
 达内 IT 培训集团

- 1 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

目录

1、Spring 框架介绍： .. - 2 -

2、Spring 框架结构： .. - 2 -

3、Spring 框架开发环境的搭建： ... - 2 -

4、Spring 框架注入的方式： .. - 3 -

5、复杂对象的创建（FactoryBean）： .. - 4 -

6、Spring 核心 IOC 介绍： .. - 5 -

7、Spring 工厂高级特性： ... - 6 -

8、Spring 核心 AOP 介绍： ... - 7 -

9、Spring 2.0 提供的新 AOP 编程方式： .. - 10 -

10、Spring 对于 DAO 层的支持： ... - 12 -

 达内 IT 培训集团

- 2 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

1、Spring 框架介绍：

Spring (春天)是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架。

Spring 本质：工厂，工厂设计模式的体现，工厂模式主要作用解耦合。

Spring 特点：轻量级，从大小与开销两方面而言 Spring 都是轻量的。完

整的 Spring 框架可以在一个大小只有 1MB 多的 JAR 文件里发布。并 且 Spring 所

需的处理开销也是微不足道的。此外，Spring 是非侵入式的：典型地，Spring 应

用中的对象不依赖于 Spring 的特定类。

2、Spring 框架结构：

可以在 www.springframework.org 下载 download 到 Spring 的源码。

spring 框架的目录结构：

aspectj 对AOP支持

* dist spring.jar

|- resources

|- spring配置文件信息

* doc 文档参考手册

jarcontent spring schema 支持

* lib 第三方jar

mock 模拟测试目录

samples 例子

src 源代码

test 测试目录

tiger spring 对 5.0 新特性的支持

3、Spring 框架开发环境的搭建：

1 jar 导入项目：

1 spring.jar，可以在 dist 文件夹下找到。

2 第三方 jar，可以在 lib 文件夹下找到。

2 框架配置文件导入项目：

Spring 配置名字：可以随便命名配置文件；

建议配置文件命名：beans.xml、applicationContext.xml

Spring 配置文件的放置位置：可以随便放置，建议放置到 src 下。

3 Spring Core API：

核心 ApplicationContext 工厂创建对象，ApplicationContext 实例的创建：

非 web 环 境 ， 可 以 通 过 ClassPathXmlApplicationContext 创 建

 达内 IT 培训集团

- 3 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

ApplicationContext 实例。

在 web 环境，可以通过 WebApplicationContext 创建 ApplicationContext 实

例。

4 Spring 框架的开发步骤

1 beans.xml 配置文件中，配置需要创建的对象；

2 创建 Spring 工厂，并且创建需要的对象。 注意: 在 spring 配置文件中，

<bean id="u" class="xxx.User"/>

Spring 会自动进行对象的创建(User u = new User();)

4、Spring 框架注入的方式：

Spring 框架在创建对象的同时可以在配置文件中，对于成员变量进行赋值（注入）。

注入:通过配置文件对于成员变量的赋值。

A． set 方式的赋值(set 注入，推荐使用)：

前提: 必须为成员变量提供 set、get 方法。

 <bean id="u" class="User">

<property name="name"> --- setXXX方法

1 jdk 数据类型的赋值

2 自定义类型

</property>

</bean>

 1 jdk 数据类型的赋值

赋值内容是String或者8种基本类型数据，应用<value></value>把赋值内容

包含起来。

赋值内容为set 、list集合：

 <list></list>

<set></set>

赋值内容为数组：

 <list>

<value></value>

</list>

赋值内容为 map 集合：

Entry 是 Map 中的 key 和 value 为属性，封装在一起的对象。

<map>

<entry>

<key></key>

xxx

</entry>

</map>

赋值内容 Properties 格式文件： Properties 是特殊的 Map，key value 都是字符串，

Properties 既是 Map<String,String>

<props>

 达内 IT 培训集团

- 4 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

<prop key="">xxxx</prop>

</props>

2 自定义类型：

<bean id="uD" class="userDAO"/>

<bean id="" class="userService">

<propety name="userDAO">

<ref local="uD"/>

</property>

 </bean>

B． 通过构造方法对于成员变量赋值(构造注入)：

前提: 必须提供构造方法（构造器）。

1 配置文件：

<bean>

<constructor-arg>

 xxx

</constructor-arg>

</bean>

 2 构造方法可以重载：

a 构造方法的构造参数个数不同，Spring 根据<constructor-arg>，标签数

量进行构造方法的选取。

b 构造方法的构造参数个数相同，通过<constructor-arg type=""/>参数类型

的不同，进行选取。

C． 自动为成员变量赋值 (自动注入，不推荐使用)：

1 配置文件：

<bean id="userDAO" class="day1.ioc.set.JdbcUserDAOImpl"/>

<bean autowire="byType" id="userService"

class="day1.ioc.set.UserServiceImpl">

</bean>

2 自动注入方式：

autowire="byType"：spring 自动在配置文件中找到一个和 userSevice 成员

变量 userDAO 类型相同的对象赋值进去。

autowire="byName"：spring 自动在配置文件中找到一个和 userSevice 成

员变量 userDAO 同名对象赋值进去。

5、复杂对象的创建（FactoryBean）：

复杂对象的创建布置：

1 xxx(复杂对象) implements FactoryBean

实现 FactoryBean的方法：

 达内 IT 培训集团

- 5 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

public Object getObject();

作用: 用于书写创建复杂对象的代码；

返回值: 创建的复杂对象；

public Class getObjectType();

作用: 返回所创建的赋值对象的类型；

public boolean isSingleton();

作用:用于控制复杂对象生产次数；

返回:true 通过 spring 工厂操作几次都获得是同一个复杂对象

（单例模式）；

返回:false通过 spring工厂每一次获得的都是新的复杂对象 。

实现接口规律：

1 了解所需要实现方法的作用；

2 绝大多数不是程序员调用；

3 方法参数不用关心那里来的，直接使用；

4 按照要求提供方法返回值。

2 配置文件： <bean id="" class=""/>

注意:如果配置的是 FactoryBean 接口的实现类，那么通过 id 的值，获

得的是 FactoryBean 接口实现类，所创建的复杂对象。

3 通过 ApplicationContext.getBean(“xxx”)获得复杂对象的实例。

6、Spring 核心 IOC 介绍：

IoC（inverse of control）即反转的控制；

概念: 对成员变量赋值的控制权从代码中反转(转移)到配置文件中进行

赋值；

好处: 降低代码的耦合性，利于维护。

DI（dependency injection）即依赖注入；

概念:需要那个对象等效于依赖这个对象，当依赖某个对象时，就可以把

它作为成员变量， 附加：<bean id="" class="" scope=" "/>

scope作用:控制简单对象生成次数；

 达内 IT 培训集团

- 6 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

singleton:每一次从工厂中获得的都是同一个对象 (默认)

prototype:每一次从工厂中获得的都是不同的对象

Spring 为什么控制对象的生产次数：减少内存侵占通过 spring 配置文

件进行赋值。

7、Spring 工厂高级特性：

1 Spring 工厂创建对象的方式：

结论: Spring 会在工厂创建的同时，创建工厂生产的对象。

验证：<bean id="u" class="XXXXX.User"/>

ApplicationContext ctx = new ClassPathXmlApplication();

ctx.getBean("u");

2 Spring 工厂生产对象的生命周期：

什么时候创建:工厂创建，同时对象创建，提供初始化方法:

<bean id="" class="" init-method=""/>

提供销毁方法:<bean id="" class="" destroy-method=""/>

什么时候销毁:工厂关闭，同时对象销毁

3 Spring 配置文件的参数化(PropertyHolder)：

把 spring 配置文件中经常需要修改的字符串配置信息，从 spring 大的配

置文件中，转移到一个小的配置文件。

a. 准备小的配置文件： xxx.properties 文件名 ：随便命名； 放置位置 ：

随便放置。

b. spring 提供了一个类，作用:把小的配置文件中的信息和大配置文件进

行 整 合 spring 配 置 文 件 中 配 置 使 用 ：

org.springframework.beans.factory.config. PropertyPlacehoderConfigurer

c. 把原有大配置文件中，经常变化字符串的位置替换成${} ${username}

作用：到小配置文件中找到以 usernam，为 key 的内容来充当现在的值。

4 自定义类型转换器 (CustomEditor)：

 Spring自动把配置文件中书写的字符串，变量对应的类型，进行赋值：

类型转换器： int = Integer.parseInt("23");

自定义开发：

a. 引入jdk中的java.beans.xxx

开发类 implements PropertyEdito 接口，主要实现 setAsText();方法。

开发类 extends PropertyEditorSupport 类，重写 setAsText();方法。

b． 配置文件

1 声明类型转换器

2 注册类型转换器

具体配置文件，例子：

 达内 IT 培训集团

- 7 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

<bean id="dateConverter" class="day2.custom.DateConverter">

</bean>

<bean id="customEditor"

class="org.springframework.beans.factory.config.CustomEditorConfigurer">

<property name="customEditors">

<map>

<entry>

<key>

<value>java.util.Date</value>

</key>

<ref local="dateConverter"/>

</entry>

</map>

</property>

</bean>

8、Spring 核心 AOP 介绍：

AOP（Aspect Oriented Programming）切面_面向_编程：

面向切面编程，该思想主要是考虑改善程序的结构，是对OOP(面向对象编

程)的一个补充，AOP关注的重点是切面，OOP关注的重点是类。

代理设计模式 (Proxy)：

为其他对象提供一种代理以控制对这个对象的访问（增加额外功能）。

创建代理类：

代理3要素：

1 核心业务类(核心的功能,dao)、目标类(原始类) 、目标方法、原始

方法；

2 额外功能；

3 代理类和核心业务类实现相同的接口。

静态代理设计模式：

1 原始核心业务类(原始类,目标)；

2 额外功能；

3 原始类和代理类实现相同的接口，每一个核心业务类(目标类) 都

创建一代理类。

动态代理设计模式：

使用Spring框架创建代理类：

1 创建原始类，并且在spring配置文件中进行配置；

2 创建额外的功能类(生成代理类，所需要的工具类)，实现Adivce接口（子

接口），并在配置文件中配置：

 达内 IT 培训集团

- 8 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

A MethodBeforeAdvice额外功能运行在原始方法运行之前执行：

before(Method, Object[], Object)

Method 额外的功能所增加个的那个方法

Object[] 额外的功能所增加个的那个方法的参数

Object 额外的功能所增加个的那个原始对象

B AfterReturnningAdvice 额外功能运行在原始方法运行之后执行：

 afterReturning(Object, Method, Object[], Object)

Object 额外功能所增加给的那个方法的返回值

Method 额外的功能所增加个的那个方法

Object[] 额外的功能所增加个的那个方法的参数

Object 额外的功能所增加个的那个原始对象

C MethodInterceptor额外功能运行在原始方法运行之前后执行：

Object invoke(MethodInvocation)

MethodInvocation 额外功能所增加给的那个方法

return Object 额外功能所增加给的那个方法的返回值

D ThrowsAdvice 额外功能运行在原始方法抛出异常的时候执行：

 afterThrowing(Method, Object[], Object, Throwable)

Method 额外功能所增加给的那个方法

Object[] 额外的功能所增加个的那个方法的参数

Object 额外的功能所增加个的那个原始对象

Throwable 额外的功能所增加个的那个方法抛出的异常

 3 利用 org.springframework.aop.framework.ProxyFactoryBean 自动创建代理

对象： 主要配置文件：

 <bean id="orderService" class="day3.dynamic.OrderServiceImpl"></bean>

<bean id="arroud" class="day3.dynamic.ArroundAdvice"/>

<bean id="orderServiceProxy"

class="org.springframework.aop.framework.ProxyFactoryBean">

<property name="target">

<ref local="orderService"/>

</property>

<property name="interceptorNames">

<list>

<value>arroud</value>

</list>

</property>

</bean>

附加： ProxyFactoryBean 建议者(配置对于那些方法添加额外功能，进行自动创

 达内 IT 培训集团

- 9 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

建代理对象)：

配置文件，例子：

 <bean id="userService" class="day3.aspect.UserServiceImpl"/>

<bean id="before" class="day3.aspect.Before"/>

<bean id="nameMatch"

class="org.springframework.aop.support.NameMatchMethodPointcutAdvis

or">

<property name="mappedNames">

<list>

<value>login</value>

<value>register</value>

</list>

</property>

<property name="advice">

<ref local="before"/>

</property>

</bean>

<bean id="userServiceProxy"

class="org.springframework.aop.framework.ProxyFactoryBean">

<property name="target">

<ref local="userService"/>

</property>

<property name="interceptorNames">

<list>

<value>nameMatch</value>

</list>

</property>

</bean>

标签继承：

基本书写方式：

 <bean id="p" class="" abstract="true">

<xxxx>

</bean>

<bean id="userProxy" class="ProxyFactoryBean" parent="p">

</bean>

例子（书写一个父标签建议者，可以通过继承，实现动态生成代理对象）：

 <bean id="parentConfig"

class="org.springframework.aop.framework.ProxyFactoryBean"

abstract="true">

<property name="interceptorNames">

<list>

<value>nameMatch</value>

 达内 IT 培训集团

- 10 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

</list>

</property>

</bean>

<bean id="userServiceProxy"

class="org.springframework.aop.framework.ProxyFactoryBean"

parent="parentConfig">

<property name="target">

<ref local="userService"/>

</property>

</bean>

对多个原始对象的多个方法，实现动态自动的生成代理对象：

通过

org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreat

or实现；

注意：通过原始对象的id值获取，动态自动的生成代理对象，可以通过*

匹配多个原始对象（名字要有规律）。

例子：

 <bean id="auto"

class="org.springframework.aop.framework.autoproxy.BeanNameAutoProx

yCreator">

<property name="beanNames">

<list>

<value>*Service</value>

</list>

</property>

<property name="interceptorNames">

<list>

<value>nameMatch</value>

</list>

</property>

</bean>

9、Spring 2.0 提供的新 AOP 编程方式：

 1 原始对象；

2 额外的功能切面(Aspect，生成代理类，所需要的工具类)：

需要在切面类前加@Aspect 标注；

同时要在切面类里的方法前加@Before、@AfterReturning、@Around、

@AfterThrowing 标注，同时添加 execution 表达式。

3 创建代理<aop:asepctj-autoproxy/>

配置文件例子：

 达内 IT 培训集团

- 11 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

 <bean id="userService" class="day4.aspect2.UserServiceImpl"></bean>

<bean id="myAspect" class="day4.aspect2.MyAspect"></bean>

<aop:aspectj-autoproxy></aop:aspectj-autoproxy>

execution(表达式)：

public void register (day2.sh.User)

修饰符 返回值 方法名字 (参数表)

方法级别 可以省略前面的修饰词 public）：

* register(..) 不关心返回值和参数列表；

void register(String,..) 参数列表第一个是 String 类型，其他参数不关心；

public * register*(String,..) 不关心返回值，方法名后半部分不关心。

类级别：

public * day4.aspect2.UserServiceImpl.register(String,String)

不关心返回值，必须是 day4.aspect2.UserServiceImpl 类的 register 方法，

同时参数是两个 String 类型。

public * day4.aspect2.UserServiceImpl.*(..)

必须是 day4.aspect2.UserServiceImpl 类的方法。

包级别：

public * day4.*.*(..) 必须是 day4 包下的类、方法（直接包含类）

public * day4..*.*(..) 必须是 day4 下及其子包的类与方法

全级别：

* *(..) 匹配任意的类、方法

附加：

args()：通过方法的参数进行额外功能的加入 。

args(String,String) 等同于 execution(* *(String,String))

参数必须是两个 String 类型。

args(day2.sh.User)

参数必须是一个 day2.sh 包下的 User 类型。

within()：对类或者对包选取进行额外功能的加入 。

within(day4.aspect2.UserServiceImpl)

需是 day4.aspect2 包下的 UserServiceImpl 类。

within(day4.*);

需是 day4 的直接子类。

within(day4..*) ;

需是 day4 包下的所有包及其子包的所有类。

注意：

可以在@Before、@AfterRetuning、@AfterThrowing 标注的方法加 JoinPoint

参数；

JoinPoint接口表示目标类连接点对象。JoinPoint的主要方法如下：

java.lang.Object[] getArgs() ：获取连接点方法运行时的入参列表； 

Signature getSignature() ：获取连接点的方法签名对象； 

java.lang.Object getTarget() ：获取连接点所在的目标对象； 

java.lang.Object getThis() ：获取代理对象本身；

 达内 IT 培训集团

- 12 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

10、Spring 对于 DAO 层的支持：

1 Spring 连接池（Connection 连接池）：

org.apache.dbcp.commons.BasicDataSource;

2 Spring 对于 JDBC 的 DAO 层支持，提供 JdbcTemplate 工具类：

org.springframework.jdbc.core.JdbcTemplate;

A JdbcTemplate 重要部分方法（详细方法，见 API）：

int update(String sql,Object[]args)

sql：sql语句；args：占位符所指的参数。

List query(String sql, Object[] args, RowMapper rowMapper)

RowMapper：对于查询语句封装成对象的工具类。

Object queryForObject(String sql,Object[] args,RowMapper rowMapper)

查询语句只返回一个对象的情况。

B 对于查询语句封装成对象，工具类xxx implements RowMapper：

Object mapRow(ResultSet, int)方法：

Object ：返回封装的对象；

ResultSet ：查询结果集。

Int ：查询结果集当前是第几条（从0开始）。

配置文件，例子：

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">

<property name="username">

<value>root</value>

</property>

<property name="password">

<value>1234</value>

</property>

<property name="driverClassName">

<value>com.mysql.jdbc.Driver</value>

</property>

<property name="url">

<value>jdbc:mysql://localhost:3306/test</value>

</property>

</bean>

<bean id="jdbcTemplate"

class="org.springframework.jdbc.core.JdbcTemplate">

<property name="dataSource">

<ref local="dataSource"/>

</property>

</bean>

<bean id="userDAO" class="day4.dataSource.UserDAOImpl">

 达内 IT 培训集团

- 13 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

<property name="jdbcTemplate">

<ref local="jdbcTemplate"/>

</property>

</bean>

3 Spring 对于 Hibernate 的 DAO 层支持，提供 HibernateTemplate 工具类：

org.springframework.orm.hibernate3.HibernateTemplate

A HibernateTemplate 封装了 Session（更强大的 Session）：

B 配置文件：

可以通过 org.apache.commons.dbcp.BasicDataSource、

org.springframework.orm.hibernate3.LocalSessionFactoryBean

不用编写 hibernate.cfg.xml 的配置文件。

配置文件，例子：

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">

<property name="username">

<value>root</value>

</property>

<property name="password">

<value>1234</value>

</property>

<property name="driverClassName">

<value>com.mysql.jdbc.Driver</value>

</property>

<property name="url">

<value>jdbc:mysql://localhost:3306/jd1105db</value>

</property>

</bean>

<bean id="sf" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<!-- 连接相关参数 -->

<property name="dataSource">

<ref local="dataSource"/>

</property>

<!-- 自身属性相关参数 dialect show_sql format_sql-->

<property name="hibernateProperties">

<props>

<prop key="hibernate.dialect"> org.hibernate.dialect.MySQL5Dialect</prop>

<prop key="hibernate.show_sql">true</prop>

<prop key="hibernate.format_sql">true</prop>

</props>

</property>

 达内 IT 培训集团

- 14 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

<!-- 映射文件注册 -->

<property name="mappingResources">

<list>

<value>day2/sh/User.hbm.xml</value>

</list>

</property>

</bean>

<bean id="hibernateTemplate"

class="org.springframework.orm.hibernate3.HibernateTemplate">

<property name="sessionFactory">

<ref local="sf"/>

</property>

</bean>

 <bean id="userDAO" class="day5.hibernate.UserDAOImpl">

<property name="template">

<ref local="hibernateTemplate">

</ref>

</property>

</bean>

附加：HibernateTemplate 封装Session ，提供更强大的功能：

a hibernateTemplate 获得Session时，自动对Session进行线程绑定；

b hibernateTemplate 会为 dao 自动的加入事务；好处:测试方便；

c 简化hql 操作：

 String hql=”from User as u where u.name = ?”;

Object args = {"suns"};

List l=hibernateTemplate.find(String hql,Object[] args);

 d 通过HibernateCallback，使用原始的Hinernate的session执行HQL：

（建议使用内部类的方式）

 HibernateTemplate .execute(my);

public my implements HibernateCallback {

public Object doInHibernate(Session session){

session 为所欲为

}

}

4 Spring对于Hibernate的事务支持：

a 什么是事务：事务是保证业务操作完整性的机制。

 达内 IT 培训集团

- 15 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

b 事务在多数那里控制： Service层。

c 事务怎么控制：

Jdbc通过Connection实现：

Connection.setAutoCommit(false);

Connection.commit();

Connection.rollback();

Hibernate通过session实现：

Transaction = session.beginTranasction();

tx.commit();

tx.rollback();

d Spring框架中怎么控制事务： AOP (代理)

在AOP 1.2中的实现：

1 创建原始对象；

2 添加额外功能:MethodInterceptor(4中建议者)

org.springframework.orm.hibernate3.HibernateTransactionManager

DataSourceTranasctionManager

3 加入切面：

org.springframework.tranaction.interceptor.TranasctionInterceptor

4 自动创建代理对象： BeanNameAutoProxyCreator

例子：

<!-- transaction begin -->

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">

<property name="username">

<value>root</value>

</property>

<property name="password">

<value>1234</value>

</property>

<property name="driverClassName">

<value>com.mysql.jdbc.Driver</value>

</property>

<property name="url">

<value>jdbc:mysql://localhost:3306/jd1105db</value>

</property>

</bean>

<bean id="sf" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<property name="dataSource">

<ref local="dataSource"/>

</property>

<property name="hibernateProperties">

<props>

<prop key="hibernate.dialect"> org.hibernate.dialect.MySQL5Dialect</prop>

<prop key="hibernate.show_sql">true</prop>

 达内 IT 培训集团

- 16 -
 由于本人知识水平有限，总结的笔记中倘若有错误的地方，欢迎联系我批评指证；Email：donglong@tarena.com.cn

<prop key="hibernate.format_sql">true</prop>

</props>

</property>

<property name="mappingResources">

<list><value>day2/sh/User.hbm.xml</value></list>

</property>

</bean>

<bean id="userService" class="day5.hibernate.UserServiceImpl">

<property name="userDAO">

<ref local="userDAO"/>

</property>

</bean>

<bean id="hibernateTransactionManager"

class="org.springframework.orm.hibernate3.HibernateTransactionManager">

<property name="sessionFactory">

<ref local="sf"/>

</property>

</bean>

<bean id="transactionInterceptor"

class="org.springframework.transaction.interceptor.TransactionInterceptor">

<property name="transactionManager">

<ref local="hibernateTransactionManager"/>

</property>

<property name="transactionAttributes">

<props>

<prop key="register"></prop>

</props>

</property>

</bean>

<bean id="auto"

class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">

<property name="beanNames">

<list>

<value>*Service</value>

</list>

</property>

<property name="interceptorNames">

<list>

<value>transactionInterceptor</value>

</list>

</property>

</bean>

