceeds. For example, new units could be added along one

dimension of the map, lengthening it, or the lattice structure of the map could

be changed from rectangular regions to hexagonal.

2. Dimensionality reduction: Many application studies indicate that the SOM

algorithm is capable of performing dimensionality reduction in situations

where the sample space may be high dimensional but have smaller intrinsic

dimensionality (due to variable dependency or collinearity). In fact, most

applications of the SOM use maps with one- or two-dimensional topologies;

higher-dimensional topologies are rarely used. Using the statistical interpre-

tation of SOM, the dimensionality of the map corresponds to the dimension-

ality of the ‘‘predictor variables’’ seen by the kernel smoother. It is well

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 219

known that the estimation error of kernel smoothers increases for a fixed

sample size as the problem dimensionality increases. This indicates that the

SOM algorithm may not perform well with high-dimensional maps.

3. Other regression estimates: The SOM algorithm is a special case of the

principal curves algorithm using a kernel regression estimation procedure.

There is no reason to limit ourselves to kernel smoothing (Mulier and

Cherkassky 1995a). For example, locally weighted linear smoothing (Cleveland

and Devlin 1988) could also be used. Spline smoothing may be particularly

attractive due to the fixed design nature of the smoothing problem. Also, using

specially formulated kernels, one can use kernel smoothing to estimate

derivatives of functions (Hardle 1990). The choice of regression estimate causes

qualitative differences in the structure of the SOM, especially in the initial

stages of operation. At the start of self-organization, when the neighborhood is

large, the units of the map form a tight cluster around the centroid of the data

distribution when kernel smoothing is used. This occurs because estimation

using a kernel smooth with a wide span corresponds (approximately) to

estimation using the mean. On the other hand, with local linear smoothing,

the SOM approximates the first principal components during the initial

iterations (when a high degree of smoothing is applied), because smoothing

with a wide span approximates global linear regression. Figure 6.22 gives an

empirical example of how choice of regression estimate affects the results

during different stages of self-organization (Mulier and Cherkassky 1995a). For

any choice of conditional expectation estimate, the neighborhood decrease is

equivalent to decreasing the smoothing parameter of the regression method.

Interpreting an iteration of the SOM algorithm as a kernel-smoothing problem

gives some insight on how the neighborhood affects the smoothness of the map in a

static sense (i.e., assuming a fixed neighborhood width). However, it does not sup-

ply many clues about the effects of decreasing the neighborhood as iterations pro-

gress. Empirical studies (Kohonen 1989; Ritter et al. 1992) all show that starting

with a wide neighborhood and decreasing it seems to provide the best results.

Not much is known about the optimal rate of decrease or the final width. Assuming

that the map changes quasistatically, the neighborhood decrease can be interpreted

as an increasing model complexity parameter (Mulier and Cherkassky 1995a),

which we explain next. The neighborhood width controls the amount of smoothing

performed at each iteration of the SOM algorithm. If the neighborhood width is

decreased at a slow rate, the SOM algorithm provides a sequence of models in order

of increasing complexity. In this case, starting with a wide neighborhood and

decreasing it is equivalent to assuming a simple regression model for the early itera-

tions and moving toward a more complex one. This interpretation is useful in deter-

mining when to stop training. Assuming that the neighborhood width is decreased

slowly, determining the final neighborhood width becomes a model selection pro-

blem, which has known statistical solutions (e.g., cross-validation).

Another interpretation is due to Luttrell (1990) who views SOM as a vector

quantizer for cases where the encoded symbols are corrupted with noise. In this

220 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

interpretation, the neighborhood function corresponds to the probability density

function (pdf) of the corrupting noise. Decreasing the neighborhood width during

self-organization corresponds to starting with a vector quantizer designed for high

noise and gradually moving toward a solution for a vector quantizer designed for no

noise. This is also related to the simulated annealing viewpoint by Martinetz et al.

(1993), who interpret the neighborhood as the pdf of the noise process in annealing.

Decreasing the neighborhood then corresponds to decreasing the temperature of an

annealing process. The study of simulated annealing for optimization is still in its

infancy, so not much is known about optimal temperature schedules.

In engineering applications, the SOM algorithm is used for dimensionality

reduction, cluster analysis, and data compression (quantization). In these problems,

the goal is to determine low-dimensional representations of the data (given samples

from some unknown distribution) by using one- and two-dimensional maps. In most

cases, the algorithm is used for data visualization purposes rather than for vector

quantization. The (original online) algorithm has a number of heuristic aspects,

such as choice of neighborhood and learning rate, that have a large effect on the

final results. However, the algorithm has qualities similar to the GLA for VQ and

FIGURE 6.22 Comparison of SOM maps generated using the standard locally weighted

average estimate of conditional expectation versus using a locally weighted linear estimate.

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 221

has been used as a substitute for this approach. The SOM process is somewhat simi-

lar to VQ, where a set of codebook vectors, one for each unit, approximates the

distribution of the input signal. It differs from the generalized Lloyd algorithim

for VQ, because an ordering is maintained between the units. The ordering pre-

serves the distance relations during the self-organization process. This means that

vectors that are close in the input space will be mapped to units that are close in

order. Also, the GLA algorithm minimizes a simple objective function (6.11). How-

ever, because of the decreasing neighborhood, the SOM algorithm minimizes

(approximately) an objective function, which changes over time (Luttrell 1990).

The decreasing neighborhood in SOM helps to produce solutions insensitive to

initial conditions, and this overcomes the problems with the GLA (poor local

minima). The kernel-smoothing step in the SOM algorithm effectively updates

every center—even those without samples in their Voronoi regions. During the final

stages of self-organization, the kernel width is usually decreased to include only

one unit, so both the SOM and the GLA algorithm are equivalent at this point.

However, this does not imply that the resulting quantization centers generated by

each algorithm are the same.

6.3.3 Flow-Through Version of the SOM and Learning Rate Schedules

The SOM algorithm was originally formulated in a flow-through fashion, where

individual training samples are presented one at a time. Here, the original flow-

through algorithm is presented in terms of stochastic approximation. Given a dis-

crete feature space
 ¼ f
1;
2; . . . ;
bg, data point xðkÞ, and units

cjðkÞ; j ¼ 1; . . . ; b, at discrete time index k:

1. Determine the nearest (L2 norm) unit to the data point. This is called the
winning unit:

zðkÞ ¼
ðargmin
j

jjxðkÞ � cjðk � 1ÞjjÞ: ð6:69Þ

2. Update all the units using the stochastic update equation

cjðkÞ ¼ cjðk � 1Þ þ bðkÞKaðkÞð
ðjÞ; zðkÞÞðxðkÞ � cjðk � 1ÞÞ;
j ¼ 1; . . . ; b;

k ¼ k þ 1: ð6:70Þ

3. Decrease the learning rate and the neighborhood width.

The function KaðkÞ is a kernel function similar to the one used for the batch algo-

rithm. The function bðkÞ is called the learning rate schedule, and the function aðkÞ
is called the neighborhood decrease schedule.

The original SOM model (Kohonen 1982) does not provide specific form of the

learning rate and the neighborhood function schedules, so many heuristic schedules

have been used (Kohonen 1990a; Ritter et al. 1992). In many cases, the same function

222 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

is used for the neighborhood decrease rate and the learning rate (e.g., (6.71)),

even though these two rates play very distinct roles in the algorithm. For discussion

of the effect of the neighborhood decrease rate, see Section 6.3.2. For selection of

the learning rate function, the only (obvious) requirement is that the function

should gradually decrease with the iteration step k. Learning rates decreasing linearly,

exponentially, or inversely proportional to k are all commonly used in practice

(Haykin 1994). The problem, however, is that a heuristic schedule may result in

a situation where the training samples contribute unequally to the final model

(i.e., location of the map units). If this happens, the final SOM model is sensitive

to the order of presentation of training samples, which is clearly undesirable. Recall

that classical rates given by stochastic approximation ensure equal contributions by

all data samples. Unfortunately, generalization over these classical rates does not

seem to be an easy task because of the neighborhood reduction in SOM. However,

learning rate analysis can be done computationally for a given problem instance.

Mulier and Cherkassky (1995b) considered rigorous analysis of a popular exponential

learning rate schedule

bðkÞ ¼ binitial
bfinal
binitial

� �k=kmax

ð6:71Þ

for the flow-through version of SOM in the case of a one-dimensional map (m ¼ 1)

and neighborhood decrease rate specified by

aðkÞ ¼ ainitial
afinal

ainitial

� �k=kmax

: ð6:72Þ

Given a heuristic learning rate schedule, it is possible to analyze (computationally)

the contribution of a given training sample to the final location of the trained map

units for a given data set (Mulier and Cherkassky 1995b). Conceptually, this involves

‘‘unrolling’’ the iterative update equations into a form that is noniterative and using

these equations to keep track of the influence of each presented data point as each

iteration in the SOM algorithm is computed. When using the learning rate (6.71),

the empirical results indicate that the contribution of data points in the early iterations

is much less than in later iterations. For data sets with a relatively large number of

samples, this causes unequal contribution of the training data on the final unit posi-

tions. If this unequal contribution is severe enough, it means that the algorithm is

effectively ignoring a large amount of the training data when producing estimates.

These and other empirical results in Mulier and Cherkassky (1995b) motivated

the search for improved learning rates for the SOM that cause a more uniform con-

tribution over every iteration of the algorithm. By computationally measuring the

contribution of each data point presentation, it is possible to numerically search for

a rate schedule that ensures that every training sample has ‘‘equal’’ contribution to

the final location of the trained map, regardless of the order of presentations. Based

on detailed analysis presented in Mulier and Cherkassky (1995b), an improved

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 223

learning rate is

bðkÞ ¼ 1

ðk � 1Þaþ 1
;

a ¼ 1� b=kmax

b� b=kmax

;

ð6:73Þ

where b is the total number of units and kmax is the total number of presentations. In

the case of a single unit (b ¼ 1), the equation becomes bðkÞ ¼ 1=k, which is the

running average schedule and conforms to the well-known conditions on learning

rates used in stochastic approximation methods. When kmax is large, the rate

becomes

bðkÞ ¼ 1

ðk � 1Þb�1 þ 1
; ð6:74Þ

which is similar to the schedule commonly used for the stochastic optimization

version of the GLA for VQ. Note that GLA can be seen as a specific case of

SOM, where the neighborhood consists of only one unit and each unit has its

own independent learning rate, which is decreased when that unit is updated.

The self-organization algorithm has a global learning rate because several units

are updated with each iteration. If one assumes that each unit is updated exactly

equiprobably during self-organization, then the two learning rates are identical.

The running average schedule for GLA has been proved to converge to a local mini-

mum (MacQueen 1967). Because of the similarities between the GLA and SOM

algorithms, the learning rates based on the equal contribution condition for each

algorithm have a similar basic functional form.

6.3.4 SOM Applications and Modifications

Exceptional ability of SOM for modeling multivariate data sets, combined with

simplicity and robustness of its computational implementation, has lead to

hundreds of successful applications in image processing, robotics, speech recog-

nition, signal processing, combinatorial optimization, and so on. Here we

describe just a few example applications of the SOM for dimensionality reduc-

tion and clustering. In these examples, we also introduce representative variants

of the SOM algorithm.

The first two examples describe applications of SOM for clustering real-

world data: clustering of phonemes with the original SOM (Kohonen 1982)

and clustering of customer/market survey data using a tree-structured SOM

(Mononen et al. 1995). In these applications, data are used to approximate a map-

ping from the input space to a lower-dimensional feature space (map space). The

distance relationships in the feature space are then used to infer similarity

between new data samples. An example is the task of clustering phonemes. First,

224 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

data, in the form of phoneme sound samples, are collected from a speaker. The

data samples are unlabeled in terms of the type of linguistic phoneme. These data

are then approximated using a SOM with a two-dimensional feature space.

The feature space map provides a clustering of the phonemes in terms of sound

similarity. Therefore, distance in the feature space provides a measure of simi-

larity between two phonemes. These features could be used for interpreting

future phoneme data by projecting future data onto the map and observing the

resultant distances.

A similar approach is applied in the case of customer marketing analysis. Here

the goal is to divide customers into semantically meaningful groups, based on reg-

ister receipts, market surveys, and other consumer data. These clusters can then be

used to tailor marketing strategies to specific customer types. A variant of SOM,

called the tree-structured SOM (TS-SOM; Koikkalainen and Oja 1990) is used to

provide the clustering. The TS-SOM applies a hierarchical partitioning strategy to

cluster the input space. Initially, SOM is used to cluster the whole input space (root

node). The data falling in each cluster are then approximated using separate SOMs

(first level). This process is continued until the terminating depth in the tree is

reached. This structure provides a useful interpretation of the large volume of mar-

keting data.

We next describe an interesting modification of SOM for modeling structured

distributions, followed by an example application in computer vision. The

original SOM algorithm uses fixed map topology. In other words, the distance

between any two elements of the discrete feature space (map space) is fixed a

priori (see Fig. 6.20). This feature space representation allows SOM to approx-

imate convex-shaped distributions (Fig. 6.23(a)). However, for more compli-

cated, nonconvex or structured distributions, the standard feature space

provides a poor representation (Fig. 6.23(b)). This suggests the need for map

topologies with more flexible adaptive distance representations that can adapt

to arbitrary structured distributions. The minimum spanning tree SOM (MST-

SOM) was originally proposed (Kangas et al. 1990) as an approach to increase

the flexibility of the SOM to fit structured distributions. Their solution approach

is to use a MST topology to define the topological space adaptively during

each iteration of SOM training. A MST is constructed by connecting nodes

(SOM units) into a tree graph, while minimizing the sum of the connection

length (Fig. 6.24(a)). The units are connected into an MST topology minimiz-

ing the total Euclidean distance between units in the input (sample) space.

Then this tree can be used to measure the topological distance between units

in the feature space, in terms of the number of hops between the two nodes

in the tree topology (Fig. 6.24(b)). The MST of the units in the input space is

constructed at each iteration of the SOM algorithm, providing a topological

distance measure that adapts to an unknown distribution during training.

This approach provides a more flexible representation, as shown in Fig. 6.25.

Note that by using the MST to define the distance relations, we lose the

concept of a lower-dimensional feature space clearly defined in the original

SOM.

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 225

Following are the steps in the MST-SOM algorithm:

Given training data xi ; i ¼ 1; . . . ; n, and initial centers cj ð0Þ; j ¼ 1; . . . ; b,
repeat the following steps:

1. Minimum spanning tree: In the sample space determine the MST for the
centers cj ð0Þ; j ¼ 1; . . . ; b, using, for example, Kruskal’s method. This
tree describes a topological distance measure dMST ðj ; j 0Þ, namely the
number of hops, between any two centers.

2. Projection: For each data point, find the closest center:

qi ¼ argmin
j

jjcj � xi jj2; i ¼ 1; . . . ; n: ð6:75Þ

–4

–2

0

2

4

–5 0 5

(a)

–4

–2

0

2

4

–5 0 5

(b)

FIGURE 6.23 The SOM algorithm creates a poor representation of distributions that are

not convex. (a) The SOM for a convex distribution; (b) the SOM for the distribution in the

shape of a plus.

226 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

3. Conditional expectation: Determine the conditional expectation using a
kernel regression estimate:

cjðk þ 1Þ ¼

P

n

i¼1
xiKaðdMSTðj ; qiÞÞ

P

n

i¼1
KaðdMSTðj ; qiÞÞ

; j ¼ 1; . . . ; b; ð6:76Þ

(a)

123

(b)

FIGURE 6.24 (a) An example of a minimum spanning tree. (b) The minimum spanning

tree, which defines a distance measure in terms of the number of ‘‘hops’’ between any two

nodes.

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 227

where Ka is a kernel function (called the neighborhood function) with
width parameter a. Note that the neighborhood (kernel) function is
defined in terms of the MST distance measure dMST. This kernel should
satisfy the usual criteria as described in Chapter 2. Typically, a rectan-
gular kernel or gaussian kernel is used.

4. Increasing flexibility: Decrease a, the width of the kernel, and repeat
until the empirical risk reaches some small threshold.

Next we describe an example using the MST-SOM for compact shape represen-

tation of two-dimensional distributions (Singh et al. 2000). In computer vision, a

common technique for representing shapes involves computation of a one-

dimensional shape skeleton that retains the connectivity information of a two-

dimensional image. The shape skeleton can capture the essential form of an

object (and hence be useful for recognition) and can also be used for data reduc-

tion. Traditional computer vision techniques for skeletonization (Ogniewicz

and Kubler 1995) require the knowledge of a boundary between image and back-

ground pixels. Such a boundary can be easily detected for nonsparse images but

very difficult to determine for sparse images (see Fig. 6.26). In practice, sparse

images are quite common due to noise caused by pixel subsampling or poor

quantization. Application of MST-SOM to sparse images produces very good

skeletal shapes, even for very sparse images (see Fig. 6.26). Moreover, skeletal

representation of circular regions (loops) can be obtained by the following

heuristic modification. In the trained MST map, find a pair of SOM units that

are distant in the topological space (i.e., more than three hops apart), but close

in the sample space representing two adjacent Voronoi regions. These units

should be joined together, thus forming a loop with at least four hops

(see Fig. 6.27).

–4

–2

0

2

4

–5 0 5

FIGURE 6.25 The self-organizing map, which uses the minimum spanning tree distance

measure, is capable of adequately representing the plus distribution.

228 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

0

10

20

30

40

10 20 30 40

100%

0

10

20

30

40

10 20 30 40

75%

0

10

20

30

40

10 20 30 40

50%

0

10

20

30

40

10 20 30 40

25%

FIGURE 6.26 Skeletonization of characters using the minimum spanning tree self-

organizing map. Percentage indicates the proportion of data used for approximation from

original character image.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

30%

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

50%

FIGURE 6.27 Skeleton representation of loops. Percentage indicates the proportion of data

used for approximation from original character image.

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 229

6.3.5 Self-Supervised MLP

Nonlinear dimensionality reduction can also be performed using the MLP architec-

ture (introduced in Section 5.1.2) to implement the mapping functions F and G in a

bottleneck (see Fig. 6.13). The parameters of the network are chosen to minimize

the empirical risk (6.47). This approach is called self-supervised operation referring

to the fact that during training the output samples are identical to the input samples.

The training amounts to minimizing the total squared error functional. Self-super-

vised MLPs are also known as bottleneck MLPs, nonlinear PCA networks (Kramer

1991), or replicator networks (Hecht-Nielsen 1995).

The simplest form of self-supervised MLP (Cottrell et al. 1989) has a single

hidden layer of m nonlinear units and d linear input/output units encoding

d-dimensional samples (m < d). This network was originally proposed for

image compression, and it was initially believed that nonlinearity in the hidden

units is helpful for achieving nonlinear dimensionality reduction. However,

soon it became clear that a bottleneck MLP with a single hidden layer effectively

performs linear PCA, even with nonlinear hidden units (Bourland and

Kamp 1988). This is an important and counterintuitive result, as for other formu-

lations of the learning problem, such as regression and classification, the use

of a single hidden layer of nonlinear units actually results in useful nonlinear

mappings.

Next, we provide an informal proof of the original result by Bourland and Kamp

(1988) in the general setting shown in Fig. 6.13. The main claim is: In order to

effectively construct a nonlinear dimensionality reduction, the mapping functions

F and G both must be nonlinear. The proof is by contradiction. Let us assume that F

is restricted to be linear, though G may be nonlinear. The process of dimensionality

reduction consists in finding functions F and G that are (approximately) functional

inverses of each other. The inverse of a nonlinear function is not linear. Therefore, if

either function is linear, the other must also be.

For example, in a single-hidden-layer self-supervised MLP the output of the

hidden layer can be viewed as the feature space z. The mapping G is implemen-

ted by the input and nonlinear hidden layer. However, in this architecture the

mapping F from hidden layer to output is linear. Hence, the empirical risk is

minimized when the mapping G is linear as well, so this architecture effectively

implements linear PCA. Consequently, one should use linear hidden units in

this architecture. Of course, in this case standard linear algebra algorithms based

on SVD can be used more efficiently than backpropagation training for linear

PCA.

From this argument it is clear that implementation of nonlinear dimensionality

reduction with the MLP requires both F and G to be nonlinear. This suggests that a

three-hidden-layer network should be used (see Fig. 6.28). The mapping functions

are implemented in the following manner:

z ¼ Gðx;W1;V1Þ ¼ sðxV1ÞW1;

x̂ ¼ Fðz;W2;V2Þ ¼ sðzV2ÞW2; ð6:77Þ

230 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

where s is used to denote the componentwise sigmoidal activation function. The

bottleneck (middle) hidden layer in Fig. 6.28 has linear units (often taken with

upper and lower saturation limits). This network can be trained by a backpropaga-

tion algorithm to minimize the empirical risk (reproduction error of the data). If the

training is successful, the final (trained) network performs dimensionality reduction

from the original d-dimensional sample space to the m-dimensional space of

the bottleneck hidden layer. Also, in the data compression applications, the

bottleneck units are quantized into prespecified number of levels to achieve further

compression.

Notice that backpropagation training approach does not directly take advantage of

the inverse relationship between the structure of F and the structure of G (i.e., F and

G are inverses of each other) as is done with the principal curves/SOM formulation.

However, as a result of minimizing the empirical risk, the F and G implemented by

MLPs will tend to act as inverses.

Although an MLP network shown in Fig. 6.28 may be conceptually appealing

for nonlinear dimensionality reduction and data compression, its practical utility

W
1

V
1

x
1

x
2

x
d

V
2

W
2

x̂
1

x̂
2

x̂
d

z
1

z
2

z
m

G x()















F z()















FIGURE 6.28 Multilayer perceptron with five layers used to implement dimensionality

reduction using the concept of an ‘‘information bottleneck.’’

DIMENSIONALITY REDUCTION: NEURAL NETWORK METHODS 231

is questionable due to the difficulties of training MLP networks with several hidden

layers. Hence, in practice, using SOM for nonlinear dimensionality reduction

appears to be a better approach than bottleneck MLP.

6.4 METHODS FOR MULTIVARIATE DATA ANALYSIS

In some cases, it is known (or assumed) that the variables observed are a function

of a smaller number of hidden or ‘‘latent’’ variables that are not directly

observed. If it were possible to determine these hidden variables, they would

provide a low-dimensional encoding of the data. This encoding would be useful

for dimensionality reduction and for improved interpretation of the system gen-

erating the data. By the definition of the problem, this requires unsupervised

learning, as we are not provided sample values of the hidden variables or the

function relating the hidden variables to the observed variables. If sample values

for the hidden variables were provided, this problem would be a supervised

learning problem and regression or classification could be used to model the

relationship between hidden and observed variables. The statistical model for

data generation assumes that the observed vector-valued output values

xi; i ¼ 1; . . . ; n, of dimensionality d are generated according to the following

system:

xi ¼ FtrueðtiÞ þ xi; ð6:78Þ

where ti are the mt-dimensional unobserved (latent) variables and xi is a random

error vector with zero mean. The function FtrueðtÞ describes the system and is

unknown. Keep in mind that x denotes the output of the system in this section.

As we do not know the true system, we need to make an assumption about the sys-

tem function. We assume that the system is represented by

xi ¼ Fmodelðzi;oÞ þ xi; ð6:79Þ

where z is a set of factors of dimensionality m modeling the unobserved vari-

ables. For a fixed m, the goal is to identify the parameters o, which minimize

the discrepancy between the output of the model and the observed output values

xi. Because of the nature of the problem, there is an obvious identifiability issue.

There is no way of knowing whether the factors z match the true hidden vari-

ables t based on the data alone. Depending on the model chosen, factors with

different functional forms can describe the data equivalently well. As an exam-

ple, consider a simple variable transformation of the factors z0 ¼ logðzÞ. Either
of the set of factors z or z0could describe the data equally well depending on the

model chosen, and they may or may not match the hidden variables t. Under-

standing this issue of identifiability is critical for proper interpretation of the

factors produced by methods in this section. In order to make this point clear,

we will distinguish between factors z resulting from model assumptions and

232 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

hidden variables t. Note that this identifiability issue is only important for

interpretation. In the predictive sense, there is no concern of adequately repre-

senting the ‘‘true model.’’

There are three general methods for solving this problem: (linear) principal com-

ponent analysis (PCA), factor analysis (FA), and independent component analysis

(ICA). In their basic form, each is based on assuming a linear system function.

However, they differ in the discrepancy measure. All three assume the basic system

function

x ¼ Azþ x; ð6:80Þ

where z ¼ ½z1; . . . ; zm�T is the column vector of m factors with m � d and the

matrix A is a mixing matrix, which models the system. The goal of all three

approaches is to estimate the mixing matrix A (or its inverse) and the factors z

based only on the data. In PCA, the factors (principal components) and mixing

matrix are chosen to minimize the covariance between the factors with no distri-

butional assumptions. In FA, the factors and mixing matrix are chosen to mini-

mize the statistical correlation between the factors. In addition, the variance of

the noise x is explicitly estimated. If it is assumed that the factors come from a

Gaussian distribution, then minimizing correlation implies maximizing the statisti-

cal independence. ICA makes the assumption that the factors are non-Gaussian, and

its solution maximizes information theoretical measures of statistical independence

between the factors z. ICA is a special transformation of the PCA solution. Table 6.3

compares the different methods.

In this section, we cover FA and ICA. PCA is covered in detail in Section 6.2.

Origins of FA can be traced back to work done in psychology in the study of intel-

ligence (Spearman 1904), and ICA was developed more recently in signal proces-

sing (Jutten and Herault 1991; Comon, 1994). Although ICA is not typically an

approach used for dimensionality reduction, we mention it in this section because

of its relationship with PCA and its usefulness as an approach for transforming

the PCA solution. We first describe FA because it provides a basis for understanding

ICA.

6.4.1 Factor Analysis

FA is a classical statistical approach used to reduce the number of variables and to

detect structure in the relationships between variables. This is accomplished by

explaining the correlation between a large set of observed variables in terms of a

small number of factors. By interpreting the results of FA, one can test a hypothesis

about the system generating the data. Some questions that are answered by FA are:

How many factors are needed to explain the output?, How well do the factors

explain the output?, and How much variance does each factor contribute? Note

that all these questions are answered in the context of a linear model as described

by (6.80). If the true system model is not linear, then the results of FA may be

misleading. Also, there is no way of knowing that the true system is in fact linear,

METHODS FOR MULTIVARIATE DATA ANALYSIS 233

TABLE 6.3 Comparison of Factor Analysis, (Linear) Principal Component Analysis, and Independent Component Analysis

Model equation Goal Distribution assumption Handling noise Equivalents

Factor analysis x ¼ Azþ uþ x Minimum correlation Gaussian Explicitly models Equivalent to PCA if unique

(FA) between factors z noise u as variation variation u (noise) is small

unique to each

input variable

Principal x ¼ Azþ x Minimum covariance None Noise shows up as For Gaussian distribution,

component between factors z model error PCA provides

analysis (PCA) (while maximizing maximum independence

variance) between factors, like ICA

Independent x ¼ Azþ x Maximum statistical Non-Gaussian Noise shows up as A particular transformation

component independence model error of the PCA solution

analysis (ICA) between factors z

2
3
4

based only on the observed data. In many ways, FA has a history similar to the

history of neural networks. In the 1950s, FAwas overpromoted and users were mak-

ing inflated claims about its power to identify the hidden variables for complicated

systems like human intelligence or personality, without taking into account the lim-

itations of the approach (a linear model usually assuming a Gaussian distribution).

It is currently in a period of disfavor in statistics because of this misuse for inter-

pretation. However, if interpretation is done with caution and common sense, and

FA is used for preprocessing in predictive models, it may be a valid variable reduc-

tion technique.

FA (Mardia et al. 1979; Bartholomew 1987) assumes the following linear model

to describe the d-dimensional data:

x1 ¼ a11z1 þ � � � þ a1mzm þ u11;

x2 ¼ a21z1 þ � � � þ a2mzm þ u2;

..

. ..
.

xd ¼ ad1z1 þ � � � þ admzm þ ud:

ð6:81Þ

FA is a decomposition of the covariance of the data and attempts to express each

random variable xj as the sum of common and unique portions. The common por-

tion reflects the sources of variation that contribute to the correlation between the

variables and are represented by the common factors z1; . . . ; zm. The number of fac-

tors m is a parameter selected based on goodness of fit or some other measure. The

remaining variation, unique to each random variable xj, is represented by the factor

uj, and these are uncorrelated. The unique factor represents all variation unique to a

particular random variable xj. This variation could be due to factors not in common

with the other variables as well as measurement error. It is essentially the error term

in the FA model.

Historically, descriptive FA was used in the development of intelligence testing.

Here we provide a simplified example of how FA could be used to develop an intel-

ligence test. The goal of intelligence testing is to quantify an individual’s intelli-

gence based on how they score on various aptitude tests. As there is no absolute

measure of intelligence, the idea is to measure an individual’s performance on a

collection of aptitude tests. As each aptitude test measures a different kind of intel-

lectual knowledge or ability, the collection of aptitude tests must measure intelli-

gence. Using FA, a common factor that correlates with all the tests can be found.

This factor is assumed to be intelligence. Each test is selected with the purpose of

measuring some aspect of intelligence. In this simple example, we consider four

aptitude tests:

1. Similarities—questions about similarities and differences between objects

2. Arithmetic—verbal math problems solved without paper

3. Vocabulary—questions about word meanings

4. Comprehension—questions testing understanding of general concepts

METHODS FOR MULTIVARIATE DATA ANALYSIS 235

Each test is a set of true/false questions and each measures some aspect of what

we think of as intelligence. For the purposes of this example, say these tests were

administered to a large number of children (1000s) and scores of correct answers

were tallied. Then, we might observe the following correlations between the test

scores:

Similarities Arithmetic Vocabulary Comprehension

test test test test

Similarities test 1.00

Arithmetic test 0.55 1.00

Vocabulary test 0.69 0.54 1.00

Comprehension test 0.59 0.47 0.64 1.00

where each test is an observed variable and each child corresponds to a sample data

point. The high values of the correlation coefficients indicate that the variables are

correlated with each other. When FA is applied to these data, a single factor

explains the majority of the common variation in the data (60 percent) and the

unique variation is 38 percent of the total variance. Additional factors only contri-

bute 2 percent of the total variation and are excluded from the model. The result of

FA is the following model:

similarities ¼ ð0:81Þzþ Nð0; 0:34Þ;
arithmetic ¼ ð0:66Þzþ Nð0; 0:51Þ;
vocabulary ¼ ð0:86Þzþ Nð0; 0:24Þ;

comprehension ¼ ð0:73Þzþ Nð0; 0:45Þ;

where the common factor is z and each unique factor is modeled by a normal

distribution with zero mean and variance as estimated by FA. The single factor

can be labeled ‘‘intelligence’’ and the raw scores on each of the tests can be

converted to a factor score using the matrix inverse of the above equations.

FA models the correlation, using a single common factor z and four unique fac-

tors (one for each test) for this example. By design, the common factor has an

effect on more than one input variable and therefore explains the relationship

between the input variables. The unique factors can be interpreted as noise

or error for each input variable, reflecting variation that is not seen in the

other variables. This variation is uncorrelated with the common factor, and

because Gaussian distributions are assumed, the variation is independent of the

common factor.

The FA model (6.81) can be represented in matrix notation as

x ¼ Azþ u; ð6:82Þ

236 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

where x; z, and u are column vectors. The FA model assumes the following

conditions:

EðxÞ ¼ 0; ð6:83aÞ
EðzÞ ¼ 0; VarðzÞ ¼ I; ð6:83bÞ
EðuÞ ¼ 0; Covðuj; ukÞ ¼ 0; i 6¼ j; ð6:83cÞ
Covðz; uÞ ¼ 0; ð6:83dÞ

where EðÞ denotes expectation of a random vector, VarðÞ denotes the variance

matrix for a random vector, and CovðÞ denotes the covariance between two random

vectors. Condition (6.83a) is met in practice by subtracting the sample means from

each of the observed variables. Conditions (6.83b)–(6.83d) ensure that all the fac-

tors are uncorrelated with one another and the common factors are standardized to

have unit variance. Condition (6.83c) allows us to denote the covariance matrix of

the unique factors as a diagonal matrix:

VarðuÞ ¼
 ¼ diagðc11; . . . ;cmmÞ: ð6:84Þ

Let us denote the covariance of the observed variables as � ¼ VarðxÞ; then using

the basic properties of covariance, it is possible to relate this covariance of the

observed variables to the covariance of the common and unique factors:

� ¼ VarðxÞ
¼ VarðAzþ uÞ
¼ VarðAzÞ þ VarðuÞ
¼ AVarðzÞAT þ VarðuÞ
¼ AAT þ
:

ð6:85Þ

Equation (6.85) is the key equation for FA, as this relationship is used to interpret

the FA model in terms of decomposition of variance, identify some key properties

of the FA model, and develop numerical implementations.

Based on (6.85), the variance s2j of each observed variable xj can be split into

two parts:

s2j ¼ sjj ¼
X

m

k¼1
a2jk þ cjj: ð6:86Þ

The first term is called the communality and represents the variance, which is

shared with the other observed variables via the common factors. Specifically,

each a2jk represents the degree to which the observed variable xj depends on the

kth common factor. The term cjj in (6.86) is called the specific or unique variance

and is the variance explained by the unique factor and is therefore variance not

METHODS FOR MULTIVARIATE DATA ANALYSIS 237

shared by the other observed variables. The process of interpretation of the FA

model is based on identifying the dependencies between the common factors

and the observed variables by manually comparing the magnitudes of the factor

loadings ajk.

One key property of FA is that the common factors are invariant to the scale of

the observed variables. Consider rescaling the observed variables x via a linear

transformation x0 ¼ Cx, where the scaling matrix is diagonal, that is,

C ¼ diagðcjÞ. If we found an m-factor model for the observed variables x with para-

meters Ax and
x, then

x0 ¼ CAxzþ Cu

and

Varðx0Þ ¼ C�xC
T ¼ CAxA

T
xC

T þ C
xC
T

¼ �x0 ¼ Ax0A
T
x0 þ
x0 :

Therefore, the same FA model can be used to explain x0, with Ax0 ¼ CAx and

x0 ¼ C
xC
T.

An inherent weakness of FA is that the solution to (6.85) is not unique. Any ortho-

gonal transformation (a rotation) of the mixing matrix A is also a valid solution.

Consider the application of the ðm� mÞ orthogonal transformation matrix G to Eq.

(6.82):

x ¼ ðAGÞðGTzÞ þ u

¼ A0z0 þ u; ð6:87Þ

where z0 are the transformed common factors and A0 is the transformed mixing

matrix. As the random vector z0 also satisfies conditions (6.83b) and (6.83d), it,

and the corresponding mixing matrix A0, is an equivalently valid FA model describ-

ing the observations. Conditions (6.83b) and (6.83d) reflect the basic assumption of

FA: that the latent variables are uncorrelated. A multivariate Gaussian distribution

can be uniquely described using only its mean and covariance (second-order

moment) and does not have any higher-order moments. Because there are no con-

ditions placed on higher-order moments (beyond covariance) for FA, solutions

cannot be uniquely identified beyond all orthogonal transformations of the mixing

matrix. In order to avoid this indeterminacy, additional constraints are usually

applied on the form of the mixing matrix. These constraints take the form of choos-

ing a particular rotation of the mixing matrix in order to improve its subjective

interpretability. Typically, the goal of factor rotation is to find a parameterization

in which each observed variable has only a small number of large weights. That

is, each observed variable is affected by a small number of factors, preferably

only one. Selecting a rotation in which all the loadings are close to 0 or �1 is easier
to interpret than a rotation resulting in loadings with many intermediate values.

238 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

Therefore, most rotation methods attempt to optimize a function of A that measures

in some sense how close the elements are to 0 or �1. The choice of rotation

may make the loadings easier to interpret, but does not change the statistical or pre-

dictive explanatory power of the factors, as every rotation is a valid solution for

(6.85).

The FA model (6.85) can be solved for a given input data set xi; i ¼ 1; . . . ; n, by
minimizing some measure of discrepancy between the sample covariance and the

model. Let us denote the sample covariance as

S ¼ 1

n

X

n

i¼1
ðxi � �xÞðxi � �xÞT; ð6:88Þ

where �x is the sample average. Then, one possible measure of discrepancy based on

least squares is

L ¼
X

d

j;k¼1
ðsjk � sjkÞ2 ¼ tr½ðS� �Þ2�: ð6:89Þ

This choice of discrepancy makes the problem of FA solvable using an eigen

decomposition and results in an approach called the Principal Factor method. Sub-

stituting (6.85) into (6.89) results in the objective function

L ¼
X

n

j;k¼1
sjk � djkcj �

X

m

l¼1
ajlakl

 !2

: ð6:90Þ

where dij ¼ Iði ¼ jÞ
In order to minimize the objective function, its derivatives with respect to the

parameters are determined and equated to zero. The derivative with respect to

A is

@L

@apq
¼ 4 �

X

n

j¼1
ðsjp � djpcjÞajq þ

X

n

j¼1
ajq
X

m

k

ajkapk

()

ðp ¼ 1; . . . ; n; q ¼ 1; ::;mÞ

or

@L

@A
¼ 4fAðATAÞ � ðS�
ÞAg:

Equating to zero gives the following estimating equation for A:

ðS�
ÞA ¼ AðATAÞ: ð6:91Þ

METHODS FOR MULTIVARIATE DATA ANALYSIS 239

The derivative with respect to
 is

@L

@cp

¼ �2 spp � cp �
X

m

j¼1
a2pj

 !

or

diag
@L

@

¼ �diagðSÞ þ
þ diagðAATÞ:

Equating this derivate to zero gives the following estimating equation for
:

 ¼ diagðS� AATÞ: ð6:92Þ

The estimating equations (6.91) and (6.92) are solved iteratively for a given sample

covariance matrix. Suppose that the value of
 is known (or an estimate exists),

then (6.91) can be solved using the eigen decomposition of the matrix ðS�
Þ.
Recall from the Appendix B that a symmetric matrix can be decomposed in

terms of real-valued eigenvalues and orthogonal eigenvectors:

ðS�
Þ ¼ V	VT;

ðS�
ÞV ¼ V	;
ð6:93Þ

where 	 is a diagonal matrix of the eigenvalues and the columns of V contain the

eigenvectors. Considering this decomposition, Eq. (6.91) will be satisfied if the col-

umns of A consist of any of the m eigenvectors of the matrix ðS�
Þ and AAT is a

diagonal matrix with elements equal to the eigenvalues of the matrix ðS�
Þ. In
order for (6.89) to be minimized, the largest m eigenvalues and corresponding eigen-

vectors are chosen (Bartholomew 1987). Given this estimate for A, the parameter

is estimated using (6.92). These iterations are repeated until the convergence of the

error. In order to begin the process, an initial estimate for
 of
 ¼ diagðSÞ can be

used. Besides the Principal Factor method, maximum likelihood can also be used to

estimate the parameters by assuming that the factors s and u (and therefore the obser-

vations x) come from a multivariate Gaussian distribution.

FA via principal factors illustrates the relationship between FA and PCA. FA

breaks down the covariance into two components, the common factors and the

unique factors. This provides a model of the correlation via the common factors.

PCA does not decompose the covariance, but provides an orthogonal transforma-

tion, which maximizes the variance along the component axes. If the FA model is

modified so as to assume that the unique factors have zero variance, then FA (via

Principal Factors) and PCA are equivalent. Therefore, for problems where the

unique factors have small magnitudes, Principal Components and Principal Factors

will provide similar numerical results.

When FA is used in a predictive setting, where the goal is fitting future data,

model selection amounts to balancing the complexity of the model with the quality

240 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

of the fit, as measured by the explained variance. In the FA model, the number of

factors m is a parameter that reflects the complexity of the model. One way to

understand the model complexity is to compare the number of parameters in �

when the covariance is not constrained with the number of parameters in the FA

model for the covariance. The unconstrained covariance has 1
2
dðd þ 1Þ free para-

meters because it is a symmetric matrix. The number of free parameters in the fac-

tor model is dmþ d � 1
2
mðmþ 1Þ. The difference between these,

� ¼ 1
2
ðd � mÞ2 � 1

2
ðd þ mÞ; ð6:94Þ

provides a measure of the extent to which the factor model provides a simpler

explanation of the covariance. If� 	 0, the factor model is well defined and a solu-

tion can be found for (6.85). In practice, the number of factors m is varied over a

range from 1 upward (as long as � 	 0), and the portion of the variance explained

is monitored. The value of m is chosen so that the majority of the variance in the

data is explained. If distributional assumptions are made and Maximum Likelihood

is used for estimation, then it is possible to define a goodness-of-fit test (see Bartho-

lomew (1987) for details). Alternatively, resampling can be used to estimate var-

iance explained in future data.

FA is most commonly used in a descriptive setting, where the goal is to create an

interpretation of the observed data. In this case, FA is used to justify a particular

theory of the system under study. The factors are computed and interpreted as if

they represent the hidden variables to prove or support a theory about the nature

of the hidden variables. Interpretation usually means assigning to each common

factor a name that reflects the importance of the factor in predicting each of the

observed variables, that is, the coefficients in the mixing matrix corresponding to

the factor. As a simple example, consider a psychologist applying FA to the results

of a collection of a dozen or so aptitude tests, similar to those described in the

example at the beginning of this section. The assumption is that because each apti-

tude test measures a different kind of intellectual knowledge or ability, the collec-

tion of aptitude tests must measure intelligence. The collection of aptitude tests

includes some that test math abilities, like counting, arithmetic, and geometry, as

well as a number of other tests that test language abilities. We can apply FA to these

data where each test in the collection is an observed variable and each student tak-

ing the test corresponds to an observation. The psychologist finds that applying FA

results in two factors, which describe most of the variation in the data. If one factor

is strongly correlated to observed variables scoring the ability to perform addition

and ability to count on the test, the psychologist might label that factor ‘‘numerical

ability,’’ whereas another factor highly correlated with paragraph comprehension

and sentence completion might be labeled ‘‘verbal ability.’’ This interpretation of

the data could support the simplistic theory that intelligence is based on two hidden

variables—numerical and verbal abilities. There is a problem with this methodol-

ogy. Causality is inferred from correlations in the data. FA assumes a linear model

with a preselected number of underlying variables, each with an assumed distribu-

tion. This may or may not match the true system generating the data, and more

METHODS FOR MULTIVARIATE DATA ANALYSIS 241

importantly, it is not possible to identify the form of true system with only the data.

Additional information outside of the data is needed to determine the form of the

true system. This is because factors and their distributions are not inherent in the

data and are a byproduct of the linear model and the distributional assumptions of

the FA method. The distributions of the factors are imposed by the model and are

not an output of the model.

Example 6.5: Factor analysis and principal component analysis

In this example, we compare the results of FA and PCA for the same artificial

data set. Consider 200 samples of multivariate data generated according to the

function

x ¼ ½t;�t; 2t� þ x;

where the scalar variable t has a Gaussian distribution with zero mean and variance 1,

and the noise x has a multivariate Gaussian distribution with zero mean and covar-

iance matrix s2I, where s ¼ 1. This data set has a single hidden variable t affecting

three observed variables represented by the vector x. As there is only a single hidden

variable, we do not have to worry about selecting a rotation of the factors. Applying

the FA (principal factors algorithm) results in an estimate of the mixing matrix of

[1.09, �0.97, 1.95], which is very close to the generating function [1, � 1,2].

Using PCA the mixing matrix is estimated as [1.13, �1.02, 2.27], which is not as

accurate as the FA results. The difference lies in FA’s explicit modeling of the unique

factors. FA separates the variance into common factors (the correlation between the

variables) and unique factors (the noise) providing a better fit than PCA. In PCA, the

variance due to the noise is modeled together with the variance due to the hidden vari-

able, inflating the magnitude of the estimates of the mixing matrix.

6.4.2 Independent Component Analysis

In FA, it was assumed that the unobserved variables were uncorrelated. ICA makes

a stronger assumption about the unobserved variables that they are statistically

independent. Because FA depended only on the second moment of a distribution

(covariance), it has a problem of identifiability with respect to orthogonal transfor-

mations of the factors. Assuming independence (a condition on second-order and

higher moments) avoids this problem. ICA is not typically used as a dimensionality

reduction method in itself as the model assumes the same number of unobserved

variables as there are observed variables. Rather, ICA is a method for transforming

the principal components (or FA coefficients) into components which are statisti-

cally independent.

In this section, we provide a basic introduction of ICA, with a focus on providing

a conceptual understanding (Hyvärinen and Oja 2000). A rigorous definition of ICA

can be made based on information theory and is beyond the scope of this book.

Interested readers can see Hyvärinen et al. (2001) for details.

242 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

ICA has been used to solve blind source separation problems in signal proces-

sing. One example of such a problem is the ‘‘cocktail party problem.’’ In this pro-

blem, multiple people are all speaking simultaneously in a room. There are as many

microphones as individuals in the room, each recording an audio time series signal

xjðtÞ. Each microphone will pick up a different mixture of the speakers. The pro-

blem is to identify each speaker’s audio signal individually from the mixture data.

This problem is governed by the following set of linear equations:

x1ðtÞ ¼ b11s1ðtÞ þ � � � þ b1dsdðtÞ;
x2ðtÞ ¼ b21s1ðtÞ þ � � � þ b2dsdðtÞ;
..
. ..

.

xdðtÞ ¼ bd1s1ðtÞ þ � � � þ bddsdðtÞ;

ð6:95Þ

where each speaker (or source) is represented by sjðtÞ, the parameters bjk represent

the mixing coefficients, and the xjðtÞ are the mixtures.

Estimating sjðtÞ depends on identifying the parameters bjk from the data. By

assuming that sjðtÞ are statistically independent at every time t, it is possible to

reconstruct the sjðtÞ. The linear equation describing the true system can be repre-

sented in matrix form as

x ¼ Bs; ð6:96Þ

where we drop the time index t and treat each signal s1; . . . ; sm as a random vari-

able. We represent the ICA model as

x ¼ Az; ð6:97Þ

where the column vector z is the independent component and is an estimate of s,

and the matrix A is an estimate of the mixing matrix B. The problem of ICA is to

estimate A and z based only on the data. The ICA model assumes the following

conditions:

EðxÞ ¼ 0; ð6:98aÞ
EðzÞ ¼ 0; ð6:98bÞ
Eðz2j Þ ¼ 1; j ¼ 1; . . . ;m; ð6:98cÞ
pðz1; z2; . . . ; zmÞ ¼ pðz1Þ � pðz2Þ � � � � � pðzmÞ: ð6:98dÞ

Condition (6.98a) is met in practice by subtracting the sample means from each of

the observed variables. Condition (6.98b) is a result of the model equation (6.97)

and condition (6.98a). If the means of x are zero, then that implies that z must also

have zero mean. Condition (6.98c) resolves an identifiability issue with (6.97). As

both z and A are unknown, any scalar multiplier of one of the zj could be canceled

by dividing the corresponding column of A by the same scalar. Condition (6.98c)

METHODS FOR MULTIVARIATE DATA ANALYSIS 243

arbitrarily fixes the variance of zj to 1. Note that the sign of each of the components

is still arbitrary as a sign change of any of the zj could be canceled by a sign change

of the corresponding column of A. Condition (6.98d) explicitly defines the statisti-

cal independence of zj. Another way to write condition (6.98d) is in terms of the

moments of the distributions. For simplicity, consider m ¼ 2. Then the indepen-

dence condition can be rewritten as

E½j1ðz1Þj2ðz2Þ� ¼ E½j1ðz1Þ�E½j2ðz2Þ� for any functions j1ðÞ and j2ðÞ: ð6:99Þ

Aweaker form of condition (6.99) is that the random variables are uncorrelated, one

of the conditions of the FA model (6.83a) as well as PCA. Two random vectors are

uncorrelated when their covariance is zero, or equivalently

E½z1z2� ¼ E½z1�E½z2�; ð6:100Þ

which is weaker than (6.99) as it applies a particular choice of functions

j1ðz1Þ ¼ z1 and j2ðz2Þ ¼ z2. Condition (6.99) is only approximated in practical

ICA implementations by selecting a finite number of functions for which (6.100)

is valid. These approximations are based directly either on higher-order moments

(like kurtosis) or on information theoretic conditions for independence.

The first step in finding independent components is to determine the principal

components. Principal components are uncorrelated with each other and have max-

imum variance. In signal processing, the transformation to uncorrelated compo-

nents is called whitening, and it is a linear transformation of the input data. The

whitening process consists of computing the principal components of the data, scal-

ing the components so that they have unit variance, and then projecting the points

back in the input space. In addition, PCA is sometimes used to reduce the dimen-

sionality of the input data by dropping components with small eigenvalues and

therefore small contribution to the variance in the data. The independent compo-

nents are found by applying linear transformations to the principal components,

which maximize statistical independence. Now, however, the independent compo-

nents no longer have the maximum variance property like principal components.

By making statistical independence a condition of the ICA model, rather than lack

of correlation, necessarily excludes the possibility that the solutions for z are Gaus-

sian. Of all possible multivariate distributions, the multivariate Gaussian distribution

has the unique property that it does not have moments beyond mean and covariance

(second order). In order to enforce conditions on the higher-order moments, they have

to exist. For the Gaussian, a lack of correlation is enough to guarantee independence.

If it is known that s’s are Gaussian, then a FA or PCA model is more appropriate.

Finding the independent components is equivalent to finding the components that

are uncorrelated and furthest away from being Gaussian.

A number of measures have been proposed for quantifying the degree of normal-

ity (Gaussianness) for ICA. The classic measure of normality is kurtosis:

kurtðzÞ ¼ E½z4� � 3ðE½z2�Þ2:

244 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

To simplify we will assume that z has been scaled so that it has zero mean and unit

variance, so the kurtosis can be written as

kurtðzÞ ¼ E½z4� � 3: ð6:101Þ

For a Gaussian random variable, the kurtosis is zero, but for most other distribu-

tions, the kurtosis is nonzero. Deviation from normality can be measured by

using the absolute value of the kurtosis as well as ðkurtðzÞÞ2. Kurtosis is an attrac-

tive measure because it is simple to compute based on the data. However, the kur-

tosis measure for sample data is sensitive to outliers as it depends heavily on

samples in the tails of a distribution. An alternative measure for normality is negen-

tropy from information theory. The negentropy is defined as follows:

JðzÞ ¼ HðzGAUSSÞ � HðzÞ; ð6:102Þ

where HðzÞ is the differential entropy of a random variable z, a basic quantity of

information theory (Cover and Thomas 1991). The differential entropy of a random

variable can be interpreted as the degree of information that the observation of the

variable gives. The more unpredictable the variable, the larger its entropy. A funda-

mental result of information theory is that a Gaussian variable has the largest

entropy of all random variables with equal variance. The negentropy measure

(6.102) takes advantage of this property of entropy. In order to produce a measure

that is zero for a Gaussian variable and always nonnegative, we measure the differ-

ence in entropy between the random variable z and a Gaussian random variable with

the same covariance, denoted by zGauss. The entropy of a random variable z with

density pðzÞ is defined as

HðzÞ ¼ �
ð

pðzÞlogpðzÞdz: ð6:103Þ

Estimating the entropy (and therefore the negentropy) given finite data directly

using (6.103) requires an estimate of the probability density function. Due to the

inherent difficulty in estimating probability densities, various approximations of

negentropy are used for ICA. One general approximation, which can be specifically

designed for robustness to outliers, is

JðzÞ �
X

p

i¼1
kiðE½giðzÞ� � E½giðzGaussÞ�Þ2; ð6:104Þ

where ki are positive constants, z is assumed to have zero mean and unit variance,

and zGauss is a Gaussian random variable with zero mean and unit variance. The

approximation (6.104) requires selecting a set of functions gi that are nonquadratic

(Hyvärinen and Oja, 2000). This general approximation can be further simplified by

using only one term. Then, the approximation becomes

JðzÞ / ðE½gðzÞ� � E½gðzGaussÞ�Þ2: ð6:105Þ

METHODS FOR MULTIVARIATE DATA ANALYSIS 245

As the goal is to define a measure of normality, even a poor approximation of

negentropy may still provide a measure that is always nonnegative and is zero

for a Gaussian distribution. By choosing a nonquadratic function g that does not

grow too fast, (6.105) can be made more robust to outliers (data in the tails of

the distribution). One choice that works well in practice (Hyvärinen and Oja

2000) is gðzÞ ¼ 1
c
log coshðczÞ, where c is a constant in the range [1, 2].

Constructive algorithms for ICA are developed using a practical measure of nor-

mality and an optimization approach. One algorithm, called FastICA (Hyvärinen

and Oja 2000), makes use of the metric (6.105) and a fixed-point iteration scheme

for estimating the independent components. The basic version of the algorithm

computes a single independent component from the data. This is then repeated in

order to compute additional components. This algorithm assumes that the data have

zero mean and have been whitened. The same algorithm can be applied repeatedly

to identify more than one independent component.

Example 6.6: Independent component analysis and principal component

analysis

This example with artificial data demonstrates how ICA transforms the principal

components, making them statistically independent. Consider 200 samples of

data generated according to the mixing equation

x ¼ 0:98 0:17
�0:17 0:98

� �

s;

where the hidden variable s is uniformly distributed on the two-dimensional square.

This mixing matrix rotates the hidden variables by 10 degrees to produce the

–1

–0.8

–0.6

–0.4

–0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

s
2

s1

Hidden variables

–1.5

–1

–0.5

 0

 0.5

 1

 1.5

–1.5 –1 –0.5 0 0.5 1 1.5

x
2

x1

Observed data

FIGURE 6.29 The modeling assumption of ICA is that the independent hidden variables

are linearly mixed, producing the observed data.

246 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

observed data (Fig. 6.29). Recall that ICA is a two-step process. First PCA is used

to whiten the data (making the variables uncorrelated). When applied to these data,

PCA rotates the data by approximately 45 degrees because variance is maximized

along the diagonal. The principal component transformation finds a projection with

uncorrelated factors that maximize the variance. Next, the ICA transformation is

applied to the results of PCA. The ICA transformation results in factors that max-

imize statistical independence, closely matching the hidden variable; however, the

factors no longer have maximum variance (Fig. 6.30).

6.5 SUMMARY

This chapter shows the connections between methods for data and dimensionality

reduction originating from different fields. In particular, we showed the connection

between PC and SOM. Another popular framework for dimensionality reduction,

MDS, was shown to have strong connections to PCA.

Neural network methods for unsupervised learning were originally proposed to

describe biological systems. Readers interested in a biological interpretation of

SOMs can consult Kohonen (2001), who also provides an extensive description

of SOM applications. Other well-known biologically inspired clustering methods

include adaptive resonance theory (ART) methods (Carpenter and Grossberg

1987, 1994).

Methods described in this chapter pursue several goals: data reduction, interpreta-

tion of high-dimensional data sets, multivariate data analysis, and feature extraction

a2.5
–2

–1.5

–1

–0.5

 0

 0.5

 1

 1.5

 2

 2.5

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

p
c
a

2

pca1

Principal components

–2

–1.5

–1

–0.5

 0

 0.5

 1

 1.5

 2

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

ic
a

2
ica1

Independent components

FIGURE 6.30 A principal component transformation of the observed data finds a

projection with uncorrelated factors that maximize the variance. Applying the ICA

transformation to the principal components provides factors that maximize statistical

independence.

SUMMARY 247

(as a part of preprocessing for supervised learning). Hence, it is difficult to character-

ize these methods in the framework of predictive learning. Moreover, many represen-

tative methods for interpretation, such as clustering and SOM, are defined as a

computational procedure without clearly stated formulation of the learning problem.

So, here we only comment on the use of unsupervised methods for feature selection.

The usual rationale for unsupervised methods (used as a preprocessing step for sub-

sequent supervised learning) is to reduce dimensionality of the input space. This view

implicitly equates the problem dimensionality with model complexity. Extracting a

small number of ‘‘good’’ low-dimensional features from the original high-dimen-

sional x-samples leads to a more tractable solution of the supervised learning problem

(i.e., classification or regression). On the other hand, statistical learning theory sug-

gests that the notion of complexity is different from dimensionality. Then it can be

argued that performing data/dimensionality reduction (via supervised learning)

results in the loss of information, so using the original high-dimensional data may

produce, in principle, more accurate estimates for classification or regression pro-

blems. An approach called support vector machine (SVM) for controlling model

complexity independently of dimensionality is discussed in Chapter 9. This method

sometimes pursues an opposite strategy of increasing dimensionality of an intermedi-

ate feature space.

As a practical matter, application of unsupervised learning techniques is well

justified in many situations where the unlabeled data are plentiful, but the labeled

data are scarce (i.e., difficult or expensive to obtain). In such cases, unsupervised

methods can be used first, in order to extract low-dimensional features (a compact

representation) using unlabeled data, followed by application of supervised learning

to the labeled data. Other (more advanced) approaches for combining unlabeled and

labeled data, called semisupervised and transductive learning, are discussed in

Chapter 10.

248 METHODS FOR DATA REDUCTION AND DIMENSIONALITY REDUCTION

7
METHODS FOR REGRESSION

7.1 Taxonomy: dictionary versus kernel representation

7.2 Linear estimators

7.2.1 Estimation of linear models and equivalence of representations

7.2.2 Analytic form of cross-validation

7.2.3 Estimating complexity of penalized linear models

7.2.4 Nonadaptive methods

7.3 Adaptive dictionary methods

7.3.1 Additive methods and projection pursuit regression

7.3.2 Multilayer perceptrons and backpropagation

7.3.3 Multivariate adaptive regression splines

7.3.4 Orthogonal basis functions and wavelet signal denoising

7.4 Adaptive kernel methods and local risk minimization

7.4.1 Generalized memory-based learning

7.4.2 Constrained topological mapping

7.5 Empirical studies

7.5.1 Predicting net asset value of mutual funds

7.5.2 Comparison of adaptive methods for regression

7.6 Combining predictive models

7.7 Summary

Truth lies within a little and certain compass, but error is immense.

Henry St. John

This chapter describes representative methods for regression, namely estimation of

continuous-valued functions from samples. As there are literally hundreds of

‘‘new’’ learning methods being proposed each year (in the fields of neural networks,

statistics, data mining, fuzzy systems, genetic optimization, signal processing, etc.),

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

249

it is important to first introduce a sensible taxonomy. There are at least three

possible ways to classify methods for regression, based on

1. Parameterization of a set of approximating functions (a class of admissible

models). As we have already seen (in Chapters 3 and 4), most practical

methods use parameterization in the form of a linear combination of basis

functions. This leads to a taxonomy based on the type of the basis functions

used by a method.

2. Optimization procedure for parameter estimation. As discussed in Chapters 3

and 4, estimation of model parameters (or neural network weights) involves

minimization of a (penalized) risk functional. In adaptive (nonlinear) meth-

ods, parameter estimation becomes a nonlinear optimization problem. Com-

monly used nonlinear optimization strategies have been discussed in Chapter

5, and they can be used as a basis for taxonomy of methods. For example,

most neural network methods use gradient-descent-type optimization,

whereas statistical methods use greedy optimization. On the contrary, genetic

algorithms use (directed) random-search techniques for nonlinear optimiza-

tion and variable selection. However, one can use any general-purpose

nonlinear optimization technique to estimate neural network parameters,

and there is no (theoretical or empirical) evidence that a given optimization

method is uniformly superior (or inferior) for most problems.

3. Interpretation capability. As noted in Chapter 1, understanding/interpretation

of the predictive model is very important for many applications, especially

when the model is used for human decision making. Hence, the interpret-

ability of a model can be used for methods’ taxonomy. Many statistical

methods using greedy optimization techniques produce models that can be

interpreted as decision trees, for example, classification and regression trees

(CART). Another example of interpretable models is fuzzy inference systems,

which construct models as a set of fuzzy rules (expressed in a common

English language), where each fuzzy rule denotes a local basis function.

However, it does not seem reasonable to use the interpretation capability as a

basis for methods’ taxonomy, for three reasons: First, judging interpretation

capability itself is rather subjective. For example, statisticians find it easy to

interpret models in terms of the ANOVA (ANalysis Of VAriance) decom-

position of a function, but this would not seem interpretable to a fuzzy logic

practitioner. Second, even highly interpretable methods lose their interpret-

ability as the models become too complex. For example, interpreting a

decision tree model with 200 nodes is no easier than explaining the weights

of a feedforward network model. In other words, model interpretation is

inherently limited by the model complexity, regardless of a method used. The

third reason is that the model’s interpretation capability can be separated from

its prediction (generalization) capability, as explained next. Suppose that the

goal is to estimate (learn) a model—this can be done using many methods.

Let us first choose a method providing the best generalization. Applying this

250 METHODS FOR REGRESSION

method to available training data results in a good predictive model. To obtain

good interpretation capability, one can select one’s favorite interpretable

method (decision trees, fuzzy rules, etc.) and use it to approximate the model

obtained above. In practice, this is done by training an interpretable method

using a large number of artificial (input, output) samples generated by a

(fixed) predictive model. Given sufficiently many samples, an interpretable

method will accurately approximate the predictive model, as all reasonable

methods are universal approximators.

In this book, we adopt approach 1 based on the parameterization of a set of

approximating functions, as it enables a compact taxonomy of existing methods.

According to this taxonomy, the major distinction is made between the dictionary

and kernel representations in Section 7.1. Most practical methods use a basis func-

tion representation—these are called dictionary methods (Friedman 1994a), where

a particular type of chosen basis functions constitutes a ‘‘dictionary.’’ Further dis-

tinction is then made between non-adaptive methods using fixed (predetermined)

basis functions and adaptive methods where the basis functions themselves are

fitted to available data.

Section 7.2 gives a detailed mathematical description of linear methods and

shows the duality of kernel and basis function representations. It also describes

an important issue of estimating complexity of penalized linear models. Section

7.2 also provides several examples of nonadaptive (linear) methods such as radial

basis functions (RBFs) and spline methods. Further, this section describes inherent

limitations of nonadaptive methods for high-dimensional data, which motivates the

need for adaptive (or flexible) methods.

Section 7.4 describes representative adaptive dictionary methods developed in

statistics, neural networks, and signal processing. These include two methods shar-

ing similar dictionary representation: projection pursuit (statistical method) and

multilayer perceptron (MLP) (neural network method). We also describe multivari-

ate adaptive regression splines (MARS), a popular statistical technique using gree-

dy optimization strategy, and a class of wavelet signal denoising methods developed

in signal processing. Our presentation emphasizes important issues common to all

methods (i.e., complexity control, optimization strategies, etc.) following concep-

tual framework given in Chapters 3 and 4.

Section 7.4 describes adaptive methods based on a kernel representation. Exam-

ple methods include generalized memory-based learning (GMBL) and constrained

topological mapping (CTM). Such methods are also called ‘‘memory-based’’ or

local in the neural network literature. This may be confusing, as the term ‘‘local’’

also applies to dictionary methods using local basis functions (i.e., Gaussians).

Hence, in this book we make a clear distinction between methods using dictionary

and kernel representations, having in mind that basis functions (in dictionary meth-

ods) can be either global or local; see Eqs. (7.7) and (7.8) in Section 7.1. Adaptive

kernel methods are closely related to an important VC-theoretical concept called

local risk minimization. It provides theoretical foundation for developing new

adaptive kernel methods.

METHODS FOR REGRESSION 251

Section 7.5 presents two example empirical studies. The first one, in Section

7.5.1, is an application of regression modeling to financial engineering using

real-life data. The second one is an empirical comparison of adaptive methods

for regression using synthetic data. Comparisons in Section 7.5.2 suggest that

it is not possible to choose a learning method that consistently provides better

performance over a range of data sets. It is then argued that the goal of comparisons

should be characterization of data sets most suitable for a given method rather than

choosing the best (overall) method. A better alternative to choosing one (best)

learning method is to apply several methods to a given data set and then combine

individual predictive models produced by each method. Methodology for combin-

ing predictive models is discussed in Section 7.6.

Finally, Section 7.7 provides summary and a brief discussion.

7.1 TAXONOMY: DICTIONARY VERSUS KERNEL

REPRESENTATION

Earlier in this book we have introduced parameterization of approximating func-

tions in the form of a linear combination of basis functions

fmðx;w; vÞ ¼
X

m

i¼1
wigiðx; viÞ þ w0; ð7:1Þ

where giðx; viÞ are the basis functions with (adjustable) parameters

vi ¼ ½v1i; v2i; . . . ; vpi� and w ¼ ½w0; . . . ;wm� are (adjustable) coefficients in a linear

combination. For brevity, the bias term w0 is often omitted in (7.1). The goal of

predictive learning is to select a function from a set (7.1) that provides minimum

prediction risk. Equivalently, in the case of regression, the goal is to estimate para-

meters vi ¼ ½v1i; v2i; . . . ; vpi� and w ¼ ½w0; . . . ;wm� from the training data in order to

achieve the smallest mean squared error (MSE) for future samples.

Representation (7.1) is quite general, and it leads to a taxonomy known as dic-

tionary methods (Friedman 1994a), where a method is specified by a given set of

basis functions (called a dictionary). The number of dictionary entries (basis func-

tions) m is often used as a regularization (complexity) parameter of a method.

Depending on the nature of the basis functions, there are two possibilities:

1. Fixed (predetermined) basis functions giðxÞ resulting in parameterization:

fmðx;wÞ ¼
X

m

i¼1
wigiðxÞ þ w0: ð7:2Þ

This parameterization leads to nonadaptive methods, as the basis functions

are fixed and are not adapted to training data. Such methods are also called

linear, because parameterization (7.2) is linear with respect to parameters

w ¼ ½w0; . . . ;wm�, which are estimated from data via linear least squares.

The number of terms m is found via model selection criteria (as discussed

in Sections 3.4 and 4.5).

252 METHODS FOR REGRESSION

2. Adaptive basis functions use the general representation (7.1) so that basis

functions themselves are adapted to data. The corresponding methods are

called adaptive or flexible. Estimating parameters in (7.1) now results in a

nonlinear optimization, as basis functions are nonlinear in parameters. The

number of terms m can be estimated, in principle, using the model selection

methodology for nonlinear models proposed in Moody (1991) and Murata et

al. (1991) or by using resampling techniques. However, in practice, model

selection for nonlinear models is quite difficult because it is affected by a

nonlinear optimization procedure and the existence of multiple local minima.

Usually an adaptive method uses the same type of basis functions gðx; viÞ for
all terms in the expansion (7.1):

fmðx;w; vÞ ¼
X

m

i¼1
wigðx; viÞ þ w0: ð7:3Þ

For example, MLPs use

gðx; viÞ ¼ s vi0 þ
X

d

k¼1
xkvik

 !

¼ sðx � viÞ; ð7:4Þ

where each basis functions is a univariate function of a scalar argument

formed as a dot product of an input vector x and a parameter vector vi
(plus an offset or bias parameter vi0). For brevity, in this book we use the

dot-product notation, which (implicitly) includes the bias parameter.

The basis function itself (called an activation function in neural networks) is

usually specified as a sigmoid:

sðtÞ ¼ 1

1þ expð�tÞ ðlogisticÞ ð7:5aÞ

or

sðtÞ ¼ tanhðtÞ ¼ expðtÞ � expð�tÞ
expðtÞ þ expð�tÞ ðhyperbolic tangentÞ: ð7:5bÞ

RBF networks use representation (7.3) with basis functions

gðx; viÞ ¼ gðk x� vi kÞ ¼ K
k x� vi k

a

� �

; ð7:6Þ

where gðk x� vi kÞ is a radially symmetric basis function parameterized by a cen-

ter parameter vi. Note that gðtÞ ¼ gðk x� vi kÞ is a univariate function. Often RBFs
are chosen as radially symmetric local or kernel functions K, which may also

depend on a scale parameter a(usually taken the same for all basis functions). Com-

mon choices for nonlocal RBFs are

gðtÞ ¼ t and gðtÞ ¼ t2 lnðtÞ: ð7:7Þ

TAXONOMY: DICTIONARY VERSUS KERNEL REPRESENTATION 253

Popular local RBFs include the Gaussian and the multiquadratic functions

gðtÞ ¼ exp � t2

2a2

� �

and gðtÞ ¼ ðt2 þ b2Þ�a: ð7:8Þ

MLP and RBF networks are usually presented in a graphical form as a network

(Fig. 7.1), where parameters are denoted as network weights, input (output) vari-

ables as input (or output) nodes, and basis functions as hidden-layer units.

Note that all examples of adaptive basis functions gðx; vÞ shown in (7.4)–(7.8)

have something in common: They are univariate functions symmetric with

respect to vectors x and v; that is, gðx; viÞ ¼ gðvi; xÞ. This turns out to be a gen-

eral property of basis functions used in most (known) adaptive methods based on

representation (7.3). All adaptive dictionary methods discussed in this book (in

Section 7.3) use univariate symmetric basis functions. Further, basis function

expansion (7.3) has the following interpretation (Vapnik 1995): Basis functions

gðx; vÞ can be regarded as (nonlinear) features, and optimal selection (estimation)

of basis functions gðx; viÞ, i ¼ 1; . . . ;m, from an infinite number of all possible

gðx; vÞ can be viewed as feature selection. According to this interpretation, adap-

tive methods (automatically) perform nonlinear feature selection using training

data.

Unlike dictionary representation (7.1), kernel methods use representation in the

form

f ðxÞ ¼
X

n

i¼1
Kiðx; xiÞyi; ð7:9Þ

W is m ×1

1 2 m

V is d × m

ŷ = w jz j

j =1

m

∑

zj = g x ,v j()

x1 x2 xd

z1 z2 zm

FIGURE 7.1 Multilayer perceptron and radial basis function approximators, usually

presented in graphical form as a network.

254 METHODS FOR REGRESSION

where the kernel function Kðx; xiÞ is a symmetric function that usually (but not

always) satisfies the following properties:

Kðx; x0Þ 	 0 ðnonnegativeÞ; ð7:10aÞ
Kðx; x0Þ ¼ Kðk x� x0 kÞ ðradially symmetricÞ; ð7:10bÞ
Kðx; xÞ ¼ max ðtakes on its maximum when x ¼ x0Þ; ð7:10cÞ
lim
t!1

KðtÞ ¼ 0 ðmonotonically decreasing with t ¼k x� x0 k : ð7:10dÞ

Representation (7.9) is called the kernel representation, and it is completely spe-

cified by the choice and parameterization of the kernel function Kðx; x0Þ. Note the
duality between dictionary and kernel representations: Dictionary methods (7.1)

represent a model as a weighted combination of the basis functions, whereas ker-

nel methods (7.9) represent a model as a weighted combination of response

values yi. Selection of the kernel functions Kiðx; xiÞ using available (training)

data is conceptually similar to estimation of basis functions in dictionary meth-

ods. Similar to dictionary methods, there are two distinct possibilities for select-

ing kernel functions:

1. Kernel functions depend only on xi-values of the training data. In this case,

kernel representation (7.9) is linear with respect to y-values, as Kiðx; xiÞ does
not depend on y. Such methods are called nonadaptive kernel methods, and

they are equivalent to fixed (predetermined) basis function expansion (7.2),

which is linear in parameters. The equivalence is in the sense that for an

optimal nonadaptive kernel estimate, there is an equivalent optimal approx-

imation in the fixed basis function representation (7.2). Similarly, for an

optimal approximation in the fixed basis function representation, there is an

equivalent (nonadaptive) kernel approximation in the form (7.9); however, the

equivalent kernels in (7.9) may not satisfy the usual properties (7.10). See

Section 7.2 for details.

2. Selection of kernel functions depends also on y-values of the training data. In

this case, kernel representation (7.9) is nonlinear with respect to y-values, as

Kiðx; xiÞ now depend on yi. Such methods are called adaptive kernel methods,

and they are analogous to adaptive basis function expansion (7.3), which is

nonlinear in parameters.

The distinction between kernel and dictionary methods is often obscure in the lit-

erature, as the term ‘‘kernel function’’ is commonly used to denote local basis func-

tions in dictionary methods. Another potential source of confusion is the notion of

equivalence between kernel and basis function representations. There are in fact

two different equivalences. The first is due to equivalent representations for the

optimal solution in linear least-squares estimation. This type of equivalence is dis-

cussed in this chapter. A different kind of duality also exists on the level of the opti-

mization formulation. This is due to dual formulations of the penalized

TAXONOMY: DICTIONARY VERSUS KERNEL REPRESENTATION 255

optimization corresponding to (parameterized) basis function representation and to

(parameterized) kernel representation. This kind of equivalence is presented in

Chapter 9 for support vector machines (SVMs). In summary, there are three differ-

ent contexts in which the term ‘‘kernel function’’ is used: kernel estimators satisfy-

ing property (7.10), equivalent kernel representation of the linear least-squares

estimate, and an equivalent optimization formulation used in SVM. In this book,

the difference between three types of kernel functions is emphasized by using dif-

ferent notation.

Traditionally, most adaptive methods for function estimation use dictionary

rather than kernel representation. This is probably because model selection with

a dictionary representation is global and utilizes all training data. In contrast, the

kernel function Kðx; x0Þ with properties (7.10) specifies a (small) region of the input

space near the point x0, where jKðx; x0Þj is large. Hence, adaptive selection of the

kernel functions in (7.9) should be based on a small portion of the training data in

this local region. The problem is that conventional approaches for model selection

(e.g., resampling) do not work well with small samples, as illustrated in Section 4.5.

With nonadaptive kernel methods, the kernel span or width denoted by a is set the

same for all basis functions. Then a represents the regularization parameter of a

method, and its value can be determined using all training data via resampling.

7.2 LINEAR ESTIMATORS

A regression estimator is linear if it obeys the superposition principle;

f0ðay0 þ by00jXÞ ¼ af1ðy0jXÞ þ bf2ðy00jXÞ ð7:11Þ

holds for nonzero a and b, where f0; f1, and f2 are three estimates from the same set

of approximating functions (of the learning machine), X ¼ ðx1; . . . ; xnÞ are predic-
tor samples, and y0 ¼ ðy01; . . . ; y0nÞ and y00 ¼ ðy001; . . . ; y00nÞ are two response values.

There are two useful ways of representing a linear approximating function. One

approach is to represent the function as a linear combination of a finite set of fixed

basis functions, as in (7.2). The selection of the fixed basis functions is based on a

priori knowledge of the learning problem. These functions typically represent fea-

tures that are thought to be useful for predicting the output. The coefficients in the

linear combination are then chosen to minimize either empirical risk or penalized

risk. The other representation of a linear approximating function is as a kernel aver-

age of the training data, as in (7.9). In this case, explicit estimation of parameters is

usually not required. However, the form of the kernel function must be defined

based on a priori knowledge. The kernel represents knowledge of local smoothness

of the function, so it typically is a function of some distance measure in the input

space, which decreases with increasing distances (i.e., a smoothing kernel). The

choice of representation for a specific problem depends on the form of the a priori

assumptions and whether they more easily translate into a basis function represen-

tation or a smoothing kernel representation.

256 METHODS FOR REGRESSION

This chapter describes two different types of kernel functions used in a kernel

representation (7.9), one originates from kernel density estimation and another

from an equivalent basis function representation of a linear estimator. Kernel den-

sity estimation methods use approximating functions of the form

p̂ðxÞ ¼ 1

n

X

n

i¼1
Kaðx; xiÞ;

where kernel functions in addition to the usual properties (7.10) also satisfy a nor-

malization condition

ð1

�1
Kðx; x0Þdx0 ¼ 1 for any x: ð7:12Þ

Then, the approximating function for kernel regression smoothing is

faðx;wnjxnÞ ¼

P

n

i¼1
wiKaðx; xiÞ
P

n

i¼1
Kaðx; xiÞ

: ð7:13Þ

Note that the normalization condition (7.12) is not required for the regression for-

mulation but is required to interpret kernel regression as a nonparametric condi-

tional expectation estimate. The kernel function in (7.13) specifies a local

symmetric neighborhood near x.

The second type of kernel functions originate from the two equivalent represen-

tations for linear models estimated via least squares:

ŷ ¼ f ðx;w�Þ ¼
X

m

j¼1
w�j gjðxÞ ¼

X

n

i¼1
Sðx; xiÞyi: ð7:14Þ

For an optimal vector of parameters w� found by least squares, there is an equiva-

lent kernel Sðx; x0Þ, which will be described in Section 7.2.1. It is important to note

that the kernel Sðx; x0Þ does not have to be a local function in the sense of (7.10).

However, an equivalent kernel is a univariate symmetric function of its arguments.

To underscore the difference between the two types of kernel functions, we use dis-

tinct notation Kðx; x0Þ and Sðx; x0Þ. This section is concerned only with equivalent

kernels Sðx; x0Þ.
The mathematical equivalence between kernel and basis function representations

for linear models has important implications for estimating model complexity and

ultimately for model selection. Recall that for linear models using basis function

representation VC dimension equals the number of free parameters (or the number

of basis functions). The theory of linear estimators enables estimation of the

LINEAR ESTIMATORS 257

‘‘effective’’ number of free parameters for penalized linear models and for kernel

estimators (see Section 7.2.3).

7.2.1 Estimation of Linear Models and Equivalence of Representations

For the basis function expansion (7.2), coefficients w can be estimated using least

squares or penalized least squares (under the penalization formulation). Least-

squares estimation corresponds to finding the solution that minimizes the empirical

risk. In matrix notation, the vector y ¼ ðy1; . . . ; ynÞ contains the n response samples

and the matrix X ¼ ðx1; . . . ; xnÞ contains the predictor samples.

Then, the least-squares solution for estimating w corresponds to solving the

matrix equation

Zw ffi y; ð7:15Þ

where

Z ¼
g1ðx1Þ . . . gmðx1Þ

..

...
.

g1ðxnÞ . . . gmðxnÞ

2

6

4

3

7

5
¼ ½g1ðXÞjg2ðXÞj. . . jgmðXÞ�: ð7:16Þ

As a practical matter in dealing with the bias term w0 in (7.2), Z is modified as

follows. Each zij is replaced by zij � �zj in order to scale the inputs. The bias term

is then given by the average of the y-values w0 ¼ �y and solving (7.15) provides the

remaining m parameters of w.

The n� m matrix Z can be interpreted as the data matrix X transformed via the

fixed basis functions. The least-squares solution minimizes the empirical risk

RempðwÞ ¼
1

n
k Zw� y k2; ð7:17Þ

where kk indicates L2 norm. The solution is provided by solving the normal equation

ZTZw ¼ ZTy: ð7:18Þ

A unique solution exists as long as the columns of Z are linearly independent,

which will be true in most practical cases when the number of parameters is smaller

than the number of samples (m � n). Under this condition, ZTZ is invertible and the

m parameters can be estimated via

w� ¼ ðZTZÞ�1ZTy: ð7:19Þ

Appendix B provides solution strategies for the case where the columns of Z are not

linearly independent.

258 METHODS FOR REGRESSION

As discussed in Section 3.4.3, MSE is the sum of both a bias term and a variance

term. Also, recall that the prediction risk is the sum of MSE plus the noise variance,

as shown in (2.18). A least-squares estimate of the parameters w is optimal in the

sense that it has the smallest variance of all linear unbiased estimates. An unbiased

estimator is one where the expected value of the estimate is equal to the true value

of the parameter, Eða�Þ ¼ a. This result is provided by the Gauss–Markov theorem

in statistics. It applies to any linear combination of the parameters a ¼ aTw, which

includes making predictions f ðxÞ ¼ xTw. The least-squares estimate of a is

a� ¼ aTw� ¼ aTðZTZÞ�1ZTy: ð7:20Þ

If we consider Z as fixed, then (7.20) is a linear combination, a� ¼ cTy, of the out-

put vector y. The Gauss–Markov theorem asserts that if we have another linear esti-

mator a0 ¼ dTy that is an unbiased estimator for aTw, then

VarðaTw�Þ � VarðdTyÞ: ð7:21Þ

The proof is based on the triangle inequality. From the Gauss–Markov theorem, the

least-squares estimator has the smallest bias in the class of all unbiased estimators.

However, it may be possible to find biased estimators that result in a lower MSE

and thus lower prediction risk. These would necessarily have increased bias, but

this could be offset by much lower variance, resulting in a low MSE and thus

lower prediction risk. This motivates the use of biased estimators, such as those

that result from application of parametric penalization.

When parametric penalization (see Chapter 3) is applied to linear estimators, the

solution is not provided by standard least squares. Rather, we seek to minimize the

penalized risk functional

RpenðwÞ ¼
1

n
ðk Zw� y k2 þwT�wÞ; ð7:22Þ

where � is an m� m penalty matrix, which is symmetric and nonnegative definite.

The regularization parameter l is assumed to be absorbed in �. For example, the

ridge regression penalty function is implemented when � ¼ lI, where I is the

m� m identity matrix. The solution that minimizes the penalized risk functional

(7.22) is

w� ¼ ðZTZþ �Þ�1ZTy: ð7:23Þ

An alternative method for minimizing the penalized risk functional is to solve the

following modified least-squares problem:

1. Given the data matrix Z and penalization matrix � ¼ ATA, create the

modified data matrices

U ¼ Z

A

� �

; v ¼ y

0

� �

; ð7:24Þ

LINEAR ESTIMATORS 259

where 0 denotes a column vector of m zeros. In essence, we are including

additional artificial data samples to the observed data.

2. Minimize the empirical risk functional

Remp ¼
1

n
k Uw � v k2 : ð7:25Þ

The solution found by minimizing (7.25) (i.e., using least squares) is equivalent to

the solution found by minimizing (7.22) (penalized least squares). The least squares

solution for (7.25) is

w� ¼ ðUTUÞ�1UTv ¼ ðZTZþ ATAÞ�1ZTy: ð7:26Þ

The method for solving modified least squares via (7.24) and (7.25) is closely

related to the idea of including ‘‘hints’’ (Abu-Mostafa 1995) or artificial examples

in addition to the training data prior to learning or parameter estimation. This can

be a useful approach for implementing penalized regression with software not spe-

cifically designed to do so. However, there is still an issue of model selection, which

is, in this case, equivalent to choosing the number of hints as a proportion of the

number of (original) training samples.

It is possible to analytically transform one representation form into an equivalent

form of the other. For example, a given basis function representation may have an

equivalent kernel representation and a given kernel representation may have an

equivalent basis function representation. These equivalent representations are use-

ful because each representation has its own strengths and weaknesses in terms of

computational efficiency, estimation of complexity, model interpretation, and so on.

The equivalence of representations for linear models is due to the duality in the

least-squares problem (Strang 1986), as is stated next. For the least-squares solution

or penalized least-squares solution, there exists a projection matrix S that projects

any vector y onto the column space of Z:

ŷ ¼ Zw� ¼ Sy: ð7:27Þ

This has a well-known geometric interpretation: The optimal least-squares estimate

of y is an orthogonal projection of y onto a column space of Z (see Fig. 7.2). Note

that estimates ŷ ‘‘live’’ in the column space of Z, which is a linear space defined by

the estimated values of the training data. The projection matrix S is often called the

‘‘hat’’ matrix because it turns data vectors y into estimates ŷ. The matrix S is given

by

S ¼ ZðZTZÞ�1ZT ð7:28aÞ

or for the penalized solution by

S� ¼ ZðZTZþ �Þ�1ZT: ð7:28bÞ

260 METHODS FOR REGRESSION

The matrix S can be interpreted as the equivalent kernel of an optimal basis

function estimate with parameters w� given by (7.23) or (7.26), where the kernel

function is Sðzi; zjÞ ¼ sij for the training data points. For arbitrary x, the equivalent

kernel is

Sðx; xiÞ ¼ gðxÞðZTZÞ�1gTðxiÞ ð7:29aÞ

or for the penalized solution

S�ðx; xiÞ ¼ gðxÞðZTZþ �Þ�1gTðxiÞ: ð7:29bÞ

It is important to keep in mind that an equivalent representation is an analytical

construct, so its basis functions or kernel function may exhibit unusual properties

when compared to typical problem-driven basis or kernel functions. For example,

an equivalent kernel may not necessarily decrease with increasing distances as a

typical smoothing kernel would (see Fig. 7.3).

It is also possible to translate the kernel representation into an equivalent basis

function expansion, as long as the kernel is a symmetric function of its arguments.

This is done using the eigenfunction decomposition of the kernel:

Kðx; x0Þ ¼
X

1

i¼1
eigiðxÞgiðx0Þ; ð7:30Þ

where ei are the eigenvalues and the eigenfunctions are the basis functions giðxÞ.
The series of eigenvalues can be interpreted in the same way as the transfer function

of a linear filter (Hastie and Tibshirani 1990). Analysis of typical kernels indicates

that the eigenvalues tend to fall off rapidly as i!1 (Hastie and Tibshirani 1990).

Column space of Z

y

y − Zw
*

ŷ = Zw
* = Sy

FIGURE 7.2 Optimal least-squares estimate as an orthogonal projection of y onto the

column space of Z. The linear estimates ŷ ‘‘live’’ in the column space of Z, as they are a

linear combination of the columns of Z.

LINEAR ESTIMATORS 261

For example, the four most significant kernel functions corresponding to largest

eigenvalues for the Gaussian kernel (7.8) are shown in Fig. 7.4.

7.2.2 Analytic Form of Cross-Validation

For linear estimates defined by a ‘‘hat’’ matrix S or S�, it is possible to compute

the leave-one-out cross-validation estimate of expected risk analytically (i.e.,

without resampling). This has computational advantages over the resampling

approach described in Section 3.4.2, as repeated parameter estimates are not

required.

FIGURE 7.3 Equivalent kernels of a linear estimator with polynomial basis functions

(polynomials of the third degree). The arrow indicates the kernel center (point of prediction).

Note that equivalent kernels are not always local.

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

e1 =1.0

e2 = 0.45

e3 = 0 .10

e4 = 0.02

FIGURE 7.4 Equivalent basis functions for the Gaussian kernel (7.8) with width parameter

0.55. Only the four most significant equivalent basis functions are shown with their

eigenvalues.

262 METHODS FOR REGRESSION

Recall that in leave-one-out cross-validation, each sample is left out of the train-

ing set, parameters are estimated using the remaining samples, and the left out sam-

ple is then predicted. Let us denote ŷ0i as the predicted fit at xi with the ith point

removed. This can be defined in terms of a linear operation applied to the training

data:

ŷ0i ¼
1

1� sii

X

n

j¼1
j6¼i

sijyj or ŷ0 ¼ S0y: ð7:31Þ

The ‘‘hat’’ matrix S0 is obtained by setting the diagonal values of matrix S to zero

and rescaling each row so that they again sum to 1:

s0ij ¼
sij

1� sii
; i 6¼ j;

0; i ¼ j:

(

ð7:32Þ

Here sij are the elements of S and s0ij are the elements of S0. Also, the difference

yi � ŷ0i can easily be computed via

yi � ŷ0i ¼ yi �
1

1� sii

X

n

j¼1
j 6¼i

sijyj

¼

ð1� siiÞyi �
P

n

j¼1
j 6¼i

sijyj

1� sii

¼
yi �

P

n

j¼1
sijyj

1� sii

¼ yi � ŷi

1� sii
:

ð7:33Þ

Therefore, using (7.33), the leave-one-out cross-validation estimate for the expected

risk is

Rðw�Þ ffi Rcvðw�Þ ¼
1

n

X

n

i¼1

yi � ŷi

1� sii

� �2

; ð7:34Þ

where sii are the diagonal elements of the equivalent kernel matrix S for the basis

function expansion in (7.27).

7.2.3 Estimating Complexity of Penalized Linear Models

Accurate estimation of model complexity is critical for model selection. For linear

approximations using a basis function representation and squared loss, the model

LINEAR ESTIMATORS 263

complexity is given by the number of free parameters. As shown in Chapter 4, the

number of free parameters in this case equals the VC dimension. This section

describes how to estimate model complexity for linear estimates using kernel repre-

sentation and for penalized linear estimates.

When the number of free parameters is not known, estimating the complexity of

a (penalized) linear estimator is based on the eigenvalues of its kernel representa-

tion. From (7.30) we see that the equivalent basis function expansion can be

constructed from the eigenfunction decomposition of a positive symmetric kernel.

By definition, the eigenfunctions are orthogonal, and the eigenvalues are nonnega-

tive for positive symmetric kernels. The number of equivalent degrees of freedom is

given by the number of significant terms in the sum (7.30). Here the significance is

measured by the size of the eigenvalues. For example, given a symmetric smoothing

matrix S, its eigen decomposition (Appendix B) is

S ¼ UDUT; ð7:35Þ

where the columns of U are the eigenvectors (an equivalent orthogonal basis) and

the diagonal of D contains the eigenvalues. If S is a projection matrix, its eigenva-

lues are either 0 or 1. If S is determined via least squares (7.28a), it is a symmetric

projection matrix of rank m. Therefore, m eigenvalues of S would be equal to 1. For

this case, we have traceðSSTÞ ¼ traceðSÞ ¼ rankðSÞ ¼ m, which is the degrees of

freedom of the estimator. On the contrary, if Sl is determined by penalized least

squares, its eigenvalues are in the range [0, 1]. The equivalent degrees of freedom

DoF is given by the number of eigenvalues that are close to 1. Determining eigen-

values of the smoother matrix is computation intensive, so approximations are

made to determine the number of large eigenvalues. One possible approximation

is the sum of the eigenvalues

DoF ¼ traceðSlÞ ð7:36Þ

or the sum of the squared eigenvalues

DoF ¼ traceðSlSTl Þ: ð7:37Þ

However, these approximations are valid only when the eigenvalues rapidly

decrease in size. The approximation (7.36) is equivalent to the commonly used

approximation (Bishop 1995)

DoF ¼
X

n

i¼1

ei

ei þ l

� �

; ð7:38Þ

where l is the (ridge) regularization parameter and ei; i ¼ 1; . . . ; n, are the eigen-

values of the Hessian matrix of the linear (nonpenalized) estimate

H ¼ ZTZ: ð7:39Þ

264 METHODS FOR REGRESSION

Equivalence of (7.36) and (7.38) can be shown by substituting the singular value

decomposition (SVD) for Z into (7.28b) and simplifying (Appendix B describes

the SVD). Let us assume that the SVD of Z is given by

Z ¼ U�VT: ð7:40Þ

Then this can be substituted into (7.28b):

Sl ¼ ZðZTZþ lIÞ�1ZT

¼ U�VTðVSSVT þ lIÞ�1VSUT

¼ U�VTðVðSSþ lIÞVTÞ�1VSUT

¼ U�VTVðSSþ lIÞ�1VTVSUT

¼ USðSSþ lIÞ�1�UT:

: ð7:41Þ

Note that we have used the properties (B.12) and (B.14) described in Appendix B.

The final result is an eigen decomposition of the matrix Sl. The eigenvalues are the

elements of the diagonal matrix Dl ¼ SðSSþ lIÞ�1S. In Appendix B, we find that
the diagonal elements of � correspond to

ffiffiffiffi

ei
p

, where ei are the eigenvalues of Z
TZ.

Therefore, the diagonal elements of Dl correspond to

ei

ei þ l
; i ¼ 1; . . . ; n: ð7:42Þ

These are the eigenvalues of Sl used in approximations (7.36) and (7.38).

Another general approach is to estimate the number of parameters m of a

hypothetical ‘‘equivalent’’ basis function estimator. An equivalence is made

between the penalized linear estimator with unknown complexity and an estimator

for which complexity is simple to determine. An equivalence implies that both esti-

mators provide the same estimate of the prediction risk for the given training data.

This observation can be used to estimate the complexity of a linear estimator, as

detailed next.

Assume that the data are generated according to yi ¼ tðxiÞ þ xi, where the error

xi is independent and identically distributed with zero mean and variance s2 (which

is unknown). Consider a linear estimator specified via matrix S. Its complexity can

be estimated as the number of parameters m of an equivalent linear estimator.

Equivalence implies that both estimators have the same bias and variance. The var-

iance of a linear estimator for estimating the point ŷi is determined as

varðŷiÞ ¼ E½ðŷi � E½ŷi�Þ2�
¼ E½ðsiy� E½siy�Þ2�
¼ E½ðsiðy� E½y�ÞÞ2�
¼ E½ðsixÞ2�
¼ sis

T
i s

2;

ð7:43Þ

LINEAR ESTIMATORS 265

where si is the ith row vector of the matrix S. Note that derivation of (7.43) relies on

the linearity of an estimator. The average variance over the training data set is

varðŷÞ ¼ s2

n
traceðSSTÞ: ð7:44Þ

Now consider an equivalent basis function estimator with m parameters obtained

via least squares. For this equivalent estimator, matrix ~S is determined via (7.28a).

Hence, ~S is symmetric of rank m, so traceð~S~STÞ ¼ traceð~SÞ ¼ rankð~SÞ ¼ m, and the

average variance is

varðŷÞ ¼ s2m

n
: ð7:45Þ

In this equation, m is the number of parameters of a basis function estimator, which

is unknown. Next, we equate the two variances (7.44) and (7.45) in order to esti-

mate the effective degrees of freedom (an approximation for VC dimension) DoF of

an estimator with matrix S:

m ¼ DoF ¼ traceðSSTÞ: ð7:46Þ

Notice that this approach produces the same estimate as (7.37). These complexity

estimates can then be used to estimate expected risk using the methods discussed

in Section 3.4.1 or Chapter 4. As accurate complexity estimates depend on

accurate determination of eigenvalues, special care must be taken in the numerical

computations.

Finally, we point out that expressions (7.36)–(7.38) are usually introduced as the

effective degrees of freedom (of a penalized estimator). Sometimes we use these

expressions to estimate VC dimension, in order to apply the results of statistical

learning theory (SLT) for model selection. However, these expressions represent

only crude estimates for the VC dimension of penalized estimators, as illustrated

by the following example (Shao et al. 2000).

Example 7.1: Estimating model complexity for ridge regression

One challenge facing model selection for ridge regression is estimating the model

complexity (VC dimension). We have discussed two approaches in this book: a

purely analytical one motivated by statistics where the VC dimension is estimated

using the equivalent degrees of freedom in this chapter and the experimental one

motivated by SLT in Section 4.6. In this example, we compare these estimates

for VC dimension in the context of model selection.

In this comparison, ridge regression is implemented using an algebraic polynomial

of fixed (large) degree 25, with an additional constraint on the norm of its coefficients:

Rpenðw; lÞ ¼
1

n

X

n

k¼1
ðyk � f26ðxk;wÞÞ2 þ l k w k2;

where the choice of the regularization parameter l controls model complexity.

266 METHODS FOR REGRESSION

The experimental setup for empirical comparisons is as follows. For a given

training sample and a given type of penalized linear estimator (i.e., penalized poly-

nomial of degree 25), the following model selection methods are used:

1. Vapnik’s measure with VC dimension estimated via a uniform experimental

design: vm-uniform (Vapnik et al. 1994) - see Section 4.6

2. Vapnik’s measure with VC dimension estimated via an optimal experimental

design: vm-opt (Shao et al. 2000), as shown in Table 4.1

3. Vapnik’smeasurewith effectiveDoFused in place of theVCdimension: vm-DoF.

Figure 7.5 shows the three different complexity measures as a function of the reg-

ularization parameter l. It can be seen that the three curves differ, especially when l

is small, which corresponds to high model complexity.

For comparison, two classical model selection criteria are also used:

� Akaike’s final prediction error (fpe)

� Generalized cross-validation (gcv)

both using effective DoF as the complexity measure.

FIGURE 7.5 Different measures of model complexity for the penalized linear estimator.

LINEAR ESTIMATORS 267

Two different target functions are shown in Fig. 7.6: the relatively smooth (low

complexity) ‘‘sine-squared’’ function and the relatively high complexity ‘‘Blocks’’

function. The training set consists of 100 points, which are randomly sampled from

the target function with Gaussian additive noise. The prediction accuracy of model

selection is measured as MSE or the L2 distance between the true target function

and its estimate from the training data. Each fitting (model estimation) experiment

is repeated 300 times, and the prediction accuracies (MSE) for different methods

are compared using standard box plots (showing 5th, 25th, 50th, 75th, and 95th per-

centiles). Comparison results are shown in Figs. 7.7 and 7.8.

For the penalized polynomial, the true VC dimension is unknown, so the only

way to compare complexity measures is to compare their effect on model selection

performance. Figure 7.7 shows the prediction accuracy of the three model complex-

ity measures. Here, the relatively complex ‘‘Blocks’’ function is used to illustrate

the difference between the three complexity measures (they differ most when the

complexity is high, as shown in Fig. 7.5). As we can see in Fig. 7.7, using VC

dimension obtained by the optimal design achieves better model selection perfor-

mance and hence better prediction accuracy than the incorrectly measured VC

dimension (obtained by uniform design). For a smooth target function, like ‘‘sine

squared,’’ the three complexity measures result in similar estimates of VC dimen-

sion, in the region of complexity where the function is defined (see Fig. 7.5). So as

expected, the three complexity measures perform similarly, as shown in Fig. 7.8.

FIGURE 7.6 Target functions used for regression.

268 METHODS FOR REGRESSION

Figures 7.7 and 7.8 also show that the two classical model selection methods, that

is, fpe and gcv, provide prediction accuracy inferior to VC bounds for these target

functions.

7.2.4 Nonadaptive Methods

This section describes representative nonadaptive methods or linear estimators. All

these methods follow the same theoretical framework of Section 7.2. However,

methods described in this section originate from very diverse fields:

� Local polynomial estimators and splines originate from statistics

� RBF networks are commonly used in neural nets

Clear understanding of nonstatistical implementations of linear methods is often

obscured by the field-specific terminology. So in this section descriptions of various

nonadaptive methods are given in the same general framework.

FIGURE 7.7 Model selection results for estimatingBlocks SignalwithPenalizedPolynomials.

Legend: vm¼Vapnik’s method (using VC bounds); fpe¼Akaike’s final prediction error (using

effective DoF); gcv¼ generalized cross-validation (using effective DoF).

LINEAR ESTIMATORS 269

As stated in Section 7.1, all nonadaptive methods can be represented as a linear

combination of predetermined basis functions:

fmðx;wÞ ¼
X

m

i¼1
wigiðxÞ þ w0: ð7:47Þ

So the methods differ mainly in the type of basis functions giðxÞ and the procedure

for choosing m(model selection).

Typically, basis functions in representation (7.47) are parameterized, namely

giðxÞ ¼ gðx; viÞ. For example, for spline methods parameters vi correspond to

knot locations, for RBF networks vi represent center and width parameters of basis

function, and for wavelet methods vi correspond to the dilation and translation para-

meters of the basis functions. In most practical implementations of RBF methods

for regression, basis function parameters are preset or determined based only on x-

values of the training data. This is why such methods are classified as nonadaptive

FIGURE 7.8 Model selection results for estimating sine-squared function with penalized

polynomials. Legend: vm¼Vapnik’s method (using VC bounds); fpe¼Akaike’s final

prediction error (using effective DoF); gcv¼Generalized cross-validation (using effective

DoF).

270 METHODS FOR REGRESSION

in this book. Of course, there also exist adaptive variants of basis function methods

where parameters vi (along with coefficients wi) are estimated from data (Poggio

and Girosi 1990; Wettschereck and Diettrich 1992; Zhang and Benveniste 1992).

This leads to the problems of nonlinear optimization and sparse feature selection

discussed in Section 7.3. However, such (adaptive) implementations of RBF meth-

ods are rather uncommon in practice.

Local Polynomial Estimators and Splines

A spline is a series of locally defined low-order polynomials that are used to

approximate data. The local polynomials are placed end to end (for single variable

functions, x 2 <1), and constraints are defined for all the end points (called knots).

The constraints at the knots always impose continuity in the function and often con-

tinuity in higher-order derivatives. Splines were originally developed to solve

smooth interpolation problems (for single-variable functions), as they overcome

some of the problems inherent with high-order polynomials (see Fig. 7.9). Splines

were motivated by a drafting technique used to draw smooth curves. In this proce-

dure, the points are first plotted, then a thin elastic rod, called a spline, is bent under

tension with weights so that the rod passes over all the points. The rod then provides

a smooth interpolation of the data. A type of numerical smoothing spline, called a

natural cubic spline, is defined by the physical laws describing the drafting spline.

For this particular spline, knot locations are given by the location of the data points.

The natural cubic spline enforces the condition of minimum ‘‘strain energy’’ (pro-

portional to curvature) and minimum distance to the data points (zero for the inter-

polation problem). These conditions can be interpreted from the regularization

framework of minimizing the sum of empirical risk and a complexity penalty.

For problems where x 2 <d; d > 1, there exist generalizations of the classical

spline procedure. Multivariate splines can be constructed by combining the outputs

FIGURE 7.9 A ninth-order polynomial and a cubic spline interpolation of 10 data points.

The cubic spline provides an interpolation with minimum curvature.

LINEAR ESTIMATORS 271

of d one-dimensional splines (i.e., tensor-product splines) or by using radial func-

tions (thin-plate splines, RBFs). The approximating function for spline methods

takes the usual dictionary form

fmðx;w; vÞ ¼
X

m

j¼1
wjgjðx; vjÞ þ w0; ð7:48Þ

where the basis functions gjðx; vjÞ correspond to the spline basis, the parameters vj
correspond to the knot locations, and m is the number of knots.

For splines, in general, the number of knots and their location control the result-

ing complexity of the approximating function. There are two types of knot selection

strategies, nonadaptive and adaptive:

1. Nonadaptive: The nonadaptive strategies only use information about the x-

locations of the data points to determine knot locations. These are often

heuristic. For example, knots are often placed on a subset of the data points or

evenly distributed in the domain of x. More sophisticated strategies are also

used, such as clustering and density estimation (i.e., via vector quantization or

expectation maximization (EM)). After knot selection is performed, deter-

mining the optimal parameters of the splines is a linear least-squares problem.

However, nonadaptive approaches are suboptimal, as they do not use

information about the y-values of the training data.

2. Adaptive: Adaptive strategies attempt to use information about the y-

locations of the data in addition to the x-locations. For a single-variable

function approximated with piecewise linear splines, it can be shown that

the optimal local knot density is (roughly) proportional to the squared

second derivative of the function and the local density of the training data,

and inversely proportional to the local noise variance (Brockmann et al.

1993). Unfortunately, the minimization problem involved in the determina-

tion of the optimal placement of knots is highly nonlinear and the solution

space is not convex (Friedman and Silverman 1989). To solve this

problem in practice, heuristic or greedy optimization approaches are used,

where knot locations and spline parameters are determined together (see

Section 7.3.3).

The problem of knot location in splines is often discussed under

different names in various adaptive methods, for example, partitioning

strategy in recursive partitioning methods and learning center locations in

RBF methods. For high-dimensional problems, knot selection becomes a

critical aspect of complexity control. Practical application of multivariate

splines to high-dimensional problems requires adaptive knot selection

strategies discussed in Section 7.3.3. In this section, we will focus on

univariate and multivariate spline formulation only and assume that knot

location has been determined via nonadaptive methods.

272 METHODS FOR REGRESSION

A connection can be made between the regularization framework and cubic

splines. Consider the following regularization problem: Determine the function

f ðxÞ, from the class of all functions with two continuous derivatives, that minimizes

Rregðf Þ ¼
X

n

i¼1
½f ðxiÞ � yi�2 þ l

ð

b

a

½f 00ðtÞ�2dt; ð7:49Þ

where l is the fixed complexity parameter and a � x1 � � � � � xn � b. This is an

example of regularization with a nonparametric penalty (see Section 3.3.2),

which measures curvature. It can be shown (Reinsch 1967) that from the class of

all functions with two continuous derivatives, the function that is the solution to this

regularization problem is the cubic spline:

f ðxÞ ¼
X

nþ2

j¼1
wjBjðxÞ: ð7:50Þ

Here wj are the parameters of the spline basis BjðxÞ with knots at locations

a � x1 � � � � � xn � b. There are many possible bases for cubic smoothing splines

(see de Boor (1978)), but the B-spline basis has some computational advantages.

Basis functions in this basis have finite support that covers at most five knots

(Fig. 7.10), leading to a linear problem posed in terms of banded matrices. The

B-spline basis for equally spaced knots is defined as

BjðxÞ ¼
1

h3

ðx� vj�2Þ3; vj�2 � x < vj�1;

h3 þ 3h2ðx� vj�1Þ þ 3hðx� vj�1Þ2 � 3ðx� vj�1Þ3; vj�1 � x < vj;

h3 þ 3h2ðvjþ1 � xÞ þ 3hðvjþ1 � xÞ2 � 3ðvjþ1 � xÞ3; vj � x < vjþ1;

ðvjþ2 � xÞ3; vjþ1 � x < vjþ2;

8

>

>

>

<

>

>

>

:

ð7:51Þ

0

1

2

3

4

v j
xv j +1 v j + 2v j −1v j − 2

B
j

x()

FIGURE 7.10 A cubic B-spline centered at knot location vj.

LINEAR ESTIMATORS 273

where vj�2; vj�1; vj; vjþ1, and vjþ2 are the knot locations that make up the support of

a single basis function. The number of knots and h, the distance between consecu-

tive knots, are parameters of the basis. The parameter l in (7.49) controls the trade-

off between fitting the data and smoothness. As l approaches 0, the solution tends

to a twice differentiable function that interpolates the data. As l!1, the curva-

ture is forced to zero, so the solution becomes the least-squares line. Determination

of the parameters wj is a linear estimation problem with parametric penalty. The

solution, in matrix notation, is given by Eq. (7.23). The matrix Z is n� ðnþ 2Þ,
with elements given by

zij ¼ BjðxiÞ: ð7:52Þ

The nonparametric penalty in (7.49) can be made parametric, as the set of basis

functions is known. The elements of the penalty matrix � are

fij ¼ l

ð

B00i ðtÞB00j ðtÞdt; ð7:53Þ

where 00 denotes the second derivative.

A number of generalizations of univariate splines have been suggested for multi-

variate function approximation. One approach is to produce a multivariate spline by

taking the tensor product of d univariate splines, where d is the dimension of the

input space. The Gaussian radial basis and tensor-product truncated power basis

(used by MARS) are examples of this approach.

� Gaussian radial basis: The Gaussian radial basis for x 2 <d is the product of

d univariate Gaussians. A single basis function is denoted by

gðx; vÞ ¼
Y

d

j¼1
exp

�ðxj � vjÞ2
a

 !

¼ exp
� k x� v k2

a

� �

; ð7:54Þ

where a defines the width of the Gaussian and v defines the knot location or

center. This spline basis can also be motivated via regularization with a sui-

tably constructed penalty functional (Girosi et al. 1995) in a manner similar to

cubic splines.

� Tensor-product truncated power basis: The univariate truncated power basis

can be viewed as a generalization of the step (or indicator) function. The

univariate spline basis functions come in left and right pairs

bþq ðx; vÞ ¼ ½þðx� vÞ�qþ; b�q ðx; vÞ ¼ ½�ðx� vÞ�qþ ð7:55aÞ

or in one compact notation

bqðx; u; vÞ ¼ ½uðx� vÞ�qþ; ð7:55bÞ

274 METHODS FOR REGRESSION

where v is the location of the knot, q is the spline order, u 2 f�1; 1g denotes orien-
tation (left or right), and ½ �þ denotes positive support. Figure 7.11 depicts this basis

pair for linear (q ¼ 1) truncated splines. Note that (7.55) with q ¼ 0 results in a step

or piecewise-constant basis. A multivariate spline can be constructed by taking ten-

sor products of the univariate basis (7.55). A single basis function is

gðx; u; vÞ ¼
Y

d

j¼1
½ujðxj � vjÞ� ð7:56Þ

where v defines the knot location and u is a vector consisting only of values f�1; 1g
denoting the orientation. With nonadaptive knot selection strategies, the number of

parameters (knot locations) that require estimation increases exponentially with

dimensionality for the tensor-product basis. Therefore, adaptive methods must be

used with this basis for finite sample problems. The MARS approach in Section

7.3.3 describes an algorithm for this type of adaptive basis function construction.

Radial Basis Function Networks

RBF networks use approximating functions in the form

fmðx;wÞ ¼
X

m

j¼1
wjg

k x� vj k
aj

� �

þ w0; ð7:56Þ

where each basis function is specified by its center vj and width aj parameters. Typi-

cal choice of g includes Gaussian and multiquadratic functions given by (7.8).

Another useful variation is the normalized RBF representation:

fmðx;wÞ ¼

P

m

j¼1
wjgj

P

m

k¼1
gk

; ð7:58Þ

where each gi is an RBF.

FIGURE 7.11 A pair of one-dimensional truncated linear basis functions.

LINEAR ESTIMATORS 275

Practical implementations of RBF networks are usually nonadaptive; that is, the

basis function parameters vj and aj are either fixed a priori or selected based on the

x-values of the training samples. Then, for fixed values of basis function para-

meters, coefficients wi are estimated via linear least squares. The number of basis

functions m or the number of centers is (usually) a regularization parameter of this

learning method.

Hence, nonadaptive RBF implementations differ mainly in the choice of heuris-

tics used for selecting parameters vj and aj. One possible approach is to take every

training sample as a center. This usually results in overfitting, unless a penalty is

added to the empirical risk functional. Most methods select centers as representa-

tive ‘‘prototypes’’ via methods described in Chapter 6. Typical approaches include

generalized Lloyd algorithm (GLA) and Kohonen’s self-organizing maps (SOM).

Other, less common approaches include modeling the input distribution as a mix-

ture model and estimating the center and width parameters via the EM algorithm

(Bishop 1995) and a greedy strategy for sequential addition of new basis functions

centered on one of the training samples (Chen et al. 1991). The number of centers

(prototypes) is typically much smaller than the number of samples. Note that clus-

tering for center selection is performed using only x-values of the training data.

Although this strategy is nonadaptive, it can be quite successful in practice when

the effective dimensionality of a high-dimensional x-distribution is small. For

example, x-samples can live in a low-dimensional manifold of a high-dimensional

x-space. Practical data sets usually have a highly nonuniform distribution, so the

use of clustering or dimensionality reduction methods for center selection is well

justified. In the neural network literature, nonadaptive methods for estimating para-

meters vj and aj are referred to as unsupervised learning methods, whereas estima-

tion of coefficients wi is known as supervised learning.

The nonadaptive RBF training procedure can be summarized by the following

algorithm:

1. Choose the number of basis functions (centers) m.

2. Estimate centers vj using x-values of training data via unsupervised
training, namely SOM or GLA (also known as k-means clustering).

3. Determine width parameters aj using, for example, the following
heuristic:

For a given center vj

(a) Find the distance to the closest center:

rj ¼ min
k
k vk � vj k; for all k 6¼ j :

(b) Set the width parameter

aj ¼ grj ;

where g is the parameter controlling the amount of overlap between
adjacent basis functions. A good practical choice of the overlap
parameter is in the range 1 � g � 3.

276 METHODS FOR REGRESSION

4. For the fixed values of center and width parameters found above,
estimate weights wj via linear least squares (minimization of the
empirical risk).

In summary, the main advantage of nonadaptive RBF network is a fast two-stage

training procedure, comprising of unsupervised learning of basis function centers

and widths, followed by supervised learning of weights via linear least squares.

Such nonadaptive implementation may be particularly attractive for applications

where x-samples (unlabeled data) are readily available but labeled data are scarce.

Another advantage of RBF models is their interpretability, as the basis functions are

usually well localized.

As RBF training relies on the notion of distance in the input space, its results are

sensitive to scaling of input variables. Typically, each input variable is scaled inde-

pendently to zero mean, unit variance, as described in the beginning of Chapter 6.

Such scaling does not take into account relative importance of input variables (i.e.,

their effect on the output) and may result in suboptimal RBF models. In many prac-

tical applications, there are irrelevant input variables that play no role in determin-

ing the output. Clearly, when RBF centers are chosen using only x-values of

training data, it is not possible to detect such irrelevant inputs. Hence, with many

irrelevant inputs, the nonadaptive RBF training procedure will produce a very large

number of basis functions (centers), making training computationally demanding

and potentially intractable.

Finally, we briefly mention that adaptive versions of RBF are usually implemented

using gradient-descent training. This results in very slow training procedures; also the

resulting model may not be localized. A compromise between nonadaptive and adap-

tive implementations may be to use unsupervised learning to initialize the basis func-

tion parameters and then finetune the whole network using supervised training.

7.3 ADAPTIVE DICTIONARY METHODS

This section describes adaptive methods implementing a dictionary representation

in the form

f ðx;w;VÞ ¼
X

m

j¼1
wjgjðx; vjÞ þ w0; ð7:59Þ

where gjðx; vjÞ are basis functions nonlinear in parameters vj and m is the number of

basis functions.

The main motivation for adaptive methods comes from multivariate problems.

Recall that the application of nonadaptive methods, such as tensor-product splines

in Section 7.2.4, to high-dimensional estimation problems leads to the exponential

growth of the number of basis function parameters (knot locations) that need to

be estimated from the data. With finite training data, the number of parameters

quickly exceeds the number of data points for high-dimensional problems, making

ADAPTIVE DICTIONARY METHODS 277

estimation impossible. Adaptive methods select a small number m of basis func-

tions or ‘‘features’’ from an infinite number of all possible nonlinear features in

parameterization (7.59). These nonlinear features are estimated adaptively from

the training data, namely via minimization of the risk functional. Practical imple-

mentation of such adaptive feature selection, however, leads to nonlinear optimiza-

tion and associated problems (as discussed in Section 5.4).

There are two (interrelated) issues for adaptive methods. First, what is a good

choice for basis functions? Second, what is a good optimization strategy for select-

ing a good subset of basis functions? Hence, adaptive methods may be further dif-

ferentiated in terms of the following:

1. All basis functions of the same/different type: Most neural network methods

use the same type of basis functions. Recall that in neural networks, the basis

functions in (7.59) correspond to hidden units of a feedforward network and

that all hidden units typically have the same form of activation function,

namely sigmoid or radial basis. In contrast, many statistical adaptive methods

do not require the form of all basis functions to be the same.

2. Type of basis functions: The need to handle high-dimensional data sets leads

to the choice of the type of basis functions that effectively perform

dimensionality reduction. This is done by using univariate basis functions

gjðtÞ of a scalar argument t, which reflects the ‘‘distance’’ or ‘‘similarity’’

between function’s arguments x and vj in a high-dimensional space. Typical

choices include the dot product t ¼ ðx � vjÞ used in projection pursuit and

MLP networks or the Euclidean distance t ¼k x� vj k used in adaptive

implementations of RBF networks. One can also make a distinction between

bounded basis functions (typically used in neural networks) and unbounded

basis functions (e.g., splines in statistical methods).

3. Optimization strategy: Adaptive methods of statistical origin select basis

functions in (7.59) one at a time using greedy optimization strategy (see

Chapter 5). Neural network methods use gradient-descent-based optimization

or an EM-type iterative optimization. Note that the choice of optimization

strategy is consistent with distinction made in part 1. Namely statistical

methods estimate basis functions one at a time; hence, there is no need for all

basis functions to be the same. On the contrary, neural network methods

based on gradient-descent optimization are more suitable for handling

representation (7.59) with identical basis functions that are all updated

simultaneously.

The rest of this section describes representative adaptive methods. Each subsec-

tion gives a brief description of a method in terms of its optimization technique

and the choice of basis functions. We also provide the description of model selec-

tion and comment on a method’s advantages and limitations. The statistical

method called projection pursuit (Section 7.3.1) and the MLP neural network

(Section 7.3.2) have very similar parameterization of basis functions, but they

use completely different optimization strategies. A popular statistical method

278 METHODS FOR REGRESSION

called multivariate adaptive regression splines (MARS) is described in Section

7.3.3. A very different class of methods is presented in Section 7.3.4 for settings

where the training and future (test) input samples are sampled uniformly on a

fixed grid. This setting is common in signal processing, where data samples repre-

sent noisy (univariate) signals or two-dimensional images. In this case, it is appro-

priate to use orthogonal basis functions (such as harmonic functions, wavelets,

etc.), leading to computationally simple estimates of model parameters.

7.3.1 Additive Methods and Projection Pursuit Regression

Projection pursuit regression is an example of an additive model. Additive models

have an additive approximating function

f ðx;VÞ ¼
X

m

j¼1
gjðx; vjÞ þ w0; ð7:60Þ

where gjðx; vjÞ, j ¼ 1; . . . ;m, represents any method for regression with internal

parameters vj. The additive model is constructed using simpler regression methods

as building blocks, and these methods gjðx; vjÞ become an adaptive basis for the

additive approximating function (7.60). For example, gjðx; vjÞ can be a kernel

smoother, where vj corresponds to the kernel width. In order for an additive approx-

imating function to represent an adaptive method, the basis gjðx; vjÞ must consist of

adaptive methods (i.e., vj is a nonlinear parameter). A kernel smoother with fixed-

width kernels (a linear method) used for gjðx; vjÞ will result in a nonadaptive addi-

tive model. However, in our example above, the kernel width is a parameter that is

adjusted to fit the data, so the resulting additive approximating function (7.60) will

be adaptive. Further discussion of adaptive methods and their relationship to feature

selection can be found in Section 5.4.

Projection pursuit is a specific form of an additive model with univariate basis

functions

f ðx;V;WÞ ¼
X

m

j¼1
gjðwj � x; vjÞ þ w0: ð7:61Þ

Here the basis consists of univariate regression methods gjðz; vjÞ, where z 2 <1 and

vj denote nonlinear parameters. Due to the form of the approximating function

(7.61), the projection pursuit is invariant to affine coordinate transformations (rota-

tions and scaling) of the input variables. The method is called projection pursuit

because wj � x provides an affine projection of the input, which is pursued via opti-

mization (Fig. 7.12).

A greedy optimization approach, called backfitting, is often used to estimate

additive approximating functions (including projection pursuit). The backfitting

algorithm provides a local minimum of the empirical risk by sequentially estimat-

ing the individual basis functions of the additive approximating function. The

ADAPTIVE DICTIONARY METHODS 279

algorithm takes advantage of the following decomposition of the empirical risk for

additive approximating functions:

RempðVÞ ¼
1

n

X

n

i¼1
ðyi � f ðxi;VÞÞ2

¼ 1

n

X

n

i¼1
yi �

X

j6¼k
gjðxi; vjÞ � w0

" #

� gkðxi; vkÞ
 !2

¼ 1

n

X

n

i¼1
ðri � gkðxi; vkÞÞ2:

ð7:62Þ

By holding basis functions j 6¼ k fixed, the risk is decomposed in terms of

variance ‘‘unexplained’’ by basis functions j 6¼ k. Given an initial set of basis

functions j ¼ 1; . . . ;m, it is possible to compute ri, called the partial residuals,

using the data for any k ¼ 1; . . . ;m. The parameters of the single basis

FIGURE 7.12 Projection pursuit regression. (a) Projections are found that minimize

unexplained variance. Smoothing is performed in this space to create adaptive basis

functions. (b) The approximating function is a sum of the univariate adaptive basis functions.

280 METHODS FOR REGRESSION

function k can then be adjusted to minimize the ‘‘unexplained’’ variance.

Notice that ri in this composition can be interpreted as the response variables

for the adaptive method gkðx; vkÞ. In this manner, each basis function can be esti-

mated one at a time. This procedure suggests the following general backfitting

algorithm:

1. Initialize gj , j ¼ 1; . . . ;m, by setting the parameter values vj so that
gjðx; vj Þ � 0 for all x. Also, w0 ¼ 1

n

Pn
i¼1 yi .

2. For each iteration k ¼ 1; . . . ;m, do the following:

(a) Calculate

ri ¼ yi �
X

j 6¼k
gjðxi ; vjÞ � w0 ; i ¼ 1; . . . ; n:

(b) Find parameter values vk that minimize the empirical risk

Rempðvk Þ ¼
1

n

X

n

i¼1
ðri � gk ðx; vkÞÞ2:

Note that this can be implemented by any adaptive regression
method, treating ðxi ; riÞ, i ¼ 1; . . . ; n, as input--output pairs.

End For

3. Stop the iterations after some suitable stopping criteria are met, for
example, when the empirical risk does not decrease appreciably.

The projection pursuit method is a specific form of backfitting with approximating

function in the form (7.61). Within step 2b, estimation of the parameters wj and vj
for each function gjðwj � x; vjÞ is done iteratively using the steepest descent method

(see Appendix A). First, wj is held fixed and vj is determined via scatterplot

smoothing on wj � x (see Fig. 7.12). Then, wj is updated using the steepest descent.

The projection pursuit algorithm is as follows:

1. Initialize gj , j ¼ 1; . . . ;m, by setting the parameter values vj so that
gjðz; vjÞ � 0 for all x. Also, w0 ¼ 1

n

Pn
i¼1 yi .

2. For each iteration k ¼ 1; . . . ;m, do the following:

(a) Calculate residual

ri ¼ yi �
X

j 6¼k
gjðwj � xi ; vj Þ � w0 ; i ¼ 1; . . . ; n:

(b) Projection pursuit: Use the steepest descent method to find wk .
Repeat the following steps until convergence:

ADAPTIVE DICTIONARY METHODS 281

(i) Fix wk and find parameter values vk that minimize the empirical
risk (and/or an estimate of the expected risk)

Rempðvk Þ ¼
1

n

X

n

i¼1
ðri � gk ðwk � x; vkÞÞ2 :

This is implemented by an adaptive univariate smoother, treating
ðti ; ri Þ, i ¼ 1; . . . ; n, as input--output data pairs, where
ti ¼ ðwk � xiÞ.

(ii) Move wk along the path of steepest descent:

wk wk � g
qRempðwk Þ

qwk ;

where g is the learning rate.

End For

3. Stop the iterations after some suitable stopping criteria are met, for
example, when the empirical risk does not decrease appreciably.

In one implementation of projection pursuit, called SMART (smooth multiple addi-

tive regression technique; Friedman 1984a), the supersmoother is employed for

smoothing. The supersmoother (Friedman 1984b) is an adaptive kernel smoother

that employs local cross-validation to adjust the kernel width locally. Other imple-

mentations of projection pursuit have used Hermite polynomials to perform

smoothing (Hwang et al. 1994). In general, a very robust, fast adaptive smoother

is required due to the large number of smoothing computations required by the

above algorithm.

It has been shown (Hastie and Tibshirani 1990) that for linear methods gj, the

backfitting algorithm results in a global minimum. However, for linear methods

the resulting additive approximating function is linear, so more efficient alternatives

to backfitting exist. When nonlinear methods are used for implementing gj, conver-

gence cannot be guaranteed. For some applications, it is desirable to perform grow-

ing or pruning of the set of basis functions (projections). This is accomplished by

first allowing the number of basis functions m to grow with increasing iterations. At

some point, basis functions that do not contribute appreciably to the estimate can be

removed. The SMART implementation of projection pursuit employs a pruning

strategy. The SMART user must select the largest number of basis functions (ml)

to use in the search as well as the final number of basis functions (mf). The strategy

is to start with ml basis functions and remove them based on their relative impor-

tance until the model has mf basis functions. The model with mf basis functions is

then returned as the regression solution.

Rigorous estimates of complexity are difficult to develop for adaptive additive

approximating functions found via backfitting. For the general case, it is unclear

how to relate the complexity of the individual basis functions to the overall

282 METHODS FOR REGRESSION

complexity of the additive approximating function. This issue was discussed in

more detail in Section 5.4. On the contrary, resampling methods for model selection

can be applied in theory, although computation time may limit practical applicabil-

ity of this approach. Of course, these are the inherent difficulties of any adaptive

approximation and nonlinear optimization procedure.

The interpretability of an additive approximating function depends in large part

on the structure and number of individual basis functions gj, j ¼ 1; . . . ;m. If each
basis is a function of a single input variable

f ðx;VÞ ¼
X

d

j¼1
gjðxj; vjÞ þ w0; ð7:63Þ

then the effect of each input variable on the output can be observed. Projection pur-

suit regression with m ¼ 1 leads to the interpretable form

f ðx; v;wÞ ¼ gðw � x; vÞ þ w0: ð7:64Þ

This consists of a linear projection onto a one-dimensional space followed by a

nonlinear mapping to the output. However, projection pursuit with m > 1 is more

difficult to interpret due to the multiple affine projections.

Here, we also briefly mention Partial Least Squares (PLS) regression (Wold

1975), an approach that combines feature selection and dimensionality reduction

with predictive modeling for multiple inputs and one or more outputs. PLS was

developed in the field of Chemometrics, where one often encounters problems

where there is a high degree of linear correlation between the input variables.

PLS regression relies on the assumption that in a physical system with

many measurements, there are only a few underlying significant latent variables.

In other words, although a system might have many measurements, not all of

the measurements will be independent of each other. In fact, many of the measure-

ments will be linearly dependent on other measurements. Thus, PLS regression

seeks to find a linear transformation of the original input space to a new input space,

where the basis vectors of this new input space are the directions that contain the

most significant information, as determined by the greatest degree of correlation

between all of the input variables. Because the transformation is based on a corre-

lation (and hence the output), this approach is an adaptive approach. This differs

from PCA regression, where the principal components are used to reduce the

dimensionality of the problem before applying linear regression, both of which

are linear operations. When linear regression alone is applied to this type of

data, singularity problems arise when the inputs are close to colineal or extremely

noisy.

The PLS algorithm starts by finding the direction in the input space that defines

the best correlation of all the input values with the output values. All of the original

input values are projected onto this direction of greatest correlation. The input

values are then reduced by the contribution that was explained by the projection

onto this first latent structure.

ADAPTIVE DICTIONARY METHODS 283

The PLS algorithm is repeated using the residuals of the input values, that is,

the portion of the input values that were not explained by the first projection.

The PLS algorithm finds the next direction in the input space that is orthogonal

to the first projection direction and that defines the best correlation for explain-

ing the residuals. Then, this is the direction that explains the second most sig-

nificant information about the original input values. This process is repeated up

to a certain number of latent variables or latent structures. The process is usually

stopped when an analysis of a separate test data set, or a cross-validation

scheme, shows that there is little additional improvement in total training error.

In practice, two or three latent structures are used resulting in an interpretable

model.

Note that PLS regression was motivated by mainly heuristic arguments, and

only later found increased acceptance from statisticians (Frank and Friedman

1993). The PLS algorithm implements a form of penalization by effectively

shrinking coefficients for directions in the input space that do not provide

much input spread (Frank and Friedman 1993). In practice, this tends to reduce

the variance of the estimate.

7.3.2 Multilayer Perceptrons and Backpropagation

Multilayer perceptron (MLP) is a very popular class of adaptive methods where

the basis functions in representation (7.1) have the form gjðx; vjÞ ¼ sðx � vjÞ, with
univariate activation function sðtÞ usually taken as a logistic sigmoid or

hyperbolic tangent (7.5); see Fig. 7.1. This parameterization corresponds to a

single-hidden-layer MLP network with a linear output unit described earlier in

Chapter 5.

MLP networks with sufficient number of hidden units can approximate any con-

tinuous function to a prespecified accuracy; in other words, MLP networks are uni-

versal approximators. (See the discussion in Section 3.2 on the approximation and

rate-of-convergence properties of MLPs.) Ripley (1996) provides a good survey of

results on approximation properties of MLPs. However, as noted in Section 3.2,

these theoretical results are not very useful for practical problems of learning

with finite data.

In terms of representation, MLP is a special case of projection pursuit where all

basis functions in (7.61) have the same fixed form (i.e., sigmoid). Conversely, pro-

jection pursuit representation can be viewed as a special case of MLP because a

univariate basis function gj in (7.61) can be represented as a sum of shifted sig-

moids (Ripley 1996). Hence, MLP and projection pursuit are equivalent in terms

of representation and approximation capabilities.

However, MLP implementations use optimization and model selection proce-

dures completely different from projection pursuit. So the two methods usually pro-

vide different solutions (regression estimates) with finite data. In general, projection

pursuit regression can be expected to outperform MLP for target functions that vary

significantly only in a few directions. On the contrary, MLPs tend to work better for

estimating a large number of projections.

284 METHODS FOR REGRESSION

MLP optimization (parameter estimation) is usually performed via backpropaga-

tion that updates all basis functions simultaneously by taking a (small) partial gra-

dient step upon presentation of a single training sample. This procedure is very slow

but typically results in reasonably good and robust predictive models, even with

large (overparameterized) MLP networks. The explanation lies in a combination

of the two distinct properties of MLP networks:

� Smooth well-behaved sigmoid basis functions (with saturation limits)

� Regularization properties of the backpropagation algorithm that often prevent

overfitting

However, this form of regularization (hidden in the optimization procedure) makes

it difficult to perform explicit complexity control necessary for model selection.

These issues will be detailed later in this section.

This section describes commonly used MLP training by way of the backpro-

pagation algorithm introduced in Chapter 5. The purpose of discussion is to show

how practical implementations of nonlinear optimization affect model selection.

This is accomplished by interpreting various MLP training techniques in terms of

structural risk minimization. For the sake of discussion, we assume standard

backpropagation training for minimizing empirical risk. However, most conclu-

sions will hold for any other (nongreedy) numerical optimization procedure (con-

jugate gradients, Gauss–Newton, etc.). Note that a variety of general-purpose

optimization techniques (described in Appendix A) can be applied for estimating

MLP weights via minimization of the empirical risk. These optimization meth-

ods are always computationally faster than backpropagation, and they often pro-

duce equally good or better predictive models. Bishop (1995) and Ripley (1996)

describe training MLP networks via general-purpose optimization.

The standard backpropagation training procedure described in Chapter 5 per-

forms a parameter (weight) update on each presentation of a training sample

according to the following update rules:

Output layer

d0ðkÞ ¼ŷðkÞ � yðkÞ; ð7:65aÞ

wjðk þ 1Þ ¼ wjðkÞ � gd0ðkÞzjðkÞ; j ¼ 0; . . . ;m: ð7:65bÞ

Hidden layer

d1jðkÞ ¼ d0ðkÞs0ðajðkÞÞwjðk þ 1Þ; j ¼ 0; . . . ;m; ð7:65cÞ

vijðk þ 1Þ ¼ vijðkÞ � gd1jðkÞxiðkÞ; i ¼ 0; . . . ; d; j ¼ 0; . . . ;m; ð7:65dÞ

where xðkÞ and yðkÞ are the kth training samples, presented at iteration step k, d0ðkÞ
is the difference between the current estimate and yðkÞ, and s0 is the first derivative

ADAPTIVE DICTIONARY METHODS 285

of the sigmoid activation function. Equations (7.65) are computed during the back-

ward pass. In addition, the following quantities are computed in the forward pass:

aj ¼
X

d

i¼0
xivij; � ¼ 1; . . . ;m; ð7:66Þ

zj ¼ gðajÞ; j ¼ 1; . . . ;m;
z0 ¼ 1:

ð7:67Þ

The quantities zjðkÞ can be interpreted as the outputs of the hidden layer. Notice that
weight updating equations (7.65b) and (7.65d) have a similar form, known as the

generalized delta rule:

wðk þ 1Þ ¼ wðkÞ � gdðkÞzðkÞ; k ¼ 1; . . . ; n; ð7:68Þ

where the parameter w could be a weight in the input layer or in the hidden layer. In

this section, we will refer to this equation (7.68) as the updating rule for backpro-

pagation with the understanding that it applies to both input-layer and hidden-layer

weights.

Many implementations use fixed-step gradient descent, where the learning rate g

is set to a small constant value independent of k. A simple commonly used enhance-

ment to the fixed-step gradient descent is adding a momentum term:

wðk þ 1Þ ¼ wðkÞ � gdðkÞzðkÞ þ m�wðkÞ; k ¼ 1; . . . ; n; ð7:69Þ

where �wðkÞ ¼ wðkÞ � wðk � 1Þ and m is the momentum parameter. This is moti-

vated by considering an empirical risk (or error) functional, which has very differ-

ent curvatures in different directions (see Fig. 7.13(a)). For such error functions,

(a)

(b)

FIGURE 7.13 (a) For error functionals with different curvatures in different directions,

gradient descent with fixed steps produces oscillatory behavior with slow progress toward the

valley of the error function. (b) Including a momentum term effectively smooths the

oscillations, leading to faster convergence on the valley.

286 METHODS FOR REGRESSION

successive steps of gradient descent produce oscillatory behavior with a slow pro-

gress along the valley of the error function (see Fig. 7.13(a)). Adding a momentum

term introduces inertia in the optimization trajectory and effectively smoothes out

the oscillations (see Fig. 7.13(b)).

In the versions of backpropagation (7.68) and (7.69), the weights are updated

following presentation of each training sample and taking a partial gradient step.

These ‘‘online’’ implementations usually require that training samples are pre-

sented in random order. In contrast, batch implementations of backpropagation

update full gradient based on presentation of all training samples:

rrðkÞ ¼
X

n

i¼1
dizi;

wðk þ 1Þ ¼ wðkÞ � grrðkÞ; k ¼ 1; 2; . . . :

ð7:70Þ

Online implementation (7.68) has more natural ‘‘neural’’ interpretation than (7.70).

Moreover, when training samples are presented in random order, the online version

can be related to stochastic approximation (see Section 5.1). This suggests that

online implementation is less likely to be trapped in a local minimum. On the con-

trary, it can be argued that batch version (7.70) provides more accurate estimates of

the true gradient. Ultimately, the best choice between batch and online implemen-

tations depends on the problem.

Based on stochastic approximation interpretation of backpropagation, the learn-

ing rate needs to be slowly reduced to zero during training. The learning rate should

be initially large to approach the local minimum rapidly, but small at the final stages

of training (i.e., near the local minimum). White (1992) used stochastic approxima-

tion arguments to provide learning rate schedules that guarantee convergence to a

local minimum. However, in practice, such theoretical rates lead to slow conver-

gence, and most implementations of backpropagation use either constant (small)

learning rate or large initial rate (to speed up convergence) followed by a small

learning rate (to ensure convergence). In general, the optimum learning rate sche-

dules are highly problem-dependent, and there exist no universal general rules for

selecting good learning rates. In the neural network literature, one can find hun-

dreds of recommendations for ‘‘good’’ learning rates. These include various propo-

sals for individual learning rate schedule for each weight. See Haykin (1994) for a

good survey. However, most practical implementations of backpropagation use the

same learning rate schedule for all network parameters (weights).

Another important practical consideration is a phenomenon known as premature

saturation. It happens because sigmoid activation units may produce nearly flat

regions of the empirical risk functional. For example, assuming that a total input

activation to logistic unit is large (say 5), its derivative

s0ðtÞ ¼ sðtÞð1� sðtÞÞ; for sðtÞ ¼ 1

1þ expð�tÞ ; ð7:71Þ

ADAPTIVE DICTIONARY METHODS 287

is close to zero (see Fig. 7.14). Suppose that the desired (correct) output of this unit is

0. Then, it would take many training iterations to change its output to the desired

value, as the derivative is very small. Such premature saturation often leads to a sad-

dle point of the risk functional, and it can be detected by evaluating the Hessian (see

Appendix A). However, standard backpropagation uses only the gradient information

and hence cannot distinguish among minima, maxima, or saddle points of the risk

functional. Premature saturation can occur when the values of input samples xi
and/or the values of weights are too large (or too small). This implies that proper scal-

ing of the input data and proper initialization of weights are critical for backpropaga-

tion training. We recommend standard (zero mean, unit variance) scaling of the input

data for the usual logistic or hyperbolic tangent activations. The common prescrip-

tion for initialization is to set the weights to small random values. This takes care of

premature saturation. However, quantifying ‘‘good’’ small initial values is tricky

because initialization has an inevitable regularization effect on the final solution.

Next, we discuss complexity control in MLP networks trained via backpropaga-

tion. Recall that estimation and control of model complexity is a central issue in

learning with finite samples. In a dictionary representation (7.59), the number of

hidden units m can be used as a complexity parameter. However, application of

the backpropagation training introduces additional mechanisms for complexity con-

trol. These mechanisms are implicit in the implementation details of the optimiza-

tion procedure, and they cannot be easily quantified, unlike the number of weights

or the number of hidden units.

The following interpretation (Friedman 1994a) is useful for understanding reg-

ularization effects of backpropagation. A nonlinear optimization procedure for

training MLP specifies a one-dimensional path through a parameter (weight) space.

With backpropagation, moving along this path (in the direction of gradient) guar-

antees the decrease of empirical risk. So possible solutions (predictive models) cor-

respond to the points on this path. The path itself obviously depends on

1. The training data itself as well as the order of presentation of the samples

2. The set of nonlinear approximating functions, namely parameterization (7.59)

0

0.2

0.4

0.6

0.8

1

–10 –5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

s t()

s t()

t

′ s t() ′ s t()

FIGURE 7.14 For argument values with a large magnitude, the slope of the sigmoid

function is very small, leading to slow convergence.

288 METHODS FOR REGRESSION

3. The starting point on the path, namely the initial parameter values (initial

weights)

4. The final point on the path, which depends on the stopping rules of an

algorithm

To analyze the effects of an optimization algorithm, assume that factors 1 and 2

are fixed. As the MLP error surface has multiple local minima, the particular solu-

tion (local minimum) found by an optimization method will depend on the choice

of factors 3 and 4. For example, when initial weights are set to small random values,

backpropagation algorithm tends to converge to a local minimum with small

weights. When the maximum number of gradient-descent steps is used as a stop-

ping rule, it effectively penalizes solutions corresponding to points on the path (in

the parameter space) distant from the starting point (i.e., initial parameter values).

Since both the initialization of parameters and the stopping rule adopted by an opti-

mization algorithm effectively impose constraints in the parameter space, they

introduce a regularization effect on the final solution.

From the above discussion, it is clear that for MLP networks with backpropaga-

tion training we can define a structure on a set of approximating functions in several

ways:

1. Initialization of parameters as discussed in Section 4.4 and reproduced

herewith: Consider the following structure

Si ¼ fA : f ðx;wÞ; k w0 k� cig; where c1 < c2 < c3 < . . . ; ð7:72Þ

where w0 denotes a vector of initial parameter values (weights) used by an

optimization algorithm A and i is an index for the structure. As gradient

descent only finds a local minimum near initial parameter values, the global

minimum (subject to k w0 k� ci) is likely to be found by performing

minimization of the empirical risk starting with many (random) initial

conditions satisfying k w0 k� ci and then choosing the best one. Then the

structure element Si in (7.72) is specified with respect to an optimization

algorithm A for parameter estimation (via the ERM) applied to a set of

functions with initial conditions w0. The empirical risk is minimized for all

initial conditions satisfying k w0 k� ci. Even though such exhaustive search

for global minimum is never done in practice due to prohibitively long

training of neural networks, parameter initialization has a pronounced

regularization effect and hence can be used for model selection, as demon-

strated later in this section.

2. Stopping rules are a common approach used to avoid overfitting in large MLP

networks. Early stopping rules are very difficult to analyze, as the final

weights obviously depend on the (random) initialization. Early stopping can

be interpreted as a form of penalization, where a penalty is defined on a path

in the parameter space corresponding to the successive model estimates

ADAPTIVE DICTIONARY METHODS 289

obtained during backpropagation training. For example, Friedman (1994a)

provides a penalization formulation where the penalty is proportional to the

number of gradient-descent steps. Under this interpretation, selecting an

optimal number of gradient steps can be done using standard resampling

techniques for model selection under the penalization formulation (see

Chapter 3). In practice, however, model selection via early stopping is tricky

due to its dependence on random initial conditions and the existence of

multiple local minima. Even though early stopping clearly has a penalization

effect, it is difficult to quantify in mathematical terms. Moreover, the early

stopping approach is inconsistent with the original goal of minimization of

the risk functional. So we do not favor this approach on conceptual grounds

and will not discuss it further.

3. Dictionary representation

f ðx;w;VÞ ¼
X

m

j¼1
wjgjðx; vjÞ þ w0; ð7:73Þ

where gjðx; vjÞ are sigmoid basis functions nonlinear in parameters vj. Here

each element of a structure is an MLP network, where m, the number of hid-

den units, is the index of the structure element. So the problem of model

selection is to choose the MLP with an optimal number of hidden units for

a given data set.

4. Penalization of (large) parameter values. Under the penalization approach,

the network topology (number of hidden units) is fixed, and model complex-

ity is achieved by minimizing the ‘‘penalized’’ risk functional with a ridge

penalty:

Rpenðo; liÞ ¼ RempðoÞ þ li k w k2 : ð7:74Þ

As explained in Chapter 4, this penalization formulation can be interpreted as

the following structure:

Si ¼ ff ðx;wÞ; k w k2� cig; where c1 < c2 < c3 < . . . ; ð7:75Þ

where i is an index for the structure. The choice of optimal ci corresponds to

optimal selection of li in the penalization formulation. Online version of

penalized backpropagation is known as weight decay (Hinton 1986):

wðk þ 1Þ ¼ wðkÞ � gðdðkÞzðkÞ þ lwðkÞÞ; k ¼ 1; . . . ; n: ð7:76Þ

Note that the penalization approach automatically takes care of the premature

saturation by penalizing large weights. A similar form of penalization (which

290 METHODS FOR REGRESSION

includes ridge penalty as a special case) given by Eq. (3.17) was successfully

used for time series prediction (Weigend et al. 1990). There are many

different procedures for penalizing network weights (Le Cun et al. 1990b;

Hassibi and Stork 1993). They are presented using pseudobiological termi-

nology (i.e., optimal brain damage, optimal brain surgeon) that often obscures

their statistical interpretation.

Clearly, each of the above approaches can be used to control the complexity of

MLP models trained via backpropagation. Moreover, all practical implementations

of backpropagation require specification of the initial conditions (structure 1) and a

set of approximation functions (structure 3 or 4). Hence, as a result of backpropa-

gation training we always observe the combined effect of several factors on the

model complexity. This prevents accurate estimation of the complexity for MLP

networks and makes rigorous complexity control difficult (if not impossible). For-

tunately, this problem is somewhat alleviated by the robustness of backpropagation

training. Unlike statistical methods based on greedy optimization, where incorrect

estimates of model complexity can lead to overfitting, inherent regularization prop-

erties of backpropagation often safeguard against overfitting.

Next, we present an example illustrating the regularization effect of initializa-

tion, which is rather unknown in the neural network community. In order to focus

on initialization, we implement the structure 1 as defined above, for a given data set

and fixed MLP network topology. The network is trained starting with random initi-

al weights satisfying the regularization constraint k w0 k� ci, and then the predic-

tion (generalization) error of the trained network is calculated. Exhaustive search

for the global minimum (subject to k w0 k� ci) is (approximately) achieved by

training the network with many random initializations (under the same constraint

ci) and choosing the final model with smallest empirical risk. The purpose is to

describe the effect of ci-values on the prediction performance of the trained MLP

network. The experimental procedure and results are as follows:

� Training data are generated using a univariate target function

y ¼ ðx� 2Þð2x� 1Þ
1þ x2

; where x ¼ ½�5; 10�;

where 15 training samples are taken uniformly spaced in x, and y-values of

samples are corrupted with Gaussian noise. The input (x) training values are

prescaled to the range ½�0:5; 0:5� prior to training. Training data and the true

function are shown in Fig. 7.15.

� Network topology consists of an MLP with a single input (x) unit, single

output (y) unit, and eight hidden units. Input and output units are linear;

hidden units use logistic sigmoid activation.

� Backpropagation implementation is by a standard online version of back-

propagation (Tveter 1996). No momentum term was used, and the learning

ADAPTIVE DICTIONARY METHODS 291

rate was set to 0.5 (default value) in all runs. The number of training epochs

was set to 100,000 to ensure thorough minimization.

� Initialization bounds are set in the range c ¼ ½0; 30�. For each value of c, the

network was trained 30 times with random initial values from the interval

½�c;þc� and the best network (i.e., providing smallest training error) was

selected. This ensures that the final predictive model closely corresponds to

the global minimum.

� Prediction performance is measured as the MSE of the best trained network

for a given value of c.

� Discussion and summary of results: According to the experimental setup, the

predictive models are indexed by the initialization range c. As the network is

clearly overparameterized (eight hidden units for 15 samples), we expect that

small c-values produce better predictive models. However, precise determi-

nation of what is small can be done only empirically, as it depends on the size

of the data set, complexity of the target function, amount of noise, and the

MLP network size. For this example, the best predictive model is provided by

the values of c ¼ 0:0001–0:001. See the example of fit in Fig. 7.16(a). Larger

values (up to c ¼ 7) provide partial overfit as shown in Fig. 7.16(b). Values

larger than 7 result in significant overfitting (see Fig. 7.16(c)). These results

demonstrate that the initialization of weights has a significant effect on the

predictive quality of MLP models obtained using backpropagation.

In addition, our experiments show that the number of local minima and/or sad-

dle points found with different (random) initializations grows quite fast with the

value of initialization bound c. In particular, for c-values up to 6, all local minima

give roughly the same value of the minimum empirical risk. With larger values of

c, the number of different local minima (or saddle points) grows very fast, and

most of them produce quite large values of the empirical risk. This suggests that

practical versions of backpropagation should have additional provisions for

escaping from local minima. This is usually accomplished via the use of simu-

lated annealing or/and directed pseudorandom search for good initial weights via

genetic optimization (Masters 1993). Both techniques (simulated annealing and

FIGURE 7.15 True function and the training data used for the example.

292 METHODS FOR REGRESSION

genetic optimization) significantly increase computational requirements of back-

propagation training.

7.3.3 Multivariate Adaptive Regression Splines

The MARS approach uses tensor-product spline basis functions formed as a product

of univariate splines, as described in Section 7.2.4. For high-dimensional problems,

it is not possible to form tensor products that include more than just a few univariate

splines. Also, for multivariate problems the knot locations need to be determined

from the data. The MARS algorithm (Friedman 1991) determines the knot locations

and selects a small subset of univariate splines adaptively from the training data.

Combined in MARS are the ideas of recursive partitioning regression (CART)

(Breiman et al. 1984) and a function representation based on tensor-product splines.

Recall that the method of recursive partitioning consists in adaptively splitting the

FIGURE 7.16 The effect of weight initialization on complexity. (a) For small initial values

of weights ð<0:001Þ, no overfitting occurs. (b) Initial values less than 7.0 lead to some

overfit. (c) Larger initial values lead to greater overfit.

ADAPTIVE DICTIONARY METHODS 293

sample space into disjoint regions andmodeling each regionwith a constant value. The

regions are chosen based on a greedy optimization procedure, where in each step the

algorithm selects the split that causes the largest decrease in empirical risk. Theprogress

of the optimization can be represented as a tree.MARSemploys a similar greedy search

and tree representation; however, instead of a piecewise-constant basis, MARS has the

advantage of a tensor-product spline basis discussed in Section 7.2.4. In this section,we

first present the MARS approximating function. Then we define a tree-based

representation of the approximating function useful for presenting the operations of

the greedy optimization. Finally, we discuss issues of estimating model complexity

and the interpretation of the MARS approximating function.

Following is a single linear (q ¼ 1) tensor-product spline basis function used by

MARS:

gðx; u; v;�Þ ¼
Y

k2�
bðxk; uk; vkÞ; ð7:77Þ

where b is the univariate basis function (7.55) with q ¼ 1, v is the knot location, u is

a vector consisting only of values f�1; 1g denoting the orientation, and the set � is

a subset of the input variable index, 1; . . . ; d. The set � is used to indicate which

subset of the input variables is included in the tensor product of a particular basis

function. For example, particular input variables can be adaptively included in the

individual basis functions making up the approximating function. In the MARS

basis (7.77), the set of possible knot locations is restricted to all possible combina-

tions of individual coordinate values existing in the data (Fig. 7.17). The MARS

approximating function is a linear combination of the individual basis functions:

fmðx;w;U;V;f�1; . . . ;�mgÞ ¼
X

m

j¼1
wj

Y

k2�
bðxk; ujk; vjkÞ þ w0: ð7:78Þ

FIGURE 7.17 Valid knot locations for MARS occur at all combinations of coordinate

values existing in the data. For example, three data points in a two-dimensional input space

lead to nine valid knot locations indicated by the intersections of the dashed lines.

294 METHODS FOR REGRESSION

Note that this basis function representation allows great flexibility for constructing

an adaptive basis. A sophisticated greedy optimization strategy is used to adapt the

basis functions to the data. To understand this optimization strategy, it is useful to

interpret the MARS approximating function as a tree. The basic building blocks of

the MARS model is a left–right pair of univariate basis functions bþ and b� with a

particular knot location v for a particular input variable. In the tree, each node

represents a product of these univariate basis functions. During the greedy search,

twin daughter nodes are created by taking the product of each of the univariate basis

functions pairs with the same parent basis. For example, if gparentðxÞ denotes a par-
ent node, then the two daughter nodes would be

gdaughterþðxÞ ¼ bþðxk; vjÞ � gparentðxÞ

and

gdaughter�ðxÞ ¼ b�ðxk; vjÞ � gparentðxÞ;

where vj is a particular knot location for a particular input variable xk. Technically,

parent nodes are not ‘‘split’’ as in other recursive partitioning methods, as daughter

nodes inherit (via product) the parent basis function. Also, all nodes (not just the

leaves) are candidates for bearing twin univariate basis functions. However, we will

use the term ‘‘split’’ to denote the creation of daughter nodes from a parent node.

Figure 7.18 shows an example of a MARS tree. The function described is

f̂ ðxÞ ¼
X

6

j¼0
wjgjðxÞ; ð7:79Þ

where we will assume g0ðxÞ � 1 representing the zeroth-order term and the root

node of the tree. The depth of the tree indicates the interaction level. A tree with

a depth of 1 represents an additive model. On each path down, input variables are

g0 x()= 1

g1 x() =

g0 x()⋅ b+ x1 ,v1()
g2 x()=

g0 x()⋅ b− x1 ,v1()
g3 x() =

g0 x()⋅ b+ x2 ,v2()
g4 x()=

g0 x()⋅ b− x2 ,v2()

g5 x() =

g2 x()⋅ b+ x3 ,v3()
g6 x() =

g2 x()⋅ b− x3 ,v3()

FIGURE 7.18 Example of a MARS tree.

ADAPTIVE DICTIONARY METHODS 295

allowed to enter at most once, preserving the tensor-product spline construction.

The algorithm for constructing the tree uses forward and backward stepwise strat-

egy. In the forward stepwise procedure, a search is performed over every node in

the tree to find a node that, when split, improves the fit according to the model

selection criteria. This search is done over all candidate variables, valid knot points

vjk, and basis coefficients. For example, in Fig. 7.18 the root node g0ðxÞ is split first
on variable x1, and the two daughter nodes g1ðxÞ and g2ðxÞ are created. Then the

root node is split again on variable x2, creating the nodes g3ðxÞ and g4ðxÞ. Finally,
node g2ðxÞ is split on variable x3. In the backward stepwise procedure, leaves are

removed that cause either an improved fit or a slight degradation in fit as long as

model complexity decreases. This creates a series of models from which the best, in

terms of model selection criteria, is returned as the final MARS model.

The measure of fit used by the MARS algorithm is the generalized cross-valida-

tion estimate. Recall from Section 3.4.1 that the gcv model selection criterion pro-

vides an estimate of the expected risk and requires an estimate of model

complexity. The model complexity estimate for MARS proposed by Friedman

(1991) is to first determine the degrees of freedom assuming a nonadaptive basis

and then add a correction factor to take into account the adaptive basis construction.

Theoretical and empirical studies seem to indicate that adaptive knot location adds

between two and four additional model parameters (degrees of freedom) for each

split (Friedman 1991). Therefore, a reasonable estimate for model complexity of a

given MARS model would be

hMARS � ð1þ ZÞm; ð7:80Þ

where m is the equivalent degrees of freedom of estimating parameters w, assuming

linearly independent nonadaptive basis functions and Z, the adaptive correction fac-

tor, is in the range 2 � Z � 4 (the suggested value is Z ¼ 3:0). The estimate of

equivalent degrees of freedom is obtained using the method of Section 7.2.3, treat-

ing the basis functions g1ðxÞ; . . . ; gmðxÞ determined via greedy search as fixed (non-

adaptive) in the expression

f ðxÞ ¼
X

m

j¼1
wjgjðxÞ þ w0: ð7:81Þ

In the original implementation (Friedman 1991), the user has a number of para-

meters that control the search strategy. For example, the user must indicate the max-

imum number of basis functions mmax that are created in the forward selection

period of the search. Also, the user is allowed to limit the interaction degree tmax

(tree depth) for the MARS algorithm. The following steps summarize the MARS

greedy search strategy:

1. Initialization: The root node consists of the constant basis function
g0ðxÞ ¼ 1. Estimate w0 via the mean of the response data.

296 METHODS FOR REGRESSION

2. Forward stepwise selection: Repeat the following until the tree has the
specified mmax number of nodes.

(a) Perform an exhaustive search over all valid nodes in the tree (depth
less than tmax), all valid split variables (conforming to tensor-spline
construction), and all valid knot points. For all of these combinations,
create a pair of daughters, estimate the parameters w (a linear
problem), and estimate complexity via hMARS � ð1þ ZÞm.

(b) Incorporate the daughters into a tree that result in the largest decrease
of prediction risk estimated using the gcv model selection criterion.

3. Backward stepwise selection: Repeat the following for mmax iterations:

(a) Perform an exhaustive search over all nodes in the tree, measuring
the change in model selection criterion gcv resulting from removal
of each node.

(b) Delete the node that leads to the largest decrease of gcv, or if it is
never decreased, the smallest increase.

(c) Store the resulting model.

4. Of the series of models created by the backward stepwise selection,
choose the one with the best gcv score as the final model.

Interpretation of the MARS approximating function is possible via an ANOVA

(ANalysis Of VAriance) decomposition (Friedman 1991), as long as the maximum

interaction level (tree depth) is not too large. The ANOVA decomposition takes

advantage of the sparse nature of the MARS approximating function and is created

by regrouping the additive terms in function approximation:

f̂ ðxÞ ¼
X

m

k¼1
wkgkðxÞ þ w0

¼ w0 þ
X

d

i¼1
fiðxiÞ þ

X

d

i;j¼1
fijðxi; xjÞ þ � � � �

ð7:82Þ

The functions fiðxiÞ, fijðxi; xjÞ, and so on, then isolate the effect of a particular subset
of input variables on the approximating function output. This decomposition is

easily interpretable only if each of the MARS basis functions tends to use a

small subset of the input variables. The MARS method is well suited for high-

as well as low-dimensional problems with a small number of low-order interac-

tions. An interaction occurs when the effect of one variable depends on the level

of one or more other variables and the order of the interaction indicates the number

of interacting variables. Like other recursive partitioning methods, MARS is not

robust in the case of outliers in the training data. It also has the disadvantage of

being sensitive to coordinate rotations. For this reason, the performance of the

MARS algorithm is dependent on the coordinate system used to represent the

data. This occurs because MARS partitions the space into axis-oriented subregions.

The method does have some advantages in terms of speed of execution, interpreta-

tion, and relatively automatic smoothing parameter selection.

ADAPTIVE DICTIONARY METHODS 297

7.3.4 Orthogonal Basis Functions and Wavelet Signal Denoising

In signal processing, a popular approach for approximating univariate functions

(called signals or waveforms) is to use orthonormal basis functions giðxÞ in repre-

sentation (7.47). Orthonormal basis functions have the property
ð

giðxÞgjðxÞdx ¼ dij; ð7:83Þ

where dij ¼ 1 if i ¼ j and zero otherwise. Examples include Fourier series,

Legendre polynomials, Hermite polynomials, and, more recently, wavelets. Signals

correspond to a function of time, and samples are collected on a uniform grid spe-

cified by the sampling rate. As discussed in Section 3.4.5, with a uniform distribu-

tion of input samples, the predictive learning setting becomes equivalent to function

approximation (model identification). Existing signal processing methods adopt a

function approximation framework; however, many applications can be better for-

malized under a predictive learning setting. For example, in the signal processing

community, there has been much work on the problem of signal denoising. In terms

of the general regression problem setting (2.10), this is a problem of recovering the

‘‘true’’ target function or signal t(x) given an observed noisy signal y. We define

here the signal processing formulation for denoising as a standard regression learn-

ing problem (covered in Section 2.1.2) with the following additional simplifica-

tions:

1. Fixed sampling rate in the input (x) space

2. Low-dimensional problems, one- or two-dimensional signals (d ¼ 1 or 2)

3. Signal (function) estimates are obtained in the class of orthogonal basis

functions (wavelets, Fourier, etc.).

Under this scenario, the use of orthonormal basis functions leads to computa-

tionally simple estimators, as explained next. With fixed sampling rate, general

equation (2.18) for prediction risk simplifies to

RðwÞ ¼ s2 þ
ð

tðxÞ �
X

m

i¼1
wigiðxÞ

" #2

dx; ð7:84Þ

where t(x) is the unknown (target) function in the regression formulation (2.10) and

s2 denotes the noise variance. Minimization of the prediction risk yields

qR

qwj

¼ �2
ð

tðxÞ �
X

m

i¼1
wigiðxÞ

" #

gjðxÞdx

¼ �2
ð

tðxÞgjðxÞdxþ 2
X

m

i¼1
wi

ð

giðxÞgjðxÞdx

¼ �2
ð

tðxÞgjðxÞdxþ 2wj;

ð7:85Þ

298 METHODS FOR REGRESSION

where the last step takes into account orthonormality (7.83). Equating (7.85) to zero

leads to

wj ¼
ð

tðxÞgjðxÞdx: ð7:86Þ

As the target function tðxÞ is unknown, we cannot evaluate (7.86) directly; however,
its best estimate is given by the sample average

ŵj ¼
1

n

X

n

i¼1
yigjðxiÞ: ð7:87Þ

Note that minimization of the empirical risk (with orthonormal basis functions)

yields the same estimate (7.87). In other words, with a fixed sampling rate, the solu-

tion provided by the ERM principle is also optimal in the sense of prediction risk.

Now it is clear that using orthogonal basis functions leads to significant simpli-

fications. Estimates (7.87) do not require explicit solution of linear least squares.

Moreover, these estimates can be computed sequentially (online), which is an

important consideration for real-time signal processing applications.

As an example of orthogonal basis functions, consider wavelet methods. Origi-

nal motivation for wavelets comes from signal processing, where the goal is to find

a compact yet accurate representation of a known signal (typically one or two

dimensional). Classical Fourier analysis portrays a signal as an overlay of sinusoi-

dal waveforms of assorted frequencies, which represents an orthogonal basis func-

tion expansion with estimates of coefficients given by (7.87). Fourier

decomposition is well suited for ‘‘stationary’’ signals having more or less the

same frequency characteristics everywhere (in time or space). However, it does

not work well for ‘‘nonstationary’’ signals, where frequency characteristics are

localized. Examples of nonstationary signals include signals with discontinuities

or sudden changes, such as edges in natural images. A wavelet is a special basis

function that is localized in both time and frequency. It can be viewed as a sinusoid

that can last at most a few cycles (see Fig. 7.19). Wavelet analysis, like Fourier ana-

lysis, is concerned with representing a signal as a linear combination of orthonor-

mal basis functions (i.e., wavelets). The use of wavelets in signal processing is

mostly for signal analysis and signal compression applications. In this book, how-

ever, we are interested in estimating an unknown signal from noisy samples rather

than analyzing a known signal. So our discussion is limited to wavelet methods for

signal estimation from noisy samples (called denoising in signal processing). To

simplify the discussion, in the remainder of this section we consider only univariate

functions (signals) and assume that the x-values of training data are uniformly

sampled.

Wavelet basis functions are translated and dilated (i.e., stretched or compressed)

versions of the same function cðxÞ called the mother wavelet:

gs;cðxÞ ¼
1
ffiffi

s
p c

x� c

s

� �

; ð7:88Þ

ADAPTIVE DICTIONARY METHODS 299

where s is a scale parameter and c is a translation parameter. See the examples in

Fig. 7.19. The mother wavelet should satisfy the following conditions (Rioul and

Vitterli 1991):

� It is a zero mean function

� It is of finite energy (finite L2 norm)

� It is bandpass; that is, it oscillates in time like a short wave (hence the name

wavelet)

Wavelet basis functions are localized in both the frequency domain and the time/

space (x) domain. This localization results in a very sparse wavelet representation

of a given signal. Functions (7.88) are called continuous wavelet basis functions.

Continuous wavelet functions can be used as basis functions of an estimator, lead-

ing to a familiar representation of approximating functions:

fmðx;wÞ ¼
X

m

j¼1
wjc

x� cj

sj

� �

þ w0: ð7:89Þ

This representation may be interpreted as a feedforward network or wavelet net-

work (Zhang and Benveniste 1992), where each hidden unit represents a basis func-

tion (i.e., a dilated and translated wavelet).

Practical signal processing implementations use discrete wavelets, that is, repre-

sentation (7.88) with fixed scale and translation parameters:

sj ¼ 2�j; where j ¼ 0; 1; 2; . . . ; J; ð7:90aÞ

ckðjÞ ¼ k2j; where k ¼ 0; 1; 2; . . . ; 2j � 1: ð7:90bÞ

–4 –3 –2 –1 0 1 2 3 4

Mother wavelet

FIGURE 7.19 Example of a set of wavelet basis functions. The set is composed of

translated and dilated versions of the mother wavelet.

300 METHODS FOR REGRESSION

Note that there are 2j (translated) wavelet basis functions at a given scale j. Then

substituting (7.90) into (7.88) gives cjkðxÞ ¼ 2j=2cð2jx� kÞ, and the basis function

representation has the form

f ðx;wÞ ¼
X

j

X

k

wjkcð2jx� kÞ: ð7:91Þ

The wavelet basis functions cjkðxÞ form an orthonormal basis provided that the

mother wavelet has sufficiently localized support. Hence, the wavelet coefficients

can be readily estimated from data via (7.87). Applications of the discrete wavelet

representation (7.91) for signal denoising assume that a signal is sampled at fixed x-

locations uniformly spaced in the [0,1] interval:

xi ¼
i

2J
; where i ¼ 0; 1; 2; . . . ; 2J � 1:

Then all wavelet coefficients in (7.91) can be computed from training samples

ðxi; yiÞ very efficiently by calculating the wavelet transform of a signal via (7.87).

Wavelet denoising (or wavelet thresholding) works by taking the wavelet trans-

form of a signal and then discarding the terms with ‘‘insignificant’’ coefficients.

There are two approaches for suppressing the noise in the data:

� Discarding wavelet coefficients at higher decomposition scales or, equiva-

lently, at higher frequencies. This is a linear method, and it works well only

for sufficiently smooth signals.

� Discarding (suppressing) the noise in the estimated wavelet coefficients. For

example, one can discard wavelet basis functions in (7.91) having coefficients

below a certain threshold. Intuitively, if the wavelet coefficient is smaller than

standard deviation of additive noise, then such coefficients should be

discarded (set to zero) because signal and noise cannot be separated. Then,

the denoised signal is obtained via the inverse wavelet transform. This

approach leads to nonlinear modeling because the ordering of empirical

wavelet coefficients (according to magnitude) is data dependent.

All wavelet thresholding methods discussed in this section use the nonlinear mod-

eling approach. Clearly, wavelet denoising represents a special case of the standard

regression problem. In signal processing, model selection (i.e., determination of

insignificant wavelet coefficients) is achieved using statistical techniques developed

under the function approximation setting. For very noisy and/or nonstationary sig-

nals, it may be better to use the predictive learning (VC theoretical) approach. In the

remainder of this section, we present application of predictive learning to signal

denoising and contrast it to existing wavelet thresholding techniques.

Wavelet denoising methods provide prescriptions for discarding insignificant

coefficients and for selecting the value of threshold, as discussed next. There are

two popular approaches to wavelet thresholding (Donoho 1993; Donoho and

ADAPTIVE DICTIONARY METHODS 301

Johnstone 1994b; Donoho 1995). The first one is ‘‘hard’’ thresholding, where all

wavelet coefficients smaller than certain threshold y are set to zero:

wnew ¼ wIðjoj > yÞ: ð7:92Þ

The second approach is called the ‘‘soft’’ threshold, where

wnew ¼ sgnðwÞðjoj � yÞþ: ð7:93Þ

There are several methods for choosing the value of the threshold for a given sam-

ple (signal). A few popular choices are presented next; see Donoho and Johnstone

(1994b) for details. One prescription for threshold is called VISU:

y ¼ s
ffiffiffiffiffiffiffiffiffiffiffi

2 ln n
p

; ð7:94Þ

where n is the number of samples and s is the standard deviation of noise (known

or estimated from data). In practice, the variance of noise is often estimated by

averaging the squared wavelet coefficients at the highest resolution level.

Another method for selecting threshold y is based on the value minimizing

Stein’s unbiased risk estimate (SURE) criterion:

SUREðtÞ ¼ n� 2
X

i

Iðjwij � tÞ þ
X

i

minðw2
i ; t

2Þ ð7:95aÞ

and

y ¼ argmin SUREðtÞ: ð7:95bÞ

Expression (7.95a) gives SURE as a function of a threshold t > 0 and the empiri-

cal wavelet coefficients wi of the data. In (7.95a) the first term is the total number

of wavelets (n), the second term is (double) the number of coefficients larger than

t, and the last term is (estimated) noise variance, assuming that all coefficients

smaller than t represent noise. Expression (7.95b) calculates the optimal value

of t minimizing SURE. Typically, this method is applied in a level-dependent

fashion, that is, a separate threshold (7.95) is chosen for each level of the hierarch-

ical wavelet decomposition. In contrast, the VISU method (7.94) is not level

dependent.

In wavelet denoising, one can apply either soft or hard thresholding with various

rules for selecting the value y. Empirical comparisons presented later in this section

use two representative denoising methods, namely hard thresholding using SURE

and soft thresholding using the VISU prescription for selecting y.

Let us interpret ‘‘hard’’ wavelet thresholding methods using the VC theoretical

framework. Such methods implement the feature selection structure (discussed in

Section 4.4), where a small set of m basis functions (wavelet coefficients) is

selected from a larger set of n ¼ 2J basis functions (all wavelet coefficients).

302 METHODS FOR REGRESSION

Most wavelet thresholding methods specify the ordering of empirical wavelet coef-

ficients according to their magnitude:

jwk1j 	 jwk2j 	 . . . 	 jwkmj 	 � � � : ð7:96Þ

This ordering specifies a nested structure (in the sense of VC theory) on a set of

wavelet basis functions, such that

S1
 S2
 � � �
 Sm
 � � � ;

where each element of a structure Sm corresponds to the first m most ‘‘important’’

wavelets (as determined by the magnitude of the wavelet coefficients). The pre-

scription chosen for thresholding, that is, hard thresholding (7.92), corresponds to

choosing an optimal element of a structure (in the sense of VC theory). Note that

under the signal processing formulation, minimization of the empirical risk (MSE)

for each element Sm is easily obtained via (7.87) and does not involve combinatorial

optimization (as in the general problem of sparse feature selection presented in

Section 4.4). This interpretation ofwavelet thresholding brings up the following issues:

1. How important is the type of orthogonal basis functions used in signal

denoising?

2. What is a good structure for estimating nonstationary signals using wavelets?

3. What is a good thresholding rule? In particular, can one apply VC-based

complexity control (used in Section 4.5) for choosing an ‘‘optimal’’ threshold

for signal denoising?

Clearly, all three factors affect the quality of signal denoising; however, their rela-

tive importance depends on the sample size (large- versus small-sample setting).

Current signal processing research emphasizes on factor (1), that is, the choice

of particular type of wavelets, under a large-sample scenario. However, according

to VC theory, for sparse settings, factors (2) and (3) should have the main effect on

the accuracy of signal estimation for small-sample settings. Cherkassky and Shao

(2001) proposed the following modifications for wavelet denoising:

� A new structure on a set of wavelet basis functions, where wavelet coeffi-

cients are ordered according to their magnitude penalized by frequency; that

is,

jwk1j
freqk1

	 jwk2j
freqk2

	 . . . 	 jwkmj
freqkm

	 � � � : ð7:97Þ

This ordering effectively penalizes higher-frequency wavelets. The rationale

for this structure is that high-frequency basis functions have large VC dimen-

sion, and hence need to be restricted. For wavelet basis functions, this order-

ing is equivalent to ranking all n ¼ 2J wavelets according to their coefficient

ADAPTIVE DICTIONARY METHODS 303

values adjusted by scale, jwjkj2�j. Note that the same ordering (7.97) can be

used to introduce complexity ordering for harmonic basis functions, using

empirical coefficients obtained via discrete Fourier transform.

� Using VC model selection for selecting an optimal number of wavelet

coefficients m in the ordering (7.97). That is, wavelet thresholding is

implemented using the same VC penalization factor (4.28) that was used

for regression in Section 4.5. When applying VC model selection (4.28) to

wavelet denoising, the VC dimension for each element of a structure is

estimated as the number of wavelets m. Arguably, this value (m) gives a

lower-bound estimate of the ‘‘true’’ VC dimension because the basis func-

tions are selected adaptively; however, it still yields good signal denoising

performance (Cherkassky and Shao 2001).

Signal denoising using VC model selection applied to the ordering (7.97) is called

VC signal denoising. Empirical comparisons between traditional wavelet thresholding

methods andVC-based signal denoising for univariate signals are given in Cherkassky

and Shao (2001). These comparisons indicate that for small-sample settings

� VC denoising yields better accuracy than traditional wavelet thresholding

techniques

� Proposed structure (7.97) provides better denoising accuracy than traditional

ordering (7.96)

� Advantages of VC-based denoising hold for other types of (orthogonal) basis

functions, that is, harmonic basis functions. That is, using an adaptive Fourier

structure (7.97) enables better denoising than either ordering (7.96) or

traditional fixed ordering of harmonics according to their frequency.

Next we present visual comparisons between VC denoising and two representative

wavelet thresholding methods, SURE (with hard thresholding) and VISU (with soft

thresholding). These thresholding methods are a part of the WaveLab package

developed at Stanford University and available at http://www-stat.stanford.edu/

software/wavelab. Comparisons use symmlet wavelet basis functions (see Fig. 7.20).

–0.1

–0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

FIGURE 7.20 The symmlet mother wavelet.

304 METHODS FOR REGRESSION

The training data are generated using two target functions, Heavisine and Blocks,

shown in Fig. 7.21. Note that the Blocks signal contains many high-frequency compo-

nents, whereas the Heavisine signal contains mainly low-frequency components.

Training samples xi, i ¼ 1; . . . ; 128, are equally spaced in the interval ½0; 1�. The
noise is Gaussian with SNR¼ 2:5. Figures 7.22–7.25 show typical estimates

–6

–4

–2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

Blocks

Heavisine

t

y

FIGURE 7.21 Target functions called Blocks and Heavisine.

FIGURE 7.22 The Blocks signal denoised by the VISU wavelet thresholding method.

ADAPTIVE DICTIONARY METHODS 305

FIGURE 7.23 The Blocks signal estimated by VC-based denoising.

FIGURE 7.24 The Heavisine signal denoised by the SURE wavelet thresholding method.

306 METHODS FOR REGRESSION

provided by different denoising methods. Each figure shows the noisy signal, its

denoised version, and selected wavelet coefficients at each level of decomposition.

Clearly, the VISU method underfits the Blocks signal, whereas the SURE

method slightly overfits the Heavisine signal. The VC-based denoising method

provides good results for both signals. Notice that these results illustrate a ‘‘small-

sample’’ setting, because for 128 noisy samples the best model for the Blocks

signal uses approximately 40–45 wavelets (DoF), and the best model for

Heavisine signal selects approximately 10–12 wavelets. The VC denoising

method seems to adapt better to the true complexity of unknown signals than tradi-

tional wavelet denoising methods. For large samples, that is, 1024 samples for the

Heavisine signal (at the same noise level SNR¼ 2:5), there is no significant difference
between most wavelet thresholding methods and VC denoising (Cherkassky and Shao

2001).

Cherkassky and Kilts (2001) investigated application of wavelet denoising

methods to the problem of removing additive noise from the noisy electrocardio-

gram (ECG) signal. An ECG signal is used by medical doctors and nurses

for cardiac arrhythmia detection. In practice, wideband myopotentials from pec-

toral muscle contractions may cause a noisy overlay with an ECG signal, so

that

Observed signal ¼ ECGþmyopotential: ð7:98Þ

FIGURE 7.25 The Heavisine signal estimated by VC-based denoising.

ADAPTIVE DICTIONARY METHODS 307

In the above expression, the myopotential component of a signal corresponds to

additive noise, so obtaining the true ECG signal from noisy observations can be

formulated as the problem of signal denoising. An actual view of sampled

ECGs with clearly defined clean and noisy regions is shown in Fig. 7.26.

Here, the sampling rate is 1 kHz and the total number of samples in the ECG

under consideration is 16,384. In this example, the myopotential noise occurs

FIGURE 7.26 ECG with myopotential noise.

FIGURE 7.27 Denoised ECG signal using VC-based method (DoF¼76).

308 METHODS FOR REGRESSION

between samples #8000 and #14000. Clearly, myopotential denoising of ECG sig-

nals is a challenging problem because

� The useful signal (ECG) itself is nonstationary

� The myopotential noise occurs only in localized sections of a signal

Hence, standard (linear) filtering methods are not appropriate for this application.

On the contrary, wavelet methods are more suitable for denoising nonstationary

signals. The estimated ECG signal obtained by applying the VC denoising method

to the noisy section only (4096 samples) is shown in Fig. 7.27. The denoised signal

has 76 wavelets. Empirical results for ECG signals (Cherkassky and Kilts 2001)

indicate that the VC-based method is very competitive against wavelet thresholding

methods, in terms of MSE fitting error, robustness, and visual quality of denoised

signals.

7.4 ADAPTIVE KERNEL METHODS AND LOCAL RISK

MINIMIZATION

The theory of local risk minimization (Vapnik and Bottou 1993; Vapnik 1995)

provides a framework for understanding adaptive kernel methods. This theory is

developed for the special formulation of the learning problem called local estima-

tion when one needs to estimate an (unknown) function only at a single point x0,

called the estimation point (given a priori). Note that local estimation differs from

the standard (global) formulation of the learning problem, where the goal is to esti-

mate a function for all possible values of x. Intuitively, the problem of local estima-

tion seems simpler than an approximation of the function everywhere. This

suggests that more accurate learning is possible based on the direct formulation

of the local estimation problem. However, note that local estimates inherently

lack interpretability.

Next we provide a formulation of the local risk minimization following

Vapnik (1995), and then we relate it to adaptive kernel methods (also

known as local or memory-based methods). Consider the following local risk

functional:

Rðo; a; x0Þ ¼
ð

Lðy; f ðx;oÞÞKaðx; x0Þ
kaðx0Þ

pðx; yÞdxdy; ð7:99Þ

where Kaðx; x0Þ is a kernel (neighborhood) function with width parameter a and

kaðx0Þ is a normalizing function:

kaðx0Þ ¼
ð

Kaðx; x0Þ pðxÞdx: ð7:100Þ

ADAPTIVE KERNEL METHODS AND LOCAL RISK MINIMIZATION 309

Function Kaðx; x0Þ specifies a local neighborhood near the estimation point x0.

The problem of local risk minimization is a generalization of the problem of

global risk minimization described in Section 2.1.1. Local risk minimization

is the same as global risk minimization if the kernel function used is

Kaðx; x0Þ ¼ 1. The goal of local risk minimization is to minimize (7.99)

over the set of functions f ðx;oÞ and over the kernel width a using only the

training data points. The bounds of SLT (Section 4.3) can be generalized for

local risk minimization (Vapnik and Bottou 1993; Vapnik 1995). However, in

practice, these bounds cannot be readily applied for local model selection due

to the unknown values of constants. These values need to be chosen empiri-

cally for each type of learning problem (i.e., regression). Moreover, the gen-

eral formulation of local risk minimization seeks to minimize local risk

(7.99) simultaneously over a set of approximating functions f ðx;oÞ and a

set of kernel functions. This is not practically feasible, so most implementa-

tions of local risk minimization use a simple set of functions f ðx;oÞ of fixed
complexity, that is, constant f ðx;w;w0Þ ¼ w0 or first-order w � xþ w0, and

minimize local risk by adjusting only the kernel width a.

Local risk minimization leads to the following practical procedure for local esti-

mation at a point x0:

1. Select approximating functions f ðx;oÞ of fixed (low) complexity and choose

kernel (neighborhood) functions parameterized by width a. Simple neighbor-

hood functions such as Gaussian or hard threshold should be used (Vapnik

and Bottou 1993).

2. Select the optimal kernel width a or local neighborhood near x0, providing

minimum (estimated) local risk. This can be conveniently interpreted as

selectively decreasing (shrinking) training sample (near x0) used to make a

prediction. Here ‘‘selectively’’ means that each estimation point uses its own

(optimal) neighborhood width.

The neighborhood size a in step 2 effectively controls model complexity; in

other words, the large a corresponds to high degree of smoothing (low complexity),

and small neighborhood size (small a) implies high complexity. Hence, the choice

of kernel width a can be interpreted as local model selection. The theory of local

risk minimization provides upper bounds on the local prediction risk and can be

used, in principle, for determining optimal neighborhood size a, providing mini-

mum local prediction risk.

Let us relate local risk minimization to adaptive kernel methods. Assume the

usual squared-error loss function. For a given width parameter a, the local empirical

risk for the estimation point x0 is

Remp�localðoÞ ¼
1

n

X

n

i¼1
Kaðxi; x0Þðyi � f ðxi;oÞÞ2: ð7:101Þ

310 METHODS FOR REGRESSION

Consider now the set of approximating functions f ðx;w0Þ ¼ w0, namely a zeroth-

order model. For this set of functions, the local empirical risk is minimized when

f ðx0Þ ¼ w0 ¼
1

n

X

n

i¼1
yiKaðxi; x0Þ; ð7:102Þ

which is the local average or kernel approximation at the estimation point x0.

Hence, the solution to local risk minimization problem leads to a kernel representa-

tion, namely a weighted sum of response values yi. Moreover, local risk minimiza-

tion corresponds to an adaptive implementation of the kernel methods, as the kernel

width is adapted to data at each estimation point x0.

Notice that local methods do not provide global estimates (models). When

the prediction is required, the approximation is made only at the point of esti-

mation. For this reason, local methods are often called ‘‘memory-based,’’ as

training data are stored until a prediction is required. With local methods,

the difficult problem is the adaptive choice of the kernel width or local model

selection. Theoretical bounds provided by local risk minimization (Vapnik and

Bottou 1993; Vapnik 1995) require empirical tuning before they can be useful

in practice. Hence, many practical implementations of kernel-based methods

use alternative strategies for kernel width selection. These are described next

using well-known k-nearest-neighbor regression as a representative local

method.

The k-nearest-neighbor technique can be viewed as a form of local risk minimi-

zation. In this method, the function estimates are made by taking a local average of

the data. Locality is defined in terms of the k data points nearest to the estimation

point (Fig. 7.28). The value of k effectively controls the width of the local region.

FIGURE 7.28 In local methods, such as k nearest neighbors, an approximation is made

using data samples local to some estimation point x0. In the k-nearest-neighbor approach,

local is defined in terms of the k data points nearest to the estimation point.

ADAPTIVE KERNEL METHODS AND LOCAL RISK MINIMIZATION 311

There are three approaches for adjusting k:

1. In the nonadaptive approach, the kernel width is given a priori. This

corresponds to a linear estimation problem. Note that with nonadaptive

implementation, kernel methods are equivalent to basis function (global)

methods as discussed in Section 7.2.

2. In the global adaptive approach, the kernel width is adjusted globally,

independent of the particular estimation point x0. This corresponds to a

nonlinear estimation problem involving usual (global) model selection.

3. In the local adaptive approach, the kernel width is adjusted locally for each

value of x0. This requires local model selection.

For k nearest neighbors, applying the ERM inductive principle with fixed k

results in a nonadaptive method. For the zeroth-order approximation, the local

empirical risk is

Remp localðwÞ ¼
1

k

X

n

i¼1
ðyi � wÞ2Kkðx0; xiÞ; ð7:103Þ

where Kkðx0; xiÞ ¼ 1 if xi is one of the k data points nearest to the estimation point

x0 and zero otherwise. The value w� for which the empirical risk is minimized is

w� ¼ 1

k

X

n

i¼1
yiKkðx0; xiÞ; ð7:104Þ

which is the local average of the responses.

Let us now consider making the above estimate adaptive by allowing the kernel

width to be adjusted locally based on the data. Local model selection is a small-

sample problem. As discussed in Section 3.4, global model selection is a difficult

statistical problem due to inherent variability of finite samples. Local model selec-

tion is even more difficult due to the smaller sample sizes involved. Unfortunately,

SLT bounds for local risk minimization cannot be readily applied for local model

selection.

Therefore, many practical implementations of local methods apply global model

selection. The width of the kernel is adjusted to fit all training data, and the same

width is used for all estimation points x0. For k nearest neighbors, this is done in the

following manner:

1. For a given value of k, compute a local estimate ŷi at each xi, i ¼ 1; . . . ; n.

2. Treat these estimates as if they came from some global method and compute

the (global) empirical risk of these estimates:

RempðkÞ ¼
1

n

X

n

i¼1
ðyi � ŷiÞ2: ð7:105Þ

312 METHODS FOR REGRESSION

3. Estimate the expected risk using the model selection criteria described in

Section 3.4 or 4.3. Minimize this estimate of expected risk through appro-

priate selection of k. The ‘‘true’’ complexity estimate for k nearest neighbors

is unknown, so we suggest using the estimate described in Section 4.5.2:

h ffi n

k
� 1

n1=5
: ð7:106Þ

In global adaptive kernel methods, often the shape of the kernel function (as well

as its width) is adjusted to fit the data. One approach is to adjust the shape and scale of

the kernel along each input dimension. Global model selection approaches are used to

determine these kernel parameters. This kernel is then used globally to make predic-

tions at a series of estimation points. The methods called generalized memory-based

learning (GMBL) and constrained topological mapping (CTM) apply this technique.

7.4.1 Generalized Memory-Based Learning

GMBL (Atkeson 1990; Moore 1992) is a statistical technique that was designed for

robotic control. The model is based on storing past samples of training data to

‘‘learn by example.’’ When new data arrive, an output is determined by performing

a local approximation using the past data. GMBL is capable of using either a locally

weighted average (7.102) or a locally weighted linear approximation. The kernel

width and distance scale are adjusted globally based on cross-validation. In this sec-

tion, we first describe the general technique of locally weighted linear approxima-

tion (Cleveland and Delvin 1988) in the framework of local risk minimization.

Then, we provide the details of the optimization strategy used for model selection.

Let us apply the local risk functional (7.99) for linear approximating functions.

We will assume that model selection is done in the global manner described above.

For a given kernel width parameter a, we apply the ERM inductive principle. This

leads to minimization of the local empirical risk (7.101) at the estimation point x0.

With linear approximating functions, (7.101) becomes

Remp�localðw;w0Þ ¼
1

n

X

n

i¼1
Kaðxi; x0Þ½w � xi þ w0 � yi�2: ð7:107Þ

The linear estimate minimizing (7.103) can be computed via the standard

linear estimation machinery of Section 7.2 by first weighing the data by the kernel

function:

x0i ¼ xiKaðxi; x0Þ; y0i ¼ yiKaðxi; x0Þ: ð7:108Þ

For a desired estimation point x0, the data ðxi; yiÞ, i ¼ 1; . . . ; n, are transformed into

ðx0i; y0iÞ via (7.108). Then the procedures of linear estimation are applied to fit the

simple linear model. Finally, this model is used to estimate the point x0. Notice that

ADAPTIVE KERNEL METHODS AND LOCAL RISK MINIMIZATION 313

this model is local, as it is only used to estimate the data at a single point x0. Of

course, linear models of higher order (i.e., polynomials) can also be used as the

local approximating function. This approach of using a locally weighted linear

approximation is called locally weighted scatterplot smoothing or loess (Cleveland

and Delvin 1988).

The GMBL method adapts both the width and the distance scale of the kernel

using global model selection. GMBL uses the following kernel:

Kðx; x0; vÞ ¼
X

d

k¼1
ðxk � x0kÞ

2
v2k

 !�q

; ð7:109Þ

where the vector parameters v control the distance scaling and the parameter q > 0

controls the width of the kernel function. GMBL uses analytical cross-validation of

Section 7.2.2 to select the smoothing parameter q, the distance scale v used for each

variable, and method with the best fit (local average or local linear). The scale and

width parameters are discretized, and a hill-climbing optimization approach is used

to minimize the leave-one-out cross-validation. Such parameter selection is time

consuming and is done offline. After the parameter selection is completed, the

power of the method is in its capability to perform prediction with data as they

arrive in real time. It also has the ability to deal with nonstationary processes by

‘‘forgetting’’ past data. As the GMBL model depends on weighted average or

locally weighted linear methods, it has poor interpretation capabilities. GMBL per-

forms well for low-dimensional problems, but high-dimensional settings make

parameter selection critical and computationally intensive.

7.4.2 Constrained Topological Mapping

CTM (Cherkassky and Lari-Najafi 1991) is a kernel method based on a modifica-

tion of the SOM, making it suitable for regression problems. CTM model imple-

ments piecewise-constant regression similar to CART; that is, the input (x) space

is partitioned into disjoint (unequal) regions, each having a constant response (out-

put) value. However, unlike CART’s greedy tree partitioning, CTM uses (nonrecur-

sive) partitioning strategy borrowed from SOM of Section 6.3.1. As discussed in

Section 7.2.4, nonadaptive spline knot locations are often determined via clustering

or vector quantization in the input space. The CTM approach combines clustering

via SOM and regression via piecewise-constant splines into one iterative algorithm.

The original implementation of CTM is not an adaptive method. However, later

improvements resulted in an adaptive version of CTM. Here, we first introduce

the original CTM algorithm and then describe the statistical modifications leading

to its adaptive implementation.

The centers of the SOM can be viewed as the dynamically movable knots for

spline regression. Piecewise-constant spline approximation can be achieved by

training the SOM with m-dimensional feature space (m � d) using data samples

x0i ¼ ðxi; yiÞ in ðd þ 1Þ-dimensional input space (Fig. 7.29). Unfortunately,

314 METHODS FOR REGRESSION

such straightforward application of the SOM algorithm for regression problems

does not work well, because SOM does not preserve the functionality of the regres-

sion surface (see Fig. 7.29(a)). The reason is that SOM is intended for unsupervised

learning, so it does not distinguish between the predictor (x) variables and response

(y) variable. This problem can be overcome by performing dimensionality reduc-

tion in the x-space only and then, with the feature space as input, applying kernel

averaging to estimate constant y-values for each SOM unit. Conceptually, this

means that a principal curve-like approach is first used to perform dimensionality

reduction in the mapping x! z. Then kernel regression is performed to estimate

ŷ ¼ f ðzÞ at the knot locations. As search for knot location proceeds, the kernel

regression can be done iteratively by taking advantage of the kernel interpretation

of SOM (Section 6.3.2). This results in the CTM method, which performs dimen-

sionality reduction in the input space and uses the low-dimensional features to

FIGURE 7.29 Application of one-dimensional SOM to a univariate regression set. The

self-organizing map may provide a nonfunctional mapping (a), whereas the constrained

topological mapping algorithm always provides a functional representation (b).

ADAPTIVE KERNEL METHODS AND LOCAL RISK MINIMIZATION 315

create kernel average estimates at the center locations (see Fig. 7.29(b)). The

trained CTM model provides approximation with piecewise-constant splines simi-

lar to those of CART. However, unlike CART, the constant regions in CTM are

defined in terms of the Voronoi regions of the centers (map units) in the input space.

Prediction based on CTM is essentially a table lookup. For a given estimation point,

the nearest unit is found in the space of the predictor variables and the piecewise-

constant estimate for that unit is given as output.

In spline methods, knot locations are typically viewed as free parameters of the

model, and hence the number of knots directly controls the model complexity. This

is not the case with CTM models, where the neighboring units (knots) cannot move

independently. As discussed in Section 6.3, the neighborhood function can be inter-

preted as a kernel function defined in a low-dimensional feature space. During the

training process, the neighborhood width is gradually decreased. As described in

Section 6.3, the self-organization (training) process can be viewed as optimization

procedure (qualitatively) similar to simulated annealing. The initial width is chosen

very large to improve the chances of finding a good solution, and the final width is

chosen to supply the correct amount of smoothness for the regression. At each itera-

tion, CTM produces a regression estimate. As the neighborhood width decreases,

the smoothness of the estimate decreases, and therefore the complexity of the

estimate increases. This leads to a sequence of regression models with increasing

complexity.

The original CTM algorithm was constructed by modifying the flow-through

SOM algorithm given in Section 6.3.3. Instead of finding the nearest center in

the whole space x0i ¼ ðxi; yiÞ, the nearest center is found only in the space of pre-

dictor variables xi (Cherkassky and Lari-Najafi 1991). The center update step is left

unmodified, and updating occurs in the whole space x0i ¼ ðxi; yiÞ. Updating the cen-

ters is coordinatewise, so this effectively results in a weighted average in the output

(y) space for each center. Following is the original (flow-through) CTM implemen-

tation. Given a discrete feature space
 ¼ fc1;c2; . . . ;cbg, data point

x0ðkÞ ¼ ðxðkÞ; yðkÞÞ, and units cjðkÞ, j ¼ 1; . . . ; b, at discrete iteration step k:

1. Determine the nearest (L2 norm) unit to the data point in the input
space. This is called the winning unit:

zðkÞ ¼
ðargmin
j

jjxðkÞ � cjðk � 1ÞjjÞ: ð7:110Þ

2. Update all the units using the stochastic update equation

cjðkÞ ¼ cjðk � 1Þ þ bðkÞKaðkÞð
ðjÞ; zðkÞÞðx0ðkÞ � cjðk � 1ÞÞ;
j ¼ 1; . . . ; b; k ¼ k þ 1: ð7:111Þ

3. Decrease the learning rate and the neighborhood width.

316 METHODS FOR REGRESSION

The function KaðkÞ is a kernel (or neighborhood) function similar to the one used for

the SOM algorithm. The function bðkÞ is called the learning rate schedule, and the

function aðkÞ is called the neighborhood decrease schedule, as in the SOM.

Empirical results (Cherkassky and Lari-Najafi 1991; Cherkassky et al. 1991)

have shown that the original CTM algorithm provides reasonable regression esti-

mates. However, it lacks some key features found in other statistical methods:

1. Piecewise-linear versus piecewise-constant approximation: The original

CTM algorithm uses a piecewise-constant regression surface, which is not

an accurate representation scheme for smooth functions. Better accuracy

could be achieved using, for example, a piecewise-linear fit.

2. Control of model complexity: In the original CTM, model complexity must be

controlled by user adjustment of final neighborhood width. By interpreting

the neighborhood width as a kernel span, model selection approaches suitable

for kernel methods can be applied to CTM. The neighborhood decrease

schedule then plays a key role in the control of complexity. The final

neighborhood size is determined via an iterative cross-validation algorithm

described in Mulier (1994) and Cherkassky et al. (1996).

3. Adaptive regression via global variable selection: Global variable selection is

a popular statistical technique used (in linear regression) to reduce the

number of predictor variables by discarding low-importance variables. How-

ever, the original CTM algorithm provides no information about variable

importance, as it gives all variables equal strength in the clustering step. As

the CTM algorithm performs self-organization (clustering) based on the

Euclidean distance in the space of the predictor variables, the method is

sensitive to predictor scaling. Hence, variable selection can be implemented

in CTM indirectly via adaptive scaling of predictor variables during training.

This scaling makes the method adaptive, because the quality of the fit in the

response variable affects the positioning of map units in the predictor space.

4. Batch versus flow-through implementation: The original CTM (as most neural

network methods) is a flow-through algorithm, where samples are processed

one at a time. Even though flow-through methods may be desirable in some

applications (i.e., control), they are generally inferior to batch methods (that

use all available training samples) in terms of both computational speed and

estimation accuracy. In particular, the results of modeling using flow-through

methods may depend on the (heuristic) choice of the learning rate schedule,

as discussed in Section 6.3.3. Hence, the batch version of CTM has been

developed based on batch SOM.

The following algorithm, called batch CTM, implements these improvements

(Mulier 1994; Cherkassky et al. 1996):

1. Initialization: Initialize the centers cj , j ¼ 1; . . . ; b, as is done with the
batch SOM (see Section 6.3.1). Also initialize the distance scale
parameters vl ¼ 1, l ¼ 1; . . . ; d .

ADAPTIVE KERNEL METHODS AND LOCAL RISK MINIMIZATION 317

2. Projection: Perform the first step of batch SOM using the scaled
distance measure

k cj � xi k2v¼
X

d

l¼1
v2
l ðcjl � xil Þ2: ð7:112Þ

3. Conditional expectation (smoothing) in x-space: Perform the second
step of the batch SOM algorithm in order to update the centers cj :

F ðz; aÞ ¼

P

n

i¼1
xiKaðz; ziÞ

P

n

i¼1
Kaðz; ziÞ

; ð7:113Þ

cj ¼ F ð
ðjÞ; aÞ; j ¼ 1; . . . ; b: ð7:114Þ

4. Conditional expectation (smoothing) in y-space: Perform a locally
weighted linear regression in y-space using kernel Kaðz; zi Þ. That is,
minimize

Remp� localðwj ;w0j Þ ¼
1

n

X

n

i¼1
Kðzi;
ðjÞÞ½wj � xi þ w0j � yi �2 ð7:115Þ

for each center j ¼ 1; . . . ; b. Notice that here the estimation point for
each center j is a value in the discrete feature space
ðjÞ. Minimizing
this risk results in a set of first-order models fjðxÞ ¼ wj � xþ w0j , one for
each center cj .

5. Adaptive scaling: Determine new scaling parameters v for each of the d
input variables using the average sensitivity for each predictor dimension,

vl ¼
X

b

j¼1
jwjl j; ð7:116Þ

where ŵ jl (found in step 3) is the lth component of the vector
ŵj ¼ ½ŵj1; . . . ; ŵjd

� for unit j and jj denotes absolute value. Note that if
the scaling parameters are normalized, they can be interpreted as
variable importance. Predictors with high sensitivity are then given a
larger scale in the distance measure.

6. Model selection: Decrease a, the width of the kernel and repeat steps
2�5 until the leave-one-out cross-validation reaches a minimum. (Note
that in CTM cross-validation is performed analytically; see Section 7.2.2.)

The final result of this algorithm is a piecewise-linear regression surface. The

partitions are defined in terms of the centers in the predictor space. Prediction based

318 METHODS FOR REGRESSION

on this model is a table lookup. For a given estimation point, the nearest center is

found in the space of the predictor variables, and the linear approximation for that

center is used to compute the output. The regression surface produced by CTM

using linear fitting is not guaranteed to be continuous at the interface between adja-

cent units. However, the neighborhoods of adjacent units overlap, so the linear esti-

mates for each region are based on common data samples. This imposes a mild

constraint that tends to induce continuity.

CTM implements a heuristic scaling technique based on the sensitivity of the

linear fits for each unit. The predictor variables are adjusted so that variables

with higher sensitivity are given more weight in the distance calculation. The

sensitivity of a variable on the regression surface can be determined locally

for each Voronoi region. These local sensitivities can be averaged over the Vor-

onoi regions in order to judge the global importance of a variable on the whole

regression estimate. As new regression estimates are given with each iteration of

the CTM algorithm, this scaling is done adaptively; that is, variable scaling

affects distance calculations during the clustering (projection) step of CTM.

This effectively causes more units to be placed along the variable axis that

have larger average sensitivity.

Interpretation of the CTM regression estimate is possible when it contains a

small number of centers. In this case, the model can be interpreted as a set of dis-

joint rules similar to CART. It is also possible to make use of the feature (map)

space z to provide a low-dimensional (typically two-dimensional) view of the data.

7.5 EMPIRICAL STUDIES

This section presents example empirical applications of methods for regression.

Often empirical studies are narrowly focused to show admissibility of a new

method. Improved results on a benchmark problem are used to justify a newly pro-

posed learning procedure. Unfortunately, this approach may not provide insight into

the components that make up the learning procedure. As discussed earlier in this

book, a successful learning procedure depends on the choice of approximating

functions, inductive principle, and optimization approach. Through the use of

well-designed experiments, it is possible to answer deeper questions about the per-

formance of individual components. From this viewpoint, empirical comparisons

provide a starting point for inquiry rather than an ending point. Most empirical stu-

dies presented in this book are focused on methodological aspects (such as model

selection), rather than comparisons between learning methods. For example, com-

parison of wavelet denoising methods (in Section 7.3.4) uses the same approximat-

ing functions (symmlet wavelets) for all methods, in order to illustrate the

importance of model selection and the choice of a structure, for sparse settings.

It is often difficult to interpret accurately an empirical study conducted within

one scientific field using learning methods originating from another field. Each field

develops its methodology based on its own set of implicit assumptions and model-

ing goals. For example, the field of neural networks places a high emphasis on

EMPIRICAL STUDIES 319

predictive accuracy, whereas statistical methods place more emphasis on interpre-

tation and fast computation. As a result, statistical methods tend to use fast, greedy

optimization techniques, whereas neural network methods use more brute force

optimization techniques (e.g., gradient descent, simulated annealing, and genetic

algorithms).

Even though many applications successfully use learning methods developed

under predictive learning framework (advocated in this book), the true application

goals may not be well understood. Examples include medical and life sciences

applications, such as genomics, drug discovery, and brain imaging. In such applica-

tions, predictive modeling is usually used for exploratory data analysis (aka knowl-

edge discovery) under an assumption that better predictive models are likely to be

more ‘‘truthful’’ and thus can lead to improved understanding of complex biologi-

cal phenomena. Of course, in these situations empirical comparisons (of learning

methods) become highly speculative and subjective.

Example applications presented in this section are intended to emphasize two

points:

� For real-life applications, a good knowledge and understanding of application

domain is necessary in order to formalize application requirements and to

interpret modeling results. This domain-specific knowledge usually accounts

for 80 percent of success, and often good predictive models can be obtained

with very simple learning techniques, such as linear regression. This is

illustrated in an application example presented in Section 7.5.1

� For general (nonexpert) users, there is no single ‘‘best method’’ that is

uniformly superior to others over a range of data sets with different statistical

characteristics (such as sample size, noise level, etc.). This point is presented

in Section 7.5.2, based on empirical comparison of adaptive learning methods

using simulated data sets. Hence, the true value of empirical comparisons lies

in improved understanding of methods’ applicability to data sets with clearly

defined statistical properties.

7.5.1 Predicting Net Asset Value (NAV) of Mutual Funds

Even though this book describes many sophisticated learning algorithms with pro-

visions for complexity control, real-life application data are often very noisy, so

adequate predictive models can be successfully estimated using simple linear

regression. Next, we describe an application of linear regression to predicting net

asset value (NAV) of mutual funds (Gao and Cherkassky 2006). With real-life

applications, the understanding and formalization of application requirements are

the most important parts of the modeling process, as discussed in Section 2.3.4.

So, next we explain the problem of predicting NAV (or pricing) of mutual funds.

All mutual funds (available to U.S. investors) are priced once a day, based on the

daily closing prices of stocks and other securities. The price of a mutual fund

becomes known (publicly available) only after the stock market close (4 pm Eastern

time); however, in order to get this price investors should enter their buy (or sell)

320 METHODS FOR REGRESSION

orders before the market close. It is well known that many domesticU.S. mutual funds

(i.e., funds investing in large-capitalization U.S. stocks) closely follow major U.S.

market indexes (tradable in real time). So it may be possible to estimate a statistical

model for ‘‘predicting’’ the unknown daily closing price (NAV) of a mutual fund as a

function of carefully selected market indexes (known and tradable in real time). If

successful, such a model can predict the NAV of a fund (right before market close)

based on the known closing prices of U.S. market indexes. This additional knowledge

of NAV may be helpful for asset allocation and risk management decisions.

Regression Modeling Approach

The modeling approach assumes that daily price changes of a mutual fund’s NAV

are closely correlated with daily price changes of major market indexes. Hence, a

statistical model tries to estimate the linear dependency between the daily price

changes of a chosen fund and the daily price changes of a few carefully selected

stock market indexes in the form y ¼ w0 þ w1x1 þ w2x2 þ w3x3. Training data

(xi,yi) encode the daily percentage changes of closing prices for both input and out-

put variables. For example, response value yi ¼ ðNAVi � NAVi�1Þ=NAVi�1,
where NAVi is today’s closing price of a fund and NAVi�1 is its yesterday’s closing
price. Note that the output values (NAV) are known only after U.S. market closes,

whereas the values of input variables are available in real time, before U.S. market

closes. This explains the informative (predictive) value of estimated regression

models.

Linear regression modeling was performed for three domestic mutual funds:

Fidelity Magellan (symbol FMAGX), Fidelity OTC (FOCPX), and Fidelity Contra-

fund (FCNTX). For modeling FMAGX, the input variables are the SP500 index

(symbol ^GSPC) and Dow Jones Industrials (symbol ^DJI). For FOCPX, input vari-
ables are SP500 index (^GSPC) and NASDAQ index (^IXIC). For FCNTX, input
variables are SP500 index (^GSPC), NASDAQ index (^IXIC), and Energy Select

Sector Exchange Traded Fund (symbol XLE). Input variables were selected using

public-domain knowledge about each fund. For example, Fidelity OTC fund has

large exposure to technology stocks, so the NASDAQ index is used as an input.

Fidelity Contrafund has significant exposure to energy stocks, so Energy Select

Sector ETF is used as input. All mutual funds and input variables are summarized

in Table 7.1, where symbols represent daily price changes of the corresponding

indexes.

TABLE 7.1 Input Variables Used for Modeling Each Mutual Fund

Input variables

Mutual fund (y) x1 x2 x3

FMAGX ^GSPC ^DJI —

FOCPX ^GSPC ^IXIC —

FCNTX ^GSPC ^IXIC XLE

EMPIRICAL STUDIES 321

Data Preparation and Experimental Protocol

A total of 545 trading days from October 1, 2002, to December 31, 2004, were used

for this study. The data were obtained from finance.yahoo.com. All funds’ closing

prices (NAV) were adjusted for dividend distribution. That is, when a certain amount

of dividend was distributed on a given day, this amount was added back to the daily

prices on the next day.

In order to evaluate the accuracy of regression models, we need to specify the

training period (used for model estimation) and test period (for evaluating predic-

tion accuracy of estimated models). The following approach was used for generat-

ing training and test data sets: The data were partitioned into 2-month cycles, such

that the first 2 months form the training period (i.e., January and February) and the

next 2 months (March and April) form the test period, and so on for the remainder

of the data; see Fig. 7.30. Under this approach, the regression model is re-estimated

every 2 months, allowing it to adapt to changing market conditions. The same

regression model was applied during each 2-month test period. Hence, each linear

regression model is estimated using approximately 46 training samples (the number

of trading days over 2-month period) and then tested over approximately 46 test

samples. Note that standard linear regression with a few input variables (see

Table 7.1) has sufficiently low complexity (with 46 training samples), so there is

no need for additional complexity control.

Modeling Results

Standard linear regression was applied to the available data over the 2003–2004

period. During a 2-year period, a total of 12 regression models were estimated

for each fund, and so additional insights can be obtained by analyzing the variabil-

ity of the linear regression models. Results in Tables 7.2–7.4 show the mean and

standard deviation of estimated regression coefficients. Note that the variability

of coefficients is directly related to the quality (robustness) of the linear regression

models. That is, a small standard deviation suggests that a model is very robust, as

all 12 regression models have been estimated under different market conditions

Year 2003

1, 2 3, 4 5, 6 7, 8 9, 10 11, 12

 Training Test

 Training Test

 Training Test

 Training Test

 Training Test

FIGURE 7.30 Two-month experimental setup.

322 METHODS FOR REGRESSION

(over the 2-year period). Analysis of the results in Tables 7.2–7.4 shows that linear

regression models are

� very accurate for Fidelity Magellan fund and Fidelity OTC fund. Moreover,

daily price changes of FMAGX closely follow the SP500 index, and daily

price changes of FOCPX closely follow the NASDAQ market index;

� rather inaccurate for Fidelity Contrafund, as the standard deviation of all

coefficients is quite large (relative to their mean value).

Predictive performance of regression models can be estimated using standard

metrics such as MSE of prediction. However, for this application a better illustra-

tion of performance is given by showing a time series of the fund’s daily closing

prices versus predicted prices over a 1-year period; see Figures 7.31–7.33. Each fig-

ure shows the daily value of a hypothetical account (with initial value $100) fully

invested in a mutual fund, and the daily value of a ‘‘synthetic’’ account whose

price is updated (daily) using the predictive model estimated during last training

period. That is, today’s value of the synthetic account is calculated using yester-

day’s value adjusted by today’s percent gain (loss) predicted by the linear regres-

sion model. Results in Figs. 7.31 and 7.32 indicate that linear regression modeling

is very accurate for Fidelity Magellan and Fidelity OTC funds, as there is no sig-

nificant difference between the true value (of a fund) and its model even at the end

of a 1-year period. On the contrary, results for Fidelity Contrafund (in Fig. 7.33)

TABLE 7.2 Linear Regression Coefficients for Modeling FMAGX

(2003–2004)

Coefficient w0 w1 (^GSPC) w2 (^DJI)

Average �0.006 1.026 �0.043
Standard deviation 0.011 0.096 0.073

TABLE 7.3 Linear Regression Coefficients for Modeling FOCPX

(2003–2004)

Coefficient w0 w1 (^GSPC) w2 (^IXIC)

Average �0.014 0.046 0.923

Standard deviation 0.042 0.182 0.203

TABLE 7.4 Linear Regression Coefficients for Modeling FCNTX (2003–2004)

Coefficient w0 w1 (^GSPC) w2 (^IXIC) w3 (XLE)

Average 0.015 0.487 0.185 0.079

Standard deviation 0.034 0.202 0.189 0.055

EMPIRICAL STUDIES 323

80

85

90

95

100

105

110

115

120

125

1-Jan-03 20-Fe b-03 11-Apr-03 31-M ay-03 20-Jul-03 8-Se p-03 28-Oct-03 17-Dec-03

Date

D
a

il
y

 a
c

c
o

u
n

t
v

a
lu

e

FMAGX Model(GSPC+DJI)

FIGURE 7.31 Comparison of daily closing prices versus synthetic FMAGX model prices

in 2003.

80

90

100

110

120

130

140

1-Jan-03 20-Fe b-03 11-Apr-03 31-May-03 20-Jul-03 8-Sep-03 28-Oct-03 17-Dec-03

Date

D
a

il
y
 a

c
c
o

u
n

t
v

a
lu

e

FOCPX Model(GSPC+IXIC)

FIGURE 7.32 Comparison of daily closing prices versus synthetic FOCPX model prices in

2003.

324 METHODS FOR REGRESSION

suggest consistent modeling errors. These results are in agreement with high varia-

bility of regression coefficients shown in Table 7.4.

Interpretation of Results

As common with many real-life problems, predictive modeling becomes useful

only when it is related to and properly interpreted within an application context.

To this end, predictive models for pricing mutual funds can be used in two different

ways:

� First, these models can measure the performance of mutual fund managers.

For example, our statistical models imply that over the 2003–2004 period,

Fidelity Magellan daily closing prices simply follow the SP500 index, and

Fidelity OTC simply follows the NASDAQ index. This is evident from the

values of coefficients in linear regression (Tables 7.2 and 7.3) and compar-

isons in Figs. 7.31 and 7.32. So one can question the value of these actively

managed funds versus passively managed index funds (that charge lower

annual fees). In contrast, the model for Fidelity Contrafund is not very

accurate, and, in fact, it consistently underestimates the actual fund’s value

(see Fig. 7.33). It implies the true additional value of active fund manage-

ment. In fact, Morningstar consistently gives top ranking to Fidelity Contra-

fund during the last 5 years.

80

90

100

110

120

130

140

150

160

1-Jan-03 20-Fe b-03 11-Apr-03 31-May-03 20-Jul-03 8-Sep-03 28-Oct-03 17-Dec-03

Date

D
a
il
y
 a

c
c
o

u
n

t
v
a
lu

e

FCNTX Model(GSPC+IXIC+XLE)

FIGURE 7.33 Comparison of daily closing prices versus synthetic FCNTX model prices in

2003.

EMPIRICAL STUDIES 325

� Another application of the modeling results relates to the problem of frequent

trading or ‘‘market timing’’ of mutual funds. The so-called timing of mutual

funds attempts to profit from daily price fluctuations, under the assumption

that the next-day price changes may be statistically ‘‘predictable’’ from

today’s market data (Zitzewitz 2003). Market timing is known to work well

for certain types of funds with inefficient pricing, that is, international mutual

funds (Zitzewitz 2003). This phenomenon has been widely exploited by the

insiders (a few mutual fund managers and hedge funds), leading to widely

publicized scandals in 2001–2002. In response to these abuses, the mutual

fund industry has introduced restrictions on frequent trading that broadly

apply to all types of funds. In particular, these restrictions apply to large-cap

domestic funds (such as FMAGX, FOCPX, and FCNTX) that are priced very

efficiently (Green and Hodges 2002), as evident also from our highly accurate

linear regression models for FMAGX and FOCPX. Clearly, the proposed

linear regression models can be used to overcome the restrictions on frequent

trading for such a mutual fund and to implement various hedging and risk

management strategies. For example, a portfolio with a large holding of

FOCPX can hedge its position by selling short the NASDAQ index (in order

to overcome trading restrictions on mutual funds). Arguably, this hedging

strategy can be applied at any time during trading hours (not just at market

closing).

In summary, we point out that linear regression models described in this section can

be used to evaluate the performance of mutual fund managers, and to implement

various hedging and risk management strategies for large portfolios.

7.5.2 Comparison of Adaptive Methods for Regression

Adaptive methods usually have many ‘‘knobs’’ that need to be carefully tuned to

produce good predictive models. For example, recall that with backpropagation

training, complexity control can be achieved via initialization, early stopping, or

selection of the number of hidden units. Optimal tuning of these techniques cannot

be formalized. Hence, most adaptive methods require manual parameter tuning by

expert users. There are many examples of such comparison studies performed by

experts (Ng and Lippmann 1991; Weigend and Gershenfeld 1993). In such studies,

performance results obtained by different experts (each using his/her favorite tech-

nique) cannot be sensibly interpreted, due to unknown ‘‘expert bias.’’

This section describes a different approach to comparisons (Cherkassky et al.

1996) designed for general (nonexpert) users who do not have detailed knowledge

of the methods used. The only way to separate the power of the method from the

expertise of a person applying it is to make the method fully automatic (no para-

meter tuning) or semiautomatic (only a few parameters tuned by a user). Under this

approach, automatic methods can be widely used by nonexpert users. The study

used six representative methods, which are described in this chapter. However,

the methods are modified so that, at most, one or two parameters (which control

326 METHODS FOR REGRESSION

model complexity) need to be user-defined. Other tunable parameters specified in

the original implementations are either set to carefully chosen default values or

internally optimized (in a manner transparent to the user). The final choice of

user-tunable parameters and the default values is somewhat subjective, and it intro-

duces a certain bias into comparisons between methods. This is the price to pay for

the simplicity of using adaptive methods.

Comparisons performed on artificial data sets provide some insights on applic-

ability of various methods. No single method proved to be the best, as a method’s

performance depends significantly on the type of the target function (being esti-

mated) and on the properties of training data (the number of samples, amount of

noise, etc.). The comparison illustrated differences in methods’ robustness, namely

the variation in predictive performance caused by the (small) changes in the training

data. In particular, statistical methods using greedy (and fast) optimization proce-

dures tend to be less robust than neural network methods using iterative (slow) opti-

mization for parameter (weight) estimation.

Comparison Goal

The goal of the comparison of the various methods is to determine their predictive

performance when applied by nonexpert users. The comparisons do not take into

account a method’s explanation/interpretation capabilities, computational (training)

time, algorithmic complexity, and so on. All methods (their implementations) are

easy to use, so only minimal user knowledge of the methods is assumed. Training is

assumed offline, and computer time is assigned a negligible cost.

Comparison Methodology

Each method is run with four different complexity parameter settings on the same

training data, and the best complexity parameter is selected based on estimated

prediction risk found using independent validation data set. The validation error

is also used as an estimate of test error. Then the best models for each method

are compared and the winner (best method for a given training data) is recorded.

This setup does not yield accurate estimates of the prediction accuracy because the

validation data set is also used to estimate test error. However, relative ranking of

learning methods (in terms of prediction accuracy) is still valid for the crude model

selection procedure adopted in this study (i.e., trying just four complexity para-

meter values).

Experiment Design

Included in the design specifications were the following:

� Types of functions (mappings) used to generate samples

� Properties of the training and validation data sets

� Specification of performance metric used for comparisons

� Description of modeling methods used (including default parameter settings)

EMPIRICAL STUDIES 327

Functions Used

Artificial data sets were generated for eight ‘‘representative’’ two-variable target

functions taken from the statistical and neural network literature. They include dif-

ferent types of functions, such as harmonic, additive, and complicated interactions.

Also several high-dimensional data sets are used. These high-dimensional functions

include intrinsically low-dimensional functions that can be easily estimated from

data as well as difficult functions for which model-free estimation (from limited-

size training data) is not possible. In summary, the following functions are used:

� Functions 1–8 (two-dimensional functions); see Figs. 7.34 and 7.35.

� Function 9 (six-dimensional additive) adapted from Friedman (1991):

y ¼ 10 sinðpx1x2Þ þ 20ðx3 � 0:5Þ2 þ 10x4 þ 5x5 þ 0x6; x uniform in ½�1; 1�:

� Function 10 (four-dimensional additive):

y ¼ expð2x1sinðpx4ÞÞ þ sinðx2x3Þ; x uniform in ½�0:25; 0:25�:

� Function 11 (four-dimensional multiplicative)—intrinsically hard:

y ¼ 4ðx1 � 0:5Þðx4 � 0:5Þsinð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x22 þ x23

q

Þ; x uniform in ½�1; 1�:

FIGURE 7.34 Representations of the two-variable functions used in the comparisons.

Functions 1 and 2 are from Breiman (1991). Function 3 is the GBCW function from Gu et al.

(1990). Function 4 is from Masters (1993).

328 METHODS FOR REGRESSION

� Function 12 (four-dimensional cascaded)—intrinsically hard:

a ¼ expð2x1sinðpx4ÞÞ; b ¼ expð2x2sinðpx3ÞÞ;
y ¼ sinðabÞ;

x uniform in ½�1; 1�:

� Function 13 (four nominal variables, two hidden variables):

y ¼ sinðabÞ;

hidden variables a and b uniform in ½�2; 2�.
Observed (nominal) x-variables are x1 ¼ acosðbÞ, x2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

, x3¼ aþ b,

x4 ¼ a.

Training Data

The characteristics of the training data include distribution, size, and noise. The

training set distribution is uniform in x-space.

� Training set size: Three sizes are used for each function: small (25 samples),

medium (100 samples), and large (400 samples).

� Training set noise: The training samples are corrupted by three different

levels of Gaussian noise: no noise, medium noise (SNR¼ 4), and high noise

(SNR ¼ 2).

FIGURE 7.35 Representations of the two-variable functions used in the comparisons.

Functions 5 (harmonic), 6 (additive), and 7 (complicated interaction) are from Maechler et al.

(1990). Function 8 (harmonic) is from Cherkassky et al. (1991).

EMPIRICAL STUDIES 329

Validation/Test Data

A single data set is generated for each of the 13 functions used. For two-variable

functions, the test set has 961 points uniformly spaced on a 31� 31 square grid. For

high-dimensional functions, the test data consist of 961 points randomly sampled in

the domain of x. The same data set was used as validation set (for selecting model

complexity parameter) and as test set (for estimating prediction accuracy of a

method). This validation/test data set does not contain noise.

Performance Metric

The performance index used to compare predictive performance (generalization

capability) of the methods is the empirical risk (RMS) of the test set.

Learning Method Implementations

Several learning methods (developed elsewhere) have been combined into a single

package called XTAL, under a uniform user interface (Cherkassky et al. 1996). For

improved usability, XTAL presets most user-tunable parameters for each method,

as detailed next.

� Projection pursuit regression (PPR from Section 7.3.1): The original imple-

mentation of projection pursuit, called SMART (Friedman 1984a), was used.

To improve ease of use in the XTAL package, mf is set by the user, but ml is

always taken to be mf þ 5. In addition, the SMART package allows the user

to control the thoroughness of optimization. In the XTAL implementation,

this is set to the highest level.

� Multilayer perceptron (MLP from Section 7.3.2): The XTAL package uses a

version of multilayer feedforward networks with a single hidden layer

described in Masters (1993). This version employs conjugate gradient descent

for estimating model parameters (weights) and performs a very thorough

(internal) optimization via simulated annealing to escape from local minima

(10 annealing cycles). The original implementation from Masters (1993) is

used with minor modifications. The method’s implementation in XTAL has a

single user-defined parameter—the number of hidden units. This is the

complexity parameter of the method.

� Multivariate adaptive regression spline (MARS from Section 7.3.3): The

original code provided by J. Friedman is used (Friedman 1991). In the XTAL

implementation, the user selects the maximum number of basis functions and

the adaptive correction factor Z. The interaction degree is defaulted to allow

all interactions.

� k nearest neighbors (KNN from Section 7.4): A simple nonadaptive version

with parameter k selected by the user.

� Generalized memory-based learning (GMBL from Section 7.4.1): The

GMBL version in the package has no user-defined parameters. Default values

of the original GMBL implementation are used for the internal model

selection.

330 METHODS FOR REGRESSION

� Constrained topological mapping (adaptive piecewise-linear batch CTM

from Section 7.4.2): The batch CTM software is used (Mulier 1994). When

used with XTAL, the user supplies the model complexity penalty, an integer

from 0 to 9 (maximum smoothing) and the dimensionality of the map.

User-Controlled Parameter Settings

Each method (except GMBL) is run four times on every training data set with the

following parameter settings:

� KNN : k ¼ 2; 4; 8; 16.

� GMBL: No parameters (run only once).

� CTM: Map dimensionality set to 2, smoothing parameter ¼ 0; 2; 5; 9.

� MARS: One hundred maximum basis functions, smoothing parameter (the

adaptive correction factor Z) ¼ 2:0; 2:5; 3:0; 4:0.

� PPR: Number of terms (in the smallest model) ¼ 1; 2; 5; 8.

� MLP: Number of hidden units ¼ 5; 10; 20; 40.

Summary of Comparison Results

Experimental results of the nearly 4000 individual experiments are detailed in

Cherkassky et al. (1996). Here we summarize only the major conclusions.

The performance of each method is presented with respect to type of function

(mapping), characteristics of the training set that comprises sample size/distribu-

tion and the amount of added noise, and the method’s robustness with respect to

characteristics of training data and tunable parameters. Robust methods show

small variation in their predictive performance in response to small changes in

the (properties of) training data or tunable parameters (of a method). Methods

exhibiting robust behavior are preferable for two reasons: They are easier to

tune for optimal performance and their performance is more predictable and

reliable.

Most reasonable methods provide comparable predictive performance for large

samples. This is not surprising, as all (reasonable) adaptive methods are asympto-

tically optimal (universal approximators). A method’s performance becomes

more uneven with small samples. The comparative performance of these different

methods is summarized below:

Best Worst

Prediction accuracy (dense samples) MLP KNN, GMBL

Prediction accuracy (sparse samples) GMBL, KNN MARS, PP

Additive target functions MARS, PP KNN, GMBL

Harmonic target functions CTM, MLP PP

Radial target functions MLP, PP KNN

Robustness (parameter tuning) MLP, GMBL PP

Robustness (sample properties) MLP, GMBL PP, MARS

EMPIRICAL STUDIES 331

Here, denseness of samples is measured with respect to the target function com-

plexity (i.e., smoothness). In our study, dense sample observations refer mostly to

medium/large sample sizes for two-variable functions, and sparse sample observa-

tions refer to small-sample results for two-variable functions as well as all sample

sizes for high-dimensional functions.

The small number of high-dimensional target functions included in this compar-

ison study makes any definite conclusions difficult. However, our results confirm

the well-known notion that high-dimensional (sparse) data can be effectively esti-

mated only if their target function has some special property. For example, additive

target functions (9 and 10) can be accurately estimated by MARS, whereas func-

tions with correlated input variables (function 13) can be accurately estimated by

MLP, GMBL, and CTM. On the contrary, examples of inherently complex target

functions (11 and 12) cannot be accurately estimated by any method due to the

sparseness of training data. An interesting observation is that whenever accurate

estimation is not possible (i.e., sparse samples), more structured methods generally

fail, but local methods provide better accuracy.

The methods in the study consist of both adaptive basis function methods and

adaptive kernel methods (except KNN). Our results indicate that kernel methods

(e.g., GMBL and KNN) are generally more robust than other (more structured)

methods. Of course, better robustness does not imply better prediction performance.

Also, neural network methods (MLP, CTM) are more robust than statistical ones

(MARS, PP). This is due to differences in the optimization procedures used. Spe-

cifically, greedy optimization commonly used in statistical methods results in more

brittle model estimates than the neural network-style optimization, where all the

basis functions are estimated together in an iterative fashion.

7.6 COMBINING PREDICTIVE MODELS

The comparison study in Section 7.5.2 is based on a common practice of trying

several estimators on a given data set. This is done in the following manner:

First, a number of candidate estimators using different types of basis functions

are trained using a portion of the available data. Then, the remaining data are

used to estimate the expected risk of each candidate, and the one with lowest

risk is chosen as the winner. It can be argued that this procedure ‘‘wastes’’ the

resulting models that lose this competition. Instead of choosing a single ‘‘best’’

method for a given problem, a combination of several predictive models may pro-

duce an improved prediction. Model combination approaches are an attempt to cap-

ture the information contained in all the candidates.

Typical model combination procedures consist of a two-stage process. In the first

stage, the training data are used to separately estimate a number of different models.

The parameters of these models are then held fixed. In the second stage, these indi-

vidual models are linearly combined to produce the final predictive model. Many

theoretical papers propose nonlinear combination of individual models at the sec-

ond stage. However, there is no empirical evidence to suggest that such nonlinear

332 METHODS FOR REGRESSION

combination produces better results than a more tractable linear combination. Note

that the two-stage procedure of the model combination does not match the frame-

work of SLT. There is no theory to relate the complexity of the individual estima-

tors to the complexity of the final combination. Therefore, it is not clear how an

approach of combining predictive models fits into the framework of existing induc-

tive principles (e.g., SRM) or whether it forms a new inductive principle (for which

no theory is currently available).

In this section, we will first discuss two specific approaches used for model com-

bination. One approach, called committee of networks (Perrone and Cooper 1993),

produces a model combination by minimizing empirical risk at each stage. Another

approach, called stacking predictors (Wolpert 1992; Breiman 1994), employs a

resampling technique similar to cross-validation to produce a combined model.

Following this description, we provide some empirical results showing the effec-

tiveness of these two combining approaches.

In the committee of networks method, the training data are first used to estimate

the candidate models, and then the combined model is created by taking the

weighted average. Let us assume that we have data ðxi; yiÞ, i ¼ 1; . . . ; n, and that

we have used these data to estimate b candidate models, f1ðx;o�1Þ; f2ðx;o�2Þ; . . . ;
fbðx;o�bÞ. Note that there are no restrictions on how these candidate approximations

are produced. For example, an MLP approximation, a MARS approximation, and

an RBF approximation could be combined. However, for improved accuracy, it has

been suggested (Wolpert 1992; Krogh and Vedelsby 1995) that a variety of different

regression methods (i.e., using different types of basis functions) should be

employed. Obviously, combining identical candidate methods cannot result in an

approximation better than that by any individual method. The combined model is

then constructed by taking the weighted average

fcomðx; aÞ ¼
1

b

X

b

j¼1
aj fjðx;o�j Þ: ð7:117Þ

The values of the linear coefficients aj are selected to minimize the empirical risk

RðaÞ ¼ 1

n

X

n

i¼1
ð fcomðxi; aÞ � yiÞ2; ð7:118Þ

under the constraints

X

b

j¼1
aj ¼ 1; aj 	 0; j ¼ 1; . . . ; b: ð7:119Þ

Under the Bayesian interpretation, coefficients aj can be viewed as a degree of

belief (prior probability) that the data are generated by model j; hence, coefficients

sum to 1.

COMBINING PREDICTIVE MODELS 333

The procedure for stacking predictors uses a resampling approach to combine

the models. This resampling is done so that data samples used to estimate the indi-

vidual approximating functions are not used to estimate the linear coefficients. Con-

sider the naive resampling scheme where the data set is split into two portions. The

first portion could be used to estimate the b individual candidate models,

f1ðx;o�1Þ; f2ðx;o�2Þ; . . . ; fmðx;o�bÞ. The candidate model parameters can then be

fixed, and the linear coefficients aj can be adjusted to minimize the empirical

risk for the second portion of data:

R2ðaÞ ¼
1

n2

X

n2

i¼1
yi �

X

b

j¼1
aj fjðxi;o�j Þ

 !2

; ð7:120Þ

where n2 is the number of samples in the second data portion. As discussed in Sec-

tion 3.4.2, this naive approach makes inefficient use of the whole data set. To make

better use of the data, an approach similar to the leave-one-out cross-validation

resampling method should be applied. The left-out samples will take the place of

the second portion of data used to estimate the linear coefficients. This results in the

stacking algorithm:

Stage 1: Resampling
For each ‘‘left-out’’ sample ðxi ; yiÞ, i ¼ 1; . . . ; n, resample each candidate
method fjðx;ojÞ, j ¼ 1; . . . ; b:

(a) Use the remaining n � 1 samples ðxk ; yk Þ, k 6¼ i , to estimate the
model

fij ðx;o�ij Þ:

(b) Store the prediction for the ‘‘left-out’’ sample

ŷ
ij ¼ fij ðxi ;o�ij Þ:

Note: The final result of stage 1 is a prediction by every candidate model for each

‘‘left-out’’ data sample i ¼ 1; . . . ; n.

Stage 2: Estimation of linear coefficients
Determine linear coefficients a�j , which minimize the empirical risk

RðaÞ ¼ 1

n

X

n

i¼1
yi �

X

b

j¼1
ajŷ ij

 !2

;

under the constraints

X

b

j¼1
aj ¼ 1; aj 	 0; j ¼ 1; . . . ; b:

Note: In stage 2, the ‘‘left-out’’ samples are used to estimate the linear coefficients.

334 METHODS FOR REGRESSION

Additional step: Re-estimation of candidate models

1. For each candidate method fjðx;oj Þ, j ¼ 1; . . . ; b, use all the samples
ðxk ; yk Þ, k ¼ 1; . . . ; n, to estimate the final model

f �j ðx;o�j Þ

2. Construct the final combined model

f ðxÞ ¼
X

b

j¼1
a�j f
�
j ðx;o�j Þ:

Note: The additional step is required as the resampling approach of stage 1 does not

produce a single approximating function for each candidate method. A single

approximating function is required to perform the prediction.

In our (limited) experience with regression problems, the committee of networks

approach results in predictive models slightly inferior to the stacking approach.

However, more theoretical and empirical studies are needed to fully understand

model combination.

Example 7.2: Combining predictive models

This example demonstrates the improvement in estimation accuracy achieved by

combining linear models using both the committee of networks and the stacking

approach. For the training data set, three linear estimates are created: one using poly-

nomial basis, one using a trigonometric basis, and one using k nearest neighbors.

Model selection in the form of selecting the degree of polynomial, number of harmo-

nics, or k is performed using Vapnik’s measure from Section 4.3.2. The parameters of

these estimates are then held fixed. The final function estimate is created by combin-

ing two of the three separate function estimates in a linear form:

fcombðx; aÞ ¼ a fpolyðxÞ þ ð1� aÞftrigðxÞ; 0 � a � 1:

For the committee of networks approach, the mixing coefficient a is determined by

minimizing the empirical risk. For the stacking approach, the coefficient a is deter-

mined via the resampling algorithm above. We will explore the performance of

these two approaches on the following regression problem: The training samples

are generated using the target function

y ¼ 0:8 sinð2p
ffiffiffi

x
p
Þ þ 0:2x2 þ x;

where the noise is Gaussian with zero mean and variance s2 ¼ 0:25. The indepen-
dent variable x is distributed uniformly in the [0, 1] interval. From this target func-

tion, 200 training sets were generated in order to repeat the experiment a number of

COMBINING PREDICTIVE MODELS 335

times. Two different sized training sets were used: 30 samples and 50 samples. Five

function estimates were computed:

1. Linear estimate with polynomial basis, fpolyðxÞ
2. Linear estimate with trigonometric basis, ftrigðxÞ
3. Linear estimate using k-nearest-neighbor regression, fknnðxÞ
4. Linear combination of (1) and (2) via committee of networks, fcomb1ðxÞ
5. Linear combination of (1) and (2) via stacking approach, fcomb2ðxÞ

For each training set, the following procedure was applied to generate the three esti-

mates:

1. Polynomial estimate: Using the training data, estimate the parameters um1
in

the polynomial

fpolyðx; um1
Þ ¼

X

m1�1

j¼0
ujx

j:

Model selection is performed by choosing m1 in the range ½1; 10� in order to

minimize Vapnik’s measure (4.28).

2. Trigonometric estimate: Using the training data, estimate the parameters wm2

and vm2
in the trigonometric function

ftrigðx; vm2
;wm2

Þ ¼
X

m2�1

j¼1
ðvjsinð jxÞ þ wjcosð jxÞÞ þ w0:

Model selection is performed by choosing m2 in the range ½1; 10� in order to

minimize Vapnik’s measure (4.28).

3. Nearest-neighbor estimate: Using the training data, determine the kernel

width k in the nearest-neighbor approximating function

fknnðx; kÞ ¼
1

k

X

n

i¼1
Kkðxi; xÞyi:

The parameter k is selected using global model selection described in

Section 7.4. The model selection criterion used is Vapnik’s measure (4.28),

and the effective degrees of freedom is estimated by (4.45). The value of k is

varied in the range 1 < k � n.

4. Committee of networks: Using the training data, find the parameter a,

0 < a < 1, in the combination

fcomb1ðx; aÞ ¼ a fpolyðx; um1
Þ þ ð1� aÞftrigðx; vm2

;wm2
Þ; 0 < a < 1;

336 METHODS FOR REGRESSION

which minimizes the empirical risk. The search is performed by stepping the

parameter a through its range of possible values for committee of networks.

First, a step size of 0.05 is used to narrow the search region. The step size is

then reduced to 0.01 in the narrow search region to produce the final estimate.

5. Stacking approach: Find the parameter a, 0 < a < 1, in the combination

fcomb2ðx; aÞ ¼ a fpolyðx; um1
Þ þ ð1� aÞftrigðx; vm2

;wm2
Þ; 0 < a < 1;

which minimizes the risk as estimated by leave-one-out cross-validation. The

search is performed in a stepped approach similar to 4.

6. A final estimate of expected risk is computed for each method using a large

(1000 sample) data set generated according to the target function (with

noise). The predictive performance of various methods is judged based on this

expected risk estimate.

Repeating the above procedure for the 200 training data sets creates an empirical

distribution of expected risk for each function estimation approach. The statistics of

these empirical distributions are indicated via the box plots in Fig. 7.36. The box

plots indicate the 5th percentile, 1st quartile, median, 3rd quartile, and 95th percen-

tile for the expected risk for each approach. There is a popularly held belief that

combining the models always provides lower prediction risk than using each

model separately (Krogh and Vedelsby 1995). However, the results of Fig. 7.36

show that this is not the case for small samples (n ¼ 30); for larger samples

(n ¼ 50), the combined model provides improved accuracy in this experiment.

7.7 SUMMARY

In summarizing the description of various methods for regression in this chapter, we

note that for linear (or nonadaptive) methods there is a working theory for model

selection. Using this theory (presented in Section 7.2), it is possible to measure the

complexity of the (penalized) linear models and then perform model selection using

SLT. However, linear methods fail for higher-dimensional problems with finite sam-

ples because of the curse of dimensionality. Simply put, linear methods require too

many terms (fixed basis functions) in a linear combination to represent a

high-dimensional function. Unfortunately, although we are thus motivated to use

adaptive methods that require fewer nonlinear features (adaptive basis functions)

to represent high-dimensional functions, there is no satisfactory theory for model

selection with adaptive methods. In particular, with adaptive models, complexity

cannot be accurately estimated, and the empirical risk cannot be minimized due

to the existence of multiple local minima. Moreover, complexity control is often

performed implicitly via the optimization procedure used for parameter estimation.

This leads to numerous implementations (of adaptive methods) that depend on

heuristics for complexity control. The representative methods described in this

SUMMARY 337

chapter try to relate various heuristic model selection techniques to SLT. All learn-

ing methods presented in this chapter implement the SRM inductive principle. For

example,

� Adaptive statistical methods (MARS and projection pursuit) and neural

network methods (MLP) implement a dictionary structure (7.1). However,

they use different optimization strategies for selecting a small number of

‘‘good nonlinear features’’ or nonlinear basis functions.

0.25

0.3

0.35

0.4

0.45

0.5

poly trig comb1 comb2 knn

Method

Risk, noise variance 0.25, n = 30

(a)

0.26

0.28

0.3

0.32

0.34

0.36

poly trig comb1 comb2 knn

Method

Risk, noise variance 0.25, n = 50

(b)

R
is

k
R

is
k

FIGURE 7.36 Results for linear combination of linear estimators for samples sizes

n ¼ 30; 50. The estimation methods (comb1) and (comb2) are a result of a linear

combination of the polynomial (poly) and trigonometric (trig) estimators. The committee

of networks approach was used to produce (comb1) and stacking predictors were used to

construct (comb2).

338 METHODS FOR REGRESSION

� Penalized linear methods implement a penalization structure (4.38).

� Wavelet denoising methods (with hard thresholding) implement feature

selection structure (4.37).

However, with adaptive methods we can provide only qualitative explanation,

whereas for linear methods the SLT gives a quantitative prescription for model

selection.

Note that most existing adaptive regression methods (presented in this chapter)

can be traced back to standard linear regression (with squared loss). This may sug-

gest that for high-dimensional problems alternate strategies should be pursued, such

as using the so-called margin-based loss leading to SVM methods presented in

Chapter 9.

SUMMARY 339

8
CLASSIFICATION

8.1 Statistical learning theory formulation

8.2 Classical formulation

8.2.1 Statistical decision theory

8.2.2 Fisher’s linear discriminant analysis

8.3 Methods for classification

8.3.1 Regression-based methods

8.3.2 Tree-based methods

8.3.3 Nearest-neighbor and prototype methods

8.3.4 Empirical comparisons

8.4 Combining methods and boosting

8.4.1 Boosting as an additive model

8.4.2 Boosting for regression problems

8.5 Summary

Turkish mustaches, or lack of thereof, bristle with meaning. . . . Mustaches signal the

difference between leftist (bushy) and rightist (drooping to the chin), between Sunni

Muslim (clipped) and Alevi Muslim (curling to the mouth).

Wall Street Journal, May 15, 1997

This chapter describes methods for the classification problem introduced in Chapter 2.

An input sample x ¼ ðx1; x2; . . . ; xdÞ needs to be classified to one (and only one) of

the J groups (or classes) C1;C2; . . . ;CJ . The existence of the groups is known a priori.

Input sample x usually represents features of an object whose class membership is

unknown. Let the categorical variable y denote the class membership of an object,

so that y ¼ j means that it belongs to class Cj. Classification is concerned with the

relationship between the class-membership label y and the feature vector x. More

precisely, under the predictive formulation (assumed in this book), the goal is to

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

340

estimate the mapping x! y using labeled training data ðxi; yiÞ; i ¼ 1; . . . ; n. This
mapping (called a decision rule) is then used to classify future samples, namely esti-

mate y using only the feature vector x. Both training and future data are independent

and identically distributed (iid) samples originating from the same (unknown) statis-

tical distribution.

Classification represents a special case of the learning problem described in

Chapter 2. For simplicity, assume two-class problems. Then the output of the system

(in Fig. 2.1) takes on values y ¼ f0; 1g, corresponding to two classes. Hence, the

learning machine needs to implement a set of indicator functions f ðx;oÞ. A com-

monly used loss function for this problem measures the classification error

Lðy; f ðx;oÞÞ ¼ 0; if y ¼ f ðx;oÞ;
1; if y 6¼ f ðx;oÞ:

�

ð8:1Þ

Using this loss function, the risk functional

RðoÞ ¼
ð

Lðy; f ðx;oÞÞpðx; yÞdxdy ð8:2Þ

is the probability of misclassification. Learning then becomes the problem of find-

ing the function f ðx;o0Þ (classifier) that minimizes average misclassification error

(8.2) using only the training data.

Methods for classification use finite training data for estimating an indicator

function f ðx;o0Þ or a class decision boundary. Within the framework of statistical

learning theory (SLT), implementation of methods using structural risk minimiza-

tion (SRM) requires

1. Specification of a (nested) structure on a set of indicator approximating

functions

2. Minimization of the empirical risk (misclassification error) for a given

element of a structure

3. Estimation of prediction risk using bound (4.22) provided in Chapter 4

As we will see in Section 8.1, it is not possible to implement requirement 2 directly

for most practical problems because minimization of the classification error leads to

combinatorial optimization. This is due to the discontinuous nature of indicator

functions. Therefore, practical methods use a different loss function that only

approximates misclassification error so that continuous optimization techniques

can be applied. Also, rigorous estimation of prediction risk in requirement 3 is pro-

blematic due to the difficulty of estimating the VC dimension for nonlinear approx-

imating functions. However, the conceptual framework is clear: In order to solve

the classification problem, one needs to use a flexible set of functions to implement

a (nonlinear) decision boundary.

According to the classical (parametric) formulation of the classification problem

introduced in Section 2.2.2, conditional densities for each class, pðxjy ¼ 0Þ and

CLASSIFICATION 341

pðxjy ¼ 1Þ; can be estimated using, for example, the maximum likelihood (ML)

inductive principle. These estimates will be denoted as p0ðx; a�Þ and p1ðx; b�Þ,
respectively, to indicate that they are parametric functions with parameters chosen

via ML. The probability of occurrence of each class, called prior probabilities,

Pðy ¼ 0Þ and Pðy ¼ 1Þ, is assumed to be known or estimated, namely as a fraction

of samples from a particular class in the training set. Using the Bayes theorem, it is

possible from these quantities to determine the probability that a given observation

x belongs to each class. These probabilities, called posterior probabilities, can be

used to construct a discriminant rule that describes how an observation x should be

classified in order to minimize the probability of error. This rule chooses the output

class that has the maximum posterior probability. First, the Bayes rule is used to

calculate the posterior probabilities for each class:

Pðy ¼ 0jxÞ ¼ p0ðx; a�ÞPðy ¼ 0Þ
pðxÞ ;

Pðy ¼ 1jxÞ ¼ p1ðx; b�ÞPðy ¼ 1Þ
pðxÞ :

ð8:3Þ

Once the posterior probabilities are determined, the following decision rule is used

to classify x:

f ðxÞ ¼ 0; if p0ðx; a�ÞPðy ¼ 0Þ > p1ðx; b�ÞPðy ¼ 1Þ;
1; otherwise:

�

ð8:4Þ

In summary, under the classical approach, one needs to estimate posterior probabil-

ities in order to find a decision boundary. This can be done by estimating individual

class densities separately and then applying the Bayes rule (as shown above). Alter-

natively, posterior probabilities can be estimated directly from all training data (as

explained in Section 8.2.1).

Now let us contrast the two distinct approaches to classification. The classical

approach applies the empirical risk minimization (ERM) inductive principle indir-

ectly to first estimate the densities, which are then used to formulate the decision

rule. Under the SLT formulation, the goal is to find a decision boundary minimizing

the expected risk. Let us recall from Chapter 2 the main principle for estimation

problems with finite data: Do not solve a specified problem by indirectly solving

a harder problem as an intermediate step. Also recall that in terms of their inherent

complexity, the three major learning problems are ranked as follows: classification

(simplest), regression (more difficult), and density estimation (very hard). Clearly,

the classical approach is conceptually flawed in estimating a decision boundary via

density estimation.

Section 8.1 presents the general approach for constructing classification algo-

rithms based on SLT (Vapnik 1995). A multilayer perceptron (MLP) classifier is

described as an example constructive method using SLT formulation.

342 CLASSIFICATION

Most statistical and neural network sources on classification (Fukunaga 1990;

Lippmann 1994; Bishop 1995; Ripley 1996) adopt the classical formulation, where

the goal is to estimate posterior probabilities. This approach originates from the

classical setting where all distributions are known. In learning problems where dis-

tributions are not known, estimating posterior probabilities may not be appropriate.

The classical approach to predictive classification and its limitations is discussed in

Section 8.2.1. Section 8.2.2 describes linear discriminant analysis (LDA), a classi-

cal method implementing risk minimization and dimensionality reduction for clas-

sification problems.

Section 8.3 discusses representative classification methods. These methods are

usually described using classical formulation (as posterior probability estimators);

however, they are actually used for estimating decision boundaries (similar to SLT

formulation). So descriptions in Section 8.3 follow the SLT formulation. The dis-

cussion of actual methods is rather brief, as many of the methods for estimating

(nonlinear) decision boundaries are closely related to the adaptive methods for

regression presented in Chapter 7. Moreover, we do not include methods based

on class density estimation, as these methods are not a good choice for predictive

classification. However, class density estimation may be useful if the goal is

the interpretation/explanation of classification decisions. To this end, one

can find useful methods for density characterization described in Chapter 6 and

Section 9.10.

Section 8.4 provides an overview of combining methods for classification and

gives detailed description of boosting methodology. Boosting methods (such as

AdaBoost) have recently emerged as a powerful and robust approach to classifica-

tion. A summary is given in Section 8.5.

8.1 STATISTICAL LEARNING THEORY FORMULATION

Let us consider the problem of binary classification given finite training data

ðxi; yiÞ, i ¼ 1; . . . ; n, where the output y takes on binary values f0; 1g. Under the
SLT framework, the goal is to estimate an indicator function or decision boundary

f ðx;o0Þ. According to the SRM inductive principle, to ensure high generalization

ability of the estimate one needs to construct a nested structure

S1
 S2
 � � �
 Sm
 � � � ð8:5Þ

on the set of approximating functions f ðx; oÞ;o 2 �, where each element of the

structure Sm has finite VC dimension hm. A structure provides ordering of its ele-

ments according to their complexity (i.e., VC dimension):

h1 � h2 � � � � � hm � � � �

Constructive methods should select a particular element of a structure

Sm ¼ f ðx;omÞ and an indicator function f ðx;om
0 Þ within this element minimizing

STATISTICAL LEARNING THEORY FORMULATION 343

the bound on prediction risk (4.22). This bound is reproduced below:

Rðom
0 Þ � Rempðom

0 Þ þ �ðn=hmÞ; ð8:6Þ

where the first term is the training error and the second term is the confidence

interval.

As shown in Chapter 4, when the ratio n=h is large, then the confidence interval

approaches zero, and the empirical risk is close to the true risk. In other words,

for large samples a small value of the empirical risk guarantees small true risk,

and application of ERM is justified. However, if n=h is small (less than 20),

then both terms on the right-hand side of (8.6) need to be minimized. As shown

in Chapter 4, for a given (fixed) sample, the value of the empirical risk monotoni-

cally decreases with h, whereas � monotonically increases with h. Note that the

first term (empirical risk) depends on a particular function from the set of functions,

whereas the second term depends on the VC dimension of the set of functions. In

order to minimize the bound of risk in (8.6) over both terms, it is necessary to make

the VC dimension a controlling variable. Hence, for finite training sample of size n,

there is an optimal element of a structure providing minimum of prediction risk.

There are two strategies for minimizing the bound (8.6), corresponding to two

constructive implementations of the SRM inductive principle:

1. Keep the confidence interval fixed and minimize the empirical risk: This is

done by specifying a structure where the value of the confidence interval is

fixed for a given element Sm. Examples include all statistical and neural

network methods using dictionary representation, where the number of basis

functions (features) m specifies an element of a structure. For a given m, the

empirical risk is minimized using numerical optimization. For a given amount

of data, there is an optimal element of a structure (value of m) providing

smallest estimate of expected risk.

2. Keep the value of the empirical risk fixed (small) and minimize the confidence

interval: This approach requires a special structure, such that the value of the

empirical risk is kept small (say, at zero misclassification error) for all

approximating functions. Under this strategy, an optimal element of a

structure would minimize the value of the confidence interval. Implementa-

tion of the second strategy leads to a new class of learning methods described

in Chapter 9.

Conceptually, the first strategy implements the following modeling approach used

in most statistical and neural network methods: To perform classification (or regres-

sion) with high-dimensional data, first project the data onto the low-dimensional

subspace (i.e., m features) and then perform modeling in this subspace (i.e., mini-

mize the empirical risk).

In this section, we only describe the first strategy. According to this strategy, one

needs to specify a structure on a set of indicator functions and then minimize the

empirical risk for an element of this structure. To simplify the presentation, assume

344 CLASSIFICATION

equal misclassification costs. Hence, the goal is to minimize the misclassification

error

RðoÞ ¼
X

n

i¼1

 f ðxi;oÞ � yij; ð8:7Þ

where f ðx;oÞ is a set of indicator functions taking on values f0; 1g and ðxi; yiÞ are
training samples. Often, the misclassification error is presented in the following

(equivalent) form:

RðoÞ ¼
X

n

i¼1
½ f ðxi;oÞ � yi�2: ð8:8Þ

Let us consider first a special case of linear indicator functions

f ðx;oÞ ¼ Iðw � xÞ:

In this case, when the training data are linearly separable, there exists a simple opti-

mization procedure for finding f ðx;w�Þ providing zero misclassification error. It is

known as the perceptron algorithm (Rosenblatt 1962), described next.

Given training data points, xðkÞ 2 <d , yðkÞ 2 f�1; 1g, where two classes are

labeled as {�1; 1} for notational convenience, initial weight (parameter) values

set to (small) random values, and iteration index k, update the weights using the

following algorithm:

If the point xðkÞ, yðkÞ is correctly classified, that is,

yðkÞðwðkÞ � xðkÞÞ > 0;

then do not update the weights:

wðk þ 1Þ ¼ wðkÞ:

On the contrary, if the point xðkÞ, yðkÞ is incorrectly classified, that is,

yðkÞðwðkÞ � xðkÞÞ < 0;

then update the weights using

wðk þ 1Þ ¼ wðkÞ þ yðkÞxðkÞ:

This algorithm will converge on the solution that correctly classifies the data in a

finite number of steps.

However, when the data are not separable and/or the optimal decision boundary is

nonlinear, the perceptron algorithm does not provide an optimal solution. Also, direct

minimization of (8.8) is very difficult due to the discontinuous indicator function.

STATISTICAL LEARNING THEORY FORMULATION 345

This prevents the use of standard numerical optimization techniques. MLP networks

for classification overcome these two problems, that is,

1. MLP classifiers can form flexible nonlinear decision boundaries.

2. MLP classifiers approximate the indicator function by a well-behaved

sigmoid function. With sigmoids, one can apply standard optimization

techniques (such as gradient descent) for minimization.

MLP classifiers use the following risk functional:

R ¼
X

n

i¼1
½sðgðxi;w;VÞÞ � yi�2; ð8:9Þ

which is minimized with respect to parameters (weights) w and V. Here sðtÞ is the
usual logistic sigmoid (5.50) providing a smooth approximation of the indicator

function IðtÞ and gðx;w;VÞ is a real-valued function (aka ‘‘discriminant’’ function)

parameterized as

gðx;w;VÞ ¼
X

m

i¼1
wisðx � viÞ þ w0: ð8:10Þ

Notice that the risk functional (8.9) is continuous with respect to parameters

(weights), unlike the true error (8.7). The corresponding neural network is identical

to the MLP network for regression (discussed in Chapters 5 and 7) except that MLP

classifiers use nonlinear (sigmoid) output unit. Notice that sigmoid nonlinearities in

the hidden and output units pursue different goals. Sigmoid activations of hidden units

enable construction of a flexible nonlinear decision boundary, whereas the output sig-

moid approximates the discontinuous indicator function. Hence, there is no reason to

choose the slope of an output sigmoid activation identical to that of hidden units.

In summary, sigmoid activation of an output unit enables application of numer-

ical optimization techniques during training (parameter estimation). The modified

(continuous) error functional closely approximates the ‘‘true’’ misclassification

error, so it is assumed that minimization of (8.9) corresponds to minimization of

(8.8). Notice that after the network is trained, classification decisions (for future

samples) are made using indicator activation function for the output unit:

f ðxÞ ¼ I
X

m

i¼1
w�i sðx � v�i Þ þ w�0

 !

; ð8:11Þ

where w�i and v�i denote parameters (weights) of the trained MLP.

In neural networks, a common procedure for classification decisions is to use

sigmoid output. In this case, MLP classification decision is made as

f ðxÞ ¼ I½sðgðx;w�;V�ÞÞ � y�; ð8:12Þ

346 CLASSIFICATION

where

gðx;w�;V�Þ ¼
X

m

i¼1
w�i sðx � v�i Þ þ w�0:

Threshold y is typically set at 0.5. Clearly, with y ¼ 0:5, decision rules (8.11)

and (8.12) are equivalent. In spite of this equivalence, the neural network litera-

ture provides different interpretation of the output unit activation. Namely,

the output of the trained network is interpreted as an estimate of the posterior

probability:

sðgðx;w�;V�ÞÞ ¼ P̂ðy ¼ 1jxÞ: ð8:13Þ

Then the decision rule (8.12) with y ¼ 0:5 implements Bayes optimal discrimina-

tion based on this estimate. We shall discuss interpretation (8.13) later in Section

8.2.1. At this point, we only note that the SLT formulation does not view MLP out-

puts as probabilities.

Notice that basic problems (1) and (2) used to motivate MLP classifiers can be

addressed by other methods as well. This leads to the following general prescription

for implementing constructive methods:

1. Specify a (flexible) class of approximating functions for constructing a

(nonlinear) decision boundary. These functions should be ordered according

to their complexity (flexibility), that is, form a structure in the sense of

SLT.

2. Choose a nonlinear optimization method for selecting the best function from

class (1), that is, the function providing smallest empirical risk (8.7).

3. Select a continuous error functional suitable for optimization method chosen

in (2). Notice that the chosen error functional should provide close approx-

imation to discontinuous empirical risk (8.7), in the sense that minimization

of this continuous functional should decrease empirical classification error.

4. Select the best predictive model from a class of functions (1) using the first

strategy for minimizing SLT bound (8.6). All methods described in this

chapter (except Boosting in Sect. 8.4) implement the first strategy for

minimizing SLT bound (8.6). This includes

� Parameter estimation for a given element of a structure performed via

minimization of a (continuous) empirical risk functional

� Model selection, that is, choosing an element of a structure having optimal

complexity

Clearly, the choice of nonlinear optimization technique (2) depends on the

particular error functional chosen in (3). Often, the continuous error functional

(3) is chosen as squared error as in (8.9). This leads to optimization (training)

STATISTICAL LEARNING THEORY FORMULATION 347

procedures computationally identical to regression methods (with squared loss).

Hence, nonlinear regression software can be readily used (with minor modifica-

tions) for classification. Several example methods (in addition to MLP classifiers)

will be described in Section 8.3. However, it is important to keep in mind that

classification methods use a continuous error functional that only approximates

the true one (misclassification error). A classification method using such an

approximation will be successful only if minimization of the error functional

selected in (3) also minimizes true empirical risk (misclassification error). In

the above procedure, parameter estimation is performed using a continuous error

functional (suitable for numerical optimization), whereas model selection is done

using misclassification rate. This is in contrast to regression methods, where the

same (continuous) loss function is used for both parameter estimation and model

selection.

Even though the classification problem itself is conceptually simpler than regres-

sion, a common implementation of classification methods (described above) is

fairly complicated, due to the interplay between the choice of approximating func-

tions (1), nonlinear optimization method (2), and continuous loss function (3). An

additional complication is due to probabilistic interpretation of the outputs of the

trained classifier common with statistical and neural network implementations.

As noted earlier, such probabilistic interpretation of MLP outputs may be mislead-

ing for (predictive) classification problem setting used in this book.

8.2 CLASSICAL FORMULATION

This section first presents the classical view of classification, based on parametric

density estimation and statistical decision theory, as described in Section 8.2.1. This

approach forms a conceptual basis for most statistical methods using a generative

modeling approach (i.e., density estimation). An alternative approach known as dis-

criminative modeling is based on the idea of risk minimization. Section 8.2.2

describes Linear Discriminaut Analysis (LDA), which is the first known method

implementing the risk minimization approach. It is remarkable that Fisher, who

had developed general statistical methodology based on parametric density estima-

tion (via ML), also proposed a practical powerful heuristic method (LDA) for

pattern recognition (classification) problems.

8.2.1 Statistical Decision Theory

The classical formulation of the classification problem is based on statistical deci-

sion theory. Statistical decision theory provides the foundation for constructing

optimal decision rules minimizing risk. However, the theory strictly applies only

when all distributions are known. In the learning problem, the distributions are

unknown. The classical approach for solving classification problems is to estimate

the required distributions from the data and to use them within the framework of

statistical decision theory.

348 CLASSIFICATION

Statistical decision theory is concerned with constructing decision rules (also

called decision criteria). A decision rule partitions the input space into a number

of disjoint regions R0; . . . ;RJ�1, where J is the number of classes. Given an input

point x, a class decision is made by determining which region the point lies in

and providing the index for the region as the decision output. The boundaries

between the decision rules are called the decision boundaries or decision sur-

faces. For a two-class problem (J ¼ 2), the decision rule requires one logical

comparison:

rðxÞ ¼ 0; if x is in R0;
1; otherwise;

�

ð8:14Þ

where the class labels are 0 and 1. For problems with more than two classes, the

decision rule requires J � 1 logical comparisons. In effect, each comparison can be

viewed as a two-class decision rule. For this reason, we will often limit our discus-

sion to two-class problems.

Let us first discuss the simple case where we have not yet observed x, but we

must construct the optimal decision rule. The probability of occurrence of each

class, called prior probabilities, Pðy ¼ 0Þ and Pðy ¼ 1Þ, is assumed to be known.

Based on no other information, the best (minimum misclassification error) decision

rule would be

rðxÞ ¼ 0; if Pðy ¼ 0Þ > Pðy ¼ 1Þ;
1; otherwise:

�

ð8:15Þ

This trivial rule partitions the space into one region assigned to the class with lar-

gest prior probability.

Observing the input x provides additional information that is used to classify the

object. In this case, we compare probabilities of each class conditioned on x:

rðxÞ ¼ 0; if Pðy ¼ 0jxÞ > Pðy ¼ 1jxÞ;
1; otherwise:

�

ð8:16Þ

This fundamental decision rule is called the Bayes rule. This rule minimizes

misclassification risk. It is the best that can be achieved for known distribu-

tions. The conditional probabilities in (8.16) are called posterior probabilities,

as they can be calculated only after observing x. A more convenient form of

this rule can be obtained by expressing the posterior probabilities via the

Bayes theorem:

Pðy ¼ 0jxÞ ¼ pðxjy ¼ 0ÞPðy ¼ 0Þ
pðxÞ ;

Pðy ¼ 1jxÞ ¼ pjðxjy ¼ 1ÞPðy ¼ 1Þ
pðxÞ :

ð8:17Þ

CLASSICAL FORMULATION 349

Then the decision rule (8.16) becomes

rðxÞ ¼ 0; if pðxjy ¼ 0ÞPðy ¼ 0Þ > pðxjy ¼ 1ÞPðy ¼ 1Þ;
1; otherwise;

�

ð8:18Þ

or expressed in terms of the likelihood ratio

rðxÞ ¼
0; if

pðxjy ¼ 0Þ

pðxjy ¼ 1Þ
>

Pðy ¼ 1Þ

Pðy ¼ 0Þ
;

1; otherwise:

8

>

<

>

:

ð8:19Þ

The Bayes rule, as described in (8.16)–(8.19), minimizes the misclassification

error defined as the probability of misclassification Perror. The cost assigned to mis-

classification of each class is assumed to be equal. In many real-life applications,

the different types of misclassifications have unequal costs. For example, consider

detection of coins in a vending machine. A false positive (selling candy bars for

incorrect change) is more costly than a false negative (rejecting correct change).

The coin detector is designed with these costs in mind, resulting in a detector

that commits more false-negative errors than false positive. Although customers

often hope for a false-positive error, they experience false negatives far more often

due to the detector design. These unequal costs of misclassification can be

described using a cost function Cij, which is the cost of classification of an object

from class i as belonging from class j. We will assume the costs values Cij to be

nonnegative, and by convention Cij � 1. For two classes, the following types of

classification could occur:

For most practical situations, the costs related to correct negative and positive

classification are set to zero (C00 ¼ 0;C11 ¼ 0). We will use Pfp to denote the prob-

ability of false positive and Pfn to denote the probability of false negative.

Correct class i

0 1

C00
C10

‘‘negative’’
‘‘false0

negative’’

C01
C11

1

‘‘false
‘‘positive’’

D
ec
is
io
n
j

positive’’

350 CLASSIFICATION

If x 2 Ri, the expected costs are

q0 ¼ C01

ð

R1

pðxjy ¼ 0Þdx; q1 ¼ C10

ð

R0

pðxjy ¼ 1Þdx:

The overall risk is

X

i

qiPðy ¼ iÞ

¼
ð

R1

C01Pðy ¼ 0Þpðxjy ¼ 0Þdxþ
ð

R0

C10Pðy ¼ 1Þpðxjy ¼ 1Þdx

¼ C01Pfp þ C10Pfn:

ð8:20Þ

This risk is minimized if the region R0 is defined such that x 2 R0 whenever

C10Pðy ¼ 1Þpðxjy ¼ 1Þ < C01Pðy ¼ 0Þpðxjy ¼ 0Þ; ð8:21Þ

leading to the Bayes decision rule (in the two-class case)

rðxÞ ¼ 0; if
pðxjy ¼ 0ÞPðy ¼ 0Þ
pðxjy ¼ 1ÞPðy ¼ 1Þ >

C10
C01

;

1; otherwise:

8

<

:

ð8:22Þ

This rule includes (8.19) as a special case when C01 ¼ C10 ¼ 1. Then the overall

risk (8.20) is the probability of misclassification Perror ¼ Pfp þ Pfn. When the costs

are known and the class distributions are known, the Bayes decision rule (8.22) pro-

vides the optimal classifier.

For many practical two-class decision problems, it may be difficult to determine

realistic costs for misclassification. For example, consider a consumer smoke detec-

tor. Here false positive occurs during a false alarm (alarm with no smoke) and false

negative occurs when there is smoke but the alarm fails to sound. It would be dif-

ficult to assign an accurate cost for a false negative. Smoke detectors are used to

protect many different priced buildings, and there is the morally difficult question

of assigning cost to loss of human life. For two-class problems, there is another

approach: A decision rule can be constructed by fixing the probability of occurrence

of one type of misclassification and minimizing the probability of the other. For

example, a smoke detector could be designed to guarantee a very small probability

of false negative while minimizing the probability of false alarm. The probability of

false positive Pfp will be minimized, and we will use P�fn to denote the desired prob-

ability of false negative. We want to guarantee a fixed level of P�fn:

ð

R0

Pðy ¼ 1Þpðxjy ¼ 1Þdx ¼ P�fn: ð8:23Þ

CLASSICAL FORMULATION 351

We now seek to minimize the probability of false positive Pfp:

Pfp ¼
ð

R1

Pðy ¼ 0Þpðxjy ¼ 0Þdx; ð8:24Þ

subject to constraint (8.23). To do this, we construct the Lagrangian

Q ¼
ð

R1

Pðy ¼ 0Þpðxjy ¼ 0Þdxþ l

�
ð

R0

Pðy ¼ 1Þpðxjy ¼ 1Þdx� P�fn

�

¼ ð1� lP�fnÞ þ
ð

R0

ðlPðy ¼ 1Þpðxjy ¼ 1Þ � Pðy ¼ 0Þpðxjy ¼ 0ÞÞdx;
ð8:25Þ

using the fact that R0 [R1 is the whole space. The Lagrangian Q will be minimized

if R0 is chosen such that

x 2 R0 if ðlPðy ¼ 1Þpðxjy ¼ 1Þ � Pðy ¼ 0Þpðxjy ¼ 0ÞÞ < 0; ð8:26Þ

which leads to the likelihood ratio

rðxÞ ¼ 0; if
pðxjy ¼ 0ÞPðy ¼ 0Þ
pðxjy ¼ 1ÞPðy ¼ 1Þ > l;

1; otherwise:

8

<

:

ð8:27Þ

For some distributions, the value of l can be determined analytically (Van Trees

1968) or estimated by applying numerical methods (Hand 1981). Note that the like-

lihood ratio (8.27) has a form similar to (8.22) except that the costs Cij are inherent

in l. Therefore, varying the value of l causes the unknown cost ratio C10=C01 to

vary. Figure 8.1(a) shows the results of changing the threshold on the probability

of false positive and probability of detection. For illustration purposes, x is univari-

ate. Then the decision boundary is a function of the threshold l ¼ x� given by the

likelihood ratio (8.27).

The performance of the likelihood ratio (8.27) over a range of (unknown) cost

ratio C10=C01 for univariate or multivariate x is often summarized in the receiver

operating characteristic (ROC) curve (Fig. 8.1(b)). ROC curves reflect the misclas-

sification error for two-class problems in terms of probability of false positive and

false negative in a situation where the costs are varied. This curve is a plot of the

probability of detection 1� Pfn (vertical axis) versus the probability of false posi-

tive Pfp (horizontal axis) as the value of the threshold l is varied. ROC curves for

known class distributions show the tradeoff made to the probability of detection

when varying the threshold (misclassification costs), or equivalently, the probability

of false positive. Hence, the value of a threshold in (8.27) controls the fraction of

class 1 samples correctly classified as class 1 (true positives), versus the fraction of

class 0 samples incorrectly classified as class 1 (false positives). This is known as

the specificity–sensitivity tradeoff in classification.

352 CLASSIFICATION

In practice, the class distributions are unknown as well, so under the classical

approach a classification method estimates (from labeled training data) the probabil-

ities in (8.27), as discussed later in this section. Then, an ROC curve for a given clas-

sifier is constructed by varying threshold values in the classification decision rule

(Fig. 8.1(b)). Note that in this situation, the accuracy of the ROC curve is directly

dependent on the accuracy of the probability estimates; hence, the ROC curve reflects

the misclassification error (Pfp and Pfn) for the training data. This may result in a

biased ROC curve due to potential overfitting of the classifier. In a predictive setting,

+

=1y

x

0=y

()yxp

*x

(a)

Pfp
0 1.0

1.0

fnP1−

*

fpP

(b)

FIGURE 8.1 (a) When the class distributions are known (or can be estimated), the decision

threshold x� determines the probability of false positive P�fp (black area) and the probability

of detection (gray area). (b) The receiver operating characteristic (ROC) curve for the

classifier shows the result of varying the threshold on the probability of false positive Pfp and

detection ð1� PfnÞ for various values of the decision threshold.

CLASSICAL FORMULATION 353

a separate test set should be used to empirically determine Pfp and Pfn for a classifier

with adjustable misclassification costs. The ROC curve will then provide an estimate

for a classifier’s predictive performance in terms of Pfp and Pfn. As in the classical

setting, the ROC curve is useful when explicitly setting the value of either Pfp or

Pfn as a design criterion of the classifier. On the contrary, if minimum classification

error is required, then standard misclassification error on a test or validation data set is

an appropriate performance metric.

Different classifiers can be compared via their ROC curves, contrasting the

detection performance for various values of Pfp. In some cases, the ROC curves

cross, indicating that one classifier does not provide the best performance for all

values of Pfp. The area under the curve (AUC) provides a measure of classifier per-

formance that is independent of the value selected for the threshold (or equivalently

for Pfp). This results in a performance measure that is not sensitive to the misclas-

sification costs.

In the field of information retrieval, a similar tradeoff occurs, called the precision–

recall tradeoff (Hand et al. 2001). In these systems, a user creates a query, and a rele-

vant list of items, from a universe of data items, is retrieved for the user. This can be

viewed as a binary classification problem (relevant/not relevant) with equal misclas-

sification costs. The query has high precision if a large fraction of the retrieved results

are relevant. The query has high recall if it retrieves a large fraction of all relevant

items in the universe. So for a particular query algorithm, increasing the recall (by

increasing the number of items retrieved, for example) will decrease the precision.

In information retrieval problems, the concept of relevance is inherently subjective,

as relevance is judged by the individual user. However, if relative to a particular

search query, items in the universe are objectively labeled as relevant or irrelevant,

then an algorithm’s search results can be compared to the objective labels and a

determination can be made to the quality of the search. Using the objective labels,

a precision–recall curve (equivalent to the ROC curve) can be created to reflect the

tradeoff for a given query algorithm. In this setting, the query is defined before

retrieving the data, so overfitting is not an issue.

It has been possible to express the decision rules constructed above ((8.19),

(8.22), and (8.27)) in terms of a likelihood ratio. In this form, the absolute magni-

tude of the probabilities is unimportant; what is critical are the relative magnitudes.

So the decision rules can be expressed as

� J classes

rðxÞ ¼ k if gkðxÞ > gjðxÞ for all j 6¼ k: ð8:28aÞ

� Two classes

rðxÞ ¼ 0; if gðxÞ < a;
1; otherwise;

�

ð8:28bÞ

where a is a constant.

354 CLASSIFICATION

The functions gðxÞ are called discriminant functions. Notice that any discrimi-

nant function can be monotonically transformed without affecting the decision

rule. For example, we may take logarithms of both sides of the decision rule

without affecting its action (see Fig. 8.2). Also note that the functions gðxÞ map

the input space <d to a one-dimensional space. Given an object to classify, the

value in this one-dimensional space is called the sufficient statistic (Van Trees

1968) because knowledge of this value is all that is required for making a decision.

This fact becomes important for solving classification problems with finite data, as

it indicates that estimation of individual probability densities is not necessarily

required.

So far, we have considered decision theory for general known distributions.

For specific distributions, the Bayes decision rule can be expressed in terms of

the parameters of the distribution. For example, if the class conditional densities

are Gaussian, then the Bayes decision rule (8.28b) can be expressed as a quadratic

function of the observation vector x, where

gðxÞ ¼ 1
2
ðx� m0ÞT

P�1
0 ðx� m0Þ � 1

2
ðx� m1ÞT

P�1
1 ðx� m1Þ þ 1

2
ln

P

0

P

1

;

ð8:29aÞ

and

a ¼ ln
Pðy ¼ 0Þ
Pðy ¼ 1Þ : ð8:29bÞ

As a special case, let us assume that the covariance matrices of the two-class con-

ditional densities are equal:

P

¼
P

0 ¼
P

1 : ð8:30Þ

a

g
1

x()
g

2
x()

g
3

x()

r x()= 0 r x()= 1

g

x

FIGURE 8.2 A monotonic transformation of the discriminant function has no effect on the

decision rule.

CLASSICAL FORMULATION 355

Then the discriminant function (8.29a) becomes

gðxÞ ¼ 1
2
ðx� m0ÞT

P�1ðx� m0Þ � 1
2
ðx� m1ÞT

P�1ðx� m1Þ: ð8:31Þ

This can be expressed in terms of the Mahalanobis distances from x to each class

center:

gðxÞ ¼ 1
2
d2ðx; m0Þ � 1

2
d2ðx; m1Þ: ð8:32Þ

When � ¼ I, the Mahalanobis distance is equivalent to the Euclidean distance.

Expressing (8.31) in terms of Mahalanobis distances provides an interesting inter-

pretation of the decision rule when Pðy ¼ 0Þ ¼ Pðy ¼ 1Þ ¼ 1=2. Under this condi-
tion, the rule for decision function (8.32) corresponds to choosing the class of the

center mj nearest to x, as shown in Fig. 8.3. This rule also applies for more than two

classes with equal prior probabilities:

rðxÞ ¼ arg min
k

dðx; mkÞ: ð8:33Þ

0

0.5

1

x

P y = 0 x()

P y = 1x()

p

(a)

0

0.1

0.2

0.3

0.4

xµ 0
µ1

p x y = 0() p x y = 1()

p

(b)

FIGURE 8.3 There are two ways to interpret the Bayes rule for Gaussian classes with

common covariance matrix. (a) Select the class with maximum posterior probability at x.

(b) Select the class with minimum distance between its center and x.

356 CLASSIFICATION

The discriminant function (8.31) is a linear function in x (the covariance matrices

are equal so quadratic terms disappear). The log ratio of the posterior densities is

also a linear function in x:

ln
Pðy ¼ 1jxÞ
Pðy ¼ 0jxÞ

� �

¼ ðm1 � m0ÞT
P �1

x

� 1

2
ðmT1

P �1
m1 � mT0

P �1
m0ÞT þ ln

Pðy ¼ 1Þ
Pðy ¼ 0Þ

� �

:

ð8:34Þ

As Pðy ¼ 0jxÞ ¼ 1� Pðy ¼ 1jxÞ, this can be written in terms of the logit function

logitðPðy ¼ 1jxÞÞ ¼ ln
Pðy ¼ 1jxÞ

1� Pðy ¼ 1jxÞ

� �

¼ ðw � xÞ þ w0: ð8:35Þ

The inverse of the logit function is the logistic sigmoid (5.50). Taking the inverse of

(8.35) yields

Pðy ¼ 1jxÞ ¼ sððw � xÞ þ w0Þ: ð8:36Þ

As the logistic sigmoid is a monotonic function, (8.36) remains a discriminant func-

tion. For this discriminant function, the threshold now becomes a ¼ 0:5. Here we

have provided two examples of valid discriminant functions ((8.35) and (8.36)).

However, only (8.36) represents the posterior distribution.

The above discussion of statistical decision theory assumes that all required

probability densities are known. However, by definition, probability densities are

unknown in the learning problem. The classical approach for solving the learning

problem is to apply statistical decision theory to probabilities estimated from the

data. The basic goal is to estimate the posterior distributions. Once the posterior

distributions have been determined using the data, it is possible to construct a deci-

sion rule (8.16). There are two common strategies for determining posterior distri-

butions from data. One strategy is to estimate the prior probabilities and class

conditional densities and plug them into the Bayes rule (8.17). The other strategy

is to estimate the posterior densities directly using training data from all the classes.

Within each of these strategies, there are two approaches that can be used to esti-

mate the densities: parametric (classical) methods or adaptive (flexible) methods.

The first strategy, estimating prior probabilities and class conditional densities,

has already been discussed in Section 2.2.2 for parametric methods. Application

of flexible methods for density estimation in the first strategy is straightforward

but is typically not performed due to the inherent difficulties with nonparametric

density estimation. Therefore, it will not be discussed in this book. Here we discuss

the second strategy, direct estimation of posterior distributions, using both para-

metric and flexible methods.

Posterior densities can be estimated directly using training data from all the

classes. The advantage of this approach is that estimation of posterior densities

can be done using regression methods of Chapter 7. First, consider the two-class

CLASSICAL FORMULATION 357

case. The following equality between posterior probability and conditional expec-

tation holds:

gðxÞ ¼ EðY jX ¼ xÞ ¼ 0 � PðY ¼ 0jxÞ þ 1 � PðY ¼ 1jxÞ
¼ PðY ¼ 1jxÞ

ð8:37Þ

for known distributions, where Y is a discrete random variable with values {0,1} and

X is a random vector. This suggests that regression (with squared-error loss) could be

used to approximate posterior probabilities. In fact, asymptotically (with large sam-

ples), flexible classifiers (using MSE criterion) have been shown to approximate well

the posterior class distributions. However, the squared-error loss emphasizes the data

points where the prior distribution is large, rather than data points near the decision

boundary. So with finite samples, the ‘‘best’’ estimates of posterior probabilities do

not necessarily minimize misclassification error. For finite samples, the approxima-

tion accuracy depends on the number of data samples and the existence of the

posterior density within the class of approximating functions. The following example

illustrates parametric estimation of posterior densities.

Example 8.1: Estimating posterior probabilities using linear regression

For two-class Gaussian distributions with equal covariance, the discriminant function

(8.35) is linear in x. One approach for determining the discriminant function is to esti-

mate it via linear regression. This results in minimizing the mean squared error

RðwÞ ¼ 1

n

X

n

i¼1
ðw � xi þ w0 � yiÞ2; ð8:38Þ

where yi are the output samples with class labels {0,1}. The function ðw� � xÞ þ w�0
that minimizes (8.38) is called the Fisher linear discriminant. It is possible to con-

struct a linear discriminant using the ML to estimate parameters of the individual

class densities, as in Section 2.2.2. These estimates are equivalent only for large

samples (Efron 1975; Ripley 1996). After the decision function is determined, it

is used to construct a classification rule. This is accomplished by thresholding

the discriminant function at the value a ¼ 1=2. The Fisher linear discriminant deter-

mined via linear regression (8.38) provides an approximation for the posterior prob-

ability (see Fig. 8.4). However, this approximation is biased, as it does not match

the true form of the posterior distribution (8.36). Despite this bias, the Fisher linear

discriminant still provides an accurate classification rule.

In many practical problems with finite data, the Fisher linear discriminant is used

even when it is known that the covariance matrices are not equal. The example in

Section 2.2.4 demonstrates one such problem. Fisher suggested a heuristic method

for computing the quantity � (from estimates of �0 and �1) to plug into (8.34).

According to statistical decision theory, the resulting Fisher decision rule is subop-

timal. However, for finite samples it may produce lower misclassification risk.

358 CLASSIFICATION

Often linear regression is used to determine a classification rule for distributions

that are not Gaussian. In these problems, the linear regression is used to provide an

estimate of the posterior density. However, this approach may provide a poor deci-

sion boundary even in cases where the optimal decision boundary is linear. For

example, consider the classification problem of Fig. 8.5. Let us assume that the

class labels are {0,1}. A classification rule can be constructed by first performing

linear regression on the data to determine a discriminant function

gðx1; x2Þ ¼ w�0 þ w�1x1 þ w�2x2 and then thresholding via (8.28b), where a ¼ 0:5.
This results in a linear decision boundary determined by the equation

gðx1; x2Þ ¼ 0:5:

The solution is

x2 ¼
0:5� w�0 � w�1x1

w�2
;

which describes the decision boundary in Fig. 8.5. A linear decision boundary is

capable of separating the two classes. However, using linear regression to determine

0

0.5

1

–6 –4 –2 0 2 4 6

P y = 0 x()

g x()

FIGURE 8.4 The linear discriminant gðxÞ determined via linear regression provides a poor

estimate for posterior probability Pðy ¼ 0jxÞ for the Gaussian two-class problem. However, it

may still provide an accurate decision rule.

FIGURE 8.5 The decision rule formed using the linear discriminant gðxÞ (not shown) may

provide a poor decision boundary (shown) even for linearly separable problems.

CLASSICAL FORMULATION 359

the decision boundary results in poor accuracy. For this problem, the decision

boundary is linear; however, the posterior probability is highly nonlinear (in x).

In the previous example, poor results were achieved because of a mismatch

between parametric assumptions and underlying distribution. This suggests that

improved results are possible with adaptive regression methods that do not impose

strong parametric assumptions. In general, adaptive regression methods will result

in nonlinear posterior probability estimates. However, as the problem of Fig. 8.5

illustrates, nonlinear (in x) posterior probabilities may still lead to a linear decision

boundary. As the examples have illustrated, there is no direct connection between

regression error and classification error. In other words, accurate estimation of pos-

terior probabilities is not required to produce a good classification rule. As stated

earlier in this book, learning problems should be solved directly, rather than by

solving more general and therefore more difficult problems. That is to say, if the

goal is strictly classification (under predictive learning setting), the direct method

of SLT should be used. This approach does not require estimation of posterior

probability.

Adaptive regression methods can be used to estimate the conditional expectation

(8.37). For two-class problems with class labels {0,1}, the function that minimizes

the mean squared error

R1ðoÞ ¼
1

n

X

n

i¼1
ðĝ1ðxi;oÞ � yiÞ2 ð8:39Þ

provides an estimate of the posterior probability

ĝ1ðx;o�Þ � Pðy ¼ 1jxÞ: ð8:40Þ

Here we denote the regression function as ĝ1, as it is an estimate of the posterior

probability for class 1 in (8.37). The posterior probability for class 0 can be esti-

mated in a similar fashion by minimizing

R0ðoÞ ¼
1

n

X

n

i¼1
ðĝ0ðxi;oÞ � ð1� yiÞÞ2: ð8:41Þ

The function that minimizes (8.41) provides an estimate of the posterior probability:

ĝ0ðx;o�Þ � Pðy ¼ 0jxÞ: ð8:42Þ

Notice that there is no requirement that each of these (separate) regression problems

(8.39) and (8.41) share a common set of approximating functions. First, we describe

the general approach for estimating posterior distributions for J-class problems.

Later, we will discuss the issue of common approximating functions. The general

approach for J classes is to estimate J regression functions as suggested by (8.39)

and (8.41) for J ¼ 2. Estimation of posterior densities consists in finding a regression

360 CLASSIFICATION

model for each class using data transformed by the dummy variable technique or

1-of-J encoding for the class labels. Let us assume a class label output y that takes

on J symbolic values (class labels). In the dummy variable technique, each output

sample is transformed into a vector y0 ¼ ½y01; ; y0J � that has 1-of-J encoding:

y0k ¼
1; if y is of class k;
0; otherwise;

k ¼ 1; . . . ; J:

�

ð8:43Þ

The single output y is transformed into a vector y0 that contains the same amount of

information as the original y. Multiresponse regression is then performed on the

inputs x and transformed outputs y0 to provide estimates of posterior densities.

This regression is solved most generally by treating each response y0k,
k ¼ 1; . . . ; J, as a series of separate single-response regression problems. However,

in many cases these regression problems are solved together, using a common set of

basis functions and a single regularization parameter (i.e., MLP with multiple out-

puts), for example, using an approximating function of the form

ĝkðxÞ ¼
X

m

j¼1
wjkbjðx; vjÞ þ w0k; ð8:44Þ

where bj is a common set of basis functions. Neither of these approaches for solving

the multiresponse regression is uniformly superior and depends on the specific clas-

sification problem. When common basis functions are used for solving two-class

problems, the problem can be solved using only one regression estimate. For

squared error, the following relationship holds for i ¼ 1; . . . ; n and common basis

functions:

½ĝ1ðxi;o�Þ � yi�2 ¼ ½ð1� ĝ1ðxi;o�ÞÞ � ð1� yiÞ�2: ð8:45Þ

Therefore, when using common basis functions to solve two-class problems, the

function that minimizes (8.41) can be determined based on (8.40) using the

relationship

Pðy ¼ 0jxÞ � ĝ0ðx;o�Þ ¼ 1� ĝ1ðx;o�Þ: ð8:46Þ

Unfortunately, the regression estimates constructed using finite data may not meet

the definition of probability. For example, they can go beyond the range [0,1] and

not sum to 1. Various heuristic methods have been proposed to rescale the regres-

sion estimates so that they more closely resemble probability estimates (Bridle

1990; Jacobs et al. 1991). This approach is taken because it is difficult to solve

the regression problem subject to these constraints. Note that these constraints

are only required to interpret the regression estimates as probability estimates.

The constraints do not necessarily translate into improved accuracy of the classifi-

cation rule (Friedman 1994a).

CLASSICAL FORMULATION 361

After the multiple-output regression estimates have been determined, they are

used to construct a classification rule. There are two commonly used approaches.

One approach is to treat the regression estimates at face value as posterior probabil-

ity estimates and use the decision rule

rðxÞ ¼ arg max
k

ĝkðxÞ; k ¼ 1; . . . ; J: ð8:47Þ

Another approach is to use the regression models to create a new set of features.

Class boundaries are then determined by applying classical linear discriminant

analysis to these features (Hastie et al. 1994; Ripley 1996). This second approach

is invariant to the scaling of the features. Therefore, it is applicable even if regres-

sion estimates do not satisfy the probability constraints.

8.2.2 Fisher’s Linear Discriminant Analysis

Many real-life applications involve classification of high-dimensional data. For

such problems, the classical generative modeling approach to classification

(based on density estimation) is likely to fail, due to the curse of dimensionality.

An alternative practical approach is to perform dimensionality reduction, before

applying a classification algorithm. We have already discussed many dimensional-

ity reduction techniques in Chapter 6, that is, principal component analysis (PCA).

However, PCA is an unsupervised learning technique, and it does not use the infor-

mation about the class labels in the data. Linear Discriminant Analysis (LDA) is a

method for dimensionality reduction that utilizes the class structure in the data.

LDA is a discriminative method that minimizes some empirical loss functional

designed to achieve maximum separation between classes. Namely, LDA computes

the optimal projection, which maximizes the between-class distance and, at the

same time, minimizes the within-class distance. LDA is widely used as a practical

classification method for high-dimensional data. In addition, it has become a clas-

sical statistical approach for feature extraction and dimensionality reduction for

labeled data. In this section, LDA is presented as classification method. Hence, fol-

lowing LDA dimensionality reduction, we still need to perform classification

(usually via nearest neighbor) in the one-dimensional projection space.

Let us consider the standard learning setting for binary classification, where we

seek to estimate linear discriminant function f ðxÞ ¼ w � xþ w0 from available

training data ðxi; yiÞ, where xi is a row vector, i ¼ 1; . . . ; n. In this section, we

assume that class labels are encoded as �1. Denote the data matrix of input samples

as X ¼ ½X1X2�, where X1 and X2 denote input samples from class 1 (y ¼ þ1) and
class 2 (y ¼ �1), respectively. Further, let nc ¼ jXcj; c ¼ 1; 2 be the number of

samples from each class and denote the empirical class means by

mc ¼ 1=nc
P

i2c xi.
Fisher’s LDA finds an optimal direction such that the within-class variance is

minimized, and the between-class distance is maximized simultaneously, thus

achieving maximum discrimination (Fig. 8.6). The means of the data projected

onto some direction w can be calculated as m̂c ¼ w� mc; c ¼ 1; 2, that is, the

362 CLASSIFICATION

means of the projections are the projected means. The variances ŝc; c ¼ 1; 2, of the
projected data can be found as ŝc ¼

P

i2c ðw� x�m̂cÞ2. Then the optimal projec-

tion can be obtained by maximizing the following LDA functional:

RðwÞ ¼ k m̂1 � m̂2 k2
ŝ1 þ ŝ2

: ð8:48Þ

Substituting the expressions for the empirical class means and variances into (8.48)

yields

RðwÞ ¼ wSbw
T

wSwwT
; ð8:49Þ

where the between- and within-class ‘‘scatter matrices’’ Sb and Sw are defined as

Sb ¼ ðm1 � m2Þðm1 � m2ÞT; ð8:50Þ
Sw ¼

X

c

X

i2ci
ðxi�mcÞðxi � mcÞT:

FIGURE 8.6 Illustration of Fisher’s LDA direction for two classes. We search for direction

w, such that distance between the class means projected onto this direction (m̂1 and m̂2) is

maximized and the variance around these means (ŝ1 and ŝ2) is minimized.

CLASSICAL FORMULATION 363

Note that scatter matrices are proportional to the covariance matrices and may be

defined in terms of covariance matrices. For example, sometimes Sw in Fisher’s cri-

terion is defined as the pooled within-class sample covariance matrix

Sw � n1�1 þ n2�2 (where �1 and �2 are estimated covariance matrices of the

two classes).

Assuming that Sw is nonsingular, the optimal direction can be found by differ-

entiating Fisher’s criterion (8.49) with respect to w and equating the derivative to

zero, yielding ðwSwwTÞSbw ¼ ðwSbwTÞSww, or equivalently,

Sbw
T ¼ wSbw

T

wSwwT
Sww

T: ð8:51Þ

As the quantity ðwSbwTÞ=ðwSwwTÞ is a scalar, solution of (8.51) is equivalent to

solving the following generalized eigenvalue problem:

Sbw
T ¼ lSww

T: ð8:52Þ

The eigenvector corresponding to the largest eigenvalue maximizes (8.49). Further,

as Sbw
T is always in the direction of m1 � m2, and because we are interested only in

the direction of w, we must have the solution

w� � S�1w ðm1 � m2ÞT: ð8:53Þ

Recall that under the classical formulation, for normally distributed data with

equal covariance matrices the Bayes optimal decision rule is linear—see

Eq. (8.31). In fact, in this case the classical prescription for optimal direction w

is identical to Fisher’s LDA solution (8.53). However, the LDA solution (8.53)

has been proposed by Fisher as a clever heuristic, without any assumptions

about class distributions. In practice, one also needs to specify the bias term

(threshold) for the linear decision rule. For normal class distributions, the thresh-

old is determined by the prior probabilities as in (8.29); however, for unknown

(nonnormal) distributions an optimal threshold may be set differently. Practical

strategies for setting a threshold include resampling and nearest-neighbor rules

(applied in the reduced dimensional space).

Note that the classical LDA approach does not (explicitly) use any complexity

control. However, it assumes that matrix Sw is well conditioned, which implies that

the number of training samples is much larger than the input space dimensionality.

When this assumption does not hold, the within-class covariance matrix Sw may be

ill conditioned or singular, and we need to introduce some form of complexity con-

trol. Usually, a regularization term (in the form of an identity matrix) is added to Sw
to make it nonsingular:

w� ¼ ðSw þ lIÞ�1ðm1 � m2ÞT: ð8:54Þ

364 CLASSIFICATION

Regularization parameter l controls the model complexity and is usually estimated

via resampling. Formulation (8.54) is known as regularized LDA.

There is a strong connection (equivalency) between LDA and the least-squares

regression-based approach for classification, as discussed next. In the latter

approach, the linear discriminant function f ðxÞ ¼ w � xþ w0 is estimated via mini-

mization of the squared-error empirical risk functional (8.38). Similarly, the regu-

larized LDA formulation (8.54) yields the solution equivalent to the ridge

regression formulation:

Rridgeðw; bÞ ¼
X

n

i¼1
ðw � xi þ w0 � yiÞ2 þ l k w k2 : ð8:55Þ

In order to show that minimization of penalized risk (8.55) yields an optimal direc-

tion w� given by (8.54), first represent (8.55) in a matrix form:

Rridgeðw; bÞ ¼k wXþ w0e� y k2 þl k w k2;

where X is the data matrix and e is a vector of all ones. Taking derivatives of

Rridgeðw; bÞ with respect to w and w0 and setting them to zero, we obtain,

respectively,

wðXXT þ lIÞ þ w0Xe ¼ XyT;

wXeT þ w0n ¼ yeT:
ð8:56Þ

Taking into account that X ¼ ½X1 X2� and that class labels in y are encoded as �1
leads to

ðX1X
T
1 þ X2X

T
2 þ lIÞwT þ w0ðn1m1 þ n2m2Þ ¼ n1m1 � n2m2;

wðn1m1 þ n2m2Þ þ w0n ¼ n1 � n2:
ð8:57Þ

From the second equation,

w�0 ¼
n1 � n2 � wðn1m1 þ n2m2Þ

n
: ð8:58Þ

Substituting w�0 into the first equation of (8.57) and taking into account that

Sw ¼ X1X
T
1 þ X2X

T
2 � n1m1m

T
1 � n2m2m

T
2 ;

we obtain

Sw þ lIþ n1n2

n
Sb

� �

wT ¼ n1n2

n
ðm1 � m2Þ: ð8:59Þ

CLASSICAL FORMULATION 365

As Sbw
T is always in the direction of m1 � m2, it immediately follows from (8.59)

that ðSw þ lIÞwT � ðm1 � m2Þ. Hence, the ridge regression formulation (8.55)

yields the solution

w� ¼ ðSw þ lIÞ�1ðm1 � m2ÞT;

which is identical to the direction provided by the regularized LDA (8.54), up to

some proportionality constant.

Fisher’s linear discriminant can be generalized to multiple J-class problems

(J 	 3). Instead of seeking a single projection direction as in the binary case, we

now search for several (J � 1) such directions onto which the projection of the

training data has maximum between class distance and minimum within-class

variance. Mathematically, multiple-class LDA seeks a linear mapping GðxÞ from
d-dimensional input space onto a reduced ðJ � 1Þ-dimensional space

(J � 1 < d), so that each input sample xi is represented by ðJ � 1Þ features in

the reduced space. Mathematical treatment of multiple-class LDA leads to the gen-

eralized eigenvalue problem similar to (8.52); however, its solution in the multiple-

class case leads to ðJ � 1Þ nonzero eigenvalues. See Fukunaga (1990) for details.

The LDA approach has been successfully used in many applications with high-

dimensional data, such as face recognition (Belhumer et al. 1997) and gene classi-

fication (Dudoit et al. 2002). When the number of samples is small (relative to the

input dimensionality), regularized LDA usually provides very good classifiers,

often competitive with other (more complex) approaches; see Section 10.1. More-

over, the main restriction of classical LDA (its linearity) can be relaxed by using the

so-called kernel approach (discussed in Chapter 9). The kernelized versions of LDA

enable nonlinear classification with effective complexity control (via regularization

and/or kernel selection). Such methods have been introduced under different names

such as kernel Fisher LDA (Mika 2002) and least-squares support vector machines

(Suykens et al. 2002).

8.3 METHODS FOR CLASSIFICATION

This section describes representative methods for classification under the risk mini-

mization framework (introduced in Section 8.1). Let us first introduce the taxonomy

of methods. Recall that according to the SRM formulation, classification methods

estimate a decision boundary. A method requires specification of the following:

1. A structure on a set of approximating functions

2. A continuous loss function suitable for optimization, that is, minimization of

the empirical risk

3. An optimization method for selecting the ‘‘best’’ approximating function

As noted in Section 8.1, direct minimization of the misclassification risk via stan-

dard optimization techniques is not feasible, so practical methods use other loss

366 CLASSIFICATION

functions (specification 2) suitable for optimization method chosen in (3). There-

fore, classification methods actually use two different loss functions: First, a contin-

uous loss function for minimization of the empirical risk on an element of a

structure is chosen as a proxy for the (discontinuous) classification error. Next,

the classification error is used to estimate the prediction risk in order to choose

the model of optimal complexity (model selection).

Similar to regression, classification methods select an indicator decision function

from a (prespecified) set of basis functions (or approximating functions). Choosing the

‘‘best’’ decision function is performed using an optimization method. Note that opti-

mization technique (3) affects the choice of a loss function (2) and, to a lesser degree,

the choice of approximating functions (1). Hence, we will use a taxonomy based on

the numerical optimization approach. Many classification methods use either standard

numerical optimization techniques (described in Sections 5.1 and 5.2) or greedy opti-

mization (described in Section 5.3). Sowe distinguish between classification methods

based on greedy optimization and (nongreedy) numerical optimization.

Methods based on non-greedy numerical optimization can be conveniently cast

in the form of multiple-response regression, as explained in Section 8.2. This is by

far the most popular approach to classification, and several examples of methods

are described in Section 8.3.1.

Another implementation approach is based on a greedy optimization strategy.

An example method called classification and regression trees (CART) is described

in Section 8.3.2. This method uses a different type of loss function (i.e., gini or

entropy) suitable for binary tree partitioning. However, similar to regression-based

methods, model selection in CART is done using (estimated) classification error.

Section 8.3.3 describes local methods for classification, where the goal is to esti-

mate the decision boundary locally, namely near an estimation point. Such methods

use very simple approximating functions for local estimation. Hence, local methods

typically do not require complex (nonlinear) optimization. We describe k-nearest-

neighbor classification andKohonen’s learning vector quantization (LVQ) as represen-

tative examples. Despite their simplicity, local ormemory-basedmethods have proved

very successful for classification problems. For example, see empirical comparisons

reported in Michie et al. (1994). Possible reasons for this success are also discussed.

Empirical comparisons of classification techniques described in this chapter are

given in Section 8.3.4. The predictive learning framework adopted in this section

has important methodological implications on the design and performance assess-

ment of various classifiers, as discussed next. For example, the misclassification

costs and prior probabilities need to be incorporated upfront into the empirical

risk functional. This can be contrasted to the classical approach, where the training

data are used to estimate posterior probabilities, which are then combined with mis-

classification costs/prior probabilities to form a decision rule. It is important to keep

these differences in mind because many classification methods have been intro-

duced under the classical setting, but are used under the predictive learning frame-

work. For example, consider the use of ROC curves. As discussed in Section 8.2.1

(under the classical setting), an ROC curve can be constructed using a classifier

that estimates the conditional probability (of a class, given input x). However,

METHODS FOR CLASSIFICATION 367

this interpretation does not make sense under the predictive learning setting, where

the output of a classifier is interpreted as decision boundary. Hence, under the pre-

dictive learning approach, the decision boundary is estimated from data, for given

(fixed) values of misclassification costs and prior probabilities. This decision

boundary (of a trained classifier) yields a pair of estimated values for the probability

of true positives and the probability of false positives. Training the classifier again

for different misclassification costs/prior probabilities would yield different

estimated probabilities of true positives/false positives that produce an ROC curve.

8.3.1 Regression-Based Methods

Regression-based methods can be differentiated in terms of the particular loss func-

tion, optimization technique, and/or a set of approximating functions used. There

are two popular continuous loss functions used in classification methods: squared

error and cross-entropy. These loss functions closely approximate discontinuous

misclassification risk (8.7). For two-class problems where y ¼ f0; 1g, the corre-

sponding empirical risk functional has the form:

Squared error Remp ¼
1

n

X

n

i¼1
ðgðxi;oÞ � yiÞ2; ð8:60aÞ

or equivalently,

Remp ¼
1

n

X

yi¼0
ðgðxi;oÞ � yiÞ2 þ

X

yi¼1
ðgðxi;oÞ � yiÞ2�:

"

ð8:60bÞ

Cross-entropy Remp ¼ �
1

n

X

n

i¼1
fyiln gðxi;oÞ þ ð1� yiÞ lnð1� gðxi;oÞÞg; ð8:61Þ

where ðxi; yiÞ is the training data and gðx;oÞ denotes the continuous function

estimate.

As explained in Section 8.2, posterior density estimation with the squared-error

loss function can be conveniently mapped onto a regression formulation. Specifi-

cally, the minimization of (8.60a) leads to an estimation of the posterior probability

Pðy ¼ 1jxÞ. An alternative formulation (8.60b) leads to a simultaneous estimation

of Pðy ¼ 0jxÞ and Pðy ¼ 1jxÞ using a common set of basis functions. The resulting

paradigm is a classification problem that is reduced to a multiple-output regression

problem (with common basis functions). Virtually, any regression method can be

adapted to solve classification problems in this way.

The cross-entropy loss function (8.61) is usually motivated by ML arguments, as

outlined next. Consider a flexible estimator of the posterior probability such that

gðx;oÞ � P̂ðy ¼ 1jxÞ and P̂ðy ¼ 0jxÞ � 1� gðx;oÞ: ð8:62Þ

368 CLASSIFICATION

Expressions (8.62) can be combined into a single expression for the probability of

observing class label y ¼ f0; 1g given input x:

P̂ðyjxÞ � gyð1� gÞ1�y; ð8:63Þ

where for brevity g ¼ gðx;oÞ. Then the likelihood of observing iid training data

ðxi; yiÞ is
Y

n

i¼1
g
yi
i ð1� giÞ1�yi ; ð8:64Þ

where gi ¼ gðxi;oÞ. Finally, minimization of the (negative) log-likelihood (8.64)

leads to the cross-entropy criterion (8.61).

Cross-entropy loss is also related to density estimation using the Kullback–

Leibler criterion defined as

ð

f̂ log
f̂

f

 !

dx; ð8:65Þ

where f is the true density and f̂ is its estimate. It can be shown (Bishop 1995) that

minimization of (8.61) is equivalent to minimization of (8.65).

Even though the squared-error and cross-entropy loss are motivated by the den-

sity estimation arguments, this interpretation may be misleading for classification

with finite data. In fact, most theoretical results regarding accurate estimation of

posterior probabilities using (8.60) or (8.61) loss are of an asymptotic nature (White

1989; Richard and Lippmann 1991). These results state that a flexible estimator

(e.g., an MLP network) gives an accurate probability estimate provided that (1)

there is enough training data, (2) the estimator has sufficient complexity (in other

words, the number of hidden units can be chosen appropriately), and (3) the empiri-

cal risk (8.60) or (8.61) can be globally minimized. In practice, none of these three

conditions holds. Moreover, accurate estimation of posterior probabilities requires

matching the first two asymptotic requirements, which is very problematic.

An alternative point of view (adopted in this book) is to view (8.60) and (8.61) as

a suitable mechanism for the continuous approximation of the misclassification

risk. Clearly, minimization of (8.60) and (8.61) tends to minimize the misclassifica-

tion error. For example, the zero value of Remp in either (8.60) or (8.61) corresponds

to the zero misclassification rate. There are claims that the cross-entropy loss is

more appropriate for classification problems than squared error (Bishop 1995).

However, we see no theoretical or empirical evidence to support such claims. In

the framework of SLT, a loss function is ‘‘good’’ to the extent it enables thorough

minimization of the misclassification rate via application of standard numerical

optimization methods. As (8.60) and (8.61) are motivated by density estimation argu-

ments, they both may be potentially flawed. For example, using the cross-entropy

loss function for estimating the linear decision boundary for the problem shown in

Fig. 8.5 provides poor results similar to the solution obtained with squared loss.

METHODS FOR CLASSIFICATION 369

We do not consider the use of cross-entropy loss in the remainder of this Section.

However, it is clear that most optimization methods for minimizing squared loss

(8.60) can be readily applied for minimization of cross-entropy (8.61). For example,

the standard backpropagation (and its variations) can be easily adopted for cross-

entropy loss. See Bishop (1995) for details.

It is also possible to introduce unequal costs of misclassification Cij to the error

function (8.60) or (8.61). This is done by modifying the 1-of-J encoding to incor-

porate the costs of misclassification

y0k ¼ 1� Cjk; ð8:66Þ

where j is the class of a particular sample y, k ¼ 1; . . . ; J, and 0 � Cjk � 1.

Additionally, it is possible to compensate for known differences in prior prob-

abilities between training data and future data. This is common in many applica-

tions. For example, in medical diagnosis, the training data may sample normal

and diseased patients evenly, but the future data reflect health statistics of a gen-

eral population, where the prior probability of a particular disease is very small.

Compensating for different prior probabilities can be done by minimizing the fol-

lowing weighted risk functional in the regression formulation (in the two-class

case):

R ¼ 1

n

~Pðy ¼ 0Þ
Pðy ¼ 0Þ

X

yi¼0
ðgðxiÞ � yiÞ2 þ

~Pðy ¼ 1Þ
Pðy ¼ 1Þ

X

yi¼1
ðgðxiÞ � yiÞ2

" #

; ð8:67Þ

where Pðy ¼ 0Þ and Pðy ¼ 1Þ are the prior probabilities exhibited in the training

data and ~Pðy ¼ 0Þ and ~Pðy ¼ 1Þ are the prior probabilities expected for future

(test) data (Lowe and Webb 1990). Note that in (8.67), the first summation is

over samples with outputs in class 0 and the second summation is over samples

with outputs in class 1, so (8.67) is identical to (8.60) when the prior probabilities

are the same.

All classification methods based on multiple response regression have the same

general form shown in Fig. 8.7. Here the outputs are the 1-of-J encodings of the

class labels. The training (learning) in Fig. 8.7(a) corresponds to simultaneous esti-

mation of J response functions from training data. All methods discussed in this

book use a common set of basis functions (i.e., the same approximating functions)

to estimate all J outputs. During operation of a classifier, shown in Fig. 8.7(b), esti-

mated responses (outputs) represent discriminant functions used to make classifica-

tion decisions for future data. The classification decision is usually made based on

the maximum response value, as shown in Fig. 8.7(b). Even though here we only

discuss methods using squared loss, it should be understood that any other suitable

(continuous) loss function can be adopted in the same general setting of multiple-

response function estimation.

Recall the general procedure for implementing classification methods in the

framework provided by SRM, as described in Section 8.1. According to this

370 CLASSIFICATION

procedure, implementation of methods based on multiple-response regression

requires specification of the following:

1. A structure on a set of approximating functions (or basis functions) for

constructing decision boundary.

2. Training or optimization procedure for minimization of the continuous

empirical risk (i.e., squared loss functional).

3. Complexity control (or model selection) for choosing an optimal element of a

structure. This is can be done manually (by a user) or automatically (via

resampling).

SLT interpretation of classification methods provides valuable insights that can

improve a number of heuristic procedures. As noted in Section 8.1, complexity con-

trol should be performed based on the (estimated) misclassification rate, rather than

on the squared-error loss. In the training procedure, it is important to keep in mind

that minimization of the squared-error risk is just a mechanism for reducing the

empirical classification error. This observation has two important implications for

practical implementations:

1. The squared-error loss is typically highly correlated with classification error.

However, there are situations where a reduction in the squared error does not

lead to the minimization of the classification error (see the example in Fig. 8.5).

Training methods usually employ iterative nonlinear optimization techniques

for minimizing squared loss. Hence, it is prudent to stop training when (or if)

the empirical classification error starts increasing. For the data in Fig. 8.5, this

Estimation of multiple-
response regression

.

.

.

.

.

.

x1

xd ′ yJ

′ y1

(a)

Multiple-response
discriminant functions

.

.

.

.

.

.

x1

xd

′ ŷ1

′ ŷJ

Max ŷ

(b)

FIGURE 8.7 General procedure for constructing classifiers based on multiple-response

regression. (a) The multiple-response regression is estimated using 1-of-J encoded data.

(b) The multiple-response discriminant functions estimated via regression are used to

construct a classifier.

METHODS FOR CLASSIFICATION 371

procedure provides an improved linear decision boundary when used in

conjunction with gradient-descent optimization. We have not seen this idea

implemented in neural networks or statistical methods for classification.

2. Nonlinear minimization during training has multiple local minima.

For example, a local minimum depends on a particular initialization of

parameters (weights). It is common, in practice, to search for a better (global)

minimum by training several times with different initializations and/or by

using heuristics to escape from local minima (e.g., simulated annealing).

Selection of the best model (global minimum) is typically based on the

smallest empirical squared loss. However, it would be better to choose the

best model in terms of the smallest empirical misclassification rate.

Most existing implementations of classification methods based on multiple-

response regression can be differentiated in terms of the type of approximating

(basis) functions used. The first group of methods uses nonlinear basis functions

defined globally in input space. Examples include MLP classifiers, the projection

pursuit classifier (Friedman 1984a), and the MARS classifier (Friedman 1991). In

these methods, the focus is on nonlinear optimization (2) for minimization of the

continuous squared loss, and the model selection (3) is usually performed by a user.

Note that with multiple local minima (inherent with nonlinear optimization) auto-

matic model selection becomes very difficult. For example, with MLP classifiers,

complexity control depends on the network architecture (number of hidden units),

weight initialization, and stopping conditions, as discussed in Section 7.3.2.

Clearly, with all these factors affecting model complexity, rigorous model selection

via resampling may become computationally prohibitive.

The second group of methods use simple (local) basis functions (1) so that the

training part (2) becomes simple (i.e., linear least-squares optimization), and the

model selection (3) can be done relatively automatically (i.e., via resampling).

Examples include the radial basis function (RBF) classifiers (Richard and

Lippmann 1992) and the constrained topological mapping (CTM) classifiers.

MLP, RBF, and CTM classifiers are described next.

MLP Classifiers

MLP classifiers using squared-error loss are identical to MLPs for regression except

that these classifiers use 1-of-J output encoding and sigmoid (or logistic) output

units. Hence, MLP classifiers share the same problems described in Section 7.3.2

for regression. Here we provide a summary of practical hints and implementation

issues for MLP classifiers using backpropagation:

� Prescaling of input variables: It is a common practice to scale the input data

to the range ½�0:5; 0:5� prior to training. Typically, each input variable is

prescaled to zero mean, unit variance. This helps to avoid premature

saturation and speeds up training (see Section 7.3.2).

� Alternative target output values: During training the training outputs are set

to values 0.1 and 0.9, rather than 0 or 1 as specified by 1-of-J encoding. This

372 CLASSIFICATION

is obviously needed to avoid long training time and extremely large weights

during training, as the outputs 0 or 1 correspond to saturation limits of the

logistic sigmoid (output unit).

� Initialization: Network parameters (or weights) are initialized to small

random values. The choice of initialization range has subtle regularization

effect, as shown in Section 7.3.2.

� Stopping rules: Included here are two completely different issues. The first

concerns stopping rules during training (minimization of the empirical risk). In

this case, the training should proceed as long as decreasing continuous (squared

error) loss function reduces the empirical misclassification error. The second

issue concerns the use of early stopping as a form of complexity control (model

selection). This approach is quite popular in neural network implementations.

Unfortunately, the two goals are often mixed together and become clouded by

additional computational constraints (practical limits on training time).

� Multiple local minima: This is the main factor complicating ERM as well as

model selection. Various heuristics exist for escaping from a local minimum,

but none guarantees that the global minimum is found. In practice, it is

sufficient to find a good local minimum rather than a globally optimal one.

For classification, it is important to use the misclassification error (rather than

squared-error loss) during model selection, as explained above.

� Learning rate and momentum term: Their choice affects local mimima found

by backpropagation training. However, the ‘‘optimal’’ choice of these para-

meters is problem dependent. Typical ‘‘good’’ values for the learning rate are

in the 0.2–0.8 range and for momentum in the 0.4–0.9 range.

Given the existence of many local minima and a number of factors affecting

model complexity, model selection is difficult to perform automatically (in a

data-driven fashion). For example, with MLP classifiers the following can be

viewed as regularization parameters: initial weights, learning/momentum para-

meters, stopping rules, number of hidden units, and weight decay. So with MLP

classifiers (as with MLP regression), model selection is performed by a user who

selects the methods’s regularization parameters controlling complexity. Sometimes

a user specifies a well-chosen narrow range of parameter values, and then optimal

regularization parameters are found via resampling methods.

RBF Classifiers

The RBF classifier (Moody and Darken 1989; Richard and Lippmann 1991) uses

multi-output regression to build a decision boundary. The RBF method described in

Section 7.2.4 is used to solve the multi-output regression problem. This results in a

classifier constructed using discriminant functions in the form

gkðx;wkÞ ¼
X

m

j¼1
wjkK

k x� vj k
aj

� �

þ w0k; k ¼ 1; . . . ; J; ð8:68Þ

METHODS FOR CLASSIFICATION 373

where K denotes a local RBF with center vj and width aj parameters. Typically, the

local basis function is Gaussian:

KðtÞ ¼ exp � t2

2

� �

:

The RBF classifier implements local decision boundaries in contrast to the global

decision boundaries produced by classifiers, which use global basis functions

(see Fig. 8.8).

The RBF classifier uses a common set of basis functions having center vj and

width aj parameters. Practical implementations of RBF classifiers are usually non-

adaptive with center vj and width aj parameters selected based on the x-values of

the training samples. The approaches used for selecting these parameters are the

same as those used for RBF regression, as discussed in Section 7.2.4. Then, for

fixed values of basis function parameters, coefficients wik are estimated via linear

least squares.

The complexity of the nonadaptive RBF classifier can be determined by a single

parameter, the number of basis functions m. Because efficient least-squares

optimization is used to estimate the coefficients wik, it is possible to use resampling

techniques to estimate the prediction risk in order to perform model selection. For

classification problems, it is a common practice to use normalized basis functions,

as described in Section 7.2.4. This allows RBF classifiers to be interpreted as a type

of density mixture model (Bishop 1995).

Constrained Topological Mapping CTM Classifier

As discussed in Section 7.4.2, the batch CTM is a kernel regression method

based on a modification of the self-organizing map (SOM). The CTM model

implements piecewise-linear regression. The input (x) space is partitioned into

(a) (b)

FIGURE 8.8 Global basis function methods, such as multilayer perceptrons, create global

decision boundaries as shown in (a). Local basis function methods, such as radial basis

functions, create local decision boundaries (b).

374 CLASSIFICATION

disjoint (unequal) regions, each having a first-order response estimate. CTM uses

(nonrecursive) partitioning strategy borrowed from the SOMs of Section 6.3.1.

The CTM approach combines clustering via SOM and piecewise-linear

regression into one iterative algorithm. Classification problems can be solved

using batch CTM by employing the multiresponse regression strategy using

1-of-J encoding for output (y). Under this approach, the batch CTM method

for classification partitions the input space into disjoint regions via a set of

prototype vectors (units) and implements a linear decision boundary in each

region. Each of these linear decision boundaries is constructed via (local) linear

regression.

The CTM method (for regression) is modified to solve classification problems

via multiple-response regression using a common set of basis functions, as

described next. Each unit (of the map) has J responses corresponding to 1-of-J

encoding of class labels. The same topological map is used to fit the training data

for all J classes leading to common basis functions for each response. Recall that

in the batch CTM algorithm for regression (described in Section 7.4.2), the map

is defined by its topology (i.e., 1D or 2D) and the number of units (per dimen-

sion), whereas the training procedure is specified by the neighborhood decrease

schedule and by the adaptive distance scaling reflecting variable importance. For

classification, each unit performs multiple-response local linear regression to

construct a decision boundary. This is accomplished by modifying the batch

CTM algorithm so that conditional expectation is estimated via (7.115) for

each response with a common neighborhood width. In addition, the adaptive

scaling is modified to provide a combined variable importance for all responses.

This is done by averaging the J individual measures (7.116) of variable impor-

tance. The variable importance must be aggregated in this way because a set

of common basis functions is used. Predictions are made using the decision

rule (8.47).

Recall that for CTM regression, the quality of the fit (model complexity) is

determined mainly by the final neighborhood size and (to a lesser degree) by

the number of map units (per dimension). It is common to use a map of low

dimensionality (one or two dimensional) even for high-dimensional problems.

For classification problems the same two parameters, namely the final neighbor-

hood size and the number of units, also control model complexity. However, for

classification the main factor controlling model complexity is the number

of CTM units, as it specifies the number of local linear hyperplanes forming a

piecewise-linear decision boundary. The ‘‘best’’ choice of the number of map

units depends on the number of classes and on the form of the optimal (Bayes)

decision surface. For example, consider two-class problems, where the data for

each class is formed by several (b) Gaussian clusters. Then an ‘‘optimal’’ piece-

wise-linear CTM model needs about m ¼ 2b units, with each CTM unit placed at

the center of a Gaussian cluster (see the example in Fig. 8.10 described later in

Section 8.3.4).

In the CTM classifier, the number of units can be either user-defined or deter-

mined via a heuristic search strategy for model selection. We found the following

METHODS FOR CLASSIFICATION 375

heuristic procedure for training CTM classifier (which includes complexity control)

to be practical:

1. Model selection: Determine an optimal number of CTM units via resampling.

The resampling is done by an exhaustive search of the number of units (per

dimension) for the map of fixed dimension (usually one or two dimensional).

The optimal number of units provides the smallest (estimated) future

misclassification risk for the CTM classifier trained using a fixed neighbor-

hood decrease schedule.

2. Training or empirical risk minimization: This procedure is done by training

the CTM with the original data using the number of units found during model

selection. The optimal final neighborhood width corresponds to the one with

the smallest empirical risk, namely the smallest classification error for the

training data.

Note that in the above procedure the model selection step 1 and training step 2 both

use the classification error criterion for selecting the number of units and the final

neighborhood size, even though the squared loss is being minimized during training.

Model selection involves choosing the number of units m in order to minimize

the estimated prediction risk, which is estimated using 10-fold cross-validation. In

addition, the search is performed over a one- or two-dimensional map topology.

The strategy is to start with a single unit (m ¼ 1) and increase the number of units

until the estimated prediction risk is minimized. Every time the number of units is

increased, training starts with the units at random initial positions. During each

training period, the neighborhood is decreased according to some fixed schedule,

for example

aðkÞ ¼ ainitial
afinal

ainitial

� �k=kmax

; ð8:69Þ

where k is the iteration step and kmax is the maximum number of iterations, which is

specified by a user. The same value of kmax is used for different values of m. Com-

monly used values for parameters are ainitial ¼ 1:0 and afinal ¼ 0:05. Let m� denote
the number of units that minimize the estimated prediction risk, as determined by

the above model selection procedure.

Following model selection, the CTM algorithm with m� units is applied to all the
data to produce the final classifier. During training, the final neighborhood width is

gradually decreased until the empirical classification risk is minimized. Note that

this differs from the training procedure used in the model selection step, where a

fixed neighborhood decrease rate is used.

The model selection approach used in CTM differs from the typical procedure

used in most other methods for classification. For CTM, the model complexity is

determined first (minimizing estimated prediction risk), followed by accurate fitting

of model parameters (minimizing empirical risk). Such model selection is possible

376 CLASSIFICATION

because with a fixed neighborhood decrease schedule, the result of CTM training

depends only on the number of map units. For example, the outcome of model

selection step does not depend on initialization of CTM units (parameters), as in

MLP training.

The CTM approach for classification is summarized in the following two algo-

rithms (Cherkassky et al. 1977). The first algorithm describes how to estimate the

decision boundaries for given CTM complexity parameters, that is, the number of

units and the final neighborhood width. The second algorithm describes the model

selection procedure for the first algorithm.

CTM: Estimation of decision boundaries

Given one-of-J encoded training data ðxi ; y 0 i Þ, i ¼ 1; . . . ; n, initialize the cen-
ters cj , j ¼ 1; . . . ;m, as is done with batch SOM (see Section 6.3.1). Also initi-
alize the distance scale parameters vl ¼ 1, l ¼ 1; . . . ; d

1. Projection: Perform the first step of batch SOM using the scaled
distance measure

k cj � xi k2v¼
X

d

l¼1
v2
l ðcjl � xil Þ2:

2. Conditional expectation (smoothing) in x-space: Update the centers cj .

F ðz; aÞ ¼
P

n

i¼1
xiKaðz; ziÞ

P

n

i¼1
Kaðz; ziÞ

;

cj ¼ F ð
ðjÞ; aÞ; j ¼ 1; . . . ;m:

3. Estimate discriminant functions: Perform a locally weighted linear
regression (multiresponse) in y0-space using kernel Kaðz; zi Þ. That is,
minimize

Remp localðwje;w0jeÞ ¼
1

n

X

n

i¼1
K ðzi ;
ð jÞÞ½wje � xi þ w0je � y 0ie�

2

for each response e ¼ 1; . . . ; J and each center j ¼ 1; . . . ;m. Minimizing
this risk results in a set of first-order discriminant functions
gjeðxÞ ¼ wje � xþ w0je, one for each center cj and each response e.

4. Adaptive scaling: Determine new scaling parameters v for each of the d
input variables using the average sensitivity for each predictor and
center,

vl ¼
1

J

X

J

e¼1

X

b

j¼1
jŵ ljej;

METHODS FOR CLASSIFICATION 377

where ŵ lje is the l-th component of the vector ŵje ¼ ½ŵ1je; . . .;ŵdje� for
unit j response e.

5. Increasing flexibility: Decrease a according to schedule (8.69) and
repeat steps 1--4 until the stopping criterion is met.

CTM: Model selection

1. Perform a search to determine the optimal number of units m� based on
estimated prediction risk. Create 10 training and validation data sets
using 10-fold cross-validation (Section 3.4.2).

(a) For a fixed value of m, execute the CTM algorithm to estimate
decision boundaries for each of the cross-validation sets. Execute
the algorithm for kmax iterations. During execution, the width of the
neighborhood decreases according to the schedule (8.69).

Find the number of units m�, which provides the lowest cross-validation
estimate of the classification risk.

2. Apply the CTM algorithm to estimate decision boundaries for all
the data samples, using m� units. During execution, the width of the
neighborhood decreases according to the schedule (8.69) until the
classification error on the data is minimized.

Typically a one- or two-dimensional map is used, and kmax ¼ 100.

The CTM classification procedure is well suited for estimating piecewise-linear

decision boundaries, where the number of local linear regions is not too large.

This is often the case with class distributions formed by several Gaussian or

elliptical clusters. CTM classifiers have an automatic model selection procedure

based on supervised training. This compares favorably with RBF classifiers,

where the number of basis functions is often determined via unsupervised clustering.

8.3.2 Tree-Based Methods

Tree-based methods for classification (Breiman et al. 1984) adaptively split the

input space into disjoint regions in order to construct a decision boundary. The

regions are chosen based on a greedy optimization procedure, where in each step

the algorithm selects the split that provides the best separation of the classes accord-

ing to some cost function. This cost function is selected so that it is compatible with

the greedy optimization procedure and tends to reflect the empirical misclassifica-

tion risk. The splitting process can be represented as a binary tree. Following the

growth of the tree, pruning occurs as a form of model selection. Most tree-based

methods use a strategy of growing a large tree and then pruning nodes according

to pruning criteria. Empirical evidence suggests that this growing and pruning strat-

egy provides better classification accuracy than just growing alone (Breiman et al.

1984). The pruning criteria are usually the empirical misclassification rate adjusted

by some heuristic complexity penalty. The strength of the penalty is determined by

378 CLASSIFICATION

cross-validation. Note that the pruning criteria provide a (heuristic) estimate of the

prediction risk, whereas the growing criteria roughly reflect the empirical risk.

The resulting classifier has a binary tree representation, where each node in the

tree is a binary decision, and each leaf node is assigned a class label. A classifica-

tion (of a new input) is made by starting at the root node and descending to one of

the leaves.

CART is a popular approach to construct a binary-tree-based classifier. In

Section 5.3.2, we described CART for regression problems. Here we describe

how CART is used to solve classification problems. CART’s greedy search employs

a recursive partitioning strategy. It begins with the entire input space. The space is

then divided into two regions RL and RR, left and right, by a split ðk; vÞ on variable
xk at the split point v. The possible candidates for split points are generated in a

manner similar to the multivariate adaptive regression splines (MARS) method

for regression (Fig. 7.17). This splitting procedure is repeated on the daughter

regions to further subdivide the input space.

We will first focus on one splitting step of this recursive approach. Assume that

we are determining whether to split region RðtÞ corresponding to node t. Let us

define the following probability estimates for node t:

pðtÞ¼ nðtÞ=n; ð8:70aÞ
pðjjtÞ ¼ njðtÞ=nðtÞ; ð8:70bÞ

where n is the total number of training samples, nðtÞ is the number of training sam-

ples in the region RðtÞ corresponding to node t, and njðtÞ corresponds to the number

of samples of class j in the region RðtÞ. We can now define a cost function that

measures node ‘‘impurity’’:

QðtÞ ¼ Qðpð1jtÞ; pð2jtÞ; . . . ; pðJjtÞÞ: ð8:71Þ

This cost function should meet the following criteria (Breiman et al. 1984):

1. Q is at its maximum only for probabilities ð1=J; . . . ; 1=JÞ
2. Q is at its minimum only for probabilities ð1; 0; . . . ; 0Þ, ð0; 1; 0; . . . ; 0Þ; . . . ;
ð0; . . . ; 0; 1Þ

3. Q is a symmetric function of its arguments

Cost functions meeting these criteria give a measurement of how homogeneous

(pure) a node t is with respect to the class labels of the training data in the region

of node t. Some cost functions that satisfy the criteria are

QðtÞ ¼ 1�max
j

pð jjtÞ ‘‘misclassification cost;’’ ð8:72aÞ

QðtÞ ¼
X

j

X

i6¼j
pðijtÞpðjjtÞ ¼ 1�

X

j

½pðjjtÞ�2 ‘‘gini function;’’ ð8:72bÞ

QðtÞ ¼ �
X

j

pðjjtÞ ln pðjjtÞ ‘‘entropy function:’’ ð8:72cÞ

METHODS FOR CLASSIFICATION 379

Of these three criteria, only the gini and entropy functions are used for practical

implementations of classification trees. These two cost functions do not measure

the classification risk directly as is done with (8.72a). The gini and entropy cost

functions are designed to work with the greedy optimization strategy of CART.

For greedy optimization strategies, two difficulties exist when using the empirical

misclassification cost (8.72a) directly:

1. There are cases where the misclassification cost does not decrease for any

candidate split in the tree. This leads to early halting of the greedy search in a

poor local minimum. The phenomenon occurs due to the discontinuous nature

of the max function in (8.72a).

2. The misclassification cost does not favor splits that tend to provide a lower

misclassification cost in future splits. For greedy searches (i.e., one-step

optimization), the cost function should measure the quality of the present split

by its potential for producing good future split opportunities. For an example,

see Fig. 8.9. Both splits illustrated in Fig. 8.9 provide the same decrease in

misclassification cost. However, scenario (b) provides a more strategic split.

Empirical evidence suggests that the gini and entropy cost functions are better

Decrease in impurity

Misclassification = 0.25

Gini = 0.13

Entropy = 0.13

(a)

Decrease in impurity

Misclassification = 0.25

Gini = 0.17

Entropy = 0.22

(b)

FIGURE 8.9 Two split scenarios provide the same decrease in empirical misclassification

error. However, (b) provides a more strategic split in terms of future growth of the tree. For

(a), both daughter nodes have roughly the same difficulty and will require further splits. For

(b), the right daughter node has no incorrect splits and only the left node requires further

splitting. Scenario (b) is favored using the gini or entropy cost function.

380 CLASSIFICATION

suited for greedy tree-growing optimization than the misclassification cost

(Breiman et al. 1984).

Let us now assume that the node t is split into two daughter nodes tL and tR on

variable xk at a split point v. Then the decrease in impurity caused by the split is

�Qðv; k; tÞ ¼ QðtÞ � QðtLÞpLðtÞ � QðtRÞpRðtÞ; ð8:73Þ

where the probabilities pLðtÞ and pRðtÞ are defined by

pLðtÞ ¼ pðtLÞ=pðtÞ; ð8:74aÞ
pRðtÞ ¼ pðtRÞ=pðtÞ: ð8:74bÞ

The variable xk and the split point v are selected to maximize the decrease in node

impurity (8.73). This recursive splitting is repeated until some suitable stopping cri-

terion is met. For example, splitting proceeds until the empirical misclassification

rate falls below a preset threshold.

After growing is complete, the CART algorithm implements model selection via

pruning. Pruning is based on minimizing the penalized empirical risk:

Rpen ¼ Remp þ ljT j; ð8:75Þ

where Remp is the misclassification rate for the training data and jT j is the number of

terminal nodes. The pruning is performed in a greedy search strategy, where every

pair of sibling leaf nodes is recombined in order to find a pair that, when recom-

bined, reduces (8.75). The optimal l is found by minimizing the estimate of predic-

tion risk determined via resampling. The pruning approach used by CART is a form

of model selection. The following steps summarize the CART greedy search

strategy:

1. Initialization: The root node consists of the whole input space. Estimate
the proportion of the classes via pð j jt ¼ 0Þ ¼ njð0Þ=n.

2. Tree growing: Repeat the following until the stopping criterion has been
satisfied (i.e., empirical misclassification cost reaches a threshold):

(a) Perform an exhaustive search over all valid nodes in the tree, all
split variables, and all valid knot points. For all these combinations,
create a pair of daughters and estimate the probabilities pLðtÞ and
pRðtÞ via (8.74).

(b) Incorporate the daughters into the tree that results in the largest
decrease in the impurity (8.73) using the gini or entropy cost
function.

3. Tree pruning: Repeat the following pruning strategy until no more
pruning occurs:

METHODS FOR CLASSIFICATION 381

(a) Perform an exhaustive search over all sibling leaf nodes in the tree,
measuring the change in model selection criterion (8.75) resulting
from recombination of each pair.

(b) Delete the pair that leads to the largest decrease of model selection
criterion. If it never decreases, make no changes.

For examples of CART partitioning, see Section 5.3.2. Recall that the Example 5.3

showed how CART’s greedy search strategy can lead to suboptimal solutions for the

regression problem. The same results occur when CART is applied to classification

problems. That is, if CART is applied to classify the data in Example 5.3 using either

the gini or entropy splitting criterion, the resulting suboptimal tree is the same as that

given by Fig. 5.7(a).

The tree structure produced by CART is easily interpretable for a moderate num-

ber of nodes. Each node represents a rule involving one of the input variables. Also

the CART splitting procedure can handle categorical as well as numeric (real-

valued) input variables. One disadvantage of CART is that it is sensitive to coordi-

nate rotations. For this reason, the performance of CART is dependent on the coor-

dinate system used to represent the data. This occurs because CART partitions the

space into axis-oriented subregions. Modifications have been suggested (Breiman

et al. 1984) to perform splits on linear combinations of features, alleviating this

potential disadvantage.

8.3.3 Nearest-Neighbor and Prototype Methods

The goal of local methods for classification is to construct local decision bound-

aries. As with local methods for regression, classification is done by constructing

a decision boundary local to an estimation point x0. From the SLT viewpoint, local

methods for classification follow the framework of local risk minimization, as dis-

cussed in Section 7.4. In classical decision theory, they are interpreted as local pos-

terior density estimation followed by local construction of a decision rule. In this

section, we will describe two example methods: nearest-neighbor classification and

learning vector quantization (LVQ). In the nearest-neighbor classification, a local

decision rule is constructed using the k data points nearest to the estimation

point. The LVQ approach constructs a set of exemplars or prototype vectors that

define the decision boundary.

The k-nearest-neighbor decision rule classifies an object based on the class of the k

data points nearest to the estimation point x0. The output is given by the class with the

most representatives within the k nearest neighbors. Nearness is most commonly

measured using the Euclidean distance metric in x-space. As with other distance-

based methods, the scaling of input variables affects the resulting decision rule. A

local decision rule is constructed using the procedure of local risk minimization

described in Section 7.4. The decision rule is chosen from the set of (locally)

constant approximating functions minimizing the local empirical misclassification

rate. For example, in a two-class problem the local empirical risk is minimized by

choosing the output class label to be the same as the class label of the majority of

382 CLASSIFICATION

the k nearest neighbors. In the k-nearest-neighbor method for two classes, the empiri-

cal risk is

Remp localðwÞ ¼
1

k

X

n

i¼1
ðyi � wÞ2Kkðx0; xiÞ; ð8:76Þ

where Kkðx0; xiÞ ¼ 1 if xi is one of the k data points nearest to the estimation point

x0 and zero otherwise. Here the set of approximating functions is

f ðxÞ ¼ w; ð8:77Þ

where w takes the discrete values f0; 1g. The empirical risk is minimized when w

takes the value of the majority of class labels. The value w� for which the empirical

risk is minimized is

w� ¼
1;

1

k

X

n

i¼1
yiKkðx0; xiÞ > 0:5;

0; otherwise:

8

>

<

>

:

ð8:78Þ

For the simple class of indicator functions (8.77) used in k nearest neighbors, the

local misclassification error is minimized directly. In fact, for these indicator func-

tions (8.77), direct minimization of classification error is equivalent to approximate

minimization via regression. The left-hand side of the decision rule inequality

(8.78) corresponds to k nearest neighbors for regression (7.102). Therefore,

(8.78) is equivalent to the classical approach of using regression for estimating

the posterior distributions.

Despite their simplicity, k-nearest-neighbor methods for classification have pro-

vided good performance on a variety of real-life data sets and often perform better

than more complicated approaches (Friedman 1994b). This is a rather surprising

result considering the potentially strong effect of the curse of dimensionality

on distance-based methods. There are two possible reasons for the success of k-

nearest-neighbor methods for classification:

1. Practical problems often have a low intrinsic dimensionality even though they

may have many input variables. If some input variables are interdependent,

the data lie on a lower-dimensional manifold within the input space. Provided

that the curvature of the manifold is not too large, distances computed in the

full input space approximate distances within the lower-dimensional mani-

fold. This effectively reduces the dimensionality of the problem.

2. The effect of the curse of dimensionality is not as severe due to the nature of

the classification problem. As discussed in Section 8.2, accurate estimates of

conditional probabilities are not necessary for accurate classification. When

applying the classical approach of estimating posterior distributions via

regression, the connection between the regression accuracy and the resulting

METHODS FOR CLASSIFICATION 383

classification accuracy is complicated and not monotone (Friedman 1997).

The classification problem is (conceptually) not as difficult as regression, so

the effect of dimensionality is less severe (Friedman 1997).

For problems with many data samples, classifying a particular input vector x0
using k nearest neighbors poses a large computational burden, as it requires storing

and comparing all the samples. One way to reduce this burden is to represent the

large data set by a smaller number of prototype vectors. This approach requires a

procedure for choosing these prototype vectors so that they provide high classifica-

tion accuracy. In Chapter 6, we discussed methods for data compression, such as

vector quantization, that represent a data set as a smaller set of prototype centers.

However, the methods of Chapter 6 are unsupervised methods, and they do not

minimize the misclassification risk. The solution provided by the LVQ (Kohonen

1988, 1990b) approach is (1) to use vector quantization methods to determine initial

locations of m prototype vectors, (2) assign class labels to these prototypes, and

(3) adjust the locations using a heuristic strategy that tends to reduce the empirical

misclassification risk. After the unsupervised vector quantization of the input data,

each prototype vector defines a local region of the input space based on the nearest-

neighbor rule (6.19). Class labels wj, j ¼ 1; . . . ;m, are then assigned to the proto-

types by majority voting of the training data within each region. The positions of

these prototype vectors are then fine-tuned using one of three possible heuristic

approaches proposed by Kohonen (LVQ1, LVQ2, and LVQ3). The fine-tuning tends

to reduce the misclassification error on the training data. Following is the fine-

tuning algorithm called LVQ1 (Kohonen 1988). The stochastic approximation

method is used with data samples presented in a random order.

Given a data point ðxðkÞ; yðkÞÞ, prototype centers cjðkÞ, and prototype labels wj,

j ¼ 1; . . . ;m, at discrete iteration step k

1. Determine the nearest prototype center to the data point

i ¼ arg min
j

k xðkÞ � cjðkÞ k:

2. Update the location of the nearest prototype under the following
conditions:

If yðkÞ ¼ wi (i.e., xðkÞ is correctly classified by prototype ciðkÞ), then

ciðk þ 1Þ ¼ ciðkÞ þ gðkÞ½xðkÞ � ciðkÞ�

else (i.e., xðkÞ is incorrectly classified)

ciðk þ 1Þ ¼ ciðkÞ � gðkÞ½xðkÞ � ciðkÞ�:

3. Increase the step count and repeat

k ¼ k þ 1:

384 CLASSIFICATION

The learning rate function gðkÞ should meet the conditions for stochastic approxima-

tion given in Chapter 2. In practice, the rate is reduced linearly to zero over a prespe-

cified number of iterations. A typical initial learning rate value is gð0Þ ¼ 0:03. The
fine-tuning of prototypes (using LVQ) tends to move the prototypes away from the

decision boundary. This tends to increase the degree of separation (or margin)

between the two classes. (Large-margin classifiers are discussed in Chapter 9.)

In the LVQ approach, complexity is controlled through the choice of the number

of prototypes m. In typical implementations, m is selected directly by the user, and

there is no formal model selection procedure.

8.3.4 Empirical Comparisons

We complete this section by describing the results from various comparison studies

between the methods (Friedman 1994a; Ripley 1994; Cherkassky et al. 1997). As is

usual with adaptive nonlinear methods, comparisons demonstrate that characteris-

tics of the ‘‘best’’ method typically match the properties of a data set. All compar-

isons use simulated data sets. With real-life data sets, the main factors affecting the

performance are often proper preprocessing/data encoding/feature selection rather

than classification method itself. The reader interested in empirical comparisons of

classifiers on real-life data is referred to Michie et al. (1994).

Example 8.2: Mixture of Gaussians (Ripley 1994)

In this example, the training data (250 samples) are generated according to a mix-

ture of Gaussian distributions as shown in Fig. 8.10(a). The class 1 data have

centers (�0:3; 0:7) and (0.4, 0.7) and class 2 data have centers (�0:7; 0:3) and

(0.3, 0.3). The variance of all distributions is 0.03. A test set of 1000 samples is

used to estimate the prediction error. Table 8.1 shows the prediction risk for the

CTM (Cherkassky et al. 1997) and for various other classifiers (Ripley 1994).

The Bayes optimal error rate is 8.0 percent. Quoted error rates have a standard error

of about 1 percent. In this comparison, some methods choose model selection para-

meters automatically, whereas others perform user-controlled model selection using a

validation set of 250 samples. The decision rule determined by the CTM is very close

to Bayes decision boundary (see Fig. 8.10(b)). This data set is very suitable for the

CTM, which places the map units close to the centers of Gaussian clusters.

Example 8.3: Linearly separable problem

In this example, the training data set has the following two classes:

class 1:
X

10

j¼1
xj < 0;

class 2: otherwise;

METHODS FOR CLASSIFICATION 385

where the training data sets are generated according to the distribution x � Nð0; IÞ,
x 2 <10. This problem is linearly separable with no overlap of the classes. Ten

training sets are generated, and each data set contains 200 samples. The same clas-

sification method is applied to each training data set resulting in 10 classifiers for

the same method. Model selection is performed using cross-validation within each

training set. The prediction risk is estimated for each individual classifier using a

large test set (2000 samples). The prediction risk for the method is then determined

based on the average of prediction risk for the 10 classifiers. Table 8.2 gives

the results for CTM (Cherkassky et al. 1997) and other classification methods

(Friedman 1994a).

The table shows the results for both standard CART and CART using linear

feature combinations. The Bayes optimal error rate is 0 percent. For each of the

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

–1.5 –1 –0.5 0 0.5 1

(a)

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

–1.5 –1 –0.5 0 0.5 1 1.5

o: Gaussian centers
+: location of the CTM units

Bayes

CTM

(b)

FIGURE 8.10 Results for CTM. (a) Training data for the two-class classification problem

generated according to a mixture of Gaussians. (b) CTM decision boundary and Bayes

optimal decision boundary.

386 CLASSIFICATION

TABLE 8.1 Prediction Risk for Various Classification

Methods used in Example 8.2

Classification method Error rate

Linear discriminant 10.8%

Logistic discriminant 11.4%

Quadratic discriminant 10.2%

One-nearest-neighbor 15.0%

Three-nearest-neighbor 13.4%

Five-nearest-neighbor 13.0%

MLP with three hidden nodes 11.1%

MLP with three hidden nodes (weight decay) 9.4%

MLP with six hidden nodes (weight decay) 9.5%

Projection pursuit regression 8.6%

MARS regression (max interactions¼ 1) 9.3%

MARS regression (max interactions¼ 2) 9.4%

CART 10.1%

LVQ (12 centers) 9.5%

CTM (four units) 8.1%

TABLE 8.2 Prediction Risk for Methods used in Example 8.3

Classification method Estimated prediction risk (%)

CART 32.4%

CART: linear 7.6%

k-nearest-neighbor 17.4%

CTM 5.3%

FIGURE 8.11 Linear regression coefficients for Example 8.2.

METHODS FOR CLASSIFICATION 387

10 data sets, the CTM approach selected a model with one unit effectively

implementing an LDA classifier. Hence, this data set is also favorable to CTM.

Figure 8.11 presents the regression coefficients for each input variable for one of

the data sets. These coefficients reflect (global) variable importance and can be

potentially used for interpretation. As expected, in this example all variables

have roughly the same importance.

Example 8.4: Waveform data

This is a commonly used benchmark example first used in Breiman et al. (1984).

There are 21 input variables that correspond to 21 discrete time samples taken

from a randomly generated waveform. The waveform is generated using a ran-

dom linear combination of two out of the three possible component waveforms

shown in Fig. 8.12, with noise added. The classification task is to detect

which two of the three component waveforms make up a given input waveform

based on the input variables. This results in a three-class classification

problem. Let us denote the three component waveforms as h1ðjÞ, h2ðjÞ, and

h3ðjÞ, where j ¼ 1; . . . ; 21 is the discrete time index (see Fig. 8.12). The three

classes are

class 1: xij ¼ uih1ðjÞ þ ð1� uiÞh2ðjÞ þ eij;

class 2: xij ¼ uih1ðjÞ þ ð1� uiÞh3ðjÞ þ eij;

class 3: xij ¼ uih2ðjÞ þ ð1� uiÞh3ðjÞ þ eij;

where 1 � i � n, n ¼ 300, and 1 � j � 21. Variables ui are generated according to

the uniform distribution Uð0; 1Þ and additive noise eij from a Gaussian distribution

Nð0; 1Þ. The three-component waveforms are

h1ðjÞ ¼ ½6� jj� 7j�þ;
h2ðjÞ ¼ ½6� jj� 15j�þ;
h3ðjÞ ¼ ½6� jj� 11j�þ;

by which 10 training sets are generated, and each training data set contains 300 sam-

ples. A given classification method is applied to each training data set resulting

in 10 classifiers for the same method. Model selection is performed using cross-

validation within each training set. The prediction risk is estimated for each indi-

vidual classifier using a large test set (2000 samples). The prediction risk for the 10

classifiers was averaged to determine the average prediction risk for a given classi-

fication method. Table 8.3 gives the results for the CTM (Cherkassky et al. 1997)

and other methods (Friedman 1994a). The Bayes optimal error rate for this problem

is 14.0 percent (Breiman et al. 1984).

388 CLASSIFICATION

It is interesting to note that the simplest technique (k-nearest-neighbor) clearly

outperforms more complex methods in this case. Consistent with this example,

empirical evidence suggests that simple methods (i.e., nearest-neighbor and

LDA) often are very competitive for noisy real-life data sets.

0

2

4

6

5 10 15 20

0

2

4

6

5 10 15 20

0

2

4

6

5 10 15 20

h1 j()

h2 j()

h3 j()

j

j

j

FIGURE 8.12 The component waveforms used to generate the data for Example 8.3.

TABLE 8.3 Prediction Risk for Methods used in Example 8.4

Classification method Estimated prediction risk (%)

CART 29.1%

CART: linear 21.1%

k-nearest-neighbor 17.1%

CTM 21.7%

METHODS FOR CLASSIFICATION 389

8.4 COMBINING METHODS AND BOOSTING

The classification approaches covered so far in this chapter are all designed with the

following scenario in mind: A single set of data is used for training, and a single

classification method is used to produce a classifier. As discussed in earlier chap-

ters, there are three components of a learning method:

(a) A selection of a set of approximating functions (admissible models)

(b) Loss functions used for ERM

(c) Provisions for model complexity control (model selection)

However, theoretical and empirical evidence suggests that no single ‘‘best’’ method

exists for all classification problems. Also, it is always possible to find the ‘‘best’’

method for a given data set and identify the ‘‘best’’ characteristics of a data set for a

given method. This suggests that combining the results of classification methods

may result in improved generalization. It is possible to identify three meta-strategies

for combining methods:

1. Apply several different classification methods to the same data. Then combine

the predictions obtained by each method. According to our characterization of a

method, this involves using different sets of approximating functions (a) but the

same loss (b). The committee of networks approach and stacking, both covered

in detail in Section 7.6, fall into this category. In addition, Bayesian model

averaging (Hoeting et al. 1999) also follows this strategy.

2. Apply a learning method to many statistically identical realizations of the

training data. Then combine the resulting models using a weighted average.

In our characterization of a method, this amounts to using the same set of

approximating functions (a) and also the same loss (b). This strategy is

employed by bagging (Breiman 1996).

3. Apply a learning method to modified realizations of the training data. Then

combine the resulting models using a weighted average. According to our

characterization of a method, this amounts to using the same set of

approximating functions (a), but different loss functions (b) effectively

implemented by adaptive weighting of samples. This strategy is employed

by boosting (Freund and Schapire 1997).

Bagging is able to overcome a particular weakness in a learning method

(instability), whereas boosting is more powerful in that in addition to enhancing

unstable classifiers it is able to combine the results of a classifier with consistently

low accuracy to produce one with good generalization. For this reason, we will only

briefly describe bagging and devote the section to boosting.

Bagging, short for bootstrapped aggregation, falls into the second type of meta-

strategy and is especially suited for classification methods that are unstable. We

define stability following (Breiman 1996). Consider a learning method implementing

390 CLASSIFICATION

a structure, that is, a sequence of approximating functions with increasing complex-

ity. In an unstable method, small changes in the training data cause large changes in

the sequence of approximating functions. Tree-based methods employing a greedy

search are generally known to be unstable (Breiman 1996). The removal or addition

of a single data point can result in radically different trees. For unstable estimators,

model selection is difficult. This instability would not be a problem if we had access

to many training data sets (of the same size) sampled from the same (unknown) dis-

tribution. We could create a classifier for each training set and then average the pre-

dictions to reduce the influence of the instability. The concept behind bagging is to

generate these alternative training data sets using bootstrap sampling of the single

training data set. A bootstrap training set of size n is created by selecting n data points

from the given training set with replacement. Each bootstrap training set is used to

estimate a classifier, and the predictions of these classifiers are averaged to produce

the combined prediction.

Boosting is an approach for improving generalization of a learning method,

based on the application of a single (or base) classification method to many (appro-

priately modified) versions of the training data. The resulting component classifiers

are then combined to produce a classifier with improved accuracy. This approach

had been initially proposed for classification (Freund and Schapire 1997) and later

extended to other learning problems (i.e., regression). This section describes the

original idea of boosting for classification. Using boosting, it is possible to take

advantage of classification methods that are only marginally better than guessing

(a so-called weak classifier) to produce a final classifier with high prediction accu-

racy. A common weak classification method used with the boosting algorithm is a

classification tree with a single split decision, that is, a tree which splits the data into

two regions along a single variable and has two terminal nodes (see Fig. 8.9). In

addition, simple nearest-neighbor classification with a fixed value of neighbors

k ¼ 1 has also been used as a base classifier (Freund and Schapire 1996). Some-

times, boosting is also used with larger trees because boosted trees can represent

additive functions, whereas a single tree (using CART) cannot. Boosting trees

also decreases the chances of falling in a poor local minimum, as greedy optimiza-

tion is repeated on multiple trees and results are combined.

In the boosting algorithm, the weak classification method is repeatedly applied

to the data in order to build a final classifier. The algorithm involved two types of

weights: weights adjusting the influence of the data denoted by bi and basis weights

used to combine the individual component classifiers denoted by wj. In each itera-

tion, the weight bi applied to each data point is adjusted, so that data points that

have been poorly classified are given more influence in the next iteration. The final

classifier is constructed using the weighted sum of the sequence of classifiers gjðxÞ:

f ðxÞ ¼ sign
X

m

j¼1
wjgjðxÞ

 !

: ð8:79Þ

The basis weights wj are a function of the training error of each classifier. The clas-

sifiers with lower training errors receive greater weight and therefore have more

COMBINING METHODS AND BOOSTING 391

influence on the combination. The resulting classifier typically has better classifica-

tion accuracy than any individual base classifier used. AdaBoost (Freund and

Schapire 1997), the most commonly known boosting algorithm, is described below.

Initialization (j ¼ 0)
Given training data ðxi ; yiÞ, yi 2 f�1; 1g, i ¼ 1; . . . ; n, initialize the weights
assigned to each sample, bi ¼ 1=n, i ¼ 1; . . . ; n.

Repeat for j ¼ 1; . . . ;m

1. Using the base classification method, fit the training data with weights
bi , producing the component classifier bjðxÞ.

2. Calculate the error (empirical risk) for the classifier bjðxÞ and its basis
weight wj :

errj ¼

P

n

i¼1
bi Iðyi 6¼ bj ðxiÞÞ

P

n

i¼1
bi

; ð8:80Þ

wj ¼ logðð1� errjÞ=errjÞ: ð8:81Þ

3. Update the data weights

bi ¼ bi expðwj Iðyi 6¼ bjðxiÞÞÞ; i ¼ 1; . . . ; n: ð8:82Þ

Combine classifiers
Calculate the final (boosted) classifier using the weighted majority vote of the
component classifiers:

f ðxÞ ¼ sign
X

m

j¼1
wjbjðxÞ

 !

: ð8:83Þ

One of the main characteristics of the algorithm is to maintain a set of weights, one

for each data sample. Initially, each sample is given equal weighting. As training

progresses, samples which are misclassified are given additional weight. This

weighting causes the component classifier in the next iteration to focus on the

more difficult samples.

Boosting is superficially similar to other model combination methods such as

stacking, committee of networks, and bagging in that classifiers are combined using

a weighted majority. However, it differs in a key aspect—the models are not inde-

pendently generated from the same data set. In boosting, the results of each com-

ponent classifier depend on the error results of the previous one through the

adjustment of the data weights.

392 CLASSIFICATION

It can be shown (Freund and Schapire 1997) that the boosting algorithm reduces

the empirical risk with each iteration as long as the empirical risk of each compo-

nent classifier is better than guessing (i.e., 50 percent). The error bound is given

by

Rempð f ðxÞÞ � exp �2
X

m

j¼1
g2j

 !

; where gj ¼ 1=2� errj; ð8:84Þ

showing that if the component classifier does consistently better than guessing, the

empirical risk decreases exponentially.

The algorithm above assumes that the weak classifier allows incorporation of data

weights into its loss function calculation. If that is not possible (e.g., with a canned

software package), then a resampling approach is used so that the data weights still

affect the classification results. That is, a training sample is selected from the data set

at random with a distribution reflecting the weight values. Freund and Schapire

(1997) suggest using a sample size equal to the original size of the data set.

Although boosting can be used with any base classification method, classifica-

tion trees, both CART and C4.5 are popular (Freund and Shapire 1996; Hastie et al.

2001). Tree-based approaches have certain positive qualities for many practical pro-

blems. For example, trees handle mixed input types, missing values, are insensitive

to monotone transformations of inputs, and deal with irrelevant inputs. However,

because trees use a greedy optimization approach, they are sensitive to optimization

starting conditions. Through boosting the variability introduced by greedy optimi-

zation can potentially be reduced. CART is used as described in Section 8.3.2, with

a cost function suitable for classification (like gini) that has been modified to handle

weighted data. For example, the gini cost function

QðtÞ ¼ pðy ¼ �1jtÞpðy ¼ 1jtÞ; ð8:85Þ

with probabilities computed using the weights bi:

pðy ¼ cjtÞ ¼

P

xi2RðtÞ
biIðyi ¼ cÞ
P

xi2RðtÞ
bi

; ð8:86Þ

where RðtÞ is the split region corresponding to node t, and class labels c 2 f�1; 1g.
In order to produce an output classification, each leaf of the tree is assigned a class

label based on the weighted majority class in the leaf’s region. With these modifi-

cations, the CART method can be used as a base classifier and plugged into the

AdaBoost algorithm.

In the following example, we demonstrate the boosting algorithm with artificial

data. The training data (75 samples) have two classes and are generated according to

a mixture of Gaussian distributions as shown in Fig. 8.13(a). The positive class

(y ¼ þ1) data have centers (�2; 0) and (2,0). The negative class (y ¼ �1) data have
a center (0, 0). All Gaussian clusters have the same variance of 1. A test set of 600

COMBINING METHODS AND BOOSTING 393

–4 –2 0 2 4

–
2

–
1

0
1

2

x1

x
2

(a)

–4 –2 0 2 4

–
2

–
1

0
1

2

x1

x
2

1
2

3
4

5
6

7
8

9
10

(b)

FIGURE 8.13 Boosting decision stumps. (a) The training data consist of a mixture of three

normal distributions. Class 1 data have centers (�2; 0) and (2,0) and class �1 data have a

center (0,0). (b) Vertical lines indicate the split locations of the first 10 component classifiers

found.

394 CLASSIFICATION

samples, generated from the same distribution, is used to estimate the prediction error.

The boosting algorithm was applied with the following simple component classifier:

gðx; k; vÞ ¼ �1; if xk < v;
1; if xk 	 v;

�

where k is a parameter indicating the input variable used to create the split and v is the

splitting value. This component classifier is called a ‘‘decision stump’’ as it consists of

a classification tree with tree depth of one (a single split decision and two terminal

nodes). Parameters k and v are selected to minimize the gini cost function (8.72b)

using a greedy optimization strategy. The AdaBoost algorithm described above is

used, with m ¼ 100 total iterations. The splitting values for the component classifiers

created during the first 10 iterations are shown in Fig. 8.13(b). Note that as there is no

relationship between variable x2 and the output class, all split decisions are based on

variable x1. Figure 8.14 shows the training and test misclassification rates as a func-

tion of the number of iterations (m). The training error continues to decrease with

increasing iterations, whereas the error on the test set decreases and then increases

only slightly. Note that even with large m, the danger of overfitting is small.

8.4.1 Boosting as an Additive Model

The result of boosting is an additive function of the individual component classifiers

(8.83). We have seen this additive form in many of the adaptive dictionary methods

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

Iteration

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

Test
Training

FIGURE 8.14 The training and test error for each iteration of the boosting algorithm

applied to the training data of Fig. 8.12.

COMBINING METHODS AND BOOSTING 395

presented in Section 7.3:

f ðx;w;VÞ ¼
X

m

j¼1
wjgjðx; vjÞ þ w0:

For example,

� MLPs have an additive representation with basis functions of the form

gjðx; vf Þ ¼ sðx � vjÞ, where sðÞ is the logistic sigmoid or hyperbolic

tangent

� Projection pursuit has an additive representation, where basis functions

gjðx; vjÞ are simple regression methods, such as kernel smoothing

� MARS has an additive representation with basis functions of the form

gjðx; u; v;�Þ ¼
Q

k2�
bðxk; uk; vkÞ, where bðÞ is a univariate spline basis function

From this point of view, boosting for classification is very similar to projection

pursuit for regression, as in each case simple learning methods are linearly com-

bined. An important point to note is that although each of these approaches has

an additive representation, they differ in optimization strategy based on the spe-

cific nature of the basis functions and error function. For example, MLP’s use

backpropagation because the basis functions are differentiable, whereas projec-

tion pursuit uses backfitting and MARS uses a greedy strategy specially adapted

for tensor product basis functions. From the point of view of complexity control,

all adaptive dictionary methods lack the ability to control the complexity of the

individual basis functions, and therefore the final result. Note that in methods

such as MLP and MARS the form of the basis function is defined a priori, so

the dictionary parameterization (7.59) defines a VC structure indexed by the

number of basis functions m (i.e., the number of hidden units). So in this case

one can apply (at least conceptually) the method of SRM to control model com-

plexity. In contrast, methods like boosting and projection pursuit do not define

the basis functions a priori, so it is unclear how to control the complexity of

the final additive result.

The connection between boosting and additive models can be shown more for-

mally (Friedman et al. 2000). Boosting is shown to be similar to the backfitting pro-

cedure used in projection pursuit for regression (see Section 7.3.1), however, using

an appropriate loss function for classification problems. For training data ðxi; yiÞ,
yi 2 f�1; 1g, i ¼ 1; . . . ; n, and a base classifier method bðx; vÞ with output

f�1; 1g and a vector of adjustable parameters v, the general form of the additive

classification algorithm is

Initialization (j ¼ 0)

g0ðxÞ ¼ 0:

396 CLASSIFICATION

Repeat for j ¼ 1; . . . ;m

1. Determine wj and vj

ðwj ; vj Þ ¼ arg min
w ;v

X

n

i¼1
Lðyi ; gj�1ðxiÞ þ wbðxi ; vÞÞ: ð8:87Þ

2. Update the discriminant function

gjðxÞ ¼ gj�1ðxÞ þ wjbðx; vjÞ:

Classification rule

f ðxÞ ¼ signðgmðxÞÞ: ð8:88Þ

By using the exponential loss function Lðy; gðxÞÞ ¼ expð�ygðxÞÞ and isolating the

optimization of the base classifier, the general stepwise algorithm above is equiva-

lent to AdaBoost. That is, by plugging the exponential loss function into the mini-

mization step in the fitting procedure above, this step becomes equivalent to step 1

of AdaBoost, as shown next. With the exponential loss function, the minimization

(8.87) becomes

ðwj; vjÞ ¼ arg min
w;v

X

n

i¼1
exp½�yiðgj�1ðxiÞ þ wbðxi; vÞÞ�

¼ arg min
w;v

X

n

i¼1
exp½�yigj�1ðxiÞ � yiwbðxi; vÞ�

¼ arg min
w;v

X

n

i¼1
exp½�yigj�1ðxiÞ�exp½�yiwbðxi; vÞ�

¼ arg min
w;v

X

n

i¼1
b
ð jÞ
i exp½�wyibðxi; vÞ�;

ð8:89Þ

with b
ð jÞ
i ¼ exp½�yigj�1ðxiÞ�, treated as a data weighting factor in the minimization

because it does not depend on the arguments w and v. As yi 2 f�1; 1g and

bðxi; vÞ 2 f�1; 1g, the parameter vj that minimizes the loss is given by

vj ¼ arg min
v

e�w
X

yi¼bðxi;vÞ
b
ð jÞ
i þ ew

X

yi 6¼bðxi;vÞ
b
ð jÞ
i

8

<

:

9

=

;

¼ arg min
v

ðew � e�wÞ
X

n

i¼1
b
ð jÞ
i I½yi 6¼ bðxi; vÞ� þ e�w

X

n

i¼1
b
ð jÞ
i

()

:

ð8:90Þ

COMBINING METHODS AND BOOSTING 397

Notice the second term in the sum does not depend on v. For any value of w > 0,

this is equivalent to minimizing

vj ¼ arg min
v

X

n

i¼1
b
ðjÞ
i I½yi 6¼ bðxi; vÞ�;

which is equivalent to step 1 of the Adaboost algorithm, that is, finding the classifier

that minimizes the classification error with training data and weights bi. Plugging

this result into (8.89) and solving for w, one obtains

2wj ¼ logðð1� errjÞ=errjÞ;

where

errj ¼

P

n

i¼1
biIðyi 6¼ bjðxi; vjÞÞ

P

n

i¼1
b
ðjÞ
i

:

The expression for w is equal to (8.81) up to a constant factor 2, and this shows

equivalency to step 2 of the Adaboost algorithm.

The discriminant function is now updated as gjðxÞ ¼ gj�1ðxÞ þ wjbðx; vjÞ, which
results in updated weightings for training data:

b
ðjþ1Þ
i ¼ exp½�yigjðxiÞ�
¼ exp½�yiðgj�1ðxÞ þ wjbðx; vjÞÞ�
¼ exp½�yigj�1ðxÞ�exp½�yiwjbðx; vjÞ�
¼ b

ðjÞ
i exp½�yiwjbðx; vjÞ�:

ð8:91Þ

As yi 2 f�1; 1g and bðxi; vÞ 2 f�1; 1g, we can substitute

�yibðx; vjÞ ¼ 2I ðyi 6¼ bðx; vjÞÞ � 1, giving

b
ðjþ1Þ
i ¼ b

ðjÞ
i exp½2wjIðyi 6¼ bðx; vjÞÞ � wj�

¼ b
ðjÞ
i exp½2wjIðyi 6¼ bðx; vjÞÞ�e�wj :

ð8:92Þ

Notice that e�wj is a factor that does not depend on i and so it has no effect on the

data weights. This shows equivalency of (8.92) to step 3 of the Adaboost algorithm

up to a constant factor 2 multiplied with wj. This factor of 2 results in different dis-

criminant functions, but it still yields an equivalent classification rule using (8.83),

which is based on the sign of the argument.

This equivalency assumes that the base classification method is able to minimize

the classification error using an indicator loss function as defined in Eq. (8.90). As

described in Section 8.3, practical methods for classification minimize continuous

loss functions.

398 CLASSIFICATION

By using the exponential error function, the boosting discriminant function can

be interpreted as the log ratio of the posterior densities (Vapnik 1999; Friedman

et al. 2000). Consider the risk functional for the exponential loss used in the

boosting algorithm:

RðgðxÞÞ ¼ E½expð�ygðxÞÞjx�; ð8:93Þ

where gðxÞ is a discriminant function.

This risk functional is minimized when the discriminant function is the log odds

function (up to a constant 1=2):

gminðxÞ ¼
1

2
ln

Pðy ¼ 1jxÞ
Pðy ¼ �1jxÞ

� �

: ð8:94Þ

This can be seen by computing the expectation and setting partial derivatives to

zero to determine the minimum:

E½expð�ygðxÞÞjx� ¼ Pðy ¼ 1jxÞexpð�gðxÞÞ þ Pðy ¼ �1jxÞexpðgðxÞÞ
qE½expð�ygðxÞÞjx�

qgðxÞ ¼ �Pðy ¼ 1jxÞexpð�gðxÞÞ þ Pðy ¼ �1jxÞexpðgðxÞÞ ¼ 0:

ð8:95Þ

The cross-entropy risk functional (also called binomial deviance) discussed in Sec-

tion 8.3.1 also has the log odds function as its minimizer. This risk functional

RðgðxÞÞ ¼ E½logð1þ expð�2ygðxÞÞÞjx�

is also minimized by (8.94). As argued in Section 8.3.1, the cross-entropy risk func-

tional can be motivated by ML arguments. Figure 8.15 shows the exponential loss

-4 -2 0 2 4

0
1

2
3

4
5

6

L
o
s
s

-4 -2 0 2 4

0
1

2
3

4
5

6

SVM loss
exponential
binomial deviance

()xgy*

FIGURE 8.15 Three continuous loss functions for classification: exponential (used by the

boosting algorithm), binomial deviance (motivated by maximum likelihood), and SVM loss.

COMBINING METHODS AND BOOSTING 399

(8.93), the binomial deviance loss used in (8.61), and the margin-based loss used in

SVM classifiers (discussed later in Chapter 9). Note that SVM loss closely approx-

imates the exponential loss used in AdaBoost. As shown in Chapter 9, minimization

of SVM loss results in models (decision boundaries) with large degree of separation

between the two classes (of training samples), also known as classification margin.

Intuitively, classification models with large margin tend to have better generaliza-

tion. So the notion of margin helps to explain robust predictive performance of

boosting, as discussed next.

Empirical results of boosting have shown that in spite of a large number of itera-

tions, the boosting algorithm does not have a tendency to overfit the data (Schapire

et al. 1998). In fact, even after the classification error on the training set is zero,

further iterations can reduce the test error. This result is counterintuitive, as an addi-

tional component classifier is added at every iteration, thereby potentially increas-

ing the complexity of the final classifier. An explanation based on SLT is that the

boosting algorithm tends to increase the classification ‘‘margin’’ (i.e., degree of

separation between two classes). Boosting not only reduces the training classifica-

tion error, but also maximizes the classification margin, even after the training error

is zero (Schapire et al. 1998). The intuitive explanation is that the boosting

approach focuses attention on data points near the decision boundary—those that

are difficult to classify and where there is low confidence of accurate prediction.

As a result, the Boosting tends to maximize the margin, in addition to minimizing

the error functional. Maximizing the margin increases the confidence of classifica-

tions, leading to reduced classification error on the test set. This makes boosting

similar to SVMs, which explicitly maximize the margin.

In the boosting algorithm, complexity is maximally controlled by adjusting the

complexity of each of the component classifiers. Adjusting the number of component

classifiers m has a minor impact. In practical applications, complexity of each

component classifier is not adjusted independently, they are all adjusted together.

Hastie et al. (2001) suggest an approach for adjusting complexity if the base classifi-

cationmethod is tree-based. First, all trees used in the boosting procedure use the same

number of terminal nodes T and pruning is not used. For a single tree, T � 1 controls

the maximum number of variable interactions the tree has the potential of represent-

ing. If T ¼ 2, only main effects could be represented, and no second-order effects

(two variables working jointly to affect the output). If T ¼ 3, then second-order effects

can be represented, but no third order and so on. Trees are combined additively as in

boosting, so these limitations (on the tree size) apply to the boosted classifier.

8.4.2 Boosting for Regression Problems

Boosting was originally devised for classification but can also be applied to regres-

sion problems. Here we briefly mention a few basic approaches for boosting

regression methods. First, Freund and Schapire (1997) suggest an approach called

AdaBoost.R for extending boosting to regression problems by converting the regres-

sion problem (with real-valued output) into a classification problem with binary

output. Each sample in the original data is transformed into a block of samples

400 CLASSIFICATION

by adding an additional ‘‘input’’ variable that contains a range of threshold values

for the real-valued output. The binary output for each sample in the block is true if

the threshold equals or exceeds the real-valued output. In this manner, the problem

is transformed into one with binary output, whereas the transformed data still con-

tain all the information in the original data set. Practical results on real and artificial

data sets using this approach are provided in Ridgeway et al. (1999), where it is

competitive with CART and additive methods in Section 7.3.1. It is important to

note that this approach does not follow the general principle described in Chapter

2, that of solving learning problems directly with the available data. Another

approach called AdaBoost.R2 (Drucker 1997) applies some ad hoc changes to the

updating equations in the original algorithm to make it work for regression. As the

original boosting method is only applicable for classification problems, it needs to

be modified to handle continuous-valued output. This requires modification of how

errors are measured as well as how the basis functions are combined. The solution

proposed by Drucker is to create a bounded version of regression error by scaling

the error measures typically used for regression (like squared error) so that they can

be used to update the weights in (8.81), and then combining the component regres-

sors using a weighted median. Results provided by Drucker on artificial and real

data show improved results of boosting trees versus trees alone. An improvement

on this approach called AdaBoost.RT (Solomatine and Shrestha 2004) takes advan-

tage of a margin-based error measure for handling the continuous valued output in

regression. Training samples whose absolute relative error exceeds some threshold

(i.e., margin) are ‘‘incorrect’’ and given additional weight. This binary error

measure is compatible with the standard boosting algorithm for classification.

The threshold is selected by minimizing the mean squared error on either a

cross-validation sample or the training data. In AdaBoost.RT, component regressors

are combined using a weighted average. For a number of real and artificial data sets,

this approach has provided superior results compared to the method by Drucker. A

statistical approach (Friedman et al. 2000) takes advantage of the additive nature of

boosting to construct a regression version using squared-error loss. For squared-

error loss, the decomposition of empirical risk for additive models (7.62) is used

to break down the minimization problem in (8.87), just like in projection pursuit.

This allows fitting residuals with a series of simple regression methods used as

additive basis functions, as is done using backfitting. Boosting in this formulation

differs from backfitting in that basis functions are not revisited during optimization.

At the present time, practical advantages of boosting for regression remain unclear,

in contrast to widespread use of boosting for classification problems.

8.5 SUMMARY

Description of classification methods in this chapter follows the conceptual frame-

work of SLT. This framework is quite useful, even though SLT generalization

bounds cannot be used with adaptive (nonlinear) methods (i.e., MLP classifiers)

for technical reasons explained in Chapters 4 and 7. The SLT approach compares

SUMMARY 401

favorably with the traditional (classical) interpretation of classification methods

based on asymptotic and/or parametric density estimation arguments.

Understanding classification methods requires clear separation between the con-

ceptual procedure based on the SRM inductive principle and its technical imple-

mentation. The conceptual procedure shared by most statistical and neural

network methods amounts to a minimization of the empirical classification error

on a set of approximating indicator functions of fixed complexity. The complexity

(flexibility) of approximating functions is then varied until an optimal complexity is

found. Optimal complexity provides the smallest (estimated) prediction risk. So any

method needs to do two things:

1. Minimize the empirical classification error (via nonlinear optimization)

2. Estimate accurately future classification error (model selection)

Both tasks are difficult with adaptive (nonlinear) methods; however, their technical

implementation should not cloud these clear conceptual goals.

The technical implementation of classification methods is complicated by the

discontinuous misclassification error functional, which prevents direct minimiza-

tion of the empirical risk in step 1 above. So all practical methods use a suitable

continuous loss function providing approximation for misclassification error in

the optimization step 1. In the model selection step 2, however, one should use

the classification error loss.

Unfortunately, many descriptions of classification methods based on the classical

interpretation confuse technical and conceptual issues. For example, the use of

squared-error or cross-entropy loss is motivated by density estimation. Thus, the

goal of the classification method is (incorrectly) interpreted as posterior probability

estimation. In fact, accurate estimation of posterior probabilities is not necessary for

accurate classification, as shown in Section 8.2. This obvious point has been also

acknowledged by statisticians (Friedman 1997).

The traditional (classical) interpretation of classification methods as density

estimators also fails to account for the strong empirical evidence that simple

methods (e.g., nearest neighbors and linear discriminant) often perform at par or

better than sophisticated nonlinear methods (Michie et al. 1994). This is in contrast

to regression problems, where nonlinear methods typically outperform simple

ones. Similar to regression, one can expect nonlinear methods for continuous func-

tion (density) estimation to outperform simpler ones if classical interpretation is

correct. Friedman (1997) gives an in-depth analysis of this contradiction and

concludes

‘‘Good probability estimates are not necessary for good classification; similarly, low

classification error does not imply that the corresponding class probabilities are being

estimated (even remotely) accurately.’’

The empirical evidence that simple methods often work well for classification

(but not for regression) can also be explained using SLT:

402 CLASSIFICATION

1. Simple classification methods (e.g., nearest neighbors) may not require

nonlinear optimization, so the empirical classification error is minimized

directly in the first step of the conceptual procedure.

2. Often simple methods provide the same empirical classification error in the

minimization step as more complex methods. In this case, there is no need to

use more complex (nonlinear) methods even when they provide smaller

values of the continuous empirical loss function (i.e., mean squared error).

Recall that the objective of the first step is to minimize the empirical

classification error, and the continuous loss function is used only to achieve

this goal.

3. Classification problems are inherently less sensitive (than regression) to

optimal model selection. This becomes clear from the comparison of general-

ization bounds for classification and regression given in Section 4.3. Namely,

nonoptimal model selection has a multiplicative effect on the prediction risk

for regression but only an additive effect for classification.

According to the SLT interpretation, the classification problem is conceptually

simpler than regression as is reflected in the form of generalization bounds in Sec-

tion 4.3. This suggests that constructive learning procedures should be first devel-

oped for classification (simpler problem) and then adapted to regression. Such an

approach is implemented for support vector machines (SVMs) described in the next

chapter. The SVM methodology can be contrasted to the classical approach, where

the procedures developed for more complex (regression) problems are used to solve

simpler (classification) problems.

SUMMARY 403

9
SUPPORT VECTOR MACHINES

9.1 Motivation for margin-based loss

9.2 Margin-based loss, robustness, and complexity control

9.3 Optimal separating hyperplane

9.4 High-dimensional mapping and inner product kernels

9.5 Support vector machine for classification

9.6 Support vector implementations

9.7 Support vector machine for regression

9.8 SVM model selection

9.9 SVM versus regularization approach

9.10 Single-class SVM and novelty detection

9.11 Summary and discussion

About 40% of us (Americans) will vote for a Democrat, even if the candidate is

Genghis Khan. About 40% will vote for a Republican, even if the candidate is Attila

the Hun. This means that the election is left in the hands of one-fifth of the voters.

Wall Street Journal, February 27, 2004

The support vector machine (SVM) is a universal constructive learning procedure

based on the statistical learning theory (Vapnik 1995). The term ‘‘universal’’ means

that the SVM can be used to learn a variety of representations, such as neural nets

(with the usual sigmoid activation), radial basis functions, splines, polynomial esti-

mators, and so on. This chapter describes how the SVM approach can be used for

standard predictive learning formulations. However, in a more general sense, the

SVM provides a new form of parameterization of functions, and hence it can be

applied for noninductive learning formulations (see Chapter 10), and outside pre-

dictive learning as well. For example, support vector parameterization can be used

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

404

for solving large systems of linear operator equations, computer tomography, sig-

nal/image compression, and the like. The SVM parameterization provides a mean-

ingful characterization of the function’s complexity (via the number of support

vectors) that is independent of the problem’s dimensionality. Hence, the SVM

approach compares very favorably with the complexity measures described in

Chapter 3.

For the benefit of the reader, we want to point out that to understand SVM meth-

odology one must have a good grasp of the statistical learning theory described in

Chapter 4 and the duality principle in optimization theory.

As a theoretical motivation for SVM, recall from Chapter 4 the VC generaliza-

tion bound (4.22) or (4.26) for learning with finite samples, under the classification

setting. This bound is reproduced below:

RðoÞ � RempðoÞ þ �ðRempðoÞ; h=n;� ln Z=nÞ: ð9:1Þ

Detailed analysis suggests that the second term (confidence interval �) depends

mainly on the VC dimension (or the ratio h=n), whereas the first term (empirical

risk) depends on parameters o. The SRM inductive principle is motivated by opti-

mally tuning the VC dimension of an estimator, in order to minimize the right-

hand side of (9.1), for a given training sample of size n. A natural strategy for mini-

mizing (9.1) described in Chapter 4 is to fix the VC dimension (i.e., the second

term �), and then minimize the first term (empirical risk). This strategy is effec-

tively implemented by various structures introduced in Section 4.4 (i.e., the dic-

tionary structure and feature selection). Many statistical and neural network

learning algorithms for classification and regression are based on this SRM strat-

egy, where each element of SRM structure is indexed by the number of basis func-

tions (in a dictionary representation) or by the number of selected features (in a

feature selection structure). These structures reflect the classical view that the

model complexity is related to the number of free parameters. This approach

may not be feasible for high-dimensional problems due to the curse of dimension-

ality. For example, with polynomial estimators the number of parameters (polyno-

mial coefficients) that require estimation grows exponentially with the problem

dimensionality. More generally, polynomial estimators can be viewed as the spe-

cial case of a mapping from the input (x) space to an intermediate feature (z) space.

The dimensionality of z-space determines the size of the optimization problem.

For example, with feedforward neural nets, the number of hidden units corre-

sponds to the dimensionality of z-space. Various heuristic approaches can be

used for selecting a small number of features in z-space, as in the methods of Chap-

ters 7 and 8. Keeping the dimensionality of the feature space small effectively con-

trols the model complexity.

Under VC theoretical framework, the VC dimension h is conceptually not

related to the number of parameters. So it may be possible, in principle, to design

structures where parameterization f ðx;oÞ has many parameters, but h is small (and

vice versa.) Such structures implement the SRM principle differently. That is, con-

sider the following strategy for minimizing the VC bound (9.1):

SUPPORT VECTOR MACHINES 405

� Partition a set of approximating functions f ðx;oÞ into several equivalence

classes F1;F2; . . . ;FN , where functions from each class yield the same

predictions (y-values) for all training samples. In other words, all functions

(models) from the same equivalence class separate the training samples

in the same way, and hence, have the same value of the empirical risk term

in (9.1).

� For each equivalence class, find a function minimizing the VC dimension h,

and thus effectively minimizing the second term � in (9.1).

An example of an equivalence class is a set of linear models, or hyperplanes, in

the input space, separating data samples with zero error (assuming that the training

data are linearly separable). In this case, all models (from this equivalence class)

have the same number of parameters, but they may have different VC dimension.

The SVM approach defines a particular structure on the set of equivalence

classes F1;F2; . . . ;FN . For SVM classification, this SRM structure is indexed by

a hyperparameter (called margin) that is not related to the dimensionality of the

feature space.

Hence, with SVM the dimensionality of z-space can be very large (or even infi-

nite) because the model complexity is controlled independently of dimensionality.

The motivation for using a high-dimensional feature space is that linear decision

boundaries constructed in the high-dimensional feature space correspond to

nonlinear decision boundaries in the input space. The SVM overcomes two

problems in its design: The conceptual problem is how to control the complexity

of the set of linear approximating functions in a high-dimensional space in order

to provide good generalization ability. This problem is solved by using adaptive

margin-based loss functions (described in Section 9.1). Such loss functions effec-

tively control the VC dimension (using the concept of margin). Technically,

maximization of margin in a high-dimensional z-space results in a constrained

quadratic optimization formulation of the learning problem. The computational

problem is how to perform numerical optimization (i.e., solve quadratic optimiza-

tion problem) in a high-dimensional space. This problem is solved by taking advan-

tage of the dual kernel representation of linear functions.

Thus, SVM combines four distinct concepts:

1. New implementation of the SRM inductive principle: SVM defines a

special structure on a set of equivalence classes. In this structure, each

element is indexed by the margin size (for classification problems), and more

generally, by a hyperparameter of an adaptive margin-based loss function; see

Section 9.1.

2. Mapping of inputs onto a high-dimensional space using a set of nonlinear basis

functions defined a priori (see Fig. 9.1). It is common in pattern recognition

applications to map the input vectors into a set of new variables (features),

which are selected according to a priori assumptions about the learning

problem. These features, rather than the original inputs, are then used by the

learning algorithm. This type of feature selection often has the additional

406 SUPPORT VECTOR MACHINES

goal of controlling complexity for approximation schemes, where complexity

is dependent on input dimensionality. Feature selection capitalizes on redun-

dancy in the data in order to reduce the problem’s complexity. This is in

contrast to the SVM approach that puts no restriction on the number of basis

functions (features) used to construct a high-dimensional mapping of the input

variables.

3. Linear functions with constraints on complexity are used to approximate or

discriminate the input samples in the high-dimensional space. The Support

vector machine uses linear estimators to perform approximation. Many other

learning approaches, such as neural networks, depend on nonlinear approx-

imations directly in the input space. Nonlinear estimators can potentially

provide a more compact representation of the approximation function;

however, they suffer from two serious drawbacks: lack of complexity

measures and lack of optimization approaches, which provide a globally

optimal solution. Accurate estimates for model complexity can be obtained

for linear estimators. Optimization approaches exist that provide the (global)

minimum empirical risk for linear functions. For these reasons, the SVM uses

linear estimation in the high-dimensional feature space.

4. Duality theory of optimization is used to make estimation of model para-

meters in a high-dimensional feature space computationally tractable. In

optimization theory, an optimization problem has a dual form if the cost and

constraint functions are strictly convex. Solving the dual problem is equiva-

lent to solving the original (or the primal) problem (Strang 1986). For the

SVM, a quadratic optimization problem must be solved to determine the

parameters of a linear basis function expansion (i.e., dictionary representa-

tion). For high-dimensional feature spaces, the large number of parameters

makes this problem intractable. However, in its dual form this problem is

practical to solve, as it scales in size with the number of training samples. The

linear approximating function corresponding to the solution of the dual is

given in the kernel representation rather than in the typical basis function

representation. The solution in the kernel representation is written as a

weighted sum of the support vectors. The support vectors are a subset of

the training data corresponding to the solution of the learning problem.

x g x


 


 z w⋅z ŷ

FIGURE 9.1 The SVM maps input data x into a high-dimensional feature space z using a

nonlinear function g. A linear approximation in the feature space (with coefficients w) is used

to predict the output.

SUPPORT VECTOR MACHINES 407

The fundamental concept of margin was initially developed in the early

1960s for the classification problem with separable data (Vapnik and Lerner

1963; Vapnik and Chervonenkis 1964). It took another 30 years until two addi-

tional improvements, the kernel representation and the ability to handle nonse-

parable data, were incorporated into the SVM method (Boser et al. 1992; Cortes

and Vapnik 1995). Since then, SVM methodology has been adapted to

solve other types of learning problems and successfully used for numerous

applications.

The SVM approach combines several main ideas (margin, kernel representation,

and duality). These concepts have been introduced a long time ago, albeit in a dif-

ferent context. For example, the idea of using kernels was used in the mid-1960s

(Aizerman et al. 1964). The kernel representation has also been introduced, under

standard regularization framework with squared loss, in the representer theorem

(Kimeldorf and Wahba 1971). In mathematical programming, linear optimization

formulation for classification similar to SVM has been proposed by Mangasarian

(1965). However, these prior developments lacked solid foundations provided by

statistical learning theory, and thus have not resulted in practical learning

algorithms.

Many textbook descriptions of SVM emphasize the role of kernels and the similar-

ity between SVM and regularization formulations (Schölkopf and Smola 2002; Hastie

et al. 2001). This chapter follows a different approach, emphasizing the role of margin

as the main factor contributing to SVM generalization performance. Hence, in Sec-

tions 9.1 and 9.2, we informally introduce margin-based loss for various learning pro-

blems, using philosophical arguments. Section 9.3 presents the SVM formulation for

classification problems. It is shown that the SVM formulation allows one to estimate

(and control) the VC dimension of linear decision boundaries (hyperplanes) indepen-

dent of the dimensionality of the sample space. In other words, Section 9.3 shows how

the SVM solves the conceptual problem. Section 9.4 describes the idea of high-dimen-

sional mapping and an equivalent kernel formulation for calculating the inner pro-

ducts. Section 9.5 describes the (soft-margin) SVM problem statement for

classification and some examples. Section 9.6 gives a summary of computational

implementations for SVM. Section 9.7 presents the SVM formulation for regression.

Practical issues related to selection (tuning) of SVM hyperparameters are discussed in

Section 9.8. Empirical comparisons between SVM and regularization methods are pre-

sented in Section 9.9. An extension of SVM methodology to unsupervised learning

setting, called single-class SVM, is described in Section 9.10. Finally, Section 9.11

provides a summary and discussion.

9.1 MOTIVATION FOR MARGIN-BASED LOSS

In this section, we introduce a new structure based on the concept of ‘‘margin,’’

originating from VC learning theory. Margin-based methods such as SVMs and ker-

nel methods have been successfully used in many real-life applications. Detailed

mathematical description of SVMs will be given in later sections. Here, we provide

408 SUPPORT VECTOR MACHINES

general motivation for margin-based structures using a particular interpretation of

Popper’s notion of ‘‘falsifiability’’ (Cherkassky and Ma 2006).

Recall that earlier (in Chapters 3 and 4) we made a connection between pre-

dictive learning (concerned with generalization) and the philosophy of science

(where the central problem is the demarcation between true and nonscientific

theories). In predictive learning, one can interpret ‘‘true’’ inductive theories

as predictive models with good generalization (for future data). Karl Popper for-

mulated his famous criterion for distinguishing between scientific (true) and

nonscientific theories (Popper 1968), according to which the necessary condi-

tion for true theory is the possibility of its falsification by certain observations

(facts, data samples) that cannot be explained by this theory. Quoting Popper

(2000),

It must be possible for an empirical theory to be refuted by experience . . . Every

‘good’ scientific theory is a prohibition; it forbids certain things to happen. The

more a theory forbids, the better it is.

Of course, general philosophical ideas can be interpreted (in the context of learn-

ing) in many different ways. Popper’s notion of ‘‘falsifiability’’ is qualitative and

rather vague. Earlier in Section 4.7, we used a quantitative interpretation of falsifia-

bility that could be related to the VC dimension. This section proposes a different

interpretation of Popper’s ideas, relating ‘‘falsifiability’’ to the empirical loss func-

tion. That is, consider the goal of inductive learning as estimation of a ‘‘good’’ pre-

dictive model (or ‘‘empirical theory’’) based on a finite number of observations or

training samples ðxi; yiÞ. That is, a model f ðx;oÞ is falsified by a data sample

ðxi; yiÞ if the empirical loss is ‘‘large’’ (nonzero). On the contrary, if a model

‘‘explains’’ the data well, then the corresponding loss is ‘‘small’’ (zero). In this

chapter, notation f ðx;oÞ denotes a real-valued model parameterization for different

types of learning problems. For example, for classification problems f ðx;oÞ
denotes parameterization of admissible discriminant functions, implementing a

classifier signðf ðx;oÞÞ.
An inductive model should, obviously, not only explain past observations (i.e.,

training data) but also be easily ‘‘falsified’’ by additional observations (new data).

In other words, a good model should have maximum ambiguity with respect to

future data (‘‘the more a theory forbids, the better it is’’). Under standard inductive

learning formulations, we have only the training data. During learning, the training

data may be used as a proxy for future (test) data, as in resampling techniques. So a

good predictive model should strive to achieve two (conflicting) goals:

1. Explain the training data, that is, minimize the empirical risk

2. Achieve maximum ambiguity with respect to other possible data, that is, the

model should be falsified by other data

A possible way to achieve both goals is to introduce a loss function such that a

(large) portion of the training data can be explained by a model perfectly well

MOTIVATION FOR MARGIN-BASED LOSS 409

(i.e., achieve zero empirical loss) and the rest of the data can only be explained with

some uncertainty (i.e., nonzero loss). Such an approach effectively partitions the

sample space into two regions. For classification problems, the region with

nonzero loss is referred to as margin. Moreover, such a loss function should have

an adjustable parameter that controls the partitioning (the size of margin, for clas-

sification problems) and effectively controls the tradeoff between the two conflicting

goals of learning. The idea of margin-based loss is introduced next for the binary

classification problem, where a model signðf ðx;oÞÞ is the decision boundary separ-

ating an input space into a positive class region, where f ðx;oÞ > 0, and a negative

class region, where f ðx;oÞ < 0. In this case, training samples that are correctly clas-

sified by the model and lie far away from the decision boundary f ðx;oÞ ¼ 0

are assigned zero loss. On the contrary, samples that are incorrectly classified

by the model and/or lie close to the decision boundary have nonzero (positive)

loss; see Fig. 9.2. Then, a good decision boundary achieves an optimal balance

between

� Minimizing the total empirical loss for samples that lie inside the margin

� Achieving maximum separation (margin) between training samples that are

correctly classified (or explained) by the model

Clearly, these two goals are contradictory, because a larger margin (or greater

falsifiability) implies larger empirical risk. So in order to obtain good generaliza-

tion, one chooses the appropriate margin size (or the optimal degree of falsifiability,

according to our interpretation of Popper’s ideas).

Next, we show several examples of margin-based formulations for specific learn-

ing problems. All examples assume linear parameterization of approximating func-

tions f ðx;oÞ ¼ ðw � xÞ þ b.

Classification problem: First, consider a case of linearly separable data where the

first goal of learning can be perfectly satisfied, that is, the linear classifier provides

separation with zero error. Then the best model is the one that has maximum

FIGURE 9.2 Margin-based loss for classification.

410 SUPPORT VECTOR MACHINES

ambiguity for other possible data. Using a band (the margin) to represent the region

where the output is ambiguous, divides the input space into two regions; see

Fig. 9.3(a). That is, new unlabeled data points falling on the ‘‘correct’’ side of

the margin border can always be correctly classified, whereas data points falling

on the wrong side of the margin border cannot be unambiguously classified. The

size (width) of the margin plays an important role in controlling the model com-

plexity. Even though there are many linear decision boundaries that separate

(explain) these training data perfectly well, such models differ in the degree of

separation (or margin) between the two classes. For example, Fig. 9.3 shows two

possible linear decision boundaries, for the same data set, with a different margin

size. Then according to our interpretation of Popper’s falsifiability, the better clas-

sification model should have the largest possible margin (i.e., maximum possibility

of falsification by the future data). It is also evident from Fig. 9.3 that models with

smaller margin have larger flexibility (higher VC dimension) than models with lar-

ger margin. Hence, the margin size can be used to introduce complexity ordering on

a set of equivalence classes in the SRM strategy for minimizing the VC bound (9.1),

as discussed earlier in this chapter.

In most cases, however, the data cannot be explained perfectly well by a given

set of approximating functions, that is, the empirical risk cannot be minimized to

zero. In this case, a good inductive model attempts to strike a balance between the

goal of minimizing the empirical risk (i.e., fitting the training data) and maximizing

the ambiguity for future data. For classification with nonseparable training data,

this is accomplished by allowing some training samples to fall inside the margin

and quantifying the empirical risk (for these samples) as deviation from the margin

borders, that is, the sum of slack variables xi corresponding to the deviation from

the margin borders (see Fig. 9.4). In this case, again, the degree of falsifiability can

be naturally measured as the size of the margin. Technically, this interpretation

leads to an adaptive loss function (parameterized by the size of margin �) that par-

titions the input space into two regions: one where the training data can be

FIGURE 9.3 Binary classification for separable data, where ‘‘*’’ denotes samples from

one class and ‘‘&’’ denotes samples from another class. The margin describes the region

where the data cannot be unambiguously explained (classified) by the model. (a) linear

model with margin size 2�1;(b) linear model with margin size 2�2.

MOTIVATION FOR MARGIN-BASED LOSS 411

explained by the model (zero loss) and another where the data are ‘‘falsified’’ by the

model:

L�ðy; f ðx;oÞÞ ¼ maxð�� yf ðx;oÞ; 0Þ: ð9:2Þ

This is known as the SVM loss function for classification problems. Then the

goal of learning is to minimize the total error (the sum of slack variables, for sam-

ples on the wrong side of the margin border) while maximizing the margin for

samples with zero error (on the ‘‘correct’’ side of the margin border); see Fig. 9.4.

Regression problem: In this case, an estimated model is a real-valued function, and

the loss measures the discrepancy between the predicted output (or model) f ðx;oÞ
and the actual output y. Similar to classification, we would like to define a loss func-

tion such that

� ‘‘Small’’ discrepancy yields zero empirical risk; that is, the model f ðx;oÞ
perfectly explains data samples with small values of jy� f ðx;oÞj

� ‘‘Large’’ discrepancy yields nonzero empirical risk; that is, the model f ðx;oÞ
is falsified by data samples with large values of jy� f ðx;oÞj

This leads to the following loss function called e-insensitive loss (Vapnik 1995):

Leðy; f ðx;oÞÞ ¼ maxðjy� f ðx;oÞj � e; 0Þ; ð9:3Þ

where the hyperparameter e controls the distinction between ‘‘small’’ and

‘‘large’’ discrepancies. This loss function, shown in Fig. 9.5, illustrates the

partitioning of the ðx; yÞ space for linear parameterization of f ðx;oÞ. Note that

1ξ

2ξ

1−=y

1+=y

FIGURE 9.4 Binary classification for nonseparable data involves two goals:

(a) minimizing the total error for data samples unexplained by the model, usually

quantified as a sum of slack variables xi corresponding to deviation from margin borders;

(b) maximizing the size of margin.

412 SUPPORT VECTOR MACHINES

such a loss function allows similar interpretation (in terms of Popper’s falsifiabil-

ity). That is, the model explains data samples well inside the e-insensitive zone

(see Fig. 9.5(b)). On the contrary, the model is ‘‘falsified’’ by samples outside the

e-insensitive zone. The tradeoff between these two conflicting goals is controlled

by the value of e. The proper choice of e is critical for generalization. That is,

small e correspond to a large margin (in classification), so that the model can

‘‘explain’’ just a small portion of available data. On the contrary, larger values

correspond to a small margin, allowing the model to ‘‘explain’’ most (or all) of

the data, so it cannot be easily falsified.

Margin-based loss functions can be extended to other inductive learning pro-

blems. For example, consider the problem of single-class learning or novelty detec-

tion (Tax and Duin 1999). This is an unsupervised learning problem: Given finite

data samples ðxi; i ¼ 1; . . . ; nÞ, the goal is to identify a region in the input space

where the data predominantly lie (or the unknown probability density is ‘‘large’’).

An extreme approach to this problem is to first estimate the real-valued density of

the data and then threshold it at some (user-defined) value. This approach is likely

to fail for sparse high-dimensional data. A better idea is to model the support of the

(unknown) data distribution directly from data, that is, to estimate a binary-valued

function f ðx;oÞ that is positive in a region where the density is high, and negative

elsewhere. This leads to a single-class learning formulation. Under this approach,

the model f ðx;oÞ ¼ 1 specifies the region in the input space where the data are

explained by the model. Sample points outside this region ‘‘falsify’’ the model’s

description of the data. A possible parameterization of f ðx;oÞ is a hypersphere

in the input space, as shown in Fig. 9.6. The hypersphere is defined by its radius r

and center a. So the goal of falsification can be stated as minimization of the size of

the region (radius r) where the data are explained by the model. The margin-based

loss function for this setting is

Lrðf ðx;oÞÞ ¼ maxðk x� a k �r; 0Þ: ð9:4Þ

(a) (b)

x

y

*

2x

1x

ε

–e e y – f(x,w)

ε

Loss

FIGURE 9.5 e-insensitive loss function. (a) e-insensitive loss for SVM regression;

(b) slack variable x for linear SVM regression formulation.

MOTIVATION FOR MARGIN-BASED LOSS 413

Here the ‘‘margin’’ (degree of falsifiability) is controlled by the model parameter,

radius r. So the optimal model implements the tradeoff between two conflicting

goals:

� The accuracy of data explanation, that is, the total error for training samples

calculated using (9.4)

� The degree of falsification, quantified by the size of the sphere or its radius r

The resulting model can be used for novelty detection or abnormality detection, for

deciding whether a new sample point is novel (abnormal) compared to an existing

data set. Such problems frequently arise in diagnostic applications and condition

monitoring.

It may be interesting to note that different types of learning problems discussed

in this section can be described using the same conceptual framework (via data

explanation versus falsification tradeoff) and that all margin-based loss functions

(9.2)–(9.4) have very similar form. So our interpretation of falsification can serve

as a general philosophical motivation for margin-based methods (such as SVM).

Later in Chapter 10, we describe margin-based methods for noninductive learning

formulations using the same philosophical motivation.

9.2 MARGIN-BASED LOSS, ROBUSTNESS,

AND COMPLEXITY CONTROL

In the previous section, we introduced a class of margin-based loss functions that

can be naturally interpreted using philosophical notion of falsifiability. Earlier in

this book, we discussed ‘‘standard’’ empirical loss functions, such as squared loss

FIGURE 9.6 Single-class learning using a hypersphere boundary. The boundary is

specified by the center a and radius r. An optimal model minimizes the volume of the sphere

and the total distance of the data points outside the sphere.

414 SUPPORT VECTOR MACHINES

(for regression problems) and binary 0/1 loss (for classification). We also argued (in

Section 2.3.4) in favor of using application-specific loss functions. Such a variety of

loss functions can be explained by noting that the empirical loss (used in practical

learning algorithms) is not always the same quantity used in the prediction risk.

For example, minimization of the binary loss is infeasible for algorithmic reasons,

and existing classification algorithms use other empirical loss functions. In practice,

the empirical loss usually reflects statistical considerations (assumptions), the nature

of the learning problem, computational considerations, and application requirements.

In this section, we elaborate on the differences between margin-based loss func-

tions and traditional loss functions, using the regression setting for the sake of dis-

cussion. The main distinction is that traditional loss functions have been introduced

in statistics for parametric estimation under large sample settings. Classical statis-

tical theory provides prescriptions for choosing statistically optimal loss functions

under certain assumptions about the noise distribution. For example, for regression

problems with Gaussian additive noise, the empirical risk minimization (ERM)

approach with squared loss provides an efficient (i.e., best unbiased) estimator of

the true target function. In general, for an additive noise generated according to

known symmetric density function pðxÞ one should use loss LðxÞ ¼ � lnðpðxÞÞ.
There are two problems with such an approach. First, the noise model is usually

unknown. To overcome this problem, statistical theory provides prescriptions for

robust loss functions. For example, when the only information about the noise is

that its density is a symmetric smooth function, an optimal loss function (Huber

1981) is the least-modulus loss Lðy; f ðx;oÞÞ ¼ jy� f ðx;oÞj. Second, statistical

notions of optimality (i.e., unbiasedness) apply under asymptotic settings. With

finite samples, these notions are no longer applicable. For example, even when

the noise model is known (i.e., Gaussian) but the number of samples is small, appli-

cation of squared loss for linear regression may be suboptimal.

The above discussion suggests two obvious requirements for empirical loss func-

tions Lðy; f ðx;oÞÞ under finite sample settings:

1. The loss function should be robust with respect to unknown noise model. This

requirement implies the use of robust loss functions such as the least-modulus

loss for regression. Incidentally, margin-based loss (9.3) with e ¼ 0 coincides

with Huber’s least-modulus loss.

2. The loss function should be robust with respect to inherent variability of finite

samples. This implies the need for model complexity control.

Margin-based loss functions (9.2)–(9.4) achieve both goals (robustness and com-

plexity control) for finite sample settings.

Next, we show an empirical comparison between the squared loss and e-insensitive

loss under finite sample settings. Consider a simple univariate linear regression pro-

blem where finite training data (six samples) are generated using the statistical model

y ¼ xþ x. The additive Gaussian noise x has standard deviation s ¼ 0:3 and the

input values are uniformly distributed, x 2 ½0; 1�. Figure 9.7 shows estimates obtained

MARGIN-BASED LOSS, ROBUSTNESS, AND COMPLEXITY CONTROL 415

using e-insensitive loss (9.3) and estimates obtained by ordinary least squares (OLS)

for five realizations of training data. These comparisons illustrate that margin-based

loss can yield more accurate and more robust function approximation than the OLS

estimators. Note that results shown in Fig. 9.7 correspond to a parametric estimation,

where the form of the target function is known (linear) and the noise model are

known (Gaussian). In this setting, even though the OLS method is known to be opti-

mal (for large samples), it is suboptimal with finite samples. Robustness of margin-

based loss functions can be explained by noting that least-modulus loss functions are

known to be insensitive with respect to ‘‘extreme’’ samples (with very large or very

small y-values). Robust methods attempt to avoid or limit the effect of a certain frac-

tion n of bad data points (called ‘‘outliers’’) on the estimated model. The connection

(a)

(b)

FIGURE 9.7 Comparison of regression estimates for linear regression using (a) squared

loss and (b) e-insensitive loss. The dotted line indicates true target function.

416 SUPPORT VECTOR MACHINES

between margin-based methods and robust estimators leads to the so-called n-SVM

formulation (Schölkopf and Smola 2002), briefly explained next.

Margin-based loss functions (9.2)–(9.4) partition the training data into two

groups: samples with zero loss and samples with nonzero loss. The latter includes

the so-called support vectors or samples that determine the estimated model. For a

given training sample, the value of the margin parameter can be equivalently con-

trolled by specifying the fraction nð0 < n < 1Þ of data samples that have nonzero

loss. This is known as n-SVM formulation (Schölkopf and Smola 2002). It turns out

to be quite useful for understanding the robustness of margin-based estimators. For

example, it can be shown that minimization of e-insensitive loss (9.3) yields an

SVM regression model that is not influenced by small movements of y-values of

training samples outside the e-insensitive zone. This suggests excellent robustness

of SVM with respect to outliers (samples with extreme y-values). The n-SVM for-

mulation can also be related to the trimmed mean estimators in robust statistics.

Such estimators discard a fraction n=2 of the largest and smallest ‘‘extreme’’ exam-

ples (i.e., samples above and below the e-zone), and estimate the model using the

remaining 1�n samples. In fact, n-SVM regression has been shown to implement

this very approach (Schölkopf and Smola 2002).

Implementation of complexity control via margin-based loss can be summarized

as follows. Margin-based loss functions are adaptive, and the parameter controlling

the margin directly affects the VC dimension (model complexity). All examples of

such loss functions presented so far assume a fixed parameterization of admissible

models, that is, linear parameterization for classification and regression problems in

Figs. 9.4 and 9.5. So in these examples, using the language of VC theory, the struc-

ture (complexity ordering) is defined via an adaptive loss function. This is in con-

trast to traditional methods, where the empirical loss function is fixed, and the

structure is usually defined via adaptive parameterization of approximating func-

tions f ðx;oÞ, that is, by the number of basis functions in dictionary methods, subset

selection, or penalization. Let us refer to these two approaches as margin-based and

adaptive parameterization methods. Both approaches originate from the same SRM

inductive principle, where one jointly minimizes the empirical risk and complexity

(VC dimension), in order to minimize the upper bound on risk (9.1). In margin-

based methods, the VC dimension is (implicitly) controlled via an adaptive empiri-

cal loss, whereas in the adaptive parameterization methods the VC dimension is

controlled by the selected parameterization of f ðx;oÞ.
The distinction between margin-based and adaptive parameterization methods

presented above leads to two obvious questions. First, under what conditions do

margin-based methods provide better (or worse) generalization than adaptive

parameterization methods, and second, is it possible to combine both approaches?

It is difficult to answer the first question, as relative performance of different

learning methods is very much data dependent. Empirical evidence suggests

that under sparse sample settings, margin-based methods tend to be more robust

than methods implementing ‘‘classical’’ structures. With regard to the second

question, both approaches can easily be combined into a single formulation.

Effectively, this is done under the nonlinear SVM formulation, where the model

MARGIN-BASED LOSS, ROBUSTNESS, AND COMPLEXITY CONTROL 417

complexity is controlled (simultaneously) via a flexible parameterization of

approximating functions f ðx;oÞ (via kernel selection) and an adaptive loss func-

tion (margin parameter tuning). Such nonlinear margin-based models can also be

motivated by Popper’s philosophy, as using more flexible parameterizations can

potentially increase falsifiability, by using ‘‘curved margin’’ boundaries. See clas-

sification example in Fig. 9.8.

9.3 OPTIMAL SEPARATING HYPERPLANE

A separating hyperplane is a linear function that is capable of separating (in the

classification problem) the training data without error (see Fig. 9.3). Suppose that

the training data consisting of n samples ðx1; y1Þ; . . . ; ðxn; ynÞ, x 2 <d,

y 2 fþ1;�1g, can be separated by the hyperplane decision function

DðxÞ ¼ ðw � xÞ þ b; ð9:5Þ

with appropriate coefficients w and b. The assumption about linearly separable data

will later be relaxed; however, it allows a clear explanation of the SVM approach.

At this point, we build the concept of margin into the decision function. The mini-

mal distance from the separating hyperplane to the closest data point is denoted

by � (see Fig. 9.3). A separating hyperplane with margin 2� will satisfy the

following constraints:

ðw � xiÞ þ b 	 þ� if yi ¼ þ1;
ðw � xiÞ þ b � �� if yi ¼ �1;

i ¼ 1; . . . ; n;

FIGURE 9.8 Example of nonlinear SVM decision boundary (curved margin) in the feature

space. Dotted curves indicate margin borders.

418 SUPPORT VECTOR MACHINES

or given in terms of one compact equation,

yi½ðw � xiÞ þ b� 	 �; i ¼ 1; . . . ; n: ð9:6Þ

For a given training data set, all possible �-separating hyperplanes can be repre-

sented in the form (9.6). This is an important observation, as it allows separating

hyperplanes to be described directly in terms of the training data.

A �-separating hyperplane is called optimal if the margin is the maximum size

allowed by the data (see Fig. 9.3(a) versus 9.3(b)). As discussed in Sections 9.1 and

9.2, maximizing the margin maximizes the potential for falsification and therefore

maximizes the generalization ability of the decision boundary. The SVM frame-

work presented below shows how to formally describe an optimal hyperplane

and how to determine it from the training data. The distance between the separating

hyperplane ðw � xÞ þ b ¼ 0 and a sample x0 is jðw � x0Þ þ bj=k w k. For a margin

2�, all training patterns are at least � away from the decision boundary and so

obey the inequality

yi½ðw � xiÞ þ b�
k w k 	 �; i ¼ 1; . . . ; n; ð9:7Þ

where yi 2 f�1; 1g.
This inequality implies that maximizing the margin � is equivalent to minimiz-

ing k w k. Rescaling parameters w and b by fixing the scale � k w k¼ 1 leads to

the canonical form representation for the separating hyperplane:

yi½ðw � xiÞ þ b� 	 1; i ¼ 1; . . . ; n: ð9:8aÞ

An optimal separating hyperplane is one that satisfies condition (9.8a) and addition-

ally minimizes

ZðwÞ ¼k w k2 ð9:8bÞ

with respect to both w and b. The data points that lie at the margin borders, or

equivalently, the points for which (9.8a) is an equality are called the support vectors

(Fig. 9.9). As the support vectors are data points closest to the decision surface,

conceptually they are the samples that are most difficult to classify and therefore

define the location of the decision surface.

The generalization ability of the optimal separating hyperplane can be directly

related to the number of support vectors. According to Vapnik (1995), the number

of support vectors provides a bound on the expectation of the error rate for a test

sample

En½error rate� �
En½number of support vectors�

n
: ð9:9Þ

OPTIMAL SEPARATING HYPERPLANE 419

The operator En denotes expectation over all training sets of size n. This bound is

independent of the dimensionality of the space. Assuming that an optimal hyper-

plane can be constructed with a small number of support vectors (relative to the

training set size), it will have good generalization ability even in high-dimensional

space. The notion of support vectors can also be related to the minimum description

length (MDL) inductive principle: In order to define the optimal margin hyperplane,

one needs to specify only the support vectors and their class labels. Then, according

to the bound (2.74) presented in Chapter 2, the test error is bounded by the com-

pression coefficient, which is the ratio of the number of bits needed to encode sup-

port vectors to the number of bits to encode all training samples. Vapnik (1995)

shows that the MDL bound is worse (more loose) than the SVM bound (9.9).

As the hyperplane will be employed to develop the SVM, its VC dimension must

be determined in order to build a nested structure of approximating functions. In

Section 4.2.2, Example 4.1, we saw that the VC dimension for a set of hyperplanes

is d þ 1. However, the hyperplanes with a given maximum margin form a subset of

this set and may have a smaller VC dimension. Vapnik (1995) provides a bound for

the VC dimension of this subset.

For the�-separating hyperplane functions (9.6), the VC dimension is bounded by

h � min
r2

�2
; d

� �

þ 1; ð9:10Þ

FIGURE 9.9 The decision boundary of the optimal hyperplane in canonical form is

defined by points x for which DðxÞ ¼ 0. The distance between a hyperplane and any sample

x0 is jDðx0Þj=k w k. The distance between the support vector (which defines the margin) and

the optimal hyperplane is 1=k w k.

420 SUPPORT VECTOR MACHINES

where r is the radius of the smallest sphere that contains the training input vectors

ðx1; . . . ; xnÞ.
The radius r provides a scale (in terms of the training data) for �. Notice that it

is possible to directly control the complexity of the hyperplane (i.e., the VC dimen-

sion) independent of the dimensionality of the sample space. The separating hyper-

plane with minimum complexity (and therefore maximal generalization ability) has

a maximal margin. Finding an optimal hyperplane for the separable case is a quad-

ratic optimization problem with linear constraints, as formally stated next.

Determine w and b that minimize the functional

ZðwÞ ¼ 1
2
k w k2; ð9:11aÞ

subject to the constraints

yi½ðw � xiÞ þ b� 	 1; i ¼ 1; . . . ; n; ð9:11bÞ

given the training data ðxi; yiÞ, i ¼ 1; . . . ; n, x 2 <d. The solution to this problem

consists of d þ 1 parameters. For data of moderate dimension d, this problem can

be solved using quadratic programming (QP). For very high-dimensional spaces,

it is not practical to solve the problem in the present form. However, this pro-

blem can be translated into a dual form that is solvable. Optimization theory

states that an optimization problem has a dual form if the cost and constraint

functions are strictly convex. In this case, solving the dual problem is equivalent

to solving the original. The optimization problem (9.11) satisfies these criteria

and therefore has a dual. In this case, the Kuhn–Tucker theorem is used to trans-

late a problem into its dual (Strang 1986). This dual problem has a geometrical

interpretation as well (see Fig. 9.10). First one determines the convex hull of

each class. The convex hull of a set of points is defined as the smallest convex

FIGURE 9.10 In the dual problem, the optimal hyperplane is the one bisecting the shortest

connection between the convex hulls of the two classes.

OPTIMAL SEPARATING HYPERPLANE 421

geometric set containing the points. Then the optimal hyperplane is the one that

bisects the shortest distance between the two convex hulls. Solving this dual pro-

blem is equivalent to finding the maximum margin between two supporting

planes (Fig. 9.3(a)). Only a small number of training samples, called support

vectors, determine the solution to both the primal and dual forms of the problem.

In the primal problem, the data points that are on the edge of the margin and

therefore define the margin are called the support vectors. In the dual problem,

these same support vectors determine the closest points in each of the convex

hulls. Also note that vector w defines the normal direction to the separating

hyperplane, as shown in Fig. 9.10.

For the optimal hyperplane problem, it turns out that the size of dual optimiza-

tion problem scales with the number of samples n and not the dimensionality d.

Therefore, standard quadratic optimization techniques can be used to obtain solu-

tions for problems with very high dimensions (e.g., million or 10 million) and

moderate sample sizes (around 10,000 samples are solvable with currently avail-

able software). There are two steps we must take in order to translate (9.11) into its

dual.

In the first step, we construct the unconstrained optimization problem using

Lagrange multipliers

Lðw; b; aÞ ¼ 1

2
ðw � wÞ �

X

n

i¼1
aifyi½ðw � xiÞ þ b� � 1g; ð9:12Þ

where ai are Lagrange multipliers. The saddle point of this functional provides the

solution for the optimization problem. The functional should be minimized with

respect to w and b and maximized with respect to ai 	 0.

The second step is to use the Kuhn–Tucker conditions to express the parameters

w and b in (9.12) in terms of only the parameters ai. Then (9.12) will become the dual

problem that requires only maximization with respect to the Lagrange multipliers ai.

The details of this second step are as follows. According to the Kuhn–Tucker theo-

rem, the solutions w�, b�, and a� of (9.12) should satisfy the following conditions:

@Lðw�; b�; a�Þ
@b

¼ 0; ð9:13aÞ

@Lðw�; b�; a�Þ
@w

¼ 0: ð9:13bÞ

Solving for the partial derivatives gives the following properties of optimal hyper-

planes:

1. The coefficients a�i ; i ¼ 1; . . . ; n, should satisfy the constraints

X

n

i¼1
a�i yi ¼ 0; a�i 	 0; i ¼ 1; . . . ; n: ð9:14Þ

422 SUPPORT VECTOR MACHINES

2. The vector w� (and therefore the optimal hyperplane) is a linear combination

of the vectors in the training set

w� ¼
X

n

i¼1
a�i yixi; a�i 	 0; i ¼ 1; . . . ; n: ð9:15Þ

In addition, the Kuhn–Tucker theorem states that any parameter a�i is nonzero only

if the corresponding data sample ðxi; yiÞ satisfies the constraint (9.11b) with equal-

ity. This is described by the condition

a�i ½yiðw� � xi þ b�Þ � 1� ¼ 0; i ¼ 1; . . . ; n: ð9:16Þ

The data samples for which constraints (9.11b) are met with equality (or equiva-

lently a�i is nonzero) are the support vectors. In order to construct the dual problem,

we use (9.14) and (9.15) to replace the parameters w and b in the Lagrangian (9.12)

and in the decision function (9.5). To make the effect of this substitution in the

Lagrangian clearer, let us first rewrite (9.12) as

Lðw; b; aÞ ¼ 1

2
ðw � wÞ �

X

n

i¼1
aiyixi � w� b

X

n

i¼1
aiyi þ

X

n

i¼1
ai:

Under condition (9.14), the third term in the Lagrangian becomes zero. After sub-

stituting expression (9.15) into the Lagrangian, it becomes

LðaÞ ¼ � 1

2

X

n

i;j¼1
aiajyiyjðxi � xjÞ þ

X

n

i¼1
ai: ð9:17Þ

Expression (9.17) is the functional of the dual optimization problem. It must be

maximized with respect to the parameters a1; . . . ; an. Representation of the hyper-

plane decision function (9.5) in terms of a�1; . . . ; a
�
n and b� is achieved by first sub-

stituting expression (9.15) into (9.5). This leads to a hyperplane in the form

DðxÞ ¼
X

n

i¼1
a�i yiðx � xiÞ þ b�: ð9:18Þ

Next the parameter b� is computed by taking advantage of the conditions on support

vectors. Given any one of the support vectors ðxs; ysÞ, this support vector satisfies

ys½ðw� � xsÞ þ b�� ¼ 1: ð9:19Þ

OPTIMAL SEPARATING HYPERPLANE 423

Substituting (9.15) and solving for b� gives

b� ¼ ys �
X

n

i¼1
a�i yiðxi � xsÞ: ð9:20Þ

The construction of the dual problem using the Lagrangian formulation and the

Kuhn–Tucker conditions is now complete. Following is a summary of this dual

optimization problem: Find parameters ai; i ¼ 1; . . . ; n, maximizing the functional

LðaÞ ¼
X

n

i¼1
ai �

1

2

X

n

i;j¼1
aiajyiyjðxi � xjÞ; ð9:21aÞ

subject to constraints

X

n

i¼1
yiai ¼ 0;

ai 	 0; i ¼ 1; . . . ; n;

ð9:21bÞ

given the training data ðxi; yiÞ, i ¼ 1; . . . ; n. The optimal hyperplane is then

given by the function (9.18), where a�i ; i ¼ 1; . . . ; n, is the solution of the dual

problem and b� is given by (9.20). Note that optimization of (9.21) and evaluation

of (9.18) require only calculation of the inner products ðx � x0Þ between input

data vectors. This fact will be used later for calculating optimal hyperplanes in a

high-dimensional feature space. The data samples for which a�i are nonzero

are the support vectors. For solutions with real-life data, usually only a small

percentage of the training data turns out to be support vectors. In practice, this

optimization problem can be solved using standard quadratic programming

methods.

The optimal separating hyperplane formulation makes a strong assumption that

the data can be explained perfectly well by a set of admissible models, that is, the

training data are linearly separable. In most cases, however, the empirical risk

cannot be minimized to zero. In this case, a good inductive model attempts to strike

a balance between the goal of minimization of empirical risk (i.e., fitting the train-

ing data) and maximizing the margin (or model’s falsifiability). In the case of clas-

sification with nonseparable training data, this is accomplished by allowing some

training samples to fall inside the margin (see Fig 9.11) and quantifying the empiri-

cal risk (for these samples) using the margin-based loss (9.2):

Rempðo;ZnÞ ¼
1

n

X

n

i¼1
L�ðyi; f ðxi;oÞÞ; ð9:22Þ

where the margin-based loss (9.2) is given by L�ðy; f ðx;oÞÞ¼maxð1� yf ðx;oÞ;0Þ
for a canonical hyperplane (9.8). The margin-based loss indicates the deviation

from the margin borders, which will be represented as slack variables

424 SUPPORT VECTOR MACHINES

xi¼maxð1� yif ðxi;oÞ;0Þ, i¼ 1; . . . ;n. Like all other practical classification methods,

SVM attempts to approximate the misclassification error using a loss function amen-

able to numerical optimization. For this reason, the sum of deviations of the nonsepar-

able points is minimized rather than the number of nonseparable points. The problem

for finding the soft-margin hyperplane is a quadratic optimization problem. It is that of

finding w and b that minimize the functional

C

n

X

n

i¼1
xi þ

1

2
k w k2; ð9:23aÞ

subject to the constraints

yi½ðw � xiÞ þ b� 	 1� xi; i ¼ 1; . . . ; n; ð9:23bÞ

and given sufficiently large (fixed) C. In this form, the parameter C controls the

tradeoff between complexity and proportion of nonseparable samples and must

be selected by the user. A given C-value implicitly specifies the size of margin

� via formulation (9.23), so the optimal soft-margin hyperplane w� that minimizes

(9.23) is the �-margin hyperplane with � ¼ 1=k w� k.

FIGURE 9.11 In the nonseparable case, slack variables are defined that correspond to the

deviation from the margin borders. The three data points x1; x2, and x3 are each

nonseparable, as they are within the margin. In addition, data points x2 and x3 are

misclassified, as they are on the wrong side of the decision boundary. Data point x1 illustrates

a case that is nonseparable, but is classified correctly.

OPTIMAL SEPARATING HYPERPLANE 425

This optimization problem must also be translated into its dual form if it is to be

solved for high-dimensional spaces. The procedure is similar to that used for the

optimal separating hyperplane, so it is not repeated here. The dual of the quadratic

optimization problem (9.23) can be formulated as follows (Vapnik 1995):

Find the parameters ai; i ¼ 1; . . . ; n, that maximize the functional

LðaÞ ¼
X

n

i¼1
ai �

1

2

X

n

i;j¼1
aiajyiyjðxi � xjÞ; ð9:24aÞ

subject to constraints

X

n

i¼1
yiai ¼ 0;

0 � ai � C=n; i ¼ 1; . . . ; n;

ð9:24bÞ

given the training data ðxi; yiÞ, i ¼ 1; . . . ; n, and regularization parameter C. The

hyperplane decision function is the same as for the separable case:

DðxÞ ¼
X

n

i¼1
a�i yiðx � xiÞ þ b�; ð9:25Þ

where the coefficients a�i ; i ¼ 1; . . . ; n, are the solution of the dual problem and b�

is given by (9.20). Note that data samples for which a�i are nonzero are the support

vectors and that the problem is expressed only in terms of inner product ðx � x0Þ
between the input data vectors. Also, this optimization problem differs from the

optimization problem for the separable case (9.21) only with the inclusion of a

maximum limit C=n in constraint (9.24b).

9.4 HIGH-DIMENSIONAL MAPPING AND INNER

PRODUCT KERNELS

In the previous section, we showed that optimal hyperplanes are good approxi-

mating functions because their complexity can be carefully controlled indepen-

dently of dimensionality. We also showed how to pose the optimization

problem of finding optimal hyperplanes in a manner that allows practical solution

even for high-dimensional input spaces. However, up to this point we have con-

sidered only linear functions (hyperplanes) in the x-space. In this section, we

describe how to efficiently construct high-dimensional sets of nonlinear basis

functions and then determine optimal hyperplanes in this space. We will call

this high-dimensional space the feature space in order to distinguish it from the

input space (x-space). Optimal hyperplanes in the feature space will then result

426 SUPPORT VECTOR MACHINES

in nonlinear decision boundaries in the input space. Notice that the optimization

problems (9.21) and (9.24) require the calculation of the inner product between

vectors in the x-space and that this is the only operation requiring the x-values of

the training data. If a large set of basis functions is used (i.e., gjðxÞ; j ¼ 1; . . . ;m),
then solving the optimization problems would require determining inner products

in the feature space defined by the basis functions. In this section, we first for-

mally define the set of basis functions. Then we describe the procedure used to

compute the inner product of the basis functions. We will see that computation

of the inner product corresponds to evaluating an inner product kernel. Finally,

we describe the inner product kernels for a number of common types of basis

functions.

Let us denote gjðxÞ; j ¼ 1; . . . ;m, as a set of nonlinear transformation func-

tions defined a priori. These functions map the vector x into an m-dimensional

feature space. Hyperplanes can then be created in this feature space rather than

in the input space. For example, the functions gjðxÞ; j ¼ 1; . . . ;m, could corre-

spond to polynomial terms of the components of x up to a certain order (including

interaction terms). Linear decision boundaries in the feature space would then

map to polynomial decision boundaries in the input space. Let us consider the

concrete example of a two-dimensional input vector x ¼ ðx1; x2Þ mapped using

third-order polynomials. In this case, the set of transformation functions, or fea-

tures, would be

g1ðx1; x2Þ ¼ 1;

g4ðx1; x2Þ ¼ x21;

g7ðx1; x2Þ ¼ x32;

g10ðx1; x2Þ ¼ x1x
2
2;

g13ðx1; x2Þ ¼ x31x
2
2;

g16ðx1; x2Þ ¼ x31x
3
2:

g2ðx1; x2Þ ¼ x1;

g5ðx1; x2Þ ¼ x22;

g8ðx1; x2Þ ¼ x1x2;

g11ðx1; x2Þ ¼ x31x2;

g14ðx1; x2Þ ¼ x21x
3
2;

g3ðx1; x2Þ ¼ x2;

g6ðx1; x2Þ ¼ x31;

g9ðx1; x2Þ ¼ x21x2;

g12ðx1; x2Þ ¼ x1x
3
2;

g15ðx1; x2Þ ¼ x21x
2
2;

Here, a two-dimensional input is transformed into a 16-dimensional feature space.

An optimal hyperplane can then be found in the feature space, leading to a third-

order polynomial decision boundary in the input space. From this example, it

becomes apparent that even for small problems (tens of input variables) the dimen-

sionality of the feature space can become very large. Using the nonlinear transfor-

mation functions gjðxÞ, j ¼ 1; . . . ;m, to create the features, the decision function

(9.5) becomes

DðxÞ ¼
X

m

j¼1
wjgjðxÞ þ b; ð9:26Þ

HIGH-DIMENSIONAL MAPPING AND INNER PRODUCT KERNELS 427

where the number of terms in the summation depends on the dimensionality of the

feature space. In the dual form, this decision function is

DðxÞ ¼
X

n

i¼1
aiyiHðxi; xÞ þ b: ð9:27Þ

Notice that this representation is same as the one of (9.25) except that the kernel H

takes the place of the inner product in (9.25). The inner product kernel H is a repre-

sentation of the basis functions gjðxÞ, j ¼ 1; . . . ;m. It differs from the equivalent ker-

nel representation of Chapter 7, as it does not incorporate the parameters estimated

from the training data. The equivalent kernel representation is determined after the

model is estimated from data, whereas the inner product kernel is given a priori and

used to form a set of approximating functions. The parameters ai; i ¼ 1; . . . ; n, in
(9.27) still need to be estimated using an inductive principle (SRM). For a given

set of basis functions gjðxÞ, the inner product kernel H is determined by the sum

Hðx; x0Þ ¼
X

m

j¼1
gjðxÞgjðx0Þ; ð9:28Þ

where m may be infinite.

Notice that in the form (9.28), the evaluation of the inner products between the

feature vectors in a high-dimensional feature space is done indirectly via the eva-

luation of the kernel H between support vectors and vectors in the input space. This

solves the technical problem of evaluating inner products in a high-dimensional fea-

ture space. The selection of the type of kernel function corresponds to the selection

of the class of functions used for feature construction. The general expression for an

inner product in Hilbert space is

ðz � z0Þ ¼ Hðx; x0Þ; ð9:29Þ

where the vectors z and z0 are the images in the m-dimensional feature space and

vectors x and x0 are in the input space (i.e., z ¼ fg1ðxÞ; . . . ; gmðxÞg). According to

Hilbert–Schmidt theory, the general form of Hðx; x0Þ is a symmetric function satis-

fying Mercer’s conditions

ð ð

Hðx; x0ÞjðxÞjðx0Þdxdx0 > 0; for allj 6¼ 0;

ð

j2ðxÞdx <1: ð9:30Þ

Therefore, any symmetric function Hðx; x0Þ that satisfies (9.30) corresponds to an

inner product in some input space.

The expansion of the inner product (9.28) and (9.29) in the dual representation

allows the construction of decision functions that are nonlinear in the input space. It

also makes computationally possible the creation of very high-dimensional feature

spaces, as they do not require direct manipulation. Common classes of basis

428 SUPPORT VECTOR MACHINES

functions used for learning machines correspond to different choices of kernel func-

tions for computing the inner product. Below are several common classes of multi-

variate approximating functions and their inner product kernels:

Polynomials of degree q have inner product kernel

Hðx; x0Þ ¼ ½ðx � x0Þ þ 1�q: ð9:31Þ

Radial basis functions of the form

gðxÞ ¼ sign
X

n

i¼1
aiexp

jx� xij2
s2

() !

; ð9:32Þ

where s defines the width, have the inner product kernel

Hðx; x0Þ ¼ exp � jx� x0j2
s2

()

: ð9:33Þ

Note that the number of basis functions, the center parameters that correspond to

the support vectors, and the weights in the output layer are all automatically deter-

mined via the optimal hyperplane. All basis functions have the same width para-

meter that is specified a priori.

Neural networks of the form

gðxÞ ¼ sign
X

n

i¼1
aitanhfvðx � xiÞ þ ag þ b

 !

ð9:34Þ

have an inner product kernel

Hðx; x0Þ ¼ tanhðvðx � x0Þ þ aÞ ð9:35Þ

for parameter values v and a selected so that the kernel satisfies Mercer’s conditions

(one possibility is v ¼ 2 and a ¼ 1). Note that the number of hidden neurons that

correspond to the support vectors, the weights in the hidden layer, and the weights

in the output layer are all determined automatically.

Splines of order m with b nodes of the form (in one dimension)

gðxÞ ¼
X

m

j¼0
vjx

j þ
X

b

k¼1
wkðx� tkÞmþ ð9:36Þ

have an inner product kernel in one dimension (Vapnik et al. 1996)

Hðx; x0Þ ¼
X

m

j¼0
ðxx0Þj þ

X

b

k¼1
ðx� tkÞmþ ðx0 � tkÞmþ: ð9:37Þ

HIGH-DIMENSIONAL MAPPING AND INNER PRODUCT KERNELS 429

For linear splines m ¼ 1 with an infinite number of nodes, the kernel is

Hðx;x0Þ ¼ 1þ xx0þ xx0minðx;x0Þ� ðxþ x0Þ
2
ðminðx;x0ÞÞ2þðminðx;x0ÞÞ3

3
: ð9:38Þ

The generating kernel for d-dimensional splines is the product of d one-dimensional

splines.

Fourier expansion

gðxÞ ¼ v0 þ
X

q

j¼1
ðvjcosðjxÞ þ wjsinðjxÞÞ ð9:39Þ

has a kernel

Hðx; x0Þ ¼ sinðqþ 1=2Þðx� x0Þ
sin x�x0

2

	
 : ð9:40Þ

9.5 SUPPORT VECTOR MACHINE FOR CLASSIFICATION

The SVM for classification is constructed by applying the concepts of the previous

two sections. The inner product kernel is used to define a high-dimensional map-

ping, and an optimal hyperplane is found in this space. This corresponds to repla-

cing the inner products in the optimization problems of Section 9.3 with the inner

product kernels given in Section 9.4. For classification of nonseparable data, the

decision function is given by

DðxÞ ¼
X

n

i¼1
a�i yiHðxi; xÞ þ b: ð9:41Þ

The parameters a�i , i ¼ 1; . . . ; n, are the solution for the following quadratic opti-

mization problem:

Maximize the functional

LðaÞ ¼
X

n

i¼1
ai �

1

2

X

n

i;j¼1
aiajyiyjHðxi; xjÞ; ð9:42aÞ

subject to constraints

X

n

i¼1
yiai ¼ 0;

0 � ai � C=n; i ¼ 1; . . . ; n; ð9:42bÞ

430 SUPPORT VECTOR MACHINES

given the training data ðxi; yiÞ, i ¼ 1; . . . ; n, an inner product kernel H, and regular-

ization parameter C.

The parameter b is given by

b� ¼ ys �
X

n

i¼1
a�i yiHðxi � xsÞ; ð9:43Þ

where ðxs; ysÞ is one of the support vectors.

The basic SVM formulation can be adapted for multiple-class problems, situa-

tions where the distribution of future data is known to be different from the training

data (called unbalanced), and problems with unequal misclassification costs. These

situations are common in many real-life classification problems.

� Multiple classes: When applying SVM for multiple-class problems, a common

data transformation approach is used to decompose the problem into a number

of binary classification subproblems. For a multiclass problem with J classes, J

separate binary classification problems are constructed, where each binary

problem maps training samples onto two classes: samples from class j and

samples not from class jðj ¼ 1; 2; . . . ; JÞ. During prediction (operation) stage,

classification is performed according to miximal output (see Fig 8.7b).

� Unbalanced distributions and unequal costs: These can be handled by

modifying the SVM cost functional to take into account the unbalanced

distributions and costs in a manner similar to that introduced earlier for

classification (8.67). Following Lin et al. (2002), we introduce two different

C-parameters (one for each class) to account for different prior probabilities

and misclassification costs, and (9.23a) becomes

Cþ
X

i2þclass
xi þ C�

X

j2�class
xj þ

1

2
k w k2; ð9:44Þ

where Cþ and C� can be computed using the information about misclassifi-

cation costs and prior class probabilities as follows:

Cþ ¼ Cost ðfalse negÞpþp�S ;

C� ¼ Costðfalse posÞp�pþS ;
ð9:45Þ

where pþ and p� are the prior class probabilities for future data, and pþS and p�S
are the prior class probabilities for training data. Note that the dual functional

(9.24a) is not changed because it does not depend on C. The only modification

required is to the constraint (9.24b), so that it incorporates both Cþ and C�:

0 � ai � Cþ; i 2 þclass;

0 � aj � C�; j 2 �class: ð9:46Þ

SUPPORT VECTOR MACHINE FOR CLASSIFICATION 431

Example 9.1: SVM for the exclusive-or (XOR) problem

This example demonstrates the mechanics of the SVM calculations for the linearly

separable binary classification problem. The XOR problem is as follows: Find an

optimal separating hyperplane that classifies the following data set (Fig. 9.12) with-

out error:

It is not possible to solve this problem with a linear decision boundary. However, a

polynomial decision boundary of order 2 can separate these data. The inner product

kernel for polynomials of order 2 is

Hðx; x0Þ ¼ ½ðx � x0Þ þ 1�2: ð9:47Þ

This expression corresponds to the set of basis functions z ¼ ð1;
ffiffiffi

2
p

x1;
ffiffiffi

2
p

x2;
ffiffiffi

2
p

x1x2; x
2
1; x

2
2Þ, where x1 and x2 correspond to the two input space coordinates.

The vector z is a point in a five-dimensional feature space. To determine the deci-

sion boundary in this space, we must solve the optimization problem of (9.42),

where C ¼ 1:

FIGURE 9.12 The exclusive or data set. This problem is not linearly separable in the input

space.

Index i x y

1 (1,1) 1

2 (1,�1) �1

3 (�1,�1) 1

4 (�1,1) �1

432 SUPPORT VECTOR MACHINES

Maximize the functional

LðaÞ ¼ a1 þ a2 þ a3 þ a4 �
1

2

X

4

i;j¼1
aiajyiyjhij;

subject to constraints

X

4

i¼1
yiai ¼ a1 � a2 þ a3 � a4 ¼ 0;

0 � a1; 0 � a2; 0 � a3; 0 � a4:

The inner product kernel is represented as a 4� 4 matrix H with elements hij, com-

puted using (9.47) and the data

H ¼

9 1 1 1

1 9 1 1

1 1 9 1

1 1 1 9

2

6

6

6

6

4

3

7

7

7

7

5

:

The solution to this optimization problem is a�1 ¼ a�2 ¼ a�3 ¼ a�4 ¼ 0:125, indicating
that all four data points are support vectors. The functional L reaches a maximum of

0.25 at the solution. The decision function in the inner product representation is

DðxÞ ¼
X

n

i¼1
a�i yiHðxi; xÞ ¼ ð0:125Þ

X

4

i¼1
yi½ðxi � xÞ þ 1�2: ð9:48Þ

This decision function separates the data with a maximum margin (Fig. 9.13). The

margin can be calculated based on the maximum of L and (9.7):

2Lða�Þ ¼k w k2¼ 0:5;

� ¼ 1

k w k ¼ 1
ffiffiffi

2
p

:

For this simple problem with a low-dimensional feature space, it is possible to write

the decision function in terms of the polynomial basis:

DðxÞ ¼
X

m

i¼1
w�i giðxÞ ¼ w�1 þ w�2

ffiffiffi

2
p

x1 þ w�3
ffiffiffi

2
p

x2 þ w�4
ffiffiffi

2
p

x1x2 þ w�5x
2
1 þ w�6x

2
2:

SUPPORT VECTOR MACHINE FOR CLASSIFICATION 433

Equation (9.15) is used to solve for the parameters w�1;w
�
2;w

�
3;w

�
4;w

�
5, and w�6 in

terms of the a�i :

w� ¼
X

4

i¼1
a�i yixi ¼ ½ 0 0 0 1=2 0 0 �;

resulting in the decision function

Dðx1; x2Þ ¼ x1x2:

FIGURE 9.13 Decision function determined by the SVM with a feature space of order 2

polynomials. (a) In the two-dimensional input space, the decision function is nonlinear. (b) In

the six-dimensional feature space, the decision function is linear with maximum margin.

434 SUPPORT VECTOR MACHINES

Looking at the data, we see that this decision function is the correct one, as shown

in Table 9.1.

Example 9.2: SVM for a mixture of Gaussians

Here, we illustrate the results of SVM applied to the Gaussian mixture data of

Example 8.1. The training set has 250 samples. A test set of 1000 samples is

used to estimate the prediction risk. Figure 9.14 shows the best decision boundary

obtained by the SVM model using a linear spline kernel with C ¼ 20; 000. The test
error for this boundary is 8.8 percent.

Example 9.3: Application of SVM for character recognition

The SVM for classification has been applied (by a team of researchers at Bell

Labs) to a well-known handwritten character recognition problem, where 10 hand-

written digits represent zip codes. The U.S. postal data set contains 7300 training

patterns and 2000 test patterns from actual postal zip codes. Following segmenta-

tion, each character is recorded as a gray-scale image with a resolution of 16� 16

pixels, so the input vector has a dimensionality of 256. A support vector method

TABLE 9.1 Classification of the XOR Data

Sample
Input space x Feature space z Output

index i ðx1; x2Þ 1 x1 x2 x1x2 x21 x22 y

1 (1,1) 1 1 1 1 1 1 1

2 (1;�1) 1 1 �1 �1 1 1 �1
3 (�1;�1) 1 �1 �1 1 1 1 1

4 (�1,1) 1 �1 1 �1 1 1 �1

FIGURE 9.14 Decision boundary produced by the SVM using a linear spline kernel.

SUPPORT VECTOR MACHINE FOR CLASSIFICATION 435

with three different classes of approximating functions was applied: polynomial,

radial basis functions, and neural network. Table 9.2 presents SVM results for

the test set (Vapnik 1995).

For comparison, the percentage error for humans classifying the data set is 2.5 per-

cent (Bromley and Sackinger 1991). A custom-built five-layer neural network called

LeNet 1 (Le Cun et al. 1990a) has an error rate of 5.1 percent. The best machine per-

formance is achieved by the method of elastic matching using tangent distance

(Simard et al. 1993), with an error rate of 2.7 percent. This method implements a

nearest-neighbor classification using a custom metric designed for this application,

namely the tangent distance, which is invariant under local affine transformations

and character thickness. This approach does not use learning and completely depends

on a clever preprocessing of the data. In contrast, the SVM uses a general-purpose

approach, and it does not use application-specific preprocessing. In fact, the SVM

can produce the same classification results following a random permutation of pixels

in the original data. These comparisons indicate that the SVM is competitive with

some of the best classification results for this character recognition problem.

It is also interesting to compare the data samples selected as support vectors for

each of the three kernels. For this data set, more than 80 percent of the support vectors

for any two kernel types were the same. Table 9.3 gives the breakdown (Vapnik

1995). For this character recognition problem, it indicates that the choice of basis

functions does not seem to have much effect on the problem of learning. Moreover,

the observation that different types of SV machines use roughly the same set of sup-

port vectors suggests that support vectors provide robust characterization of a data set.

Example 9.4: Application of SVM to a multiclass problem (IRIS data set)

In this example, SVM is applied to the well-known IRIS data set that has 150 sam-

ples from three species (classes): iris setosa, iris versicolor, and iris virginica. Each

TABLE 9.2 Results for the U.S. Postal Data Set

No. of support

Type of inner productl kernee Parameters vectors Raw error (%)

Polynomials m ¼ 3 274 4.0

Radial basis functions s2 ¼ 0:3 291 4.1

Neural network v ¼ 2; a ¼ 1 254 4.2

TABLE 9.3 Percentage of Coinciding Support

Vectors for Different Kernels

Poly RBF NN

Poly 100% 84% 94%

RBF 87% 100% 88%

NN 91% 82% 100%

436 SUPPORT VECTOR MACHINES

class has 50 samples. For illustrative purposes, we use only two input variables:

petal length and petal width. (The original IRIS data set has four variables: sepal

length, sepal width, petal length, and petal width.) Further, we evenly divide avail-

able data into training and test sets (75 samples each). The IRIS data set has three

classes, so the problem is decomposed into J separate binary classification pro-

blems, where each binary problem maps training samples onto two classes: samples

from class j and samples not from class jðj ¼ 1; 2; . . . ; JÞ. Let us consider the fol-

lowing binary classification problem: Positive class consists of 25 samples labeled

as iris versicolor and negative class consists of 50 training samples labeled as not

iris versicolor. That is, negative class includes iris setosa and iris virginica (25 sam-

ples each). This training set is shown in Fig. 9.15, where samples marked as ‘‘þ’’

0 2 4 6 8
–1

–0.5

0

0.5

1

1.5

2

2.5

3

Petal Length

(a)

0 2 4 6 8
–1

–0.5

0

0.5

1

1.5

2

2.5

3

Petal Length

(b)

P
e
ta

l
w

id
th

P
e
ta

l
w

id
th

FIGURE 9.15 SVM decision boundaries obtained for IRIS data set: (a) SVM with RBF

kernel, Hðx; x0Þ ¼ expf�jx� x0j2=2g; (b) SVM with second-order polynomial kernel.

SUPPORT VECTOR MACHINE FOR CLASSIFICATION 437

correspond to iris versicolor and samples marked as ‘‘�’’ denote not iris versicolor.

Two nonlinear SVM classification methods (with RBF and polynomial kernels) are

applied to these data. SVM decision boundaries formed by each method with opti-

mally tuned parameters are shown in Fig. 9.15. Both methods yield the same (very

low) test error, corresponding to a single misclassified test sample. Both models

have similar number of support vectors: 25 percent for RBF SVM and 29 percent

for polynomial SVM. Even though both models are similar in terms of generaliza-

tion performance, their extrapolation properties are quite different. For example, the

test sample (enlarged type) shown near the bottom of Fig. 9.15(a) and (b) will be

classified differently by each model.

This example also indicates that the goal of model interpretation (data under-

standing) is very different from the goal of prediction accuracy. Yet, in many appli-

cations, predictive models are used for data understanding (often resulting in

misleading conclusions).

9.6 SUPPORT VECTOR IMPLEMENTATIONS

Implementing an SVM learning algorithm requires solving a QP problem. Initially,

existing general-purpose quadratic optimization algorithms were applied to solve

the SVM problem (Vapnik 1995). For example, quasi-Newton methods such as

MINOS (Murtagh and Saunders 1978) or primal–dual interior point methods

such as LOQO (Vanderbei 1999) are applicable for small data sets (1000s of

points). Their advantage is that they are off the shelf and so can be immediately

exploited, and they also provide high numerical precision. However, these algo-

rithms are no longer suitable when the kernel matrix (or original data matrix

for linear SVM) does not fit in main memory. In order to solve larger problems,

special-purpose algorithms have been created that take advantage of unique aspects

of the SVM problem. These can be divided into three categories.

� Subset selection methods: These methods sacrifice some precision in the

solution (in terms of the Lagrange multipliers ai) in order to break the

optimization problem up into manageable pieces. One optimization

approach for SVM, called Chunking (Osuna et al. 1997), relies on the

observation that only the support vectors contribute to the final model and

other data points are inconsequential to the solution. So in Chunking, an

arbitrary subset of the data is first used to generate an SVM solution with a

general-purpose QP package. Then only the support vectors are retained and

the rest of the data are discarded. Additional data are then added to

complete the subset and a new QP solution is determined. This is repeated

until the Kuhn–Tucker conditions are met for each data sample. The

Chunking approach works as long as the kernel matrix for the support

vectors can be stored in main memory. If this is not the case, then alternative

methods are required, such as decomposition. In decomposition approaches,

the data (and correspondingly the parameters) are split into a number of

438 SUPPORT VECTOR MACHINES

fixed-size sets, each called a ‘‘working set.’’ Optimization occurs on each

working set while holding the other parameters fixed. This effectively

performs coordinate descent on subsets of the parameters. The popular

software implementations SVMLight (Joachims) and SVMTorch (Collobert

and Bengio) use decomposition strategies. The sequential minimal optimi-

zation (SMO) algorithm (Platt 1999) is an extreme form of decomposition

using working sets of two data points. The smallest working set that can be

optimized is 2 if the constraints (9.42b) for SVM classification or (9.53b)

for regression are to hold. SMO takes advantage of the fact that under this

condition the optimization subproblem for standard SVM can be solved

analytically. SMO exhibits better scaling properties and has reduced demand

on main memory than Chunking. The popular software implementation

LIBSVM (Chang and Lin) implements a variant of SMO for classification,

regression, and single-class learning settings.

� Iterative methods: Gradient descent, described in Section 5.1, can be applied

to the primal SVM optimization problem resulting in an iterative algorithm.

The main advantage of iterative methods is that they result in algorithms

with few steps and so are simple to implement. The disadvantage is that

in general they exhibit linear convergence and so are slower than standard

QP solvers.

� Exploiting alternative SVM formulations: By modifying the learning pro-

blem, it is possible to simplify the resulting optimization problem. This may

involve simplifying or reducing the number of constraints by modifying the

error functional or penalization. For example, an approach called Lagrangian

SVM (LSVM) (Mangasarian and Musicant 2001) uses a learning formulation,

which results in an optimization problem that depends on solving systems of

linear inequalities. For linear decision boundaries, this algorithm can solve

problems with millions of samples in minutes on a desktop computer. The

drawback is that the learning problem is modified to minimize the square of

the original SVM loss function (9.2) and regularization is also applied to the

constant offset b. It is still an open question how these modifications affect

generalization performance.

9.7 SUPPORT VECTOR REGRESSION

In the case of regression, an appropriate margin-based loss function is e-insensitive

loss (9.3) shown in Fig. 9.5. For a given parameterization of the regression model

f ðx;oÞ, the empirical risk for n training samples Zn is

Rempðo;ZnÞ ¼
1

n

X

n

i¼1
Leðyi; f ðxi;oÞÞ; ð9:49Þ

where Leðy; f ðx;oÞÞ ¼ maxðjy� f ðx;oÞj � e; 0Þ:

SUPPORT VECTOR REGRESSION 439

With finite data, minimization of empirical risk (9.49) produces good models,

using margin-based complexity control (via tuning of the width of the e-insensitive

zone). As discussed in Section 9.1, tuning e for a given data set is similar to tuning the

margin size in classification. However, the risk functional (9.49) does not allow flex-

ible combination of margin-based and model-based complexity control. To achieve

this, the SVM regression functional uses an additional regularization term. Assuming

linear SVM parameterization f ðx;oÞ ¼ w � xþ b, this functional has the form

RSVMðw; b;ZnÞ ¼ 1
2
k w k2 þC � Rempðo;ZnÞ; ð9:50Þ

where Rempðo;ZnÞ is given by (9.49).

The regularization parameter C controls the tradeoff between the empirical risk

Rempðo;ZnÞ given by (9.49) and the penalization term. The SVM risk functional

depends on two hyperparameters, e and C, both of which control the model com-

plexity. Technically, setting parameter C very large is equivalent to minimization of

margin-based empirical risk (9.49). As we have seen earlier (see results in Fig. 9.7),

minimization of (9.49) may yield accurate generalization (assuming that linear

parameterization of f ðx;oÞ is ‘‘good’’). In practice, however, good model parame-

terization is not known, so introducing penalization term into (9.50) is well justi-

fied. That is, formulation (9.50) for linear SVM can be easily extended to nonlinear

support vector regression (via kernels) as

RSVMðo;ZnÞ ¼ 1
2
k f k2H þC � Rempðo;ZnÞ; ð9:51Þ

where k f k2H is the squared norm induced by the inner product kernel Hðx; x0Þ,
introduced in Section 9.4 and Rempðo;ZnÞ is given by (9.49).

To simplify the discussion, we consider linear SVM parameterization (9.50)

next. Note that the SVM functional (9.50) is quite complex. First, the addition of

the regularization term connects SVM to regularization techniques for solving ill-

posed problems. Second, the value of e (margin) can be used to control both robust-

ness and model complexity adaptively. There are two distinct interpretations of the

linear SVM functional (9.50):

� Regularization interpretation, where the e-value is prespecified (i.e., user-

defined) and model complexity is controlled via tuning regularization para-

meter C. This corresponds to a familiar penalization structure (4.38) and

(4.39), where the VC dimension is controlled via parameter C.

� Margin-based structure, where the value of C is prespecified (i.e., set very

large), and model complexity is controlled via tuning e-value. Effectively, we

used this interpretation in Section 9.1 in order to motivate margin-based loss

for regression.

In this book, we emphasize margin-based interpretation for the following reasons.

Conceptually, the e-insensitive zone plays the same role as margin (for classification).

Also, in practice, an ‘‘optimal’’ value of C can be determined based on the range of

440 SUPPORT VECTOR MACHINES

response (y) values, so model selection is accomplished by tuning e (see Section 9.8

for details).

Minimization of e-insensitive loss can be formally described by introducing

(nonnegative) slack variables xi and x�i , i ¼ 1; . . . ; n, to measure the deviation of

training samples outside the e-insensitive zone (see Fig. 9.5(b)). Suppose that we

are given training data ðxi; yiÞ, i ¼ 1; . . . ; n. The problem of finding the parameters

w that minimize the SVM functional (9.50) can be stated as follows:

minimize
1

2
ðw � wÞ þ C

n

X

n

i¼1
ðxi þ x�i Þ; ð9:52aÞ

subject to

yi � ðw � xiÞ � b � eþ xi;

ðw � xiÞ þ b� yi � eþ x�i ;

xi; x
�
i 	 0; i ¼ 1; . . . ; n:

8

>

<

>

:

ð9:52bÞ

This is a quadratic optimization problem with linear constraints. As with the soft-

margin hyperplane, parameter C controls the tradeoff between complexity of model

parameterization and the margin-based error in formulation (9.50) or its kernelized

version (9.51).

This optimization problem can be transformed into the dual formulation, using

the standard approach of constructing a Lagrangian and applying the Kuhn–Tucker

theorem (Vapnik 1995). The dual problem for linear SVM regression finds the coef-

ficients ai and bi; i ¼ 1; . . . ; n, which maximize the quadratic form

Lðai;biÞ¼�e
X

n

i¼1
ðaiþbiÞþ

X

n

i¼1
yiðai�biÞ�

1

2

X

n

i;j¼1
ðai�biÞðaj�bjÞðxi �xjÞ; ð9:53aÞ

subject to constraints

X

n

i¼1
ai ¼

X

n

i¼1
bi; 0 � ai � C=n; 0 � bi � C=n; i ¼ 1; . . . ; n; ð9:53bÞ

given the training data ðxi; yiÞ, i ¼ 1; . . . ; n, the value of e, and regularization para-

meter C. The values of parameters a�i and b�i ; i ¼ 1; . . . ; n, found by solving this

optimization problem give the SVM regression function

f ðxÞ ¼
X

n

i¼1
ða�i � b�i Þðxi; xÞ þ b: ð9:54Þ

In support vector regression representation (9.54), only a fraction of training sam-

ples appears with nonzero coefficients. These samples, called support vectors,

SUPPORT VECTOR REGRESSION 441

correspond to data points lying at or outside the e-insensitive zone. The bias term b

is given by

b� ¼ ys �
X

n

i¼1
ða�i � b�i Þðxi � xsÞ; ð9:55Þ

where ðxs; ysÞ is one of the support vectors.

Extension of linear regression formulation to nonlinear support vector regression

can be achieved using the kernel trick leading to (9.51). In this case, a function lin-

ear in parameters is used to approximate the regression in the feature space:

f ðx;wÞ ¼
X

m

j¼1
wjgjðxÞ þ b; ð9:56Þ

where gjðxÞ, j ¼ 1; . . . ;m, denotes a set of nonlinear transformations chosen a

priori. Then linear support vector regression is estimated in the feature space; how-

ever, the dot products (in the feature space) are computed using kernels. That is, the

dual formulation and its solution (9.53)–(9.55) can be rewritten using kernels

instead of dot products, according to (9.29). This leads to the following solution

for nonlinear SVM regression:

f ðxÞ ¼
X

n

i¼1
ða�i � b�i ÞHðxi; xÞ þ b; ð9:57Þ

where 0 � a�i � C=n and 0 � b�i � C=n; i ¼ 1; . . . ; n:
For nonlinear SVM, the quality of regression estimate (9.57) depends on proper

setting of parameters e and C, as well as kernel specification. Proper setting of para-

meters e and C can be best understood using linear formulation, as discussed in

Section 9.8.

Example 9.5: SVM regression

To demonstrate the method of support vectors for regression, let us consider a

regression problem where 40 data points are generated according to the function

y ¼ sin2ð2pxÞ þ x;

where the noise x is Gaussian, with standard deviation s ¼ 0:07 (a signal-to-noise

ratio of 5). The input x has a uniform distribution on ½0; 1�. The SVM with both a

radial basis function kernel (9.33) and a linear spline kernel (9.38) was applied to

these data. For all experiments, the regularization parameter C was set to 20,000.

Figure 9.16 shows the resulting approximating function when using an RBF kernel

442 SUPPORT VECTOR MACHINES

with width parameter set to 0.2. The insensitive zone e was set to 0.1. Of the

40 training samples, nine became support vectors, as indicated in the plot. It is

interesting to note that more support vectors occur in areas of high curvature and

near the boundaries of the interval. Conceptually, this matches the results achieved

with the optimal separating hyperplane, where the support vectors are samples tend-

ing to be the most difficult to classify. Figure 9.17 shows the results when the insen-

sitive zone e is increased from 0.10 to 0.16, so that fewer (six) support vectors are

FIGURE 9.16 Support vector approximation with the radial basis function kernel. Of the

40 training points (indicated by þ), nine were selected as support vectors (indicated by �).
The approximation (solid curve) was generated using e ¼ 0:1 and C ¼ 20; 000. The dashed

curve is the target function.

FIGURE 9.17 Support vector approximation with the radial basis function kernel. In this

case, e was selected so that only six support vectors were used. Many of the support vectors

are those of the previous figure. The approximation (solid curve) was generated using

e ¼ 0:16 and C ¼ 20; 000. The dashed curve is the target function.

SUPPORT VECTOR REGRESSION 443

found. The resulting approximation is qualitatively smoother (i.e., less complex)

than that in Fig. 9.16, demonstrating the effect of the number of support vectors

on complexity. Also notice that a number of the data points that are support vectors

in Fig. 9.17 are also support vectors in Fig. 9.16. Results in Figs. 9.16 and 9.17

suggest that SVM regression could be an efficient way of data compression (for

noisy data), namely by storing only the support vectors. However, in practice,

this approach works only for low-dimensional data sets, as the number of support

vectors (as a percentage of training samples) grows rapidly for high-dimensional

data, especially with large noise. The approximation shown in Fig. 9.17 is a radial

basis expansion of the form

f ðx;wÞ ¼
X

m

j¼1
wjexp �

jx� cjj2

ð0:20Þ2

()

;

where m ¼ 6 (the number of support vectors) and with centers cj given by the sup-

port vectors. Figure 9.18 shows the decomposition of this sum and the location of

the support vectors.

The results of the linear spline kernel approximation for the training data are

shown in Fig. 9.19. Notice that the support vectors selected for this kernel function

nearly match the ones selected for the radial basis function kernel. This phenomenon

was also demonstrated in the digit recognition classification problem.

If the training data contain an outlier, its effect on the approximation is mini-

mal (Fig. 9.20). In other words, the SVM model is robust, as can be expected from

its robust loss function. However, the outlier becomes one of the support vectors.

The results in Fig. 9.20 suggest that the SVM model can be used for fast outlier

detection.

FIGURE 9.18 Decomposition of the weighted kernel functions for the approximation with

six support vectors (Fig. 9.17). Summing the six kernel functions will result in the

approximation shown in Fig. 9.17.

444 SUPPORT VECTOR MACHINES

9.8 SVM MODEL SELECTION

Since their introduction in mid-1990s, SVMs have become very popular in machine

learning, data mining, and various applications. More recently, SVMs have been

incorporated into commercial database products (Milenova et al. 2005). The quality

of SVM models depends on the proper setting (tuning) of SVM hyperparameters,

that is, SVM model selection. This is a challenging problem due to the inclusion of

FIGURE 9.20 Support vector approximation with the linear spline kernel. The outlier has

a small effect on the resulting approximation (solid curve). The approximation without the

outlier is also plotted for comparison (dashed curve). The approximation (solid curve) was

generated using e ¼ 0:16 and C ¼ 20; 000.

FIGURE 9.19 Support vector approximation with the linear spline kernel. Of the 40

training points (indicated by þ), 11 were selected as support vectors (indicated by �). Notice
the large number of common support vectors between this plot and Fig. 9.16. The

approximation (solid curve) was generated using e ¼ 0:09 and C ¼ 20; 000. The dashed

curve is the target function.

SVM MODEL SELECTION 445

kernels in the SVM. On the one hand, SVMs can implement a variety of representa-

tions via the choice of the kernel. On the other hand, kernel specification defines

a similarity metric (data encoding) in the input space, which complicates

model selection. Recall that in the general experimental procedure discussed in

Section 1.1, data encoding was performed as a separate step prior to learning.

Under the nonlinear SVM formulation, data encoding (via kernel selection)

becomes a part of model selection.

In general, SVM model selection depends on

1. parameter(s) controlling the ‘‘margin’’ size

2. model parameterization, that is, the choice of kernel type and its complexity

parameter. For example, for polynomial kernels the complexity parameter is a

polynomial degree, and for the RBF kernel it is the width parameter

The notion of ‘‘margin’’ is, of course, specific to each type of learning problem, as

discussed in Sections 9.1 and 9.2. The main problem is that both factors (1) and (2)

may be interdependent and hence cannot be tuned separately. Usually, the kernel

type (linear, RBF, polynomial, etc.) is first selected by a user, based on the properties

of the application data, and then the remaining SVM hyperparameters are selected

using some computational or analytic approaches. In this book, we assume that the

kernel type is user-defined, even though there exists vast literature on choosing

‘‘good’’ kernels suitable for various data types, especially for nonvectorial data.

There are three approaches to SVM model selection:

� Exhaustive search on many combinations of parameter values (usually on the

log scale) in combination with cross-validation on each candidate set (Chang

and Lin, 2001). For a given data set, the ‘‘best’’ set of parameter values

provides lowest prediction risk (estimated via cross-validation). This is a

brute-force approach that can be applied, in principle, to any SVM formula-

tion. However, it requires significant computational resources, and the final

results may be quite sensitive to the initial range of parameter values. The

final results may also depend on a particular implementation of resampling

technique (i.e., leave-one-out versus 10-fold cross-validation).

� Efficient search in the parameter space using VC analytic bounds on risk

(Chapelle et al. 2002b). This approach typically works for classification

where analytic bounds are available, that is, the radius-margin bounds.

� Analytic‘‘rule-of-thumb’’ selection of SVM parameters tailored to a given

type of learning problem. This approach is based on an understanding of a

particular SVM formulation, often combined with common sense heuristic

arguments.

Successful tuning of SVM parameters requires a conceptual understanding of

their role and their affect on generalization. To this end, we found it quite useful

to make the distinction between SVM parameters controlling ‘‘margin size’’

446 SUPPORT VECTOR MACHINES

(or falsifiability) and those controlling the model flexibility (nonlinearity). For

example, for classification, the margin size is controlled by parameter C and

model flexibility is controlled by the kernel parameter (i.e., the width of RBF

kernel). For regression problems, the width of insensitive zone (inversely related

to ‘‘margin size’’) is controlled by the value of e and model flexibility can be con-

trolled by the kernel complexity parameter and/or the regularization parameter C.

Note that the role of parameter C is quite different in classification and regression

problems. For regression, the model complexity is mainly controlled by e , and

proper C-values can be readily selected using training data prior to learning (as

shown later in this section). Further, model selection strategies usually depend on

the sparseness of training data. For very sparse noisy data (where d=n� 1), suc-

cessful SVM models are expected to be linear (as discussed later in Chapter 10). On

the contrary, for low-dimensional data sets good models are likely to be nonlinear,

and one should focus on tuning kernel parameters.

Various learning problems (classification, regression, and single-class) have dif-

ferent parameters controlling ‘‘margin size,’’ that is, C, e, and r, respectively. How-

ever, for all formulations the margin size parameter controls the number of support

vectors. So it may be more practical to use the same parameter (fraction of SVs or

n-parameter) to implement complexity control for all SVM formulations (Schölkopf

and Smola 2002).

For classification, the parameter C is replaced by a parameter n 2 ½0; 1�, which can
be shown to be a lower bound for the fraction of support vectors and an upper bound

for samples that come to lie on the wrong side of the hyperplane. It uses a primal

objective function with the error term 1=nn
Pn

i¼1 xi � r and separation constraints

yi½ðw � xiÞ þ b� 	 r� xi; i ¼ 1; . . . ; n:

The margin parameter r is a variable of the optimization problem. The dual can be

shown to consist of maximizing

LðaÞ ¼ � 1

2

X

n

i;j¼1
aiajyiyjðxi � xjÞ; ð9:58Þ

subject to constraints

X

n

i¼1
yiai ¼ 0;

X

n

i¼1
ai 	 n; 0 � ai � 1=n; i ¼ 1; . . . ; n:

For regression, one specifies an upper bound 0 � n � 1 on the fraction of points

allowed to lie outside the e-insensitive zone and the corresponding e is computed

automatically. This is achieved by using as primal the objective function

1

2
ðw � wÞ þ C neþ 1

m

X

n

i¼1
ðxi þ x�i Þ

 !

ð9:59Þ

SVM MODEL SELECTION 447

and then minimizing over the parameter e. The dual for regression can be shown to

consist of maximizing

Lðai; biÞ ¼
X

n

i¼1
yiðai � biÞ �

1

2

X

n

i;j¼1
ðai � biÞðaj � bjÞðxi � xjÞ; ð9:60aÞ

subject to constraints similar to (9.53b) as well as one additional one:

X

n

i¼1
ðai þ biÞ � Cn; i ¼ 1; . . . ; n: ð9:60bÞ

For both classification and regression, it can be shown that nSVM provides an

equivalent formulation of the standard SVM optimization. That is, for a given solu-

tion with a parameter n ¼ n�, one can find parameter values for C and/or e that give

the same solution.

As a practical matter, note that SVM formulations (9.23) and (9.52) have an

error term (9.49) normalized by the number of samples n. However, many other

books and software implementations (i.e., LIBSVM) use SVM formulations, where

the total error term is not divided by n. This difference, of course, needs to be taken

into account when using recommendations for model selection given in this book.

Next, we provide analytic ‘‘rule-of-thumb’’ prescriptions for parameters C and e

in SVM regression following Cherkassky and Ma (2004).

Selection of parameter C: According to (9.57), the SVM solution is a linear com-

bination kernels weighted by coefficients ai and bi. Let us assume bounded kernels

jHðxi; xÞj � 1 in (9.57), such as RBF kernels, for example. Then the magnitude

(range) of possible y-values in the SVM model equals, roughly, the range of coeffi-

cients ai and bi. Further, the range of y-values can be estimated from training sam-

ples and the range of ai and bi is bounded by C=n according to (9.57). This leads to

an estimate

C

n
¼ ymax � ymin; ð9:61Þ

where ymax and ymin are the largest and smallest values of training samples.

However, this estimate may be sensitive to the possible outliers, so for noisy

real-life data sets we suggest using the following prescription:

C

n
¼ maxðj�yþ 3syj; j�y� 3syjÞ; ð9:62Þ

where �y is the mean and sy is the standard deviation of the training response values.

Prescription (9.62) can effectively handle outliers in the training data. If y-values

are preprocessed so that �y ¼ 0, then C=n equals 3sy.

448 SUPPORT VECTOR MACHINES

Selection of e: Consider standard regression formulation y ¼ tðxÞ þ x assuming that

the standard deviation of additive noise s is known or can be reliably estimated

from data. Then the value of e should reflect the level of additive noise x, that is,

e / s. In fact, several theoretical studies (Kwok 2001; Schölkopf and Smola 2002)

derive asymptotically optimal e-values in the range e � (0.6–0.8)s. However, these

results hold under asymptotic (large sample size) assumptions. For real-life data

sets, the choice of e should also depend on the number of training samples. That

is, with smaller sample size one should use larger e. Let us quantify this depen-

dency, assuming linear SVM for the sake of discussion. From classical statistical

theory, the variance of observations about the trend line (for linear regression) is

s2y=x /
s2

n
: ð9:63Þ

This suggests the following prescription for choosing e:

e / s
ffiffiffi

n
p : ð9:64Þ

Empirical comparisons suggest that (9.64) works well when the number of sam-

ples n is small, but for larger n it yields e-values that are too small. Also, theoretical

prescriptions (Kwok 2001; Schölkopf and Smola 2002) for asymptotically optimal

e-values in the range e � (0.6–0.8)s motivate the need for a correcting factor to

‘‘slow down’’ the decrease of e in (9.64). This leads to the following (empirical)

dependency (Cherkassky and Ma 2004):

e ¼ 3s

ffiffiffiffiffiffiffi

ln n

n

r

: ð9:65Þ

Expression (9.65) provides good SVM performance for various data set sizes, noise

levels, and target functions. Expressions (9.62) and (9.65) will be used in empirical

comparisons presented next.

Empirical comparisons: Consider standard regression problem with simulated train-

ing data ðxi; yiÞ; i ¼ 1; . . . ; n, where x-values are sampled on uniformly spaced grid in

the input space and y-values are corrupted by additive symmetric noise with standard

deviation s. The unknown (target) function is estimated (from training samples) via

SVM regression with suggested values of hyperparameters C=n and e. The quality of
SVM estimates is evaluated using prediction risk defined as mean squared error

(MSE) between SVM estimates and the true target values observed on a large inde-

pendent test set. All nonlinear SVM examples use (bounded) RBF kernels

Hðxi; xÞ ¼ exp �k x� xi k2
2q2

� �

;

where the width parameter q is set depending on the range of input values, as

follows. For univariate problems, it is set to q� (0.2–0.5)� range (x). For

SVM MODEL SELECTION 449

d-dimensional problems, the width parameter is set so that qd � (0.2–0.5), where all

d input variables are prescaled to the [0,1] range. Such values generally yield rea-

sonable performance for various data sets. First, consider training data (n ¼ 30

samples) formed using univariate sinc target function:

tðxÞ ¼ sinðxÞ
x

; x 2 ½�10; 10�; ð9:66Þ

with y-values corrupted by additive Gaussian noise (with s ¼ 0:2). The training

sample size is n ¼ 30, and we used RBF kernels with width parameter q ¼ 4.

For this data set, (9.62) and (9.65) give the following values of SVM hyperpara-

meters: C=n ¼ 1:58 and e ¼ 0:2. The resulting SVM regression model yields pre-

diction risk MSE¼ 0:0065, and it uses 43 percent of training samples as support

vectors. In contrast, using e ¼ 0 for the same data set (along with the same

C=n ¼ 1:58) yields larger MSE¼ 0:0129. The accuracy of expression (9.65) for

tuning e (as a function of sample size) is illustrated in Fig. 9.21, which compares

prediction risk (MSE) achieved using (9.65) versus optimal e-values providing

smallest MSE for the same training data.

The effect of chosen C/n and e-values on prediction risk can be better understood

using three-dimensional plots, as shown in Fig. 9.22 for the univariate sinc data set,

using 30 training samples and 200 training samples. Visual inspection suggests that

� Nature of this dependency is not affected much by sample size, that is,

compare Figs. 9.22(a) and 9.22(b)

� Results in Fig. 9.22(a) indicate that for this data set, expressions (9.62) and

(9.65) provide good (near optimal) values of e and C/n

� C-values above the value provided by (9.62) have very minor effect on the

prediction risk, so that SVM generalization is mainly controlled by e-values

20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

Opt. epsilon by exhaustive search
Proposed method

FIGURE 9.21 Proposed e-values versus optimal e-values, as a function of training sample

size, (n ¼ 30; 50; . . . ; 150), for univariate sinc target function corrupted with Gaussian noise.

450 SUPPORT VECTOR MACHINES

Also, the value of e controls the percentage of support vectors in SVM model. It can

be readily seen (by using three-dimensional plots showing the percentage of SVs as

a function of e and C/n) that small e-values correspond to a higher percentage of

support vectors, whereas the value of C/n has negligible effect on the percentage

of SVs. According to Cherkassky and Ma (2004), all these findings qualitatively

hold for a variety of data sets (with different target functions, types of noise,

etc.). The main conceptual implication of this analysis is the effect of e-value on

SVM generalization performance (consistent with our interpretation of margin-

based complexity control in Section 9.1). The main practical implication is the

dependency of the ‘‘optimal’’ e-value on sample size and noise variance, according

(a)

 (b)

0
2

4
6

8
10

0

0.2

0.4

0.6
0

0.05

0.1

0.15

0.2

C/n

Prediction risk

0
2

4
6

8
10

0

0.2

0.4

0.6
0

0.05

0.1

0.15

C/n

Prediction risk

FIGURE 9.22 Prediction risk as a function of SVM hyperparameters for univariate sinc

target function corrupted with Gaussian noise (with s ¼ 0:2): (a) small sample size, n ¼ 30;

(b) large sample size, n ¼ 200.

SVM MODEL SELECTION 451

to (9.65). For example, for the sinc function with a large sample size n ¼ 200, the

dependency of prediction risk is shown in Fig. 9.22(b). For this data set, our ana-

lytic prescriptions give C=n ¼ 1:58 and e ¼ 0:1, yielding MSE¼ 0:0019. This

compares favorably with theoretical methods based on asymptotic analysis; that

is, prescription e ¼ 0:848s (Kwok 2001) yields e ¼ 0:17 and MSE ¼ 0:0033, and
prescription e ¼ 0:612s (Schölkopf and Smola 2002) results in e ¼ 0:12 and

MSE¼ 0:0022. It is also worth noting that optimal selection of e-value does not

depend on the type of additive noise. In fact, with finite samples, SVM loss

(with proposed e) provides better generalization than ‘‘statistically optimal’’ loss

functions that match a particular type of noise density (as shown in Fig. 9.7).

See Cherkassky and Ma (2004) for more details.

Next, we show an example of SVM parameter selection for a higher-dimensional

additive target function

tðxÞ ¼ 10 sinðpx1x2Þ þ 20ðx3 � 0:5Þ2 þ 10x4 þ 5x5; ð9:67Þ

where x-values are distributed in hypercube ½0; 1�5. Output values of training sam-

ples are corrupted by additive Gaussian noise (with s ¼ 0:1 and s ¼ 0:2). Training
data size is n ¼ 243 samples (i.e., three points per each input dimension). The RBF

kernel width parameter q ¼ 0:8 is used for this data set. Proposed analytic prescrip-

tions give C=n ¼ 34, e ¼ 0:045 (for s ¼ 0:1), and e ¼ 0:09 (for s ¼ 0:2). For the
data with s ¼ 0:1, the resulting SVM model has MSE¼ 0:038, using 86 percent of

samples as support vectors. For the training data with s ¼ 0:2, estimated SVM

model has MSE¼ 0:11, using 90 percent of samples as support vectors.

Prescription (9.65) for selecting e uses the standard deviation of the noise s. In

most applications, the noise variance is unknown and needs to be estimated from

the data. Next we outline several practical strategies for estimating the noise level s.

Our discussion assumes that values of C and kernel parameters have been properly

selected. Recall that we have already faced the problem of noise estimation, needed

for analytic model selection methods, such as AIC and BIC. As discussed in Sec-

tion 4.5, the standard approach for estimating the noise variance is by fitting the

training data using low-bias (high-complexity) estimator, such as high-order poly-

nomial or k-nearest-neighbor regression (with small k). Then the noise variance can

be estimated via (4.44). This is appropriate for low-dimensional problems. Another

approach is first to estimate SVM regression model using e ¼ 0 and then use this

model to estimate noise variance.

As argued in Section 4.5, the interpretation of additive noise becomes difficult

when there is a significant mismatch between the true target function and a set of pos-

sible models. So an alternative approach is to control complexity via controlling the

number of support vectors and margin errors, as in n-SVM regression (Schölkopf and

Smola 2002). Of course, specification of parameter n is technically equivalent to

selecting an e-value. Optimal selection of n or e for SVM regression can be per-

formed, in principle, using the analytic VC bounds (4.27) used earlier in this book

for model selection with various estimators. The main problem (in applying these

452 SUPPORT VECTOR MACHINES

bounds) is that accurate estimates of the VC dimension for SVM regression are not

known.

9.9 SUPPORT VECTOR MACHINES AND REGULARIZATION

Earlier in Section 3.4.5, we pointed out the conceptual differences between SRM

and regularization methods. The main distinction is that the SRM approach has

been developed under a risk minimization (system imitation) setting, whereas

classical regularization methods have been developed under a function approxi-

mation (system identification) framework. As argued in Section 9.1, SVMs repre-

sent an implementation of SRM using margin-based loss. Following the initial

practical success of SVMs, there have been numerous interpretations of the

SVM methodology as a special case of regularization (Evgeniou et al. 2000;

Hastie et al. 2001; Poggio and Smale 2003). These interpretations emphasize

superficial similarities between the constructive procedures (i.e., similar form of

SVM and regularization functionals), but overlook conceptual differences (i.e.,

margin-based complexity control). This section presents empirical comparisons

of two different strategies of complexity control, margin-based loss and regular-

ization, in order to show their distinction and the importance of margin-based loss.

Comparisons are presented for both classification and regression settings, assum-

ing a linear parameterization f ðx;oÞ ¼ ðw � xÞ þ b. In this case, the ‘‘generic’’

SVM risk functional is

RSVMðw; bÞ ¼ C
X

n

i¼1
Lðyi; f ðxi;oÞÞþ

1

2
k w k2; ð9:68Þ

where the specific form of the loss function depends on the type of learning pro-

blem; that is, the loss is given by (9.2) for classification and by (9.3) for regression.

Clearly, this SVM functional has similarity to the regularization (penalization)

functional. For example, recall the standard formulation for ridge regression

Rregðw; bÞ ¼
X

n

i¼1
ðyi � f ðxi;oÞÞ2þl k w k2 : ð9:69Þ

Hence, the SVM regression formulation (9.68) can be obtained from (9.69) by

using e-insensitive loss and substituting the regularization parameter l � 1=C.
Similarly, for classification problems, the soft-margin SVM formulation (9.23)

is sometimes compared to the penalized linear least-squares formulation that

minimizes

Rregðw; bÞ ¼
X

n

i¼1
ðxiÞ2þl k w k2; ð9:70Þ

subject to constraints xi ¼ yi � ðw � xi þ bÞ, i ¼ 1; . . . ; n.

SUPPORT VECTOR MACHINES AND REGULARIZATION 453

As shown in Section 8.2.2, the least-squares regression to the class labels

(9.70) is equivalent to (regularized) linear discriminant analysis or RLDA

(Duda et al. 2001; Hastie et al. 2001). The nonlinear kernelized version of

(9.70) has also been introduced under the names least-squares SVM classifiers

(Suykens and Vanderwalle 1998; Suykens et al. 2002) and kernel Fisher LDA

(Mika 2002).

In spite of an obvious similarity between (9.68), (9.69), and (9.70), the SVM

formulation uses an adaptive margin-based loss that controls the model complexity,

in addition to the penalization term. For instance, the linear SVM regression func-

tional depends on two hyperparameters: the regularization parameter C and the

value of e (controlling the ‘‘margin’’). So interpretations of SVM as a ‘‘special

case of the regularization formulation’’ simply ignore the important role of

margin-based loss. Empirical comparisons presented next show that SVM and reg-

ularization approaches implement, indeed, rather different mechanisms for model

complexity control.

First, let us compare linear SVM versus penalized least-squares classifiers. Such

comparisons are ‘‘fair,’’ in the sense that both formulations have a single parameter

for complexity control. The first toy data set (shown in Fig. 9.23) has been gener-

ated as follows. Each class is a two-dimensional ellipsoid, with a long-to-short axis

variance ratio 4:1. The long axes of the two ellipsoids are perpendicular to each

other. More specifically,

� The ‘‘positive’’ class data are centered at (1.2, 1.2), with the short axis’

variance 0.02 and the long axis’ variance 0.08

� The ‘‘negative’’ class data are centered at (0, 0), with the short axis’ variance

0.02 and the long axis’ variance 0.08.

FIGURE 9.23 Training data for empirical comparisons. (a) small data set; (b) large

data set.

454 SUPPORT VECTOR MACHINES

Both classes have equal prior probabilities, and we used a small training set (40

samples, 20 per class) and a large training set (200 samples, 100 per class) for

comparisons. A test set of 1000 samples was used to estimate the prediction

risk, that is, the classification error rate. The effect of each method’s tuning para-

meter on the prediction error is shown in Tables 9.4 and 9.5 (for a small data set)

and in Tables 9.6 and 9.7 (for a large data set). These results suggest that margin-

based complexity control is more effective than standard regularization. For this

data set, penalized LDA is rather ineffective even when the number of samples is

‘‘large’’ (see results in Tables 9.6 and 9.7), whereas margin-based complexity

control is very effective for both small and large sample settings. As repeatedly

stated in this book, relative performance of learning techniques is data dependent,

and many empirical studies suggest similar performance of SVM and LDA clas-

sifiers for real-life sparse data sets. Later in Section 10.1, we show that for certain

(very sparse) high-dimensional data sets various linear methods yield, indeed, the

same prediction accuracy.

Next, we compare linear SVM regression and linear ridge regression. Note that

ridge regression (9.69) uses single parameter l to control complexity, whereas in

the SVM model complexity depends on both parameters C and e. In order to present

‘‘fair’’ comparisons, we initially vary just one SVM parameter. That is, we vary e

while setting C to some fixed (very large) value. Alternatively, we vary C-value

while setting e ¼ 0. Later, we also show how SVM generalization performance

can be improved when both C and e are used to control complexity.

Consider five-dimensional synthetic data set (30 samples) generated as

follows:

y ¼ tðxÞ þ x; where tðxÞ ¼ 2x1 þ x2 þ 0 � x3 þ 0 � x4 þ 0 � x5: ð9:71Þ

Input samples are uniformly distributed in x 2 ½0; 1�5 and additive noise is Gaussian
with s ¼ 0:2. For linear regression, model complexity control amounts to coeffi-

cient shrinkage.

TABLE 9.4 Prediction Error for Linear SVM, Small Sample Size

C 0.13 0.37 1 2.7 7.3 256

Margin 1.57 1.14 0.97 0.64 0.56 0.56

Prediction error (%) 2.45 1.1 1.1 0.5 0.9 0.9

TABLE 9.5 Prediction Error for Penalized LDA, Small Sample Size

Penalized linear discriminant

LDA l ¼ 0:01 l ¼ 0:1 l ¼ 1 l ¼ 10 l ¼ 100

Prediction error (%) 2.8 2.8 2.8 2.9 3 3.8

SUPPORT VECTOR MACHINES AND REGULARIZATION 455

For ridge regression, the effect of regularization parameter on the coefficients (in

linear regression) is shown in Fig. 9.24. For the same training sample, Fig. 9.25

shows two different ways to control model complexity under SVM formulation

(i.e., via C or e). Direct comparison of Figs. 9.24 and 9.25(a) illustrates conceptual

similarity between the regularization parameter and 1=C. In addition, Fig. 9.25(b)

shows that under the SVM model, complexity can be controlled only by e-value.

Results in Fig. 9.25 also suggest that SVM complexity control is rather insensitive

to the values of C (provided C is sufficiently large), but it is very sensitive to

TABLE 9.6 Prediction Error for Linear SVM, Large Sample Size

C 0.37 1 2.7 20 54 148 1096

Margin 0.94 0.75 0.62 0.45 0.35 0.19 0.16

Prediction error (%) 1.5 1.4 1.1 0.6 0.5 0.4 0.5

TABLE 9.7 Prediction Error for Penalized LDA, Large Sample Size

Penalized linear discriminant

LDA l ¼ 0:01 l ¼ 0:1 l ¼ 1 l ¼ 10 l ¼ 100

Prediction error (%) 1.9 1.9 1.9 1.9 2 2.2

–8 –6 –4 –2 0 2 4 6 8
–0.5

0

0.5

1

1.5

2

2.5

Log(Lambda)

C
o

e
ff

ic
ie

n
ts

w1

w2w2

w3

w4

w5

FIGURE 9.24 Coefficient shrinkage for ridge regression, n ¼ 30.

456 SUPPORT VECTOR MACHINES

(a)

0 0.5 1 1.5 2
–0.5

0

0.5

1

1.5

2

2.5

e

w1

w3

w4

w5

w2

(b)

–8 –6 –4 –2 0 2 4 6 8
–0.5

0

0.5

1

1.5

2

2.5

Log(n/C)

C
o
e
ff
ic

ie
n
ts

C
o
e
ff
ic

ie
n
ts

w1

w2

w3

w4

w5

FIGURE 9.25 Coefficient shrinkage for SVM regression, n ¼ 30: (a) varying C=n (with

fixed e ¼ 0); (b) varying e (with fixed C ¼ 100).

SUPPORT VECTOR MACHINES AND REGULARIZATION 457

changes in e-values. In other words, proper setting (tuning) of e, which controls the

margin, has much larger effect on generalization performance than tuning of C.

This observation is consistent with prescriptions on parameter tuning presented ear-

lier in Section 9.8.

Next, we compare generalization performance of various strategies for model

complexity control, using very sparse data sets (n ¼ 10 samples) generated using

the same target function (9.71) corrupted by Gaussian noise with s ¼ 0:7. This
setting is sparse as the learning method has to estimate six parameters in linear

regression (9.71) using just 10 noisy samples. We consider three approaches to

complexity control: (a) ridge regression where the regularization parameter is

selected via cross-validation, (b) SVM approach where the C-parameter is also

selected via cross-validation (with e-value fixed to zero), and (c) SVM approach

where the ‘‘good’’ e-value is empirically selected as e ¼ s ¼ 0:7 (with C fixed to a

large value C ¼ 100). Generalization performance of these model selection

approaches is measured as MSE observed on independent test set (1000 samples).

Model selection experiments are repeated using 100 different realizations of the

training data, and the results are presented in Fig. 9.26 using box-plot notation.

These results suggest that all three approaches yield (roughly) similar generaliza-

tion performance. The next obvious step is to allow both e and C-values to vary to

improve generalization. Here we use simple commonsense strategy: for a given

data set, first select a good value of e ¼ s ¼ 0:7 and then tune the C-value using

Ridge SVM(C) SVM (e)
10–1

10–2

10
0

10
1

R
is

k
 (

M
S

E
)

FIGURE 9.26 Model selection comparisons under sparse setting: n ¼ 10; s ¼ 0:7. For
ridge regression, choose optimal value of regularization parameter via resampling. For SVM

(C), the value of e ¼ 0 and C is selected by cross-validation. For SVM (e), the value of

e ¼ s ¼ 0:7 and C is set large (¼ 1000). Average risk (100 realizations): 0.44 for ridge

regression versus 0.37 for SVM.

458 SUPPORT VECTOR MACHINES

cross-validation. Comparison results using such a strategy for SVM parameter

tuning (shown in Fig. 9.27) suggest improved generalization performance of

SVM (over ridge regression). In particular, for this data set SVM regression

achieves average value of prediction risk (MSE) equal to 0.37, which is much

smaller than the average MSE value of 0.44 achieved by ridge regression. In

addition, SVM regression estimates have much lower variability (narrow box

plots).

Comparisons presented in this section suggest that SVM generalization perfor-

mance is significantly affected by the proper tuning of the margin. The concept of

margin is specific to SVM, and it does not exist under the regularization framework.

This becomes evident for the linear regression setting where one can clearly draw

the similarity between regularization parameter l (in ridge regression) and 1=C (in

SVM regression). However, the ridge regression formulation has no notion of mar-

gin (e-insensitive zone). Conceptually, the role of margin-based complexity control

becomes especially important under a sparse sample setting. Many practical appli-

cations use nonlinear SVM, where expansion into a high-dimensional feature space

(through kernels) usually results in sparse settings (in the feature space). Hence,

margin-based complexity control is indeed critical for good generalization. For

nonlinear SVM, the model complexity is also affected by the choice of kernel, in

Ridge SVM
10

-2

10
-1

10
0

10
1

R
is

k
 (

M
S

E
)

FIGURE 9.27 Model selection comparisons under sparse setting: n ¼ 10, s ¼ 0:7. For
ridge regression, the value of regularization parameter is chosen by cross-validation. For

SVM, the value of e ¼ s and C is selected by cross-validation. Average risk (100

realizations): 0.44 for ridge regression versus 0.37 for SVM.

SUPPORT VECTOR MACHINES AND REGULARIZATION 459

addition to margin parameter. The relative importance and interplay between var-

ious SVM parameters (i.e., kernel, C, and e for SVM regression) is often data

dependent.

9.10 SINGLE-CLASS SVM AND NOVELTY DETECTION

As discussed in Section 9.1, single-class learning or novelty detection has a goal of

modeling the support of an unknown distribution. This can be achieved by identify-

ing the smallest-size hypersphere that contains the majority of training data. So the

decision function for this problem is a hypershere:

f ðx; a; rÞ ¼
þ1; if k xi � a k2� r2;

�1; otherwise;

(

ð9:72Þ

where a is the vector center and r is the radius of the hypersphere (see Fig. 9.6).

The empirical risk for this parameterization, originally introduced under the

name Support Vector Data Description (SVDD) (Tax and Duin 1999), is

Rempðr; aÞ ¼
1

n
xi; ð9:73Þ

where slack variables xi ¼ maxðk xi � a k �r; 0Þ reflect the margin-based loss

function (9.4). Generalization ability of the parameterization (9.72) is controlled

by the radius r. Therefore, we should minimize a combination of the radius and

the empirical risk via the functional

RSVMðr; aÞ ¼ r2 þ 1

nn

X

n

i¼1
xi; ð9:74aÞ

subject to the constraints

k xi � a k2� r2 þ xi: ð9:74bÞ

The parameter n is used to adjust the tradeoff between a measure of the structural

complexity and the empirical risk. The dual of the quadratic optimization problem

(9.74) is (Tax and Duin 1999)

L ¼
X

n

i¼1
aiðxi � xiÞ �

X

n

i;j¼1
aiajðxi � xjÞ; ð9:75aÞ

460 SUPPORT VECTOR MACHINES

with the constraints

X

n

i¼1
ai ¼ 1; ð9:75bÞ

0 � ai �
1

nn
; i ¼ 1; . . . n: ð9:75cÞ

Minimization of (9.75) is a standard quadratic programming problem. Like stan-

dard SVM, only a small number of ai are nonzero, reflecting the support vectors

on the decision boundary.

As SVDD is an unsupervised method, optimal selection of the parameter n is

driven by the application (i.e., clustering, data interpretation/understanding). The

parameter n has a useful interpretation for controlling the tradeoff between model

complexity and percentage of training samples used to generate the support. It can

be shown (Schölkopf et al. 1999) that n is an upper bound on the fraction of training

points that are outliers and also a lower bound on the fraction of training points that

are support vectors. These bounds can be used to determine a suitable value of n

based on the maximum percentage of outliers that can be tolerated for the training

data.

The parameters values a�i (and corresponding a
� and r�), which result from mini-

mizing (9.75), can be related back to the decision rule (9.72) as follows. For an

arbitrary point x, the distance from the center is determined by

k x� a� k2¼ ðx � xÞ � 2
X

n

i¼1
a�i ðx � xiÞ þ

X

n

i;j¼1
a�i a

�
j ðxi � xjÞ: ð9:76Þ

Note that the distance from a support vector to the center is the radius of a hyper-

sphere. This allows us to compute the radius r� given one support vector xsv:

ðr�Þ2 ¼k xsv � a� k2¼ ðxsv � xsvÞ � 2
X

n

i¼1
a�i ðxsv � xiÞ þ

X

n

i;j¼1
a�i a
�
j ðxi � xjÞ; ð9:77Þ

where xsv is any xi where a
�
i > 0. Notice that the last term in both (9.76) and (9.77)

is the same, so the decision function can be written as

f ðx; a�; r�Þ ¼
þ1; if ðx � xÞ � 2

P

n

i¼1
a�i ðx � xiÞ � ðxsv � xsvÞ � 2

P

n

i¼1
a�i ðxsv � xiÞ;

�1; otherwise;

8

<

:

ð9:78Þ

where xsv is any support vector.

SINGLE-CLASS SVM AND NOVELTY DETECTION 461

The input data vectors enter the SVDD formulation (9.75) only via an inner pro-

duct. As with the SVM, kernel functions discussed in Section 9.4 can be used to

compute the inner product in a high-dimensional feature space to allow more flexi-

ble boundaries. In this case, the error functional becomes

L ¼
X

n

i¼1
aiHðxi; xiÞ �

X

n

i;j¼1
aiajHðxi; xjÞ; ð9:79Þ

where Hðxi; xjÞ is an inner product kernel as described in Section 9.4. Not all ker-

nel functions perform equally well for SVDD. Polynomial kernels result in less

compact representations because of the boundary effects of polynomials. In addi-

tion, data points with the largest norms have a higher chance of becoming support

vectors. For these reasons, Tax and Duin (1999) suggest using a radial basis func-

tion kernel (9.33). In this case, the width parameter of the kernel controls the flex-

ibility of the boundary. When the width is large, the result approximates the

spherical boundary. When the width is small, each data point tends to be a support

vector and represents a small Gaussian. This situation is similar to nonparametric

density estimation discussed in Section 2.2.6.

An alternative way to geometrically enclose a fraction of the training data is via

a hyperplane and its relationship to the origin (Schölkopf and Smola 2002). Under

this approach, called single-class SVM, a hyperplane is used to separate the training

data from the origin with maximal margin (see Fig. 9.28). In addition, outliers are

handled with slack variables. This may appear to be workable in only a limited

ix
wiξ

wρ

FIGURE 9.28 Single-class learning using a hyperplane boundary. The boundary separates

similar data from the origin. An optimal model maximizes the distance between the

hyperplane and the origin.

462 SUPPORT VECTOR MACHINES

setting; however, utilizing a suitable kernel function expands the flexibility of this

approach.

For single-class SVM, the hyperplane decision function is

f ðx;w; rÞ ¼
þ1; if w � gðxÞ � r 	 0;

�1; otherwise;

(

ð9:80Þ

where gðxÞ is a kernel-based mapping to a feature space as discussed in Section 9.4

and w and r are parameters defining the hyperplane. In this approach, we attempt to

minimize the following quadratic functional with slack variables xi:

RSVMðw; rÞ ¼
1

2
k w k2 þ 1

nn

X

n

i¼1
xi � r; ð9:81Þ

subject to w � gðxÞ � r 	 �xi for all i.
The dual form of this optimization problem (Schölkopf and Smola 2002) is

L ¼
X

n

i;j¼1
aiajHðxi � xjÞ; ð9:82aÞ

with constraints
X

n

i¼1
ai ¼ 1; ð9:82bÞ

0 � ai �
1

nn
; i ¼ 1; . . . ; n ð9:82cÞ

and where Hð Þ is the kernel function corresponding to gð Þ. Minimization of (9.82)

is a standard QP problem similar to the standard SVM. Like standard SVM, only a

small number of ai are nonzero, reflecting the support vectors on the decision

boundary.

The single-class SVM decision rule corresponding to (9.80) based on the para-

meters for the dual problem is

f ðx; a�; r�Þ ¼
þ1; if

P

n

i¼1
a�iHðx � xiÞ � r� 	 0;

�1; otherwise;

8

<

:

ð9:83Þ

where parameters values a�i and r� result from minimizing (9.82). The value for the

bias r� can be obtained by using the support vectors. By definition

r� ¼
X

n

i¼1
a�iHðxsv � xiÞ; ð9:84Þ

where xsv is any xi where a�i > 0.

SINGLE-CLASS SVM AND NOVELTY DETECTION 463

The parameter n has the same interpretation as that for SVDD, namely n is an

upper bound on the fraction of training points that are outliers and also a lower

bound on the fraction of training points that are support vectors. In addition, for

kernel functions that behave like a density function, the kernel expansion (9.83)

then corresponds to thresholding a nonparametric density estimation of the support

vectors. For example, if a Gaussian kernel function is used and n � 1, every support

vector represents a small Gaussian and the kernel expansion is a thresholded non-

parametric density estimation over the support vectors. If we set n ¼ 1, then the

constraints (9.82b) and (9.82c) allow only the solution a1; . . . ; an ¼ 1=n, namely

all data points are support vectors. The kernel expansion (9.83) then corresponds

to standard nonparametric density estimation, as discussed in Section 2.2.5.

The SVDD and single-class SVM problem formulations are equivalent for ker-

nels that are translation invariant, namely Hðx; x0Þ ¼ Hðx� x0Þ. An example of a

translation invariant kernel is the RBF kernel (9.33). A translation invariant kernel,

along with constraint (9.75b), forces the first term of the SVDD error functional

(9.75a) to remain constant, nullifying its effect in the minimization. In this case,

the SVDD functional and single-class SVM functional (9.82) are equivalent.

Note that for single-class SVM, tuning parameter n (model selection) presents

additional challenges because there is no objective measure of model ‘‘goodness’’

under unsupervised learning setting. Hence, parameter n is typically set using

application-domain knowledge and SVDD/single-class SVMs are commonly used

for data understanding.

9.11 SUMMARY AND DISCUSSION

The SVM embodies the major principles of learning, previously discussed in this

book (in Chapters 2 and 4). The development of the SVM is quite different from the

development of other learning algorithms because the concepts and principles

developed in VC theory are used directly in the construction of the algorithm. Fol-

lowing are the major principles:

� For estimation with finite data, solve the learning problem directly, rather

than indirectly via density estimation: For classification, the SVM approach

estimates the decision boundary directly, in terms of the separating hyperplane.

Posterior densities are not estimated as an intermediate step. For regression, the

regression function is implemented directly, as is typical for most conventional

approaches. For single-class learning, the support of unknown distribution is

estimated directly from data (rather than via density estimation).

� Margin-based loss: SVM methodology uses the concept of margin (for

classification), and more generally, margin-based loss (for other learning

problems) as a new approach to control complexity and robustness for finite

sample estimation problems. The use of margin-based loss ensures that

complexity is controlled independently of the dimensionality of the input

464 SUPPORT VECTOR MACHINES

space. Although each learning problem uses its own loss function, all margin-

based loss functions have a similar form that can be related to the data

falsification–explanation tradeoff (see Section 9.1).

� Nonlinear feature selection: One unique aspect of the SVM approach is that

nonlinear feature selection is directly incorporated in the model estimation.

This differs from other approaches, such as MLP networks, where feature

selection corresponds to selecting the number of basis functions (hidden

units) and is treated independently of parameter estimation.

� Implementation of an inductive principle: The SVM implements the SRM

inductive principle. SRM provides a formal mechanism for choosing the

optimal model complexity providing minimum expected risk, using a finite

data set. The SVM approach effectively provides a new structure on a set of

admissible models, where each element of a structure is indexed (controlled)

by the margin size. Thus, SVM implements the SRM inductive principle

differently from conventional (statistical, neural network) methods, which use

structures indexed by the number of (nonlinear) features. There may be other

ways to introduce complexity ordering on a set of approximating functions

(i.e., other than margin and dimensionality), and this opens up new research

directions in predictive learning.

� Invariance of support vector representation: When SVMs are applied to

practical classification problems, the set of support vectors does not seem to

depend much on the choice of inner product kernel (Vapnik 1995). In other

words, different inner product kernels often lead to the same support vectors

for the problem data set. This observation indicates that the type of inner

product kernel is not as important for the solution of the learning problem as

is the control of complexity. We have also observed this phenomenon for toy

support vector regression data sets presented in this chapter. At this point, it is

unclear if this holds true for many problems. If this phenomenon is consistent,

it parallels the effects shown for kernel density estimation, where the choice

of kernel type is less important than the kernel width (Vapnik 1995).

Nevertheless, we emphasize that SVMs do not provide a magic bullet solution,

and their application to most practical problems requires a great deal of common-

sense engineering in formalizing the problem, scaling/encoding the data, kernel

selection, and so on. At the same time, the SVM approach provides new insights

for learning with finite sparse data. Moreover, the concept of margin can be used

under noninductive inference, leading to new SVM-like optimization formulations,

as discussed in Chapter 10.

The SVM methodology has become very popular since late 1990s, and there are

literally hundreds of SVM-related papers being published each year in the fields of

machine learning, statistics, signal processing, and so on. A comprehensive math-

ematical description of SVMs can be found in Schölkopf and Smola (2002). In this

book, we tried to present the main ideas and concepts of SVM methodology, fol-

lowing Vapnik (1995).

SUMMARY AND DISCUSSION 465

Finally, we briefly mention two new SVM-related learning formulations recently

proposed by Vapnik (2006). The first formulation, known as SVM-Plus (SVMþ),
takes into account a known structure of the training data. That is, consider a binary

classification problem, where the training data can be represented as a union of sev-

eral groups (of labeled samples). For example, consider medical diagnosis where

the goal is to estimate a decision rule that separates cancer and noncancer patients

based on a set of input variables. However, the labeled training data contain addi-

tional information about the type of cancer. So the training data can be partitioned

into several groups (according to different types of cancer). The goal of learning is

to estimate an inductive decision rule (for diagnosing future patients) using such

structured training data. In this setting, slack variables within each group tend to

be correlated and SVMþ provides a way to incorporate this knowledge about the

global structure of the data into a formal optimization problem. SVMþ leads to a

more complex quadratic optimization formulation than conventional SVM. The

same idea can also be extended to the regression setting, leading to the SVMþ
regression formulation (Vapnik 2006).

The second recent SVM modification is called direct ad hoc inference (DAHI).

Consider a linear hyperplane decision function DðxÞ ¼ ðw � xÞ þ b for binary clas-

sification. Under the DAHI approach, the training data are used to estimate the prin-

cipal direction of the separating hyperplane (i.e., vector w�, estimated via standard

inductive SVM classification). However, the bias term b is estimated for each given

test sample (as in local learning). So the DAHI approach combines the inductive

SVM approach (for estimating general direction of inference) and local learning

(for estimating an individual ad hoc rule for each test input). Vapnik (2006)

describes an effective way to implement such a local learning under sparse settings,

using a new concept of semilocal vicinity, or a soft cylinder, in the feature space.

The concept of semilocal vicinity allows estimation of the one-dimensional condi-

tional probability that the point on the axis of a cylinder (passing through the test

point) belongs to the first class. Note that the classical LDA method (described in

Section 8.2.2) also finds only the principal direction of inference. So the DAHI

methodology for estimating individual thresholds via local learning can readily

be applied to improve the performance of LDA and regularized LDA.

466 SUPPORT VECTOR MACHINES

10
NONINDUCTIVE INFERENCE
AND ALTERNATIVE LEARNING
FORMULATIONS

10.1 Sparse high-dimensional data

10.2 Transduction

10.3 Inference through contradictions

10.4 Multiple-model estimation

10.5 Summary

Science starts from problems, and not from observations.

Karl Popper

All constructive learning methods presented so far in this book assume a standard

inductive learning formulation (introduced in Chapter 2), where the goal is to

estimate a predictive model from finite training data. Although this inductive set-

ting is very general and commonly accepted, it should not be taken for granted.

As argued in Section 2.3.4, the main assumptions (behind the inductive setting)

may not hold for some applications, and this opens up new opportunities for

exploring nonstandard learning formulations and new (noninductive) types of

inference. This line of thinking is in complete agreement with the philosophical

principle of VC-theory, advocating using a direct formulation for learning pro-

blems with finite data. For instance, in Chapter 9 we used different support vector

machine (SVM) formulations for three types of inductive learning problems

(classification, regression, and single-class learning). This chapter presents sev-

eral ‘‘generic’’ nonstandard learning formulations that result in new powerful

learning algorithms. We emphasize the conceptual aspects of these alternative

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

467

learning settings and argue that future progress in predictive learning is likely to

occur due to improved understanding (and acceptance) of noninductive infer-

ence, rather than marginal improvements of learning algorithms implementing

standard inductive inference. For better understanding of this chapter, a reader

is advised to consult Section 2.3.4 providing a critical discussion of the inductive

learning setting.

To motivate the need for noninductive formulations, consider learning settings

where the dimensionality of data samples d is (much) larger than the training sam-

ple size, n. Such data are common in many applications, that is,

� Genetic microarray data analysis, where many gene expression levels have

been measured for a few cases

� Medical imaging, where a small number of 2D or 3D images are represented

by vectors of many parameters. For example, functional magnetic resonance

imaging (fMRI) is concerned with analyzing a few hundred of 3D images

ðn � 100Þ of very high dimensionality (the number of voxels d � 10; 000)

� Text or document categorization, where documents are represented as a high-

dimensional feature vectors, so that the presence (or absence) of a particular

word in a document is encoded as 1 (or 0) entry in the feature space

ðd � 10; 000Þ

For such settings, direct application of classical statistical methods would fail. Like-

wise, direct application of SVM methodology may not help either, as explained

next. Consider the classification setting with a finite training sample (of size n)

in high-dimensional space. Assume that the training samples can be separated by

a maximal margin hyperplane. Let m denote the number of support vectors,

r denote the radius of the sphere containing the data, and � denote the value

of margin ð� ¼ 1= k w k2Þ. Then, according to statistical learning theory (Vapnik

1995), the generalization properties of linear separating hyperplanes in high-

dimensional spaces can be summarized as follows.

The expectation (over training sets of size n) of the probability of test error is

bounded by the expectation of the minimum of

� The ratio m=n

� The ratio ½ðr=�Þ2�=n
� The ratio d=n

This result gives three factors that may be responsible for generalization (using

optimal hyperplanes):

1. Good data compression, that is, a small number of support vectors relative to

the sample size

2. Large margin (relative to the scale of inputs given by r)

3. Small dimensionality of the input space (relative to sample size)

468 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

Classical approaches rely on the third factor (dimensionality), whereas the SVM

approach relies on the first two factors. Of course, selecting the ‘‘best’’ strategy

for generalization depends on a given data set and (often) on application-domain

knowledge. Due to geometric properties of high-dimensional data ðd � nÞ, all sam-

ples tend to become support vectors and the radius r grows faster than margin, as

shown in Section 10.1. Hence, good generalization using linear SVMs in the input

space becomes impossible. Properties of sparse high-dimensional data lead to the

effect known as data piling, discussed in Section 10.1. This phenomenon helps

explain why many classification algorithms (regularized linear discriminant analy-

sis (RLDA), SVM, and least-squares SVM) provide similar generalization perfor-

mance for many high-dimensional data sets.

Most approaches to learning with high-dimensional data focus on improvements

to existing methods (i.e., LDA or SVM) that incorporate better understanding of the

geometric properties of such data or try to incorporate a priori knowledge about the

data (i.e., via specially designed kernels). These approaches, however, are funda-

mentally constrained by the inductive learning setting underlying most learning

algorithms. In this chapter, we consider more principled approaches based on non-

inductive methods of inference. Two such approaches, transduction and inference

through contradictions, are discussed in Sections 10.2 and 10.3, respectively. Both

formulations incorporate additional knowledge in the form of unlabeled samples

(i.e., given in addition to the usual labeled training data). In the case of transduc-

tion, unlabeled data are called the working set, and the goal of learning is to esti-

mate (predict) class labels only for this working set. Transduction has been briefly

mentioned earlier in Chapter 2. Transductive learning is a very general and power-

ful concept, closely related to semisupervised learning (SSL).

Section 10.3 presents a new type of inference called ‘‘inference through contra-

dictions’’ (Vapnik 1998, 2006), which also uses additional unlabeled data samples

called virtual examples or the Universum. Examples from the Universum are not

real training samples; however, they reflect a priori knowledge about application

domain. Section 10.3 presents formal setting that allows to incorporate a priori

knowledge (in the form of unlabeled samples from the Universum) into an induc-

tive learning process.

Finally, in Section 10.4 we discuss an alternative inductive learning formulation

called multiple-model estimation (MME). Recall that the ‘‘standard’’ inductive

learning setting seeks to estimate a ‘‘global’’ model for all available (training)

data. For example, under the classification setting, the goal is to estimate a single

(albeit complex) decision boundary. Likewise, under the regression formulation,

the goal is to estimate a single real-valued function from finite noisy samples. There

are many applications where the natural goal is (1) to estimate a model for some

(unspecified) portion of available data or (2) to estimate completely different mod-

els for different portions of the data. An example of the former is robust estimation,

where the goal is to estimate a single model for the majority of the data, and an

example of the latter is multiple motion estimation/segmentation in computer

vision, where the sequence of video frames may contain several moving objects.

The goal of ‘‘local’’ modeling of a small portion of available data is also known

NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS 469

as pattern discovery in data mining, where data sets tend to be more heterogeneous.

These applications motivate estimation (learning) of several models from a given

training sample. Here, the challenge is robust segmentation (partitioning) of the

training data and estimation of several supervised learning models (for each subset

of data). This setting is more challenging than standard inductive learning, where

the goal is to estimate a single model from the training data. Section 10.4 describes

both classification and regression formulations for this setting, and a greedy SVM-

based constructive algorithm.

10.1 SPARSE HIGH-DIMENSIONAL DATA

Let us consider classification problems with sparse high-dimensional data,

where the input dimensionality is (much) larger than training sample size

ðd � nÞ. Recall the discussion of geometric properties of such data in Chapter 3

(see Fig. 3.1), suggesting that data uniformly distributed in a d-dimensional

cube look like a porcupine, so that most of the data points are closer to an

edge (than another point). As n points generate an n-dimensional subspace

(in the input space), the projections of the data points onto any direction vector in

the ðd�nÞ-dimensional subspace are all zeros. Also, the projections of the data

points onto any vectors orthogonal to the hyperplane generated by the data are

nonzero constants. Hall et al., (2005) analyzed asymptotic ðd � nÞ properties of

high-dimensional data for the binary classification setting, under the assumption

that input variables are ‘‘nearly independent.’’ This analysis suggests that

(asymptotically)

� Samples from each class are the vertices of a regular simplex in d-dimensional

space

� Pairwise distances between points from two different classes are of equal

length

When applying the linear SVM classifier to such data, we can expect that

(asymptotically)

� Data are linearly separable (as d � n)

� All data samples are support vectors

Various linear classifiers differ in approach for selecting the value of the vector w,

specifying the normal direction of a hyperplane w � xþ b. As most data samples

(from one class) are located on the margin border, their projections onto the

SVM hyperplane normal direction vector w tend to be the same (i.e., they project

onto the same point). This phenomenon was recently investigated in the statistical

community under the name ‘‘data piling’’ (Ahn and Marron 2005). In particular,

they derive an analytical form for the maximal data piling (MDP) direction vector,

for which data samples (from each class) tend to project onto the same point. For

470 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

very high-dimensional settings, application of many popular linear classifiers

(SVM, RLDA, etc.) results in

� The data piling effect when most samples (from one class) project onto the

same point of the ‘‘direction vector’’ of a linear separating hyperplane

� Many linear classifiers yielding the same direction vector w

Next, we show a few examples of ‘‘data piling’’ for various linear classifiers in high

dimensions. The first synthetic data set (Ahn and Marron 2005) is generated using a

spherical unit variance Gaussian distribution in 2000-dimensional space, where all

coordinates have zero mean, except that the first coordinate has mean þ3.2 for

class þ1, and �3.2 for class �1. Each class has 30 points. Figure 10.1 shows

projections of data points onto the direction vector for MDP and SVM linear

classifiers. Projections of the data points onto an optimal direction (the first discri-

minating feature) are also shown for comparison (as Bayes optimal direction). Note

that the MDP direction exhibits maximum data piling effect, whereas SVM shows

some data piling as well. A real-life example of data piling in gene expression data

is shown in Fig. 10.2. The COLON data contain 40 tumor and 22 normal colon tis-

sue samples. These samples were collected from 62 patients, and their RNAs were

FIGURE 10.1 Projections of synthetic training data ðn ¼ 60; d ¼ 2000Þ onto the normal

direction vector for MDP and SVM linear classifiers, illustrating the effect of data piling.

Also shown are projections of the data onto an optimal direction (first discriminating feature).

Plots also show (univariate) densities for each class of data (estimated using projected

values).

SPARSE HIGH-DIMENSIONAL DATA 471

extracted and hybridized to Affymetrix Hum6000 arrays (Alon et al. 1999). This

data set has 62 samples in 2000-dimensional space (available at http://microarray.-

princeton.edu/oncology). Following Dudoit et al. (2002), the data were partitioned

randomly into training set (two-thirds of the data) and test set (one-third). The pro-

jections of 42 training data points onto the MDP, SVM, and RLDA direction vectors

(for one split) are shown in Fig. 10.2. These results suggest significant data piling

for both SVM and RLDA methods. Depending on random partitioning, the

SVM model selects 28–30 support vectors (from 42 training samples). All three

methods (MDP, SVM, and RLDA) show comparable prediction accuracy, in the

85–88 percent range, depending on random partitioning of the data.

As noted earlier, generalization performance of linear SVM is expected to degrade

for very high-dimensional data. To illustrate this phenomenon, consider the following

experimental setup: 50 training samples (25 for each class) are generated using

a Gaussian (zero mean, unit variance) distribution for each input feature, except

that the first one has a mean þ2.2 (for class þ1) and �2.2 (for class �1). In order

to investigate the effect of the input space dimensionality on SVM performance, the

training set size was fixed (50 samples) and the input dimensionality was varied,

d ¼ 10; 40; 100; 400; 1600. The error rate was estimated using an independent

test set (of 200 samples). The following quantities may affect SVM generalization

performance: margin size, the radius of the sphere containing all training samples,

and the percentage of support vectors. These quantities, as a function of dimension-

ality, are shown in Fig. 10.3. All results are obtained by repeating each experiment

100 times and displaying the mean value for a quantity of interest, along with error

bars corresponding to 95 percent confidence intervals around the mean value. As

evident from Fig. 10.3, SVM can effectively perform feature selection for problems

with ‘‘medium’’ dimensionality (when d � n); however, its performance deteriorates

for higher-dimensional settings ðd � nÞ, when the radius r grows faster than margin.

Note that plain linear SVM classifier is not the best method for this data set (with a

single relevant feature), and one can use other feature selection techniques or SVM

modifications appropriate for feature selection. However, the purpose of this compar-

ison was to show how SVMmay perform when nothing is known about the properties

of high-dimensional data.

2 4 6
0

0.5

1

MDP
−8 −6 −4 −2 0

0

0.1

0.2

0.3

0.4

0.5

SVM
−8 −6 −4 −2 0

0

0.1

0.2

0.3

0.4

0.5

RLDA

FIGURE 10.2 Projections of COLON microarray data ðn ¼ 42; d ¼ 2000Þ onto MDP,

SVM, and RLDA directions.

472 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

FIGURE 10.3 The effect of data sparsity (dimensionality) on the factors controlling SVM

generalization: (a) error rate; (b) margin and radius; (c) fraction of support vectors.

SPARSE HIGH-DIMENSIONAL DATA 473

Let us discuss several strategies for improving SVM generalization performance

for high-dimensional settings. All conventional approaches incorporate a priori

knowledge about the data at hand using (1) preprocessing and feature selection

prior to learning, (2) appropriate model parameterization, or (3) specially designed

artificial training examples. Next, we briefly discuss example approaches (2) and

(3). For SVM, model parameterization amounts to selection of good kernels,

reflecting knowledge about the data. For example, in image processing, using a ker-

nel Hðx; x0Þ ¼ ðx � x0Þd results in a decision boundary in the space of all possible

products (correlations) of d pixels. However, in real-life images, correlations

between adjacent pixels are much stronger than long-range correlations. So it

may be better to use a kernel that accounts only for local correlations. Such a

‘‘locality improved’’ SVM kernel (Schölkopf and Smola 2002) was successfully

used for the USPS database of handwritten digits in Example 9.3, yielding a better

test error (�3.1 percent) than using a complete polynomial kernel of degree 3 (test

error �4 percent). Using such local kernels is equivalent to preprocessing in the

form of local smoothing. Sometimes, a priori knowledge is used to generate artifi-

cial training examples, similar to the method of ‘‘hints’’ (see Chapter 2). In the con-

text of SVM, this idea has been implemented as the virtual SV method. This

method takes advantage of the fact that for classification problems, the set of sup-

port vectors provides complete characterization of the training data. Hence, an effi-

cient way to encode a priori knowledge about invariances in the data is to apply the

desired invariance transformations to the support vectors. This leads to the follow-

ing procedure (Schölkopf and Smola 2002):

1. Apply the SVM classifier to training data to extract support vectors

2. Generate artificial examples (called Virtual Support Vectors) by applying

invariance transformations to support vectors obtained in (1)

3. Train another SV classifier on the Virtual Support Vectors

For the USPS database of handwritten digits, translation invariance can be encoded

using Virtual Support Vectors generated by one-pixel translations into the four prin-

cipal directions of an image. This simple technique reduces the test error rate

almost by 1 percent (Schölkopf and Smola 2002).

10.2 TRANSDUCTION

Recall the setting of inductive learning (introduced in Chapter 2), where the Learn-

ing Machine needs to select the ‘‘best’’ function from a set of admissible functions

f ðx;oÞ, using finite training sample ðxi; yiÞ, i ¼ 1; . . . ; n, drawn from some

(unknown) joint probability distribution Pðx; yÞ. The quality of an approximation

is defined as prediction risk

RðoÞ ¼
ð

Lðy; f ðx;oÞÞdPðx; yÞ; ð10:1Þ

474 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

where Lðy; f ðx; yÞÞ is a nonnegative loss function (i.e., 0/1 loss for classification or

squared error for regression). In this section, we consider only classification pro-

blems. In many applications, the goal of learning is to predict outputs at specific

(given) input values, rather than to make predictions for all future possible inputs,

as specified in the inductive formulation (10.1). As argued in Chapter 2, for such

situations it may be advantageous to make predictions at the given points directly,

rather than through an intermediate inductive step. This direct setting is known as

estimation of a function’s values at given points or transduction.

Transductive setting for binary classification: In this case, we are given labeled train-

ing data ðxi; yiÞ, i ¼ 1; . . . ; n, as in standard inductive formulation, and additionally, a

working set of unlabeled samples ðx�j Þ, j ¼ 1; . . . ;m. Both training and working sam-

ples are independent and identically distributed (iid) vectors randomly drawn from the

same (unknown) distribution PðxÞ, and classification labelsðyÞ are defined by some

(unknown) conditional probability function Pðy=xÞ. The goal of learning is to find,

from an admissible set of binary vectors y� ¼ ðy�1; . . . ; y�mÞ, the one that classifies

the working samples with the smallest number of errors. This corresponds to minimi-

zation of the expected error on the working set:

Rðy�Þ ¼ 1

m

X

m

j¼1

ð

y

Lðy; y�j ÞdPðy=x�j Þ: ð10:2Þ

Transductive learning was introduced very early in VC theory (Vapnik and

Chervonenkis 1964; Vapnik 1982); however, its theoretical and practical implica-

tions remained fairly unknown. Theoretical analysis (Vapnik 1982) shows that for

the transductive setting, one can achieve much tighter VC generalization bounds

(versus inductive setting), suggesting better generalization.

The transductive formulation (as stated above) is a combinatorial problem, so all

practical versions of transduction assume that the set of admissible vectors is

defined by some parameterization of admissible decision functions f ðx;oÞ, that
is, the binary vector y� ¼ ðsignðf ðx�1;oÞÞ; . . . ; signðf ðx�m;oÞÞÞ. This leads to the fol-
lowing form of expected error on the working set:

RðoÞ ¼ 1

m

X

m

j¼1

ð

y

Lðy; signðf ðx�j ;oÞÞÞdPðy=x�j Þ: ð10:3Þ

Note that transductive learning is distinctly different from the standard inductive

setting, where learning amounts to estimating a model (function) for all possible

inputs. The goal of estimating function’s values at given points is much simpler.

The goal of learning given by (10.2) uses a simpler concept of admissible set of

binary vectors (of size m) and does not even use the concept of admissible set of

functions f ðx;oÞ. This observation has important implications on the philosophi-

cal aspects of inference and generalization. That is, the traditional view of infer-

ence corresponds to first constructing a general rule (function) using available

TRANSDUCTION 475

information, and then applying this rule to make deductive inferences (predic-

tions). This corresponds exactly to the inductive learning setting. Transductive

mode implements direct inference from available training data to predicting the

output values at given points, without an intermediate step of estimating a general

rule (function). In more technical terms, the goal of inductive inference is to esti-

mate a function for the whole input space, whereas transduction aims at estimat-

ing function’s values only at discrete set of inputs, that is, for nþ m input values.

Another important distinction is that in transduction predictions are made jointly

for all input values (of interest), whereas during the inductive reasoning prediction

(deduction) is performed independently for each input value (of interest)—see

Fig. 2.4. The transductive mode of inference appears appropriate for many appli-

cations and, arguably, is very relevant to human reasoning. For example, in nat-

ural language processing, one tries to understand all words in a sentence

simultaneously, rather than interpret each word separately. Similarly, in the pro-

blem of handwritten zip code recognition, it may be better to recognize all five

digits (of U.S. zip code) simultaneously, instead of one by one.

Transduction is closely related to several diverse learning methodologies, broadly

known as semi-supervised learning (SSL). These methods assume availability of

labeled training data and unlabeled data (similar to transduction) and use learning

algorithms that typically combine unsupervised learning (from Chapter 4) and super-

vised learning methods (from Chapters 7–9). Unfortunately, there is no clear problem

setting for SSL, so any method utilizing both labeled and unlabeled data usually fits

the bill. For conceptual clarity, we need to separate the setting of SSL from its various

constructive algorithms. So we will use the following definition.

Semi-supervised learning setting: Consider finite labeled training sample ðxi; yiÞ,
i ¼ 1; . . . ; n, and finite unlabeled sample ðx�j Þ, j ¼ 1; . . . ;m, where both labeled and

unlabeled samples are randomly drawn from the same joint probability distribution

Pðx; yÞ. The goal of SSL is to select the ‘‘best’’ function from a set of admissible functions

f ðx;oÞ, using both the labeled and unlabeled samples. The quality of an approximation is

defined as prediction risk (10.1). In other words, SSL uses the same assumptions regarding

available data as transduction, but it has the same goal of learning as induction.

An obvious strategy for SSL may be to first model PðxÞ using the unlabeled data

and then apply supervised learning with the labeled training data. In fact, this

two-stage learning process has been used for training radial basis function

(RBF) networks (in Chapter 7). More sophisticated strategies combine unsuper-

vised and supervised learning into the same algorithm. This can be achieved, for

example, using the batch constrained topological mapping (CTM) algorithm (in

Chapter 7), where smoothing (conditional expectation) in x-space and y-space is

performed during the same iteration. In the CTM algorithm, unlabeled data can

be utilized for smoothing in the x-space. Clearly, there are many ways to com-

bine supervised and unsupervised learning techniques, and description of such

methods is beyond the scope of this book. For a good overview of semisuper-

vised methods, see Chapelle et al. (2006).

476 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

Based on the description of problem settings (given above), we can make several

comments regarding SSL as it relates to transduction:

� SSL implements inductive inference (unlike transduction).

� SSL produces an inductive model (for all possible inputs x), whereas

transduction yields predictions only for a given set of inputs. Hence, an

SSL model is may be easier to interpret than a transduction model.

� When the number of unlabeled samples grows large ðm!1Þ, asymptoti-

cally both transduction and SSL will produce the same predictive model.

With finite m, these settings would yield different predictions.

� SSL usually assumes that the number of unlabeled samples is (much) larger

than the number of labeled samples, m > n. This assumption is well justified,

because in most applications labeled data are more ‘‘expensive’’ to generate.

Also, unsupervised learning requires inherently more data than supervised

learning.

� As both SSL and transduction use two identical types of data samples, it is

possible to use a transductive algorithm in a semisupervised problem setting.

That is, a transductive model is estimated first, and then used for predicting all

possible x-values. In fact, many constructive learning algorithms (Chapelle

et al. 2006) use this approach to implement SSL. Of course, this makes

practical sense only if the number of unlabeled samples m is sufficiently large.

Next, consider optimization formulation for large-margin transduction (aka SVM

transduction). We use the same line of reasoning as in Chapter 9 (for inductive

SVM), where we partitioned a set of linear separating hyperplanes f ðx;oÞ ¼
ðx � wÞ þ b into a set of equivalence classes F1;F2; . . . ;FN , such that each class

had the same labeling of the training samples. For transduction, we construct a set

of equivalence classes using a joint set of ðtrainingþ workingÞ samples, that is,

each equivalence class Fi partitions the joint set in the same way (with regard to

class labels). The size of an equivalence class is defined by the largest value of margin.

That is, choose the function from an equivalence class Fi that has the largest margin

and use the value of largest margin as the size of this equivalence class. These notions

are illustrated in Fig. 10.4, which shows two decision functions (large-margin separ-

ating hyperplanes) specifying two equivalence classes. These two functions corre-

spond to different equivalence classes because they assign different class labels to

working samples (even though they assign the same labels for training samples).

Both hyperplanes yield the same (zero) error for training samples, but they have dif-

ferent margin. Intuitively, we favor the hyperplane with larger margin (corresponding

to larger degree of ‘‘falsifiability’’). Recall the interpretation of margin as falsifiability

introduced in Section 9.1 to motivate margin-based loss for inductive SVM. Using

similar arguments, transductive inference tries to achieve two goals:

� Classify joint set of (training and working) samples, that is, explain well

available data

� Increase the largest value of (soft) margin, that is, maximize falsifiability

TRANSDUCTION 477

More formally, transductive inference (based on the size of margin) classifies the

working samples by the equivalence class (defined on a joint set) that explains

well the training data and has the largest (soft) margin. At this point, note that

the size of an equivalence class is indexed by the value of margin, for both inductive

and transductive SVM formulations. The concept of the size of an equivalence class

is very general, and this size can be measured by quantities other than margin (as

will become evident in Section 10.3). This leads to new ways for introducing com-

plexity ordering on a set of admissible models or new implementations of the struc-

tural risk minimization (SRM) principle.

Even though we showed an example of linearly separable data in Fig. 10.4, non-

separable data can be easily handled using slack variables xi for training samples

and x�j for working samples. These slack variables are introduced in a manner iden-

tical to soft margin SVM in Chapter 9. This yields the following optimization pro-

blem for transductive SVM:

minimize Rðw; bÞ ¼ 1

2
ðw � wÞ þ C

X

n

i¼1
xi þ C�

X

m

j¼1
x�j ; ð10:4aÞ

subject to

yi½ðw � xiÞ þ b� 	 1� xi;
y�j ½ðw � xiÞ þ b� 	 1� x�j ;

xi; x
�
j 	 0; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m;

8

<

:

ð10:4bÞ

FIGURE 10.4 Two large-margin separating hyperplanes specifying different equivalence

classes. Each equivalence class is indexed by the margin on a joint set.

478 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

where desired classification of working samples is given by

y�j ¼ signðw � xj þ bÞ; j ¼ 1; . . . ;m:

Here parameters C and C� control the tradeoff between the two goals of learning,

minimization of errors and maximization of margin. The linearly separable formu-

lation (hard margin transduction) is a special case of the above soft margin SVM

transduction with no slack variables. Also, the soft margin inductive SVM (9.23) is

a special case of formulation (10.4) with no slack variables for working samples

ðx�j ¼ 0Þ. This similarity between transductive (10.4) and inductive (9.23) formula-

tions suggests the following interpretation:

Transductive SVM constructs a large-margin hyperplane classifier using labeled train-

ing data and, at the same time, forces this hyperplane to stay far away from unlabeled

data.

In practice, the size of the labeled training data set n is small relative to the working

set, m, so it is usually possible to classify all working samples as belonging to one

of the classes with a large margin. This leads to poor solutions, as the fraction of

positive and negative class labels assigned to unlabeled samples should be approxi-

mately the same as found in the training data. So an additional constraint must be

imposed to avoid such unbalanced solutions (Joachims 1999; Chapelle and Zien

2005):

1

n

X

n

i¼1
yi ¼

1

m

X

m

j¼1
½ðw � xiÞ þ b�: ð10:4cÞ

Solution to the constrained optimization problem (10.4) defines the large-margin

hyperplane f ðx;o�Þ ¼ ðx � w�Þ þ b� used to classify unlabeled working samples.

The dual formulation for transductive SVM and its nonlinear kernelized version

can readily be obtained using standard optimization theory and SVM techniques

(Vapnik 1998, 2006).

Unfortunately, the transductive SVM optimization problem (10.4) is not convex,

due to nonconvexity of the loss function associated with unlabeled data samples. So

various nonconvex optimization algorithms have been proposed to solve (10.4) effi-

ciently. Two popular approaches are SVMLight (Joachims 1999) and the Low-Density

Separation algorithm (Chapelle and Zien 2005). It may be difficult to compare the

performance of different transduction algorithms, as different optimization heuristics

typically lead to very different results, even if they use the same optimization formu-

lation (10.4). Also note that most algorithms are designed for data sets with a large

number of unlabeled samples (m). For small m (say, m � 10), the SVM transduction

problem can be solved directly by trying all possible labelings of y� ¼ ðy�1; . . . ; y�mÞ
and calculating the largest margin size on a joint set (for each labeling). However,

with small m, the labeled training data contain most available information, and trans-

duction is not likely to give an advantage (over standard inductive SVM).

TRANSDUCTION 479

At this time, there are just a few reported application studies using transduction,

such as text categorization and classification of protein sequences (in bioinfor-

matics). These studies indicate significant improvement in the generalization per-

formance due to transduction (versus inductive SVM). Conceptually, transduction

improves generalization performance (over induction) because (1) predictions are

made only for specific points and (2) predictions at these points utilize mutual infor-

mation about x-values of working samples. Empirical comparisons between trans-

duction and SSL may be trickier and usually depend on implementation details. See

Chapelle et al. (2006) for a description of various optimization algorithms and

empirical comparisons between transduction, inductive learning, and SSL. A com-

mon problem (with empirical comparisons) is the lack of an agreement on the defi-

nition of SSL. The SSL setting defined earlier in this section may not be appropriate

for some practical scenarios utilizing both labeled and unlabeled data. For example,

consider the following learning setting (Chapelle 2006):

Transductive SSL setting: Consider finite labeled training sample ðxi; yiÞ, i ¼ 1; . . . ; n,
and finite unlabeled sample ðx�l Þ, l ¼ 1; . . . ; k, as in SSL formulation. The goal of

learning is to predict outputs for a given working sample ðx�j Þ, j ¼ 1; . . . ;m. That is,
we need to find, from an admissible set of binary vectors y� ¼ ðy�1; . . . ; y�mÞ, the one

that classifies the working samples with the smallest number of errors. Thus, the goal

of learning is minimization of (10.2) identical to transduction. All three data sets

(labeled, unlabeled, and working set) are iid vectors randomly drawn from the same

(unknown) distribution PðxÞ, and classification labels ðyÞ are defined by some

(unknown) conditional probability function Pðy=xÞ. Clearly, this setting is different

from transduction and SSL (as defined earlier in this section).

Our discussion, up to this point, assumed that labeled (training) and unlabeled

(working) data samples originate from the same distribution. In some applica-

tions, the working data are not iid with respect to the training data. In this

case, strictly speaking, learning is impossible, as all VC theoretical results assume

stationary distributions. However, if one adopts a philosophical view of transduc-

tion (as a new type of inference), it may be still possible to achieve meaningful

generalizations. This is illustrated for local transductive learning, where the

objective is to classify a single unlabeled sample ðm ¼ 1Þ, given labeled training

data. In this case, there are two possibilities, that is, the class of the unlabeled

sample may (or may not) affect the model explaining the labeled training data.

The former case is shown in Fig. 10.5, where a single unlabeled sample is denoted

as X. Here, we do not make an assumption that the unlabeled sample originates

from the same distribution as the training data. So it is not feasible trying to clas-

sify this sample under inductive setting. However, transductive mode of inference

may be still meaningful in this case, and the sample X should be classified

as y ¼ �1, as this yields a linear decision boundary with larger margin (see

Fig. 10.5). Note that such a local margin-based learning strategy is different

from conventional local learning (i.e., k nearest neighbors). In most cases, a single

unlabeled sample does not affect the model explaining labeled data. In this case,

we can still apply similar arguments for classifying atypical input samples, as

480 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

shown in the SVM classification example in Fig. 9.15. Here, a new input is clas-

sified differently by two nonlinear SVM classifiers (with different kernels). Let us

assume, for the sake of discussion, that both SVM models have the same predic-

tion accuracy (estimated via resampling on the training data). Then there is no

reason to favor one inductive model versus another, for classifying this atypical

sample. However, under the transductive setting we should favor the model with

larger falsifiability, so we favor the model in Fig. 9.15(a) and classify the input

accordingly. The model in Fig. 9.15(a) is favored because it has a much larger

margin size than the model in Fig. 9.15(b).

10.3 INFERENCE THROUGH CONTRADICTIONS

The idea of ‘‘inference through contradictions’’ was introduced by Vapnik (1998)

in an attempt to introduce a priori knowledge into the learning process. Recall that

all traditional approaches (for encoding a priori knowledge) try to characterize the

space of admissible models f ðx;oÞ or the relationship between the ‘‘true’’ model

and the properties of admissible models. This includes, for example, specification

of kernels (in SVM) or prior distributions (in Bayesian methods). It may be

argued that in real applications (especially with sparse high-dimensional data)

such ‘‘good’’ parameterizations are hard to come by. So it is more reasonable

to introduce a priori knowledge about admissible data samples. These additional

unlabeled data samples (called virtual examples or the Universum) are used along

with labeled training samples to perform an inductive inference. Examples from

the Universum are not real training samples; however, they reflect a priori

FIGURE 10.5 Example of margin-based local learning for classification. Unknown input X

is classified as y ¼ �1 because it yields decision boundary with larger margin M1 > M2.

INFERENCE THROUGH CONTRADICTIONS 481

knowledge about application domain. For example, in the problem of handwritten

digit recognition, one can introduce virtual examples in the form of handwritten

letters. These examples from the Universum reflect ‘‘style of writing,’’ but they

cannot be assigned to any of the classes (digits). Effectively, the Universum

data contain a priori knowledge about the region of the input space where the

data are likely to belong.

The idea of using additional data to improve learning, of course, is not new.

However, the Universum data are different from additional data used in earlier meth-

ods. For example, transduction and SSL use unlabeled data from the same input

distribution as training data. Additional labeled data (also called ‘‘virtual examples’’)

are used in the method of ‘‘hints’’ (mentioned at the end of Chapter 2); however,

these ‘‘hints’’ are used to encode a priori knowledge about the properties of good

models, rather than knowledge about the input space. In SVM, knowledge about

the properties of good models is used in the virtual SV method, as discussed in

Section 10.1.

Let us consider the inductive setting (for binary classification), where we have

labeled training sample ðxi; yiÞ, i ¼ 1; . . . ; n, and a set of unlabeled examples from

the Universum, ðx�j Þ, j ¼ 1; . . . ;m. The Universum contains data that belong to the

same application domain as the training data, but these samples are known not to

belong to either class. The main question is: How to incorporate the Universum

samples into inductive learning? Next, we explain how it can be done using infor-

mal arguments, assuming that labeled training samples are linearly separable.

Recall the general philosophical principle used to motivate margin-based loss

and SVM transduction:

Find a model that explains the available data well and has maximal falsifiability.

For the problem at hand (binary classification), explaining available data

means (linear) separation of training samples (with zero error). Let us assume

that the training data are separated using large-margin hyperplanes (as in stan-

dard SVM). In this case, the Universum samples can fall either inside the margin

or outside the margin (see Fig. 10.6). Recall that the Universum samples do

not belong to either class, so we favor hyperplanes with Universum samples

inside the margin. Such Universum samples (inside the margin) are called con-

tradictions because they are falsified by the model (i.e., have nonzero slack vari-

ables for either class label). Now the total number of contradictions can be used

as the measure of falsifiability (on the Universum); see Fig. 10.6. So the new

mode of inference implements a tradeoff between explaining training samples

(using large-margin SVM) and maximizing the number of contradictions (on

the Universum).

More formally, inductive inference through contradictions can be introduced

using the concept of equivalence classes used in Chapter 9 (for inductive SVM)

and Section 10.2 (for transductive SVM). When using the Universum to implement

inductive inference via linear separating hyperplanes f ðx;oÞ ¼ ðx � wÞ þ b, we

introduce complexity ordering on a set of equivalence classes F1;F2; . . . ;FN using

482 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

the number of contradictions on the Universum. Then we choose the model (i.e.,

maximal-margin hyperplane) from the equivalence class that

� explains well the training data, that is, makes no (or very few) errors, and

� has the maximal number of contradictions on the Universum.

Effectively, we have introduced a new SRM structure on a set of equivalence

classes, where each class is indexed by the number of contradictions. This can

be contrasted to standard SVM classification, which implements a structure indexed

by the size of margin.

Now we proceed to the quadratic optimization formulation for implementing

SVM-style inference through contradictions. To simplify the presentation, we con-

sider the linear SVM classification setting and use the familiar notation for soft-

margin SVM. For labeled training data, we use standard soft-margin loss (9.23)

with slack variables xi. For the Universum samples ðx�j Þ, we need to penalize the

real-valued outputs of our classifier that are ‘‘large’’ (far away from zero). There

may be several possible choices for this loss (quadratic, least modulus, etc.). For

computational reasons, we adopt e-insensitive loss (see Fig. 9.5). Let x�j denote

slack variables for samples from the Universum. Then SVM-based inference

through contradiction can be stated as follows:

minimize Rðw; bÞ ¼ 1

2
ðw � wÞþ C

X

n

i¼1
xiþC�

X

m

j¼1
x�j ; where C;C� 	 0; ð10:5aÞ

FIGURE 10.6 Two large-margin separating hyperplanes explain training data equally well,

but have different number of contradictions on the Universum. We favor the model with a

larger number of contradictions.

INFERENCE THROUGH CONTRADICTIONS 483

subject to constraints

yi½ðw � xiÞ þ b� 	 1� xi; xi 	 0; i ¼ 1; . . . ; nðfor labeled dataÞ; ð10:5bÞ
jðw � xiÞ þ bj � eþ x�i ; x�j 	 0; j ¼ 1; . . . ;mðfor the UniversumÞ;
where e 	 0: ð10:5cÞ

Parameters C and C� control the tradeoff between minimization of errors

and maximization of the number of contradictions. Selecting ‘‘good’’ values

for these parameters is a part of model selection (usually performed via resam-

pling). When C� ¼ 0, formulation (10.5) is reduced to standard soft-margin

SVM.

Solution to optimization problem (10.5) defines the large-margin hyperplane

f ðx;o�Þ ¼ ðx � w�Þ þ b� that incorporates a priori knowledge (from the Universum)

into the inductive SVM model. The dual formulation for inductive SVM in the

Universum environment and its nonlinear kernelized version can readily be

obtained using standard optimization theory and SVM techniques (Vapnik 2006).

Further, it is possible to introduce inference through contradictions into the

transductive mode of learning. See Vapnik (2006) for description of transductive

SVM in the Universum environment.

The quadratic optimization problem (10.5) is convex due to convexity of con-

straints (10.5b) and (10.5c). Note that e-insensitive loss can be formed by adding

two hinge loss functions, as explained next. Recall definitions of margin-based

loss (9.2) and (9.3) for SVM classification and regression, reproduced below using

slightly different notation:

Hinge loss : HingeðtÞ ¼ maxð�� t; 0Þ; ð10:6Þ
e-insensitive loss : LeðtÞ ¼ maxðjtj � e; 0Þ; ð10:7Þ

where t ¼ yf ðx;oÞ for classification and t ¼ y� f ðx;oÞ for regression. Hence,

LeðtÞ ¼ HingeðtÞ þ Hingeð�tÞ; where e ¼ �: ð10:8Þ

This suggests that optimization of (10.5) can be implemented with minor

modifications of standard SVM software, where the Universum samples are

added twice with opposite class labels (Weston et al. 2006). Another practical

issue is model selection, that is, specification of parameters C, C�, and e

for optimization formulation (10.5). Note that using nonlinear (kernelized)

versions of (10.5) would add another parameter (kernel complexity). Currently,

these parameters are selected (by expert users) via resampling, and more

research is needed for developing practical strategies for inductive learning in

the Universum environment.

The main issue for implementing inference through contradictions is specify-

ing ‘‘good’’ Universum data. Even though this process cannot be formalized, initi-

al empirical studies suggest that it should be easy to collect or generate

484 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

Universum data for most applications. For example, consider the problem of

discriminating between handwritten digits 5 and 8 (Vapnik 2006; Weston et al.

2006). For this binary classification problem, the following Universum sets had

been constructed:

� U1: randomly selected handwritten digits from other classes (0, 1, 2, 3,

4, 6, 7, 9)

� U2: artificial images created by randomly mixing pixels (with probability 0.5)

from the images from class 5 and the images from class 8

� U3: artificial images created by the mean of randomly selected training

examples of images from class 5 and class 8

For all three cases, the addition of the Universum improves generalization perfor-

mance of SVMs. Moreover, an improvement due to the Universum is most signifi-

cant with small training samples (Vapnik 2006; Weston et al. 2006). For example,

with 500 training samples, standard inductive SVM yields �2 percent error rate (on

test data) but using the Universum (with the same training data) lowers the error

rate to �1–1.6 percent, depending on the type of the Universum used. See Weston

et al. (2006) for details and other application examples.

The notion of inference through contradictions (with the Universum data) has

two aspects, technical and philosophical. On a technical side, it is important to

understand why this approach improves generalization and how to choose

‘‘good’’ Universum data for a given problem. Recall standard SVM formulation

(9.23). As we have seen in Section 10.1, for sparse high-dimensional problems

ðd � nÞ SVM may fail to generalize well. It appears that indexing (ordering)

the equivalence classes by the number of contradictions (on the Universum) effec-

tively enables solving the SVM problem in a lower-dimensional manifold defined

by the Universum data. This yields better generalization, because we effectively

estimate an SVM model in this lower-dimensional space (where the data live).

Note that an explicit estimation of a nonlinear manifold (from sparse high-dimen-

sional data) is a challenging computational problem. Instead, the Universum data

enter directly into convex optimization formulation (10.5), which gives a formal

procedure for including a priori knowledge into the SVM framework. Of course,

there is no formal way of coming up with good a priori knowledge itself. Similar

to the problem of specifying prior distribution (in statistical methods), construc-

tion of ‘‘good’’ Universum data is subjective and cannot be formalized (Vapnik

2006).

Learning with the Universum also has interesting philosophical and conceptual

implications. This mode of inference can be related to human learning, when indi-

viduals make decisions (generalizations) not just on the basis of their direct

personal experience (training data), but also using cultural knowledge (from the

books, movies, folklore, etc.). Vapnik (2006) refers to this knowledge as ‘‘cultural

Universum.’’ Learning with the Universum (like transduction) is a new type of

noninductive inference that may have significant implications in psychology and

understanding of human reasoning.

INFERENCE THROUGH CONTRADICTIONS 485

10.4 MULTIPLE-MODEL ESTIMATION

Recall that under the standard inductive formulation (Fig. 2.1) the learning machine

observes finite training samples ðxi; yiÞ, i ¼ 1; . . . ; n, and the goal of learning is to

estimate unknown mapping f:x! y in order to imitate the system’s response for

future inputs. This setting implicitly assumes that all available data can be

explained by a single (albeit complex) model. So the goal of learning is single-

model estimation.

In many applications, the goal may be different, that is,

1. Robust estimation framework, where the goal is to model the majority of the

data (while discarding/ ignoring outliers).

2. Multiple model estimation (MME), where the goal is to estimate several

models, each describing a different subset of the data. In this case, unspecified

portions of the training data can be described by different models fm : x! y,

m ¼ 1; . . . ;M, and the goal of learning is to estimate these mappings and to

partition/segment available training data ðxi; yiÞ, i ¼ 1; . . . ; n, into several

subsets.

Note that estimating each component model (under MME) requires robust estima-

tion in the presence of ‘‘structured’’ outliers (corresponding to data samples from

other component models). Hence, MME is closely related to robust estimation. The

distinction between standard (single-model) inductive setting and MME setting

may not be clear cut and depends largely on application requirements. For the

sake of discussion, assume that the training data contain noisy observations of

several target functions, leading to multiple-model regression (see Fig. 10.7).

Under this formulation, a labeled training sample ðxi; yiÞ; i ¼ 1; 2; . . . ; n, can be

described by several (unknown) regression models,

y ¼ tmðxÞ þ xm; x 2 Xm; ð10:9Þ

FIGURE 10.7 Two example data sets suitable for multiple model regression: (a) two

regression models; (b) single complex regression model.

486 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

where xm is iid noise and unknown target functions (models) are denoted as

tmðxÞ;m ¼ 1; . . . ;M. Usually the number of models (M) is unknown. The statistical

model further assumes that the input samples for model m are generated

according to some (unknown) input distribution PmðxÞ. The input domains Xm

for distributions PmðxÞ may overlap (Fig. 10.7(a)) or may be disjoint

(Fig. 10.7(b)). Assuming statistical model (10.9) for data generation, the goal of

learning may be twofold:

� Model estimation, that is, estimating M target functions from a set of possible

(admissible) models:

fmðx;omÞ; ðom 2 �m;m ¼ 1; . . .MÞ; ð10:10Þ

where om is a (generalized) set of parameters for each model m. Each model

fmðx;o�mÞ ¼ ŷm ‘‘estimates’’ the corresponding target functions tmðxÞ in (10.9).
� Segmentation or data partitioning, of available training data into M subsets,

corresponding to different models. This implicitly partitions the ðx; yÞ space
intoM regions. These regions may be overlapping in the input (x) space (as in

Fig. 10.7(a)).

MME can be viewed as a generalization of single-model estimation (e.g., traditional

regression formulation), because under MME the goal is accurate estimation of

several component models, not just a single model. Alternatively, this setting

can be viewed as an approach to clustering, under the assumption that each cluster

can be described using a supervised model. For example, data sets in Fig. 10.7 can

be viewed as two clusters, where each cluster is linear regression model, under MME

interpretation.

Let us relate data sets in Fig. 10.7 to existing (single-model) methods. Clearly,

the data set in Fig. 10.7(a) cannot be accurately described (explained) using

existing regression methods. On the contrary, for the second data set (in

Fig. 10.7(b)) ‘‘good’’ partitioning of the data may be performed in the input

ðxÞ space. So modeling of these data can be formalized using either (a) standard

single-model setting or (b) multiple-model setting, where several simple compo-

nent models collectively represent one complex predictive model (a). Under a

single-model estimation setting, this data set can be estimated, in principle, using

partitioning methods (MARS or CART) or the mixture modeling methods

(Jordan and Jacobs 1994; Hastie et al. 2001). Under the mixture approach,

data samples originate from several (simple) density models. The model mem-

berships are modeled as hidden (latent) variables, so that the problem can be

transformed into single-model density estimation. Parameters of component

models and mixing coefficients are then estimated via expectation maximization

(EM)-type algorithms. Arguably, for this data set the MME setting (with

two-component models) is more appropriate than single-model setting (CART

or mixture of experts with six components). In fact, applying the mixture of

experts to this data yields poor results because single-model regression favors

MULTIPLE-MODEL ESTIMATION 487

a continuous target function, so estimating a discontinuous model from noisy

data is hard (Cherkassky and Ma 2005).

Similarly, it may be possible to apply the MME framework under a classification

setting. For instance, consider example in Fig. 9.15 where a two-dimensional data

set formed by three clusters (A, B, and C), such that points from A and C have

negative class labels and points from B are labeled as positive class. Suppose a

good nonlinear decision boundary can be found using standard SVM classifier.

Under the MME approach, these data can be modeled using two linear component

models: a linear SVM decision boundary separating A from B, and another linear

SVM decision boundary separating B from C. So in effect, the MME approach

results in several simple (linear) SVM component models instead of a nonlinear

model. This strategy is clearly beneficial for model interpretation (understanding).

MME can be viewed as estimation (learning) of several ‘‘simple structures’’ that

describe the available data well. For example, for the multiple regression formulation

each component is a (single) regression model, whereas for multiple classification

each component model is a (linear) decision boundary. The problem with all

approaches that (simultaneously) partition the data and model each partition sepa-

rately is that they are inherently nonconvex, as explained next. Let us consider

SVM loss functions (10.6) and (10.7) for classification and regression. This standard

SVM loss grows linearly for samples with large residuals. The notion of modeling a

subset of available data implies that the MME strategy should discount (ignore) data

samples with very large residual values as ‘‘outliers.’’ This idea can be incorporated

into a new loss function where the loss is capped at some large constant value, say

twice the e-value (for regression) or twice the margin size (for classification):

HingeMMEðtÞ ¼ minðHingeðtÞ; 2�Þ; ð10:11Þ
LMMEðtÞ ¼ minðLeðtÞ; 2eÞ: ð10:12Þ

Loss functions (10.11) and (10.12) are nonconvex, leading to nonconvex optimiza-

tion. For example, Fig. 10.8 contrasts this new loss to standard convex SVM loss for

classification.

FIGURE 10.8 Loss function for SVM (solid line) and multiple-model classification (dotted

line).

488 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

The problem of nonconvexity (inherent in the MME approach) can be handled by

introducing various assumptions and heuristics. Similar problems commonly arise

in Computer Vision applications, which often require model estimation and data

segmentation at the same time. A typical application setting is multiple motion esti-

mation, where the goal is to simultaneously identify several moving objects and to

estimate motion models (for each object). In Computer Vision, the adverse effects

of model misspecification have led to the development of practical robust segmen-

tation methods, such as Hough transform and RANSAC (Forsyth and Ponce 2003).

These Computer Vision techniques proved to be more ‘‘robust’’ in practice than

to estimators imported from statistics because statistical methods are based on

single-model formulation, where the goal is robustness with respect to heavy-tailed

noise, rather than to ‘‘structured outliers’’ (Meer et al. 2000; Chen et al. 2001).

Next, we present a class of greedy SVM-based algorithms for multiple-model

classification (MMC) and regression that effectively implement optimization with

nonconvex loss (10.11) or (10.12) using a few simplifying assumptions (Cherkassky

and Ma 2005). These algorithms are closely related to robust statistical estimation,

as both approaches assume that the majority of available data can be explained by a

single model. (This assumption is essential for robust model-free estimation.) A

general greedy iterative procedure for MME is shown in Table 10.1. This iterative

procedure is similar to greedy optimization (see Chapter 5). However, the differ-

ence is that MME aims at explaining the majority of available data at each iteration,

whereas partitioning methods (such as CART and MARS) model all available data.

So the main challenge in MME is formulating a very robust method for estimating a

major model (in step 1). Here ‘‘robustness’’ refers to the capability of estimating a

major model when available data may be generated by several other ‘‘structures.’’

Tunable parameters in MME procedure include

� Specification of ‘‘threshold’’ for identifying samples that can be explained

by a dominant model (in step 2): This threshold parameter is related to the

‘‘level of noise’’ in the major model estimated in step 1. For example, this

threshold is set to twice the ‘‘margin size’’ of the major model, according to

Eqs. (10.11) and (10.12);

� Stopping criterion: This is a user-defined parameter specifying the total

number of component models and/or the minimum number of samples (or

percentage of data points) in the final component model.

TABLE 10.1 Procedure for Multiple Model Estimation

Initialization: ‘‘Available data’’¼ all training samples

� Step 1: Estimate major model, that is, apply robust estimation method to available data,

resulting in a dominant model M1 (describing the majority of available data)

� Step 2: Partition available data into two subsets, that is, samples explained byM1 and samples

explained by other models (the remaining data). This partitioning is performed by

analyzing data samples ordered according to their distance (residuals) to major model

� Step 3: Remove subset of data explained by major model from available data

Iterate: Apply steps 1–3 to available data until some stopping criterion is met

MULTIPLE-MODEL ESTIMATION 489

Consider a few examples illustrating desirable properties of robust estimators used

in step 1. Example in Fig. 10.9(a) shows a data set comprising two linear models:

the dominant model (70 percent of the data) and a secondary model (30 percent).

Figure 10.9(b) shows the dominant model estimated by a robust method and tradi-

tional least-squares fitting (both methods use all training data). Clearly, least-

squares estimation produces a rather poor model. More importantly, if the second-

ary portion of the data changes, as shown in Fig. 10.9(c), then least-squares fitting

yields a completely different model, whereas the robust method remains insensitive

to these variations (see Fig. 10.9(d)). As shown in this example, robustness here

refers to an accurate estimation of the major model and stability of such estimates

with respect to variability of data samples generated by secondary model(s). A

similar example for classification is shown in Fig. 10.10, where the decision bound-

ary is formed by two linear models, using a robust method (in Fig. 10.10(a)) and a

traditional (nonrobust) CART method (in Fig. 10.10(b)). Variations in the ‘‘minor

portion’’ of the data (i.e.,‘‘triangle’’ samples in the upper-right corner of Fig.

10.10(a)) would not affect the major model Hð1Þ, but such variations may totally

change the first split of the CART method (Ma and Cherkassky 2003). Example

in Fig. 10.10 shows the difference between traditional partitioning methods

(CART) that seek to minimize a loss function for all ‘‘available’’ data during

each iteration and MME strategy that seeks to explain the majority of available

data.

0 0.5 1
–1

0

1

2

3

(a)

Dominant M1
Secondary M2

0 0.5 1
–1

0

1

2

3

(c)

Dominant M1
Secondary M2

0 0.5 1
–1

0

1

2

3

(b)

By robust method
By least squares

0 0.5 1
–1

0

1

2

3

(d)

By robust method
By least squares

FIGURE 10.9 Robust method versus least-squares estimation of the dominant model M1.

490 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

As evident from Fig. 10.10, for classification data the major model (say, hyper-

plane Hð1ÞÞ partitions the x-space into two halves, such that the data in one region

are explained unambiguously by the major model Hð1Þ. The data in the remaining

half space cannot be explained unambiguously byHð1Þ, so the next model (hyperplane

Hð2Þ) is estimated in this half space. Effectively, for classification problems, this itera-

tive partitioning of the input space is equivalent to partitioning of the training data

(into subsets explained by different component models). In contrast, partitioning of

regression data is performed in ðx; yÞ space, rather than in the input space (see

Fig. 10.9). Hence, the MME approach can be used for constructing a predictive classi-

fier; however, for regression data it can only be used for segmentation of training data.

Next, we describe an implementation of a robust estimation algorithm appropri-

ate for multiple regression and multiple model classification (MMC) approach via

an iterative procedure in Table 10.1. The robust method called double application

of SVM (Cherkassky and Ma 2005) implements step 1 in the iterative procedure.

This method implements robust estimation with desirable properties as shown in

Figs. 10.9 and 10.10. We assume linear SVM parameterization for each component

model. This assumption is not restrictive: If we can solve MME with linear

components, then nonlinearity can be introduced using the ‘‘kernel trick.’’

The MMC approach estimates complex (nonlinear) decision boundary as several

simple (linear) partitionings (component models) using generic procedure in

Table 10.1 and implements robust classification (step 1) via double application of

SVM classifier (Ma and Cherkassky 2003). This ‘‘double-SVM’’ method is

described next assuming linear SVM parameterization:

� Apply linear SVM to all available data (using large C-value) to estimate

initial SVM model.

� Calculate the slack variables with respect to initial SVM hyperplane and

remove samples with large slack variables (i.e., larger than some threshold).

The remaining samples correspond to the ‘‘major’’ model.

� Apply SVM second time to the remaining samples (using an optimal C-value

tuned for this data set). The resulting major model (hyperplane) is robust with

–2 –1 0 1 2 3 4
–4

–3

–2

–1

0

1

2

H
(1)

H
(2)

–2 –1 0 1 2 3 4
–4

–3

–2

–1

0

1

2

First split

Second split

(a) (b)

FIGURE 10.10 Comparison of decision boundaries formed by (a) robust method and

(b) CART.

MULTIPLE-MODEL ESTIMATION 491

respect to variations of the minor portion of the data (discarded in the

previous step).

Training and operation modes of MMC classifier are displayed in Fig. 10.11.

During training, the procedure shown in Table 10.1 iteratively estimates component

models and partitions the data. For example, for data set in Fig. 10.10, application

of robust classification to all data (step 1 of the procedure) results in a major model

Hð1Þ that correctly classifies all ‘‘positive’’-class data (labeled as ‘‘þ’’) and also

classifies correctly the majority of ‘‘negative’’-class data (labeled as ‘‘triangles’’).

Hence, the data are partitioned in step 2, and then in step 3 the majority of the nega-

tive-class data (triangles in the left upper corner of Fig. 10.10) are removed from

available data. During second iteration, the ‘‘double-SVM’’ method is applied to

FIGURE 10.11 Multiple model classification approach: (a) training stage; (b) operation

(test) stage.

492 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

the remaining data, yielding the second hyperplane Hð2Þ. This process results in

iterative partitioning of the data into subsets (as shown in Fig. 10.11(a)), so that

each subset is defined by partitioning of the input space using a set of hyperplanes.

Equivalently, the MMC training process partitions the input space into nested half-

spaces. During operation (test) phase, a given (test) input x is iteratively applied to

all component models (hyperplanes) starting with the major model Hð1Þ. If this

input can be classified by Hð1Þ unambiguously, then it is assigned a proper class

label, and the process stops. Otherwise, the next model is used to classify it in

the remaining half of the input space. The process continues until the input is unam-

biguously classified (see Fig. 10.11(b)).

Next, we present comparisons between the MMC approach (using linear SVM as

component models) and standard nonlinear SVM classifiers with RBF and polynomial

kernels, using the data set shown in Fig. 10.12. This data set is formed using a single

Gaussian cluster for one class and a mixture of two Gaussians for another class. A test

set of 1000 samples is used to estimate the prediction risk (error rate). Presented

results use optimal empirical tuning of kernel parameters for nonlinear SVM. Actual

decision boundaries formed by each method are shown in Fig. 10.12. Comparisons of

–1 –0.5 0 0.5

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

H

(1)

H

(2)

–1 –0.5 0 0.5

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

–1 –0.5 0 0.5

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

FIGURE 10.12 Comparison of decision boundaries obtained using: (a) multiple-model

classification; (b) SVM with RBF kernel; (c) SVM with polynomial kernel (third-order

polynomial).

MULTIPLE-MODEL ESTIMATION 493

the error rate for test data and the percentage of support vectors selected by each SVM

method are

MMC � error rate ð%SVÞ ¼ 0:056 ð14:5%Þ;
RBF � error rate ð%SVÞ ¼ 0:058 ð25:5%Þ;
Poly � error rate ð%SVÞ ¼ 0:067 ð26:4%Þ:

These results indicate that for this data set the MMC approach provides similar pre-

diction accuracy to standard nonlinear SVM, but is more robust (fewer support vec-

tors) and has better interpretation capability. For example, the minor portion of the

data (five samples labeled as ‘‘�’’ on the right-hand side) can be viewed as ‘‘inter-

esting’’ or ‘‘unusual’’ patterns in the context of knowledge discovery. Even though

many existing methods are highly interpretable (i.e., CART), such decision tree

methods are not robust. On the contrary, many robust methods (such as SVM)

are not interpretable. In this respect, MMC (with linear components) leads to robust

and interpretable models.

The robust linear regression method called double application of SVM

(Cherkassky and Ma 2005) uses robust properties of standard SVM regression

and works as follows:

� First, apply standard SVM regression (with e ¼ 0) to all available data, in

order to estimate initial SVM model.

� Calculate the residuals of data samples with respect to the initial SVM model

and obtain initial (crude) estimate of noise using prescriptions from robust

statistics (Rousseeuw and Leroy 1987). This initial noise estimate SVM

model is used to analyze the residuals of the data and remove samples with

‘‘large’’ absolute values of residuals (those correspond to structured outliers

or minor model(s)). The remaining samples correspond to the ‘‘major’’

model.

� Apply SVM second time to the remaining samples, using appropriately

selected parameters e and C, yielding the major model. This major model

is used (along with the final noise estimates for this model) in the step 2 (data

partitioning) of the iterative procedure in Table 10.1.

Practical implementation of this robust method requires a principled approach to

selecting ‘‘good’’ values of parameters e and C for the major model. Note that using

resampling is not feasible under MME setting (due to existence of ‘‘structured out-

liers’’ in the data). Hence, the critical part of the ‘‘double-SVM application’’ meth-

od is analytic selection of parameters e and C (as described in Section 9.8). In

particular, the prescription (9.65) for e relates the value of epsilon zone to the (esti-

mated) noise level s and the number of training samples.

An example shown in Fig. 10.13 illustrates multiple-model regression with non-

linear component models (using RBF kernels), where the data contain 60 noisy

samples from the major model and 40 noisy samples from the minor model. The

494 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

MME approach using ‘‘double-SVM’’ method can accurately estimate both models

and separates the training data. The method also performs well for multiple regres-

sion with many components (Cherkassky and Ma 2005), whereas existing robust

methods (i.e., statistical or standard SVM) provide poor models for the data sets

in Figs. 10.9 and 10.13.

Implementation of MME using a greedy SVM-based approach (in Table 10.1)

works well assuming that

1. The ‘‘double SVM’’ method uses prespecified (fixed) kernels for each

component model. For example, the MME model in Fig. 10.12(a) employs

linear SVM component models to describe complex (nonlinear) decision

boundary

2. At each iteration, the majority of available data can be ‘‘explained’’ well by a

single-component model

Clearly, assumption (2) may not hold if the algorithm uses prespecified SVM para-

meterization (i.e., linear SVM), and then the MME approach will fall apart. The

problem can be overcome by allowing component models of increasing complexity

during each iteration of the MME procedure. For example, under MMC setting, the

simplest (linear) decision boundary is tried first. If the majority of available data

cannot be explained by a linear model, then a more complex (say, quadratic) deci-

sion boundary is tried during this iteration, and so on. Under such an adaptive

approach, the component model complexity can be adapted to ensure that the

model explains well the majority of available data (at each iteration). For example,

for the classification data set in Fig. 10.14, a nonlinear decision boundary can be

represented by a major (linear) component model and a minor (nonlinear) model.

This approach opens up a number of research issues related to the tradeoff between

representing the data using one complex model versus modeling the same data

using several component models (of lower complexity).

In summary, the greedy SVM-based methodology implements a risk minimization

approach for MME and can be used for robust estimation in the presence of

structured outliers. The MME approach applies under two distinct settings, that is,

0 0.5 1
–2

–1

0

1

2

(a)

0 0.5 1
–2

–1

0

1

2

(b)

M1 estimate
M2 estimate

FIGURE 10.13 Multiple-model regression estimation using SVM with RBF kernels:

(a) training data; (b) model estimates.

MULTIPLE-MODEL ESTIMATION 495

predictive learning and segmentation of labeled data (for pattern discovery and data

interpretation). Under the predictive setting, it can be used for development of robust

and interpretable predictive models, as in multiple model classification. With regres-

sion data, the MME implements a risk minimization approach for data segmentation

and identification of component regression models, as in examples shown in

Figs. 10.7 and 10.13. Currently, SVM-based methods are widely adopted for predic-

tive modeling. However, descriptive modeling is dominated by generative/mixture

modeling methods (Hand et al. 2001). The MME approach suggests new ways to

utilize SVM-based methodology for segmentation of labeled data.

10.5 SUMMARY

This chapter argues in favor of introducing and developing nonstandard learning

formulations and new (noninductive) types of inference, as opposed to algorithmic

improvements of existing learning methods (implementing standard inductive for-

mulation). This view is consistent with the main principle of VC theory, suggesting

that one should always use direct (specific) learning formulations for finite sample

estimation problems, rather than more general settings (such as density estimation).

For classification problems, this chapter describes new types of noninductive infer-

ence, transduction and learning through contradictions. In addition, Section 9.11

briefly describes two recent improvements of SVM (called SVMþ and Direct Ad

Hoc Inference) that are also based on a modification of standard inductive learning

setting. We anticipate major advances in practical applications as well as theoretical

developments for these noninductive settings. In particular, more research is needed

for practical model selection, because these noninductive settings have more tun-

able parameters (than inductive formulations).

There exist implementations of transductive inference for regression problems

(Chapelle et al. 1999); however, there are no known learning formulations for

FIGURE 10.14 Multiple-model classification using linear and nonlinear component

models.

496 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

regression in the Universum environment. The idea of incorporating a priori knowl-

edge using the Universum data can be easily implemented under transductive clas-

sification formulation (Vapnik 1998, 2006).

Our presentation of noninductive formulations emphasized the general philoso-

phical principle that interprets predictive modeling as a tradeoff between two objec-

tives, explaining available data and maximizing falsifiability (ambiguity). In other

words, an appropriate learning setting should implement the following imperative:

When solving problems with finite data, always ask the right question, in order

to explain what you really need, and nothing beyond that. According to

Vapnik (2006), this imperative restricts the freedom of choice in inference models

by controlling the goals of possible inferences in order to produce a better posed

problem. In a broader historical context, there are three levels of such restrictions

(Vapnik 2006):

1. Regularization, which puts constraints on the smoothness properties of

approximating functions

2. Structural Risk Minimization, which controls the diversity (or VC falsifiability)

of a set of approximating functions. Note that both SRM and regularization

have been introduced under standard inductive learning formulation

3. Choice of inference models, which restricts the goal of learning in order to

formulate a better posed problem

In this chapter, we tried to interpret these restrictions in the spirit of Popper’s notion

of falsifiability by using the following philosophical imperative:

Find a model that explains the available data well and has maximal falsifiability. (I1)

Here the meaning of terms ‘‘available data’’ and ‘‘falsifiability’’ is specific to each

type of inference (induction, transduction, and learning through contradictions) and

to each type of the learning problem (i.e., classification or regression). The same

imperative can be stated, in more technical terms, using the concept of equivalence

classes (Vapnik 2006):

Find the most falsifiable equivalence class that explains the available data well. (I2)

Here, again, the notions of equivalence classes and falsifiability are specific to each

problem setting. Discovering new imperatives (other than transduction or learning

through contradictions) is the most promising direction of research in predictive

learning.

Of course, when solving a practical problem, one should select an appropriate

imperative (type of inference) that is consistent with application needs. This is per-

formed during the process of formalizing application requirements (see Fig. 2.8).

So a good conceptual grasp of VC methodology is very important for practitioners.

In many cases, an appropriate imperative may be suggested by application require-

ments. To this end, Section 10.4 presented a novel setting called Multiple Model

SUMMARY 497

Estimation. In terms of imperative (I1), under the MME setting ‘‘available data’’ is

not well defined, as we seek to model (unspecified) subset of a given data set. This

leads to a formalization that is different from standard inductive learning. Note that

constructive learning methods for MME are (conceptually) very similar for both

classification- and regression-type problems because they reflect similar goal of

learning (i.e., modeling a subset of a given data set). Hence, the main improvement

is due to a better understanding and formalization of application domain require-

ments, rather than development of sophisticated learning algorithms (in the case

of MME, proposed methods are rather trivial modifications of basic SVM).

Currently, most practical applications employ learning algorithms developed

under standard inductive setting. In light of the philosophical and conceptual argu-

ments presented in this chapter, we expect that future breakthroughs in challenging

applications (such as genomics, functional brain imaging, etc.) will be based on

alternative (noninductive) learning problem formulations.

498 NONINDUCTIVE INFERENCE AND ALTERNATIVE LEARNING FORMULATIONS

11
CONCLUDING REMARKS

Truth, like gold, is to be obtained not by its growth, but by washing away from it all

that is not gold.

Leo Tolstoy

In conclusion, we would like to discuss the field of predictive learning in a general

historical context of human understanding of uncertainty and risk (Bernstein 1996).

In ancient times, people dealt with uncertainty by consulting oracles and using the

concept of ‘‘fate’’ (or gods) to predict the future and explain the past. Even though

the concept of uncertainty has been known for several thousand years, mathematical

tools for quantifying and measuring it (i.e., probability theory and statistics) devel-

oped only recently (in the 20th century). According to the Oxford English dictionary,

the word ‘‘probability’’ has a double meaning: (1) the quality of being likely and (2)

the chance of occurrence of any one of a number of possible events. The first mean-

ing refers to ‘‘degree of belief’’ or a layman’s notion of probability, whereas the sec-

ond view reflects the modern frequentist view that emerged based on the

mathematical theory of probability. The concept of frequentist probability as a tool

for quantifying risk dates back to Renaissance, when Italian and French mathemati-

cians (Cardano, Pascal and Fermat) applied their intellectual skills to gambling.

Later, scientists applied probabilistic arguments to describe natural events: ‘‘Nature

has established patterns originating in the return of events, but only for the most part’’

(G. Leibniz’ correspondence with J. Bernoulli, reprinted in Hacking, 1975). However,

the predominant view in classical science is that uncertainty is a byproduct of

(human) ignorance, that is, uncertainty reflects our lack of knowledge or inability

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

499

to obtain accurate measurements. This view known as causal determinism expresses

the belief that every effect has a cause, and therefore science, pursued diligently

enough, will explain all natural phenomena. So, conceivably, it is possible to formu-

late a theoretical model capable of determining any future state of the universe, thus

making the future as readily known as the past. As stated by Pierre Simon Laplace in

his Philosophical Essay on Probabilities (Laplace, 1814),

Present events are connected with preceding ones by a tie based upon the evident prin-

ciple that a thing cannot occur without a cause that produces it . . . All events, even

those which on account of their insignificance do not seem to follow the great laws

of nature, are a result of it just as necessary as the revolutions of the sun.

In other words, everything has its cause, and there is no room for uncertainty. Not-

withstanding more recent probabilistic models in physics (such as quantum

mechanics), the same classical view of uncertainty generally prevails in modern

science. In fact, many famous scientists expressed fundamental dissatisfaction

with an idea that nature may not follow deterministic laws. Quoting A. Einstein,

‘‘I am convinced that He (God) does not play dice.’’

In statistics, this view leads to the goal of estimating a true model of an under-

lying phenomenon or system identification. Because the uncertainty can be quanti-

fied via probabilities, the problem can equivalently be stated as estimation of

statistical distributions (from available data). As argued in this book, this approach

leads to the curse of dimensionality for high-dimensional data.

In real life, dealing with uncertainty often involves risk management or making

decisions under uncertainty. The concept of risk taking implies active choice

(among several alternatives) and it evolved in response to practical needs of early

human societies. For instance, in Middle Ages international trading involved many

risk-taking decisions, such as planning for overseas travel, deciding which goods to

buy, borrowing money, and so on. With the development of capitalism, risk taking

has flourished. Many economic theories have been developed to describe risks

involved in the efficient allocation of capital. Modern financial markets represent

the epitome of risk-taking systems, where individuals and institutions can choose

to make investments at any time and at any level of risk. The classical probabilistic

approach to risk management might be to estimate first the probabilities (of various

future events) and then make risk-taking decisions so as to minimize the expected

loss (or, equivalently, maximize gain). This approach, however, does not work in

practice, simply because the probabilities depend on too many unknown factors

and cannot be reliably estimated. So a more practical approach is to make decisions

based on the known risk associated with past events. For instance, a professional

stock trader may consider several promising trading strategies (i.e., ‘‘rules’’ when

to buy or sell, and associated price limits). Based on past trading experience, these

strategies are evaluated, and the ‘‘best’’ one is selected for future trading. Although

this approach appears reasonable, it is philosophically different from the determi-

nistic view adopted by Laplace and classical statistics. In our example, a stock tra-

der does not attempt to estimate a probabilistic model of future events and does not

500 CONCLUDING REMARKS

try to come up with a ‘‘true model’’ of the stock market. All he/she is concerned

with is choosing a good strategy for trading a particular security. This selection is

based on the minimization of some well-defined measure of risk for past data. Such

an approach leads to the ‘‘system imitation’’ view of risk management under the

framework of predictive learning. The mathematical treatment of such methods

(based on risk minimization) is provided by Vapnik–Chervonenkis (VC) theory.

Another important aspect of predictive learning refers to understanding the

nature of inference and human intelligence. Assuming our hypothetical stock

trader consistently makes good profits over a long time (using a trading strategy

derived from past observations), he/she would definitely be considered intelli-

gent. That is, successful risk management based on past experience depends

on the ability to infer good predictive models from the known observations

(past data). In fact, much of the human or biological intelligence is the ability

to learn from past experience, in order to adapt to an (unknown) statistical envir-

onment. So learning can be defined as the ability to make statistical inferences,

in the framework of predictive learning. Here, we use the term ‘‘statistical infer-

ence’’ to contrast it with the conventional ‘‘logical inference’’ used in mathe-

matics and philosophy. The classical deterministic science applies logical

inference to known deterministic facts, or the laws of nature, in order to make

predictions. This leads to the traditional view of intelligence as an ability to

apply inductive reasoning to known facts or logic statements. This view dates

back to ancient Greek philosophers (who believed that the truth can be estab-

lished only by logical arguments) and to George Boole (who referred to his logi-

cal formalism as ‘‘the laws of thought’’). More recently, this view has led to

traditional artificial intelligence (AI) that aims to develop ‘‘intelligent’’ expert

systems as a (large) collection of logic rules, manually crafted by experts for

a particular application domain. Clearly, the VC theoretical framework provides

a new view of (statistical) inference for inductive learning and quantifies the two

factors responsible for generalization: the empirical risk and the VC dimension.

Moreover, recent developments such as transduction and learning with the

Universum (see Chapter 10) show the possibility of noninductive types of infer-

ence and their advantages for sparse high-dimensional problems. Humans can

generalize quite well from just a few observations in tasks such as object recog-

nition and natural language understanding, suggesting that human reasoning

may indeed use such noninductive types of inference.

According to Vapnik (2006), recent interest in the VC theoretical framework

marks the emergence and growing acceptance of a new scientific discipline called

empirical inference science. This increased interest is mainly due to successful

applications of support vector machine (SVM) methods (used under inductive set-

ting). In general, empirical inference science (aka predictive learning) addresses the

issues for solving generalization problems with finite samples. This discipline has

three important components:

1. Mathematical/technical: This part is described in the classical texts on VC

theory (Vapnik 1995, 1998, 2006) and several monographs (Devroye et al.

CONCLUDING REMARKS 501

1996; Vidyasagar 1997; Schölkopf and Smola 2002). These books address

mainly classical VC theory developed for the standard inductive setting (for

classification and regression). However, many VC theoretical concepts (such

as structural risk minimization (SRM), VC dimension, and the notion of

equivalence classes) can be readily applied for noninductive settings (Vapnik

2006).

2. Methodological and philosophical: At this point, the acceptance of metho-

dological principles underlying empirical inference science is rather limited,

in spite of the widespread use of its learning methods such as SVMs. In the

near future, we expect to see wider acceptance of this methodology and hope

that our book will contribute in this respect. There is also an intriguing

connection between empirical inference science and the philosophy of

science that will definitely lead to interesting developments and improved

understanding of human reasoning and intelligence.

3. Implementations and applications: This part is concerned with the develop-

ment of practical learning algorithms and various real-life applications.

These three parts (mathematical, conceptual, and empirical/practical) constitute the

components of natural science. This can be contrasted to

� Artificial neural networks (as an example of empirical science), as it consists

mainly of empirical methods and lacks a strong theoretical and conceptual

foundation

� Mathematical statistics that has a strong mathematical part and well-defined

methodology, but it lacks a practical (empirical) component as its theoretical

results have very limited relevance to many real-world problems. So it can

only be considered as a mathematical science

In conclusion, we elaborate further on the conceptual, methodological, and philo-

sophical aspects of part 2. A philosophical view used in predictive learning is that in

order to generalize with finite data one should adopt the ‘‘system imitation’’

approach rather than the ‘‘system identification’’ setting adopted in classical

science. In other words, one should replace an ill-posed problem by a simpler

but better posed problem. This is summarized by Vapnik’s imperative:

When solving a problem with finite data, do not attempt to solve a more general

problem as an intermediate step. Instead, try to specify (and solve) the most direct

problem setting (i.e. get only the answers that are needed, and nothing more).

This philosophical imperative has been applied throughout this book. For example,

in Chapters 2 and 8, it was used to justify the direct discriminative approach to clas-

sification problems (instead of the classical generative modeling approach). More-

over, the same imperative leads to transduction inference in Chapter 10. We

emphasize that this imperative suggests giving up attempts to estimate ‘‘the true

model’’ of unknown system. Also, note that the goal of ‘‘system imitation’’ may

502 CONCLUDING REMARKS

be appropriate even when the true (parametric) form of the unknown system is

known—recall Examples 2.6 and 2.7 in Chapter 2. These examples may be used

to contrast the two goals of learning:

� Generalization, which implies system imitation setting

� Explanation (understanding), which requires system identification setting

In other words, the ability to generalize (perform) well does not imply a good

understanding of a complex system. Returning to a hypothetical stock trader (in

an earlier example), a successful trading strategy does not always imply that it

can be explained or that it is based on some deep understanding of the stock market.

This suggests using extreme caution in interpreting predictive models in practical

applications.

Vapnik’s imperative effectively constrains the freedom of choice in the specifi-

cation of the learning problem, and hence it should be used when mapping applica-

tion requirements onto an appropriate learning formulation (see Section 2.3.4 and

Fig. 2.8). There are three known types of such restrictions (Vapnik 2006):

� Regularization, which controls smoothness of admissible functions in the

problem of approximating an unknown target function (by penalizing

admissible approximations that are not sufficiently smooth)

� Structural risk minimization, which prevents choosing an approximation from

a set of functions that is too diverse, that is, a set that has large VC dimension

and hence can be falsified using only a large number of examples

� Learning imperatives, which restrict the goal of learning in order to consider

a better posed problem. Examples include various noninductive learning

settings discussed in Chapter 10

The first two types of restrictions, regularization and SRM, are well known for sol-

ving ill-posed problems. The general idea of introducing restrictions on the freedom

of choice in learning is known in philosophy; that is, recall Popper’s falsifiability

(Popper 1968) and see the quote from Tolstoy above. However, its application in the

context of predictive learning and, in particular, the notion of learning imperatives

has been introduced only recently in Vapnik (1995), and it is not yet commonly

accepted. Clearly, developing new learning imperatives for various challenging

applications constitutes the main direction of the future research in predictive learn-

ing. At the same time, improved understanding of these new imperatives (such as

noninductive inference) is likely to provide new insights to understanding of human

intelligence.

As evident from the above discussion, the emerging field of empirical inference

science will have a considerable effect on epistemology, that is, understanding of

the nature and scope of human knowledge. Currently, human knowledge is asso-

ciated with hard (first-principles) knowledge such as the laws of physics, for exam-

ple. This type of knowledge has two distinctive features:

CONCLUDING REMARKS 503

1. It describes laws of nature (or laws of social systems, i.e., economic theories)

that involve just a few variables. In other words, such knowledge shows

mathematical relationships between a few concepts.

2. This knowledge is deterministic. That is, most of human knowledge is in the

form of deterministic relationships between a few concepts (variables). A few

anomalies (i.e., quantum mechanics) serve as an exception to the rule.

This (classical) view of knowledge is consistent with the philosophical view of a

simple world based on causal determinism developed in 18th and 19th centuries.

With the advances of technology leading to the development of complex physical

and social systems in the 20th century, there is a growing need to model such sys-

tems. In most cases, simple deterministic models (based on first-principles knowl-

edge) are no longer applicable for complex systems. In the 1960s, this had led to the

split between applied statistics concerned with practical methods for analyzing real-

life data and mathematical statistics concerned with mathematical proofs for artifi-

cial (nonrealistic) settings. Later, in the mid-1980s, neural network practitioners

discovered that empirical methods (based on the risk minimization) actually

work for many real-life problems. Mathematical analysis developed in VC theory

indicates that empirical models with good generalization can be estimated from

finite data. This leads to a new type of knowledge, which we call empirical knowl-

edge. This empirical knowledge has the following characteristics:

1. It is statistical in nature

2. It describes estimated dependencies (functions) of many variables

3. This knowledge is valid only in a limited application context

Now one can see that classical knowledge and empirical knowledge are two differ-

ent concepts. Classical knowledge is universal and its growth is understood in terms

of accumulation. Empirical knowledge is more conditional as it describes an

empirical relationship derived from observations of a complex system. The value

and importance of such knowledge is directly related to a particular application

domain (such as various life science applications, for instance). In many cases,

empirical knowledge is transient because an underlying system itself changes

with time (i.e., social systems). So the growth of empirical knowledge is mainly

related to understanding of the universal methodological issues for estimating

empirical models of complex systems. Vapnik’s philosophical imperative is an

example of such a universal methodological principle guiding acquisition of empiri-

cal knowledge.

The concept of empirical knowledge can also be contrasted with the postmodern

philosophical view of provisional (relativistic) knowledge. This view can be traced

back to Popper (1968) who claimed that scientific theories can never be proved

(true) but only falsified and to Kuhn (1962) who argued that all theories do not

describe an objective reality, but only represent convenient theoretical constructs

(or paradigms). This provisional view of knowledge is, of course, in sharp contrast

504 CONCLUDING REMARKS

with the classical view of objective knowledge (adopted under causal determinism).

According to Kuhn, proponents of different paradigms see the world in a different

way (due to their scientific training and prior experience), and hence cannot com-

municate with each other in a meaningful way. So he wrote that when paradigms

change, the world changes with them (Kuhn 1962). (Incidentally, the current shift

from classical statistics to predictive learning (VC theoretical) paradigm is happen-

ing because of the widespread adoption of SVM technology, even though the

VC theory itself has been widely known since early 1980s.) The main problem

with Kuhn’s arguments is that he considers different theories (paradigms) to be

incommensurable (meaning that there is no common theoretical framework that

can be used to compare them). Of course, it is not possible to compare different

theories that do not have the same problem setting. In fact, all postmodern philoso-

phical writings advocating the concept of provisional knowledge lack the notion of

a problem setting. In contrast, under the predictive learning (VC theoretical) frame-

work, the problem setting is a part of scientific paradigm. A well-defined problem

setting ensures that the predictive model has an objective performance index that

reflects some properties of a real-world system (generating the data). In a way,

an empirical knowledge can be considered as instrumental knowledge1, which

stands in-between the classical (universal) knowledge and provisional knowledge.

This instrumental knowledge is conditional upon a particular problem setting; how-

ever, it is objectively valid (useful) for such a setting. It appears that the notion of

problem setting (as a part of scientific theory) should be introduced and seriously

revisited in the philosophy of science. As repeatedly stated in this book, with finite

samples good constructive methods can be developed only for specific learning for-

mulations (problem settings). In contrast, very general problem settings (function

approximation, density estimation) that aim to estimate the ‘‘true model’’ of the

unknown system usually fail to yield practically useful models. Another well-

known example of the system identification approach to modeling complex systems

is chaos theory, which became popular in the 1980s. This approach shows that a

system composed of interacting simple objects can generate very complex patterns

that appear to evolve randomly. Based on this observation, it is suggested that sim-

ple models (rules) underlie many random phenomena in complex natural and social

systems. In spite of numerous research publications over the past 20 years, the

chaos theory has had very limited practical applications. Note that the main premise

(of this scientific approach) is that chaos can explain/model behavior of complex

systems. In a way, chaos theory tries to provide an answer (explanation) without

clearly stating the question (i.e., specifying which particular aspects of complex

systems’ behavior it tries to model).

Finally, the shift from the classical (model identification) view toward a VC the-

oretical (system imitation) paradigm has a profound effect on understanding/interpre-

tation of predictive models. As stated in the beginning of this book (in Chapter 1),

1Instrumentalism is a philosophical belief system taking a position that the purpose of science is to come

up with (empirically) useful theories. However, the instrumentalists intentionally leave out the issue of

the truthfulness of such theories.

CONCLUDING REMARKS 505

data analytic modeling pursues two goals: prediction and interpretation. Under the

classical statistical framework, a good predictive model tends to provide a close

approximation to the truth, so such a model can readily be used for improved under-

standing (of the unknown system). Also, the classical approach usually adopts an

inductive learning setting. As argued in this book, estimation of ‘‘good’’ predictive

models with finite data leads to substituting the goal of system identification (i.e.,

approximating the truth) with a less ambitious goal of system imitation. Moreover,

this goal of system imitation may lead to several noninductive learning settings.

Even though it results in better predictive models, such models cannot be readily

(or easily) interpreted. In fact, the predictive learning setting does not guarantee

that accurate predictive models closely approximate the true model (of an unknown

system). Any meaningful interpretation of such models can be performed using only

additional application-domain knowledge (independent of the empirical data). Inter-

pretation of predictive models derived under noninductive settings presents additional

challenges, and more research is needed in this direction.

506 CONCLUDING REMARKS

APPENDIX A

REVIEW OF NONLINEAR
OPTIMIZATION

Optimization is used in learning methods for parameter estimation. For example,

constructive implementations of empirical risk minimization, penalization, and

structural risk minimization with approximating functions nonlinear in parameters

lead to multidimensional nonlinear optimization. Here, we review only methods for

continuous nonlinear unconstrained minimization (this does not include discrete

optimization and constrained optimization techniques). Good general references

on optimization are Luenberger (1984), Scales (1985), Fletcher (1987), and

Chong and Zak (1996).

Optimization is concerned with the problem of determining extreme values

(maxima or minima) of a function on a given domain. Without loss of generality,

we consider only minimization. Let f ðxÞ be a real-valued function of real variables

x1; x2; . . . ; xm. If x
� minimizes unconstrained function f ðxÞ, then the gradient of f ðxÞ

evaluated at x� is zero rf ðxÞ ¼ 0; that is, x� is a solution of the system of equations

@f ðxÞ
@xi

¼ 0 ði ¼ 1; 2; . . . ;mÞ: ðA:1Þ

Here, we only consider functions f ðxÞ nonlinear in variables x, so that (A.1) is a

system of nonlinear equations. Note that in learning problems minimization is per-

formed with respect to parameters of the empirical risk functional RðoÞ, so that

variables x actually denote parameters o being estimated from training data.

With commonly used squared loss error, the minimization problem is equivalent

to nonlinear least-squares estimation.

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

507

The point where rf ðxÞ ¼ 0 is called a stationary or critical point; it can be a

(local) minimum, a maximum, or a saddle point of f ðxÞ. An example of saddle point

is shown in Fig. A.1. A critical point x� can be further checked for optimality by

considering the Hessian matrix of second partial derivatives:

fHf ðxÞgij ¼
@2f ðxÞ
@xi@xj

ðA:2Þ

evaluated at x�. At a critical point x� where the gradient is zero:

� If Hf ðxÞ is positive definite, then x� is a minimum of f

� If Hf ðxÞ is negative definite, then x� is a maximum of f

� If Hf ðxÞ is indefinite, then x� is a saddle point of f

There are several general algorithms in linear algebra to check a symmetric

matrix for positive definiteness. However, in the context of learning

(parameter estimation), there exist methods exploiting special properties of

Hf ðxÞ for nonlinear least squares (i.e. the Gauss–Newton method described

later).

With nonlinear optimization, there is always a possibility of several local mini-

ma and saddle points. This has two important implications:

� An optimization algorithm can find, at best, only a local minimum

–2

–1

0

1

2

–2 –1 0 1 2

X1

X2

0

2

4

6

8

10

12

0

2

4

6

8

10

12

X1X2

Saddle point

FIGURE A.1 An example of multiple local minima and a saddle point (Hagan et al. 1996).

The function f ðxÞ ¼ ðx1 � x2Þ4 þ 8x1x2 � x1 þ x2 þ 3 has two strong local minima at

(�0.42,0.42) and (0.55,�0.55). The function also has a saddle point at (�0.13,0.13). The
saddle point is a local minimum along the line x2 ¼ �x1 and a local maximum in the

orthogonal direction.

508 REVIEW OF NONLINEAR OPTIMIZATION

� The local minimum found by an algorithm is likely to be close to an initial

point x0

The sensitivity to initial conditions has a negative effect on implementations of learn-

ing methods that seek to attain global minimum. The chances for obtaining globally

optimal solution can be improved (but not assured) by brute-force computational

techniques, such as restarting optimization with many (randomized) initial points

and/or using simulated annealing to escape from local minima. These brute-force

heuristics are not considered here, but are quite popular with neural network

methods; that is, see Masters (1993).

A.1 GENERAL METHODS FOR NONLINEAR OPTIMIZATION

Algorithms for continuous optimization have the following general form:

Initialization: Choose a starting point x0 and set xð0Þ ¼ x0.

1. Select updating parameters: a search direction d and a step size g. Updating

parameters are chosen so that the function f ðxÞ is expected to decrease.

2. Perform an updating step:

xðk þ 1Þ ¼ xðkÞ þ gkdk: ðA:3Þ

Iterate steps 1 and 2 above until the convergence criterion is met.

Optimization methods can be classified into three groups, based on the informa-

tion about the objective function f ðxÞ used to select the updating parameters in

step 1:

� Direct search or zero-order methods use only the information about the

function values (but not its derivatives) to choose updating parameters. An

example is a golden search or bisection for one-dimensional problems. Direct

search methods are not practical for continuous optimization problems with

many variables, and hence are not discussed further.

� First-order or steepest descent methods make use of function’s derivatives to

select updating parameters. At a given point x, the negative gradient �rf ðxÞ
points locally in the direction of the steepest decrease for the function f . This

leads to the popular method of steepest descent:

xðk þ 1Þ ¼ xðkÞ � gkrf ðxðkÞÞ: ðA:4Þ

An update equation (A.4) can be derived from the first-order Taylor expansion of

f ðxÞ, hence the name first-order methods.

However, the method of steepest descent does not specify the choice of the step

size g. Various strategies for choosing g exist. In most neural network methods, the

learning rate (step size) is chosen as a small (user-defined) parameter, often

GENERAL METHODS FOR NONLINEAR OPTIMIZATION 509

decreasing with k. Another strategy (popular in nonlinear optimization) is to per-

form a line search, as described next. Given a direction of descent, choosing an

optimal value of g is a one-dimensional optimization problem

min
g

f ½xðkÞ � grf ðxðkÞÞ� ðA:5Þ

for which powerful direct search methods (i.e., golden search) exist.

The steepest descent method is extremely reliable in that it always makes pro-

gress toward local minima (when the gradient is nonzero). However, its conver-

gence can be very slow, as the method uses very limited knowledge of the

function (about its local gradient).

� Second-order methods are based on the local quadratic approximation of a

function. A second-order Taylor expansion around x0 is

f ðxÞ � f ðx0Þ þ rf ðx0ÞTðx� x0Þ þ ðx� x0ÞTHf ðx0Þðx� x0Þ; ðA:6Þ

where Hf ðx0Þ is the Hessian matrix of second partial derivatives of f evaluated at x0.

Provided that Hf ðx0Þ is positive definite, the minimum of the right-hand side is at

x satisfying

rf ðx0Þ þHf ðx0Þðx� x0Þ ¼ 0: ðA:7Þ

This leads to the following iterative scheme for second-order methods (or Newton

methods):

xðk þ 1Þ ¼ xðkÞ �H�1f ðxðkÞÞrf ðxðkÞÞ: ðA:8Þ

Note that, in practice, the Hessian matrix is not inverted explicitly, but instead used

to solve a linear system

Hf ðxðkÞÞsðkÞ ¼ �rf ðxðkÞÞ ðA:9Þ

for sðkÞ and then takes the next iterated value

xðk þ 1Þ ¼ xðkÞ þ sðkÞ:

Unlike the steepest descent, Newton methods do not require determination of the

step size parameter because the quadratic model determines an appropriate step

size as well as direction for the next approximate solution to the optimization

problem. However, the knowledge of the local curvature provided by the Hessian

Hf ðxÞ is useful only very close to x. Hence, Newton methods perform well once

the iterations are near the solution. However, Newton methods do not ensure that

f ðxÞ is reduced at each step, so they may diverge when started far away from a

solution.

510 REVIEW OF NONLINEAR OPTIMIZATION

Newton methods require substantial amount of computation, that is, evaluating a

Hessian and solving a linear system (A9) for each iteration. Moreover, often the

Hessian may not be known or is too expensive to evaluate. So many practical meth-

ods are based on a quadratic approximation of the Hessian. These methods, known

as quasi-Newton methods, have the form

xðk þ 1Þ ¼ xðkÞ � gkB
�1
k rf ðxðkÞÞ; ðA:10Þ

where gk is the step size (line search) parameter and Bk is some approximation to

the Hessian matrix. Different ways of obtaining approximations of the true Hessian

result in a number of methods that have less computational overhead than the ori-

ginal Newton method (and are often more robust as well). Example representative

methods include Broyden–Fletcher–Goldfarb–Shanno (BFGS), truncated Newton,

and conjugate gradient methods.

A.2 NONLINEAR LEAST-SQUARES OPTIMIZATION

In many learning methods using L2 loss function, parameter estimation is per-

formed via empirical risk minimization or least-squares data fitting. Specifically,

given n training samples ðxi; yiÞ, the goal is to find parameter estimates ŵ minimiz-

ing the empirical risk

RðwÞ ¼
X

n

i¼1
k yi � f ðxi;wÞ k2: ðA:11Þ

Here, y and f are (univariate) real valued and w is m-dimensional vector of para-

meters. The set of approximating functions f ðx;wÞ is nonlinear in parameters w.

Several minimization methods exist, which exploit special properties of the mini-

mization problem (A.11). Let riðwÞ denote the residuals

riðwÞ ¼ yi � f ðxi;wÞ

and JðwÞ denote the Jacobian matrix of f ðxi;wÞ evaluated at w,

fJðwÞgij ¼
@f ðxi;wjÞ

@wj

:

Then the gradient and Hessian of RðwÞ are given by

rRðwÞ ¼ JTðwÞrðwÞ; ðA:12aÞ

HRðwÞ ¼ JTðwÞJðwÞ þ
X

n

i¼1
riðwÞHiðwÞ; ðA:12bÞ

where HiðwÞ denotes the Hessian matrix of the residual riðwÞ and frðwÞgi ¼ riðwÞ.

NONLINEAR LEAST-SQUARES OPTIMIZATION 511

Now the Newton step (A.9) can be implemented, in principle, using

Eqs. (A.12). However, it is usually inconvenient and expensive to compute the n

Hessian matrices Hi. So the specialized methods assume that the second-order

term in expression (A.12b) for HRðwÞ is small and can be dropped. This motivates

the Gauss–Newton method for nonlinear least squares, where the linear system

JTðwðkÞÞJðwðkÞÞsðkÞ ¼ �JTðwðkÞÞrðwðkÞÞ ðA:13Þ

is solved to find the approximate Newton step sðkÞ at each iteration. The system

(A.13) can be recognized as the normal equations (see Appendix B) for the linear

least-squares problem:

JðwðkÞÞsðkÞ ¼ �rðwðkÞÞ ðA:14Þ

for which many numerically stable algorithms exist.

Then the next approximate solution to the optimization problem is given by

wðk þ 1Þ ¼ wðkÞ þ sðkÞ: ðA:15Þ

In summary, the Gauss–Newton method replaces a nonlinear least-squares problem

with a sequence of linear least-squares problems (A.14).

In the context of learning methods using nonlinear least-squares optimization,

often neither the residuals nor the Hessians HiðwÞ are small, so the second-order

term in (A.12b) cannot be neglected. In this case, the Gauss–Newton approximation

is not accurate, and the method converges very slowly or may not converge at all.

Hence, it may be better to use general nonlinear minimization methods utilizing the

true full Hessian matrix of RðwÞ.
The Levenberg–Marquadt method is a good practical alternative when the

Gauss–Newton approximation is inaccurate and/or leads to an ill-conditioned linear

least-squares subproblem. This method uses regularization when the matrix JTJ in

(A.13) is rank deficient, so the linear system at each iteration has the form

½JTðwðkÞÞJðwðkÞÞ þ gI�sðkÞ ¼ �JTðwðkÞÞrðwðkÞÞ; ðA:16Þ

where g is a (positive) scalar parameter chosen by some strategy at each iteration

step. Then the updating equation is

sðkÞ ¼ �½JTðwðkÞÞJðwðkÞÞ þ gkI��1JTðwðkÞÞrðwðkÞÞ: ðA:17Þ

The corresponding linear least-squares problem that needs to be solved is

JðwðkÞÞ
ffiffiffiffi

gk
p

I

� �

sðkÞ � �rðwðkÞÞ
0

� �

: ðA:18Þ

512 REVIEW OF NONLINEAR OPTIMIZATION

Notice that the updating step (A.17) approaches the steepest descent as gk is

increased; that is,

sðkÞ ¼ � 1

gk
JTðwðkÞÞrðwðkÞÞ ¼ � 1

2gk
rRðwÞ: ðA:19Þ

On the contrary, for very small values of gk the algorithm becomes Gauss–Newton.

These observations suggest that the Levenberg–Marquadt method provides a

flexible compromise between the guaranteed (but slow) convergence of steepest

descent and fast convergence of the Gauss–Newton method. In practice, the effec-

tiveness of this algorithm would depend on the strategy for choosing gk. For exam-

ple, the following strategy has been proposed for neural network training (Hagan

et al. 1996). Initially, the regularization parameter is set to some small value;

that is, gk ¼ 0:01. If the iteration step of the algorithm does not decrease the value

of RðwÞ, then the step is repeated with a larger value of g, say gnewk ¼ 10gk.

Eventually, RðwÞ should decrease, as large g values would yield a move in the

direction of steepest descent. Once an iteration step produces a smaller value of

RðwÞ, the value of g is decreased for the next step, say gnewk ¼ gk=10, so the

algorithm would approach the Gauss–Newton method (for faster convergence).

Finally, we note that there is a vast body of research papers on efficient imple-

mentation of nonlinear optimization methods in the context of feedforward neural

networks, when a set of approximating functions f ðx;wÞ in (A.11) is parameterized

as an MLP network with sigmoid activation units in the hidden layer. These neural

network implementation algorithms are concerned with efficient computation of the

gradients, conjugate gradients, Hessians, and Jacobians as needed for a chosen non-

linear optimization method, by taking advantage of the special form (i.e.,

MLP network) of f ðx;wÞ. See Hagan et al. (1996) for a very readable description

of many neural network optimization algorithms.

NONLINEAR LEAST-SQUARES OPTIMIZATION 513

APPENDIX B

EIGENVALUES AND SINGULAR
VALUE DECOMPOSITION

B.1 LINEAR EQUATIONS AND INVERSES

Problems of linear estimation can be written in terms of a linear matrix equation

whose solution provides the required parameter values of the estimate. The solution

of these equations depends on the concept of an inverse. However, depending on the

problem, there may exist no solution (no inverse), a unique solution (unique inverse),

or many (infinite numbered) solutions (many inverses). Here, we detail the conditions

causing these three outcomes. For an equation with a unique solution, we describe the

approach for obtaining the solution. For equations with no solution, we describe the

approach for obtaining an approximate solution. For problems with many possible

solutions, we describe an approach used to choose a particular solution.

Consider the linear matrix equation

Xw ¼ y; ðB:1Þ

where X is an n� d matrix and y is a column vector of length n. The goal is to

determine the vector w that satisfies (B.1). Typically, X and y are created using

the data and w is interpreted as a vector of parameters. The existence of solutions

or uniqueness of solutions depends on the rank of the matrix X. The rank r of a

matrix is the number of linearly independent rows in a matrix. This is equivalent

to the number of linearly independent columns of the matrix. The values of r, n, and

d indicate the types of solutions.

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

514

First, under conditions n � d and r ¼ n, at least one solution exists. There could,

however, be multiple (infinite numbered) solutions. In this case, there exists at least

one right inverse C, such that XC ¼ In, where In is the n� n identity matrix. For a

given right inverse C, solutions are determined in the following manner:

Xw ¼ y;

Xw ¼ XCy;

w ¼ Cy :

ðB:2Þ

There may be many right inverses, as the possibility exists for many solutions. One

right inverse that always guarantees a solution is

C ¼ XTðXXTÞ�1: ðB:3Þ

This particular right inverse always provides the solution w, which has the mini-

mum norm, out of all possible solutions. This type of inverse that imposes addi-

tional constraints in order to provide a unique solution is often called a

pseudoinverse.

Second, under conditions n 	 d and r ¼ d, either a unique solution exists or no

solution exists. If a unique solution exists, a left inverse B exists such that BX ¼ Id,

where Id is the d � d identity matrix. If a unique solution exists, it is determined in

the following manner:

Xw ¼ y;

BXw ¼ By;

w ¼ By:

ðB:4Þ

It is also possible that no solution exists. In this case, we may want to find an

approximate solution, in a least-squares sense, minimizing

k Zw� y k2 : ðB:5Þ

The solution to the normal equation provides the unique minimum solution for the

least-squares problem

XTXw ¼ XTy: ðB:6Þ

The solution in both cases (exact or approximate via normal equation) is provided

by the left inverse

B ¼ ðXTXÞ�1XT: ðB:7Þ

Note that an exact solution would provide a minimum least-squares solution, with

minimum value of zero.

A square matrix (n ¼ d), where r ¼ n ¼ d, is capable of satisfying both condi-

tions. That means there always exists a single unique solution to the linear equation

(B.1). The matrix X has identical right and left inverses, denoted as X�1. Notice

LINEAR EQUATIONS AND INVERSES 515

that the definitions of right and left inverses (B.3) and (B.7) require inversion of the

square matrices XXT or XTX. These inverses exist under either of these conditions.

For many practical linear estimation problems with matrix X, n > d, the col-

umns of X may not be linearly independent. In this case, the second condition is

not satisfied, as r < d. This would result in multiple solutions minimizing (B.5).

Using the singular value decomposition (SVD), it is possible to develop a left pseu-

doinverse that imposes additional constraints to provide a unique solution. This is

discussed further in Section B.3.

B.2 EIGENVECTORS AND EIGENVALUES

The eigenvectors of a matrix define directions in which the effect of a matrix is

particularly simple. For a vector in one of these directions, multiplication with

the matrix only scales the vector; its direction is left unchanged. The scaling factor

is given by the eigenvalue. The eigenvalues are used in Section 7.2.3 for determin-

ing the effective degrees of freedom of a linear estimator.

The eigenvectors and eigenvalues satisfy the equation

Au ¼ yu; ðB:8Þ

where A is a square matrix of size n� n, u is one of the n eigenvectors, and y is the

corresponding eigenvalue. Equation (B.8) is equivalent to

ðA� yIÞu ¼ 0: ðB:9Þ

This equation has a nonzero solution u if and only if its matrix is singular. There-

fore, the eigenvalues of A satisfy

detðA� yIÞ ¼ 0: ðB:10Þ

Equation (B.10) is a polynomial of degree n in y and is called the characteristic

polynomial of A. Its roots are the eigenvalues of A. In general, the eigenvalues

of a matrix do not necessarily have unique values. Also, eigenvectors and corre-

sponding eigenvalues can be scaled arbitrarily. Therefore, eigenvectors are usually

normalized to unit length. For matrices that are symmetric (A ¼ AT), the eigenvec-

tors are orthogonal and the eigenvalues are real. If A is a symmetric matrix, it is

possible to use the eigenvectors to diagonalize A:

UTAU ¼ D ¼
y1

. .
.

yn

2

6

4

3

7

5
; ðB:11Þ

516 EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

where the matrix D is constructed by placing the eigenvectors on the diagonal, and

columns of U consist of the eigenvectors. As the eigenvectors are orthogonal, the

following identity applies:

UTU ¼ UUT ¼ I: ðB:12Þ

This allows us to rewrite Eq. (B.11) as the eigen decomposition

A ¼ UDUT: ðB:13Þ
The sum of the diagonal entries of A is defined as the trace of A. It equals the

sum of the eigenvalues. Some additional useful properties of the eigen decomposi-

tion are

� Inverse

A�1 ¼ UD�1UT: ðB:14Þ

� Powers of A

Ak ¼ UDkUT: ðB:15Þ

B.3 SINGULAR VALUE DECOMPOSITION

The SVD is a decomposition similar to the eigen decomposition that applies for

rectangular matrices. The singular values of a matrix describe its scaling effect.

The decomposition is in terms of two (different) orthogonal matrices and a diagonal

one. Applications of the SVD include computing the generalized inverse used in

Chapter 5 and determining the principal components in Chapter 6.

Let X be a rectangular matrix of size n� d. The SVD of X is

X ¼ U�VT; ðB:16Þ
where U is an n� n orthogonal matrix, V is a d � d orthogonal matrix, and � is an

n� d matrix with singular values filling the first r places on the diagonal

sij ¼ si 	 0; i ¼ j and i � r;
0; i 6¼ j or i > r:

�

ðB:17Þ

The value r is the rank of X. The SVD is related to the eigen decomposition in the

following way:

1. The columns of U are the eigenvectors of XXT

2. The columns of V are the eigenvectors of XTX

3. The singular values on the diagonal of � are the square roots of the

eigenvalues of both XXT and XTX. (The products XXT and XTX have the

same nonzero eigenvalues.)

SINGULAR VALUE DECOMPOSITION 517

The SVD provides a stable solution to least-squares problems. The least-squares

solution for estimating w in the rectangular system

Xw ffi y; ðB:18Þ

where n > d, is given by the solving the normal equation

XTXw ffi XTy: ðB:19Þ

The solution to the normal equation is provided by the left inverse

w� ¼ ðXTXÞ�1XTy: ðB:20Þ

There are two possible difficulties with solving (B.18) exactly:

1. The rows of X may be linearly dependent (i.e., no solution may exist)

2. The columns of X may be linearly dependent (i.e., no unique solution may

exist)

Note that computational procedures for solving (B.18) may provide unstable solu-

tions before conditions 1 and 2 are met exactly.

As discussed in Section B.1, the solution (B.20) provided by the normal equation

is designed to provide an approximate solution to (B.11) even if the first difficulty

occurs. However, if the columns of X are linearly dependent, the normal equations

do not provide a unique solution. A unique solution wþ exists if we apply the addi-

tional constraint on possible solutions w�.
The solution wþ is the one with minimum (L2) norm k w� k. This unique solu-

tion to the normal equations is provided by using the left pseudoinverse of X,

denoted as Xþ. The left pseudoinverse is defined in terms of the SVD of X in

the following manner:

Xþ ¼ V�þUT; ðB:21Þ

where the reciprocals of the singular values, 1=si are on the diagonal of �þ. The
least-squares solution to (B.18) with minimum L2 norm is given by

wþ ¼ Xþy: ðB:22Þ

Note that the left pseudoinverse always exists regardless of whether the matrix is

square or of full rank. This inverse provides a suitable generalization for the regular

matrix inverse. The left pseudoinverse Xþ is the same as the regular matrix inverse

X�1 if X is square and nonsingular. In addition, if the normal equations do provide a

unique solution, this solution is also provided using the left pseudoinverse. For

these reasons, the left pseudoinverse is often called the generalized inverse. It pro-

vides a general-purpose procedure for solving Eq. (B.18) when n 	 d.

518 EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

REFERENCES

Abu-Mostafa, Y. S., Hints, Neural Computation, 7, 639–671, 1995.

Ahn, J. and J. S. Marron, The direction of maximal data piling in high-dimensional space,

Technical Report, Statistics Department, University of North Carolina at Chapel Hill, 2005.

Akaike, H., Statistical predictor identification, Annals of the Institute of Statistical Mathe-

matics, 22, 203–217, 1970.

Alon, U., N. Barkai, A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine, Broad

patterns of gene expression revealed by clustering of tumor and normal colon tissues

probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences of the

United States of America, 96(12), 6745–6750, 1999.

Atkeson, C. G., Memory-based approaches to approximating continuous functions, in:

Proceedings of the Workshop on Nonlinear Modeling and Forecasting, Santa Fe, NM,

1990.

Barron, A. R., Universal approximation bounds for superpositions of a sigmoidal function,

IEEE Transactions on Information Theory, 39, 930–945, 1993.

Barron, A., L. Birge, and P. Massart, Risk bounds for model selection via penalization, in:

Probability Theory and Related Fields, New York: Springer, 1999, pp. 301–413.

Bartholomew, D. J., Latent Variable Models and Factor Analysis, Oxford, UK: Oxford

University Press, 1987.

Baum, E. B. and D. Haussler,What size net gives valid generalization?Neural Computation, 1,

151–160, 1989.

Belhumer, P., Hespanha, J., and Kriegman D. Eigenfaces vs Fisherfaces: Recognition using

class specific linear projection, IEEE Trans on Pattern Analysis and Machine Intelligence,

19(7), 711–720, 1997.

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

519

Bellman, R. E., Adaptive Control Processes, Princeton: Princeton University Press, 1961.

Berger, J., Statistical Decision Theory and Bayesian Analysis, New York: Springer, 1985.

Bernstein, P. L., Against the Gods: The Remarkable Story of Risk, New York: Wiley, 1996.

Bertsekas, D. P., Nonlinear Programming, Athena Scientific, 2004.

Bezdek, J., Pattern Recognition with Fuzzy Objective Function Algorithms, New York:

Plenum Press, 1981.

Bishop, C. M., Neural Networks for Pattern Recognition, Oxford, UK: Oxford University

Press, 1995.

Borg, I. and P. J. F. Groenen, Modern Multidimensional Scaling: Theory and Applications,

New York: Springer, 1997.

Boser, B., I. Guyon, and V. Vapnik, A training algorithm for optimal margin classifiers,

Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh:

ACM, 1992, pp. 144–152.

Bourland, H. and Y. Kamp, Auto-association by multilayer perceptrons and singular value

decomposition, Biological Cybernetics, 59, 291–294, 1988.

Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge, UK: Cambridge University

Press, 2004.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression

Trees, Belmont, CA: Wadsworth, 1984.

Breiman, L., The PI method for estimating multivariate functions from noisy data, Techno-

metrics, 3, 125–160, 1991.

Breiman, L., Stacked regressions, Technical Report 367, Department of Statistics, University

of California, Berkeley, 1994.

Breiman, L., Bagging predictors, Machine Learning, 26, 123–140, 1996.

Breiman, L. and P. Spector, Submodel selection and evaluation in regression—the X-random

case, International Statistical Review, 60(3), 291–319, 1992.

Bridle, J. S., Training stochastic model recognition algorithms as networks can lead

to maximum mutual information estimation of parameters, in: Advances in Neural

Information Processing Systems, vol. 2, San Mateo, CA: Morgan Kaufmann, 1990,

pp. 211–217.

Brockmann, M., T. Gasser, and E. Herrmann, Locally adaptive bandwidth choice for kernel

regression estimators, JASA, 88, 1302–1309, 1993.

Bromley, J. and E. Sackinger, Neural network and k nearest neighbor classifiers, Technical

Report 11359-910819-16TM, AT&T, 1991.

Bruce, A., D. Donoho, and H.-Y. Gao,Wavelet analysis, IEEE Spectrum, 33 (10), 26–35, 1996.

Cachin, C., Pedagogical pattern selection strategies, Neural Networks, 7, 175–181, 1994.

Carpenter, G. A. and S. Grossberg, ART2: stable self-organization of pattern recognition codes

for analog input patterns, Applied Optics, 26, 4919–4930, 1987.

Carpenter, G. A. and S. Grossberg, Self-organizing neural networks for supervised and unsu-

pervised learning and prediction, in: V. Cherkassky, J. H. Friedman, and H. Wechsler (Eds.),

From Statistics to Neural Networks, NATO ASI Series F, 136, New York: Springer, 1994.

Chang, C.-C. and C.-J. Lin, LIBSVM: a library for support vector machines, 2001. Software

available at http://www.csie.ntu.edu.tw/�cjlin/libsvm.

Chapelle, O., personal communication, 2006.

520 REFERENCES

Chapelle, O., B. Schölkopf, and A. Zien (Eds.), Semi-Supervised Learning, Cambridge, MA:

MIT Press, 2006.

Chapelle, O., V. Vapnik, and Y. Bengio, Model selection for small sample regression,Machine

Learning, 48(1), 9–23, 2002a.

Chapelle, O., V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple parameters for

support vector machines, Machine Learning, 46(1), 131–159, 2002b.

Chapelle, O., V. Vapnik, and J. Weston, Transductive inference for estimating values of

functions, Advances in NIPS, 12, 421–427, 1999.

Chapelle, O. and A. Zien, Semi-supervised classification by low density separation, in:

Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics,

2005.

Chen, S., C. F. N. Cowan, and P. M. Grant, Orthogonal least squares learning algorithm for

radial basis function networks, IEEE Transactions on Neural Networks, 2, 302–309, 1991.

Chen, H., P. Meer, and D. Tyler, Robust regression for data with multiple structures, in: CVPR

2001, Proceedings of the IEEE Computer Society Conference, 2001, pp. 1069–1075.

Cherkassky, V., D. Gehring, and F. Mulier, Comparison of adaptive methods for function

estimation from samples, IEEE Transactions on Neural Networks, 7, 969–984, 1996.

Cherkassky, V. and S. Kilts, Myopotential denoising of ECG signals using wavelet thresh-

olding methods, Neural Networks, 14(8), 1129–1137, 2001.

Cherkassky, V., Y. Kim, and F. Mulier, Constrained topological maps for regression and

classification, in: Proceedings of the International Conference on Neural Information

Processing (ICONIP-97), Dunedin, New Zealand, November 1997.

Cherkassky, V. and H. Lari-Najafi, Constrained topological mapping for nonparametric

regression analysis, Neural Networks, 4, 27–40, 1991.

Cherkassky, V., Y. Lee, and H. Lari-Najafi, Self-organizing network for regression: efficient

implementation and comparative evaluation, Proceedings of IJCNN, 1, 79–84, 1991.

Cherkassky, V. and Y. Ma, Comparison of model selection for regression, Neural Computa-

tion, 15, 1691–1714, 2003.

Cherkassky, V. and Y. Ma, Practical selection of SVM parameters and noise estimation for

SVM regression, Neural Networks, 17, 113–126, 2004.

Cherkassky, V. and Y. Ma, Multiple model regression estimation, IEEE Transactions on

Neural Networks, 16(4), 785–798, 2005.

Cherkassky, V. and Y.Ma, Data complexity, margin-based learning and Popper’s philosophy of

inductive learning, in: M. Basu and T. Ho (Eds.), Data Complexity in Pattern Recognition,

New York: Springer, 2006, pp. 91–114.

Cherkassky, V. and X. Shao, Signal estimation and denoising using VC-theory, Neural

Networks, 14(1), 37–52, 2001.

Cherkassky, V., X. Shao, F. Mulier, and V. Vapnik, Model complexity control for regression

using VC generalization bounds, IEEE Transactions on Neural Networks, 10(5),

1075–1089, 1999.

Chong, R. and S. Zak, An Introduction to Optimization, New York: Wiley, 1996.

Cleveland, W. S. and S. J. Delvin, Locally weighted regression: an approach to regression

analysis by local fitting, JASA, 83, 596–610, 1988.

Collobert R. and S. Bengio, SVMTorch web page http://www.idiap.ch/machine_learning.php?

content¼Torch/en_SVMTorch.txt.

REFERENCES 521

Comon, P., Independent component analysis—a new concept? Signal Processing, 36,

287–314, 1994.

Cortes, C. and V. Vapnik, Support vector networks, Machine Learning, 20, 1–25, 1995.

Cottrell, G. W., P. W. Munro, and D. Zipser, Image compression by back propagation: a

demonstration of extensional programming, in: N. E. Sharkey (Ed.), Advances in Cognitive

Science, vol. 1, Norwood: Ablex 1989, pp. 208–240.

Cover, T. M. and J. A. Thomas, Elements of Information Theory, New York: Wiley, 1991.

Cox, T. F. and M. A. A. Cox, Multidimensional Scaling, London: Chapman & Hall, 1994.

Craven, P. and G. Wahba, Smoothing noisy data with spline functions, Numerische Math-

ematik, 31, 377–403, 1979.

de Boor, C., A Practical Guide to Splines, New York: Springer, 1978.

Dempster, A. P., N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via

the EM algorithm (with discussion), Journal of the Royal Society of Statistics. Series B, 39,

1–38, 1977.

DeSieno, D., Adding a conscience to competitive learning, in: IEEE International Conference

on Neural Networks, vol. 1, San Diego, CA, 1988, pp. 117–124.

Devijver, P. A. and J. Kittler, Pattern Recognition: A Statistical Approach, Englewood Cliffs,

NJ: Prentice Hall, 1982.

DeVore, R. A., Degree of nonlinear approximation, in: C. K. Chui, L. L. Schumaker, and D. J.

Ward (Eds.), Approximation Theory VI, New York: Academic Press, 1991, pp. 175–201.

Devroye, L., L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition,

Springer, 1996.

Donoho, D. L., Nonlinear wavelet methods for recovery of signals, densities, and spectra from

indirect and noisy data, in: I. Daubechies (Ed.), Different Perspectives on Wavelets,

Proceedings of the Symposium on Applied Mathematics, vol. 47, American Mathematical

Society, Providence, RI, 1993, pp. 173–205.

Donoho, D. L., Denoising by soft thresholding, IEEE Transactions on Information Theory,

41(3), 613–627, 1995.

Donoho D. and I. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81(3),

425–455, 1994a.

Donoho, D. L. and I. M. Johnstone, Ideal denoising in an orthonormal basis chosen from a

library of bases, Technical Report 461, Department of Statistics, StanfordUniversity, 1994b.

Dowdy, S. M. and S. Wearden, Statistics for Research, New York: Wiley, 1991.

Drucker, H., Improving regressors using boosting techniques, in: Proceedings of the 14th

International Conference onMachine Learning, SanMateo, CA:MorganKaufmann, 1997,

pp. 107–115.

Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed., New York: Wiley, 2001.

Dudoit, S., J. Frodlyand, and T. P. Spood, Comparison of discrimination methods for the

classification of tumors using gene expression data, JASA, 97(457), 77–87, 2002.

Efron, B., The efficiency of logistic regression compared to normal discriminant analysis,

JASA, 70, 892–898, 1975.

Efron, B. and G. Gong, A leisurely look at the bootstrap, the jackknife and cross-validation,

American Statistician 37, 36–48, 1983.

Elder, J. F., Assisting inductive modeling through visualization, Joint Statistical Meeting, San

Francisco, CA, 1993.

522 REFERENCES

Evgeniou, T., M. Pontil, and T. Poggio, Regularization networks and support vector machines,

Advances in Computational Mathematics, 13, 1–50, 2000.

Fahlman, S. E. and C. Lebiere, The cascade-correlation learning architecture, Neural Informa-

tion Processing Systems (NIPS-2), San Mateo, CA: Morgan Kaufmann, 1990, pp. 524–532.

Fisher, R. A., Contributions to Mathematical Statistics, New York: Wiley, 1952.

Fitzgibbon, L. J., D. L. Dowe, and L. Allison, Univariate polynomial inference byMonte Carlo

message length approximation, in: Proceedings of the 19th International Conference on

Machine Learning (ICML-2002), San Mateo, CA: Morgan Kaufmann, 2002, pp. 147–154.

Fletcher, R., Practical Methods of Optimization, New York: Wiley, 1987.

Forsyth, D. and J. Ponce, Computer Vision: A Modern Approach, Englewood Cliffs, NJ:

Prentice Hall, 2003.

Frank, I. E. and J. H. Friedman, A statistical view of some chemometrics regression tools,

Technometrics, 35(2), 109–135, 1993.

Freund, Y. and R. Schapire, Experiments with a new boosting algorithm, Machine Learning:

Proceedings of the 13th International Conference, 1996, pp. 148–156.

Freund, Y. and R. Schapire, A decision-theoretic generalization of online learning and an

application to boosting, Journal of Computer and System Sciences, 55, 119–139, 1997.

Friedman, J. H., SMART user’s guide, Technical Report 1, Department of Statistics, Stanford

University, 1984a.

Friedman, J. H., A variable span scatterplot smoother, Report LCS 05, Department of

Statistics, Stanford University, 1984b.

Friedman, J. H., Multivariate adaptive regression splines (with discussion), Annals of

Statistics, 19, 1–141, 1991.

Friedman, J. H., An overview of predictive learning and function approximation, in:

V. Cherkassky, J. H. Friedman, and H.Wechsler (Eds.), From Statistics to Neural Networks,

NATO ASI Series F, 136, New York: Springer, 1994a.

Friedman, J. H., Flexible nearest neighbor classification, Technical Report, Department of

Statistics, Stanford University, 1994b.

Friedman, J. H., On bias, variance, 0/1 - loss and the curse of dimensionality, in: Data Mining

and Knowledge Discovery, vol. 1, issue 1, New York: Kluwer, 1997, pp. 55–77.

Friedman, J., T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of

boosting (with discussion), Annals of Statistics, 28, 337–374, 2000.

Friedman, J. H. and B. W. Silverman, Flexible parsimonious smoothing and additive modeling,

Technometrics, 31, 3–21, 1989.

Friedman, J. H. and J. W. Tukey, A projection pursuit algorithm for exploratory data analysis,

IEEE Transactions on Computers, 23, 881–890, 1974.

Fukunaga, K., Introduction to Statistical Pattern Recognition, 2nd ed., San Diego, CA:

Academic Press, 1990.

Furnival, G. and R. Wilson, Regression by leaps and bounds, Technometrics, 16, 499–511,

1974.

Gao, H. and V. Cherkassky, Real-time pricing of mutual funds, Proceedings of the Interna-

tional Joint Conference on Neural Networks (IJCNN-06), Vancouver, 2006.

Girosi, F., Regularization theory, radial basis functions and networks, in: V. Cherkassky, et al.

(Eds.), From Statistics to Neural Networks: Theory and Pattern Recognition Applications,

NATO ASI Series F, New York: Springer, 1994, pp. 166–187.

REFERENCES 523

Girosi, F., M. Jones, and T. Poggio, Regularization theory and neural networks architectures,

Neural Computation, 7, 219–269, 1995.

Gray, R. M., Vector quantization, IEEE ASSP Magazine, 1, 4–29, 1984.

Green, T. J. and C. W. Hodges, The dilution impact of daily fund flows on open-end mutual

funds, Journal of Financial Economics, 65, 131–158, 2002.

Grossberg, S., Adaptive pattern classification and universal recoding, I: Parallel development

and coding of neural feature detectors, Biological Cybernetics, 23, 121–134,1976.

Grunewald, A., Neighborhoods and trajectories in Kohonen maps, in: Proceedings of the SPIE

Conference on Science of Artificial Neural Networks, SPIE 1710, 1992, pp. 670–679.

Gu, C., D. M. Bates, Z. Chen, and G. Wahba, The computation of GCV function through

Householder triangularization with application to the fitting of interaction spline models,

SIAM Journal of Matrix Analysis, 10, 457–480, 1990.

Hacking, I., The Emergence of Probability: A Philosophical Study of Early Ideas about

Probability. Induction, and Statistical Inference, Cambridge, UK: Cambridge University

Press, 1995.

Hagan, M. T., H. B. Demuth, and M. Beale, Neural Network Design, Boston, MA: Plus

Publishing, 1996.

Hall, P., J. S. Marron, and A. Neeman, Geometric representation of high dimension low sample

size data, Journal of the Royal Statistical Society. Series B, 67, 427–444, 2005.

Hand, D. J., Discrimination and Classification, New York: Wiley, 1981.

Hand, D. J., Data mining: statistics and more? The American Statistician, 52, 112–118, 1998.

Hand, D. J., Statistics and data mining: intersecting disciplines, SIGKDD Explorations, 1,

16–19, 1999.

Hand, D. J., H. Mannila, and P. Smyth, Principles of Data Mining, Cambridge, MA: MIT

Press, 2001.

Hardle, W.,Applied Nonparametric Regression, Cambridge, UK: Cambridge University Press,

1990.

Hardle, W., P. Hall, and J. S. Marron, How far are automatically chosen regression smoothing

parameters from their optimum? Journal of the American Statistical Association, 83,

86–95, 1988.

Hassibi, B. and D. G. Stork, Second order derivatives for network pruning: optimal brain

surgeon, in: S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.), Advances in Neural

Information Processing Systems, vol. 5, San Mateo, CA: Morgan Kaufmann, 1993,

pp. 164–171.

Hastie, T. J., R. J. Tibshirani, and A. Buja, Flexible discriminant analysis by optimal scoring,

JASA, 89, 1255–1270, 1994.

Hastie, T., Principal curves and surfaces, Technical Report 11, Department of Statistics,

Stanford University, 1984.

Hastie, T. and W. Stuetzle, Principal curves, JASA, 84, 502–516, 1989.

Hastie, T. and R. Tibshirani, Generalized Additive Models, London: Chapman & Hall, 1990.

Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference and Prediction, New York: Springer, 2001.

Haykin, S., Neural Networks: A Comprehensive Foundation, New York: Macmillan, 1994.

Hecht-Nielsen, R., Replicator neural networks for universal optimal source coding, Science,

269, 1860–1863, 1995.

524 REFERENCES

Hinton, G. E., Learning distributed representations of concepts, in: Proceedings of the Eighth

Annual Conference of the Cognitive Science Society, Amherst, Hillsdale, NJ: Lawrence

Erlbaum, 1986, pp. 1–12.

Hoel, P., S. Port, and C. J. Stone, Introduction to Probability Theory, Boston, MA: Houghton

Mifflin, 1971.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky, Bayesian model averaging: a

tutorial (with discussion), Statistical Science, 14, 382–401, 1999 (Corrected version, 15,

193–195).

Huber, P. J., Robust Statistics, New York: Wiley, 1981.

Hwang, J., S. Lay, M. Maechler, and R. D. Martin, Regression modeling in back-propagation

and projection pursuit learning, IEEE Transactions on Neural Networks, 5, 342–353, 1994.

Hyvärinen, A., J. Karhunen, and E. Oja, Independent Component Analysis, New York: Wiley,

2001.

Hyvärinen, A. and E. Oja, Independent component analysis: algorithms and applications,

Neural Networks, 13, 411–430, 2000.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton, Adaptive mixtures of local experts,

Neural Computation, 3, 79–87, 1991.

Joachims, T., Web page on SVMLight: http://svmlight.joachims.org.

Joachims, T., Transductive inference for text classification using support vector machines, in:

International Conference on Machine Learning (ICML), 1999.

Jones, L. K., A simple lemma on greedy approximation in Hilbert space and convergence

rates for projection pursuit regression and neural network training, Annals of Statistics, 20,

608–613, 1992.

Jordan, M. and R. Jacobs, Hierarchical mixtures of experts and the EM algorithm, Neural

Computation, 6, 181–214, 1994.

Jutten, C. and J. Herault, Blind separation of sources, I: an adaptive algorithm based on

neuromimetic architecture. Signal Processing, 24, 1–10, 1991.

Kangas, J., T. Kohonen, and J. Laaksonen, Variants of self-organizing maps, IEEE Transac-

tions on Neural Networks, 1, 93–99, 1990.

Kaufman, L. and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster

Analysis, New York: Wiley, 1990.

Kimeldorf, G. and G. Wahba, Some results on Tchebycheffiian spline functions, Journal of

Mathematical Analysis and Applications, 33, 82–95, 1971.

Kohonen, T., Clustering, taxonomy, and topological maps of patterns, in: Proceedings of the

Sixth International Conference on Pattern Recognition, Munich, 1982, pp. 114–128.

Kohonen, T., Learning vector quantization, Neural Networks, 1, 303, 1988.

Kohonen, T., Self-Organization and Associative Memory, 3rd ed., New York: Springer, 1989.

Kohonen, T., The self-organizing map, Proceedings of IEEE, 78, 1464–1479, 1990a.

Kohonen, T., Improved versions of learning vector quantization, in: Proceedings of the IEEE

International Conference on Neural Networks, San Diego, 1990b, pp. 545–550.

Kohonen, T., Things you haven’t heard about the self-organizing map, in: Proceedings of

the IEEE International Joint Conference on Neural Networks, San Francisco, 1993,

pp. 1147–1156.

Kohonen, T., Self Organizing Maps, Springer Series in Information Sciences, vol. 30,

New York: Springer, 1995, 1997, 2001.

REFERENCES 525

Koikkalainen, P. and Oja, E., Self-organizing hierarchical Feature maps, in: Proceedings of the

International Joint Conference on Neural Networks, Volume II, Piscataway, NJ: IEEE

1990, pp. 279–284.

Kolmogorov, A. N., Three approaches to the quantitative definitions of information, Problems

of Information Transmission, 1, 1–7, 1965.

Kosko, B., Fuzzy Thinking, New York: Hyperion, 1993.

Kramer, M. A., Nonlinear principal component analysis using autoassociative neural

networks, AIChE Journal, 37, 233–243, 1991.

Krishnapuram, R. and J. Keller, A possibilistic approach to clustering, IEEE Transactions on

Fuzzy Systems, 1, 98–110, 1993.

Krogh, A. and J. Vedelsby, Neural network ensembles, cross-validation, and active learning,

in: D. S. Touretzky, G. Tesauro, and T. K. Leen (Eds.), Advances in Neural Infromation

Processing Systems, vol. 7, Cambridge, MA: MIT Press, 1995.

Kruskal, J. B., Non-metric multidimensional scaling: a numerical method, Psychometrika, 29,

115–129, 1964.

Kuhn, T., The Structure of Scientific Revolutions, Chicago: University of Chicago Press, 1962.

Kung, S. Y., Digital Neural Networks, Englewood Cliffs, NJ: Prentice Hall, 1993.

Kwok, J. T., Linear dependency between and the input noise in support vector regression, in:

G. Dorffner et al. (Eds.), ICANN 2001, LNCS 2130, pp. 405–410.

Laplace, P. S., Philosophical essay on probability, 1814, in Newman, J.R. (Ed.), The World of

Mathematics, Redmond, Washington: Tempus Press, 1988.

Le Cun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel,

Handwritten digit recognition with a back-propagation neural network, Advances in Neural

Information Processing Systems, 2, 396–404, 1990a.

Le Cun, Y., J. S. Denker, and S. A. Solla, Optimal brain damage, in: D. S. Touretzky (Ed.),

Advances in Neural Information Processing Systems, vol. 2, San Mateo, CA: Morgan

Kaufmann, 1990b, pp. 598–605.

Lee, Y.-J., An Automated Knowledge Extraction System, Ph.D. thesis, Computer Science

Department, University of Minnesota, Minneapolis, 1994.

Lin, Y., Y. Lee, and G. Wahba, Support vector machines for classification in nonstandard

situations, Machine Learning, 46, 191–202, 2002.

Linde, Y., A. Buzo, and R. M. Gray, An algorithm for vector quantizer design, IEEE

Transactions on Communications, 28, 84–95, 1980.

Lindley, D. V., The probability approach to the treatment of uncertainty in artificial intelli-

gence and expert systems, Statistical Science, 2, 17–24, 1987.

Lippmann, R. P., Neural networks, Bayesian a posteriori probabilities, and pattern classifica-

tion, in: V. Cherkassky, J. H. Friedman, and H. Wechsler (Eds.), From Statistics to Neural

Networks, NATO ASI Series F, 136, New York: Springer, 1994.

Lloyd, S. P., Least squares quantization in PCMs, Bell Telephone Laboratories Paper, Murray

Hill, NJ, 1957.

Lorentz, G. C., Approximation of Functions, New York: Chelsea, 1986.

Lowe, D. and A. R. Webb, Exploiting prior knowledge in network optimization: an illustration

from medical prognosis, Network: Computation in Neural Systems, 1, 299–323, 1990.

Luenberger, D. G., Linear and Nonlinear Programming, Reading, MA: Addison-Wesley,

1984.

526 REFERENCES

Luttrell, S. P., Derivation of a class of training algorithms, IEEE Transactions on Neural

Networks, 1, 229–232, 1990.

Ma, Y. and V. Cherkassky, Multiple model classification using SVM-based approach, in:

Proceedings of IJCNN-2003, 2003, pp. 1581–1586.

MacQueen, J., Some methods for classification and analysis of multivariate observations, in:

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,

vol. 1, 1967, pp. 281–298.

Maechler, M., D. Martin, J. Schimert, M. Csoppensky, and J. N. Hwang, Projection pursuit

learning networks for regression, in: Proceedings of the International Conference on Tools

for Artificial Intelligence, New York: IEEE Press, 1990, pp. 350–358.

Mangasarian, O. L., Multi-surface method of pattern separation, Operations Research, 13,

444–452, 1965.

Mangasarian, O. L. and D. R. Musicant, Lagrangian support vector machines, Journal of

Machine Learning Research, 1, 161–177, 2001.

Mardia,K.V., J.T.Kent, andJ.M.Bibby,MultivariateAnalysis,NewYork:AcademicPress,1979.

Marlsburg, C., Self-organization of orientation sensitive cells in the striate cortex, Kybernetik,

14, 85–100, 1973.

Martinetz, T., S. Berkovich and K. Schulten, ‘‘Neural-gas’’ network for vector quantization

and its application to time series prediction, IEEE Transactions on Neural Networks, 4,

558–569, 1993.

Masters, T., Practical Neural Network Recipes in Cþþ, San Diego, CA: Academic Press,

1993.

Max, J., Quantizing for minimum distortion, IRE Transactions on Information Theory, 6, 7–12,

1960.

Meer, P., C. Stewart, and D. Tyler, Robust computer vision: an interdisciplinary challenge,

Computer Vision and Image Understanding, 78, 1–7, 2000.

Michie, D., D. J. Spiegelhalter, and C. C. Taylor (Eds.), Machine Learning, Neural and

Statistical Classification, New York: Ellis Horwood, 1994.

Mika, S., Kernel Fisher Discriminants, Ph.D. thesis, University of Technology, Berlin, 2002.

Milenova, B. L., Yarmus, J., and M. M. Campos, SVM in Oracle Database 10g: removing the

barriers to widespread adoption of support vector machines, in: Proceedings of the 31st

VLDB Conference, 2005.

Mononen, J., E. Hakkinen, and P. Koikkalainen, Customer analysis through the self-organizing

map, in: Proceedings of ICANN, Paris, 1995.

Moody, J. E., Note on generalization, regularization and architecture selection in nonlinear

learning systems, in: B. H. Juang, S. Y. Kung, and C. A. Kamm (Eds.), Neural Networks for

Signal Processing, IEEE Signal Processing Society, 1991, pp. 1–10.

Moody, J., Prediction risk and architecture selection for neural networks, in: V. Cherkassky,

J. H. Friedman, and H. Wechsler (Eds.), From Statistics to Neural Networks, NATO ASI

Series F, 136, New York: Springer, 1994.

Moody, J. and C. J. Darken, Fast learning in networks of locally-tuned processing units,Neural

Computation 1, 281–294, 1989.

Moore, A. W., Fast robust adaptive control by learning only feedforward models, in: J. Moody,

S. Hanson, and R. Lippmann (Eds.), Advances in Neural Information Processing Systems,

vol. 4, San Mateo, CA: Morgan Kaufmann, 1992.

REFERENCES 527

Mulier, F., Statistical Analysis of Self-Organization, Ph.D. thesis, University of Minnesota,

Minneapolis, 1994.

Mulier, F. and V. Cherkassky, Self-organization as an iterative kernel smoothing process,

Neural Computation, 7, 1165–1177, 1995a.

Mulier, F. and V. Cherkassky, Statistical analysis of self-organization, Neural Networks, 8,

717–727, 1995b.

Murata, N., S. Yoshizawa, and S. Amari, A criterion for determining the number of para-

meters in an artificial neural networks model, in: T. Kohonen, K. Makisara, O. Simula, and

J. Kangas (Eds.), Artificial Neural Networks, Amsterdam: North Holland, 1991,

pp. 9–14.

Murtagh, B. A. and M. A. Saunders, Large-scale linearly constrained optimization, Math-

ematical Programming, 14, 41–72, 1978.

Ng, K. and R. P. Lippmann, A comparative study of the practical characteristics of neural

network and conventional pattern classifiers, Technical Report 894, MIT Lincoln Lab,

Cambridge, 1991.

Ogniewicz, R. L. and O. Kubler, Hierarchical Voronoi skeletons, Pattern Recognition, 28,

343–359, 1995.

Osuna, E., R. Freund, and F. Girosi, Improved training algorithm for support vector machines,

in: NNSP ’97, 1997.

Perrone, M. P. and L. N. Cooper, When networks disagree: ensemble methods for hybrid

neural networks, in: R. J. Mammone (Ed.), Artificial Neural Networks for Speech and

Vision, London: Chapman & Hall, 1993, pp. 126–142.

Pethel, S., C. Bowden, andM. Scalora, Characterization of optical instabilities and chaos using

MLP training algorithms, SPIE Chaos in Optics, 2039, 129–140, 1993.

Petrucelli, J. D., B. Nandram, and M. Chen, Applied Statistics for Engineers and Scientists,

Englewood Cliffs, NJ: Prentice Hall, 1999.

Platt, J., Fast training of support vector machines using sequential minimal optimization, in:

B. Schölkopf, C. J. C. Burges, and A. J. Smola (Eds.), Advances in Kernel Methods—

Support Vector Learning, Cambridge, MA: MIT Press, 1999, pp. 185–208.

Poggio, T. and F. Girosi, Networks for approximation and learning, Proceedings of IEEE, 78,

1481–1497, 1990.

Poggio, T. and S. Smale, The mathematics of learning: dealing with data, Notices of the

American Mathematical Society, 50, 537–544, 2003.

Popper, K., The Logic of Scientific Discovery, 2nd ed., New York: Harper Torch Books,

1968.

Popper, K., Conjectures and Refutations: The Growth of Scientific Knowledge, London:

Routledge, 2000.

Reinsch, C., Smoothing by spline functions, Numerische Mathematik, 10, 177–183, 1967.

Richard, M. D. and R. P. Lippmann, Neural network classifiers estimate Bayesian probabil-

ities, Neural Computation, 3, 461–483, 1991.

Ridgeway, G., D. Madigan, and T. Richardson, Boosting methodology for regression

problems, in: D. Heckerman and J. Whittaker (Eds.), Proceedings of Artificial Intelligence

and Statistics ’99, 1999, pp. 152–161.

Rioul, O. and M. Vetterli, Wavelets and signal processing, IEEE Signal Processing Magazine,

8, 14–38, 1991.

528 REFERENCES

Ripley, B. D., Neural networks and related methods for classification (with discussion),

Journal of the Royal Statistical Society. Series B, 56, 409–456, 1994.

Ripley, B. D., Pattern Recognition and Neural Networks, Cambridge, UK: Cambridge

University Press, 1996.

Rissanen, J., Modeling by shortest data description, Automatica, 14, 465–471, 1978.

Rissanen, J., Stochastic Complexity and Statistical Inquiry, Singapore: World Scientific, 1989.

Ritter, H., T. Martinetz, and K. Schulten, Neural Computation and Self-Organizing Maps: An

Introduction, Reading, MA: Addison-Wesley, 1992.

Robbins, H. and H. Monroe, A stochastic approximation method, Annals of Mathematical

Statistics, 22, 400–407, 1951.

Rosenblatt, F., Principles of Neurodynamics: Perceptron and Theory of Brain Mechanisms,

Washington, DC: Spartan Books, 1962.

Rousseeuw, P. and A. Leroy, Robust Regression and Outlier Detection, New York: Wiley, 1987.

Sammon, J. W., Jr., A nonlinear mapping for data structure analysis, IEEE Transactions on

Computers, 18, 401–409, 1969.

Scales, L. E., Introduction to Nonlinear Optimization, New York: Springer, 1985.

Schapire, R., Y. Freund, P. Bartlett, andW. Lee, Boosting the margin: a new explanation for the

effectiveness of voting methods, The Annals of Statistics, 26(5), 1651–1686, 1998.

Schölkopf, B., J. Platt, J. Shawe-Taylor, A. Smola, and R. Wiliamson, Estimating the support

of a high-dimensional distribution, Technical Report 87, Microsoft Research, Redmond,

WA, 1999.

Schölkopf, B. and A. Smola, Learning with Kernels, Cambridge, MA: MIT Press, 2002.

Schwartz, G., Estimating the dimension of a model, Annals of Statistics, 6, 461–464, 1978.

Shannon, C. E., Coding theorems for a discrete source with a fidelity criterion, IRE National

Convention Record, 4, 142–163, 1959.

Shao, X., V. Cherkassky, and W. Li, Measuring the VC-dimension using optimized experi-

mental design, Neural Computation, 12, 1969–1986, 2000.

Shepard, R. N., The analysis of proximities: multidimensional scaling with an unknown

distance function I, Psychometrika, 27, 125–139, 1962.

Shibata, R., An optimal selection of regression variables, Biometrika, 68, 45–54, 1981.

Simard, P. Y, Y. Le Cun, and J. Denker, Efficient pattern recognition using a new transforma-

tion distance, Advances in Neural Information Processing Systems, 5, 50–58, 1993.

Singh, R., V. Cherkassky, and N. P. Papanikolopoulos, Self-organizing maps for the skele-

tonization of sparse shapes, IEEE Transactions on Neural Networks, 11(1), 241–248, 2000.

Solomatine, D. P. and D. L. Shrestha, AdaBoost.RT: a boosting algorithm for regression

problems., in: Proceedings of the International Joint Conference on Neural Networks,

Budapest, Hungary, July 2004, pp. 1163–1168.

Soros, G., Underwriting Democracy, New York: Macmillan,1991.

Spearman, C., The proof and measurement of association between two things, American

Journal of Psychology, 15, 72 and 202, 1904.

Strang, G., Introduction to Applied Mathematics, Wellesley, MA:Wellesley-Cambridge Press,

1986.

Sugiama, M. and H. Ogawa, Theoretical and experimental evaluation of subspace information

criterion, Machine Learning, 48(1), 25–50, 2002.

REFERENCES 529

Suykens, J. and J. Vanderwalle, Least squares support vector machine classifiers, Neural

Processing Letters, 9(3), 293–300, 1998.

Suykens, J., T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares

Support Vector Machines, Singapore: World Scientific, 2002.

Tax, D. and R. Duin, Data domain description by support vectors, in: M. Verleysen, (Ed.),

Proceedings of ESANN99, Brussels, 1999, pp. 251–256.

Tikhonov, N., On solving ill-posed problem and method of regularization, Doklady Akademii

Nauk USSR, 153, 501–504, 1963.

Tikhonov, N. and V. Y. Arsenin, Solution of Ill-Posed Problems, Washington, DC: Winston,

1977.

Torgerson, W. S., Multidimensional scaling, I: Theory and method, Psychometrika, 17,

401–419, 1952.

Tveter, D., Basis of AI backpropagation, Software and documentation, http://www.dontecter/

nnsoft/nnsoft/.html, 1996.

Vanderbei, R. J. LOQO: an interior point code for quadratic programming, Optimization

Methods and Software, 12, 451–484, 1999.

Van Trees, H. L., Detection, Estimation, and Modulation Theory: Part 1, New York: Wiley,

1968.

Vapnik, V., Estimation of Dependencies Based on Empirical Data, Berlin: Springer, 1982.

Vapnik, V., The Nature of Statistical Learning Theory, New York: Springer, 1995.

Vapnik, V. N., personal communication, 1996.

Vapnik, V. N., Statistical Learning Theory, New York: Wiley, 1998.

Vapnik, V., The Nature of Statistical Learning Theory, 2nd ed., New York: Springer, 1999.

Vapnik, V., Estimation of Dependencies Based on Empirical Data. Empirical Inference

Science: Afterword of 2006, New York: Springer, 2006.

Vapnik, V. N. and L. Bottou, Local algorithms for pattern recognition and dependencies

estimation, Neural Computation, vol. 5, Cambridge, MA: MIT Press, 1993, pp. 893–908.

Vapnik, V. and A. Chervonenkis, On one class of perceptrons, Automation and Remote

Control, 25, 1, 1964 (in Russian).

Vapnik, V. and A. Ja. Chervonenkis, On the uniform convergence of relative frequencies of

events to their probabilities, Doklady Akademii Nauk USSR, 181, 1968 (English transl.:

Sov. Math. Dokl.).

Vapnik, V. and A. Ja. Chervonenkis, Theory of Pattern Recognition (in Russian), Moscow:

Nauka, 1979 (German transl: Wapnik W. N. and A. Ja. Tschervonenkis, Theorie der

Zeichenerkennung, Berlin: Akademia, 1979).

Vapnik, V. and A. Ja. Chervonenkis, The necessary and sufficient conditions for the

consistency of the method of empirical risk minimization (in Russian), in: Yearbook of

the Academy of Sciences of the USSR on Recognition, Classification, and Forecasting,

vol. 2, Moscow: Nauka, 1989, pp. 217–249 (English transl. The necessary and sufficient

conditions for consistency of the method of empirical risk minimization, Pattern Recogni-

tion and Image Analysis, 1, 284–305, 1991).

Vapnik, V., S. Golowich, and A. Smola, Support vector method for function approximation,

regression estimation, and signal processing, Advances in Neural Information Processing

Systems, 9, 281–287, 1996.

530 REFERENCES

Vapnik, V. and A. Lerner, Pattern recognition using generalized portrait method, Automation

and Remote Control, 24, 1963 (in Russian).

Vapnik, V., E. Levin, and Y. Le Cun, Measuring the VC-dimension of a learning machine,

Neural Computation, 6, 851–876, 1994.

Vidyasagar, M., A Theory of Learning and Generalization with Applications to Neural

Networks and Control Systems, New York: Springer, 1997.

Viswanathan, M. and C. S. Wallace, A note on the comparison of polynomial selection

methods, in Proceedings of the Seventh International Workshop on Artificial Intelligence

and Statistics, San Mateo, CA: Morgan Kaufmann, 1999, pp. 169–177.

Wahba, G., Spline Models for Observational Data, vol. 59 of CBMS-NSF Regional Con-

ference Series in Applied Mathematics, Philadelphia, PA: SIAM, 1990.

Weigend, A. S. and N. A. Gershenfeld, (Eds.), Time Series Prediction: Forecasting the Future

and Understanding the Past, Reading, MA: Addison-Wesley, 1993.

Weigend, A. S., B. A. Huberman, and D. E. Rumelhart, Predicting the future: a connectionist

approach, International Journal of Neural Systems, 1, 193–209, 1990.

Werbos, P. J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences, Ph.D. thesis, Harvard University, 1974. (Reprinted in Werbos (1994)).

Werbos, P. J., The Roots of Backpropagation: From Ordered Derivatives to Neural Networks

and Political Forecasting, New York: Wiley, 1994.

Weston, J., R. Collobert, F. Sinz, L. Bottou, and V. Vapnik, Inference with the Universum,

Proceedings of ICML, 2006.

Wettschereck, D. and T. Diettrich, Improving the performance of radial basis functions by

using center locations, in: J. Moody, S. Hanson, and R. Lippmann (Eds.), Advances in

Neural Information Processing Systems, vol. 4, San Mateo, CA: Morgan Kaufmann, 1992,

pp. 1133–1140.

White, H., Learning in artificial neural networks: a statistical perspective, Neural Computa-

tion, 1, 425–464, 1989.

White, H., Artificial Neural Networks: Approximation and Learning Theory, Oxford:

Blackwell, 1992.

Widrow, B. and M. E. Hoff, Adaptive switching circuits, IRE WESCON Convention Record, 4,

94–104, 1960.

Wold, H., Soft modeling of latent variables: the nonlinear iterative partial least squares

approach, in: J. Gani (Ed.), Perspectives in Probability and Statistics, Papers in Honour of

M.S. Bartlett, London: Academic Press, 1975.

Wolfe, J. H., Pattern clustering via multivariate mixture analysis, Multivariate Behavioral

Research, 5, 329–350, 1970.

Wolpert, D., Stacked generalization, Neural Networks, 5, 241–259, 1992.

Zadeh, L., Fuzzy sets, Information and Control, 8, 338–353, 1965.

Zhang, Q. and A. Benveniste, Wavelet networks, IEEE Transactions on Neural Networks, 3,

889–898, 1992.

Zimmerman, H. J., Fuzzy Set Theory and Its Applications, Boston, MA: Kluwer, 1996.

Zitzewitz, E., Who cares about shareholders? Arbitrage proofing mutual funds, Journal of

Law, Economics and Organization, 19(4), 245–280, 2003.

REFERENCES 531

INDEX

AdaBoost, 392

Adaptive methods, 40–54, 272, 277–279

Additive models, 279

Algorithmic complexity, 51

Annealed VC entropy, 106

Backfitting, 154, 279

algorithm, 279

complexity control, 283

Backpropagation, 156–161

complexity control, 289–291

online versus batch implementations,

287

regularization effect of initialization,

291

with momentum term, 286

Bagging, 390

Basis functions, 250

equivalent kernel, 257, 261, 428

nonadaptive and adaptive, 250

Bayes decision rule, 350–351

Bayes theorem, 342

Bayesian interpretation of probability, 12

Bayesian inference, 47–51

empirical Bayesian, 74

marginalization, 49

maximum a posteriori probability, 49

relationship to penalization inductive

principle, 50

Bias, 80

Bias variance trade-off, 80

Binary tree, see Classification and

regression trees

Biological systems, 2

Bivariate Gaussian, 188, 207, 217

Blocks signal, 305

Boosting, 390

algorithm, 392

for classification, 391

for regression, 400

Bridge penalty, 72

Causality, 8

Centers, see Prototype vectors

Characteristic polynomial of a matrix, 516

Classification, 340

classical, 32

compensating for different prior

probabilities, 370

mixture of Gaussians, 385, 435

problem statement, 25

tree-based methods, 378

Learning From Data: Concepts, Theory, and Methods, Second Edition

By Vladimir Cherkassky and Filip Mulier Copyright # 2007 John Wiley & Sons, Inc.

533

Classification (Continued)

via AdaBoost, 392

via constrained topological mapping, 374

via multilayer perceptrons, 372

via nearest-neighbors, 382

via radial basis functions, 373

via support vector machine, 430

with unequal costs of misclassification,

370

Classification and regression trees (CART),

170, 378

algorithm, 381

Clustering, 29, 191. See also Vector

quantization

fuzzy approaches, 195

Combining methods, 390

Combining predictive models, 332

Committee of networks, 333

Competitive learning, 189

Complexity, see also VC-dimension

characterization of, 66

control of, see Model selection

estimates of, 263–269

Conscience mechanism, 191

Consistency of empirical risk minimization,

103

distribution-independent conditions, 106

nontrivial, 104

Constrained topological mapping (CTM), 314

algorithm for classification, 374–378

algorithm for regression, 316–319

complexity control, 317

Convergence of the empirical risk, 106

Cross-entropy loss, 368

Cross-validation, 78

analytic form for linear estimators, 262

Cubic spline, 273

Curse of dimensionality, 62, 97, 383

consequences of, 64

Data compression, 183. See also Minimum

description length

Data mining, 15, 18

Data piling, 469, 470–472

Decision boundary, 342, 359

Decision rule, 342, 355

Degrees of freedom, see Effective degrees

of freedom

Delta rule, 156, 286

Density estimation, 30

expectation-maximization algorithm, 161

mixture of normals, 31

nonparametric, 36

problem statement, 28

Designed experiment, 5, 29

Dictionary methods, 68, 251, 277

Dictionary representation, 124, 174

Dimensionality reduction, 29, 178, 201,

214, 283, 315

Direct ad hoc inference (DAHI), 466

Discriminant functions, 346, 355–357.

See also Fisher Linear Discriminant

Duality

in the least squares problem, 260

in optimization theory, 407

of kernel and basis function

representations, 255

Early stopping, 40, 46, 128, 289

Effective degrees of freedom, 75–77,

128–132, 264–267. See also

VC-dimension

Eigenvalues of the smoother matrix, 261,

264

Eigenvectors of a matrix, 516

Electrocardiogram (ECG), 308

Empirical inference science, 100, 501

Empirical risk minimization, 30, 31, 45, 100,

152. See also Inductive principles

Entropy function, 379

Epistemology, 503

Epochs, 40, 160

Equivalence classes, 406, 477, 482, 497

Exclusive-or problem, 432

Expectation-maximization, 153, 161

algorithm for clustering, 192

Experimental procedure, 15, 182

Factor analysis, 232

False negative, 351

False positive, 351

Falsifiability, 110, 146

degree of, 147

VC falsifiability, 147

and Occam’s razor, 148

and simplicity, 148

Feature selection, 6, 125, 173, 405

nonlinear, 174

534 INDEX

Feature space, 201, 215, 406, 426

Final prediction error, 76

First-principle models, 2

Fisher linear discriminant, 358, 362–366

Formal problem statement, 16. See also

Learning problem setting/

formulation

Fourier

series, 298

transform, 69, 73

Frequentist, 11

Function approximation, 17, 24, 88. See also

System identification

Function complexity, 68

Fuzzy, 11

Another Fuzzy Clustering (AFC)

algorithm, 200

c-means, 196

clustering, 195

membership function, 12

set, 11, 12

Gauss-Newton method, 512

Generalization

distribution-independent bounds, 115,

116, 118

false, 110

of optimal separating hyperplane, 419

Generalized cross validation, 77, 296

Generalized inverse, 164, 518

Generalized Lloyd algorithm, 187, 196

Generalized memory-based learning,

313

Gini function, 379, 380

Gradient descent, 153–158. See also

Stochastic approximation

Greedy optimization, 154, 169, 174,

279, 294, 378

Growth function, 105, 107

Hat matrix, 260

Heavisine signal, 305

Hebbian rule, 156

Hessian matrix, 508

Hidden layer, 157, 160, 284

High-dimensional distributions, 63

Hilbert space, 428

Hints, 60, 260

Histogram, 36

Hyperplane

separable, 410, 411, 418

nonseparable, 411, 412, 424

Independent component analysis, 242

Indicator functions, 26, 111–114, 341

Inductive principles, 25, 40, 42, 45–55

properties of, 54

Inference through contradictions, 481–485

Information theory, 183

Interpretation of predictive models, 7, 259,

382, 494, 505–506

Inverse of a matrix, 514–518

Jensen’s inequality, 106

Kernel function, 254–255

equivalent basis function, 257, 260–261

inner product, 426–430

properties, 22–23

span (width), 23, 310

Kernel methods, 309. See also Local risk

minimization

classification, 382–385

density estimation, 38–39

regression, 22, 254

Key theorem of learning theory, 104

Knowledge, 503

empirical, 504

instrumental, 505

provisional (relativistic), 504

Kolmogorov’s theorem, 66

Kuhn-Tucker theorem, 421–423

Kullback-Leibler criterion, 369

Lagrange multipliers, 422

Lagrangian, 352, 422

Learning, 21

Learning imperative, 503. See also Learning

problem formulation. See also

Noninductive inference

Learning machine, 21

Learning methods

empirical comparisons, 326–331,

385–389

Learning problem formulation, 57, 58, 467.

See also Formal (learning) problem

statement Learning rate, 39, 156,

222–224, 286, 509

INDEX 535

Learning problem formulation (Continued)

for self-organizing map, 222–224

for backpropagation, 286

for learning vector quantization, 385

Learning vector quantization, 384–385

Least squares estimation, 258

linear, 259

nonlinear, 151

penalized linear, 259

Least squares solution of a linear system,

515

via singular value decomposition, 516

Left inverse, 515, 516

LeNet, 1 436

Levenberg-Marquadt method, 512

Likelihood function. 30, 47–48

Likelihood ratio, 350, 352

Linear discriminant analysis, 358, 362–366.

See also Fisher Linear Discriminant

Linear estimators, 75, 256

Linear matrix equations, 514

Linear regression, 258, 259, 321, 322.

See also Least squares estimation

Linear subset regression, 140

Linearly separable, 418

Lloyd-Max conditions, 183, 185–186

Local risk minimization, 309–313

for classification, 382–385

practical complexity control, 312–313

Locally weighted linear approximation, 313

Log-likelihood, 28

Loss, 25, 27

for classification, 26

for regression, 26

for density estimation, 28

for vector quantization, 28

for multiple model estimation, 488

margin-based, 408–414

exponential, 399

Mahalanobis distances, 356

Margin, 406, 408, 454

Margin-based loss, 408, 414

Maximum likelihood, 30. See also

Empirical risk minimization

Mercer’s conditions, 428–429

Minimum spanning tree, 225

Minimum description length (MDL),

51, 116, 420

Model selection, 73

analytical approach, 75, 262,

case studies, 128, 267

resampling approach, 78

Multidimensional scaling, 209

Multilayer perceptron (MLP), 156–157

for dimensionality reduction, 230

for classification, 346

for regression, 253, 284

support vector machine implementation,

429, 436

Multiple model estimation (MME), 469, 486

double-SVM method, 491, 494

greedy procedure for MME 489

for classification, 491

for regression, 494

Multivariate adaptive regression splines

(MARS), 293

algorithm, 296–297

complexity control, 296

interpretation via anova decomposition,

297

relationship with CART, 293

Mutual fund, 321

Net Asset Value (NAV) of a mutual

fund, 320

Network growing algorithms, 169

Neural networks, 154. See also Multilayer

perceptron

construction, 169

Newton methods for optimization, 510

Noninductive inference, 467, 469, 501,

506

Nonparametric methods, 36

Normal equations, 518

Occam’s razor, 43, 146. See also

Model selection

Optimal brain damage, 291

Optimization, 151

direct search methods, 509

for minimizing classification error,

341, 346

nonlinear, 507

nonlinear least-squares, 511

second order methods, 510

steepest descent methods, 509

Orthonormal basis functions, 298

536 INDEX

Outliers, 5, 197, 297, 417, 486

Overfitting, 82,124. See also Model

selection

Parameter estimation, 154

Partial Least Squares, 283

Pedagogical pattern selection, 29

Penalization, see Regularization

Perceptron algorithm, 345

Philosophy of natural science, 109

Phoneme clustering, 224–225

Polynomial basis, 429

Polynomial decision boundary, 427

Polynomial estimators, 125, 269, 405

Popper, 109

dimension, 148

falsifiability, 110, 148

Porcupine, 63, 470

Postal zipcodes, 435

Posterior probability, 47

estimated via conditional expectation, 358

estimation for classification, 347

Precision-recall tradeoff, 354

Prediction vs. approximation, 24, 88, 453

Predictive learning, 15, 17. See also

System imitation

Premature saturation, 287

Preprocessing, 5, 126, 182, 603

Principal component analysis, 202,

212, 234, 242

properties of, 203

Principal curves, 205. See also

Self-organizing map

self-consistency conditions, 206

Principle of VC-falsifiability, 148

Prior probabilities, 33

Projection pursuit, 204, 279

algorithm, 281–282

relationship with multilayer

perceptron, 284

Prototype vectors, 178, 382

Pruning, 154, 282, 378

Pseudoinverse, 515, 516. See also

Generalized inverse

Radial basis function networks, 73,

182, 275, 373, 429, 476

algorithm, 276–277

selection of centers and widths, 277

Random entropy see VC-entropy

Rank of a matrix, 514

Receiver operating characteristic

(ROC), 352

Recycling, 40

Regression, 249

classical, 34

estimation of posterior probabilities, 357

estimation of principal curves, 207

kernel representation, 260

problem statement, 26

taxonomy of methods, 250

via support vector machines, 439

within self-organizing map algorithm,

219

Regularization, 46, 61, 88, 90, 91, 127, 497,

503. See also Inductive principles,

See also Function approximation,

See also System identification.

effects of backpropagation, 288

in splines, 271

least squares, 259

nonparametric penalties, 73

parametric penalties, 72

related to support vector machine, 453

Resampling, 78

Ridge penalty, 72, 126, 259, 365

Right inverse, 515

Risk functional, 25

Robust regression, 415, 469

Saddle point, 508

Sammon Mapping, 213

Sampling theorem, 69, 120

Scaling, of data, 182, 277, 317, 362,

Schwartz’ criterion, 77

Self-organization, 218

Self-organizing map, 214, 314, 374

controlling complexity, 220

neighborhood, 218

Semisupervised learning, 469, 476, 480

Separating hyperplane, 418

Shape skeleton, 228

Shattering, 108

Shibata’s model selector, 77, 129

Sigmoid function, 125, 164, 253, 346, 429

Single-class SVM, 460

Singular value decomposition, 517

Slack variables, 412, 478

INDEX 537

Smooth multiple additive regression

technique (SMART), 282

Soft margin hyperplane, 425

Sparse feature selection, 174

Sparse high-dimensional data, 470–474

Spline, 271

basis for support vector machines, 429

knot selection strategies, 272

multivariate, 294

Squared error distortion, 180

Stacking predictors, 333

Statistical decision theory, 348, 358

Statistical dependency, 7

Statistical learning theory (also known

as VC-theory), 99, 343

Statistical model estimation, 14, 17. See also

System identification

Stochastic approximation, 39, 153, 154

Structural risk minimization, 47, 89, 122,

478. See also Inductive principles

for classification, 341

in the support vector machine, 406

Structure, 122

dictionary, 124

feature selection, 125

penalization, 126

input preprocessing, 126

initialization, 127

Sufficient statistic, 355

Superposition principle for linear

estimators, 256

Supervised learning, 3

Support vector machine, 404

inner product kernels, 426

Fourier kernel, 430

polynomial kernel, 429

radial basis function kernel, 429

spline kernel, 429–430

optimization problem statement,

430–431, 441–442

vs regularization, 453

model selection, 445, 454–459

Support vector data description (SVDD),

460

Support vectors, 407, 417, 419, 422

SVM-Plus, 466

System identification, 89, 453. See also

Function approximattion

System imitation, 57, 89, 453, 502. See also

Predictive learning

Tangent distance, 436

Taxonomy of regression methods, 250

Tensor product splines, 274–275

Time series prediction, 29

Trace of a matrix, 517

Transduction, 41, 474, 502

Tree-structured self-organizing map, 224

Uncertainty, 11

Units, see Prototype vectors

Universal approximators, 67

examples of, 67

Universum data, 469, 481–485. See also

Inference through contradictions

Unsupervised learning, 3–4, 178

Vapnik’s imperative, 502

Variables, 10

Variance, 82

estimates for linear estimators, 84

VC entropy, 105

VC-dimension, 107, 147, 266–267, 304,

408, 420, 501

measuring, 143

for classification and regression, 110

of a set of indicator functions, 108

of a set of linear indicator functions, 111

of a set of real-valued functions, 108

VC-theory, see Statistical learning theory

Vector quantization, 178, 183

problem statement, 28

Virtual SV method, 474

Voronoi regions, 185

Waveform data, 388

Wavelets, 298

complexity control, 303

Weight decay, 290

Weight decay penalty, 72–73

Working set, 469, 475, 477, 480

Worst-case analysis, 104

538 INDEX

