版权信息
书名:Python高手之路
ISBN:978-7-115-38713-4
本书由人民邮电出版社发行数字版。版权所有,侵权必究。
您购买的人民邮电出版社电子书仅供您个人使用,未经授权,不得以任何方式复制和传播本书内容。
我们愿意相信读者具有这样的良知和觉悟,与我们共同保护知识产权。
如果购买者有侵权行为,我们可能对该用户实施包括但不限于关闭该帐号等维权措施,并可能追究法律责任。
091507240605ToBeReplacedWithUserId
内容提要
这不是一本常规意义上 Python 的入门书。这本书中没有 Python 关键字和 for 循环的使用,也没有细致入微的标准库介绍,而是完全从实战的角度出发,对构建一个完整的 Python 应用所需掌握的知识进行了系统而完整的介绍。更为难得的是,本书的作者是开源项目 OpenStack 的 PTL(项目技术负责人)之一,因此本书结合了 Python 在 OpenStack 中的应用进行讲解,非常具有实战指导意义。
本书从如何开始一个新的项目讲起,首先是整个项目的结构设计,对模块和库的管理,如何编写文档,进而讲到如何分发,以及如何通过虚拟环境对项目进行测试。此外,本书还涉及了很多高级主题,如性能优化、插件化结构的设计与架构、Python 3 的支持策略等。本书适合各个层次的 Python 程序员阅读和参考。
作译者简介
作者简介
Julien Danjou 具有12年从业经验的自由软件黑客。拥有多个开源社区的不同身份:Debian开发者、Freedesktop贡献者、GNU Emacs提交者、awesome窗口管理器的创建者以及OpenStack Ceilometer项目的技术主管。最近这些年,他经常使用Python,尤其是在参与了OpenStack(云计算平台)的开发之后。在此期间,他有机会与许多著名的黑客一起工作。
译者简介
王飞龙 OpenStack Glance项目和Zaqar项目的核心开发人员。曾任职于IBM,从事系统管理软件和云计算的开发工作,现居住在新西兰,专注于OpenStack开发。
专业书评
“我还发现,在写任何代码之前写文档给了我一种深入思考功能特性和流程的方式,而且无需提交任何实现细节。” ——Doug Hellmann,《Python标准库》作者
“在购买本书后我马上就开始阅读,我想说的是,它就是我接触任何新语言时想读的那种书。书中包含标准的编程书通常都不会涉及的细节,以及很难找到的经验及习惯用法。Julien,你太棒了!迫不及待一口气读完它!” ——Stephen Walker
“祝贺Julien Danjou出书了!我已经开始读这本书了,发现它对我很有用。这是目前为止我看到的最好的Python书籍之一。” ——Miguel Expósito,任职于坎塔布里亚统计局(西班牙),负责统计计算工作
“我刚开始读这本书关于单元测试的部分。我每天都在写测试,我以为自己已经掌握了一切。(事实证明我没有。testscenarios? Yes!)谢谢Julien Danjou所做的贡献。” ——Mike Waters,Dealertrack软件工程师
本书卖点
Python是一门优美的语言,它快速、灵活且内置了丰富的标准库,已经用于越来越多的不同领域。通常大多数关于Python的书都会教读者这门语言的基础知识,但是掌握了这些基础知识后,读者在设计自己的应用程序和探索最佳实践时仍需要完全靠自己。本书则不同,介绍了如何利用Python有效地解决问题,以及如何构建良好的Python应用程序。
从本书中读者将学到什么
● 最佳实践:书中给出了构建应用程序时可参考的方法和建议,帮助读者充分利用Python的特性,构建不会过时的应用程序。如果读者正在做一些东西,可以立刻应用本书中提及的技术去改进自己当前的工作。
● 解决问题:书中介绍了测试、移植、扩展Python应用程序和库等方面的实际问题并提供了相应的解决方案,还介绍了一些非常好的小技巧,讨论了一些长期维护软件的策略。
● 语言的内部机制:书中阐述了Python语言的一些内部机制,帮助读者更好地理解如何开发更高效的代码,并获得对这门语言内部工作原理更深刻的洞察力。
● 专家访谈录:书中包含多篇对不同领域专家的访谈,让读者可以从开源社区和Python社区的知名黑客那里获得意见、建议和技巧。
本书英文原版配套网址是https://julien.danjou.info/books/the-hacker-guide-to-python。
中文版序
亲爱的中国读者你们好!
祝贺你,你正在读The Hacker’s Guide to Python一书的中文版。我非常高兴看到这本书最终翻译完成,这样你就可以用自己的语言去阅读。这是这本书第三种语言的版本(之前已经有了英语和韩语两个版本)。能够有更多的读者看到这本书真是太棒了!
你将阅读的这本书的大部分内容来自我在OpenStack这个大规模项目中开发Python代码时的经验。你们是非常幸运的,因为这本书是由王飞龙翻译的,他是一名软件工程师,他和我同在OpenStack社区做开发工作。因此,高质量的翻译和对本书内容的精确表述是可期待的,因为飞龙对本书涉及的内容有着很好的理解。
真心希望你们能喜欢这本书。祝你阅读愉快!
Julien Danjou
前言
如果你读到这里,你肯定已经使用Python有一阵子了。你可能是通过一些文档学习的,钻研了一些已有的项目或者从头开发,但不管是哪种情况,你都已经在以自己的方式学习它了。直到两年前我加入OpenStack项目组之前,这其实也正是我个人熟悉Python的方法。
在此之前,我只是开发过一些“车库项目1”级别的Python库或应用程序,而一旦你参与开发涉及数百名开发人员并有着上万个用户的软件或库时,情况就会有所不同。OpenStack平台有超过150万行Python代码,所有代码都需要精确、高效,并根据用户对云计算应用程序的需求进行任意扩展。在有了这一规模的项目之后,类似测试和文档这类问题就一定需要自动化,否则根本无法完成。
我刚开始加入OpenStack的时候,我认为自己已经掌握了不少Python知识,但这两年,在我起步时无法想象其规模的这样一个项目上,我学到了更多。而且我还有幸结识了很多业界最棒的Python黑客,并从他们身上获益良多—大到通用架构和设计准则,小到各种有用的经验和技巧。通过本书,我想分享一些我所学到的最重要的东西,以便你能构建更好的Python应用,并且是更加高效地构建。
1作者这里的意思是规模很小,比较业余的项目。——译者注
第 1 章 项目开始
1.1 Python版本
你很可能会问的第一个问题就是:“我的软件应该支持Python的哪些版本?”这是一个好问题,因为每个Python新版本都会在引入新功能的同时弃用一些老的功能。而且,Python 2.x和Python 3.x之间有着巨大的不同,这两个分支之间的剧烈变化导致很难使代码同时兼容它们。本书后面章节会进一步讨论,而且当刚刚开始一个新项目时很难说哪个版本更合适。
2.5及更老的版本目前基本已经废弃了,所以不需要再去支持它们。如果实在想支持这些更老的版本,要知道再让程序支持Python 3.x会更加困难。如果你确实有可能会遇到一些安装了Python 2.5的老系统,那真没什么好办法。
2.6版本在某些比较老的操作系统上仍然在用,如Red Hat企业版Linux(Red Hat Enterprise Linux)。同时支持Python 2.6版本和更新的版本并不太难,但是,如果你认为自己的程序不太可能会在2.6版本上运行,那就没必要强迫自己支持它。
2.7版本目前是也将仍然是Python 2.x的最后一个版本。将其作为主要版本或主要版本之一来支持是正确的选择,因为目前仍然有很多软件、库和开发人员在使用它。Python 2.7将被继续支持到2020年左右,所以它很可能不会很快消失。
3.0、3.1和3.2版本在发布后都被快速地更替,并没有被广泛采用。如果你的代码已经支持了2.7版本,那么再支持这几个版本的意义并不大。
3.3和3.4版本都是Python 3最近发行的两个版本,也是应该重点支持的版本。Python 3.3和3.4代表着这门语言的未来,所以除非正专注于兼容老的版本,否则都应该先确保代码能够运行在这两个最新的版本上。
总之,在确实有需要的情况下支持2.6版本(或者想自我挑战),必须支持2.7版本,如果需要保证软件在可预见的未来也能运行,就需要也支持3.3及更高的版本。忽略那些更老的Python版本基本没什么问题,尽管同时支持所有这些版本是有可能的:CherryPy项目(http://cherrypy.org)支持Python 2.3及所有后续版本(http://docs.cherrypy.org/stable/intro/install.html)。
编写同时支持Python 2.7和3.3版本的程序的技术将在第13章介绍。某些技术在后续的示例代码中也会涉及,所有本书中的示例代码都同时支持这两个主要版本。
1.2 项目结构
项目结构应该保持简单,审慎地使用包和层次结构,过深的层次结构在目录导航时将如同梦魇,但过平的层次结构则会让项目变得臃肿。
一个常犯的错误是将单元测试放在包目录的外面。这些测试实际上应该被包含在软件的子一级包中,以便:
图1-1展示了一个项目的标准的文件层次结构。

图1-1 标准的包目录结构
setup.py是Python安装脚本的标准名称。在安装时,它会通过Python分发工具(distuils)进行包的安装。也可以通过README.rst(或者README.txt,或者其他合适的名字)为用户提供重要信息。requirements.txt应该包含Python包所需要的依赖包,也就是说,所有这些包都会预先通过pip这样的工具进行安装以保证你的包能正常工作。还可以包含test-requirements.txt,它应该列出运行测试集所需要的依赖包。最后,docs文件夹应该包括reStructuredText格式的文档,以便能够被Sphinx处理(参见3.1节)。
包中还经常需要包含一些额外的数据,如图片、shell脚本等。不过,关于这类文件如何存放并没有一个统一的标准。因此放到任何觉得合适的地方都可以。
下面这些顶层目录也比较常见。
一个常见的设计问题是根据将要存储的代码的类型来创建文件或模块。使用functions.py或者exceptions.py这样的文件是很糟糕的方式。这种方式对代码的组织毫无帮助,只能让读代码的人在多个文件之间毫无理由地来回切换。
此外,应该避免创建那种只有一个__init__.py文件的目录,例如,如果hooks.py够用的话就不要创建hooks/__init__.py。如果创建目录,那么其中就应该包含属于这一分类/模块的多个Python文件。
1.3 版本编号
可能你已经有所了解,Python生态系统中正在对包的元数据进行标准化。其中的一项元数据就是版本号。
PEP 440(http://www.python.org/dev/peps/pep-0440/)针对所有的Python包引入了一种版本格式,并且在理论上所有的应用程序都应该使用这种格式。这样,其他的应用程序或包就能简单而可靠地识别它们需要哪一个版本的包。
PEP440中定义版本号应该遵从以下正则表达式的格式:
N[.N]+[{a|b|c|rc}N][.postN][.devN]
它允许类似1.2或1.2.3这样的格式,但需注意以下几点。
最终即将发布的组件也可以使用下面这种格式。
通常用到的还有以下这些后缀。
这一结构可以满足大部分常见的使用场景。
注意
你可能已经听说过语义版本(http://semver.org/),它对于版本号提出了自己的规则。这一规范和PEP 440部分重合,但二者并不完全兼容。例如,语义版本对于预发布版本使用的格式1.0.0.-alpha+001就与PEP 440不兼容。
如果需要处理更高级的版本号,可以考虑一下PEP 426(http://www.python.org/dev/peps/pep-0426)中定义的源码标签,这一字段可以用来处理任何版本字符串,并生成同PEP要求一致的版本号。
许多分布式版本控制系统(Distributed Version Control System,DVCS)平台,如Git和Mercurial,都可以使用唯一标识的散列字符串1作为版本号。但遗憾的是,它不能与PEP 440中定义的模式兼容:问题就在于,唯一标识的散列字符串不能排序。不过,是有可能通过源码标签这个字段维护一个版本号,并利用它构造一个同PEP 440兼容的版本号的。
提示
pbr(即Python Build Reasonableness,https://pypi.python.org/pypi/pbr)将在4.2节中讨论,它可以基于项目的Git版本自动生成版本号。
1对于Git,指的是git-describe(1)。
1.4 编码风格与自动检查
没错,编码风格是一个不太讨巧的话题,不过这里仍然要聊一下。
Python具有其他语言少有的绝佳质量1:使用缩进来定义代码块。乍一看,似乎它解决了一个由来已久的“往哪里放大括号?”的问题,然而,它又带来了“如何缩进?”这个新问题。
而Python社区则利用他们的无穷智慧,提出了编写Python代码的PEP 82(http://www.python.org/dev/peps/pep-0008/)标准。这些规范可以归纳成下面的内容。
这些规范其实很容易遵守,而且实际上很合理。大部分程序员在按照这些规范写代码时并没有什么不便。
然而,犯错在所难免,保持代码符合PEP 8规范的要求仍是一件麻烦事。工具pep8(https://pypi.python.org/pypi/pep8)就是用来解决这个问题的,它能自动检查Python文件是否符合PEP 8要求,如示例1.1所示。
示例1.1 运行pep8
$ pep8 hello.py
hello.py:4:1: E302 expected 2 blank lines, found 1
$ echo $?
1
pep8会显示在哪行哪里违反了PEP 8,并为每个问题给出其错误码。如果违反了那些必须遵守的规范,则会报出错误(以E开头的错误码),如果是细小的问题则会报警告(以W开头的错误码)。跟在字母后面的三位数字则指出具体的错误或警告,可以从错误码的百位数看出问题的大概类别。例如,以E2开头的错误通常与空格有关,以E3开头的错误则与空行有关,而以W6开头的警告则表明使用了已废弃的功能。
社区仍然在争论对并非标准库一部分的代码进行PEP 8验证是否是一种好的实践。这里建议还是考虑一下,最好能定期用PEP 8验证工具对代码进行检测。一种简单的方式就是将其集成到测试集中。尽管这似乎有点儿极端,但这能保证代码一直遵守PEP 8规范。6.7节中将介绍如何将pep8与tox集成,从而让这些检查自动化。
OpenStack项目从一开始就通过自动检查强制遵守PEP 8规范。尽管有时候这让新手比较抓狂,但这让整个代码库的每一部分都保持一致,要知道现在它有167万行代码。对于任何规模的项目这都是非常重要的,因为即使对于空白的顺序,不同的程序员也会有不同的意见。
也可以使用--ignore选项忽略某些特定的错误或警告,如示例1.2所示。
示例1.2 运行pep8时指定--ignore选项
$ pep8 --ignore=E3 hello.py
$ echo $?
0
这可以有效地忽略那些不想遵循的PEP 8标准。如果使用pep8对已有的代码库进行检查,这也可以暂时忽略某些问题,从而每次只专注解决一类问题。
注意
如果正在写一些针对Python的C语言代码(如模块),则PEP 7(http://www.python.org/dev/peps/pep-0007/)标准描述了应该遵循的相应的编码风格。
还有一些其他的工具能够检查真正的编码错误而非风格问题。下面是一些比较知名的工具。
这些工具都是利用静态分析技术,也就是说,解析代码并分析代码而无需运行。
如果选择使用pyflakes,要注意它按自己的规则检查而非按PEP 8,所以仍然需要运行pep8。为了简化操作,一个名为flake8(https://pypi.python.org/pypi/flake8)的项目将pyflakes和pep8合并成了一个命令,而且加入了一些新的功能,如忽略带有#noqa的行以及通过入口点(entry point)进行扩展。
为了追求优美而统一的代码,OpenStack选择使用flake8进行代码检查。不过随着时间的推移,社区的开发者们已经开始利用flake8的可扩展性对提交的代码进行更多潜在问题的检查。最终flake8的这个扩展被命名为hacking(https://pypi.python.org/pypi/hacking)。它可以检查except语句的错误使用、Python 2与Python 3的兼容性问题、导入风格、危险的字符串格式化及可能的本地化问题。
如果你正开始一个新项目,这里强烈建议使用上述工具之一对代码的质量和风格进行自动检查。如果已经有了代码库,那么一种比较好的方式是先关闭大部分警告,然后每次只解决一类问题。
尽管没有一种工具能够完美地满足每个项目或者每个人的喜好,但flake8和hacking的结合使用是持续改进代码质量的良好方式。要是没想好其他的,那么这是一个向此目标前进的好的开始。
提示
许多文本编辑器,包括流行的GNU Emacs(http://www.gnu.org/software/emacs/)和vim(http://www.vim.org/),都有能够直接对代码运行pep8和flake8这类工具的插件(如Flymake),能够交互地突出显示代码中任何不兼容PEP 8规范的部分。这种方式能够非常方便地在代码编写过程中修正大部分风格错误。
1你可能有不同意见。
2 PEP 8 Style Guide for Python Code, 5th July 2001, Guido van Rossum, Barry Warsaw, Nick Coghlan
第 2 章 模块和库
2.1 导入系统
要使用模块和库,需要先进行导入。
Python之禅
>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
导入系统是相当复杂的,不过你可能已经了解了一些基本知识。这里会介绍一些关于这一子系统的内部机理。
sys模块包含许多关于Python导入系统的信息。首先,当前可导入的模块列表都是通过sys.moudle变量才可以使用的。它是一个字典,其中键(key)是模块名字,对应的值(value)是模块对象。
>>> sys.modules['os']
<module 'os' from '/usr/lib/python2.7/os.pyc'>
许多模块是内置的,这些内置的模块在sys.builtin_module_names中列出。内置模块可以根据传入Python构建系统的编译选项的不同而变化。
导入模块时,Python会依赖一个路径列表。这个列表存储在sys.path变量中,并且告诉Python去哪里搜索要加载的模块。可以在代码中修改这个列表,根据需要添加或删除路径,也可以通过编写Python代码直接修改环境变量PYTHONPATH。下面的方法几乎是相等的1。
>>> import sys
>>> sys.path.append('/foo/bar')
$ PYTHONPATH=/foo/bar python
>>> import sys
>>> '/foo/bar' in sys.path
True
在sys.path中顺序很重要,因为需要遍历这个列表来寻找请求的模块。
也可以通过自定义的导入器(importer)对导入机制进行扩展。Hy2正是利用的这种技术告诉Python如何导入其他非标准的.py或者.pyc文件的。
顾名思义,导入钩子机制是由PEP 302(http://www.python.org/dev/peps/pep-0302/)定义的3。它允许扩展标准的导入机制,并对其进行预处理,也可以通过追加一个工厂类到sys.path_hooks来添加自定义的模块查找器(finder)。
模块查找器对象必须有一个返回加载器对象的find_module(fullname, path=None)方法,这个加载器对象必须包含一个负责从源文件中加载模块的load_module(fullname)方法。
为了进一步说明,下面给出了Hy利用自定义的导入器导入.hy而不是.py结尾的源文件的方法,见示例2.1。
示例2.1 Hy模块导入器
class MetaImporter(object):
def find_on_path(self, fullname):
fls = ["%s/__init__.hy", "%s.hy"]
dirpath = "/".join(fullname.split("."))
for pth in sys.path:
pth = os.path.abspath(pth)
for fp in fls:
composed_path = fp % ("%s/%s" % (pth, dirpath))
if os.path.exists(composed_path):
return composed_path
def find_module(self, fullname, path=None):
path = self.find_on_path(fullname)
if path:
return MetaLoader(path)
sys.meta_path.append(MetaImporter())
一旦路径被确定是有效的且指向了一个模块,就会返回一个MetaLoader对象。
Hy模块加载器
class MetaLoader(object):
def __init__(self, path):
self.path = path
def is_package(self, fullname):
dirpath = "/".join(fullname.split("."))
for pth in sys.path:
pth = os.path.abspath(pth)
composed_path = "%s/%s/__init__.hy" % (pth, dirpath)
if os.path.exists(composed_path):
return True
return False
def load_module(self, fullname):
if fullname in sys.modules:
return sys.modules[fullname]
if not self.path:
return
sys.modules[fullname] = None
mod = import_file_to_module(fullname, self.path)
ispkg = self.is_package(fullname)
mod.__file__ = self.path
mod.__loader__ = self
mod.__name__ = fullname
if ispkg:
mod.__path__ = []
mod.__package__ = fullname
else:
mod.__package__ = fullname.rpartition('.')[0]
sys.modules[fullname] = mod
return mod
i mport_file_to_module读取一个Hy源文件,将其编译成Python代码,并返回一个Python模块对象。
uprefix模块(https://pypi.python.org/pypi/uprefix)是这个功能起作用的另一个好的例子。Python 3.0到3.2并没有像Python 2中用来表示Unicode字符串的u前缀4,这个模块通过在编译前删除字符串的前缀u 来确保在2.x和3.x之间的兼容性。
1说几乎是因为路径并不会被放在列表的同一级上,尽管根据你的使用情况它可能并不重要。
2 Hy是Python上的Lisp实现,会在9.1节介绍。
3在Python 2.3版本实现的新的带入钩子机制。
4它在Python 3.3中又被加了回来。
2.2 标准库
Python本身内置的巨大标准库提供了丰富的工具和功能,可以满足你能想到的任何需求。很多Python的初学者习惯于自己写代码实现一些基本的功能,然后会惊奇地发现很多功能已经内置了,直接就可以使用。
任何时候想要自己写函数处理一些简单的工作时,请停下来先看看标准库。我的建议是至少大概浏览一遍标准库,这样下次再需要一个函数时就能知道是否可以利用标准库中已有的函数了。
后续章节会讨论其中的一些模块,如functools和itertools,下面是一些必须了解的标准库模块。
这个模块清单可以作为一个快速参考,帮助你了解各个库模块的作用。如果能记住一部分就更好了。花在查找标准库上的时间越少,意味着写实际代码的时间就越多。
提示
整个标准库都是用Python写的,所以可以直接查看它模块和函数的源代码。有疑问时只需打开代码自己一探究竟。尽管文档中已经包含了你想知道的一切,但总还是有机会让你学一些有用的东西。
2.3 外部库
你是否有过这样的经历,收到一件不错的生日礼物或圣诞礼物,但是打开后却发现送你的人忘了买电池?Python的“内置电池”哲学让你作为程序员不会遇到这类问题,只要安装了Python,就拥有了完成任何功能所需的一切条件。
然而,Python标准库的开发者并不能预测你要实现的“任何”功能到底是什么。即使可以,大多数人也不想去处理一个几个GB的文件下载,即使可能只是需要写一个重命名文件的快速脚本。关键在于,即使拥有所有的扩展功能,仍然有许多功能是Python标准库没有涵盖的。不过,这并不是说有些事情是根本无法用Python实现的,这只是表明有些事情可能需要使用外部库。
Python标准库是安全且范围明确的:模块文档化程度很高,并且有足够多的人在经常使用它,从而可以保证在你想使用它时肯定不会遇到麻烦。而且,就算万一出了问题,也能确保在短时间内有人解决。但是,外部库就像是地图上标着“熊出没,请注意”的部分:可能缺少文档,功能有bug,更新较少或根本不更新。任何正式的项目都可能用到一些只有外部库提供的功能,但是需要谨记使用这些外部库可能带来的风险。
下面是来自一线的案例。OpenStack使用了SQLAlchemy(http://www.sqlalchemy.org/),一个Python数据库开发工具包。如果了解SQL的话会知道,数据库的结构是会发生变化的,所以OpenStack还使用了sqlalchemy-migrate(https://code.google.com/p/sqlalchemy-migrate/)来处理数据库模式的升级。一切运行良好,直到有一天它们不行了,开始出现大量bug,并且没有好转的迹象。而且,OpenStack在当时是想要支持Python 3的,然而没有任何迹象表明sqlalchemy-migrate要支持Python 3。因此,显然sqlalchemy-migrate已经死了,我们需要切换到其他替代方案。截止到作者写作时,OpenStack正准备升级到Alembic(https://pypi.python.org/pypi/alembic),虽然也有一些工作要做,但好在不是那么痛苦。
所有这些引出一个重要的问题:“如何保证我不会掉进同样的陷阱里?”很遗憾,没办法保证。程序员也是人,没什么办法可以确保目前维护良好的库在几个月后仍然维护良好。但是,在OpenStack中我们使用下列检查表来根据需要给出建议(我建议你也这么做)。
尽管可能工作量巨大,但这一检查表对于依赖同样适用。如果知道应用程序会大量依赖一个特定的库,那么至少应该对这个库的每一个依赖使用这个检查表。
不管最终使用哪个库,都要像其他工具一样对待,因为即使是有用的工具也可能会造成严重的损害。尽管不常发生,但问问你自己:如果你有一把锤子,你会拿着它满屋跑因而可能意外地损坏屋子里的东西,还是会把它放在工具架上或者车库里,远离那些贵重而易碎的东西,仅在需要的时候才拿出来?
对于外部库道理是一样的,不管它们多么有用,都需要注意避免让这些库和实际的源代码耦合过于紧密。否则,如果出了问题,你就需要切换库,这很可能需要重写大量的代码。更好的办法是写自己的API,用一个包装器对外部库进行封装,将其与自己的源代码隔离。自己的程序无需知道用了什么外部库,只要知道API提供了哪些功能即可。想要换一个不同的库?只需要修改包装器就可以了。只要它仍然提供同样的功能,那么完全不需要修改任何核心代码。也许会有例外,但应该不会太多。大部分库都被设计成只专注解决一定范围的问题,因此很容易隔离。
4.7.3节将会涉及如何使用入口点构建驱动系统(driver system),这个系统让你可以将项目的某些部分设计成可以根据需要切换的模块。
2.4 框架
有许多不同的Python框架可用于开发不同的Python应用。如果是Web应用,可以使用Django(https://www.djangoproject.com/)、Pylons(http://www.pylonsproject.org/)、TurboGears(http://turbogears.org/)、Tornado(http://www.tornadoweb.org/)、Zope(http://www.zope.org/)或者Plone(http://plone.org/)。如果你正在找事件驱动的框架,可以使用Twisted(http://twistedmatrix.com/)或者Circuits(https://bitbucket.org/prologic/circuits/)等。
框架和外部库的主要不同在于,应用程序是建立在框架之上的,代码对框架进行扩展而不是反过来。而外部库更像是对代码的扩展,赋予你的代码更多额外的能力,而框架会为你的代码搭好架子,只需要通过某种方式完善这个架子就行了,尽管这可能是把双刃剑。使用框架有很多好处,如快速构建原型并开发,但也有一些明显的缺点,如锁定(lock-in)问题。因此,在决定使用某个框架前需要把这些都考虑在内。
这里推荐的为Python应用选择框架的方法很大程度上类似于前面介绍过的外部库的选择方法,适用于框架是通过一组Python库来进行分发的情况。有时它们还包含用于创建、运行以及部署应用的工具,但这并不影响你采用的标准。前面已经提到过,在已经写了大量代码之后更换外部库是十分痛苦的,但更换框架比这还要难受一千倍,因为通常需要完全重写你的应用程序。举例说明,前面提及的Twisted框架还不能完全支持Python 3。如果你基于Twisted的程序在几年之后想要支持Python 3,那么你将非常不幸,除非全部重写代码选用另一个框架或者有人最终为Twisted提供了Python 3的升级支持。
有些框架与其他框架相比更加轻量级。一个简单的比较就是,Django提供了内置的ORM功能,而Flask则没有。一个框架提供的功能越少,将来遇到问题的越少。然而,框架缺少的每个功能同时也是另一个需要去解决的问题,要么自己写,要么再千挑万选去找另一个能提供这个功能的库。愿意处理哪种场景取决于个人的选择,但需慎重选择。当问题出现时从一个框架升级至其他框架是极其艰巨的任务,就算Python再强大,对于这类问题也没有什么好办法。
2.5 Doug Hellmann访谈
我曾经有幸和Doug Hellmann一起工作过数月。他在DreamHost是一位非常资深的软件开发工程师,同时他也是OpenStack项目的贡献者。他发起过关于Python的网站Python Module of the Week(http://pymotw.com/),也出版过一本很有名的Pyhton书The Python Standard Library By Example(http://doughellmann.com/python-standard-library-by-example),同时他也是Python的核心开发人员。我曾经咨询过Doug关于标准库以及库的设计与应用等方面的问题。

当你从头开发一个Python应用时,如何迈出第一步呢?它和开发一个已有的应用程序有什么不同?
从抽象角度看步骤都差不多,但是细节上有所不同。相对于对比开发新项目和已有项目,我个人在对应用程序和库开发的处理方式上有更多的不同。
当我要修改已有代码时,特别是这些代码是其他人创建的时,起初我需要研究代码是如何工作的,我需要改进哪些代码。我可能会添加日志或是输出语句,或是用pdb,利用测试数据运行应用程序,以便我理解它是如何工作的。我经常会做一些修改并测试它们,并在每次提交代码前添加可能的自动化测试。
创建一个新应用时,我会采取相同的逐步探索方法。我先创建一些代码,然后手动运行它们,在这个功能可以基本调通后,再编写测试用例确保我已经覆盖了所有的边界情况。创建测试用例也可以让代码重构更容易。
这正是smiley(https://pypi.python.org/pypi/smiley)的情况。在开发正式应用程序前,我先尝试用Python的trace API写一些临时脚本。对于smiley我最初的设想包括一个仪表盘并从另一个运行的应用程序收集数据,另一部分用来接收通过网络发送过来的数据并将其保存。在添加几个不同的报告功能的过程中,我意识到重放已收集的数据的过程和在一开始收集数据的过程基本是一样的。于是我重构了一些类,并针对数据收集,数据库访问和报告生成器创建了基类。通过让这些类遵循同样的API使我可以很容易地创建数据收集应用的一个版本,它可以直接将数据写入数据库而无需通过网络发送数据。
当设计一个应用程序时,我会考虑用户界面是如何工作的,但对于库,我会专注于开发人员如何使用其API。通过先写测试代码而不是库代码,可以让思考如何通过这个新库开发应用程序变得更容易一点儿。我通常会以测试的方式创建一系列示例程序,然后依照其工作方式去构建这个库。
我还发现,在写任何库的代码之前先写文档让我可以全面考虑功能和流程的使用,而不需要提交任何实现的细节。它还让我可以记录对于设计我所做出的选择,以便读者不仅可以理解如何使用这个库,还可以了解在创建它时我的期望是什么。这就是我用在stevedore上的方法。
我知道我想让stevedore能够提供一组类用来管理应用程序的插件。在设计阶段,我花了些时间思考我见过的使用插件的通用模式,并且写了几页粗略的文档描述这些类应该如何使用。我意识到,如果我在类的构造函数中放最复杂的参数,方法map()几乎是可互换的。这些设计笔记直接写进了stevedore官方文档的简介里,用来解释在应用程序中使用插件的不同模式和准则。
将一个模块加入Python标准库的流程是什么?
完整的流程和规范可以在Python Developer’s Guide(http://docs.python.org/devguide/stdlibchanges.html)中找到。
一个模块在被加入Python标准库之前,需要被证明是稳定且广泛使用的。模块需要提供的功能要么是很难正确实现的,要么是非常有用以至于许多开发人员已经创建了他们自己不同的变种。API应该非常清晰并且它的实现不能依赖任何标准库之外的库。
提议一个新模块的第一步是在社区通过python-ideas邮件列表非正式地了解一下大家对此的感兴趣程度。如果回应很积极,下一步就是创建一个Python增强提案(PythonEnhancement Proposal,PEP),它包括添加这个模块的动因,以及如何过渡的一些实现细节。
因为包的管理和发现工作已经非常稳定了,尤其是pip和Python Package Index(PyPI),因此在标准库之外维护一个新的库可能更实用。单独的发布使得对于新功能和bug修复(bugfix)的更新可以更频繁,对于处理新技术或API的库来说这尤其重要。
标准库中的哪三个模块是你最想人们深入了解并开始使用的?
最近我做了许多关于应用程序中动态加载扩展方面的工作。我使用abc模块为那些作为抽象基类进行的扩展定义API,以帮助扩展的作者们了解API的哪些方法是必需的,哪些是可选的。抽象基类已经在其他一些语言中内置了,但我发现很多Python程序员并不知道Python也有。
bisect模块中的二分查找算法是个很好的例子,一个广泛使用但不容易正确实现的功能,因此它非常适合放到标准库中。我特别喜欢它可以搜索稀疏列表,且搜索的值可能并不在其中。
collections模块中有许多有用的数据结构并没有得到广泛使用。我喜欢用namedtuple来创建一些小的像类一样的数据结构来保存数据但并不需要任何关联逻辑。如果之后需要添加逻辑的话,可以很容易将namedtuple转换成一个普通的类,因为namedtuple支持通过名字访问属性。另一个有意思的数据结构是ChainMap,它可以生成良好的层级命名空间。ChainMap能够用来为模板解析创建上下文或者通过清晰的流程定义来管理不同来源的配置。
许多项目(包括OpenStack)或者外部库,会在标准库之上封装一层自己的抽象。例如,我特别想了解对于日期/时间的处理。对此你有什么建议吗?程序员应该坚持使用标准库,还是应该写他们自己的函数,切换到其他外部库或是开始给Python提交补丁?
所有这些都可以。我倾向于避免重复造轮子,所以我强烈主张贡献补丁和改进那些能够用来作为依赖的项目。但是,有时创建另外的抽象并单独维护代码也是合理的,不管在应用程序内还是作为一个新的库。
你提到的例子中,OpenStack里的timeutils模块就是对Python的datetime模块的一层很薄的封装。大部分功能都简短且简单,但通过将这些最常见的操作封装为一个模块,我们可以保证它们在OpenStack项目中以一致的方式进行处理。因为许多函数都是应用相关的,某种意义上它们强化了一些问题决策,例如,字符串时间戳格式或者“现在”意味着什么,它们不太适合作为Python标准库的补丁或者作为一个通用库发布以及被其他项目采用。
与之相反,我目前正致力于将OpenStack的API服务项目从早期创建时使用的WSGI框架转成采用一个第三方Web开发框架。在Python中开发WSGI应用有很多选择,并且当我们可能需要增强其中一个以便其可以完全适应OpenStack API服务器的需要时,将这些可重用的修改贡献对于维护一个“私有的”框架似乎更可取。
当从标准库或其他地方导入并使用大量模块时,关于该做什么你有什么特别的建议吗?
我没有什么硬性限制,但是如果我有过多的导入时,我会重新考虑这个模块的设计并考虑将其拆到一个包中。与上层模块或者应用程序模块相比,对底层模块的这种拆分可能会发生得更快,因为对于上层模块我期望将更多片段组织在一起。
关于Python 3,有什么模块是值得一提而且能令开发人员有兴趣深入了解的?
支持Python 3的第三方库的数量已经到了决定性的时刻。针对Python 3开发新库或应用程序从未如此简单过,而且幸亏有3.3中加入的兼容性功能使同时维护对Python 2.7的支持也很容易。主要的Linux发行版正在致力于将Python 3默认安装。任何人要用Python创建新项目都应该认真考虑对Python 3的支持,除非有尚未移植的依赖。目前来说,不能运行在Python 3上的库基本会被视为“不再维护”。
许多开发人员将所有的代码都写入到应用程序中,但有些情况下可能有必要将代码封装成一个库。关于设计、规划、迁移等,做这些最好的方式是什么?
应用程序就是“胶水代码”的集合用来将库组织在一起完成特定目的。起初设计时可以将这些功能实现为一个库,然后在构建应用程序时确保库的代码能够很好地组织到逻辑单元中,这会让测试变得更简单。这还意味着应用程序的功能可以通过库进行访问,并且能够被重新组合以构建其他应用程序。未能采用这种方法的话意味着应用程序的功能和用户界面的绑定过于紧密,导致很难修改和重用。
对于计划开始构建自己的Python库的人们有什么样的建议呢?
我通常建议自顶向下设计库和API,对每一层应用单一职责原则(Single Responsibility Principle,SRP)(http://en.wikipedia.org/wiki/Single_responsibility_principle)这样的设计准则。考虑调用者如何使用这个库,并创建一个API去支持这些功能。考虑什么值可以存在一个实例中被方法使用,以及每个方法每次都要传入哪些值。最后,考虑实现以及是否底层的代码的组织应该不同于公共API。
SQLAlchemy是应用这些原则的绝好例子。声明式ORM、数据映射和表达式生成层都是单独的。开发人员可以自行决定对于API访问的正确的抽象程度,并基于他们的需求而不是被库的设计强加的约束去使用这个库。
当你随机看Python程序员的代码时遇到的最常见的编程错误是什么?
Python的习惯用法和其他语言的一个较大的不同在于循环和迭代。例如,我见过的最常见的反模式是使用for循环过滤一个列表并将元素加入到一个新的列表中,然后再在第二个循环中处理这个结果(可能将列表作为参数传给一个函数)。我通常建议将过滤循环改成生成器表达式,因为生成器表达式,更有效也更容易理解。列表的组合也很常见,以便它们的内容可以以某种方式一起被处理,但却没有使用itertools.chain()。
还有一些我在代码评审时给出的更细小的建议,例如,使用dict()而不是长的if:then:else块作为查找表,确保函数总是返回相同的类型(如一个空列表而不是None),通过使用元组和新类将相关的值合并到一个对象中从而减少函数的参数,以及在公共API中定义要使用的类而不是依赖于字典。
有没有关于选择了一个“错误”的依赖的具体的例子是你亲身经历或目睹过的?
最近,我有个例子,pyparsing(https://pypi.python.org/pypi/pyparsing)的一个新发布取消了对Python 2的支持,这给我正在维护的一个库带来了一点儿小麻烦。对pyparsing的更新是个重大的修改,而且是明确标识成这样的,但是因为我没有在对cliff(https://pypi.python.org/pypi/cliff)的设置中限制依赖版本号,所以pyparsing的新发布给cliff的用户造成了问题。解决方案就是在cliff的依赖列表中对Python 2和Python 3提供不同的版本边界。这种情况突显了理解依赖管理和确保持续集成测试中适当的测试配置的重要性。
你怎么看待框架?
框架像任何工具类型一样。它们确实有帮助,但在选择框架时要特别谨慎,应确保它能够很好地完成当前的工作。
通过抽取公共部分到一个框架中,你可以将你的开发精力专注于应用中独特的方面。通过提供许多类似运行在开发模式或者写一个测试套件这样的引导代码,它们还可以帮你让一个应用程序迅速达到一个可用的状态而不是从头开发。它们还可以激励你在应用程序开发过程中保持一致,这意味着最终你的代码将更易于理解且更可重用。
虽然使用框架时还有其他一些潜在的缺点需要注意。决定使用某个特定框架通常能够反映应用程序本身的设计。如果设计的限制不能从根本上符合应用程序的需求,那么选择错误的框架会令应用的实现变得更难。如果你试着使用与框架建议不同的模式或惯用方式,你最终将不得不同框架做斗争。
2.6 管理API变化
在构造API时很难一蹴而就。API需要不断演化、添加、删除或者修改所提供的功能。
在后面的段落中women将讨论如何管理公共API的变化。公共API是指将应用程序或库暴露给终端用户的API。内部API则有另外的考虑,并且由于它们在内部(也就是说用户不需要直接操作这些API),因而可以任意处理它们:分解、调整或者根据需要任意使用。
这两种API很容易区分。Python的传统是用下划线作为私有API的前缀,如foo是公共API,而_bar是私有的。
在构建API时,最糟糕的事情莫过于API被突然破坏。Linus Torvalds就因对Linux内核公共API破坏的零容忍而闻名。考虑到如此多的人依赖Linux,可以说他的选择是非常明智的。
Unix平台的库管理系统很复杂,它依赖于soname(http://en.wikipedia.org/wiki/Soname)和细粒度的版本标识符。Python中没有这样的系统,也没有对应的转换。因此完全取决于维护者如何选择正确的版本号和策略。但是,关于如何定义自己的库或应用程序的版本,你依然可以将Unix系统作为你的灵感来源。通常,版本号应该反映出API对用户的影响,大部分开发人员通过主版本号的增加来表示此类变化,但这取决于你对版本号管理的方法,你也可以采用增加小版本号的方式。
不管如何决定,最重要的一步就是在修改API时要通过文档对修改进行详细地记录,包括:
旧接口不要立刻删除。实际上,应该尽量长时间地保留旧接口。因为已经明确标识为作废,所以新用户不会去使用它。在维护实在太麻烦时再移除旧接口。API变化的记录见示例2.2.
示例2.2API变化的记录
class Car(object):
def turn_left(self):
"""Turn the car left.
.. deprecated:: 1.1
Use :func:`turn` instead with the direction argument set to left
"""
self.turn(direction='left')
def turn(self, direction):
"""Turn the car in some direction.
:param direction: The direction to turn to.
:type direction: str
"""
Write actual code here instead
pass
使用Sphinx标记强调修改是个好主意。在构建文档时,用户应该能清楚地知道某个功能不应该再被使用,并且可以直接访问到新功能,并随之解释如何升级旧代码。这个方法的缺点就是,你不能指望开发人员在升级你的Python包到新版本时会去读你的修改日志或者文档。
Python提供了一个很有意思的名为warnings的模块用来解决这一问题。这一模块允许代码发出不同类型的警告信息,如PendingDeprecationWarning和DeprecationWarning。这些警告能够用来通知开发人员某个正在调用的函数已经废弃或即将废弃。这样,开发人员就能够看到他们正在使用旧接口并且应该相应地进行处理1。
回到之前的例子,我们可以利用它向用户发出警告,如示例2.3所示。
示例2.3 带警告的API变化的记录
import warnings
class Car(object):
def turn_left(self):
"""Turn the car left.
.. deprecated:: 1.1
Use :func:`turn` instead with the direction argument set to "left".
"""
warnings.warn("turn_left is deprecated, use turn instead",
DeprecationWarning)
self.turn(direction='left')
def turn(self, direction):
"""Turn the car in some direction.
:param direction: The direction to turn to.
:type direction: str
"""
Write actual code here instead
pass
任何调用了废弃的turn_left函数的代码,都将引发一个警告:
>>> Car().turn_left()
__main__:8: DeprecationWarning: turn_left is deprecated, use turn instead
注意
从Python 2.7开始,DeprecationWarning默认将不显示。可以通过在调用python时指定-W all选项来禁用这一过滤器。关于-W的可用值的更多信息可以参考python手册。
让你的代码告诉开发人员他们的程序正在使用某些最终将要停止工作的东西是明智的,因为这其实也可以自动化。当运行他们的测试集合时,开发人员可以在执行python时使用-W error选项,它会将警告转换为异常。这意味着一个废弃的函数每次被调用时都会有一个错误被抛出,这样使用你的库的开发人员就可以很容易知道如何具体修改他们的代码。
示例2.4 运行python -W error
>>> import warnings
>>> warnings.warn("This is deprecated", DeprecationWarning)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
DeprecationWarning: This is deprecated
1对要和C打交道的Python开发人员来说,这是一个很方便的与__attribute__((deprecated)) GCC扩展的对应物。
2.7 Christophe de Vienne访谈
Christophe是一名Python程序员,并且是WSME(Web Services Made Easy)的作者。开发人员可以使用这个框架定义Python风格的Web服务,并且支持多种丰富的API,且允许作为插件被集成到其他Web框架中。

在设计Python的API时开发人员常犯的错误是什么?
有许多我在设计Python API时试图避免的错误。
考虑到WSME可能运行在多种不同的框架之上,什么样的API是它必须支持的?
实际上并没有那么多,因为它能够运行在其上的框架很多方面是类似的。它们使用装饰器(decorator)给外面的世界暴露函数和方法,它们都是基于WSGI标准的(所以它们的请求对象看上去非常类似),而且它们多少都以彼此作为灵感来源。也就是说,我们还没有试图将其插入一个异步的Web框架中,如Twisted。
我处理过最大的不同是上下文信息的访问方式。在Web框架中,上下文主要是可以从中导出或附加(身份信息、会话数据、数据连接等)信息的请求,以及一些全局的东西,如全局配置、连接池等。大部分Web框架会假设它们运行在多线程服务器上并且将所有这些信息看作是线程独立数据(Thread-Specific Data,TSD)的。这使得它们可以通过导入来自一个模块的请求代理对象来访问当前的请求并与其一起工作。尽管它使用起来很容易,但它也暗含了一点小魔法并且使全局对象缺乏特定上下文数据。
例如,Pyramid框架的工作方式就不太一样。取而代之的是,上下文被显式地注入到使用它的代码段中。这就是为什么视图会接收一个“request”作为参数,它封装了WSGI的环境变量并提供对应用程序全局上下文的访问。
它们的优缺点各是什么?
类似Pyramid的API风格有个很大的优点,它允许一个单独的程序以非常自然的方式运行在几个完全不同的环境中。缺点就是学习曲线有点儿陡。
Python是怎样让库API的设计更简单或更难的呢?
缺乏内置的定义哪部分公共及哪部分私有的方式,这是个(小)问题也是个优点。
当开发人员对哪部分是他们的API哪部分不是的问题欠考虑的时候,它就会是问题。但是,通过一点规则、文档和(如果需要的话)类似zope.interface的工具,它就将不再是问题了。
它的优点在于能够让API的重构快速而简单,同时保持对前面版本的兼容。
对于API的演化、废弃、移除等你的经验法则是什么?
在做决定的时候我会用下面这几个标准去衡量。
对为Python中的API建立你有什么建议吗?
文档可以让新用户更容易采用你的库。忽视文档会赶走很多潜在用户,而且还不止是初学者。但问题在于,写文档是很难的,所以它经常被忽略。
尽早写文档,并在持续集成中包含文档构建。现在我们有Read the Docs(https://readthedocs.org/),没理由在不包含文档生成和发布(至少对开源软件来说如此)。
使用docstring对API的类和函数进行文档化。遵循PEP 257规范(http://www.python.org/dev/peps/pep-0257/)1,以便开发人员不必读你的源代码就能理解你的API是做什么的。从docstring生成HTML文档,并且不要限制对API的引用。
自始至终提供实用的例子。至少包括一个“入门指南”,向新手展示如何构建一个可以运行的例子。文档的第一页应该提供一个关于API基本情况的快速概览和有代表性的用例。
在文档中一个版本接一个版本地体现API演进的细节。(只有VCS日志是不够的!)
让你的文档可访问,可能的话,让它读起来更舒服些。你的用户需要能够很容易地找到文档,并从中获取他们需要的信息而没有任何被折磨的感觉。通过PyPI发布你的文档就可以实现这一点,通过Read the Docs发布也是很不错的方法,因为用户会希望能够在那里找到你的文档。
最后,选择一个高效且吸引人的主题。我为WSME选择了“Cloud”Sphinx主题,但实际上有大量的主题可供选择。没必要为了做出好看的文档而成为Web专家。
1 Docstring Conventions, David Goodger, Guido van Rossum, 29 May 2001
第 3 章 文档
正如在前面提到过的,文档是软件开发的重要组成部分。但是,仍然有很多项目缺乏很好的文档。文档编写被看作是复杂而艰巨的任务,但其实大可不必如此。利用一些Python程序员可用的工具,可以令代码的文档编写工作就像写代码一样容易。
导致文档稀少或干脆没有文档的最大元凶之一就是,很多人想当然地认为文档只能手工编写。即使有多个人做同一个项目,也只是意味着最终会有一个或多个人不得不疲于应付编程并维护文档。而且如果你问任何一个开发人员更喜欢做哪种工作,他们肯定会说他们宁愿开发软件而不愿意为软件写文档。有时文档的流程甚至完全独立于开发流程,这意味着可能写文档的人甚至从来没有实际写过一行代码。而且,任何这种方式生成的文档很可能是过时的。不管文档是由程序员自己来完成还是有专门的文档编写人员来完成,纯手工的文档编写方式几乎都不可能跟上开发节奏的。
归根结底,代码和文档离得越远,对文档的维护就越难。所以说,为什么要让代码和文档完全分开呢?实际上不仅可以直接将文档放到代码里,而且可以很容易地将文档转换成可读的HTML或者PDF文件。
Python中文档格式的事实标准是reStructuredText,或简称reST。它是一种轻量级的标记语言(类似流行的Markdown),在易于计算机处理的同时也便于人类读写。Sphinx(http://sphinx-doc.org/)是处理这一格式最常用的工具,它能读取reST格式的内容并输出其他格式的文档。
项目的文档应该包括下列内容。
还应该包括一个README.rst文件,解释这个项目是做什么的。这个README文件会显示在GitHub(https://github.com/)或PyPI(http://pypi.python.org)的项目页面上。两个网站都可以处理reST格式。
提示
如果正在使用GitHub,那么也可以添加一个CONTRIBUTING.rst文件,这个文件会在有人创建pull请求时显示。它应该给出一组检查项以便开发人员在提交代码之前对照检查,如遵守PEP 8或者不要忘记运行单元测试。
提示
Read The Docs(http://readthedocs.org)可以自动在线生成和发布文档。在上面注册并配置项目是一个很直接地流程,它会搜索Sphinx配置文件,构建文档,然后让用户可以访问文档。它是代码托管网站的非常好的搭配。
3.1 Sphinx和reST入门
首先,需要在项目的顶层目录运行sphinx-quickstart。这会创建Sphinx需要的目录结构,同时会在文件夹doc/source中创建两个文件,一个是conf.py,它包含Sphinx的配置信息(当然也是Sphinx运行所必需的),另一个文件是index.rst,它将作为文档的首页。
然后就可以通过在调用命令sphinx-build时给出源目录和输出目录来生成HTML格式的文档:
$ sphinx-build doc/source doc/build
import pkg_resources
Running Sphinx v1.2b1
loading pickled environment... done
No builder selected, using default: html
building [html]: targets for 1 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
preparing documents... done
writing output... [100%] index
writing additional files... genindex search
copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded.
现在就可以在心仪的浏览器中打开doc/build/index.html并开始阅读文档了。
提示
如果使用了setuptools或者pbr(参见4.2节)进行打包,Sphinx会对它们进行扩展以支持命令setup.py build_sphinx,这个命令会自动运行sphinx-build。pbr对Sphinx包含比较完善的默认配置,如输出文档到doc子目录中。
index.rst是文档开始的地方,但并不局限于此。reST支持包含,所以完全可以将文档分成多个文件。刚开始不必太担心语法和语义,尽管reST确实提供了不少格式,但后面有很多时间去了解。reST的完全指南(http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html)介绍了如何创建标题、列表、表格等。
3.2 Sphinx模块
Sphinx是高度可扩展的:它的基本功能只支持手工文档,但它有许多有用的模块可以支持自动化文档和其他功能。例如,sphinx.ext.autodoc可以从模块中抽取rest格式的文档字符串(docstrings)并生成.rst文件。sphinx-quickstart在运行的时候会问你是否想激活某个模块,也可以编辑conf.py文件并将其作为一个扩展。
extensions = ['sphinx.ext.autodoc']
值得注意的是,autodo``c不会自动识别并包含模块,而是需要显式地指明需要对哪些模块生成文档,类似下面这样:
.. automodule:: foobar
:members: ①
:undoc-members: ②
:show-inheritance: ③
① 要求输出所有已加文档的成员信息(可选)。
② 要求输出所有未加文档的成员信息(可选)。
③ 显示继承关系(可选)。
同时要注意以下几点。
autodoc可以将实际源代码中的大部分文档都包含进来,甚至还可以单独挑选某个模块或方法生成文档,而不是一个“非此即彼”的解决方案。通过直接关联源代码来维护文档,可以很容易地保证文档始终是最新的。
如果你正在开发一个Python库,那么通常需要以表格的形式来格式化你的API文档,表格中包含到各个模块的独立的文档页面的链接。sphinx.ext.autogen模块就是用来专门处理这一常见需求的。首先,需要在conf.py中启动它:
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary']
现在就可以在一个.rst中加入类似下面的内容来自动为特定模块生成TOC:
.. autosummary::
mymodule
mymodule.submodule
这会生成名为generated/mymodule.rst和generated/mymodule.submodule.rst的文件,其中会包含前面提到的autodoc指令。使用同样的格式,还可以指定希望模块API的哪部分包含在文档中。
提示
在大规模的项目中,手工添加模块到这个列表中是比较麻烦的。要记得conf.py是个普通的Python源文件,所以完全可以在里面写自己的代码,包括写代码去自动创建指明哪些模块需要生成文档的.rst文件。
Sphinx的另一个有用的功能是能够在生成文档时自动在例子上运行doctest。doctest是标准的Python模块,它能够针对代码片段搜索文档并运行代码以测试其是否反映代码的实际行为。每个以>>>(即主要的提示符)开始的段落会被看作是一个要测试的代码段。
To print something to the standard output, use the :py:func:`print` function.
>>> print("foobar")
foobar
在你的API演进的过程中很容易忘记对例子进行修改,doctest可以帮助你避免这类问题的发生。如果文档包含一份详细的分步指南,doctest能够确保其在开发过程中保持最新。也可以使用doctest做文档驱动开发(Documentation-Driven Development,DDD):先写文档和例子,然后写代码去匹配文档。
通过特殊的doctest生成器,利用这个功能就像运行sphinx-build一样简单:
$ sphinx-build -b doctest doc/source doc/build
Running Sphinx v1.2b1
loading pickled environment... done
building [doctest]: targets for 1 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
running tests...
Document: index

1 items passed all tests:
1 tests in default
1 tests in 1 items.
1 passed and 0 failed.
Test passed.
Doctest summary
===============
1 test
0 failures in tests
0 failures in setup code
0 failures in cleanup code
build succeeded.
Sphinx还提供了很多其他功能,自带或者通过扩展模块,包括
可能你现在并不需要所有这些功能,但是如果未来需要的话,提前知道有模块能提供这些功能还是不错的。
3.3 扩展Sphinx
有时现成的方案还不够。如果你写的是一个在Python内部调用的API那么问题不大,但如果写的是一个HTTP REST API,Sphinx就只能为你的API生成Python端的文档,因此你不得不手工编写REST API文档应处理随之而来的其他问题。
WSME(https://pypi.python.org/pypi/WSME)的创建者们有别的主意。他们开发了一个名为sphinxcontrib-pecanwsme(https://pypi.python.org/pypi/sphinxcontrib-pecanwsme)的Sphinx的扩展,它可以分析文档字符串和实际的Python代码并自动生成REST API文档。你也可以对自己的项目这么做,将代码中的有用信息抽取到文档中,只有让这个过程自动化才有意义。
提示
针对其他HTTP框架,如Flask、Bottle和Tornado,可以使用sphinxcontrib.httpdomain(http://pythonhosted.org/sphinxcontrib-httpdomain/)。我个人的观点是,无论任何时候,只要能从代码中抽取信息帮助生成文档,都值得去做并且将其自动化。这比手工维护文档要好得多,尤其是可以利用自动发布工具(如Read The Docs)的时候。
要开发Sphinx,首先是要编写一个模块,最好是作为sphinxcontrib的一个子模块(如果模块足够通用的话),并且起个名字。Sphinx需要该模块有个预定义的名为setup(app)的函数。app对象会包含用来将你的代码连接到Sphinx事件和指令的方法。完整的方法列表可以在Sphinx扩展API(http://sphinx-doc.org/ext/appapi.html)中找到。
例如,sphinxcontrib-pecanwsme利用setup(app)函数添加了一个名为rest-controller的单条指令。添加的这条指令需要WSME控制器的类名是完整的限定名来为其生成文档。
示例3.1 摘自sphinxcontrib.pecanwsme.rest.setup的代码
def setup(app):
app.add_directive('rest-controller', RESTControllerDirective)
RESTControllerDirective是个指令类,它必须包含特定的属性和方法,就像在Sphinx扩展API(http://sphinx-doc.org/ext/appapi.html#sphinx.application.Sphinx.add_directive)中描述的那样。主方法run()会负责完成从代码中抽取文档的实际工作。
sphinx-contrib资源库(https://bitbucket.org/birkenfeld/sphinx-contrib/src)包括一组能够帮助你开发自己的扩展模块的小模块。
注意
尽管Sphinx是用Python开发的,而且默认也主要面向Python,但是它有很多可用的扩展使它可以支持其他语言。所以,即使项目同时使用了多种语言,也可以用Sphinx为整个项目生成文档。
第 4 章 分发
我敢打赌你将来肯定要分发你的软件。你可能只是想将代码打个压缩包然后上传到互联网,即便如此Python也提供了相应的工具,确保你的用户在安装你的软件的过程中不会遇到麻烦。你应该已经熟知如何用setup.py安装Python应用程序和库,但是你可能从未深究过它背后的运行机制,也没有探究过如何生成自己的setup.py。
4.1 简史
distutils自从1998年便已经是Python标准库的一部分了。它最早由Greg Ward开发,目的是要创造一种简单的方式供开发人员为最终用户自动化软件安装过程。
示例4.1 使用distutils的setup.py
#!/usr/bin/python
From distutils.core import setup
setup(name="rebuildd",
description="Debian packages rebuild tool",
author="Julien Danjou",
author_email="acid@debian.org",
url="http://julien.danjou.info/software/rebuildd.html",
packages=['rebuildd'])
就这么简单。用户要生成或安装软件只需通过合适的命令运行setup.py即可。如果你的发布中包含了除原生Python之外的C语言模块,它甚至也可以自动处理。
distutils的开发在2000年就停止了。从那时起,一些开发人员开始在其基础上继续开发他们自己的工具。其中最成功的distutils的继任者便是打包库setuptools,它提供了更频繁的更新和更多的高级功能,如自动依赖处理、Egg分发格式以及easy*install命令。由于distutils仍然是包含在Python标准库中的软件打包的一种标准方式,因此setuptools也提供了一定程度上的向后兼容。
示例4.2 使用setuptools的setup.py
#!/usr/bin/env python
import setuptools
setuptools.setup(
name="pymunincli",
version="0.2",
author="Julien Danjou",
author_email="julien@danjou.info",
description="munin client library",
license="GPL",
url="http://julien.danjou.info/software/pymunincli/",
packages=['munin'],
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Intended Audience :: Developers",
"Intended Audience :: Information Technology",
"License :: OSI Approved :: GNU General Public License (GPL)",
"Operating System :: OS Independent",
"Programming Language :: Python"
],
)
最终,setuptools的开发也变得缓慢了,因为人们开始认为它很可能像最早的distutils一样死去。于是,不久后另一伙开发人员又基于setuptools创建了一个新的名为distribute的库,它具有一些超越setuptools的优点,包括bug更少且支持Python 3。所有的好故事都有个曲折的结局,这个也不例外。2013年3月,setuptools和distribute两个开发组决定基于原始的setuptools项目合并他们的代码库(http://mail.python.org/pipermail/distutils-sig/2013-March/020126.html)。所以现在distribute已经被废弃,setuptools又重新成为处理高级Python安装的标准方式。
尽管这一切已经在发生,还是有另一个名为distutils2的项目在开发中,意欲全面取代Python标准库中的distutils。它与distutils和setuptools的最明显的区别是,它会将包的元数据存储在纯文本文件setup.cfg中,这使得开发人员写起来简单并且外部工具读取也容易。然而,它还是留有distutisl的一些缺陷,例如,晦涩的基于命令的设计,缺少对入口点(entry point)以及在Windows上执行原生脚本的支持,而这两个功能setuptools都支持。因为这些以及其他一些原因,最终在Python 3.3标准库中包含setuptools的计划再次落空,这一项目在2012年被废弃。
然而,packaging仍有机会通过distlib(https://readthedocs.org/projects/distlib/)涅槃重生,它正致力于取代distutils,并将(希望是)成为Python 3.4标准库的一部分。它包含来自packaging的最好的功能同时实现了与打包有关的PEP中描述的基本内容。
简单回顾一下。
尽管这5个打包工具是实际工作中最常见的,但还是有许多其他的打包库。在网上搜索相关信息要谨慎,正因为上述复杂的历史变迁,所以有大量的文档都是过期的。不过至少官方文档(http://pythonhosted.org/setuptools/)是最新的。
简而言之,setuptools是目前分发库的主要选择,但在未来要对distlib保持关注。
4.2 使用pbr打包
现在我已经用了好几页让你对如此多的分发工具更加迷糊,接下来让我们谈谈另一个工具,也是一个不同的选择,名为pbr。
你可能已经开发过一些包并试图去写setup.py,或者从其他项目复制一个,或者自己啃文档。这不是一个清晰明确的任务,如同我们在前面讨论过的,选择什么工具通常是第一个障碍。本节将介绍pbr,一个应该用来开发你的下一个setup.py的工具,以便你不用再在这部分浪费时间。
pbr是指Python Build Reasonableness。这个项目已经在OpenStack(http://openstack.org)内部启动,并围绕setuptools开发了一系列用来辅助包的安装和部署的工具。它从distutils2获得了灵感,利用setup.cfg文件来描述包的用途。
pbr使用的setup.py文件类似下面这样:
import setuptools
setuptools.setup(setup_requires=['pbr'], pbr=True)
就两行代码,非常简单。实际上安装所需要的元数据存储在setup.cfg文件中:
[metadata]
name = foobar
author = Dave Null
author-email = foobar@example.org
summary = Package doing nifty stuff
license = MIT
description-file =
README.rst
home-page = http://pypi.python.org/pypi/foobar
requires-python = >=2.6
classifier =
Development Status :: 4 - Beta
Environment :: Console
Intended Audience :: Developers
Intended Audience :: Information Technology
License :: OSI Approved :: Apache Software License
Operating System :: OS Independent
Programming Language :: Python
[files]
packages =
foobar
看着眼熟?没错,处理的方式都是直接受distutils2的启发。
pbr还提供了其他一些功能,例如:
所有这些对开发人员来说只有一点儿或完全没有任何额外工作要做。pbr目前维护良好并且开发很活跃,所以如果计划分发软件的话,应该认真考虑一下使用pbr。
4.3 Wheel格式
在Python出现后的大部分时间里,都没有官方的标准分发格式。尽管不同的分发工具大多使用了一些比较通用的归档格式,但它们的元数据和包的结构彼此并不兼容,例如,由setuptools引入的Egg格式只是一个有着不同扩展名的压缩文件。这一问题在官方安装标准最终敲定之后变得更加复杂,官方标准同已有标准并不兼容。
为了解决这些问题,PEP 427(http://www.python.org/dev/peps/pep-0427/)针对Python的分发包定义了新的标准,名为Wheel。已经有相应工具作为这一格式的参考实现,也命名为Wheel(https://pypi.python.org/pypi/whee)。
pip(https://pypi.python.org/pypi/pip)从1.4版本开始支持Wheel。如果正在使用setuptools并且安装了wheel包,那么会自动集成为一个命令:
python setup.py bdist_wheel
这条命令将在dist目录中创建.whl文件。和Egg格式类似,一个Wheel归档文件就是一个有着不同扩展名的压缩文件,只是Wheel归档文件不需要安装。可以通过在包名的后面加一个斜杠加载和运行代码:
$ python wheel--py2.py3-none-any.whl/wheel -h
usage: wheel [-h]
{keygen,sign,unsign,verify,unpack,install,install-scripts,
convert,help}
...
positional arguments:
[...]
你可能会惊讶地发现,这并不是由Wheel格式引入的功能。实际上Python还可以像Java运行.jar文件那样运行普通的压缩文件:
python foobar.zip
这等同于:
PYTHONPATH=foobar.zip python -m __main__
换句话说,程序中的__main__模块会自动从__main__.py中被导入。也可以通过在斜杠后面指定模块名字来导入__main__,就像用Wheel:
python foobar.zip/mymod
这等同于:
PYTHONPATH=foobar.zip python -m mymod.__main__
Wheel的优点之一在于其命名转换,它允许指定软件的分发是否针对某一特定架构和/或Python实现(CPython、PyPy、Jython等)。这在需要分发用C语言写的模块时尤其有用。
4.4 包的安装
setuptools引入了第一个安装包的有用命令easy_install。它通过一条命令即可从Egg归档文件中安装Python模块。遗憾的是,easy_install从一开始就因为它有争议的行为(如忽视系统管理员的最佳实践以及缺少卸载功能)而口碑不好。
pip项目提供了更好的安装包的方式。它的开发很活跃,维护良好,并且被包含在Python 3.4中1。它可以从PyPI、tarball或者Wheel(参见4.3节)归档中安装或卸载包。
它的使用很简单:
$ pip install --user voluptuous
Downloading/unpacking voluptuous
Downloading voluptuous-.tar.gz
Storing download in cache at ./.cache/pip/https%%%2Fpypi.python.org%2
Fpackages%2Fsource%2Fv%2Fvoluptuous%2Fvoluptuous-.tar.gz
Running setup.py egg_info for package voluptuous
WARNING: Could not locate pandoc, using Markdown long_description.
Requirement already satisfied (use --upgrade to upgrade): distribute in
/usr/lib/python2.7/dist-packages (from voluptuous)
Installing collected packages: voluptuous
Running setup.py install for voluptuous
WARNING: Could not locate pandoc, using Markdown long_description.
Successfully installed voluptuous
Cleaning up...
也可以通过提供--user选项让pip将包安装在home目录中。这可以避免将包在系统层面安装而造成操作系统目录的污染。
如果要通过pip重复安装同一个包,可以设置本地缓存从而避免每次都去下载这个包。只需要将环境变量PIP_DOWNLOAD_CACHE指向一个目录,pip就用它来保存下载的tarball,并且在每次下载包之前先检查这个位置。这在使用tox时非常有用,tox需要下载包来构建虚拟环境。也可以在~/.pip/pip.conf文件中添加download-cache选项。
可以使用pip freeze命令列出当前已安装的包:
$ pip freeze
Babel==1.3
Jinja2==
commando=
...
所有其他的安装工具都正在被废弃以支持pip,所以使用它作为包管理的一站式解决方案应该不会有什么问题。
4.5 和世界分享你的成果
一旦有了合适的setup.py文件,很容易生成一个用来分发的源代码tarball。只需要使用sdist命令即可,如示例4.3所示。
示例4.3 使用setup.py sdist
$ python setup.py sdist
running sdist
[pbr] Writing ChangeLog
[pbr] Generating AUTHORS
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Processing SOURCES.txt
[pbr] In git context, generating filelist from git
warning: no previously-included files matching '*.pyc' found anywhere in
distribution
writing manifest file 'ceilometer.egg-info/SOURCES.txt'
running check
copying setup.cfg -> ceilometer-2014.1.a6.g772e7
Writing ceilometer-2014.1.a6.g772e7/setup.cfg
[...]
Creating tar archive
removing 'ceilometer-2014.1.a6.g772e7' (and everything under it)
这会在你的源代码树的dist目录下创建一个tarball,这可以用来安装你的软件。正如在4.3节中提到的,可以使用bdist_wheel命令构建Wheel归档文件。
最后一步是要让最终用户在通过pip命令安装你的包时能够知道包在哪里。这意味你需要将你的项目发布到PyPI(http://pypi.python.org)。
如果是第一次,你很可能会犯错,最好能在一个安全的沙箱中测试发布流程而不是在生产服务器中。可以使用PyPI预付费服务器(PyPI staging server,https://testpypi.python.org/pypi)实现,它复制了主索引的全部功能,但是只用于测试目的。
第一步就是在测试服务器上注册你的项目。打开你的~/.pypirc文件并加入下列行:
[distutils]
index-servers =
testpypi
[testpypi]
username = <your username>
password = <your password>
repository = https://testpypi.python.org/pypi
现在就可以在索引中注册你的项目了:
$ python setup.py register -r testpypi
running register
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Reusing existing SOURCES.txt
running check
Registering ceilometer to https://testpypi.python.org/pypi
Server response (200): OK
最后,可以上传一个源代码分发tarball:
% python setup.py sdist upload -r testpypi
running sdist
[pbr] Writing ChangeLog
[pbr] Generating AUTHORS
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Processing SOURCES.txt
[pbr] In git context, generating filelist from git
warning: no previously-included files matching '*.pyc' found anywhere in
distribution
writing manifest file 'ceilometer.egg-info/SOURCES.txt'
running check
creating ceilometer-2014.1.a6.g772e7
[...]
copying setup.cfg -> ceilometer-2014.1.a6.g772e7
Writing ceilometer-2014.1.a6.g772e7/setup.cfg
Creating tar archive
removing 'ceilometer-2014.1.a6.g772e7' (and everything under it)
running upload
Submitting dist/ceilometer-2014.1.a6.g772e7.tar.gz to https://testpypi.
python.org/pypi
Server response (200): OK
以及一个Wheel归档文件:
$ python setup.py bdist_wheel upload -r testpypi
running bdist_wheel
running build
running build_py
running egg_info
writing requirements to ceilometer.egg-info/requires.txt
writing ceilometer.egg-info/PKG-INFO
writing top-level names to ceilometer.egg-info/top_level.txt
writing dependency_links to ceilometer.egg-info/dependency_links.txt
writing entry points to ceilometer.egg-info/entry_points.txt
[pbr] Reusing existing SOURCES.txt
installing to build/bdist.linux-x86_64/wheel
running install
running install_lib
creating build/bdist.linux-x86_64/wheel
[...]
creating build/bdist.linux-x86_64/wheel/ceilometer-2014.1.a6.g772e7.
dist-info/WHEEL
running upload
Submitting /home/jd/Source/ceilometer/dist/ceilometer-2014.1.a6.g772e7-
py27-none-any.whl to https://testpypi.python.org/pypi
Server response (200): OK
现在应该可以在PyPi预付费服务器中搜索你的包,确认是否上传成功了。也可以试着用pip安装它,可以通过-i选项指定测试服务器:
$ pip install -i https://testpypi.python.org/pypi ceilometer
如果一切就绪,就可以继续下一步了:上传项目到PyPI主服务器。只需要将身份信息和服务器的具体信息添加到你的~/.pypirc文件中:
[distutils]
index-servers =
pypi
testpypi
[pypi]
username = <your username>
password = <your password>
[testpypi]
repository = https://testpypi.python.org/pypi
username = <your username>
password = <your password>
分别运行register和upload并配合参数-r pypi就能正确地将你的包上传到PyPI服务器了。
4.6 Nick Coghlan访谈
Nick是Red Hat公司的Python核心开发人员。他已经写过几个PEP提案,包括PEP 436(http://www.python.org/dev/peps/pep-0426/)(Metadata for Python Software Packages 2.0),他是这个提案的BDFL2代表。

Python的打包方案(distutils、setuptools、distutils2、distlib、bento、pbr等)的数量真是令人印象深刻。根据你的观点,是什么(可能的历史性)原因造成这样的分裂和分化?
简单地回答就是软件的发布、分发和集成是很复杂的问题,所以有很大的空间共存多个针对不同使用场景的解决方案。详细的答案请参考Python打包用户指南(https://python- packaging-user-guide.readthedocs.org/en/latest/future.html#how-we-got-here)。我在最近关于这个问题的表述中已经指出,问题的主要原因之一是年代,上述这些工具大多产生于软件分发技术的不同时代。
setuptools 如今已经是Python分发工具的事实标准。你觉得有什么问题是用户在使用(或者不用)它时需要注意的吗?
setuptools作为构建系统是相当不错的,尤其是对纯Python项目或者只有简单的C扩展的项目。它还为插件注册和良好的跨平台脚本生成提供了强大的系统支撑。
尽管如此,pkg_resources中的多版本支持要想用好仍然显得有点儿刁钻古怪。除非有非常充分的理由要在同一个环境中包含互相冲突的版本,否则这样只使用virtualenv或zc.buildout会更容易。
PEP 426定义了Python包的一种新格式,但它仍然非常新而且尚未批准。它的进展还顺利吗?最开始的动机是什么?你觉得它能解决当前的问题吗?
PEP 426最早源于Wheel格式定义的一部分,但是Daniel Holth最终意识到Wheel能够同已有的setuptools定义的格式一起工作。因此PEP 426是已有的setuptools元数据和一些来自distutils2以及其他打包系统(如RPM和npm)的想法的融合,并且解决了现有工具中遇到的一些问题(如清楚地隔离不同类型的依赖)。
如果PEP 426被接受的话,你希望看到出现什么样的工具来充分利用PEP 426?
主要的好处是PyPI将能够通过REST API提供完整的元数据访问,并且(希望能)具有根据上传的元数据自动生成策略兼容的分发包的能力。
Wheel格式非常新,还没有被广泛使用,但看上去很有前途。是什么原因造成它还不是标准库的一部分呢?是否已经有计划包含它?
事实证明,打包标准并不太适合放到标准库里:它的演进太慢,并且对后面版本的扩展并不能用在Python的早期版本中。所以,在今年早些时候的Python语言峰会上,我们调整了PEP流程,以便用distutils-sig管理打包与相关PEP的完整审批流程。python-dev将只参与那些直接涉及修改CPyhon的提案(如pip引导)。
根据你的设想,未来怎样的发展会推动开发人员去构建和分发Wheel格式的包?
pip正在接受其成为Egg格式的备选方案,允许构建的本地缓存以便快速创建虚拟环境,并且PyPI允许上传针对Windows和Mac OS X平台的Wheel归档文件。在它适用于在Linux之前,我们仍然有一些问题要解决。
4.7 扩展点
你可能已经在并不了解setuptools的情况下使用过它的入口点。如果还没决定用setuptools为你的软件提供setup.py文件,这里有一些功能的介绍也许能帮你做决定。
使用setuptools分发软件包括重要的元数据描述,如需要的依赖以及与这个主题更相关的“入口点”的列表。这些入口点能够被其他Python程序用来动态发现包所提供的功能。
在下面几节中,我们将讨论如何利用入口点为软件添加扩展能力。
4.7.1 可视化的入口点
要看到一个包中可用的入口点的最简单的方法就是使用一个叫entry_point_inspector(https://pypi.python.org/pypi/entry_point_inspector)的包。
安装后,它提供了名为epi的命令,可以从终端运行并能交互式地发现某个安装包的入口点,如示例4.4所示。
示例4.4 epi group list的运行结果
+--------------------------+
| Name |
+--------------------------+
| console_scripts |
| distutils.commands |
| distutils.setup_keywords |
| egg_info.writers |
| epi.commands |
| flake8.extension |
| setuptools.file_finders |
| setuptools.installation |
+--------------------------+
示例4.4显示系统有很多不同地包都提供了入口点。你可能注意到,这个列表包含console_scripts(将在节中讨论)。
示例 4.5epi group show console_scripts的运行结果
+----------+----------+--------+--------------+-------+
| Name | Module | Member | Distribution | Error |
+----------+----------+--------+--------------+-------+
| coverage | coverage | main | coverage 3.4 | |
+----------+----------+--------+--------------+-------+
示例4.5显示了一个名为coverage的入口点,并引用了coverage模块的成员的main。这个入口点是由包coverage 3.4提供的。可以使用kepi ep show获得更多信息。
示例 4.6 ` kepi ep show console_scripts coverage `的运行结果
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
Module	coverage
Member	main
Distribution	coverage 3.4
Path	/usr/lib/python2.7/dist-packages
Error	
+--------------+----------------------------------+
这里所用的工具只是很薄的一层,它建立在更复杂的能够发现任何Python库或程序的入口点的Python库之上。入口点有许多不同的用处,如对控制台脚本和动态代码发现都很有用,这些将在下面几节介绍。
4.7.2 使用控制台脚本
开发Python应用程序时,通常要提供一个可启动的程序,也就是最终用户实际可以运行的Python脚本。这个程序需要被安装在某个包含在系统路径中的目录里。
大多数项目都会有下面这样几行代码:
#!/usr/bin/python
import sys
import mysoftware
mysoftware.SomeClass(sys.argv).run()
这实际上是一个理想情况下的场景:许多项目在系统路径中会有一个非常长的脚本安装。但使用这样的脚本有一些主要的问题。
setuptools有一个功能可以帮助我们解决这些问题,即console_scripts。console_scripts是一个入口点,能够用来帮助setuptools安装一个很小的程序到系统目录中,并通过它调用应用程序中某个模块的特定函数。
设想一个foobar程序,它由客户端和服务器端两部分组成。这两部分各自有自己独立的模块——foobar.client和foobar.server。
foobar/client.py
def main():
print("Client started")
foobar/server.py
def main():
print("Server started")
当然,这个程序做不了什么——客户端和服务器端甚至不能彼此通信。但对于我们这个例子的目的来说,只需要在它们成功启动之后能输出消息即可。
接下来可以在根目录中添加下面的setup.py文件。
setup.py
From setuptools import setup
setup(
name="foobar",
version="1",
description="Foo!",
author="Julien Danjou",
author_email="julien@danjou.info",
packages=["foobar"],
entry_points={
"console_scripts": [
"foobard = foobar.server:main",
"foobar = foobar.client:main",
],
},
)
使用格式package.subpackage:function可以定义自己的入口点。
当运行python setup.py install时,setuptools会创建示例4.7所示的脚本。
示例 4.7 setuptools 生成的控制台脚本
#!/usr/bin/python
EASY-INSTALL-ENTRY-SCRIPT: 'foobar==1','console_scripts','foobar'
__requires__ = 'foobar==1'
import sys
From pkg_resources import load_entry_point
if __name__ == '__main__':
sys.exit(
load_entry_point('foobar==1', 'console_scripts', 'foobar')()
)
这段代码会扫描foobar包的入口点并从console_scripts目录中抽取foobar键,从而定位并运行相应的函数。
使用这一技术能够保证代码在Python包内,并能够被其他应用程序导入(或测试)。
提示
如果在setuptools之上使用pbr,那么生成的脚本会比通过setuptools默认创建的要简单(因此也更快),因为它会调用写在入口点中的函数而无需在运行时动态扫描入口点列表。
4.7.3 使用插件和驱动程序
通过入口点可以很容易得发现和动态加载其他包部署的代码。可以使用pkg_resources(http://pythonhosted.org/distribute/pkg_resources.html)从自己的Python程序中发现和加载入口点文件。(你可能已经注意到,这与示例4.7中setuptools创建的控制台脚本所使用的是同一个包。)
在本节中,我们将创建一个cron风格的守护进程,它通过注册一个入口点到pytimed组中即可允许任何Python程序注册一个每隔几秒钟运行一次的命令。该入口点指向的属性应该是一个返回number_of_seconds和callable的对象。
下面是一个使用pkg_resources发现入口点的pycrond实现。
pytimed.py
import pkg_resources
import time
def main():
seconds_passed = 0
while True:
for entry_point in pkg_resources.iter_entry_points('pytimed'):
try:
seconds, callable = entry_point.load()()
except:
Ignore failure
pass
else:
if seconds_passed % seconds == 0:
callable()
time.sleep(1)
seconds_passed += 1
这是一个非常简单而朴素的实现,但对我们的例子来说足够了。现在可以写另一个Python程序,需要周期性地调用它的一个函数。
hello.py
def print_hello():
print("Hello, world!")
def say_hello():
return 2, print_hello
使用合适的入口点注册这个函数。
setup.py
from setuptools import setup
setup(
name="hello",
version="1",
packages=["hello"],
entry_points={
"pytimed": [
"hello = hello:say_hello",
],
},)
现在如果运行pytimed脚本,将会看到在屏幕上每两秒钟打印一次“Hello, world!”,如示例4.8示例。
示例 4.8 运行pytimed
% python3
Python + (default, Aug 4 2013, 15:50:24)
[GCC] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pytimed
>>> pytimed.main()
Hello, world!
Hello, world!
Hello, world!
这一机制提供了巨大的可能性:它可以用来构建驱动系统、钩子系统以及简单而通用的扩展。在每一个程序中手动实现这一机制是非常繁琐的,不过幸运的是,已经有Python库可以处理这部分无聊的工作。
stevedore(https://pypi.python.org/pypi/stevedore)基于我们在前面例子中展示的机制提供了对动态插件的支持。在这个例子中我们的用例并不复杂,但是仍然可以用stevedore稍做简化。
pytimed_stevedore.py
from stevedore.extension import ExtensionManager import time
def main():
seconds_passed = 0
while True:
for extension in ExtensionManager('pytimed', invoke_on_load=True):
try:
seconds, callable = extension.obj
except:
Ignore failure
pass
else:
if seconds_passed % seconds == 0:
callable()
time.sleep(1)
seconds_passed += 1
我们的例子仍然非常简单,但是如果看了stevedore文档就会发现,ExtensionManager有很多用来处理不同场景的子类,例如基于名字或者函数运行结果加载特定的扩展。
1参见PEP 453(http://www.python.org/dev/peps/pep-0453/)及ensureepip模块。
2“Benevolent Dictator For Life”是Python作者Guido van Rossum给的称号。
第 5 章 虚拟环境
在处理Python应用程序时,经常需要部署、使用和测试你的应用程序。但由于外部依赖的问题,做起来实际上很麻烦。有许多原因会导致在你的操作系统上部署或运行应用程序失败,例如:
这会发生在应用部署的时候,或者稍后运行的时候。而通过系统管理器升级已安装的Python库则很可能在毫无征兆的情况下导致你的应用程序无法运行。
这一问题的解决方案是针对每个应用程序使用独立的库目录,同时包含自己的依赖。然后使用这个目录——而不是系统安装的那个目录——加载所需的Python模块。
工具virtualenv可以自动为你处理这些目录。安装之后,只需在运行时将目标目录作为它的参数传入即可。
$ virtualenv myvenv
Using base prefix '/usr'
New python executable in myvenv/bin/python3
Also creating executable in myvenv/bin/python
Installing Setuptools........................done.
Installing Pip...............................done.
运行后,virtualenv会创建lib/pythonX.Y目录并利用它安装setuptools和pip,它们是后续安装其他Python包所必需的。
可以通过对activate执行source命令来激活这个虚拟环境
$ source myvenv/bin/activate
一旦这么做,shell的提示符会加上虚拟环境的名字作为前缀。此时调用python会执行被复制到虚拟环境中的Python。可以通过读取sys.path环境变量来验证,它将会把虚拟环境目录作为首选组件。
可以通过调用deactivate命令随时停止并退出虚拟环境:
$ deactivate
就这么简单。
如果只想使用在虚拟环境中安装的Python一次的话,不用运行acivate。直接调用虚拟环境中的python二进制文件也可以正常工作:
$ myvenv/bin/python
到目前为止,尽管已经进入激活的虚拟环境中,但还不能访问系统中安装以及在系统中可用的任何模块。这没问题,但我们可能需要安装它们。要做到这一点,只需使用标准的pip命令,它可以将包安装在正确的位置而不会对现有系统做任何修改:
$ source myvenv/bin/activate
(myvenv) $ pip install six
Downloading/unpacking six
Downloading six-1.4.1.tar.gz
Running setup.py egg_info for package six
Installing collected packages: six
Running setup.py install for six
Successfully installed six
Cleaning up...
好了,我们能够在这个虚拟环境中安装所有需要的库,然后从虚拟环境运行我们的应用程序,而不会对当前系统产生任何影响。那么,接下来很自然就会想到要基于依赖的列表写脚本来自动安装虚拟环境,如示例5.1所示。
示例 5.1 自动化的虚拟环境创建
virtualenv myappvenv
source myappvenv/bin/activate
pip install -r requirements.txt
deactivate
在某些特定场景下,仍然需要访问系统中安装的包。那么可以通过在创建虚拟环境时向virtualen命令传入--system-site-packages标志来实现。
你可能已经猜到,虚拟环境对自动运行单元测试集非常有用。这是一个非常通用的模式,它是如此的通用,以至于已经有名为tox的工具来专门解决这一问题(详见6.7节)。
最近,PEP 405(http://www.python.org/dev/peps/pep-0405/)定义的虚拟环境机制已经被Python 3.3接受。也就是说,虚拟环境的使用如此流行以至于如今它已经成为Python标准库的一部分。
venv模块是Python 3.3及以上版本的一部分,可以操作虚拟环境而无需使用virtualenv包或其他包。可以通过Python的-m标志来加载模块:
$ python3.3 -m venv
usage: venv [-h] [--system-site-packages] [--symlinks] [--clear] [--upgrade]
ENV_DIR [ENV_DIR ...]
venv: error: the following arguments are required: ENV_DIR
构建虚拟环境现在变得非常简单:
$ python3.3 -m venv myvenv
在myvenv内部,可以找到当前环境的名为pyvenv.cfg的配置文件。默认情况下它并不包含很多配置项。其中的include-system-site-package作用和前面介绍过的virtualenv的参数--system-site-packages作用相同。
激活虚拟环境的机制同前面描述的一样,通过执行source命令激活脚本:
$ source myvenv/bin/activate
(myvenv) $
同样,可以调用deactivate退出虚拟环境。
venv模块的缺点就是它不会默认安装setuptools和pip。因此我们只能自己引导环境(如示例5.2所示),而不像vitualenv那样都帮我们做好。
示例 5.2 引导venv环境
(myvenv) $ wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/
ez_setup.py -O - | python
-2013-09-02 22:26:07-- https://bitbucket.org/pypa/setuptools/raw
/bootstrap/ez_setup.py
Resolving bitbucket.org (bitbucket.org)... 131.103.20.168, 131.103.20.167
Connecting to bitbucket.org (bitbucket.org)|131.103.20.168|:443...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 11835 (12K) [text/plain]
Saving to: 'STDOUT'
100%[==>] 11,835 --.-K/s in 0s
2013-09-02 22:26:08 (184 MB/s) - written to stdout [11835/11835]
Downloading https://pypi.python.org/packages/source/s/setuptools/
setuptools-1.1.tar.gz
Extracting in /tmp/tmp228fqm
Now working in /tmp/tmp228fqm/setuptools-1.1
Installing Setuptools
running install
running bdist_egg
running egg_info
writing dependency_links to setuptools.egg-i
[...]
Adding setuptools 1.1 to easy-install.pth file
Installing easy_install script to /home/jd/myvenv/bin
Installing easy_install-3.3 script to /home/jd/myvenv/bin
Installed /home/jd/myvenv/lib/python3.3/site-packages/
setuptools-1.1-py3.3.egg
Processing dependencies for setuptools==1.1
Finished processing dependencies for setuptools==1.1
接下来可以通过easy_install安装pip:
(myvenv) $ easy_install pip
Searching for pip
Reading https://pypi.python.org/simple/pip/
Best match: pip 1.4.1
Downloading https://pypi.python.org/packages/source/p/pip/pip-1.4.1.tar.
gz#md5=6afbb46aeb48abac658d4df742bff714
Processing pip-1.4.1.tar.gz
Writing /tmp/easy_install-hxo3b0/pip-1.4.1/setup.cfg
Running pip-1.4.1/setup.py -q bdist_egg --dist-dir /tmp/easy_install-hxo3b0
/pip-1.4.1/egg-dist-tmp-efgi80
warning: no files found matching '*.html' under directory 'docs'
warning: no previously-included files matching '*.rst' found under directory
'docs/_build'
no previously-included directories found matching 'docs/_build/_sources'
Adding pip 1.4.1 to easy-install.pth file
Installing pip script to /home/jd/myvenv/bin
Installing pip-3.3 script to /home/jd/myvenv/bin
Installed /home/jd/myvenv/lib/python3.3/site-packages/pip-1.4.1-py3.3.egg
Processing dependencies for pip
Finished processing dependencies for pip
接下来就可以通过pip安装任何其他所需的包了。
所以尽管Python 3.3默认包含了venv模块,但是必须承认它有缺点,就是它不会默认做好一些你期望的工作。虽然写个小工具利用venv模拟virtualenv的默认行为并不难,但是,如果不是只针对Python 3.3及以上版本,那么实在没必要这么做。另外,pip引导代码已经并入Python 3.4中,这意味着引导问题在最近的Python版本中已经解决了。
不管怎样,大多数程序都要同时支持Python 2和Python 3,所以完全依赖venv不是最好的选择。最好的选择仍然是基于virtualenv。考虑它们的工作方式都一样,所以这应该不是什么问题。
第 6 章 单元测试
重磅消息!现在居然还有人在自己的项目中没有测试策略。本书的目的不是试图说服你开始单元测试。如果你想被说服的话,建议你从了解测试驱动开发的好处开始。编写未经测试的代码是毫无用处的,因为没有办法能最终证明它是可以工作的。
本章将介绍可以用来构建良好测试集的Python工具。我们还将讨论如何利用这些工具增强你的软件,让软件更加健壮,避免引入回归问题。
6.1 基础知识
和你了解的也许不同,在Python中编写和运行单元测试是非常简单的。它不但不会干扰或者破坏现有程序,还会极大地帮助你和其他开发人员维护软件。
测试应该保存在应用程序或库的tests子模块中。这可以使测试代码随模块一同分发,以便只要软件被安装了,它们就可以被任何其他人运行或重用而无需使用源代码包。同时,这也可以避免这些测试代码被错误地安装在顶层tests模块。
通常比较简单的方式是采用模块树的层次结构作为测试树的层级结构。也就是说,覆盖代码mylib/foobar.py的测试应该存储在mylib/tests/test_foobar.py中,这样在查找与某个特定文件相关联的测试时会比较方便,如示例6.1所示。
示例6.1 test_true.py中的一个真实的简单测试
def test_true():
assert True
这是能够写出来的最简单的单元测试。要运行它,只需加载test_true.py文件并运行其中定义的test_true函数。
显然,对于你的所有测试文件都这么做肯定是太痛苦了。这就是nose(https://nose. readthedocs.org/en/latest/)这个包要解决的—安装之后,它将提供nosetests命令,该命令会加载所有以test_开头的文件,然后执行其中所有以test_开头的函数。
因此,针对我们的源代码树中的test_true.py文件运行nosetests将得到以下结果:
$ nosetests -v
test_true.test_true ... ok

Ran 1 test in 0.003s
OK
但是,一旦测试失败,输出就会相应改变,以体现这次失败,包括完整的跟踪回溯。
% nosetests -v
test_true.test_true ... ok
test_true.test_false ... FAIL
===
FAIL: test_true.test_false
Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in
runTest
self.test(*self.arg)
File "/home/jd/test_true.py", line 5, in test_false
assert False
AssertionError

Ran 2 tests in 0.003s
FAILED (failures=1)
一旦有AssertionError异常抛出,测试就失败了;一旦assert的参数被判断为某些假值(False、None、0等),它就会抛出AssertionError异常。如果有其他异常抛出,测试也会出错退出。
很简单,对吗?这种方法尽管简单,但却在很多小的项目中广泛使用且工作良好。除了nose,它们不需要其他工具或库,而且只依赖assert就足够了。
不过,在需要编写更复杂的测试时,只使用assert会让人很抓狂。设想一下下面这个测试:
def test_key():
a = ['a', 'b']
b = ['b']
assert a == b
当运行nosetests时,它会给出如下输出:
$ nosetests -v
test_complicated.test_key ... FAIL
==
FAIL: test_complicated.test_key
Traceback (most recent call last):
File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in
runTest
self.test(*self.arg)
File "/home/jd/test_complicated.py", line 4, in test_key
assert a == b
AssertionError

Ran 1 test in 0.001s
FAILED (failures=1)
显然,因为a和b不同,所以测试不能通过。但是,它们到底有何不同呢?assert没有给出这一信息,而只是声称此断言是错误的—这是没什么用的。
而且,用这种基本的无框架方式实现一些高级的测试(如忽略某个测试,或者在每个测试之前或之后执行某些操作)也会非常痛苦。
这用unittest就比较方便了。它提供了解决上述问题的工具,而且unittest是Python标准库的一部分。
警告
unittest在Python 2.7中已经做了较大改进,如果正在支持Python的早期版本,那么可能需要使用它的向后移植的名字unittest2(https://pypi.python.org/pypi/unittest2/)。如果需要支持Python 2.6,可以使用下面的代码段在运行时为任何Python版本导入正确的模块:
try:
import unittest2 as unittest
except ImportError:
import unittest
如果用unittest重写前面的例子,看起来会是下面的样子:
import unittest
class TestKey(unittest.TestCase):
def test_key(self):
a = ['a', 'b']
b = ['b']
self.assertEqual(a, b)
如你所见,实现起来并没有更复杂。需要做的就只是创建一个继承自unittest.TestCase的类,并且写一个运行测试的方法。与使用assert不同,我们依赖unittest.TestCase类提供的一个方法,它提供了一个等价的测试器。运行时,其输出如下:
$ nosetests -v
test_key (test_complicated.TestKey) ... FAIL
===
FAIL: test_key (test_complicated.TestKey)
Traceback (most recent call last):
File "/home/jd/Source/python-book/test_complicated.py", line 7, in
test_key
self.assertEqual(a, b)
AssertionError: Lists differ: ['a', 'b'] != ['b']
First differing element 0:
a
b
First list contains 1 additional elements.
First extra element 1:
b
- ['a', 'b']
+ ['b']

Ran 1 test in 0.001s
FAILED (failures=1)
如你所见,这个输出结果很有用。仍然有断言错误被抛出,而且测试仍然失败了,但至少我们获得了为什么测试会失败的真正信息,它可以帮我们解决这个问题。这就是写测试用例时永远不应该使用assert的原因。任何人试图hack你的代码并最终遇到某个测试失败时都会感谢你没有使用assert,这同时也为他提供了调试信息。
unittest提供了一组测试函数,可以用来特化测试,如assertDictEqual、ass-ertEqual、assertTrue、assertFalse、assertGreater、 assertGreaterEqual、assertIn、assertIs、assertIsIntance、assertIsNon、 assertualIsNot、as-sertIsNotNone、assertItemsEqual、assertLess、assertLessEqual、 asse-rtListEqual、assertMultiLineEqual、assertNotAlmostEqual、assertNot-Equal、 assertTupleEqual、assertRaises、assertRaisesRegexp、assertReg-expMatches等。最好是通读一遍pydoc unittest,以便全面了解。
也可以使用fail(msg)方法有意让某个测试立刻失败。例如,已知代码的某个部分如果执行一定会抛出一个错误但没有特定的断言去检查时,这是很方便的,如示例6.2所示。
示例6.2 让测试失败
import unittest
class TestFail(unittest.TestCase):
def test_range(self):
for x in range(5):
if x > 4:
self.fail("Range returned a too big value: %d" % x)
有时候,某个测试如果不能运行,忽略它是很有用的。例如,希望根据某个库的存在与否有条件地运行某个测试。为此,可以抛出unitest.SkipTest异常。当该测试被执行时,它只是被简单地标注为已忽略。更便利的方法是使用unittest.TestCase.skipTest()而不是手工抛出这一异常,另外也可以使用unittest.skip装饰器,如示例6.3所示。
示例6.3 忽略测试
import unittest
try:
import mylib
except ImportError:
mylib = None
class TestSkipped(unittest.TestCase):
@unittest.skip("Do not run this")
def test_fail(self):
self.fail("This should not be run")
@unittest.skipIf(mylib is None, "mylib is not available")
def test_mylib(self):
self.assertEqual(mylib.foobar(), 42)
def test_skip_at_runtime(self):
if True:
self.skipTest("Finally I don't want to run it")
执行后,该测试文件会输出下列内容:
$ python -m unittest -v test_skip
test_fail (test_skip.TestSkipped) ... skipped 'Do not run this'
test_mylib (test_skip.TestSkipped) ... skipped 'mylib is not available'
test_skip_at_runtime (test_skip.TestSkipped) ... skipped "Finally I don't
want to run it"

Ran 3 tests in 0.000s
OK (skipped=3)
提示
在示例6.3中你可能已经注意到,unittest模块提供了一种执行包含测试的Python模
块的方式。它没有nosetests那么方便,因为它不会发现自己的测试文件,但它对于运行特定测试模块仍然是很有用的。
在许多场景中,需要在运行某个测试前后执行一组通用的操作。unittest提供了两个特殊的方法setUp和tearDown,它们会在类的每个测试方法调用前后执行一次,如示例6.4所示。
示例6.4 使用unittest的setUp方法
import unittest
class TestMe(unittest.TestCase):
def setUp(self):
self.list = [1, 2, 3]
def test_length(self):
self.list.append(4)
self.assertEqual(len(self.list), 4)
def test_has_one(self):
self.assertEqual(len(self.list), 3)
self.assertIn(1, self.list)
在这个示例中,setUp会在运行test_length和test_has_one之前被调用。它可以非常方便地创建在每个测试中要用到的对象,但你需要保证它们在运行每个测试之前,在干净的状态下被重建。这对于创建测试环境是非常有用的,经常被称为fixture(参见6.2节)。
提示
使用nosetests时,经常会只想运行某个特定的测试。你可以选择要运行的测试作为参数,语法是path.to.your.module:ClassOfYourTest.test_method。确保在模块路径和类名之前有一个冒号。也可以指定path.to.your.module:ClassOfYourTest来执行整个类,或者指定path.to.your.module来执行整个模块。
提示
通过同时运行多个测试可以加快速度。只需为nosetests调用加上--process=N选项即可创建多个nosetests进程。不过,testrepository是更好的选择(这会在6.5节中讨论)。
6.2 fixture
在单元测试中,fixture表示“测试前创建,测试后销毁”的(辅助性)组件。比较好的方式是为它们构建一个特殊的组件,因为它们会在许多不同的地方被重用。例如,如果你需要一个对象来表示你的应用程序的配置状态,很可能你希望在每个测试前初始化它,并在测试结束后将其重置为默认值。对临时文件创建的依赖也需要该文件在测试开始前被创建,测试结束后被删除。
unittest只为我们提供了已经提及的setUp和tearDown函数。不过,是有机制可以hook这两个函数的。fixtures(https://pypi.python.org/pypi/fixtures)Python模块(并非标准库的一部分)提供了一种简单的创建fixture类和对象的机制,如useFixture方法。
fixtures模块提供了一些内置的fixture,如fixtures.EnvironmentVariable,对于在os.environ中添加或修改变量很有用,并且变量会在测试退出后重置,如示例6.5所示。
示例6.5 使用fixtures.EnvironmentVariable
import fixtures
import os
class TestEnviron(fixtures.TestWithFixtures):
def test_environ(self):
fixture = self.useFixture(
fixtures.EnvironmentVariable("FOOBAR", "42"))
self.assertEqual(os.environ.get("FOOBAR"), "42")
def test_environ_no_fixture(self):
self.assertEqual(os.environ.get("FOOBAR"), None)
当你发现类似的通用模式时,最好创建一个fixture,以便它可以被你的所有其他测试用例重用。这极大地简化了逻辑,并且能准确地体现你在测试什么以及以何种方式测试。
注意
本节的示例代码之所以没有用unittest.TestCase,是因为fixtures.TestWith-Fixtures继承自unittest.TestCase。
6.3 模拟(mocking)
mock对象即模拟对象,用来通过某种特殊和可控的方式模拟真实应用程序对象的行为。在创建精确地描述测试代码的状态的环境时,它们非常有用。
如果正在开发一个HTTP客户端,要想部署HTTP服务器并测试所有场景,令其返回所有可能值,几乎是不可能的(至少会非常复杂)。此外,测试所有失败场景也是极其困难的。
一种更简单的方式是创建一组根据这些特定场景进行建模的mock对象,并利用它们作为测试环境对代码进行测试。
Python标准库中用来创建mock对象的库名为mock(https://pypi.python.org/pypi/mock/)。从Python 3.3开始,它被命名为unit.mock,合并到Python标准库。因此可以使用下面的代码片段:
try:
from unittest import mock
except ImportError:
import mock
要保持Python 3.3和之前版本之间的向后兼容。
它使用起来也非常简单,如示例6.6所示。
示例6.6 mock的基本用法
>>> import mock
>>> m = mock.Mock()
>>> m.some_method.return_value = 42
>>> m.some_method()
42
>>> def print_hello():
...
print("hello world!")
...
>>> m.some_method.side_effect = print_hello
>>> m.some_method()
hello world!
>>> def print_hello():
... print("hello world!")
... return 43
...
>>> m.some_method.side_effect = print_hello
>>> m.some_method()
hello world!
43
>>> m.some_method.call_count
3
即使只使用这一组功能,也应该可以模拟许多内部对象以用于不同的数据场景中。
模拟使用动作/断言模式,也就是说一旦测试运行,必须确保模拟的动作被正确地执行,如示例6.7所示。
示例6.7 确认方法调用
>>> import mock
>>> m = mock.Mock()
>>> m.some_method('foo', 'bar')
<Mock name='mock.some_method()' id='26144272'>
>>> m.some_method.assert_called_once_with('foo', 'bar')
>>> m.some_method.assert_called_once_with('foo', mock.ANY)
>>> m.some_method.assert_called_once_with('foo', 'baz')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.7/dist-packages/mock.py", line 846, in
assert_called_once_with
return self.assert_called_with(*args, **kwargs)
File "/usr/lib/python2.7/dist-packages/mock.py", line 835, in
assert_called_with
raise AssertionError(msg)
AssertionError: Expected call: some_method('foo', 'baz')
Actual call: some_method('foo', 'bar')
显然,很容易传一个mock对象到代码的任何部分,并在其后检查代码是否按其期望的传入参数被调用。如果不知道该传入何种参数,可以使用mock.ANY作为参数值传入,它将会匹配传递给mock方法的任何参数。
有时可能需要来自外部模块的函数、方法或对象。mock库为此提供了一组补丁函数。
示例6.8 使用mock.patch
>>> import mock
>>> import os
>>> def fake_os_unlink(path):
... raise IOError("Testing!")
...
>>> with mock.patch('os.unlink', fake_os_unlink):
... os.unlink('foobar')
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "<stdin>", line 2, in fake_os_unlink
IOError: Testing!
通过mock.pach方法,可以修改外部代码的任何部分,使其按照需要的方式对软件进行各种条件下的测试,如示例6.9所示。
示例6.9 使用mock.patch测试一组行为
import requests
import unittest
import mock
class WhereIsPythonError(Exception):
pass
def is_python_still_a_programming_language():
try:
r = requests.get("http://python.org")
except IOError:
pass
else:
if r.status_code == 200:
return 'Python is a programming language' in r.content
raise WhereIsPythonError("Something bad happened")
def get_fake_get(status_code, content):
m = mock.Mock()
m.status_code = status_code
m.content = content
def fake_get(url):
return m
return fake_get
def raise_get(url):
raise IOError("Unable to fetch url %s" % url)
class TestPython(unittest.TestCase):
@mock.patch('requests.get', get_fake_get(
200, 'Python is a programming language for sure'))
def test_python_is(self):
self.assertTrue(is_python_still_a_programming_language())
@mock.patch('requests.get', get_fake_get(
200, 'Python is no more a programming language'))
def test_python_is_not(self):
self.assertFalse(is_python_still_a_programming_language())
@mock.patch('requests.get', get_fake_get(
404, 'Whatever'))
def test_bad_status_code(self):
self.assertRaises(WhereIsPythonError,
is_python_still_a_programming_language)
@mock.patch('requests.get', raise_get)
def test_ioerror(self):
self.assertRaises(WhereIsPythonError,
is_python_still_a_programming_language)
示例6.9使用了mock.patch的装饰器版本,这并不改变它的行为,但当需要在整个测试函数的上下文内使用模拟时这会更方便。
使用模拟可以很方便地模拟任何问题,如Web服务器返回404错误,或者发生网络问题。我们可以确定代码返回的是正确的值,或在每种情况下抛出正确的异常,总之确保代码总是按照预期行事。
6.4 场景测试
在进行单元测试时,对某个对象的不同版本运行一组测试是较常见的需求。你也可能想对一组不同的对象运行同一个错误处理测试去触发这个错误,又或者想对不同的驱动执行整个测试集。
最后一种情况在OpenStack Ceilometer1(https://launchpad.net/ceilometer)项目中被大量使用。Ceilometer中提供了一个调用存储API的抽象类。任何驱动都可以实现这个抽象类,并将自己注册成为一个驱动。Ceilometer可以按需要加载被配置的存储驱动,并且利用实现的存储API保存和提取数据。这种情况下就需要对每个实现了存储API的驱动调用一类单元测试,以确保它们按照调用者的期望执行。
实现这一点的一种自然方式是使用混入类(mixin class):一方面你将拥有一个包含单元测试的类,另一方面这个类还会包含对特定驱动用法的设置。
import unittest
class MongoDBBaseTest(unittest.TestCase):
def setUp(self):
self.connection = connect_to_mongodb()
class MySQLBaseTest(unittest.TestCase):
def setUp(self):
self.connection = connect_to_mysql()
class TestDatabase(unittest.TestCase):
def test_connected(self):
self.assertTrue(self.connection.is_connected())
class TestMongoDB(TestDatabase, MongoDBBaseTest):
pass
class TestMySQL(TestDatabase, MySQLBaseTest):
pass
然而,从长期维护的角度看,这种方法的实用性和可扩展性都不好。
更好的技术是有的,可以使用testscenarios包(https://pypi.python.org/pypi/ testscenarios)。它提供了一种简单的方式针对一组实时生成的不同场景运行类测试。这里使用testscenarios重写了示例6.9的部分代码来说明6.3节中介绍过的模拟,具体见示例6.10。
示例6.10 testscenarios的基本用法
import mock
import requests
import testscenarios
class WhereIsPythonError(Exception):
pass
def is_python_still_a_programming_language():
r = requests.get("http://python.org")
if r.status_code == 200:
return 'Python is a programming language' in r.content
raise WhereIsPythonError("Something bad happened")
def get_fake_get(status_code, content):
m = mock.Mock()
m.status_code = status_code
m.content = content
def fake_get(url):
return m
return fake_get
class TestPythonErrorCode(testscenarios.TestWithScenarios):
scenarios = [
('Not found', dict(status=404)),
('Client error', dict(status=400)),
('Server error', dict(status=500)),
]
def test_python_status_code_handling(self):
with mock.patch('requests.get',
get_fake_get(
self.status,
'Python is a programming language for sure')):
self.assertRaises(WhereIsPythonError,
is_python_still_a_programming_language)
尽管看上去只定义了一个测试,但是testscenarios会运行这个测试三次,因为这里定义了三个场景。
% python -m unittest -v test_scenario
test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ok
test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ok
test_python_status_code_handling (test_scenario.TestPythonErrorCode) ... ok

Ran 3 tests in 0.001s
OK
如上所示,为构建一个场景列表,我们需要的只是一个元组列表,其将场景名称作为第一个参数,并将针对此场景的属性字典作为第二个参数。
很容易联想到另一种使用方式:可以实例化一个特定的驱动并针对它运行这个类的所有测试,而不是为每个测试存储一个单独的值作为属性。具体如示例6.11所示。
示例6.11 使用testscenarios测试驱动
import testscenarios
From myapp import storage
class TestPythonErrorCode(testscenarios.TestWithScenarios):
scenarios = [
('MongoDB', dict(driver=storage.MongoDBStorage())),
('SQL', dict(driver=storage.SQLStorage())),
('File', dict(driver=storage.FileStorage())),
]
def test_storage(self):
self.assertTrue(self.driver.store({'foo': 'bar'}))
def test_fetch(self):
self.assertEqual(self.driver.fetch('foo'), 'bar')
注意
这里之所以不需要使用前面示例中使用的基类unittest.TestCase,是因为test-scenarios.TestWithScenarios继承自unittest.TestCase。
1作者是OpenStack中监控项目Ceilometer的前项目技术主管(Project Technical Lead)。—译者注
6.5 测试序列与并行
在执行大量测试时,按它们被运行的情况进行分析是很有用的。类似nosetests这样的工具只是将结果输出到stdout,即标准输出,但这对测试结果的解析或分析并不方便。
subunit(https://pypi.python.org/pypi/python-subunit)是用来为测试结果提供流协议(streaming protocol)的一个Python模块。它支持很多有意思的功能,如聚合测试结果1或者对测试的运行进行记录或归档等。
使用subunit运行测试非常简单:
$ python -m subunit.run test_scenario
这条命令的输出是二进制数据,所以除非有能力直接阅读subunit协议,否则在这里直接再现它的输出结果实在是没什么意义。不过,subunit还支持一组将其二进制流转换为其他易读格式的工具,如示例6.12所示。
示例6.12 使用subunit2pyunit
$ python -m subunit.run test_scenario | subunit2pyunit
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not
found)
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not
found) ... ok
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client
error)
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client
error) ... ok
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server
error)
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server
error) ... ok

Ran 3 tests in 0.061s
OK
这样的结果就容易理解了。你应该可以认出这个关于场景测试的测试集来自6.4节。其他值得一提的工具还有subunit2csv、subunit2gtk和subunit2junitxml。
subunit还可以通过传入discover参数支持自动发现哪个测试要运行。
$ python -m subunit.run discover | subunit2pyunit
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not
found)
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Not
found) ... ok
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client
error)
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Client
error) ... ok
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server
error)
test_scenario.TestPythonErrorCode.test_python_status_code_handling(Server
error) ... ok

Ran 3 tests in 0.061s
OK
也可以通过传入参数--list只列出测试但不运行。要查看这一结果,可以使用subunit-ls。
$ python -m subunit.run discover --list | subunit-ls --exists
test_request.TestPython.test_bad_status_code
test_request.TestPython.test_ioerror
test_request.TestPython.test_python_is
test_request.TestPython.test_python_is_not
test_scenario.TestPythonErrorCode.test_python_status_code_handling
提示
可以使用--load-list选项指定要运行的测试的清单而不是运行所有的测试。
在大型应用程序中,测试用例的数量可能会多到难以应付,因此让程序处理测试结果序列是非常有用的。testrepository包(https://pypi.python.org/pypi/testrepository)目的就是解决这一问题,它提供了testr程序,可以用来处理要运行的测试数据库。
$testr init
$ touch .testr.conf
% python -m subunit.run test_scenario | testr load
Ran 4 tests in 0.001s
PASSED (id=0)
$ testr failing
PASSED (id=0)
$ testr last
Ran 3 tests in 0.001s
PASSED (id=0)
$ testr slowest
Test id Runtime (s)
-- -----------
test_python_status_code_handling(Not found) 0.000
test_python_status_code_handling(Server error) 0.000
test_python_status_code_handling(Client error) 0.000
$ testr stats
runs=1
一旦subunit的测试流被运行并加载到testrepository,接下来就很容易使用testr命令来操作了。
显然,每次手工处理要运行的测试是很烦人的。因此,应该“教会”testr如何执行要运行的测试,以便它可以自己去加载测试结果。这可以通过编辑项目的根目录中的.testr.conf文件(见示例6.13)来实现。
示例6.13 .testr.conf文件
[DEFAULT]
test_command=python -m subunit.run discover . $LISTOPT $IDOPTION 1
test_id_option=--load-list $IDFILE 2
test_list_option=--list 3
1 执行testr run时要运行的命令。
2 加载测试列表要运行的命令。
3 列出测试要运行的命令。
第一行的test_command是最关键的。现在只需要运行testr run就可以将测试加载到testrepository中并执行。
注意
如果习惯用nosetests,testr run现在是等效的命令。
另外两个选项可以支持测试的并行运行。通过给testr run加上--prallel选项即可轻松实现,如示例6.14所示。并行运行测试可以极大地加速测试过程。
示例6.14 运行testr run --parallel
$ testr run --parallel
running=python -m subunit.run discover . --list
running=python -m subunit.run discover . --load-list /tmp/tmpiMq5Q1
running=python -m subunit.run discover . --load-list /tmp/tmp7hYEkP
running=python -m subunit.run discover . --load-list /tmp/tmpP_9zBc
running=python -m subunit.run discover . --load-list /tmp/tmpTejc5J
Ran 26 (+10) tests in 0.029s (-0.001s)
PASSED (id=7, skips=3)
在后台,testr运行测试列出操作,然后将测试列表分成几个子列表,并分别创建Python进程运行测试的每个子列表。默认情况下,子列表的数量与当前使用的机器的CPU数目相等。可以通过加入--concurrency标志设置进程的数目。
$ testr run --parallel --concurrency=2
可以想象,类似subunit和testrepository这样的工具将为测试效率的提升带来更多可能,而本节只是一个大概介绍。熟悉这些工具是非常值得的,因为测试会极大地影响你将要开发和发布的软件的质量。利用这些有力的工具能够节省很多时间。
testrepository也可以同setuptools集成,并且为其部署testr命令。这使得与基于setup.py工作流的集成更加容易,例如,可以围绕setup.py记录整个项目。setup.py testr命令可以接受一些选项,如--testr-args(通过它可以为testr加入更多选项)或者--coverage(这将在下一节介绍)。
1甚至可以支持来自不同源程序或语言的测试结果。
6.6 测试覆盖
测试覆盖是完善单元测试的工具。它通过代码分析工具和跟踪钩子来判断代码的哪些部分被执行了。在单元测试期间使用时,它可以用来展示代码的哪些部分被测试所覆盖而哪些没有。
编写测试当然有用,但是知道代码的哪些部分没有被测试到才是关键所在。
显然,要做的第一件事就是在系统中安装Python的coverage模块(https://pypi.python.org/pypi/coverage)。安装之后就可以通过shell使用coverage程序1。
单独使用coverage非常简单且有用,它可以指出程序的哪些部分从来没有被运行过,以及哪些可能是“僵尸代码”。此外,在单元测试中使用的好处也显而易见,可以知道代码的哪些部分没有被测试过。前面谈到的测试工具都可以与coverage集成。
使用nose时,只需要加入很少的选项就可以生成一份不错的代码覆盖报告,如示例6.15所示。
示例6.15 使用nosetests --with-coverage
$ nosetests --cover-package=ceilometer --with-coverage tests/test_pipeline.py
..
Name Stmts Miss Cover Missing
ceilometer 0 0 100%
ceilometer.pipeline 152 20 87% 49, 59, 113,
127-128, 188-192, 275-280, 350-362
ceilometer.publisher 12 3 75% 32-34
ceilometer.sample 31 4 87% 81-84
ceilometer.transformer 15 3 80% 26-32, 35
ceilometer.transformer.accumulator 17 0 100%
ceilometer.transformer.conversions 59 0 100%
TOTAL 888 393 56%

Ran 46 tests in 0.170s
OK
加上--cover-package选项是很重要的,否则就会看到每个被用到的Python包,包括标准库和第三方库。这个输出包括没有被运行的代码行,也就是没有被测试的代码行。所有需要做的只是打开你喜欢的文本编辑器然后开始写点儿什么。
但是也可以做得更好一点儿,让coverage生成漂亮的HTML报表。只需要加上--cover-html标志,这个cover目录就会在HTML页面中打开,然后每一页都会显示源代码的哪些部分运行与否如图6-1所示。
如果愿意的话,可以使用--cover-min-percentage=COVER_MIN_PERCENTAGE选项,如果测试集运行时被执行的代码没有达到指定的最低百分比,这将会让测试集失败。
警告
代码覆盖率是100%并不意味着代码已经被全部测试可以休息了。它只表明整个代码路径都被运行了,并不意味着每一个可能的条件都被测试到了。也就是说,这是个值得追求的目标,但并不意味着这是终点。
使用testrepository时,可以使用setuptools集成运行coverage。
示例6.16 使用coverage和testrepository
$ python setup.py testr --coverage
这样可以结合coverage自动运行测试集,并在cover目录中生成HTML报告。
接下来你应该利用这些信息来巩固测试集,并为当前没有被运行过的任何代码添加测试。这是非常重要的,因为它有利于项目的后期维护,并有利于提升代码的整体质量。

图6-1 ceilometer.publisher的覆盖率
1如果通过操作系统的软件安装程序进行安装的话,命令名也可能是python-coverage。例如,Debian系统中就叫python-coverage。
6.7 使用虚拟环境和tox
在第5章中,已经介绍并讨论了虚拟环境的使用。它的主要用途之一便是为单元测试提供干净的环境。当你认为你的测试工作正常但是实际上不正常时是相当郁闷的,如涉及依赖列表的情况。
可以写一个脚本去部署虚拟环境,安装setuptools,然后安装应用程序/库的运行时或者单元测试所需要的所有依赖。但这是非常常见的用例,所以已经有专门针对这一需求的应用程序了,即tox。
tox的目标是自动化和标准化Python中运行测试的方式。基于这一目标,它提供了在一个干净的虚拟环境中运行整个测试集的所有功能,并安装被测试的应用程序以检查其安装是否正常。
使用tox之前,需要提供一个配置文件。这个文件名为tox.ini,需要放在被测试项目的根目录,与setup.py同级。
$ touch tox.ini
现在可以成功运行tox:
% tox
GLOB sdist-make: /home/jd/project/setup.py
python create: /home/jd/project/.tox/python
python inst: /home/jd/project/.tox/dist/project-1.zip
____________________ summary _____________________
python: commands succeeded
congratulations :)
显然这本身并不是很有用。在上面的例子中,tox使用默认的Python版本在.tox/python中创建了一个虚拟环境,使用setup.py创建了应用程序的一个分发包并在这个虚拟环境中进行了安装。接下来并没有命令运行,因为该配置文件中并没有指定任何命令。
可以通过添加一个要在测试环境中运行的命令来改变其默认行为。编辑tox.ini。让它包含以下内容:
[testenv]
commands=nosetests
要执行的nosetests命令很可能会失败,因为在该虚拟环境中我们并没有安装nosetests。因此需要将其作为(将被安装的)依赖的一部分列出来。
[testenv]
deps=nose
commands=nosetests
再次运行,tox会重建虚拟环境,安装新的依赖并运行nosetests命令,它将执行所有单元测试。显然,我们可能需要添加更多的依赖,这可以通过配置项deps列出,也可以使用-rfile语法从文件中读取。如果正在使用pbr管理setup.py文件,那么应该知道它是从一个名为requirements.txt的文件中读取所有依赖的。因此,让tox使用这个文件是一个好主意:
[testenv]
deps=nose
-rrequirements.txt
commands=nosetests
文件中[testenv]一节定义的是被tox管理的所有虚拟环境参数。但正如前面所提及的,tox能够真正地管理多个Python虚拟环境,通过向tox传入-e标志就可以将测试运行在某个特定Python版本之上而不是运行在默认的版本之上。
% tox -e py26
GLOB sdist-make: /home/jd/project/setup.py
py26 create: /home/jd/project/.tox/py26
py26 installdeps: nose
py26 inst: /home/jd/project/.tox/dist/rebuildd-1.zip
py26 runtests: commands[0] | nosetests
.......

Ran 7 tests in 0.029s
OK
____________________ summary _____________________
py26: commands succeeded
congratulations :)
默认情况下,tox可以模拟多种环境:py24、py25、py26、py27、py30、py31、py32、py33、jython和pypy!你甚至可以加入自定义的环境。要添加一个环境或者创建一个新环境,只需添加一个新的配置节[testenv:_envname_]。如果要针对其中的某个环境运行不同的命令,使用下面的tox.ini文件是很容易实现的:
[testenv]
deps=nose
commands=nosetests
[testenv:py27]
commands=pytest
这只覆盖了针对py27环境的命令,所以当运行tox -e py27时nose仍然会被作为依赖的一部分安装,但会执行pytest命令。
也可以使用Python不支持的版本创建新环境:
[testenv]
deps=nose
commands=nosetests
[testenv:py21]
basepython=python2.1
这里试图使用Python 2.1运行测试集,尽管我并不认为它能运行得起来。
如今,通常你可能希望应用程序能支持多个Python版本。让tox为想要默认支持的Python版本运行所有测试是非常有用的。这可以通过指定要使用的环境列表来实现,而在tox运行时无须提供参数。
[tox]
envlist=py26,py27,py33,pypy
[testenv]
deps=nose
commands=nosetests
当不指定任何参数运行tox时,列出的所有4种环境都将被创建,继而安装依赖和应用程序,然后运行命令nosetests。
也可以使用tox来集成其他测试,如flake8,正如1.4节中讨论过的。
[tox]
envlist=py26,py27,py33,pypy,pep8
[testenv]
deps=nose
commands=nosetests
[testenv:pep8]
deps=flake8
commands=flake8
在这个示例中,使用默认的Python版本运行pep8环境,不过这应该问题不大1。
提示
当运行tox时,你会发现所有的环境会按顺序创建并运行。这通常会令整个过程耗时很长。但因为虚拟环境都是隔离的,所以可以并行运行tox命令。这正是detox包(https://pypi.python.org/pypi/detox)要做的,即通过detox命令能够并行运行envlist中指定的所有默认环境。你应该运行pip install安装它。
1如果想修改它,还是可以指定basepython。
6.8 测试策略
在项目中包含测试代码当然很好,但是如何运行这些测试也相当重要。实际上,在许多项目中尽管包含了测试代码,但是测试代码却由于各种原因无法运行。
尽管这个主题并不局限于Python,但是考虑到其重要性,这里还是要强调一下:要对未测试代码零容忍。没有一组合适的单元测试覆盖的代码是不应该被合并的。
最低目标是保证每次代码提交都能通过所有测试,最好是能以自动的方式实现。
例如,OpenStack会依赖基于Gerrit(https://code.google.com/p/gerrit/)、Jenkins(http://jenkins-ci.org/)和Zuul(http://ci.openstack.org/zuul/)的一个特定工作流程。每次代码提交都会经过基于Gerrit的代码评审系统,同时Zuul负责通过Jenkins运行一组测试任务。Jenkins会针对各个项目运行单元测试以及各种更高级别的功能测试。这可以保证提交的代码能通过所有测试。由众多开发人员完成的代码评审保证所有被提交的代码都是具有相应的单元测试的。
如果正在使用流行的GitHub托管服务,Travis CI(https://travis-ci.org/)提供了一种在代码的签入(push)、合并(merge)或签出(pull)请求后运行测试的方式。尽管在提交后执行测试有些差强人意,但这仍然是针对回归问题的一种不错的方式。Travis支持所有主要的Python版本,并可以高度定制。一旦通过它们的Web界面在项目中激活了Travis,就可以通过加入一个简单的.travis.yml文件(如示例6.17所示)来完成后续工作。
示例6.17 .travis.yml文件的例子
language: python
python:
- "2.7"
- "3.3"
command to install dependencies
install: "pip install -r requirements.txt --use-mirrors"
command to run tests
script: nosetests
无论你的代码托管在哪里,都应该尽可能实现软件测试的自动化,进而保证项目不断向前推进而不是引入更多bug而倒退。
6.9 Robert Collins访谈
尽管你可能不知道Robert是谁,但你很可能已经用过他写的程序,别的暂且不提,他是分布式版本管理系统Bazaar(http://bazaar.canonical.com/)的最初作者之一。目前,他是惠普云服务的“杰出技术专家”,从事OpenStack相关的工作。Robert还开发过本书中介绍的很多Python工具,如fixtures、testscenarios、testrepository和python-subunit。

你会建议使用什么样的测试策略?什么情况下不进行代码测试是可以接受的?
我认为这是一个软件工程上的取舍问题—需要考虑问题被引入未经检测产品的可能性,组件中未发现的问题产生的成本,从事这一工作的团队的规模和凝聚力……以OpenStack(http://openstack.org)为例,它拥有超过1600名贡献者,因此很难有细致入微的策略,因为很多人会有不同的意见。总体上来讲,应该有一些自动检查的方式作为代码并入主干时的组成部分,保证代码实现的正是其要做的,以及代码要做的也正是需要其完成的。通常来说,功能测试可能会放在不同的代码库中。单元测试的执行速度非常快,而且可以用来定义比较生僻的测试用例。我认为在已经有了测试的情况下,在测试的不同风格之间稍做平衡是完全可以的。
尽管测试的成本很高而回报较低,同时我也觉得在知情的情况下不测试是可以接受的,但这只是相对较少的情况。大部分事情都可以进行低成本的测试,而在早期发现问题的回报都相当高。
在编写Python代码时,有哪些令测试更容易且可提高代码质量的切实可行的最佳策略?
分而治之—不要在一个地方做多件事情。这便于重用,也可以让测试的重复运行更容易。尽可能使方法的功能单一,例如,对于单个方法要么用来计算,要么改变状态,但不要两者都做。这样就可以测试所有的计算行为而无须处理状态改变之类的操作,如写入数据库、与HTTP服务器交互等。相关的其他方式也同样受益,可以通过替换测试计算逻辑来触发生僻的测试用例的行为,并且通过仿真/测试进一步确认期望的状态传播是否如预期那样发生。测试IME最恶心的是深层栈,它们具有复杂的跨层的行为依赖。这里就需要不断改进代码,以使层之间的关系保持简单、可预测且对测试最有用的—可替换。
依你看来,在源代码中组织单元测试的最佳方式是什么?
使用类似$ROOT/$PACKAGE/tests的层次结构,但我对于整个源代码树只创建一个(相对于这种$ROOT/$PACKAGE/$SUBPACKAGE/tests)。
在测试文件夹内部,我经常镜像源代码的其余部分的结构,如$ROOT/$PACKAGE/foo.py将会在$ROOT/$PACKAGE/tests/test_foo.py中被测试。
应该避免从源代码树的其余部分导入测试包,除非是在顶层的__init__中放一个test_suite/load_tests函数。这样可以在小规模安装时很容易将测试分离。
Python中有哪些库可以用来做功能测试?
我只是用项目中使用的unittest的某些部分,它能灵活地满足大部分需求,尤其是同testresources和并行运行的其他方式结合。
你能展望一下未来Python中单元测试库和框架的发展吗?
我能看到的一些大的挑战包括以下几个。
第 7 章 方法和装饰器
Python中提供了装饰器(decorator)作为修改函数的一种便捷的方式。它们在Python 2.2中伴随classmethod()和staticmethod()被首次引入,但随后又在PEP 318(http:// www.python.org/dev/peps/pep-0318/)中被大规模重构,并提高了灵活性和可读性。Python提供了一些现成的装饰器(包括上面提到的两个),但似乎大部分开发人员并不了解它们背后的工作机制,本章就是要改变这一现状。
7.1 创建装饰器
装饰器本质上就是一个函数,这个函数接收其他函数作为参数,并将其以一个新的修改后的函数进行替换。很可能你已经使用过装饰器作为自己的包装函数。最简单的装饰器可能就是本体函数(identity function),它除了返回原函数什么都不做。
def identity(f):
return f
然后就可以像下面这样使用这个装饰器:
@identity
def foo():
return 'bar'
它和下面的过程类似:
def foo():
return 'bar'
foo = identity(foo)
这个装饰器没什么用,但确实可以正常运行。只不过它什么都不做。
示例 7.1 注册装饰器
_functions = {}
def register(f):
global _functions
_functions[f.__name__] = f
return f
@register
def foo():
return 'bar'
在这个例子中,函数被注册并存储在一个字典里,以便后续可以根据函数名字提取函数。
在后面的几节中我会介绍Python中提供的标准装饰器,以及如何(何时)使用它们。
装饰器主要的应用场景是针对多个函数提供在其之前,之后或周围进行调用的通用代码。如果你写过Emacs Lisp代码,可能用过defadvice,它允许你定义围绕某个函数进行调用的代码。同样的东西还有开发人员已经用过的非常棒的方法组合,来源于CLOS(Common Lisp Object System)。
考虑这样一组函数,它们在被调用时需要对作为参数接收的用户名进行检查:
class Store(object):
def get_food(self, username, food):
if username != 'admin':
raise Exception("This user is not allowed to get food")
return self.storage.get(food)
def put_food(self, username, food):
if username != 'admin':
raise Exception("This user is not allowed to put food")
self.storage.put(food)
显然,第一步就是要先分离出检查部分的代码:
def check_is_admin(username):
if username != 'admin':
raise Exception("This user is not allowed to get food")
class Store(object):
def get_food(self, username, food):
check_is_admin(username)
return self.storage.get(food)
def put_food(self, username, food):
check_is_admin(username)
self.storage.put(food)
现在代码看上去稍微整洁了一点儿。但是有了装饰器能做得更好:
def check_is_admin(f):
def wrapper(*args, **kwargs):
if kwargs.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)
return wrapper
class Store(object):
@check_is_admin
def get_food(self, username, food):
return self.storage.get(food)
@check_is_admin
def put_food(self, username, food):
self.storage.put(food)
类似这样使用装饰器会让常用函数的管理更容易。如果有过正式的Python经验的话,这看起来有点儿老生常谈,但你可能没有意识到这种实现装饰器的原生方法有一些主要的缺点。
正如前面提到的,装饰器会用一个动态创建的新函数替换原来的。然而,新函数缺少很多原函数的属性,如docstring和名字。
>>> def is_admin(f):
... def wrapper(*args, **kwargs):
... if kwargs.get('username') != 'admin':
... raise Exception("This user is not allowed to get food")
... return f(*args, **kwargs)
... return wrapper
...
>>> def foobar(username="someone"):
... """Do crazy stuff."""
... pass
...
>>> foobar.func_doc
'Do crazy stuff.'
>>> foobar.__name__
'foobar'
>>> @is_admin
... def foobar(username="someone"):
... """Do crazy stuff."""
... pass
...
>>> foobar.__doc__
>>> foobar.__name__
'wrapper'
幸好,Python内置的functools模块通过其update_wrapper函数解决了这个问题,它会复制这些属性给这个包装器本身。update_wrapper的源代码是自解释的,如示例7.2所示。
示例 7.2 Python 3.3 中functools.update_wrapper的源代码
WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
'__annotations__')
WRAPPER_UPDATES = ('__dict__',)
def update_wrapper(wrapper,
wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
wrapper.__wrapped__ = wrapped
for attr in assigned:
try:
value = getattr(wrapped, attr)
except AttributeError:
pass
else:
setattr(wrapper, attr, value)
for attr in updated:
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
Return the wrapper so this can be used as a decorator via partial()
return wrapper
如果用这个函数改写前面的示例,代码看起来会更简洁:
>>> def foobar(username="someone"):
... """Do crazy stuff."""
... pass
...
>>> foobar = functools.update_wrapper(is_admin, foobar)
>>> foobar.__name__
'foobar'
>>> foobar.__doc__
'Do crazy stuff.'
手工调用update_wrapper创建装饰器很不方便,所以functools提供了名为wraps的装饰器,如示例7.3所示。
示例 7.3 使用functools.wraps
import functools
def check_is_admin(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
if kwargs.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)
return wrapper
class Store(object):
@check_is_admin
def get_food(self, username, food):
return self.storage.get(food)
目前为止,在我们的示例中总是假设被装饰的函数会有一个名为username的关键字参数传入,但情况并非总是如此。考虑到这一点,最好是提供一个更加智能的装饰器,它能查看被装饰函数的参数并从中提取需要的参数。
为此,inspect模块允许提取函数的签名并对其进行操作,如示例7.4所示。
示例 7.4 使用inspect获取函数参数
import functools
import inspect
def check_is_admin(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
func_args = inspect.getcallargs(f, *args, **kwargs)
if func_args.get('username') != 'admin':
raise Exception("This user is not allowed to get food")
return f(*args, **kwargs)
return wrapper
@check_is_admin
def get_food(username, type='chocolate'):
return type + " nom nom nom!"
承担主要工作的函数是inspect.getcallargs,它返回一个将参数名字和值作为键值对的字典。在上面的例子中,这个函数返回{'username': 'admin', 'type': 'chocolate'}。这意味着我们的装饰器不必检查参数username是基于位置的参数还是关键字参数,而只需在字典中查找即可。
7.2 Python中方法的运行机制
在此之前你可能已经写过很多方法但从未多想,但为了理解装饰器的行为,你就需要知道方法背后的运行机制。
方法是指作为类属性保存的函数。让我们来看一下当直接访问这样一个属性时到底发生了什么。在Python 2中情况如示例7.5所示,在Python 3中情况如示例7.6所示。
示例 7.5 Python 2 的方法
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<unbound method Pizza.get_size>
Python 2会提示get_size属性是类Pizza的一个未绑定方法。
示例 7.6 Python 3 的方法
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<function Pizza.get_size at 0x7fdbfd1a8b90>
Python 3中已经完全删除了未绑定方法这个概念,它会提示get_size是一个函数。
两种情况的本质是一样的:get_size是一个并未关联到任何特定对象的函数,如果试图调用它的话,Python会抛出错误(在Python 2中情况如示例7.7所示,在Python 3中情况如示例7.8所示)。
示例 7.7 在 Python 2 中调用未绑定的get_size
>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unbound method get_size() must be called with Pizza instance as first argument (got nothing instead)
示例 7.8 在 Python 3 中调用未绑定的get_size
>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: get_size() missing 1 required positional argument: 'self'
Python 2中拒绝该方法调用是因为它是未绑定的。Python 3允许调用,但会提示未提供必需的self参数。这使得Python 3更加灵活,不仅可以向方法传入该类的任意实例,还可以传入任何对象,只要它包含方法期望的属性:
>>> Pizza.get_size(Pizza(42))
42
尽管不太方便,但它能运行:每次调用类的一个方法都要对该类进行引用。
所以Python通过将类的方法绑定给实例为我们完成了后续工作。换句话说,可以通过任何Pizza访问get_size方法,进一步说,Python会自动将对象本身传给方法的self参数,如示例7.9所示。
示例 7.9 调用绑定的get_size
>>> Pizza(42).get_size
<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>
>>> Pizza(42).get_size()
42
不出所料,不需要传入任何参数给get_size,因为它是绑定方法:它的self参数会自动设置为Pizza的实例。下面是一个更好的例子:
>>> m = Pizza(42).get_size
>>> m()
42
一旦有了对绑定方法的引用则无需保持对Pizza对象的引用。如果有了对方法的引用但是想知道它被绑定到了哪个对象,可以查看方法的__self__属性:
>>> m = Pizza(42).get_size
>>> m.__self__
<__main__.Pizza object at 0x7f3138827910>
>>> m == m.__self__.get_size
True
显然,仍然可以保持对对象的引用,并随时在需要的时候访问它。
7.3 静态方法
静态方法是属于类的方法,但实际上并非运行在类的实例上。具体见示例7.10.
示例 7.10 @staticmethod的用法
class Pizza(object):
@staticmethod
def mix_ingredients(x, y):
return x + y
def cook(self):
return self.mix_ingredients(self.cheese, self.vegetables)
如果愿意的话,可以像非静态方法那样写mix_ingredients,它会接收self作为参数但不会真地使用它。装饰器@staticmethod提供了以下几种功能。
>>> Pizza().cook is Pizza().cook
False
>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True
>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True
7.4 类方法
类方法是直接绑定到类而非它的实例的方法:
>>> class Pizza(object):
... radius = 42
... @classmethod
... def get_radius(cls):
... return cls.radius
...
>>> Pizza.get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza().get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius
True
>>> Pizza.get_radius()
42
然而,如果选择访问这个方法,它总是会被绑定在它所附着的类上,而且它的第一个参数将是类本身。(记住,类也是对象。)
类方法对于创建工厂方法最有用,即以特定方式实例化对象。如果用@staticmethod代替,则不得不在方法中硬编码类名Pizza,使所有继承自Pizza的类都无法根据它们的需要使用这个工厂。
class Pizza(object):
def __init__(self, ingredients):
self.ingredients = ingredients
@classmethod
def from_fridge(cls, fridge):
return cls(fridge.get_cheese() + fridge.get_vegetables())
在这个例子中,提供了工厂方法from_fridge,可以传入一个Fridge对象。如果像Pizza.from_fridge(myfridge)这样调用这个方法,它会返回一个根据myfridge中可用的材料做成的全新Pizza。
7.5 抽象方法
抽象方法是定义在基类中可能有或没有任何实现的方法。Python中一个最简单的抽象方法类似这样:
class Pizza(object):
@staticmethod
def get_radius():
raise NotImplementedError
任何继承自Pizza类的子类都需要实现并重写get_radius方法,否则调用这个方法会引发异常。
实现抽象方法的这种特定方式有一个缺陷:如果写一个继承自Pizza的类但忘了实现get_radius方法,那么只有在运行时调用这个方法时才会抛出错误,如示例7.11所示。
示例 7.11 实现一个抽象方法
>>> Pizza()
<__main__.Pizza object at 0x7fb747353d90>
>>> Pizza().get_radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in get_radius
NotImplementedError
如果使用Python内置的abc模块(http://docs.python.org/2/library/abc.html)实现抽象方法,在试图实例化一个包含抽象方法的对象时会得到警告提示,如示例7.12所示。
示例 7.12 使用abc实现抽象方法
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def get_radius(self):
"""Method that should do something."""
当使用abc以及它的特殊类时,如果试图实例化BasePizza或其未重写get_radius方法的子类,会得到TypeError:
>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class BasePizza with abstract methods
get_radius
注意
元类(metaclass)的声明在Python 2和Python 3之间产生了变化,因此前面的例子只适用于Python 2。
7.6 混合使用静态方法、类方法和抽象方法
这些装饰器各有各的用处,但有时可能会需要同时使用。下面介绍一些相关的小技巧。
抽象方法的原型并非一成不变。在实际实现方法的时候,可以根据需要对方法的参数进行扩展。
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class Calzone(BasePizza):
def get_ingredients(self, with_egg=False):
egg = Egg() if with_egg else None
return self.ingredients + [egg]
这里可以任意定义Calzone的方法,只要仍然支持在基类BasePizza中定义的接口。这包括将它们作为类方法或静态方法进行实现:
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class DietPizza(BasePizza):
@staticmethod
def get_ingredients():
return None
尽管静态方法get_ingredients没有基于对象的状态返回结果,但是它仍然满足在基类BasePizza中定义的抽象接口,所以它仍然是有效的。
从Python 3开始(在Python 2中有问题,详见issue 5867,http://bugs.python.org/issue5867),可能会支持在@abstractmethod之上使用@staticmethod和@classmethod装饰器,如示例7.13所示。
示例 7.13 混合使用@classmethod和@abstractmethod
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
ingredients = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.ingredients
注意,像这样在BasePizza中定义get_ingredients为类方法并不会强迫其子类也将其定义为类方法。将其定义为静态方法也是一样,没有办法强迫子类将抽象方法实现为某种特定类型的方法。
但是等一下,这里我们在抽象方法中居然是有实现代码的。真的可以吗?是的,在Python中完全没问题!不同于Java,Python中可以在抽象方法中放入代码并使用super()调用它,如示例7.14所示。
示例 7.14 通过抽象方法使用super()
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
default_ingredients = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the default ingredient list."""
return cls.default_ingredients
class DietPizza(BasePizza):
def get_ingredients(self):
return [Egg()] + super(DietPizza, self).get_ingredients()
在这个例子中,每一个新的继承自BasePizza基类的Pizza子类都必须重写get_ingredients方法,但它可以通过基类的默认机制访问原料表。
7.7 关于super的真相
从Python的最早期开始,开发人员就能够通过单继承和多继承扩展他们的类。不过,很多开发人员似乎并不理解这些机制是如何工作的,以及与其关联的super()方法。
单继承和多继承各有利弊,组成或者鸭子类型都超出了本书的讨论范围,如果你不了解这些概念,那么建议读一些相关的资料以便形成自己的观点。
多继承仍然被广泛使用,尤其在使用了混合模式的代码里。这也是了解它仍然很重要的原因,因为它是Python核心的一部分。
注意
混入(mixin)类是指继承自两个或两个以上的类,并将它们的特性组合在一起。
到目前为止,你应该知道,在Python中类也是对象,而且对于这种构建类的特定声明方式应该非常熟悉了:class classname(expression of inheritance)。
括号内的部分是一个Python表达式,返回一个当前类要继承的类对象列表。通常,都会直接指定,但也可以像下面这样写:
>>> def parent():
... return object
...
>>> class A(parent()):
... pass
...
>>> A.mro()
[<class '__main__.A'>, <type 'object'>]
不出所料,可以正常运行:类A继承自父类object。类方法mro()返回方法解析顺序(method resolution order)用于解析属性。当前的MRO系统是在Python 2.3中第一次被实现的,关于其内部工作机制详见Python 2.3 release notes(http://www.python.org/download/releases/2.3/mro)。
你已经知道了调用父类方法的正规方式是通过super()函数,但你很可能不知道super()函数实际上是一个构造器,每次调用它都会实例化一个super对象。它接收一个或两个参数,第一个参数是一个类,第二个参数是一个子类或第一个参数的一个实例。
构造器返回的对象就像是第一个参数的父类的一个代理。它有自己的__getattribute__方法去遍历MRO列表中的类并返回第一个满足条件的属性:
>>> class A(object):
... bar = 42
... def foo(self):
... pass
...
>>> class B(object):
... bar = 0
...
>>> class C(A, B):
... xyz = 'abc'
...
>>> C.mro()
[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <type 'object'>]
>>> super(C, C()).bar
42
>>> super(C, C()).foo
<bound method C.foo of <__main__.C object at 0x7f0299255a90>>
>>> super(B).__self__
>>> super(B, B()).__self__
<__main__.B object at
当请求C的实例的访问其super对象的一个属性时,它会遍历MRO列表,并从第一个包含这个属性的类中返回这个属性。
前一个例子中使用了绑定的super对象,也就是说,通过两个参数调用super。如果只通过一个参数调用super(),则会返回一个未绑定的super对象:
>>> super(C)
<super: <class 'C'>, NULL>
由于对象是未绑定的,所以不能通过它访问类属性:
>>> super(C).foo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'foo'
>>> super(C).bar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'bar'
>>> super(C).xyz
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'super' object has no attribute 'xyz'
粗一看,似乎这种super对象没什么用,但是super类通过某种方式实现了描述符协议(也就是__get__),这种方式能够让未绑定的super对象像类属性一样有用:
>>> class D(C):
... sup = super(C)
...
>>> D().sup
<super: <class 'C'>, <D object>>
>>> D().sup.foo
<bound method D.foo of <__main__.D object at 0x7f0299255bd0>>
>>> D().sup.bar
42
通过用实例和属性名字作为参数来调用未绑定的super对象的__get__方法(super(C).__get__(D(), 'foo'))能够让它找到并解析foo。
注意
尽管你可能没有听说过描述符协议,但是你很可能在不知道的情况已经通过@property装饰器使用过它。它是Python的一种机制,允许对象以属性的方式进行存储以返回其他东西而非其自身。本书不会讨论这个协议的具体细节,想详细了解可参考Python数据模型文档(http://docs.python.org/2/reference/datamodel.html#implementing-descriptors)。
在许多场景中使用super都是很有技巧的,例如处理继承链中不同的方法签名。遗憾的是,除了类似让方法接收*args, **kwargs参数这样的技巧,针对这个问题同样“没有银弹”。
在Python 3中,super()变得更加神奇:可以在一个方法中不传入任何参数调用它。但没有参数传给super()时,它会为它们自动搜索栈框架:
class B(A):
def foo(self):
super().foo()
super是在子类中访问父类属性的标准方式,应该尽量使用它。它能确保父类方法的协作调用不出意外,例如在多继承时父类方法没有被调用或者被调用了两次。
第 8 章 函数式编程
函数式编程并不是考虑使用Python时需要考虑的首要问题,但Python对函数式编程的支持确实存在而且相当广泛。尽管许多Python程序员并没有意识到这一点,这有点儿难堪:除了少数情况,函数式编程可以让你写出更为精确和高效的代码。
在以函数式风格写代码时,函数应该设计成没有其他副作用。也就是说,函数接收参数并生成输出而不保留任何状态或修改任何不反映在返回值中的内容。遵循这种理想方式的函数可以被看成纯函数式函数。
一个非纯函数
def remove_last_item(mylist):
"""Removes the last item from a list."""
mylist.pop(-1) # This modifies mylist
一个纯函数
def butlast(mylist):
"""Like butlast in Lisp; returns the list without the last element."""
return mylist[:-1] # This returns a copy of mylist
函数式编程具有以下实用的特点。
提示
如果想要更严谨的函数式编程,那么请参考我的建议:暂时从Python中跳出来放松一下,去学习Lisp。我知道在一本Python书里谈Lisp很奇怪,但是这么多年同Python打交道的经验告诉我如何“函数式地思考”。如果你所有的经验都来自于命令式编程和面向对象编程,将很难拓展那种要充分利用函数式编程的思维过程。Lisp本身也并非纯函数式,但是它比Python要更关注函数式编程。
8.1 生成器
生成器(generator)就是对象,在每次调用它的next()方法时返回一个值,直到它抛出StopIteration。生成器是在PEP 255(https://www.python.org/dev/peps/pep-0255/)中引入的,并提供了一种比较简单的实现迭代器(iterator)协议(https://docs.python.org/2/library/stdtypes.html#iterator-types)的方式来创建对象。
要创建一个生成器所需要做的只是写一个普通的包含yield语句的Python函数。Python会检测对yield的使用并将这个函数标识为一个生成器。当函数执行到yield语句时,它会像return语句那样返回一个值,但一个明显不同在于:解释器会保存对栈的引用,它将被用来在下一次调用next函数时恢复函数的执行。
创建一个生成器
>> def mygenerator():
... yield 1
... yield 2
... yield 'a'
...
>>> mygenerator()
<generator object mygenerator at 0x10d77fa50>
>>> g = mygenerator()
>>> next(g)
1
>>> next(g)
2
>>> next(g)
'a'
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
可以通过inspect.isgeneratorfunction检查一个函数是否是生成器。
>>> import inspect
>>> def mygenerator():
... yield 1
...
>>> inspect.isgeneratorfunction(mygenerator)
True
>>> inspect.isgeneratorfunction(sum)
False
通过阅读inspect.isgeneratorfunction的源代码也可以洞察一些前面提到的生成器函数标识的内部实现。
inspect.isgeneratorfunction的源代码
def isgeneratorfunction(object):
"""Return true if the object is a user-defined generator function.
Generator function objects provides same attributes as functions.
See help(isfunction) for attributes listing."""
return bool((isfunction(object) or ismethod(object)) and
object.func_code.co_flags & CO_GENERATOR)
Python 3中提供了另一个有用的函数inspect.getgeneratorstate。
>>> import inspect
>>> def mygenerator():
... yield 1
...
>>> gen = mygenerator()
>>> gen
<generator object mygenerator at 0x94b44fec30>
>>> inspect.getgeneratorstate(gen)
'GEN_CREATED'
>>> next(gen)
1
>>> inspect.getgeneratorstate(gen)
'GEN_SUSPENDED'
>>> next(gen)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>> inspect.getgeneratorstate(gen)
'GEN_CLOSED'
这个函数能够给出生成器的当前状态,允许我们判断它是否正在等待第一次被执行(GEN_CREATED),当前正在被解析器执行(GEN_RUNNING),等待被next()调用唤醒(GEN_SUSPENDED),或者已经结束运行(GEN_CLOSED)。
在Python中,生成器的构建是通过当函数产生某对象时保持一个对栈的引用来实现的,并在需要时恢复这个栈,例如,当调用next()时会再次执行。
当迭代某种类型的数据时,直观的方式是先构建整个列表,这非常浪费内存。假设我们想找到1~10 000 000的第一个等于50 000的数字。听上去很简单,不是吗?让我们来挑战一下。这里将Python的运行内存限制在128 MB。
$ ulimit -v 131072
$ python
>>> a = list(range(10000000))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
MemoryError
啊!证明不能以128 MB内存创建一个拥有1000万个元素的列表。
警告
在Python 3中,range()会返回生成器。要在Python 2中获取生成器,需要使用xrange()。(这个函数在Python 3中不存在,因为已经重复了。)
换成生成器试试。
$ python
>> for value in xrange(10000000):
... if value == 50000:
... print("Found it")
... break
...
Found it
这次程序运行没有任何问题。range()函数返回一个可迭代对象,它会动态地生成整数列表。更妙的是,我们只关心第50 000个数字,生成器会只生成50 000个数字。
生成器运行通过即时生成的值以极少的内存消耗来应对大规模的数据集和循环处理。任何时候想要操作大规模数据,生成器都可以帮助确保有效地对数据进行处理。
yield还有一个不太常用的功能:它可以像函数调用一样返回值。这允许通过调用它的send()函数来向生成器传入一个值。
示例 8.1 通过yield返回值
def shorten(string_list):
length = len(string_list[0])
for s in string_list:
length = yield s[:length]
mystringlist = ['loremipsum', 'dolorsit', 'ametfoobar']
shortstringlist = shorten(mystringlist)
result = []
try:
s = next(shortstringlist)
result.append(s)
while True:
number_of_vowels = len(filter(lambda letter: letter in 'aeiou', s))
Truncate the next string depending
on the number of vowels in the previous one
s = shortstringlist.send(number_of_vowels)
result.append(s)
except StopIteration:
pass
在这个例子中,写了一个名为shorten的函数,它接收一个字符串列表并返回一个同样的字符串组成的列表,只不过是截断的。每个字符串的长度取决于前一个字符串中元音字母的个数。"loremipsum"包含四个元音,所以生成器返回第二个字符串"dolorsit"的前四个字母。"dolo"包含两个元音字母,所以"ametfoobar"将被截断成其前两个字母("am")。因此,这个然后生成器便停止并抛出StopIteration。生成器将返回:
['loremipsum', 'dolo', 'am']
通过这种方式使用yield和send()使得Python生成器的作用类似于Lua(http:// www.lua.org/)和其他语言中的协同程序(coroutine)。
提示
PEP 289(https://www.python.org/dev/peps/pep-0289/)引入了生成器表达式,通过使用类似列表解析的语法可以构建单行生成器。
>> (x.upper() for x in ['hello', 'world'])
<generator object <genexpr> at 0x7ffab3832fa0>
>> gen = (x.upper() for x in ['hello', 'world'])
>> list(gen)
['HELLO', 'WORLD']
8.2 列表解析
列表解析(list comprehension,简称listcomp)让你可以通过声明在单行内构造列表的内容。
没有列表解析的情况
>>> x = []
>>> for i in (1, 2, 3):
... x.append(i)
...
>>> x
[1, 2, 3]
使用列表解析的实现
>>> x = [i for i in (1, 2, 3)]
>>> x
[1, 2, 3]
可以同时使用多条for语句并使用if语句过滤元素:
x = [word.capitalize()
for line in ("hello world?", "world!", "or not")
for word in line.split()
if not word.startswith("or")]
>>> x
['Hello', 'World?', 'World!', 'Not']
使用列表解析而不使用循环是快速定义列表的简洁方式。因为我们仍然在讨论函数式编程,值得一提的是通过列表解析构建的列表是不能依赖于程序的状态的1。这通常让它们比非列表解析构建的列表更加简洁易读。
注意
也有一些语法用于以同样的方式构建字典和集合:
> {x:x.upper() for x in ['hello', 'world']}
{'world': 'WORLD', 'hello': 'HELLO'}
> {x.upper() for x in ['hello', 'world']}
set(['WORLD', 'HELLO'])
注意,这只在Python 2.7及后续版本中有效。
8.3 函数式,函数的,函数化
Python包括很多针对函数式编程的工具。这些内置的函数涵盖了以下这些基本部分。
Python 3中map的用法
>>> map(lambda x: x + "bzz!", ["I think", "I'm good"])
<map object at 0x7fe7101abdd0>
>>> list(map(lambda x: x + "bzz!", ["I think", "I'm good"]))
['I thinkbzz!', "I'm goodbzz!"]
示例 8.2 Python 3 中filter的用法
>>> filter(lambda x: x.startswith("I "), ["I think", "I'm good"])
<filter object at 0x0d636dd0>
>>> list(filter(lambda x: x.startswith("I "), ["I think", "I'm good"]))
['I think']
提示
可以使用生成器和列表解析实现与filter或者map等价的函数。
使用列表解析实现map
>> (x + "bzz!" for x in ["I think", "I'm good"])
<generator object <genexpr> at 0x0d697dc0>
>> [x + "bzz!" for x in ["I think", "I'm good"]]
['I thinkbzz!', "I'm goodbzz!"]
使用列表解析实现filter
>> (x for x in ["I think", "I'm good"] if x.startswith("I "))
<generator object <genexpr> at 0x0d697dc0>
>> [x for x in ["I think", "I'm good"] if x.startswith("I ")]
['I think']
在Python 2中这样使用生成器会返回一个可迭代的对象而不是列表,就像Python 3中的map和filter函数。
i = 0
while i < len(mylist):
print("Item %d: %s" % (i, mylist[i]))
i += 1
可以用这样的写法:
for i, item in enumerate(mylist):
print("Item %d: %s" % (i, item))
def all(iterable):
for x in iterable:
if not x:
return False
return True
def any(iterable):
for x in iterable:
if x:
return True
return False
这两个函数对于判断这个可迭代对象中的任何或所有值是否满足给定的条件非常有用:
mylist = [0, 1, 3, -1]
if all(map(lambda x: x > 0, mylist)):
print("All items are greater than 0")
if any(map(lambda x: x > 0, mylist)):
print("At least one item is greater than 0")
>>> keys = ["foobar", "barzz", "ba!"]
>>> map(len, keys)
<map object at 0x7fc1686100d0>
>>> zip(keys, map(len, keys))
<zip object at 0x7fc16860d440>
>>> list(zip(keys, map(len, keys)))
[('foobar', 6), ('barzz', 5), ('ba!', 3)]
>>> dict(zip(keys, map(len, keys)))
{'foobar': 6, 'barzz': 5, 'ba!': 3}
到这里你可能已经注意到Python 2和Python 3的返回类型的不同。在Python 2中大多数Python内置的纯函数会返回列表而不是可迭代的对象,这使得它们的内存利用没有Python 3.x中那么高效。如果正计划使用这些函数编写代码,记住在Python 3中才能最大的发挥它们的作用。如果你仍然在使用Python 2,也不用气馁,标准库中的itertools模块提供了许多这些函数的迭代器版本(itertools.izip、itertoolz.imap、itertools.ifilter等)。
然而,在上面这个列表中仍然缺少一个重要的工具。处理列表时,一个常见的任务就是在从列表中找出第一个满足条件的元素。这通常可以用函数这么实现:
def first_positive_number(numbers):
for n in numbers:
if n > 0:
return n
也可以写一个函数式风格的:
def first(predicate, items):
for item in items:
if predicate(item):
return item
first(lambda x: x > 0, [-1, 0, 1, 2])
或者更精确一点儿:
Less efficient
list(filter(lambda x: x > 0, [-1, 0, 1, 2]))[0] ①
Efficient but for Python 3
next(filter(lambda x: x > 0, [-1, 0, 1, 2]))
Efficient but for Python 2
next(itertools.ifilter(lambda x: x > 0, [-1, 0, 1, 2]))
① 注意,如果没有元素满足条件,可能会抛出IndexError,促使list(filter())返回空列表。
为了避免在每一个程序中都写同样的函数,可以包含这个小巧且使用的Python包first(https://pypi.python.org/pypi/first)。
示例 8.3 使用first
>>> from first import first
>>> first([0, False, None, [], (), 42])
42
>>> first([-1, 0, 1, 2])
-1
>>> first([-1, 0, 1, 2], key=lambda x: x > 0)
1
参数key可以用来指定一个函数,接收每个元素作为参数并返回布尔值指示该元素是否满足条件。
你可能已经注意到,在本章相当一部分示例中我们使用了lambda表达式。lambda最早在Python中引入实际是为了给函数式编程函数提供便利,如map()和filter(),否则每次想要检查不同的条件时将需要重写一个完整的新函数:
import operator
from first import first
def greater_than_zero(number):
return number > 0
first([-1, 0, 1, 2], key=greater_than_zero)
这段代码和前面的例子功能相同,但更加难以处理:如果想要获得序列中第一个大于42的数,则需要定义一个合适的函数而不是以内联(in-line)的方式在first中调用。
尽管lambda在帮助我们避免此类问题时是有用的,但它仍然是有问题的。首先也最明显的,如果需要超过一行代码则不能通过lambda传入key函数。在这种场景下,则又需要返回繁复的模式,为每个需要的key编写一个新的函数定义。我们真的需要这样做吗?
functools.partial是以更为灵活的方案替换lambda的第一步。它允许通过一种反转的方式创建一个包装器函数:它修改收到的参数而不是修改函数的行为。
from functools import partial
from first import first
def greater_than(number, min=0):
return number > min
first([-1, 0, 1, 2], key=partial(greater_than, min=42))
默认情况下,新的greater_than函数功能和之前的greater_than_zero函数类似,但是可以指定要比较的值。在这个例子中,我们向functools.partial传入我们的函数和期望的最小值min,就可以得到一个min设定为42的新函数。换句话说,可以写一个函数并利用functools.partial根据需要针对给定的某个场景进行自定义。
在这个例子中,尽管需求严格限定但还是需要两行代码。例子中需要做的只是比较两个数,假如Python中有内置的这种比较函数呢?事实证明,operator模块就是我们要找的。
import operator
from functools import partial
from first import first
first([-1, 0, 1, 2], key=partial(operator.le, 0))
这里我们看到,functools.partial也支持位置参数。在这个例子中,operator.le(a, b)接收两个数并返回第一个数是否小于等于第二个数。这里向functools.partial传入的0会被赋值给a,向由functools.partial返回的函数传递的参数会被赋值给b。所以它运行起来和最初的例子完全一样,不需要使用lambda或其他额外的函数。
注意
functools.partial在替换lambda时是很有用的,而且通常被认为是更好的选择。在Python语言中lambda被看做是一种非常规方式,因为它将函数体限定为一行表达式2。另一方面,functools.partial可以围绕原函数进行很好的封装。
Python标准库中的itertools模块也提供了一组非常有用的函数,也很有必要记住。因为尽管Python本身提供了这些函数,但我还是看到很多程序员试图实现自己的版本。
这些函数在和operator模块组合在一起时特别有用。当一起使用时,itertools和operator能够覆盖通常程序员依赖lambda表达式的大部分场景,如示例8.4所示。
示例 8.4 结合itertools.groupby使用operator模块
>>> import itertools
>>> a = [{'foo': 'bar'}, {'foo': 'bar', 'x': 42}, {'foo': 'baz', 'y': 43}]
>>> import operator
>>> list(itertools.groupby(a, operator.itemgetter('foo')))
[('bar', <itertools._grouper object at 0xb000d0>), ('baz', <itertools.
_grouper object at 0xb00110>)]
>>> [(key, list(group)) for key, group in list(itertools.groupby(a, operator.
itemgetter('foo')))]
[('bar', []), ('baz', [{'y': 43, 'foo': 'baz'}])]
在这个例子中,也可以写成lambda x: x['foo'],但使用operator可以完全避免使用lambda。
1技术上可以,但那不是期望的方式。
2曾经计划在 Python 3中移除,但是最终没有。
第 9 章 抽象语法树
抽象语法树(Abstract Syntax Tree,AST)是任何语言源代码的抽象结构的树状表示,包括Python语言。作为Python自己的抽象语法树,它是基于对Python源文件的解析而构建的。
关于Python的这个部分并没有太多的文档,而且刚开始看的时候并不容易理解。尽管如此,Python作为一门编程语言,要掌握它的用法,了解并理解Python的一些深层次的构造仍然是很有意义的。
了解Python抽象语法树的最简单的方式就是解析一段Python代码并将其转储从而生成抽象语法树。要做到这一点,Python的ast模块就可以满足需要。
示例 9.1 将 Python 代码解析成抽象语法树
>>> import ast
>>> ast.parse
<function parse at 0x7f062731d950>
>>> ast.parse("x = 42")
<_ast.Module object at 0x7f0628a5ad10>
>>> ast.dump(ast.parse("x = 42"))
"Module(body=[Assign(targets=[Name(id='x', ctx=Store())], value=Num(n=42))])"
ast.parse函数会返回一个_ast.Module对象,作为树的根。这个树可以通过ast.dump模块整个转储,针对这个例子如图9-1所示。
抽象语法树的构建通常从根元素开始,根元素通常是一个ast.Module对象。这个对象在其body属性中包含一组待求值的语句或者表达式。它通常表示这个文件的内容。
很容易猜到,ast.Assign对象表示赋值,在Python语法中它对应=。Assign有一组目标,以及一个要赋的值。在这个例子中只有一个对象ast.Name,表示变量x。值是数值42。

图9-1
抽象语法树能够被传入Python并编译和求值。作为Python内置函数提供的compile函数是支持抽象语法树的。
>>> compile(ast.parse("x = 42"), '<input>', 'exec')
<code object <module> at 0x111b3b0, file "<input>", line 1>
>>> eval(compile(ast.parse("x = 42"), '<input>', 'exec'))
>>> x
42
通过ast模块中提供的类可以手工构建抽象语法树。显然,这么写Python代码太麻烦了,不推荐这种方法。但是用起来还是挺有意思的。
让我们用Python的抽象语法树写一个经典的“Hello world!”。
示例 9.2 使用 Python 抽象语法树的 Hello world
>>> hello_world = ast.Str(s='hello world!', lineno=1, col_offset=1)
>>> print_call = ast.Print(values=[hello_world], lineno=1, col_offset=1, nl=True)
>>> module = ast.Module(body=[print_call])
>>> code = compile(module, '', 'exec')
>>> eval(code)
hello world!
注意
lineno和col_offset表示用于生成抽象语法树的源代码的行号和列偏移量。在当前环境下设置它们其实没多大意义,因为这里并没有解析任何源代码,但用来回查生成抽象语法树的代码的位置时比较有用。例如,在Python生成栈回溯时就比较有用。不管怎样,Python拒绝编译任何不提供此信息的抽象语法树对象,这也是我们在这里传入一个假的值1的原因。ast.fix_missing_locations()函数可以通过在父节点上设置缺失的值来解决这个问题。
抽象语法树中可用的完整对象列表通过阅读_ast(注意下划线)模块的文档可以很容易获得。
首先需要考虑的两个分类是语句和表达式。语句涵盖的类型包括assert(断言)、赋值(=)、增量赋值(+=、/=等)、global、def、if、return、for、class、pass、import等。它们都继承自ast.stmt。表达式涵盖的类型包括lambda、number、yield、name(变量)、compare或者call。它们都继承自ast.expr。
还有其他一些分类,例如,ast.operator用来定义标准的运算符,如加(+)、除(/)、右移(<<)等,ast.cmpop用来定义比较运算符。
很容易联想到有可能利用抽象语法树构造一个编译器,通过构造一个Python抽象语法树来解析字符串并生成代码。这正是9.1节中将要讨论的Hy项目。
如果需要遍历树,可以用ast.walk函数来做这件事。但ast模块还提供了NodeTransformer,一个可以创建其子类来遍历抽象语法树的某些节点的类。因此用它来动态修改代码很容易。为加法修改所有的二元运算如示例9.3所示。
示例 9.3 为加法修改所有的二元运算
import ast
class ReplaceBinOp(ast.NodeTransformer):
"""Replace operation by addition in binary operation"""
def visit_BinOp(self, node):
return ast.BinOp(left=node.left,
op=ast.Add(),
right=node.right)
tree = ast.parse("x = 1/3")
ast.fix_missing_locations(tree)
eval(compile(tree, '', 'exec'))
print(ast.dump(tree))
print(x)
tree = ReplaceBinOp().visit(tree)
ast.fix_missing_locations(tree)
print(ast.dump(tree))
eval(compile(tree, '', 'exec'))
print(x)
执行结果如下:
Module(body=[Assign(targets=[Name(id='x', ctx=Store())],
value=BinOp(left=Num(n=1), op=Div(), right=Num(n=3)))])
0.33 33333333333333
Module(body=[Assign(targets=[Name(id='x', ctx=Store())],
value=BinOp(left=Num(n=1), op=Add(), right=Num(n=3)))])
4
提示
如果需要对Python的字符串进行求值并返回一个简单的数据类型,可以使用ast.literal_eval。与eval不同,ast.literal_eval不允许输入的字符串执行任何代码。比eval更安全。
9.1 Hy
初步了解抽象语法树之后,可以畅想一下为Python创建一种新的语法,并将其解析并编译成标准的Python抽象语法树。Hy编程语言(http://docs.hylang.org/en/latest/)做的正是这件事。它是Lisp的一个变种,可以解析类Lisp语言并将其转换为标准的Python抽象语法树。因此它同Python生态系统完全兼容。可以将其与Clojure(http://clojure.org/)同Java的关系类比。Hy完全可以单独写本书来讲,所以本节只是稍作介绍。
如果你已经写过Lisp代码1,Hy语法和它看起来非常类似。安装之后,运行hy解释器将给出一个标准的REPL(Read-Eval-Print Loop)提示符,从这里可以同解释器进行交互。
% hy
hy 0.9.10
=> (+ 1 1)
2
在Lisp语法中,圆括号表示一个列表,第一个元素是一个函数,其余元素是该函数的参数。因此,上面的代码相当于Python中的1+1。
大多数结构都是从Python直接映射过来的,如函数定义。变量的设置则依赖于setv函数。
=> (defn hello [name]
... (print "Hello world!")
... (print (% "Nice to meet you %s" name)))
=> (hello "jd")
Hello world!
Nice to meet you jd
在内部,Hy对提供的代码进行解析并编译成Python抽象语法树。幸运的是,Lisp比较容易解析成树,因为每一对圆括号都可以表示成列表树的一个节点。需要做的仅仅是将Lisp树转换为Python抽象语法树。
通过defclass结构可以支持类定义,这是从CLOS(Common Lisp ObjectSystem)获得的启发。
(defclass A [object]
[[x 42]
[y (fn [self value]
(+ self.x value))]])
上面的代码定义了一个名为A的类,继承自object,包括一个值为42的类属性x,以及用来返回传入参数和x的和的一个方法。
最棒的是,你可以直接导入任何Python库到Hy中并随意使用。
=> (import uuid)
=> (uuid.uuid4)
UUID('f823a749-a65a-4a62-b853-2687c69d0e1e')
=> (str (uuid.uuid4))
'4efa60f2-23a4-4fc1-8134-00f5c271f809'
Hy还包括更多高级结构和宏。如果想在Python中拥有case或switch语句,可以欣赏一下cond是怎么做的。
(cond
((> somevar 50)
(print "That variable is too big!"))
((< somevar 10)
(print "That variable is too small!"))
(true
(print "That variable is jusssst right!")))
Hy是 一个非常不错的项目,因为它允许你进入Lisp的世界又不用离开你熟悉的领域,因为你仍然在写Python。hy2py工具甚至能够显示Hy代码转换成Python之后的样子。2
9.2 Paul Tagliamonte访谈
Paul是Debian开发人员,在Sunlight基金会工作。2013年他创建了Hy,作为Lisp的爱好者我随后加入了这个美妙的冒险。

最初你为什么会创立Hy项目?
最初,我创立Hy这个项目是源自一次关于如何将Lisp代码编译成Python而不是Java的JVM(Clojure)的谈话。不久之后,我开发了Hy的第一个版本,有些像Lisp,甚至执行起来就像Lisp一样,但它却运行缓慢。我是说,非常慢。比原生的Python要慢一个数量级,因为这个Lisp运行时本身是用Python实现的。
非常受挫,我几乎要放弃了,继续推进只是因为向一个同事承诺了要用抽象语法树实现这个运行时,而不是用Python实现。这个疯狂的想法实际上激发了整个项目。这发生在2012年假期前不久,所以我整个假期都在忙着开发Hy。大概一周之后,做出来的东西和现在的Hy代码库已经非常接近了,大部分Hy的开发人员甚至已经知道如何围绕这个编译器进行开发了。
就在实现了一个简单的Flask应用之后,我在波士顿Python大会上做了一场关于这个项目的演讲,并收到了热烈的反馈,非常热烈。实际上,我已经开始将Hy作为讲解Python内部机制的一个很好的途径,例如,REPL是如何工作的3,PEP 302导入钩子,以及Python抽象语法树,都是关于用代码写代码这一概念的很好的诠释。
在那次演讲之后,我对有些小节不太满意,所以我重写了编译器的很多代码,以解决一些流程上的原则问题,从而得到当前这个代码库的迭代,它已经运行了相当长一段时间了。
此外,Hy(这门语言)是帮助人们理解如何阅读Lisp代码的一种很好的方式,因为这样他们就可以在自己熟悉的环境中舒服地使用s表达式(甚至使用他们已经依赖的一些库),平滑地过度到其他(真正的)Lisp,如Common Lisp、Scheme或者Clojure,以及试验一些新的想法(如宏系统、单调性和没有语句的概念)。
你是怎么知道该如何正确地使用抽象语法树的呢?对于查看抽象语法树的人,有什么提示、技巧和建议吗?
Python的抽象语法树是很有意思的。它并不是非常私密(事实上,它明显不是私密的),但是也并非公开的接口。版本之间并不保证稳定,事实上,Python 2和Python 3之间有些非常烦人的不同,甚至Python 3的不同版本间也有不同。此外,不同的实现对抽象语法树的解释也不同,甚至有独特的抽象语法树。更不用说Jython、PyPy或者CPython要以一致的方式处理Python抽象语法树。
例如,CPython能够处理抽象语法树实体的轻微的乱序(通过lineno 和 col_offset)。然而PyPy会抛出一个断言错误。尽管有时令人抓狂,但抽象语法树一般都很正常。构造一个可在不同Python实例上运行的抽象语法树不是完全不可能的。通过一两个条件,就可以使这个工具变得非常顺手,不过创建一个在CPython 2.6到3.3以及PyPy都能运行的抽象语法树还是挺让人抓狂的。
抽象语法树的文档极度缺乏,所以大部分知识来自于对生成抽象语法树的逆向工程。通过编写简单的Python脚本,可以使用类似import ast; ast.dump(ast.parse("print foo"))这样的代码生成等价的抽象语法树,来辅助理解。伴随着一些猜测和坚持,最终形成了对这种方式的基本理解。
将来我也许会将我对抽象语法树模块的理解记录下来,但是我发现写代码是学习抽象语法树的最好方式。
Hy现在处于什么状态?未来的目标是什么?
Hy仍然在开发中。仍有一些需要解决的细小问题以及需要修复的一些bug,以便使Hy同其他的LISP-1的变种没有显著区别。这是一项艰巨的任务,但其时机已经成熟。
我还希望能保持Hy的效率,目前看还行。
长期来说,我希望Hy能成为一个教学工具,用来解释一些即便对有经验的Python支持者来说也比较陌生的概念。我也希望它能证明,对这些我们尽力提供的工具产生兴趣可以令这些Python的支持者得到更多乐趣。
我希望人们可以将Hy看做是一个绝好的教学工具,以便能让人们对Common Lisp、Clojure或者Scheme产生兴趣。我希望人们回家之后能读一下为什么Lisp的变量这样工作,以及在他们的日常编码工作中如何借用这种哲学思想。
Hy和Python的互操作性如何?代码分发和打包呢?
绝对是极好的、令人震惊的互操作性。事实上,甚至可以通过pdb调试Hy而无需任何修改。为了彻底测试它,我写乐Flask应用、Django应用和各种模块。Python可以导入Python,Hy可以导入Hy,Hy可以导入Python,Python可以导入Hy。这是Hy非常独特的地方,即使是Clojure也无法做到这一点,因为Clojure的互操作是绝对单向的(Clojure可以导入Java,但是Java导入lojure却有问题)。这也充分证明了我们的工具有多强大。
Hy几乎是直接将Hy代码(以s表达式)转换为Python抽象语法树。这个编译步骤也证明了生成字节代码相当明智(以至于通过看由Python抽象语法树生成的Python源代码就可以调试Hy的一些讨厌的问题),这也意味着Python在处理非Python语言编写的模块时非常困难。
Common Lisp主义,如完全支持将*earmuffs*和using-dashes翻译成Python的对等物(在这种情况下,*earmuffs*会变成EARMUFFS,using-dashes会变成using_dashes),这意味着Python处理它们并不难。
确保良好的互操作性是我们最高优先级的工作之一,所以如果你发现任何bug,请给我们看bug。
选择Hy的优点与缺点各是什么呢?
这是个很有意思的问题,我立场并不中立,所以我持保留态度。
青出蓝但胜于蓝,Hy通过一些特殊的方式表现得比Python要好。因为我们做了大量的努力去使Python不同版本间的行为更顺畅以使新的Python 3的future实现得更快。主要通过使用如Python 2中future的除法,以及确保两个版本间语法的标准化这类方式实现。
此外,Hy有一些Python很难处理的东西(即使有抽象语法树这样优秀的模块),就是一个完整的宏系统。宏是非常特殊的函数,它能在编译阶段修改代码,不同于有ast.NodeVisitor作为一级函数的语言。这使得创建你的特定领域语言(DSL)非常简单,特定领域语言由基本语言(在这里就是Hy/Python),以及额外的许多表现力独特、代码简洁的宏组成的。
许多时候,聪明的特定领域语言可以替代语言来扮演这个角色,如Lua。
至于说缺点,给予Hy力量的东西也可能会伤害它。从社会层面而非技术层面说,凭借s表达式编写的Lisp,背负着难于学习,、阅读和维护的恶名。出于对Hy复杂性的恐惧,人们可能不愿意工作于使用Hy的项目上。
Hy就是人们由爱到恨的Lisp——Python开发者不喜欢它的语法,Lisp开发者不愿意使用Hy,因为它是Python。Hy直接使用Python的对象,所以对于经验丰富的Lisp开发者可能会对基础对象的行为感到惊讶。
希望人们可以透过Hy的语法,并考虑将其利用到项目中,从而拓展其视野,并探索Python中一些之前未曾接触的部分。
1如果还没有,值得考虑一下。
2尽管它有一些限制性。
3code.InteractiveConsole
第 10 章 性能与优化
“过早地优化是万恶之源。”
——Donald Knuth,摘自Structured Programming with go to Statements
10.1 数据结构
如果使用正确的数据结构,大多数计算机问题都能以一种优雅而简单的方式解决,而Python就恰恰提供了很多可供选择的数据结构。
通常,有一种诱惑是实现自定义的数据结构,但这必然是徒劳无功、注定失败的想法。因为Python总是能够提供更好的数据结构和代码,要学会使用它们。
例如,每个人都会用字典,但你看到过多少次这样的代码:
def get_fruits(basket, fruit):
A variation is to use "if fruit in basket:"
try:
return basket[fruit]
except KeyError:
return set()
最好是使用dict结构已经提供的get方法。
def get_fruits(basket, fruit):
return basket.get(fruit, set())
使用基本的Python数据结构但不熟悉它提供的所有方法并不罕见。这也同样适用于集合的使用。例如:
def has_invalid_fields(fields):
for field in fields:
if field not in ['foo', 'bar']:
return True
return False
这可以不用循环实现:
def has_invalid_fields(fields):
return bool(set(fields) - set(['foo', 'bar']))
set数据结构包含许多能解决不同问题的方法,否则这些问题需要通过嵌套的for/if块才能实现。
还有许多高级的数据结构可以极大地减少代码维护负担。例如,可以看看下面的代码:
def add_animal_in_family(species, animal, family):
if family not in species:
species[family] = set()
species[family].add(animal)
species = {}
add_animal_in_family(species, 'cat', 'felidea')
当然,这段代码是完全有效的,但想想看你会在你的程序中需要多少次上面代码的变种?10次?100次?
Python提供的collections.defaultdict结构可以更优雅地解决这个问题。
import collections
def add_animal_in_family(species, animal, family):
species[family].add(animal)
species = collections.defaultdict(set)
add_animal_in_family(species, 'cat', 'felidea')
每次试图从字典中访问一个不存在的元素,defaultdict都会使用作为参数传入的这个函数去构造一个新值而不是抛出KeyError。在这个例子,set函数被用来在每次需要时构造一个新的集合。
此外,collections模块提供了一些新的数据结构用来解决一些特定问题,如OrderedDict或者Counter。
在Python中找到正确的数据结构是非常重要的,因为正确的选择会节省你的时间并减少代码维护量。
10.2 性能分析
Python提供了一些工具对程序进行性能分析。标准的工具之一就是cProfile,而且它很容易使用,如示例10.1所示。
示例 10.1 使用cProfile模块
$ python -m cProfile myscript.py
343 function calls (342 primitive calls) in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 :0(_getframe)
1 0.000 0.000 0.000 0.000 :0(len)
104 0.000 0.000 0.000 0.000 :0(setattr)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 0.000 0.000 :0(startswith)
2/1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 StringIO.py:30(<module>)
1 0.000 0.000 0.000 0.000 StringIO.py:42(StringIO)
运行结果的列表显示了每个函数的调用次数,以及执行所花费的时间。可以使用-s选项按其他字段进行排序,例如,-s time可以按内部时间进行排序。
如果你像我一样使用C语言很多年,那你很可能已经知道Valgrind(http://valgrind.org/)这个优秀的工具,除了其他功能之外,它能够提供对C程序的性能分析数据。生成的数据能够被另一个不错的工具KCacheGrind(http://kcachegrind.sourceforge.net/html/Home.html)可视化地展示。
cProfile生成的性能分析数据很容易转换成一个可以被KCacheGrind读取的调用树。cProfile模块有一个-o选项允许保存性能分析数据,并且pyprof2calltree(https:// pypi.python.org/pypi/pyprof2calltree)可以进行格式转换,如示例10.2所示。
示例 10.2 用KCacheGrind可视化 Python 性能分析数据
$ python -m cProfile -o myscript.cprof myscript.py
$ pyprof2calltree -k -i myscript.cprof
这可以提供很多有用的信息,让你可以判断程序的哪个部分耗费了太多的资源,如图10-1所示。

图10-1 KCacheGrind示例
虽然从宏观角度看这么用没问题,它有时也可以对代码的某些部分提供一些微观角度的分析。但这样的上下文中,我发现用dis模块可以看到一些隐藏的东西。dis模块是Python字节码的反编译器,用起来也很简单。
>>> def x():
... return 42
...
>>> import dis
>>> dis.dis(x)
2 0 LOAD_CONST 1 (42)
3 RETURN_VALUE
dis.dis函数会反编译作为参数传入的函数,并打印出这个函数运行的字节码指令的清单。为了能适当地优化代码,这对于理解程序的每行代码非常有用。
下面的代码定义了两个函数,功能相同,都是拼接三个字母。
abc = ('a', 'b', 'c')
def concat_a_1():
for letter in abc:
abc[0] + letter
def concat_a_2():
a = abc[0]
for letter in abc:
a + letter
两者看上去作用一样,但如果反汇编它们的话,可以看到生成的字节码有点儿不同。
>>> dis.dis(concat_a_1)
2 0 SETUP_LOOP 26 (to 29)
3 LOAD_GLOBAL 0 (abc)
6 GET_ITER
>> 7 FOR_ITER 18 (to 28)
10 STORE_FAST 0 (letter)
3 13 LOAD_GLOBAL 0 (abc)
16 LOAD_CONST 1 (0)
19 BINARY_SUBSCR
20 LOAD_FAST 0 (letter)
23 BINARY_ADD
24 POP_TOP
25 JUMP_ABSOLUTE 7
>> 28 POP_BLOCK
>> 29 LOAD_CONST 0 (None)
32 RETURN_VALUE
>>> dis.dis(concat_a_2)
2 0 LOAD_GLOBAL 0 (abc)
3 LOAD_CONST 1 (0)
6 BINARY_SUBSCR
7 STORE_FAST 0 (a)
3 10 SETUP_LOOP 22 (to 35)
13 LOAD_GLOBAL 0 (abc)
16 GET_ITER
>> 17 FOR_ITER 14 (to 34)
20 STORE_FAST 1 (letter)
4 23 LOAD_FAST 0 (a)
26 LOAD_FAST 1 (letter)
29 BINARY_ADD
30 POP_TOP
31 JUMP_ABSOLUTE 17
>> 34 POP_BLOCK
>> 35 LOAD_CONST 0 (None)
38 RETURN_VALUE
如你所见,在函数的第二个版本中运行循环之前我们将abc[0]保存在了一个临时变量中。这使得循环内部执行的字节码稍微短一点,因为不需要每次迭代都去查找abc[0]。通过timeit测量,第二个版本的函数比第一个要快10%,少花了不到一微秒。显然,除非调用这个函数100万次,否则不值得优化,但这就是dis模块所能提供的洞察力。
是否应该依赖将值存储在循环外这样的“技巧”是有争议的,这类优化工作应该最终由编译器完成。但是,由于Python语言是高度动态的,因此编译器很难确保优化不会产生什么副作用。所以,编写代码一定要小心。
另一个我在评审代码时遇到的错误习惯是无理由地定义嵌套函数(分解嵌套函数见示例10.3)。这实际是有开销的,因为函数会无理由地被重复定义。
示例 10.3 分解嵌套函数
>> import dis
>>> def x():
... return 42
...
>>> dis.dis(x)
2 0 LOAD_CONST 1 (42)
3 RETURN_VALUE
>>> def x():
... def y():
... return 42
... return y()
...
>>> dis.dis(x)
2 0 LOAD_CONST 1 (<code object y at 0x100ce7e30, file
"<stdin>", line 2>)
3 MAKE_FUNCTION 0
6 STORE_FAST 0 (y)
4 9 LOAD_FAST 0 (y)
12 CALL_FUNCTION 0
15 RETURN_VALUE
可以看到函数被不必要地复杂化了,调用MAKE_FUNCTION、STORE_FAST、LOAD_FAST和CALL_FUNCTION,而不是直接调用LOAD_CONST,这无端造成了更多的操作码,而函数调用在Python中本身就是低效的。
唯一需要在函数内定义函数的场景是在构建函数闭包的时候,它可以完美地匹配Python的操作码中的一个用例。反汇编一个闭包如示例10.4所示。
示例 10.4 反汇编一个闭包
>>> def x():
... a = 42
... def y():
... return a
... return y()
...
>>> dis.dis(x)
2 0 LOAD_CONST 1 (42)
3 STORE_DEREF 0 (a)
3 6 LOAD_CLOSURE 0 (a)
9 BUILD_TUPLE 1
12 LOAD_CONST 2 (<code object y at 0x100d139b0, file
"<stdin>", line 3>)
15 MAKE_CLOSURE 0
18 STORE_FAST 0 (y)
5 21 LOAD_FAST 0 (y)
24 CALL_FUNCTION 0
27 RETURN_VALUE
10.3 有序列表和二分查找
当处理大的列表时,有序列表比非有序列表有一定优势。例如,有序列表的元素获取时间为O(log n)。
但是有很多次,我看到有人试图实现自己的数据结构或算法去处理这样的场景。这是个糟糕的想法,没必要花时间在已经解决的问题上。
首先,Python提供了一个bisect模块,其包含了二分查找算法。非常容易使用,如示例10.5所示。
示例 10.5 bisect的用法
>>> farm = sorted(['haystack', 'needle', 'cow', 'pig'])
>>> bisect.bisect(farm, 'needle')
3
>>> bisect.bisect_left(farm, 'needle')
2
>>> bisect.bisect(farm, 'chicken')
0
>>> bisect.bisect_left(farm, 'chicken')
0
>>> bisect.bisect(farm, 'eggs')
1
>>> bisect.bisect_left(farm, 'eggs')
1
bisect函数能够在保证列表有序的情况下给出要插入的新元素的索引位置。
如果想要立即插入,可以使用bisect模块提供的insort_left``和``insort_right函数,如示例10.6所示。
示例 10.6 bisect.insort的用法
>>> farm
['cow', 'haystack', 'needle', 'pig']
>>> bisect.insort(farm, 'eggs')
>>> farm
['cow', 'eggs', 'haystack', 'needle', 'pig']
>>> bisect.insort(farm, 'turkey')
>>> farm
['cow', 'eggs', 'haystack', 'needle', 'pig', 'turkey']
可以使用这些函数创建一个一直有序的列表,如示例10.7所示。
示例 10.7 SortedList的实现
import bisect
class SortedList(list):
def __init__(self, iterable):
super(SortedList, self).__init__(sorted(iterable))
def insort(self, item):
bisect.insort(self, item)
def index(self, value, start=None, stop=None):
place = bisect.bisect_left(self[start:stop], value)
if start:
place += start
end = stop or len(self)
if place < end and self[place] == value:
return place
raise ValueError("%s is not in list" % value)
显然,不应该用直接的append或extend函数来追加或扩展这个列表,否则列表将不再有序。
此外还有许多Python库实现了上面代码的各种不同版本,以及更多的数据类型,如二叉树和红黑树。Python包blist(https://pypi.python.org/pypi/blist)和bintree(https://pypi.python.org/ pypi/bintrees/)就包含了用于这些目的的代码,不要开发和调试自己的版本。
10.4 namedtuple和slots
有时能创建只拥有一些固定属性的简单对象是非常有用的。一个简单的实现可能需要下面这几行代码:
class Point(object):
def __init__(self, x, y):
self.x = x
self.y = y
这肯定可以满足需求。但是,这种方法的缺点就是它创建了一个继承自object的类。在使用这个Point类时,需要实例化对象。
Python中这类对象的特性之一就是会存储所有的属性在一个字典内,这个字典本身被存在__dict__属性中:
>>> p = Point(1, 2)
>>> p.__dict__
{'y': 2, 'x': 1}
>>> p.z = 42
>>> p.z
42
>>> p.__dict__
{'y': 2, 'x': 1, 'z': 42}
好处是可以给一个对象添加任意多的属性。缺点是通过字典来存储这些属性内存方面的开销很大,要存储对象、键、值索引等。创建慢,操作也慢,并且伴随着高内存开销。看看下面这个简单的类。
[source, python]
class Foobar(object):
def __init__(self, x):
self.x = x
我们通过Python包memory_profiler来检测一下内存使用情况:
$ python -m memory_profiler object.py
Filename: object.py
Line # Mem usage Increment Line Contents
==
5 @profile
6 9.879 MB 0.000 MB def main():
7 50.289 MB 0.410 MB f = [Foobar(42) for i in range(100000)]
因此,使用对象但不使用这个默认行为的方式是存在的。Python中的类可以定义一个__slots__属性,用来指定该类的实例可用的属性。其作用在于可以将对象属性存储在一个list对象中,从而避免分配整个字典对象。如果浏览一下CPython的源代码并且看看Objects/typeobject.c文件,就很容易理解这里Python做了什么。下面给出了相关处理函数的部分代码:
static PyObject *
type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds)
{
[...]
/* Check for a __slots__ sequence variable in dict, and count it */
slots = _PyDict_GetItemId(dict, &PyId___slots__);
nslots = 0;
if (slots == NULL) {
if (may_add_dict)
add_dict++;
if (may_add_weak)
add_weak++;
}
else {
/* Have slots */
/* Make it into a tuple */
if (PyUnicode_Check(slots))
slots = PyTuple_Pack(1, slots);
else
slots = PySequence_Tuple(slots);
/* Are slots allowed? */
nslots = PyTuple_GET_SIZE(slots);
if (nslots > 0 && base->tp_itemsize != 0) {
PyErr_Format(PyExc_TypeError,
"nonempty __slots__ "
"not supported for subtype of '%s'",
base->tp_name);
goto error;
}
/* Copy slots into a list, mangle names and sort them.
Sorted names are needed for __class__ assignment.
Convert them back to tuple at the end.a
*/
newslots = PyList_New(nslots - add_dict - add_weak);
if (newslots == NULL)
goto error;
if (PyList_Sort(newslots) == -1) {
Py_DECREF(newslots);
goto error;
}
slots = PyList_AsTuple(newslots);
Py_DECREF(newslots);
if (slots == NULL)
goto error;
}
/* Allocate the type object */
type = (PyTypeObject *)metatype->tp_alloc(metatype, nslots);
[...]
/* Keep name and slots alive in the extended type object */
et = (PyHeapTypeObject *)type;
Py_INCREF(name);
et->ht_name = name;
et->ht_slots = slots;
slots = NULL;
[...]
return (PyObject *)type;
正如你所看到的,Python将__slots__的内容转化为一个元组,构造一个list并排序,然后再转换回元组并存储在类中。这样Python就可以快速地抽取值,而无需分配和使用整个字典。
声明这样一个类并不难,如示例10.8所示。
示例 10.8 使用__slots__的类声明
class Foobar(object):
__slots__ = 'x'
def __init__(self, x):
self.x = x
可以很容易地通过memory_profiler比较两种方法的内存占用情况,如示例10.9所示。
示例 10.9 使用了__slots__的对象的内存占用
% python -m memory_profiler slots.py
Filename: slots.py
Line # Mem usage Increment Line Contents
==
7 @profile
8 9.879 MB 0.000 MB def main():
9 21.609 MB 11.730 MB f = [Foobar(42) for i in range(100000)]
看似通过使用Python类的__slots__属性可以将内存使用率提升一倍,这意味着在创建大量的简单对象时使用__slots__属性是有效且高效的选择。但这项技术不应该被滥用于静态类型或其他类似场合,那不是Python程序的精神所在。
由于属性列表的固定性,因此不难想象类中列出的属性总是有一个值,且类中的字段总是按某种方式排过序的。
这也正是collection模块中namedtuple类的本质。它允许动态创建一个继承自tuple的类,因而有着共有的特征,如不可改变,条目数固定。namedtuple所提供的能力在于可以通过命名属性获取元组的元素而不是通过索引,如示例10.10所示。
示例 10.10 用namedtuple声明类
>>> import collections
>>> Foobar = collections.namedtuple('Foobar', ['x'])
>>> Foobar = collections.namedtuple('Foobar', ['x', 'y'])
>>> Foobar(42, 43)
Foobar(x=42, y=43)
>>> Foobar(42, 43).x
42
>>> Foobar(42, 43).x = 44
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>> Foobar(42, 43).z = 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Foobar' object has no attribute 'z'
>>> list(Foobar(42, 43))
[42, 43]
因为这样的类是继承自tuple的,因此可以很容易将其转换为list。但不能添加或修改这个类的对象的任何属性,因为它继承自tuple同时也因为__slots__的值被设置成了一个空元组以避免创建__dict__。基于collections.namedtuple构建的类的内存占用如示例10.11所示。
示例 10.11 基于collections.namedtuple构建的类的内存占用
% python -m memory_profiler namedtuple.py
Filename: namedtuple.py
Line # Mem usage Increment Line Contents
==
4 @profile
5 9.895 MB 0.000 MB def main():
6 23.184 MB 13.289 MB f = [Foobar(42) for i in range(100000)]
因此,namedtuple类工厂的使用同使用带有__slots__的对象一样有效,唯一的不同在于它同tuple类兼容。因此,它可以作为参数传入任何期望iterable类型参数的原生Python函数。同时它也享有已有的针对元组的优化。1
namedtuple还提供了一些额外的方法,尽管以下划线作为前缀,但实际上是可以公开访问的。_asdict可以将namedtuple转换为字典实例,_make可以转换已有的iterable对象为namedtuple,_replace替换某些字段后返回一个该对象的新实例。
10.5 memoization
memoization是指通过缓存函数返回结果来加速函数调用的一种技术。仅当函数是纯函数时结果才可以被缓存,也就是说函数不能有任何副作用或输出,也不能依赖任何全局状态。
正弦函数sin就是一个可以用来memoize化的函数,如示例10.12所示。
示例 10.12 基本的 memoization 技术
>>> import math
>>> _SIN_MEMOIZED_VALUES = {}
>>> def memoized_sin(x):
... if x not in _SIN_MEMOIZED_VALUES:
... _SIN_MEMOIZED_VALUES[x] = math.sin(x)
... return _SIN_MEMOIZED_VALUES[x]
>>> memoized_sin(1)
0.84 14709848078965
>>> _SIN_MEMOIZED_VALUES
{1: 0.8414709848078965}
>>> memoized_sin(2)
0.90 92974268256817
>>> memoized_sin(2)
0.90 92974268256817
>>> _SIN_MEMOIZED_VALUES
{1: 0.8414709848078965, 2: 0.9092974268256817}
>>> memoized_sin(1)
0.84 14709848078965
>>> _SIN_MEMOIZED_VALUES
{1: 0.8414709848078965, 2: 0.9092974268256817}
在第一次用参数调用memoized_sin时还没有值存在_SIN_MEMOIZED_VALUES中,因此需要计算这个值并将其存储在字典中。之后,如果再次以相同的参数值调用这个函数,结果将从这个字典中获取而不需要重新计算。尽管sin函数本身计算非常快,但是这对涉及更复杂计算的高级函数并不成立。
如果已经了解了装饰器(参见7.1节),肯定可以想到装饰器用在这里正合适,这么想完全正确。PyPI包含了一些通过装饰器实现的memoization,从简单场景到最复杂且最完备的情况都有覆盖。
从Python 3.3开始,functools模块提供了一个LRU(Least-Recently-Used)缓存装饰器。它提供了同此处描述的memoization完全一样的功能,其优势在于限定了缓存的条目数,当缓存的条目数达到最大时会移除最近最少使用的条目。
该模块还提供了对缓存命中、缺失等的统计。在我看来,对于缓存来说它们都是必备的实现。如果不能对缓存的使用和效用进行衡量,那么使用memoization是毫无意义的。
示例10.13是将上面的memoized_sin函数的示例用functools.lru_cache改写后的。
示例 10.13 使用functools.lru_cache
>>> import functools
>>> import math
>>> @functools.lru_cache(maxsize=2)
... def memoized_sin(x):
... return math.sin(x)
...
>>> memoized_sin(2)
0.90 92974268256817
>>> memoized_sin.cache_info()
CacheInfo(hits=0, misses=1, maxsize=2, currsize=1)
>>> memoized_sin(2)
0.90 92974268256817
>>> memoized_sin.cache_info()
CacheInfo(hits=1, misses=1, maxsize=2, currsize=1)
>>> memoized_sin(3)
0.14 11200080598672
>>> memoized_sin.cache_info()
CacheInfo(hits=1, misses=2, maxsize=2, currsize=2)
>>> memoized_sin(4)
-0.7568024953079282
>>> memoized_sin.cache_info()
CacheInfo(hits=1, misses=3, maxsize=2, currsize=2)
>>> memoized_sin(3)
0.14 11200080598672
>>> memoized_sin.cache_info()
CacheInfo(hits=2, misses=3, maxsize=2, currsize=2)
>>> memoized_sin.cache_clear()
>>> memoized_sin.cache_info()
CacheInfo(hits=0, misses=0, maxsize=2, currsize=0)
10.6 PyPy
PyPy(http://pypy.org/)是符合标准的Python语言的一个高效实现。实际上,现在最权威的Python实现CPython(这么叫是因为它是用C语言写的)有可能非常慢。PyPy的目的是要用Python写一个Python解释器。随着时间的推移,现在在用RPython编写,RPython是Python语言的一个限制性子集。
RPython对Python语言的限制的主要方式是,要求变量类型能够在编译时推断。RPython的代码会被翻译成C代码从而构建解释器,当然RPython也可以用来实现其他语言而不只是Python。
除了技术上的挑战,PyPy吸引人的地方在于目前它是CPython的更快的替代品。PyPy包含内置的JIT(Just-In-Time)编译器。简单来说,就是通过利用解释的灵活性对编译后的代码的速度进行整合从而运行得更快。
到底多快呢?看情况,但对于纯算法代码会更快一点。对于普通的代码,大多数情况下PyPy声称可以达到3倍的速度。尽管如此,也不要期望太高,PyPy同样有一些CPython的局限性,如可恶的GIL(Global Interpreter Lock,全局解释器锁)。
尽管PyPy并非一种严格意义上的优化技术,但是将其作为一种支持的Python实现还是不错的。达到这一目标只需要与支持的其他Python版本保持同样的编码策略,基本上,只需要保证像在CPython上一样在PyPy上测试你的软件。tox(参见6.7节)支持使用PyPy构造虚拟环境,就像CPython 2和CPython 3一样,所以实现起来还是相当简单的。
如果想让你的软件运行在PyPy上,最好是在项目的初期就开始,以避免在后期支持时可能带来的大量工作。
注意
Hy项目从项目初期就成功地采用了这一策略。Hy一直支持PyPy和其他所有Python版本,且没有任何问题。但是,我们却没能在所有OpenStack项目中这样做,我们正在被一些由于各种原因不能在PyPy上运行的代码路径和依赖所阻碍,因为它们没有在项目的早期进行充分地测试。
PyPy与Python 2.7兼容,并且它的JIT编译器可以运行在32位和64位x86和ARM体系结构上,并且可以运行在不同的操作系统上(Linux、Windows、Mac OS X等)。其对Python 3的支持正在开发中。
10.7 通过缓冲区协议实现零复制
通常程序都需要处理大量的大型字节格式的数组格式的数据。一旦进行复制、分片和修改等操作,以字符串的方式处理如此大量的数据是非常低效的。
设想一个读取二进制数据的大文件的小程序,并将其部分复制到另一个文件中。这里将使用memory_profiler(https://pypi.python.org/pypi/memory_profiler)衡量内存的使用情况,memory_profiler是一个不错的Python包,可以用来逐行查看程序的内存使用情况。
@profile
def read_random():
with open("/dev/urandom", "rb") as source:
content = source.read(1024 * 10000)
content_to_write = content[1024:]
print("Content length: %d, content to write length %d" %
(len(content), len(content_to_write)))
with open("/dev/null", "wb") as target:
target.write(content_to_write)
if __name__ == '__main__':
read_random()
接下来使用memory_profiler运行上面的程序:
$ python -m memory_profiler memoryview/copy.py
Content length: 10240000, content to write length 10238976
Filename: memoryview/copy.py
Mem usage Increment Line Contents
======================================
@profile
9.883 MB 0.000 MB def read_random():
9.887 MB 0.004 MB with open("/dev/urandom", "rb") as source:
19.65 6 MB 9.770 MB content = source.read(1024 * 10000) ①
29.42 2 MB 9.766 MB content_to_write = content[1024:] ②
29.42 2 MB 0.000 MB print("Content length: %d, content to write length %d" %
29.43 4 MB 0.012 MB (len(content), len(content_to_write)))
29.43 4 MB 0.000 MB with open("/dev/null", "wb") as target:
29.43 4 MB 0.000 MB target.write(content_to_write)
① 从/dev/urandom读取10 MB的数据且没有太多其他操作。Python为此要分配约10 MB的内存以将该数据存储为字符串。
② 复制整块的数据但是减去开始的1 KB,因为我们不想将最开始的1 KB数据写入目标文件中。
这个例子中有意思的地方在于,正如你看到的,内存的使用在构造变量content_to_write时增长到了约10 MB。事实上,分片操作符会复制全部的内容,减去开始的1 KB后写入一个新的字符串对象中。
当处理大量数据时,针对大的字节数组执行此类操作可能会变成一场灾难。如果写过C语言代码,应该知道使用memcpy()的开销是巨大的,无论是内存的占用还是对通常意义上的性能来说,复制内存都是缓慢的。
但是作为C程序员,你应该也知道字符串是字符的数组,完全可以通过基本的指针算法的使用查看数组的某一部分但不复制数组2。
在Python中可以使用实现了缓冲区协议的对象。PEP 3118(https://www.python.org/ dev/peps/pep-3118/)定义了缓冲区协议,其中解释了用于为不同数据类型(如字符串类型)提供该协议的C API。
对于实现了该协议的对象,可以使用其memoryview类的构建函数去构造一个新的memoryview对象,它会引用原始的对象内存。
示例如下:
>>> s = b"abcdefgh"
>>> view = memoryview(s)
>>> view[1]
98 ①
>>> limited = view[1:3]
<memory at 0x7fca18b8d460>
>>> bytes(view[1:3])
b'bc'
① 字母b的ASCII码。
在这个例子中,会利用memoryview对象的切片运算符本身返回一个memoryview对象的事实。这意味着它不会复制任何数据,而只是引用了原始数据的一个特定分片,如图10-2所示。

图10-2 对memoryview对象使用切片
出于这一点考虑,我们可以重写这个程序,这次对数据的引用将使用memoryview对象。
@profile
def read_random():
with open("/dev/urandom", "rb") as source:
content = source.read(1024 * 10000)
content_to_write = memoryview(content)[1024:]
print("Content length: %d, content to write length %d" %
(len(content), len(content_to_write)))
with open("/dev/null", "wb") as target:
target.write(content_to_write)
if __name__ == '__main__':
read_random()
这个程序只使用了第一个版本约一半的内存:
$ python -m memory_profiler memoryview/copy-memoryview.py
Content length: 10240000, content to write length 10238976
Filename: memoryview/copy-memoryview.py
Mem usage Increment Line Contents
======================================
@profile
9.887 MB 0.000 MB def read_random():
9.891 MB 0.004 MB with open("/dev/urandom", "rb") as source:
19.66 0 MB 9.770 MB content = source.read(1024 * 10000) ①
19.66 0 MB 0.000 MB content_to_write = memoryview(content)[1024:] ②
19.66 0 MB 0.000 MB print("Content length: %d, content to write length %d" %
19.67 2 MB 0.012 MB (len(content), len(content_to_write)))
19.67 2 MB 0.000 MB with open("/dev/null", "wb") as target:
19.67 2 MB 0.000 MB target.write(content_to_write)
① 从/dev/urandom读取10 MB的数据且没有太多其他操作。Python为此要分配约10 MB的内存以将该数据存储为字符串。
② 直接引用整块数据减去开始的1 KB的数据,因为我们不想将最开始的1 KB数据写入目标文件中。没有复制意味着没有额外的内存开销。
当处理socket(套接字)时这类技巧尤其有用。如你所知,当数据通过socket发送时,它不会在一次调用中发送所有数据。下面是一个简单的实现:
import socket
s = socket.socket(…)
s.connect(…)
data = b"a" * (1024 * 100000) ①
while data:
sent = s.send(data)
data = data[sent:] ②
① 构建一个字节对象,包含1亿多个字母a。
② 移除前面已经发送的字节。
显然,通过这种机制,需要不断地复制数据,直到socket将所有数据发送完毕。而使用memoryview可以实现同样的功能而无需复制数据,也就是零复制。
import socket
s = socket.socket(…)
s.connect(…)
data = b"a" * (1024 * 100000) ①
mv = memoryview(data)
while mv:
sent = s.send(mv)
mv = mv[sent:] ②
① 构建一个字节对象,包含1亿多个字母a。
② 构建一个新的memoryview对象,指向剩余将要发送的数据。
这段程序不会复制任何内容,不会使用额外的内存,也就是说只是像开始时那样要给变量分配100 MB内存。
前面已经看到了将memoryview对象用于高效地写数据的场景,同样的方法也可以用在读数据时。Python中的大部分I/O操作知道如何处理实现了缓冲区协议的对象。它们不仅可以从这类对象中读,还可以向其中写。在这个例子中不需要memoryview对象,只需要让I/O函数写入预分配的对象。
>>> ba = bytearray(8)
>>> ba
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00')
>>> with open("/dev/urandom", "rb") as source:
... source.readinto(ba)
...
8
>>> ba
bytearray(b'`m.z\x8d\x0fp\xa1')
利用这一技术,很容易预先分配一个缓冲区(就像在C语言中一样,以减少对malloc()的调用次数)并在需要时进行填充。使用memoryview甚至可以在内存区域的任何点放入数据。
>>> ba = bytearray(8)
>>> ba_at_4 = memoryview(ba)[4:] ①
>>> with open("/dev/urandom", "rb") as source:
... source.readinto(ba_at_4) ②
...
4
>>> ba
bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2')
① 引用bytearray,从其偏移索引4到其结尾。
② 将/dev/urandom的内容写入bytearray中从偏移索引4到结尾的位置,精确且高效地只读了4字节。
提示
array模块中的对象以及struct模块中的函数都能正确地处理缓冲区协议,因此在需要零复制时都能高效完成。
10.8 Victor Stinner访谈
Victor是资深的Python黑客,许多Python模块的核心贡献者和作者。他最近撰写了PEP 454(https://www.python.org/dev/peps/pep-0454/),其中提出了一个新的tracemalloc模块,用于在Python中跟踪内存块的分配,并写了一个简单的AST优化器。

优化Python代码的一个初步策略是什么?
针对Python的策略其实和在其他语言中一样。首先需要定义良好的用例,以得到一个稳定可重现的基准。没有可靠基准的情况下尝试不同的优化方法很可能导致时间的浪费和不成熟的优化。无用的优化可能使代码更糟,更不易懂,甚至更慢。有用的优化必须至少让程序加速5%。
如果发现代码的某个部分比较“慢”,那么需要针对这段代码设计一个基准测试。对于较短的函数的基准测试通常称为“微基准测试”。通过微基准测试衡量优化效果时,速度提升应该至少达到20%或者25%。
在不同的计算机、不同的操作系统甚至不同的编译器上运行同一个基准测试会很有意思。例如,函数realloc()的性能在Linux和Windows上是不同的。有时候针对不同的平台的代码实现也可能会不同,尽管这是应该尽量避免的。
关于Python代码的性能分析和优化有许多不同的工具,你最喜欢的是哪个?
Python 3.3提供了一个新的time.perf_counter()函数,用来为基准测试衡量已耗用时间。它是最好的解决方案。
测试应该运行不止一次,最少3次,5次基本够了。重复测试可以填充磁盘缓存和CPU缓存。我倾向于保证最小时间,其他一些开发人员则倾向于使用几何平均值。
对于微基准测试,timeit模块简单易用且能很快得到结果,但使用默认的参数结果并不稳定。应该手工重复测试,以得到稳定的结果。
优化是非常花时间的,所以最好能专注那些耗费最多CPU的函数。为了找到这些函数,Python提供了cProfile和用来记录每个函数时间消耗的profile模块。
能够改进性能的最有意思的Python技巧是什么?
应该尽可能重用标准库。它们经过良好的测试并且通常都很高效。Python内置的类型都是用C实现的,所以性能都很好。应使用正确的容器以得到最佳的性能,Python提供许多不同的容器,如dict、list、deque、set等。
也有一些用来优化Python的非常手段,但是应该避免使用它们,因为这一点点的速度提升会丧失代码的可读性。
Python之禅(PEP 20)说:“应该有一种——最好只有一种——显而易见的方式去实现。”实际上,写Python代码有很多不同的方式,且性能各异,所以只能信赖针对特定用例的基准测试。
在哪些领域中Python的性能很差?哪些领域中应该小心使用?
通常,在开发新的应用程序时我不太担心性能问题。不成熟的优化是所有问题之源。当找到了缓慢的函数时,应该修改算法。如果算法和容器都是经过仔细挑选的,那么可以考虑用C语言重写短函数以获得更好的性能。
CPython的一个众所周知的性能瓶颈是全局解释器锁(Global Interpreter Lock,GIL)。两个线程不能在同时执行Python字节码。然而,这个限制只在两个线程执行纯Python代码时有影响。如果大多数处理时间花在函数调用上,并且这些函数释放了GIL,那么GIL并非性能瓶颈。例如,大多数I/O函数都会释放GIL。
multiprocessing模块可以很容易地用来绕过GIL。另一个稍微复杂的方式是编写异步代码。Twisted、Tornado和Tulip都是利用了这一技术的面向网络的库。
你见过最多的导致性能差的“错误”是什么?
没有很好地理解Python就可能写出效率低的代码。例如,我见过在不需要复制时错误地使用了copy.deepcopy()。
另一个性能杀手是低效的数据结构。少于100个元素的情况下,容器类型对性能没有影响。对于更多元素的场景,应该了解每个操作(add、get、delete)的复杂性和影响。
1例如,小于PyTuple_MAXSAVESIZE(默认是20)的元组在CPython中会使用更快的内存分配器。
2假设整个字符串在一个连续的内存区域。
第 11 章 扩展与架构
如今所有的炒作都是有关灵活性和可扩展性的,因此我假设这是你的开发流程中早晚都要考虑的东西。这个问题的很多方面并非Python本身特有的,许多知识和其主要实现(即CPython)有关。
一个应用程序的可扩展性、并发性和并行性在很大程度上取决于它的初始架构和设计的选择。如你所见,有一些范例(如多线程)在Python中被误用,而其他一些技术(如面向服务架构)可以产生更好的效果。
11.1 多线程笔记
什么是多线程?它是在一个Python进程中将代码运行在不同的处理器上1的能力。这意味着代码的不同部分可以并行运行。
为什么需要多线程呢?最常见的场景如下。
(1)需要运行后台任务但不希望停止主线程的执行。例如,在图形用户界面场景下,主循环需要等待对事件的响应。
(2)需要将工作负载分布在几个CPU上。
所以,刚开始要解决这些问题的话,多线程似乎是扩展和并行化应用程序的好办法。当需要分散工作负载时,只需要为新的请求启动一个新线程而不用一次只能处理一个。
太棒了,搞定!让我们继续。
不,很抱歉!首先,如果你已经在Python领域中混了很久,那么你肯定遇到过GIL这个词,而且知道它多么讨厌。GIL是指Python全局解释锁(Global Interpreter Lock),当CPython2每次要执行字节码时都要先申请这个锁。但是,这意味着,如果试图通过多线程扩展应用程序,将总是被这个全局锁所限制。
所以尽管多线程看上去是一个理想的解决方案,但实际上我看到的大多数应用程序都很难获取到150%的CPU利用率,也就是使用1.5个核(core)。考虑到现如今计算节点通常至少有2个或4个核,这是很没面子的。这都归咎于GIL。
目前没有任何工作试图从CPython中移除GIL,因为考虑到实现和维护的难度大家都觉得不值得这么做。
然而,CPython只是Python的可用实现之一3。例如,Jython(http://www.jython.org/)就没有全局解释锁(http://www.jython.org/jythonbook/en/1.0/Concurrency.html),这意味着它可以有效地并行运行多个线程。遗憾的是,这些项目相对于CPython都非常滞后,所以实际上并不能作为目标平台来使用。
注意
PyPy是另一个Python实现,但是是使用Python开发的(参见10.6节)。PyPy也有GIL,但目前有一个非常有意思的工作正在试图用基于STM(Software Transactional Memory,http://www.jython.org/jythonbook/en/1.0/Concurrency.html)的实现替换它。这对于未来构建和运行多线程软件是非常值得期待的变化。某些处理器正在试图提供硬件支持,而Linux内核的开发者也在寻求废弃内核锁的方法。这些都是积极的信号。
没有好的方案是不是我们又回到了最初的场景呢?并非如此,至少还有以下两种方案可用。
(1)如果需要运行后台任务,最容易的方式是基于事件循环构建应用程序。许多不同的Python模块都提供这一机制,甚至有一个标准库中的模块——asyncore,它是PEP 3156(https://www.python.org/dev/peps/pep-3156/)中标准化这一功能的成果。有些框架就是基于这一概念构建的,如Twisted(http://twistedmatrix.com/trac/)。最高级的框架应该提供基于信号量、计时器和文件描述符活动来访问事件,我们将在11.3节中进行讨论。
(2)如果需要分散工作负载,使用多进程会更简单有效,参见11.2节。
对于我们这些开发人员、普通人来说,这意味着我们在使用多线程时要三思。我在rebuildd(http://julien.danjou.info/projects/rebuildd)中使用多线程来分发作业,rebuildd是我多年前写的一个做Debian构建(build)的守护进程。尽管用线程去控制每个构建作业很方便,但我很快便掉进了并发陷阱中。如果有机会再做一次的话,我会使用基于异步事件处理或者多进程的方式来做,也就不用再担心这个问题了。
处理好多线程是很难的。其复杂程度意味着与其他方式相比它是bug的更大来源,而且考虑到通常能够获得的好处很少,所以最好不要在多线程上浪费太多精力。
11.2 多进程与多线程
正如前面解释的,因为GIL的问题,多线程并非好的可扩展性方案。更好的方案是Python中提供的multiprocessing包。它提供了类似multithreading模块中的接口,区别在于它会启动一个新的进程(通过fork(2))而不是一个新的系统线程。
下面是一个简单的例子,计算100万个随机整数的和8次,同时将其分散到8个线程中。
使用多线程的worker
import random
import threading
results = []
def compute():
results.append(sum(
[random.randint(1, 100) for i in range(1000000)]))
workers = [threading.Thread(target=compute) for x in range(8)]
for worker in workers:
worker.start()
for worker in workers:
worker.join()
print("Results: %s" % results)
程序的运行结果如示例11.1所示。
示例 11.1 time python worker.py的运行结果
$ time python worker.py
Results: [50517927, 50496846, 50494093, 50503078, 50512047, 50482863, 50543387, 50511493]
python worker.py 13.04s user 2.11s system 129% cpu 11.662 total
这个程序运行在四核的CPU上,这意味着Python最多可以利用400%的CPU能力。但显然它做不到,即使并行运行8个进程,它仍然卡在了129%,这只是硬件能力的32%。
现在,我们使用multiprocessing重写一下如示例11.2所示。对于这种简单的例子来说,实现是相当直接的。
示例 11.2 使用multiprocessing的 worker
import multiprocessing
import random
def compute(n):
return sum(
[random.randint(1, 100) for i in range(1000000)])
Start 8 workers
pool = multiprocessing.Pool(8)
print("Results: %s" % pool.map(compute, range(8)))
在同样的条件下运行这个程序,结果如示例11.3所示。
示例 11.3 time python worker.py的运行结果
$ time python workermp.py
Results: [50495989, 50566997, 50474532, 50531418, 50522470, 50488087, 50498016, 50537899]
python workermp.py 16.53s user 0.12s system 363% cpu 4.581 total
执行时间减少到60%,这次程序可以消耗363%的CPU能力,超过CPU能力的90%。
此外,multiprocessing模块不仅可以有效地将负载分散到多个本地处理器上,而且可以通过它的multiprocessing.managers对象在网络中分散负载。它还提供了双向传输,以使进程间可以彼此交换信息。
每次考虑在一定的时间内并行处理一些工作时,最好是依靠多进程创建(fork)多个作业,以便能够在多个CPU核之间分散负载。
11.3 异步和事件驱动架构
事件驱动编程会一次监听不同的事件,对于组织程序流程是很好的解决方案,并不需要使用多线程的方法。
考虑这样一个程序,它想要监听一个套接字的连接,并处理收到的连接。有以下三种方式可以解决这个问题。
(1)每次有新连接建立时就创建(fork)一个新进程,需要用到multiprocessing这样的模块。
(2)每次有新连接建立时创建一个新线程,需要用到threading这样的模块。
(3)将这个新连接加入事件循环(event loop)中,并在事件发生时对其作出响应。
(现在)众所周知的是,使用事件驱动方法对于监听数百个事件源的场景的效果要好于为每个事件创建一个线程的方式4。这并不意味着二者互不兼容,这只是表明可以通过事件驱动机制摆脱多线程。
我们已经在前面讨论了前面两种选择的优劣,本节只讨论事件驱动机制。
事件驱动架构背后的技术是事件循环的建立。程序调用一个函数,它会一直阻塞直到收到事件。其核心思想是令程序在等待输入输出完成前保持忙碌状态,最基本的事件通常类似于“我有数据就绪可被读取”或者“我可以无阻塞地写入数据”。
在Unix中,用于构建这种事件循环的标准函数是系统调用select(2)或者poll(2)。它们会对几个文件描述符进行监听,并在其中之一准备好读或写时做出响应。
在Python中,这些系统调用通过select模块开放了出来。很容易用它们构造一个事件驱动系统,尽管这显得有些乏味。使用select的基本示例如示例11.4所示。
示例 11.4 使用select的基本示例
import select
import socket
server = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
Never block on read/write operations
server.setblocking(0)
Bind the socket to the port
server.bind(('localhost', 10000))
server.listen(8)
while True:
select() returns 3 arrays containing the object (sockets, files…) that
are ready to be read, written to or raised an error
inputs, outputs, excepts = select.select(
[server], [], [server])
if server in inputs:
connection, client_address = server.accept()
connection.send("hello!\n")
不久前一个针对这些底层接口的包装器被加入到了Python中,名为asyncore。它还没有被广泛使用,而且演进也不太多。
或者,还有很多其他框架通过更为集成化的方式提供了这类功能,如Twisted(https://twistedmatrix.com/trac/)或者Tornado(http://www.tornadoweb.org/en/stable/)。Twisted多年来在这方面已经成为了事实上的标准。也有一些提供了Python接口的C语言库(如libevent、libev或者libuv)也提供了高效的事件循环。
尽管它们都能解决同样的问题,但不利的一面在于现在选择太多了,而且它们之间大多数不能互操作。而且,它们大多基于回调机制,这意味着在阅读代码时,程序的流程不是很清晰。
gevent(http://www.gevent.org/)或者Greenlet(http://greenlet.readthedocs.org/en/latest/)怎么样呢?它们没有使用回调,但实现的细节很吓人,而且包括一些CPython在x86上的特有的代码以及对标准函数的monkey补丁。如果要长期使用和维护的话实际并非好的选择。
最近,Guido Van Rossum开始致力于一个代号为tulip的解决方案,其记录在PEP 3156中。5这个包的目标就是提供一个标准的事件循环接口。将来,所有的框架和库都将与这个接口兼容,而且将实现互操作。
tulip已经被重命名并被并入了Python 3.4的asyncio包中。如果不打算依赖Python 3.4的话,也可以通过PyPI(https://pypi.python.org/pypi/asyncio)上提供的版本装在Python 3.3上,只需通过运行pip install asyncio即可安装。Victor Stinner已经开始进行移植并将tulip命名为trollius(https://pypi.python.org/pypi/trollius),目标是令其可以兼容Python 2.6及其后续版本。
现在你已经拿到了所有的牌,你肯定会想:那我到底该用什么在事件驱动的应用中构建一个事件循环呢?
在当前的Python开发中,这个问题很难回答。这门语言仍然在转换阶段。截止到本书写作时,还没有什么应用使用了asyncio模块。这意味着用了它很可能面临巨大的挑战。
下面是目前我能给出的一些建议。
如示例11.5所示,pyev的接口是很容易掌握的。通过对libev的使用,它通不但支持用于得Io对象,而且支持对子进程的跟踪,计时器、信号量和空闲时的事件回调。libev还可以自动利用polling的最好的接口,如Linux上的epoll(2)或者BSD上的kqueue(2)。
示例 11.5 pyev示例
import pyev
import socket
server = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
Never block on read/write operations
server.setblocking(0)
Bind the socket to the port
server.bind(('localhost', 10000))
server.listen(8)
def server_activity(watcher, revents):
connection, client_address = server.accept()
connection.send("hello!\n")
connection.close()
loop = pyev.default_loop()
watcher = pyev.Io(server, pyev.EV_READ, loop, server_activity)
watcher.start()
loop.start()
11.4 面向服务架构
考虑到前面阐述的问题和解决方案,Python在解决大型复杂应用的可扩展性方面的问题似乎难以规避。然而,Python在实现面向服务架构(Service-Oriented Architecture,SOA)方面的表现是非常优秀的。如果不熟悉这方面的话,线上有大量相关的文档和评论。
SOA是OpenStack所有组件都在使用的架构。组件通过HTTP REST和外部客户端(终端用户)进行通信,并提供一个可支持多个连接协议的抽象RPC机制,最常用的就是AMQP。
在你自己的场景中,模块之间沟通渠道的选择关键是要明确将要和谁进行通信。
当需要暴露API给外界时,目前最好的选择是HTTP,并且最好是无状态设计,例如REST(Representational state transfer)风格的架构。这类架构非常容易实现、扩展、部署和理解。
然而,当在内部暴露和使用API时,使用HTTP可能并非最好的协议。有大量针对应用程序的通信协议存在,对任何一个协议的详尽描述都需要一整本书的篇幅。
在Python中,有许多库可以用来构建RPC(Remote Procedure Call)系统。Kombu(http://kombu.readthedocs.org/en/latest/)与其他相比是最有意思的一个,因为它提供了一种基于很多后端的RPC机制。AMQ协议(http://www.amqp.org/)是主要的一个。但同样支持Redis(http://redis.io/)、MongoDB(https://www.mongodb.org/)、BeanStalk(http://kr.github.io/beanstalkd/)、Amazon SQS(http://aws.amazon.com/cn/sqs/)、CouchDB(http://couchdb.apache.org/)或者ZooKeeper(http://zookeeper.apache.org/)。
最后,使用这样松耦合架构的间接收益是巨大的。如果考虑让每个模块都提供并暴露API,那么可以运行多个守护进程暴露这些API。例如,Apache httpd将使用一个新的系统进程为每一个连接创建一个新worker,因而可以将连接分发到同一个计算节点的不同worker上。要做的只是需要有一个系统在worker之间负责分发工作,这个系统提供了相应的API。每一块都将是一个不同的Python进程,正如我们在上面看到的,在分发工作负载时这样做要比用多线程好。可以在每个计算节点上启动多个worker。尽管不必如此,但是在任何时候,能选择的话还是最好使用无状态的组件。
ZeroMQ(http://zeromq.org/)是个套接字库,可以作为并发框架使用。下面的例子实现了和前面例子中同样的worker,但是利用了ZeroMQ作为分发和通信的手段。
使用ZeroMQ的Worker
import multiprocessing
import random
import zmq
def compute():
return sum(
[random.randint(1, 100) for i in range(1000000)])
def worker():
context = zmq.Context()
work_receiver = context.socket(zmq.PULL)
work_receiver.connect("tcp://.0:5555")
result_sender = context.socket(zmq.PUSH)
result_sender.connect("tcp://.0:5556")
poller = zmq.Poller()
poller.register(work_receiver, zmq.POLLIN)
while True:
socks = dict(poller.poll())
if socks.get(work_receiver) == zmq.POLLIN:
obj = work_receiver.recv_pyobj()
result_sender.send_pyobj(obj())
context = zmq.Context()
Build a channel to send work to be done
work_sender = context.socket(zmq.PUSH)
work_sender.bind("tcp://.0:5555")
Build a channel to receive computed results
result_receiver = context.socket(zmq.PULL)
result_receiver.bind("tcp://.0:5556")
Start 8 workers
processes = []
for x in range(8):
p = multiprocessing.Process(target=worker)
p.start()
processes.append(p)
Start 8 jobs
for x in range(8):
work_sender.send_pyobj(compute)
Read 8 results
results = []
for x in range(8):
results.append(result_receiver.recv_pyobj())
Terminate all processes
for p in processes:
p.terminate()
print("Results: %s" % results)
如你所见,ZeroMQ提供了非常简单的方式来建立通信信道。我这里选用了TCP传输层,表明我们可以在网络中运行这个程序。应该注意的是,ZeroMQ也提供了利用Unix套接字的inproc信道。显然在这个例子中,基于ZeroMQ构造的通信协议是非常简单的,这是为了保持本书中的例子尽量清晰和简洁,不难想象基于其上建立一个更为复杂的通信层。
通过这种协议,不难想象通过网络消息总线(如ZeroMQ、AMQP等)构建一个完全分布式的应用程序间通信。
注意,类似HTTP、ZeroMQ或者AMQP这样的协议是同语言无关的。可以使用不同的语言和平台构建系统的各个部分。尽管我们都认同Python是一门优秀的语言,但其他团队也许有他们的偏好,或者对于问题的某个部分,其他语言可能是更好的选择。
最后,使用传输总线(transport bus)解耦应用是一个好的选择。它允许你建立同步和异步API,从而轻松地从一台计算机扩展到几千台。它不会将你限制在一种特定技术或语言上,现如今,没理由不将软件设计为分布式的,或者受任何一种语言的限制。
1或者如果多个CPU不存在的话,依次在某一个处理器上。
2用C语言开发的Python参考实现,也就是通常在shell中输入python之后运行的那个。
3尽管是使用最普遍的。
4关于这个的进一步阅读,可以看看C10K问题(http://www.kegel.com/c10k.html#nb.kqueue)。
5 Asynchronous IO Support Rebooted: “asyncio” Module, Guido van Rossum, 2012
第 12 章 RDBMS和ORM
RDBMS(Relational DataBase Management System,关系型数据库管理系统)和ORM(Object-Relational Mapping,对象关系映射)是一个不太讨好的题目,但是早晚都要处理。许多应用程序都需要存储某种形式的数据,而开发人员通常会选择使用关系型数据库。并且当开发人员选择使用关系型数据库时,它们通常会选择某种ORM库。
注意
本章将不再过多以Python中心,请多多包含。这里只讨论关系型数据库,但是这里涉及的很多内容同样适用于其他类型的数据库。
RDBMS是关于将数据以普通表单的形式存储的,而SQL是关于如何处理关系代数的。二者结合就可以对数据进行存储,同时回答关于数据的问题。然而,在面向对象程序中使用ORM有许多常见的困难,统称为对象关系阻抗失配(object-relational impedance mismatch,http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch)。根本在于,关系型数据库和面向对象程序对数据有不同的表示方式,彼此之间不能很好地映射:不管怎么做,将SQL表映射到Python的类都无法得到最优的结果。
ORM应该使数据的访问更加容易,这些工具会抽象创建查询、生成SQL的过程,无需自己处理。但是,你迟早会发现有些想做的数据库操作是这个抽象层不允许的。为了更有效地利用数据库,必须对SQL和RDBMS有深入了解以便能直接写自己的查询而无需每件事都依赖抽象层。
但这不是说要完全避免用ORM。ORM库可以帮助快速建立应用模型的原型,有些甚至能提供非常有用的工具,如模式(schema)的升降级。重要的是要了解它并不能完全替代RDBMS。许多开发人员试图在它们选择的语言中解决问题而不使用他们的模型API,通常他们给出的方案却并不优雅。
设想一个用来记录消息的SQL表。它有一个名为id的列作为主键和一个用来存放消息的字符串列。
CREATE TABLE message (
id serial PRIMARY KEY,
content text
);
我们希望收到消息时避免重复记录,所以一个典型的开发人员会这么写:
if message_table.select_by_id(message.id):
We already have the message, it's a duplicate, ignore and raise
raise DuplicateMessage(message)
else:
Insert the message
message_table.insert(message)
这在大多数情况下肯定可行,但它有些主要的弊端。
下面是一种更好的方式,但需要同RDBMS服务器合作而不是将其看作是单纯的存储。
try:
Insert the message
message_table.insert(message)
except UniqueViolationError:
Duplicate
raise DuplicateMessage(message)
这段代码以更有效的方式获得了同样的效果而且没有任何竞态条件(race condition)问题。这是一种非常简单的模式,而且和ORM完全没有冲突。这个问题在于开发人员将SQL数据库看作是单纯的存储并且在他们的控制器代码而不是他们的模型中重复他们已经(或者可能)在SQL中实现的约束。
将SQL后端看作是模型API是有效利用它的好方法。通过它本身的过程性语言编写简单的函数调用即可操作存储在RDBMS中的数据。
另外需要强调的一点是,ORM支持多种数据库后端。许多ORM库都将其作为一项功能来吹捧,但它实际上却是个陷阱,等待诱捕那些毫无防备的开发人员。没有任何ORM库能提供对所有RDBMS功能的抽象,所以你将不得不削减你的代码,只支持那些RDBMS最基本的功能(或者你容忍),而且将不能在不破坏抽象层的情况下使用任何RDBMS的高级功能。
有些在SQL中尚未标准化的简单得事情在使用ORM时处理起来会很痛苦,如处理时间戳操作。如果代码写成了与RDBMS无关的就更是如此。基于这一点,在选择适合你的应用程序的RDBMS时要更加仔细1。
减轻ORM库的这个问题的可行办法就是像2.3节描述的那样对它们进行隔离。这种方法不仅可以在需要时轻松将ORM库切换到另一个,而且可以在发现查询的使用效率不高的地方对其进行优化,越过大多数ORM引用。
建立这种隔离的一种简单办法是只在应用的某一个模块中使用ORM,如myapp.storage。这种方法应该只在高度抽象的层面输出数据操作的函数和方法。ORM应该只在这个模块中使用。在此之后,就可以加入任何提供了相同API的模块以替换myapp.storag。
最后,本节的目标不是要在是否使用ORM的辩论中做出选择,互联网上已经有大量的关于其优缺点的讨论。本节的重点在于帮你理解对SQL和RDBMS充分了解在应用程序中充分利用它们的潜力有多么重要。
Python中最常使用的(和有争议的事实标准)ORM库是SQLAlchemy(http://www. sqlalchemy.org/)。它支持大量的不同后端并且对大多数通用操作都提供了抽象。模式升级可以通过第三方库完成,如alembic(https://pypi.python.org/pypi/alembic)。
有些框架,如Django(https://www.djangoproject.com/),提供了它们自己的ORM库。如果选择使用一个框架,那么使用内置的库是明智的选择,通常(显然)与外部ORM库相比,内置的库与框架集成得更好。
警告
大多数框架依赖的MVC(Model View Controller)架构很容易被滥用。它们在它们的模型中直接实现ORM,但却没有足够的抽象,任何在视图(view)和控制器(controller)中使用的模型(model)都将被ORM直接使用。这是应该避免的。应该写包含ORM库的数据模型而不是组成它的数据模型,这能提供更好的可测试性和更好的隔离,也可以在需要时更容易地切换到另外一种存储技术上。
12.1 用Flask和PostgreSQL流化数据
前面一节讨论了掌握数据存储系统有多么重要。这里将展示如何用PostgreSQL的一个高级特性构造一个HTTP事件流系统。
这个小应用的目的是将消息存储在一个SQL表中并通过HTTP REST API提供对这些消息的访问。每个消息由一个整数类型的channel、一个字符串类型的source、一个字符串类型的content组成。创建这个表的代码非常简单,如示例12.1所示。
示例 12.1 创建message表
CREATE TABLE message (
id SERIAL PRIMARY KEY,
channel INTEGER NOT NULL,
source TEXT NOT NULL,
content TEXT NOT NULL
);
另外还需要做的是序列化这些消息,以便客户端能够实时对它们进行处理。这需要用到PostgreSQL的LISTEN(http://www.postgresql.org/docs/9.2/static/sql-listen.html)和NOTIFY(http://www.postgresql.org/docs/9.2/static/sql-notify.html)功能。这些功能可以监听来自函数的消息,这个函数由用户提供,由PostgreSQL执行,如示例12.2所示。
示例 12.2 notify_on_insert函数
CREATE OR REPLACE FUNCTION notify_on_insert() RETURNS trigger AS $$
BEGIN
PERFORM pg_notify('channel_' || NEW.channel,
CAST(row_to_json(NEW) AS TEXT));
RETURN NULL;
END;
$$ LANGUAGE plpgsql;
这会创建一个用pl/pgsql编写的触发器函数,pl/pgsql语言只有PostgreSQL可以理解。需要注意的是,这个函数也可以用其他语言编写,如Python本身,因为PostgreSQL是通过嵌入Python解释器支持pl/python语言的。
函数会执行一个对pg_notify的调用。这是实际发送通知的函数。第一个参数是一个代表一个信道的字符串,第二个参数是携带实际净荷(palyload)的字符串。这里根据channel列在行内的的值来动态定义信道。在这个例子中,净荷是以JSON格式表示的整个行。没错,PostgreSQL原生地就知道如何将行转换为JSON。
我们希望对message表的每一次INSERT操作都发送通知消息,所以需要在这样的事件上出发这个函数,如示例12.3所示。
示例 12.3 notify_on_insert的触发器
CREATE TRIGGER notify_on_message_insert AFTER INSERT ON message
FOR EACH ROW EXECUTE PROCEDURE notify_on_insert();
搞定。这个函数已经插入并且在message表每一次INSERT操作成功后都会被 执行。
可以通过psql中的LISTEN操作检查它是否工作正常:
$ psql
psql (9.3rc1)
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.
mydatabase=> LISTEN channel_1;
LISTEN
mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');
INSERT 0 1
Asynchronous notification "channel_1" with payload
"{"id":1,"channel":1,"source":"jd","content":"hello world"}"
received from server process with PID 26393.
一旦行被插入,通知就被发送,并且可以通过PostgreSQL客户端进行接收。现在需要做的就是构建Python应用对这个事件进行流化(stream),如示例12.4所示。
示例 12.4 在 Python 中接收通知
import psycopg2
import psycopg2.extensions
import select
conn = psycopg2.connect(database='mydatabase', user='myuser',
password='idkfa', host='localhost')
conn.set_isolation_level(
psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)
curs = conn.cursor()
curs.execute("LISTEN channel_1;")
while True:
select.select([conn], [], [])
conn.poll()
while conn.notifies:
notify = conn.notifies.pop()
print("Got NOTIFY:", notify.pid, notify.channel, notify.payload)
上面的代码利用库psycopg2连接PostgreSQL。也可以使用一个提供了抽象层的库,如SQLAlchemy,但是它们都无法提供对PostgreSQLLISTEN/NOTIFY功能的访问。通过访问底层数据库连接去执行代码也是可能的,但是在这个例子中没必要那么做,因为这里并不需要任何ORM库提供的其他功能。
这个程序会在channel_1上进行监听。一旦收到通知则将其打印到屏幕上。如果运行这个程序并向message表中插入一行,则会得到如下输出:
$ python3 listen.py
Got NOTIFY: 28797 channel_1
{"id":10,"channel":1,"source":"jd","content":"hello world"}
现在我们将使用Flask(http://flask.pocoo.org/),一个简单的HTTP微型框架,去构造应用程序。这里将使用由HTML52中定义的Server-Sent Events(http://www.w3.org/TR/2009/ WD-eventsource-20090423/)消息协议,如示例12.5所示。
示例 12.5 Flask 流化应用程序
import flask
import psycopg2
import psycopg2.extensions
import select
app = flask.Flask(__name__)
def stream_messages(channel):
conn = psycopg2.connect(database='mydatabase', user='mydatabase',
password='mydatabase', host='localhost')
conn.set_isolation_level(
psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT)
curs = conn.cursor()
curs.execute("LISTEN channel_%d;" % int(channel))
while True:
select.select([conn], [], [])
conn.poll()
while conn.notifies:
notify = conn.notifies.pop()
yield "data: " + notify.payload + "\n\n"
@app.route("/message/<channel>", methods=['GET'])
def get_messages(channel):
return flask.Response(stream_messages(channel),
mimetype='text/event-stream')
if __name__ == "__main__":
app.run()
这个应用程序非常简单并且只是为这个例子支持了流化。我们使用Flask将请求路由到GET/message/<channel>,一旦代码被调用,它将以mimetype为text/event-stream的格式进行响应,发回一个生成器函数而非一个字符串。Flask接下来将调用这个函数并在每次生成器生成东西时发送结果。
生成器stream_messages重用了之前写的用来监听PostgreSQL通知的代码。它接收信道Id作为参数,监听这个信道,并生成其有效载荷。记住,我们在触发器函数中用的是PostgreSQL的JSON编码函数,所以从PostgreSQL收到的就是JSON格式的数据,因为发送JSON数据给HTTP客户端没有任何问题,所以无需转换编码。
注意
为简单起见,这个示例应用程序被写在了一个单独的文件中。在一本书中描述一个横跨多个模块的例子有点儿困难。如果这是一个真正的应用程序,那么最好是将存储处理的实现放到一个自己的Python模块中。
现在可以运行这个服务器了:
$ python listen+http.py
* Running on http://127.0.0.1:5000/
在另一个终端中,可以进行连接并在事件进入时对数据进行抽取。在连接时,不会接收收据并且连接保持开放状态。
$ curl -v http://127.0.0.1:5000/message/1
* About to connect() to 127.0.0.1 port 5000 (#0)
* Trying 127.0.0.1...
* Adding handle: conn: 0x1d46e90
* Adding handle: send: 0
* Adding handle: recv: 0
* Curl_addHandleToPipeline: length: 1
* - Conn 0 (0x1d46e90) send_pipe: 1, recv_pipe: 0
* Connected to 127.0.0.1 (127.0.0.1) port 5000 (#0)
> GET /message/1 HTTP/1.1
> User-Agent: curl/
> Host: 127.0.0.1:5000
> Accept: */*
>
但一旦插入一些行到message表中时:
mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'hello world');
INSERT 0 1
mydatabase=> INSERT INTO message(channel, source, content)
mydatabase-> VALUES(1, 'jd', 'it works');
INSERT 0 1
终端上curl运行的位置就会有数据输出:
data: {"id":71,"channel":1,"source":"jd","content":"hello world"}
data: {"id":72,"channel":1,"source":"jd","content":"it works"}
关于这个应用程序的一个朴素的且可以说更轻便的实现3不是通过一个SELECT语句一次次查询是否有新数据插入表内。不过,没有必要在这里展示这样一个推送系统(push system),尽管它比持续地轮询数据库要效率高。
12.2 Dimitri Fontaine访谈
我认识Dimitri已经20年了。他是一位经验丰富的PostgreSQL主要贡献者,在2ndQuadrant公司(http://2ndquadrant.com/en/)工作,并在pgsql-hackers的邮件列表上与其他数据库大牛辩论。我们彼此分享了很多开源的体验,并且他非常热心的回答了很多在处理数据库时你应该了解的问题。

对用RDBMS作为存储后端的开发人员你有什么建议吗?有什么是他们需要了解的吗?
这是一个很好的问题,因为它让我有更多机会专门澄清一些非常错误的假设。如果你觉得这个问题有意义的话,那么现在你真的有必要看一下我的回答。
让我们从一些无聊的部分开始:RDBMS代表Relational DataBase Management System(关系型数据库系统)。它们是在20世纪70年代发明的,用来解决一些那个时代的每个开发人员都会遇到的常见问题,并且RDBMS实现的主要服务并不是数据存储,因为人们已经知道如何实现数据的存储了。
RDBMS提供的主要服务如下。
RDBMS承担了对数据的全部责任。所以它允许开发人员描述自己的一致性规则,并且会在关键的时候对这些规则进行检查,例如,当事务提交时或者语句的边界,取决于约束声明的可延迟性(deferability)。
对于数据的第一个约束是关于其期望的输入输出格式的,即使用合适的数据类型。合适的RDBMS知道更多关于如何处理文本、数值和日期格式,并能恰当地处理实际出现在当今日历中的日期(罗马儒略历4到目前还不算特别大,除非处理历史日期,否则你可能需要格里高里历5)。
但是数据类型不仅仅与输入输出格式有关,它们还允许实现行为和某种程度的多态性,因为我们期望的基本相等测试是针对特定数据类型的。我们不会以同样的方式比较文本和数字,比较日期和IP地址,比较点框和线条,比较布尔和圆形,比较UUID和XML,比较数组和范围,等等。
保护数据还意味着合适的RDBMS的唯一选择是要能主动拒绝不满足一致性的规则的数据,首当其冲的就是你已经选择的数据类型。如果你觉得处理类似0000-00-00这样在日历中根本不存在的日期可以的话,那么你需要重新考虑一下。
保证一致性的其他有关约束的表现方式还包括CHECK约束,NOT NULL约束和约束触发器,后者通常被称为外键。所有这些都可以作为数据类型定义和行为在用户层面的扩展,主要区别是可以选择DEFER检查这些约束从每条语句结束到当前事务结束。
RDBMS的关系特性主要体现在对数据的建模,以及保证所有在同一个关系中的元组共享通用的规则集,即结构和约束。当执行时,即表示我们正在强制使用适当的显式模式来处理数据。
令数据工作在适当模式上的过程被称为规范化(normalization),并且可以在设计中实现许多有些细微不同的范式(Normal Form)。但是有时也会需要规范化过程无法提供的灵活性。常见的办法是先规范化数据模式,然后反过来看如何进行反规范化(denormalization)以获得需要的灵活性。你可能会碰巧发现你并不需要额外的灵活性。
当你发现确实需要更多的灵活性时,PostgreSQL为初学者提供了一些反规范化的选择:组合类型(composite type)、记录(record)、数组(array)、hstore、json或XML。
但反规范化有一个很重要的缺点,就是我们接下来要讨论的查询语言(Query Language),它被设计为处理而非规范化数据。当然,PostgreSQL已经对查询语言进行了扩展,当在使用组合类型、数组或hstore,甚至最近发布的json时,支持尽可能多地非规范化数据。
RDBMS对数据非常了解并能在需要的情况下帮助实现非常细粒度的安全模型。访问模式被控制在关系和列层面,并且PostgreSQL还实现了SECURITY DEFINER存储过程,可以对敏感数据提供非常受限的访问,很像在使用suid程序。
RDBMS可以使用结构化查询语言对数据进行访问,结构化语言在20世纪80年代已经成为了事实上的标准并且目前由一个专门的委员会负责管理。对于PostgreSQL,每年的每个主要发布版本都有大量的扩展被加入,以支持极为丰富的DSL语言。所有查询规划和优化的工作都由RDBMS来完成,以便你可以专注于声明式的查询,即只需要描述对于你所拥有的数据想要什么样的结果。
这也是在这里要对NoSQL多加注意的原因,因为大部分这些新兴的产品实际上移除的不光是结构化查询语言,还包括你已经掌握并期望包含的很多其他基础的东西。
我的建议是开发人员要记住存储后端和RDBMS间的区别。它们是非常不同的服务,如果需要的只是存储后端的话,也许应该考虑避免用RDBMS。
但是大多数情况下,你真正需要的是一个完全成熟的RDBMS。这种情况下,最好的选择是PostgreSQL。去读一下它的文档,看看它提供的数据类型、操作符、函数、特性和扩展的清单,以及在博客上看一些使用示例。
然后考虑一下在你的开发中将PostgreSQL作为一个工具来利用,并将其包含在应用程序的架构中。你需要实现的部分服务在RDBMS层面已经给予了最好的支持,而且PostgreSQL擅长成为整个实现中最值得信赖的部分。
用或不用ORM的最好方式各是什么?
SQL代表Structured Query Language(结构化查询语言)并且其对于PostgreSQL已经被证明是图灵完备的。它的实现和优化都相当有分量。
由于ORM代表Object Relational Mapper(对象关系映射器),其思想是你能够处理一对一的映射,即数据库关系和类,以及数据库元组和对象(或者说类实例)。
即使对于PostgreSQL这样种已经实现了强静态类型的RDBMS,关系定义也是动态建立的,每一次查询结果都是一个新关系。每一次子查询的结果也是一个新关系,而且可能只存在于这个子查询期间。每一个JOIN,无论是INNER或者OUTER,都将动态生成一个新关系以处理JOIN。
作为一个直接结果,很容易明白ORM能完成的最好的工作就是所谓的CRUD应用,即创建(Create)、读取(Read)、更新(Update)、删除(Delete)。读取部分会受限制,只能对单个表做非常简单的SELECT查询。如果比较较大的输出列表,可以测量出提取额外的列和必要的列之间的查询性能的区别。现在,如果ORM在它的投影(或输出列表)中包含所有的已知列,那么它将强制你的RDBMS在发送前提取额外的数据(并解压缩),如果在RDBMS和应用程序之间使用SSL的话可能还需要再次压缩。而且,还要考虑到网络带宽的使用并记得我们正在测量的是基于主键的毫秒级的查询。
所以,任何从RDBMS中提取但最终没有使用的列,都是对宝贵资源的严重浪费,是可扩展性的第一杀手。
即使在ORM能够只获取你请求的数据,接下来你也必须以某种方式管理在每种情况下要显示的具体列,并避免使用会自动计算字段列表的简单抽象的魔术方法。
CRUD查询的其余部分是简单的INSERT、UPDATE和DELETE。首先,当使用高级的RDBMS(如PostgreSQL)时所有这些命令都接受连接(join)和子查询。而且仍需提及的是,比如PostgreSQL实现了RETURNING子句,允许返回给客户端任何刚编辑过的数据,如默认值(对于代理键通常是序列号)和其他在RDBMS(一般通过BEFORE <action>触发器)上自动计算的值。但你的ORM能够意识到这些吗?什么语法可以从中受益呢?通常情况下,一个关系或者是一个表(调用一个返回集合的函数的结果),或者是任意查询的结果。常见的做法是使用ORM构造已定义的表和其他模型类(或其他辅助模块)之间的关系映射。
如果从总体上考虑SQL的整个语义的话,那么关系映射实际上应该能够将任意查询映射到一个类。因此可能需要为每个运行的查询建立一个新类。
充分智能编译器(Sufficiently Smart Compiler)的传说同样适用于ORM。关于这个传说的更多细节,可以读一下James Hague的On Being Sufficiently Smart(http://prog21.dadgum. com/40.html)。
其思想应用到我们这个场景下就是你相信ORM能比你写出更高效的SQL查询,认为即使你没有给出足够的信息也能精准地给出你想要的数据集。
有时候SQL确实会变得相当复杂。但是你不太可能通过一个自己无法控制的SQL生成器的API让其变得更简单。
在讨论了所有典型的ORM之后,也需要说一下其他的选择。
将SQL查询构造为字符串会难以扩展。你会想要组合几个限制条件(WHERE子句)并且动态地添加一些连接(join)到查询中,以便可以有选择地获取更细节的数据等。
我现在的想法是,你真正想要的工具可能并不是ORM,而是一种通过编程接口更好地组合SQL查询的方式。
名为Postmodern(http://marijnhaverbeke.nl/postmodern/)的PostgreSQL驱动针对这个问题提出了几乎类似的抽象,它是一个结合了S-SQL(http://marijnhaverbeke.nl/postmodern/s-sql.html)方案的Common Lisp库。当然,Lisp借助其本身能够很容易地开发可组合的组件。
实际上有两种场景可以放心地使用ORM,只要你愿意接受下面的条件:你需要尽快将ORM使用的代码移出代码库。
对于Python开发,选用PostgreSQL与选用其他数据库相比有什么优缺点吗?
下面是我作为开发人员选择PostgreSQL的主要原因。
1如果犹豫不决的话,选PostgreSQL(http://www.postgresql.org/)。
2另一种选择是使用HTTP/1.1中定义的Transfer-Encoding: chunked。
3能够同其他RDBMS服务器兼容,如MySQL。
4 Julian calendar,参见http://en.wikipedia.org/wiki/Julian_calendar
5 Gregorian calendar,参见http://en.wikipedia.org/wiki/Gregorian_calendar。——译者注
第 13 章 Python 3支持策略
据我所知,目前Python 3仍然不是任何操作系统的默认Python解释器,尽管它在2008年12月就已经发布了。
如你所知,问题在于Python3和Python 2不兼容。在Python 3发布的时候,Python 2.6和Python 3之间的差异如此之大,以至于人们甚至没有去考虑如何过渡,而只是害怕地耸耸肩。
但后来事情发生了变化,Python 2.7从Python 3.1引入了很多新功能,缩小了二者的差距。Python的后续版本变化也趋于理智,而且我可以很高兴地宣布,现在是可以同时支持Python 2.7和Python 3.3的了,几乎没有什么困难。
关于移植应用的官方文档(http://zeromq.org/)是有的,但我不建议不折不扣地参考它。文档中讨论了很多关于2to3工具(将Python 2的代码转换为Python 3),并且包含了一些建议,如为你的项目建立一个特殊的Python 3分支。
在我看来,这是一个糟糕的建议。在几年前这也许是最合适的建议,但考虑到现在Python 2.7和Python 3.3的“兼容”情况,最好还是不要使用这种方法。
注意
也有3to2工具,但基于上述原因,我并不建议使用。
首先,2to3并不总是对的,它并不是万能的。它只是处理语法的转换,而不维护与Python 2的向后兼容,而且在任何情况下,都需要自己手工处理语义的转换。此外,运行2to3相当慢,因此也很难成为一个长期的解决方案。有些文档甚至建议在setup.py阶段运行它,这多少有点儿碰运气的成分。
有些文档推荐使用不同的项目分支去支持Python 2和Python 3。经验表明这样维护起来相当麻烦,而且用户会困惑该使用哪个版本。更糟糕的是,当用户提交bug但却没有指明用的哪个分支时你会很困惑。
更好的方法就是使用一个代码库并保持对Python 2和Python 3兼容。这也是目前我们在OpenStack上投入精力做的。
最后,确保代码能够对两个Python版本都可用的唯一方式就是单元测试。没有单元测试不可能知道代码在两个上下文环境和不同版本间是否能工作正常。如果应用中还没有任何测试1,那么首先要做的就是大幅增加代码覆盖率,可以回顾一下第6章中的内容。
tox是对多个Python版本进行自动测试的很好的工具,在6.7节中已经介绍过了。
一旦有了单元测试并配置了tox,就很容易使用下面的方法对两个Python版本运行测试:
tox -e py27,py33
根据提示的错误进行修改,重新运行tox,直到所有测试都通过为止。如果做得对的话,错误的数量应该缓慢并稳定下降,从而最终实现代码对Python 2和Python 3的全兼容。
如果有针对Python写的C模块需要移植,那么很抱歉,关于这个没什么好说的,你只能读文档然后移植你的代码。如果可能的话使用cffi(http://cffi.readthedocs.org/en/release-0.8/)选项重写可能会有用。
在后面几节中会讨论一些在不同Python版本间移植可能遇到的问题。这里假设你已经有了一个Python 2的代码库。尽管下面讨论的一些内容可能在理论上也可以用于Python 3到Python 2的移植,但我个人是肯定不会这么干的。
13.1 语言和标准库
这门语言并没有彻底地修改。我敢肯定你已经简单看过了。本书不会包含全部的修改清单,那太无趣了,而且可以在网上找到。Porting to Python 3(http://python3porting.com/)这本书给出了要支持Python 3所需做修改的良好概述。
如果你还没来得及看一下Pyton 3所做的语言修改,建议看一下。这是一门非常好的语言,少了很多生僻的场景,针对不同对象基类有了更加清晰的接口。你会喜欢Python 3的。
但它也带来了巨大的兼容性问题。某些语句的语法变化(如异常捕获)已经完全去除了对旧的Python版本的兼容性,而且如果使用的话,处理起来会非常痛苦。在1.4节中讨论的hacking工具能帮你解决这些不兼容的用法,并避免引入更多。
支持Python的多版本时,应该尽量避免同时支持Python 3.3和早于Python 2.6的版本。Python 2.6是第一个为向Python 3移植提供足够兼容性的版本。
影响你最多的可能是字符串处理方面。在Python 3中过去称为unicode,现在叫str(如图13-1和图13-2所示)。这意味着任何字符串都是Unicode的,也就是说u'foobar'和'foobar'是同一样东西2。

图13-1 Python 2基类

图13-2 Python 3基类
实现unicode方法的类应该将其重命名为str,因为unicode方法将不再使用。可以通过一个类装饰器自动完成这个过程。
-*- encoding: utf-8 -*-
import six
This backports your Python 3__str__ for Python 2
def unicode_compat(klass):
if not six.PY3:
klass.__unicode__ = klass.__str__
klass.__str__ = lambda self: self.__unicode__().encode('utf-8')
return klass
@unicode_compat
class Square(object):
def __str__(self):
return u"■ " + str(id(self))
这种方式可以针对所有返回Unicode的Python版本实现一个方法,装饰器会处理兼容性问题。
另一个处理Python和Unicode的技巧是使用unicode_literals,它从Python2.6开始提供3。
>>> 'foobar'
'foobar'
>>> from __future__ import unicode_literals
>>> 'foobar'
u'foobar'
许多函数不再返回列表而是返回可迭代对象(如range)。此外,字典方法(如keys或者items)现在也返回可迭代对象,而函数iterkeys和iteritems则已经被删除。这是一个巨大的变化,但six(将在13.3节中讨论)将帮你处理这个问题。
显然,标准库也经历了从Python 2到Python 3的演化,但无需过分担心。一些模块已经被重命名或者删除,但最终呈现的是更为清晰的布局。我不知道是否有官方的清单,但是http://docs.pythonsprints.com/python3_porting/py-porting.html就有一份很好的清单,或者也可以用搜索引擎找到。
six模块会在13.3节中讨论,它对于维护Python 2和3的兼容性很有用。
13.2 外部库
你的头号敌人就是所依赖的外部库。如果你读了我在2.3节(外部库)中的建议并且参考了我的检查表,在这里你就不会遇到麻烦了。因为那个检查表已经包含了对Python 3支持的需求。不过,可能你很早就开始了自己的项目并且已经犯了这个错误。
遗憾的是,对于这个问题没有什么特别的好办法。但幸运的是,如果你参考了我的其他建议,将外部库进行足够的隔离以避免其扩散到整个代码库,则是可以考虑替换它的。事实上,如果某个库不太可能支持Python 3的话,那么这可能是最好的办法。不过,中小型的库比大的框架更容易移植到Python 3,所以你可能需要对它们做一点儿尝试。
在寻找PyPI上的包时,可以查看它的收藏分类符"Programming Language :: Python :: 2"和"Programming Language :: Python :: 3",它指明了包所支持的Python版本。不过,要注意的是它们可能不是最新的。
在OpenStack项目早期所做出的关于外部库的一个选择就是eventlet(https://github.com/eventlet/eventlet),一个并发网络库。它不支持Python 3,而且仍然试图支持Python 2.5(可以想象,这不利于移植)。这个决定是OpenStack在很早之前做出的,当时还没有进行任何的Python 3兼容性检查。我们已经意识到这个模块在未来会是个大问题,但截止到目前,如何解决还没有具体的计划。
千万别犯同样的错误!
13.3 使用six
正如我们所看到的,Python 3破坏了与早期版本间的兼容性并且周边很多东西发生了变化。但是,这门语言的基础并没有发生变化,所以是可以实现一种转换层的,也就是一个能实现向前和向后兼容的模块——Python 2和Python 3之间的桥梁。
这样的模块是有的,名字就叫做six(http://pythonhosted.org/six/),因为2乘以3等于6。
six首先要做的就是提供一个名为six.PY3的变量。它是一个布尔值,用来表明是否正在运行Python 3。对于任何有两个版本(Python 2和Python 3)的代码库而言这都是一个关键变量。不过在用的时候要谨慎,如果代码中到处都是if six.PY3,那么后续会很难维护。
正如在8.1节中所讨论的,Python 3有一个非常好的功能能够返回可迭代对象而不是列表。这意味着类似dict.iteritems这样的方法将会消失,并且dict.items将返回一个迭代器而不是列表。显然,这会破坏你的代码。six对此提供了six.iteritems,使得所有要做的只是将
for k, v in mydict.iteritems():
print(k, v)
替换为
import six
for k, v in six.iteritems(mydict):
print(k, v)
看,Python 3的兼容性立刻就解决了!six提供了大量类似的辅助函数以提升不同版本间的兼容性。
raise语法在Python 3中也发生了变化4,因此再次抛出异常应该使用six.reraise。
如果正在使用元类,Python 3对其进行了彻底修改。six针对这个转换有一个不错的技巧。例如,如果正在使用abc抽象基类元类,则可以像下面这样使用six:
import abc
from six import with_metaclass
class MyClass(with_metaclass(abc.ABCMeta, object)):
pass
谈到Python 3必然会涉及其引入的字符串和Unicode混乱问题。在Python 2中,字符串的基本类型是str,其只能用来处理ASCII码字符串。而后来加入的unicode类型,则用来处理文本的真正字符串。在Python 3中,基本的类型仍然是str,但它共享了Python 2中unicode类的属性,并能处理更为高级的编码。bytes类型代替str类型,用来处理基本的字符流。
six提供了一组不错的函数和常量用来处理这种转换,如six.u和six.string_types。同样对整数也提供了相应的兼容性,通过six.integer_types能够处理在Python 3中移除的long类型。
如同在13.1节中讨论的,有些模块已经变动了,因此six提供了一个不错的名为six.moves的模块,用来透明地处理这些变动。
例如,在Python 3中ConfigParser模块被重命名为configparser。因此,在Python 2中使用ConfigParser的代码:
from ConfigParser import ConfigParser
conf = ConfigParser()
就可以修改成下面的方式以兼容主要的Python版本:
from six.moves.configparser import ConfigParser
conf = ConfigParser()
提示
也可以通过six.add_move添加自己的变动来处理其他转换。
six库可能不足以覆盖你的所有用例。在这种情况下,构建一个封装了six的兼容模块是值得的。通过在一个特殊的模块中隔离这个,可以确保未来有能力针对Python的后续版本做一些增强,或者在你不再需要继续支持某个特定Python版本的时候销毁(部分的)它。six是开源的,因此你可以直接贡献它而不用维护自己的兼容模块。
最后需要提及的是modernize模块(https://pypi.python.org/pypi/modernize)。它是在2to3之上的一层很薄的包装器,用来通过迁移代码到Python 3使其“现代化”。但是不同于单纯转换语法为Python 3代码,它使用six模块。与标准的2to3工具相比,它是更好的选择,通过执行大多数繁重的工作使你的移植工作有个良好的开端。还是值得试试的。
1我已经听说过有这样的项目存在。
2u前缀在Python 3.0中被移除了,但在Python 3.3中又被加了回来,参考PEP 414(https://www.python.org/dev/peps/pep-0414/)。
3另一个不支持老版本的原因。
4现在只接受一个参数,一个异常。
第 14 章 少即是多
本章中汇总了我发现的一些有意思的更为高级的功能,它们有助于写出更好的代码。
14.1 单分发器
我经常说Python是Lisp的一个很好的子集,并且随着时间的推移,我越来越觉得这话是对的。最近我偶然发现了PEP 443(https://www.python.org/dev/peps/pep-0443/),它描述了一种与CLOS(Common Lisp Object System)提供的方式类似的泛型函数分发方式。
如果你熟悉Lisp的话,对这些应该并不陌生。Lisp对象系统是Common Lisp的一个基本组件,提供了一种很好的定义和处理方法分发的方式。这里会先展示一下Lisp中的泛型方法——尽管在一本Python书中包含Lisp代码更多是为了好玩儿!
一开始让我们先定义几个非常简单的类,没有任何父类和属性:
(defclass snare-drum ()
())
(defclass cymbal ()
())
(defclass stick ()
())
(defclass brushes ()
())
上面的代码定义了几个类:snare-drum、symbal、stick和brushes。它们不包括任何父类和属性。这些类组成了一套架子鼓,我们可以将它们组合起来并发出声音。于是,我们定义一个play方法接收两个参数,并返回声音(以字符串形式)。
(defgeneric play (instrument accessory)
(:documentation "Play sound with instrument and accessory."))
这只定义了一个泛型方法:它并不依附于任何类,所以还不能被调用。在这个阶段,只是通知对象系统,这个方法是个泛型方法,可以通过各种参数调用。现在我们来实现这个方法的不同版本从而模拟演奏军鼓。
(defmethod play ((instrument snare-drum) (accessory stick))
"POC!")
(defmethod play ((instrument snare-drum) (accessory brushes))
"SHHHH!")
现在代码中已经定义了具体方法。他们接收两个参数:instrument(乐器),它是军鼓的一个实例;accessory(附件),它是stick(鼓槌)或者brushes(刷子)的一个实例。
在这个阶段,应该可以看出这一系统和Python(或类似)的对象系统的第一个主要区别:方法并没有绑定到任何特定的类上。这个方法是通用的,并且任何类都可以实现它们。
让我们来试试。
* (play (make-instance 'snare-drum) (make-instance 'stick))
"POC!"
* (play (make-instance 'snare-drum) (make-instance 'brushes))
"SHHHH!"
* (play (make-instance 'cymbal) (make-instance 'stick))
debugger invoked on a SIMPLE-ERROR in thread
#<THREAD "main thread" RUNNING {1002ADAF23}>:
There is no applicable method for the generic function
#<STANDARD-GENERIC-FUNCTION PLAY (2)>
when called with arguments
(#<CYMBAL {1002B801D3}> #<STICK {1002B82763}>).
Type HELP for debugger help, or (SB-EXT:EXIT) to exit from SBCL.
restarts (invokable by number or by possibly-abbreviated name):
0: [RETRY] Retry calling the generic function.
1: [ABORT] Exit debugger, returning to top level.
((:METHOD NO-APPLICABLE-METHOD (T)) #<STANDARD-GENERIC-FUNCTION PLAY (2)> #<CYMBAL {1002B801D3}> #<STICK {1002B82763}>) [fast-method]
如你所见,调用哪个函数取决于参数的类——对象系统根据传递哪个类作为参数,为我们将函数调用分发给正确的函数。如果以对象系统不知道的实例调用play,会抛出错误。
继承同样也被支持,与Python中的super()类似的(更为强大且不那么容易出错的)实现是通过(call-next-method)。
(defclass snare-drum () ())
(defclass cymbal () ())
(defclass accessory () ())
(defclass stick (accessory) ())
(defclass brushes (accessory) ())
(defmethod play ((c cymbal) (a accessory))
"BIIING!")
(defmethod play ((c cymbal) (b brushes))
(concatenate 'string "SSHHHH!" (call-next-method)))
在这个例子中,定义了stick和brushes两个类作为accessory的子类。play方法会返回声音BIIING!,不管用哪个附件实例去敲cymbal(铙钹),除非是用brushes实例,即最精确的方法总能确保被调用。(call-next-method)函数用来调用最接近的父类的方法,在本例中就是那个会返回"BIIING!"的方法。
* (play (make-instance 'cymbal) (make-instance 'stick))
"BIIING!"
* (play (make-instance 'cymbal) (make-instance 'brushes))
"SSHHHH!BIIING!"
注意,在CLOS中可以通过eql specializer为类的某一个特定实例定义专门的方法。
但如果你真的非常好奇CLOS提供的众多功能,建议你读一下Jeff Dalton作为发起人撰写的CLOS简明指南(http://www.aiai.ed.ac.uk/~jeff/clos-guide.html)。
Python通过singledispatch实现了这个工作流的一个简单版本,它将在Python 3.4中作为functools模块的一部分。下面是前面的Lisp程序的一个粗略的对应实现:
import functools
class SnareDrum(object): pass
class Cymbal(object): pass
class Stick(object): pass
class Brushes(object): pass
@functools.singledispatch
def play(instrument, accessory):
raise NotImplementedError("Cannot play these")
@play.register(SnareDrum)
def _(instrument, accessory):
if isinstance(accessory, Stick):
return "POC!"
if isinstance(accessory, Brushes):
return "SHHHH!"
raise NotImplementedError("Cannot play these")
这里定义了4个类,以及一个基本的play函数,它会抛出NotImplementedError,表明默认情况下不知道该做什么。接下来可以为特定乐器——SnareDrum(军鼓)——开发此函数的特定版本。这个函数会检查传入了哪个附件类型,并返回适当的声音。如果它无法识别这个附件,则再次抛出NotImplementedError。
如果运行这个程序,它应该像下面这样工作:
>>> play(SnareDrum(), Stick())
'POC!'
>>> play(SnareDrum(), Brushes())
'SHHHH!'
>>> play(Cymbal(), Brushes())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper
return dispatch(args[0].__class__)(*args, **kw)
File "/home/jd/sd.py", line 10, in play
raise NotImplementedError("Cannot play these")
NotImplementedError: Cannot play these
>>> play(SnareDrum(), Cymbal())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/jd/Source/cpython/Lib/functools.py", line 562, in wrapper
return dispatch(args[0].__class__)(*args, **kw)
File "/home/jd/sd.py", line 18, in _
raise NotImplementedError("Cannot play these")
NotImplementedError: Cannot play these
singledispatch模块检查传入的第一个参数的类,并调用play函数的适当版本。对于object类,总是会运行函数的最先定义的版本。所以,如果传入的是未注册的乐器实例,则基函数会被调用。
如果急切地想试试它的话,singledispatch函数通过Python Package Index已经在Python 2.6到Python 3.3中提供了(https://pypi.python.org/pypi/singledispatch/)。
正如在Lisp版本的代码中所看到的,CLOS提供了可根据方法原型中定义的任意参数的类型分发的多分发器,不只是第一个参数。遗憾的是,Python中的分发器被命名为singledispatch是有原因的:因为它知道如何根据第一个参数进行分发。Guido van Rossum在几年前写了一篇名为multimethod(http://www.artima.com/weblogs/viewpost.jsp?thread=101605)的短文对此进行了解释。
此外,没办法直接调用父类的函数——既没有Lisp中的(call-next-method),也没有Python中的super()函数。只能用一些技巧绕过这个限制。
总结:泛型函数是增强对象系统的有力方式,尽管我很高兴地看到Python在朝着这个方向努力,但它仍然缺少一些CLOS所能提供的开箱即用的高级功能。
14.2 上下文管理器
Python 2.6中引入的with语句,可能会让过去的Lisp程序员想起以前经常用到的宏with-*。Python通过使用实现了上下文管理协议的对象,提供了类似的机制。
open函数返回的对象就支持这个协议,这就是经常能看到下面这样的代码的原因:
with open("myfile", "r") as f:
line = f.readline()
open返回的对象有两个方法,一个称为__enter__,另一个称为__exit__。它们分别在with块开始和结束时被调用。
一个上下文对象的简单实现如示例14.1所示。
示例 14.1 上下文对象的简单实现
class MyContext(object):
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, traceback):
pass
这段代码什么都不做,但却是合法的。
你想什么时候使用上下文管理器呢?如果对象符合下面的模式,则使用上下文管理协议就比较合适:
(1)调用方法A;
(2)执行一段代码;
(3)调用方法B。
这里希望调用方法B必须总是在调用方法A之后。open函数很好地阐明了这一模式,打开文件并在内部分配一个文件描述符的构造函数便是方法A。释放对应文件描述符的close方法就是方法B。显然,close方法总是应该在实例化文件对象之后进行调用。
contextlib标准库中提供了contextmanager,通过生成器构造__enter__和__exit__方法,从而简化了这一机制的实现。可以使用它实现自己的简单上下文管理器,如示例14.2所示。
示例 14.2 contextlib.contextmanager的简单用法
import contextlib
@contextlib.contextmanager
def MyContext():
yield
例如,我曾经在Ceilometer(https://launchpad.net/ceilometer)中对我们所建立的流水线(pipeline)架构使用过这种设计模式。简单来说,一个流水线就是一个管道,一方面传入对象,另一方面将对象分发到不同的地方。发送数据的步骤如下。
(1)调用流水线的publish(objects)方法,并传入你的对象作为参数(可以调用任意多次)。
(2)一旦完成,则调用flush()方法以表明当前的发布已经完成。
要注意的是,如果不调用flush()方法,对象将不会被发送到管道中,或者至少不完全发送到管道中。程序员很容易忘记flush()的调用,这将引起程序毫无征兆地中断。
最好能让API提供一个上下文管理器对象,去阻止API的用户犯这种错误。通过示例14.3所示的代码很容易实现。
示例 14.3 在流水线对象上使用上下文管理器
import contextlib
class Pipeline(object):
def _publish(self, objects):
Imagine publication code here
pass
def _flush(self):
Imagine flushing code here
pass
@contextlib.contextmanager
def publisher(self):
try:
yield self._publish
finally:
self._flush()
现在,当用户在使用流水线发布某些数据时,他们无需使用_publish或者_flush。用户只需请求一个使用了名祖(eponym)函数的publisher并使用它。
pipeline = Pipeline()
with pipeline.publisher() as publisher:
publisher([1, 2, 3, 4])
当提供一个这样的API时,就不会遇到用户错误。当看到符合的设计模式时,应该尽量用上下文管理器。
在某些情况下,同时使用多个上下文管理器是很有用的。例如,同时打开两个文件以复制它们的内容,如示例14.4所示。
示例 14.4 同时打开两个文件
with open("file1", "r") as source:
with open("file2", "w") as destination:
destination.write(source.read())
记住with语句可以支持多个参数,所以应该像示例14.5这样写。
示例 14.5 通过一条with语句同时打开两个文件
with open("file1", "r") as source, open("file2", "w") as destination:
destination.write(source.read())
看完了
如果您对本书内容有疑问,可发邮件至contact@epubit.com.cn,会有编辑或作译者协助答疑。也可访问异步社区,参与本书讨论。
如果是有关电子书的建议或问题,请联系专用客服邮箱:ebook@epubit.com.cn。
在这里可以找到我们:
091507240605ToBeReplacedWithUserId
Table of Contents
Table of Contents
作者简介
译者简介
1.1 Python版本
1.2 项目结构
1.3 版本编号
1.4 编码风格与自动检查
2.1 导入系统
2.2 标准库
2.3 外部库
2.4 框架
2.5 Doug Hellmann访谈
2.6 管理API变化
2.7 Christophe de Vienne访谈
3.1 Sphinx和reST入门
3.2 Sphinx模块
3.3 扩展Sphinx
4.1 简史
4.2 使用pbr打包
4.3 Wheel格式
4.4 包的安装
4.5 和世界分享你的成果
4.6 Nick Coghlan访谈
4.7 扩展点
4.7.1 可视化的入口点
4.7.2 使用控制台脚本
4.7.3 使用插件和驱动程序
6.1 基础知识
6.2 fixture
6.3 模拟(mocking)
6.4 场景测试
6.5 测试序列与并行
6.6 测试覆盖
6.7 使用虚拟环境和tox
6.8 测试策略
6.9 Robert Collins访谈
7.1 创建装饰器
7.2 Python中方法的运行机制
7.3 静态方法
7.4 类方法
7.5 抽象方法
7.6 混合使用静态方法、类方法和抽象方法
7.7 关于super的真相
8.1 生成器
8.2 列表解析
8.3 函数式,函数的,函数化
9.1 Hy
9.2 Paul Tagliamonte访谈
10.1 数据结构
10.2 性能分析
10.3 有序列表和二分查找
10.4 namedtuple和slots
10.5 memoization
10.6 PyPy
10.7 通过缓冲区协议实现零复制
10.8 Victor Stinner访谈
11.1 多线程笔记
11.2 多进程与多线程
11.3 异步和事件驱动架构
11.4 面向服务架构
12.1 用Flask和PostgreSQL流化数据
12.2 Dimitri Fontaine访谈
13.1 语言和标准库
13.2 外部库
13.3 使用six
14.1 单分发器
14.2 上下文管理器