
PostgreSQL 表分区实践分享

许中清 @Huawei
jonathan.shv@gmail.com

表分区是RDBMS最重要的特性之一•

PG用继承表实现“表分区”•

PG实现原生表分区：三种方案•

实践中的关键问题•

表分区

CREATE TABLE op_log(
 log_no bigint,
 creation_time date,
 created_by text,
 content text)
PARTITION BY RANGE(creation_time)
(PARTITION p1 VALUES LESS THAN (DATE'2014-07-01'),
 PARTITION p2 VALUES LESS THAN (DATE'2015-01-01'),
 PARTITION p3 VALUES LESS THAN (DATE'2015-07-01')，
 PARTITION p4 VALUES LESS THAN (MAXVALUE)
);

分而治之：表分区就是把一张大表的数据根据一定策略拆分成若干个子表

分而治之：解决复杂问题的方法论

表的维护从操作一个大表变•
成操作多个子表

冷热数据差异化管理操作。•

易管理 可用性
表的维护与读写产生冲突•

表分区缩短维护时间窗，提供•
可用性

性能

提高数据聚集度（按分区键）•

利于多核能力，并行处理，提•
升分析类业务性能

重要：表分区特性广泛应用
在数据仓库领域，表分区是最常使用的特性之一•

表分区是RDBMS最重要的特性之一•

PG用继承表实现“表分区”•

PG实现原生表分区：三种方案•

实践中的关键问题•

PG如何处理继承表
CREATE TABLE join_table(c1 int,c2 int);
CREATE TABLE parent (c1 int,c2 int);
CREATE TABLE child1(c3 int) inherits (parent);
CREATE TABLE child2(c4 int) inherits (parent);INSERT：子表不继承

SELECT：子表在底层展开
SELECT * FROM parent p, join_table j WHERE p.c2=j.c2;

INSERT INTO parent VALUES(10,10);

PG如何处理继承表(2)
UPDATE/DELETE: 执行计划从顶层展开所有子表

UPDATE parent p SET c1=j.c1
 FROM join_table j WHERE p.c2=j.c2;

PG使用表继承可实现表分区

log_no creation_time created_by content

log_no creation_time created_by content

创建表分区四步法

创建主表：CREATE TABLE op_log(…);

log_no creation_time created_by content

log_no creation_time created_by content

创建子表：
CREATE TABLE op_log_2013()
 INHERITS(op_log);

增加子表约束：
ALTER TABLE op_log_2013 ADD
CONSTRAINT log_range CHECK
(creation_time>DATE’2013-01-01’ AND
creation_time<DATE’2014-01-01’);

< DATE'2013-01-01'

< DATE'2014-01-01'

< DATE'2015-01-01'

 DATE'2013-01-01'

 DATE'2014-01-01'

op_log_2013

op_log

op_log_2012

op_log_2014 指定路由机制： （Trigger/Rule）
CREATE TRIGGER router_to_2013
BEFORE INSERT ON log_range
FOR EACH ROW EXECUTE
PROCEDURE …;

partition_range.sql

①

②

③

④

PG“表分区”性能(INSERT)

测试环境：5个子表，插入10K条数据，插入的所有数据都在一个分区内
 每个tuple的大小16 byte

在批量插入的场景下，trigger对性能影响很大

20987

12859
9875

203

循环插入 批量插入

0
5000

10000
15000
20000
25000

通过主表插入(Trigger)

直接插入子表

ms

PG“表分区”性能(SELECT)
SELECT生成执行计划的时间 与 子表数量成线性关系

原因：
对主表的查询会展开成N+1条类似的查询语句。(N为主表的子表数量)

 相当于要把同一条SQL语句(主表替换成子表)优化N+1遍

164678
900

1828

3750

5422

9547

000 470 875
1875

2687

4797

0 1000 2000 3000 4000 5000 6000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

全表扫描

范围查询

点查找

子表数量 5 50 100 500 1k 2k 3k 5k
全表扫描 16 46 78 900 1,828 3,750 5,422 9,547
范围查询 16 47 78 500 937 1,900 2,750 5,203
点查询 470 875 1,875 2,687 4,797

ms

PG“表分区”：管理不易
创建分区表： （四步法）1.

步骤复杂(全手工)1.

易出错2.

创建索引：2.

创建N+1个索引3.

分区表的管理：3.

增加子表，三步。并需要修改主表路4.

由机制

删除子表，需要修改临近表的约束，5.

修改主表路由机制

子表合并/拆分6.

表模式约束不够4.

用户可以直接修改子表，导致子表的7.

表模式与主表不一样

主表是一张实实在在的物理表，并可8.

以保存数据

表分区是RDBMS最重要的特性之一•

PG用继承表实现“表分区”•

PG实现原生表分区：三种方案•

实践中的关键问题•

改造PG：原生支持表分区

性能
设计原则

满足业务需求

内核侵入最小

最大分区数量1.

CURD的性能2.

复杂查询的时延3.

批量业务的性能4. 表分区策略1.

性能基线2.

分区管理功能3.

保持PG原生架1.

构，风险可控

侵入内核过多会2.

导致稳定周期长

改造PG-方案1：在上包一层

pg_class

op_log_2013

op_log_2012

op_log_2014

op_log

pg_attribute

pg_trigger

pg_constraint

pg_statistic

pg_index

pg_partition

优点：
普通表、父表、子表id在同一个id空间。元数据缓存空间、存1.
储引擎接口无需改动。
改动小，实现相对容易2.

缺点：
每一个子表都有一份元数据，冗余度高，系统资源占用高3.
表模式修改(DDL)需要更新所有子表元数据，失效消息数量剧增4.
因为以上原因导致对分区数的限制5.

父表是一张没有物理属性的虚拟表1.

增加pg_partition保存分区信息2.

每个子表也是pg_class中一张表3.

pg_toast

改造PG-方案2：在下加一层

pg_class

op_log_2013

op_log_2012

op_log_2014

op_log

pg_attribute

pg_trigger

pg_constraint

pg_statistic

pg_index

pg_partition

优点：
元数据缓存大大减小：所有子表的逻辑元数据只需要存一份1.
DDL语句修改更高效2.
子表数量支持的更多3.

缺点： （复杂度、工作量、内核侵入程度较高）
普通表与子表的id不在一个id空间4.
元数据缓存机制复杂：子表需要单独的缓存空间5.
存储引擎接口必须要区分普通表与分区表，并新增处理分支6.

分区表的逻辑/物理元数据解耦：

所有子表的逻辑元数据继承父表1.

每个子表独立保存物理元数据2.
pg_toast

方案
2为
当前

采

用方
案

改造PG-方案3：向下拉一层

pg_class_logic

pg_attribute

pg_trigger

pg_constraint

pg_statistic

pg_class_physical

优点：

从逻辑上统一了分区表和普通表。所有的表id都在同一个空间1.

元数据缓存和失效机制不需要再区分分区表和普通表2.

存储引擎接口不需要区分分区表和普通表3.

垃圾回收/统计采样等等都不再需要区分分区表和普通表4.

所有表的逻辑/物理元数据解耦：

所有表的元数据分逻辑/物理两层，对1.

应将pg_class拆分成pg_class_logic

和pg_class_physical两层

普通表是只有一个子表的特殊分区表2.

pg_toast

逻辑元数据层
物理元数据层

缺点：

对PG的程序架构和代码要1.

伤筋动骨的修改

表分区是RDBMS最重要的特性之一•

PG用继承表实现“表分区”•

PG实现原生表分区：三种方案•

实践中的关键问题•

关键问题1：元数据与缓存失效机制

Session1

元数据表
缓存

RelationData

失效消息队列

Session2

元数据表
缓存

RelationData

Session3

元数据表
缓存

RelationData

进程1 进程2 进程3

PostgreSQL元数据缓存同步策略

一个RelationData包含一张表的所有表模式信息1.
一个Session中同一张表的RelationData实例最多只有一个2.
RelationData是从优化器、执行器、到存储引擎等共用的数据3.
结构
收到实效消息后RelationData会重建4.

PDataPDataPData

分区表的关键问题

RelationDataTable 1:1

RelationDataParent Table 1:1

Partition PData1:1

子表的数据结构(PData)如何作为1.

参数在系统中传递(改动最小)？难

道要改所有的函数接口吗？

接收到表模式失效消息时，如何重2.

建主表和子表的信息？

1:m

关键问题2：分区表的统计信息
create table sta_test(c1 int,c2 int);

insert into sta_test values(generate_series(1,10),generate_series(100,200));
insert into sta_test values(generate_series(30,40),generate_series(300,400));
insert into sta_test values(generate_series(60,70),generate_series(600,700));

分区表统计信息的关键问题：

采集时，生成主表的统计信息还是每个子表的统计信息？1.

如果使用主表的统计信息，那么Pruning之后的，据此计算的cost偏差2.

很大(特别是分区键上的cost)

如果使用子表的统计信息，那么如何累加成主表的统计信息？子表太多3.

时，优化器效率如何保证？

特征值统计信息（c1）：MCV(Most Common Values)

直方图统计信息（c2）：

PostgreSQL统计信息：

关键问题3：表级锁与并发

Requested
Lock Mode

Current Lock Mode

ACCESS
SHARE
(SELECT)

ROW
EXCLUSIVE
(I/U/D/)

ACCESS
EXCLUSIVE
(DDL)

ACCESS
SHARE
(SELECT)

 X

ROW
EXCLUSIVE
(I/U/D/)

 X

ACCESS
EXCLUSIVE
(DDL)

X X X

PG表级锁冲突矩阵(简化)

注:pg有8个级别的表级锁，常见的3个

分区表的关键问题

Pruning:0011

DROP P2

Add/Drop Partition 时父表上加什么锁？

Parent

P1 P2 P3 P4

100 200 300 400

session1

SELECT >350

DROPED

session2

ERROR: P4?

INSERT INTO Interval分区表如何避免为同一
个子表创建两个物理文件？

（Interval分区表：向某个子表插入第一条记录
时才会为这个子表创建物理文件）

关键问题4：子表剪枝算法

分区
表：p_table(100,200,300,400,500)
查询: SELECT * FROM ptable
WHERE c>150 and (c<250 or c>450)

AND

ORC>150

C<250 C>450

11100 00001

01111 11101

01101

分区键是单列

分区键: (c1,c2) 值域
P1: (100, 100) {(-∞,100], (-∞,+∞)}
P2: (100, 200) {100, [100,200)}
P3: (100, 300) {100, [200,300)}
P4: (200, 200) {[100,200], (-∞,+∞)}
P5: (200, 300) {200, [200,300)}
P6: (200, 500) {200, [300,500)}
P7: (300, 200) {[200,300], (-∞,+∞)}
P8: (300, 400) {[300, [200,400]}

分区键是多列

查询: SELECT * FROM ptable
WHERE c2>350

Pruning结果：P1,P4,P6,P7,P8
?

关键问题5：算子
Append

Scan(P1) Scan(P2) Scan(P3) Scan(Pi)

Iterator
(P1,P2,P3)

Join

Scan(Pi)

Iterator
(P1,P2,P3)

Scan(Qi)

Iterator
(Q1,Q2,Q3)

Join
(P1,P2,P3)

(Q1,Q2,Q3)

Scan(Pi)

Iterator
(J1,J2,J3)

Scan(Qi)

P,Q分区策略完
全一样

①

②

时延的代价

178

142

75
55

65
50

50w（1并发） 200w(50并发)
0

20
40
60
80

100
120
140
160
180
200

PG继承表

分区表

PG普通表

INSERT性能对比

 测试环境： 存储：SAS(15000rps)*2 计算：2P12C
 数据量 ： 100个子表，每个子表10w条数据，共1000w条数据
 测试目的： 主要针对OLTP类场景，验证表分区之后的性能代价

4

12

3.68

11.35

10w次/并发

50 并发10w次/并发

200 并发
0
2
4
6
8

10
12
14

PG继承表

分区表

PG普通表

SELECT(Index)性能对比
继承表场景下时间太长，中途中止

6.185

35.374

5.554

30.519

1tuple/1sql

100sql/1tx

50 并发

 共更新10w条1tuple/1sql

1sql/1tx

1 并发

 共更新10w条
0
5

10
15
20
25
30
35
40

分区表

PG普通表

UPDATE性能对比
继承表场景下时间太长，中途中止

3.33

24.585

2.95

19.098

1tuple/1sql

100sql/1tx

50 并发

 共删除10w条1tuple/1sql

1sql/1tx

1 并发

 共删除10w条
0
5

10
15
20
25
30

分区表

PG普通表

DELETE性能对比
继承表场景下时间太长，大约1200s

s

谢谢

