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表分区是RDBMS最重要的特性之一•

PG用继承表实现“表分区”•

PG实现原生表分区：三种方案•

实践中的关键问题•



表分区

CREATE TABLE op_log( 
           log_no               bigint, 
           creation_time    date, 
           created_by        text, 
           content             text) 
PARTITION  BY RANGE(creation_time)
(   PARTITION p1 VALUES LESS THAN (DATE'2014-07-01'),
    PARTITION p2 VALUES LESS THAN (DATE'2015-01-01'),
    PARTITION p3 VALUES LESS THAN (DATE'2015-07-01')，
    PARTITION p4 VALUES LESS THAN (MAXVALUE)
);

分而治之：表分区就是把一张大表的数据根据一定策略拆分成若干个子表



分而治之：解决复杂问题的方法论

表的维护从操作一个大表变•
成操作多个子表

冷热数据差异化管理操作。•

易管理 可用性
表的维护与读写产生冲突•

表分区缩短维护时间窗，提供•
可用性

性能

提高数据聚集度（按分区键）•

利于多核能力，并行处理，提•
升分析类业务性能



重要：表分区特性广泛应用
在数据仓库领域，表分区是最常使用的特性之一•
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PG如何处理继承表
CREATE TABLE join_table(c1 int,c2 int);
CREATE TABLE parent (c1 int,c2 int);
CREATE TABLE child1(c3 int) inherits (parent);
CREATE TABLE child2(c4 int) inherits (parent);INSERT：子表不继承

SELECT：子表在底层展开
SELECT * FROM parent p, join_table  j WHERE  p.c2=j.c2;

INSERT INTO parent VALUES(10,10);



PG如何处理继承表(2)
UPDATE/DELETE: 执行计划从顶层展开所有子表

UPDATE parent  p SET c1=j.c1 
               FROM  join_table  j WHERE  p.c2=j.c2;



PG使用表继承可实现表分区

log_no creation_time created_by content

log_no creation_time created_by content

创建表分区四步法

创建主表：CREATE TABLE op_log(…); 

log_no creation_time created_by content

log_no creation_time created_by content

创建子表：
CREATE TABLE op_log_2013()
                           INHERITS(op_log); 

增加子表约束：
ALTER TABLE op_log_2013 ADD 
CONSTRAINT log_range  CHECK 
(creation_time>DATE’2013-01-01’  AND 
creation_time<DATE’2014-01-01’);

< DATE'2013-01-01'

< DATE'2014-01-01'

< DATE'2015-01-01'

 DATE'2013-01-01'

 DATE'2014-01-01'

op_log_2013

op_log

op_log_2012

op_log_2014 指定路由机制： （Trigger/Rule）
CREATE TRIGGER  router_to_2013
BEFORE INSERT ON  log_range
FOR EACH ROW EXECUTE 
PROCEDURE …;

partition_range.sql

①

②

③

④



PG“表分区”性能(INSERT)

测试环境：5个子表，插入10K条数据，插入的所有数据都在一个分区内
                 每个tuple的大小16 byte

在批量插入的场景下，trigger对性能影响很大
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PG“表分区”性能(SELECT)
SELECT生成执行计划的时间 与 子表数量成线性关系

原因：
对主表的查询会展开成N+1条类似的查询语句。(N为主表的子表数量)

                  相当于要把同一条SQL语句(主表替换成子表)优化N+1遍                                     
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全表扫描 16 46 78 900 1,828 3,750 5,422 9,547
范围查询 16 47 78 500 937 1,900 2,750 5,203
点查询 470 875 1,875 2,687 4,797
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PG“表分区”：管理不易
创建分区表： （四步法）1.

步骤复杂(全手工)1.

易出错2.

创建索引：2.

创建N+1个索引3.

分区表的管理：3.

增加子表，三步。并需要修改主表路4.

由机制

删除子表，需要修改临近表的约束，5.

修改主表路由机制

子表合并/拆分6.

表模式约束不够4.

用户可以直接修改子表，导致子表的7.

表模式与主表不一样

主表是一张实实在在的物理表，并可8.

以保存数据
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改造PG：原生支持表分区

性能
设计原则

满足业务需求

内核侵入最小

最大分区数量1.

CURD的性能2.

复杂查询的时延3.

批量业务的性能4. 表分区策略1.

性能基线2.

分区管理功能3.

保持PG原生架1.

构，风险可控

侵入内核过多会2.

导致稳定周期长



改造PG-方案1：在上包一层

pg_class

op_log_2013

op_log_2012

op_log_2014

op_log

pg_attribute

pg_trigger

pg_constraint

pg_statistic

pg_index

pg_partition

优点：
普通表、父表、子表id在同一个id空间。元数据缓存空间、存1.
储引擎接口无需改动。
改动小，实现相对容易2.

缺点：
每一个子表都有一份元数据，冗余度高，系统资源占用高3.
表模式修改(DDL)需要更新所有子表元数据，失效消息数量剧增4.
因为以上原因导致对分区数的限制5.

父表是一张没有物理属性的虚拟表1.

增加pg_partition保存分区信息2.

每个子表也是pg_class中一张表3.

pg_toast



改造PG-方案2：在下加一层

pg_class

op_log_2013

op_log_2012

op_log_2014

op_log

pg_attribute

pg_trigger

pg_constraint

pg_statistic

pg_index

pg_partition

优点：
元数据缓存大大减小：所有子表的逻辑元数据只需要存一份1.
DDL语句修改更高效2.
子表数量支持的更多3.

缺点： （复杂度、工作量、内核侵入程度较高）
普通表与子表的id不在一个id空间4.
元数据缓存机制复杂：子表需要单独的缓存空间5.
存储引擎接口必须要区分普通表与分区表，并新增处理分支6.

分区表的逻辑/物理元数据解耦：

所有子表的逻辑元数据继承父表1.

每个子表独立保存物理元数据2.
pg_toast

方案
2为
当前

采

用方
案



改造PG-方案3：向下拉一层

pg_class_logic

pg_attribute

pg_trigger

pg_constraint

pg_statistic

pg_class_physical

优点：

从逻辑上统一了分区表和普通表。所有的表id都在同一个空间1.

元数据缓存和失效机制不需要再区分分区表和普通表2.

存储引擎接口不需要区分分区表和普通表3.

垃圾回收/统计采样等等都不再需要区分分区表和普通表4.

所有表的逻辑/物理元数据解耦：

所有表的元数据分逻辑/物理两层，对1.

应将pg_class拆分成pg_class_logic

和pg_class_physical两层

普通表是只有一个子表的特殊分区表2.

pg_toast

逻辑元数据层
物理元数据层

缺点：

对PG的程序架构和代码要1.

伤筋动骨的修改
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关键问题1：元数据与缓存失效机制

Session1

元数据表
缓存

RelationData

失效消息队列

Session2

元数据表
缓存

RelationData

Session3

元数据表
缓存

RelationData

进程1 进程2 进程3

PostgreSQL元数据缓存同步策略

一个RelationData包含一张表的所有表模式信息1.
一个Session中同一张表的RelationData实例最多只有一个2.
RelationData是从优化器、执行器、到存储引擎等共用的数据3.
结构
收到实效消息后RelationData会重建4.

PDataPDataPData

分区表的关键问题

RelationDataTable 1:1

RelationDataParent  Table 1:1

Partition PData1:1

子表的数据结构(PData)如何作为1.

参数在系统中传递(改动最小)？难

道要改所有的函数接口吗？

接收到表模式失效消息时，如何重2.

建主表和子表的信息？

1:m



关键问题2：分区表的统计信息
create table sta_test(c1 int,c2 int);

insert into sta_test values(generate_series(1,10),generate_series(100,200));
insert into sta_test values(generate_series(30,40),generate_series(300,400));
insert into sta_test values(generate_series(60,70),generate_series(600,700));

分区表统计信息的关键问题：

采集时，生成主表的统计信息还是每个子表的统计信息？1.

如果使用主表的统计信息，那么Pruning之后的，据此计算的cost偏差2.

很大(特别是分区键上的cost)

如果使用子表的统计信息，那么如何累加成主表的统计信息？子表太多3.

时，优化器效率如何保证？

特征值统计信息（c1）：MCV(Most Common Values)

直方图统计信息（c2）：

PostgreSQL统计信息：



关键问题3：表级锁与并发

Requested 
Lock Mode

Current Lock Mode

ACCESS 
SHARE
(SELECT)

ROW 
EXCLUSIVE
(I/U/D/)

ACCESS 
EXCLUSIVE
(DDL)

ACCESS 
SHARE
(SELECT)

    X

ROW 
EXCLUSIVE
(I/U/D/)

    X

ACCESS 
EXCLUSIVE
(DDL)

X X X

PG表级锁冲突矩阵(简化)

注:pg有8个级别的表级锁，常见的3个

分区表的关键问题

Pruning:0011

DROP  P2

Add/Drop  Partition 时父表上加什么锁？

Parent 

P1 P2 P3 P4

100 200 300 400

session1

SELECT >350

DROPED

session2

ERROR: P4?

INSERT INTO Interval分区表如何避免为同一
个子表创建两个物理文件？

（Interval分区表：向某个子表插入第一条记录
时才会为这个子表创建物理文件）



关键问题4：子表剪枝算法

分区
表：p_table(100,200,300,400,500)
查询:  SELECT * FROM ptable 
WHERE c>150 and (c<250 or c>450)

AND

ORC>150

C<250 C>450

11100 00001

01111 11101

01101

分区键是单列

分区键:  (c1,c2)    值域
P1: (100, 100)   {(-∞,100], (-∞,+∞)}
P2: (100, 200)  {100,          [100,200)}
P3: (100, 300)  {100,          [200,300)}
P4: (200, 200)  {[100,200], (-∞,+∞)}
P5: (200, 300)  {200,          [200,300)}
P6: (200, 500)  {200,          [300,500)}
P7: (300, 200)  {[200,300], (-∞,+∞)}
P8: (300, 400)  {[300,        [200,400]}

分区键是多列

查询:  SELECT * FROM ptable 
WHERE  c2>350

Pruning结果：P1,P4,P6,P7,P8  
?



关键问题5：算子
Append

Scan(P1) Scan(P2) Scan(P3) Scan(Pi)

Iterator
(P1,P2,P3)

Join

Scan(Pi)

Iterator
(P1,P2,P3)

Scan(Qi)

Iterator
(Q1,Q2,Q3)

Join
(P1,P2,P3)

(Q1,Q2,Q3)

Scan(Pi)

Iterator
(J1,J2,J3)

Scan(Qi)

P,Q分区策略完
全一样

①

②



时延的代价
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INSERT性能对比

               测试环境：     存储：SAS(15000rps)*2      计算：2P12C
               数据量   ：     100个子表，每个子表10w条数据，共1000w条数据
               测试目的：     主要针对OLTP类场景，验证表分区之后的性能代价
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SELECT(Index)性能对比
继承表场景下时间太长，中途中止
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UPDATE性能对比
继承表场景下时间太长，中途中止
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DELETE性能对比
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