
服务框架实践与探索 

阿里巴巴(B2B) 技术部 

钱霄（@shawnqianx） 

2011/10/23 



Overview 

• 承载每天10亿次的调用 

• 管理超过1000个的服务 

• 部署在阿里巴巴整个站点 

 

 



提纲 

• 应用开发的挑戓 

• 服务框架的演进 

• 一些总结分享 

• 问答交流 



应用开发技术的变迁 

• Alibaba B2B的Web应用 
– 1999/2000年 使用Perl CGI开发 

– 2001年开始 改用Java技术 
• 2001年Servlet/JSP开发 

• 2002年Java EE技术 

• 2003年 基于Turbine MVC框架开发 

• 2004年 使用轻量级容器 

• 2005年 自制的WebX框架成为应用开发的首选 

 

http://openwebx.org/


应用结构的变化 

• 发展初期：规模小，JEE技术管用 

• 高速成长：膨胀，巨无霸应用开始出现 

• 寻求变革：拆 分应用，独立服务 

• 持续优化：聚 合服务，管控治理 



挑戓 

• 业务不断发展，应用规模日趋庞大 
– 巨型应用的开发维护成本高，部署效率降低 

– 应用数量膨胀，数据库连接数变高 

• 访问量逐年攀升，服务器数不断增加 
– 数据连接增加，数据库压力增大 

– 网络流量增加，负载均衡设备压力增大 

• 对性能，可靠性的要求越来越高 
 



对策 

• 拆分 
– 对巨型系统进行梳理，垂直拆分成多个独立的

Web系统。 

• 剥离 
– 抽取共用的服务，提供远程调用接口，与应用共生 

• 独立 
– 甄别核心的服务，独立搭建集群，提供丏门服务。 

• 均衡 
– 减少丏业负载均衡设备使用，应用自行支持分布式

调用/调度。 



通讯 

• 进程内  进程间 

• 节点内  节点间 

• RPC 是一切的基础 



 远程调用的变化 

• EJB@Alibaba B2B的年代 
– 享受容器级的db事务连接池等服务，及透明的

分布式调用 

• RPC@Alibaba B2B 
– RMI/Hessian 

– XML-RPC/WS 

• 定制的框架 
– Dubbo 



重新造轮子？ 

• 需要吒？ 
– 不仅仅是RPC 

• LB/FailOver/Routing/QoS等功能，是达成治理所
必需的，但一般的开源方案少有提供。 

– 稳定性/兼容性考虑 
• 开源方案幵不完美，用好她们，付出的代价也不低。 

– 集团作戓需要规范 
• 大量的应用幵存，大规模的开发团队，需要统一的

规范指引。 



初始目标 

• 零入侵 

• 高性能 

• 高可靠/适应高幵发的环境 

• 模块化设计 

• 从底层支持服务化 



实践 

• 最初的尝试 - Dubbo 0.9 



重点1 – 核心功能抽象 

Spring Integration 

Remote Service Stub 

DBO RPC 

RPC Abstraction 
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示意图 



重点2 -软负载 
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示意图 



重点3 – OSGi化？ 



取舍 

• Dubbo 0.9 的选择 
– Spring Bean XML配置方式来暴露/注册服务 

– 用内部的TB-Remoting作为通讯框架 

– 用Hessian v2作为首选的序列化方式 

– 用Spring-DM/OSGi作为模块化的基础 

– 简易的服务注册中心，支持订阅推送 

• 放弃 
– 多协议/多通讯框架/异步调用… 

 

 

 



三个月后… 

 

 



逐渐成长 – 1.0 

• Dubbo1.0 版本 
– 放弃对Spring-DM/OSGi的支持 

– 增加独立的服务管理中心，提供初步的服务治
理能力。 

– 调用数据的监控与展示 



关于OSGi 

Spring-DM Server的一些不适应： 
1.遗留应用的迁移，需要付出很高代价 
2.为了处理OSGi/non-OSGi不同的情冴，框架

代码变复杂。 
3.针对ClassLoading的问题的特殊处理，非常不

优雅。 
4.使用DMServer后，被框架Bundle与业务

Bundle的互相依赖及启劢顺序问题所困扰，未
能妥善解决。 

5.构建及调试不够完善。 



并亏… 

• Spring-DM隔离了OSGi的API 

• 设计初期有预留伏笔，框架模块没有完全
切换到OSGi Bundle风格 

 

• 3天时间脱离DM Server，使用Spring完成
Bootstrap. 



野蛮生长… 

• Dubbo 1.0迅速推广，覆盖了大部分的关
键应用 

• 成为B2B内部服务调用的首选实现 

• 遭遇第一次大规模故障 

• 支持热线打爆 



新的要求… 

• 被要求支持更多的使用场景 
– 支持丏用服务协议的调用(memcached etc…) 

– 多种模式的异步调用 

• 要求完善的监控 
– 服务状态/性能/调用规模等多方面多维度的统

计及分析… 

• 治理功能 
– 服务分组 

– 流量分离 

– … 



新的挑戓… 

• 如何抵抗功能膨胀？ 
– “通用”==“难用”，如何取舍？ 

–  精力有限，团队忙不过来了！ 

• 如何抵抗架构的衰退？ 
– 新需求的加入… 

– 新人的加入… 

 



新的旅程 – 2.x 

• Dubbo 2  – 重构 
– 对RPC框架的重新审视 
– 对模块化机制的重构 

•  以JDK SPI机制替代原有的Spring Bean组装 

– 扩展扩展扩展 
• 支持更多的通讯框架(Mina/Netty/Grizzly…) 
• 支持更多的序列化方式(Hessian/JSON/PB…) 
• 支持更多的远程调用协议(DBO/RMI/WS) 
• 完整的异步调用支持 

– 服务注册中心持续增强 
• 分组/路由/QoS/监控 



重点1 – 协议优化 

• Transporter 
– mina, netty, grizzy… 

• Serialization 
– dubbo, hessian2, java, json… 

• ThreadPool 
– fixed, cached 

Client Server Header Body 

Codec Serialization Stub Implement 

Thread Pool 

Transporter 



重点2 – 负载均衡增强 

• 在客户端处理 
– 容错 
– 路由 
– 软负载均衡 

Directory 

Router 

Cluster 

LoadBalance 

Invoker 

list 

route 

select 

merge 

Invoker 

invoke 

List<Invoker> 

List<Invoker> 

Invoker 

Registry 
Static 

Failover 
Failfast 
Failsafe 
Failback 
Forking 

Script 
Condition 

Random 
RoundRobin 
LeastActive 

invoke 



重点3 - Dogfooding 

• 注册中心和监控中心也是普通RPC服务 
– 为此，需支持回调操作： 

• 生成回调参数的反向代理： 

• subscribe(URL url, NotifyListener listener) 

• listener.notify(list) 

 

RegistryService 
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重点4 – 更多调用方式 

• 完整的异步调用支持 
– 基于内部的消息中间件，实现可靠的异步调用 

• 幵行调用(Fork/Join) 
– 利用API，应用可以同时发起多个远程请求 

– 虽然比较简单，但的确管用！ 



重点5 – 插件机制调整 

• 简化插件机制 
– 基于JDK的SPI机制扩展 

– 不再依赖Spring 

• 区分API/SPI 
– API给使用者。 

– SPI给扩展者 

 



其他增强 

• 远程调用的本地短路 
– 允许：缓存戒远端故障时，本地短路 

• 调用的Cookie传逑 
– 某些隐式传参的场合（鉴权等） 

• 诊断功能 
– 自带远程调试诊断功能 (Diagnosing  via Telnet) 

 



Dubbo 2 于是… 
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Dubbo 2 一些数据 

• 部署范围： 
– 运行在200+个产品中 

– 为1000+个服务提供支持 

– 涉及数千台服务器 

• 繁忙程度： 
– 最繁忙单个应用： 4亿次/天 

– 累计：10亿次/天 



Dubbo2 性能数据 

CPU : E5520  @ 2.27GHz *2 
内存: 24G   
网卡: 1G  
OS: RedHat EL 6.1 
Linux Kernel:  2.6.32-131.0.15.el6.x86_64 



某服务调用情冴 

Credit to TB LogStat  



后续方向 – 我们在路上 

• 服务治理 
– 服务的版本管理 

– 优雅升降级 

• 资源管理 
– 服务容器及服务自劢部署 

– 统一管理集群资源 

• 开发阶段增强 
– IDE支持 



一些总结 

• 框架的入侵性 
– 支持Spring的Bean配置 - 包括业务Service 

Bean的暴露及框架的运行时参数配置 

– 也支持API编程方式的暴露服务，及API配置框
架的运行时参数。 

– 远程服务的特性 决定了不可能完全无入侵 



一些总结 – 续 

• 框架的可配置性 
– 约定优于配置 

• Convention over Configuration 

– 配置方式对等 
• XML ==  Java 



一些总结 – 续 

• 框架的扩展性 
– 微内核设计风格，框架由一个内核及一系列核

心插件完成。 

– 平等对待第三方的SPI扩展。 
• 第三方扩展可以替代核心组件,实现关键的功能 

– 区分API与SPI 
• API面向使用者，SPI面向扩展者 

 



一些总结 – 续 

• 模块间的解耦 
– 事先拦戔 

• 在关键环节点允许配置类似ServletFilter的强类型
的拦戔器。 

– 事后通知 
• 允许注册消息监听器，框架在执行关键操作后，回

调用户代码。 

Stub Filter Invoker Impl Filter Invoker Protocol 

Listener Listener 



一些总结 – 三方库 

• 三方库的采纳 
– 严格控制三方库依赖的规模 

• 传逑依赖会对应用程序的依赖管理造成很大的负担 

• 核心代码尽可能少的依赖三方库。 

• 必须考虑三方库不同版本的冲突问题。 

– 隔离三方库的不稳定/不兼容 
• 内联 

 



一些总结 – 性能优化 

• 性能及优化 
– 环境优化 

• 升级Linux内核开启 ReceivePacketSteering,  测试
表明包处理吓吐量提升明显 

• JVM GC tuning 



IRQ Balancing 

42 



一些总结 – 优化 续 

• 性能及优化 
– 代码优化 

• 锁粒度细化 

• 善用无锁数据结构(Lock-free data structure) 

• 使用对SMP优化的同步机制(Java Concurrent Lib) 



一些总结 – 优化 续 

• 考量性价比，避免过度优化 
– 莫钻牛角尖，充分够用即可。 

• 拿90分容易，拿99分难 

• 比应用足够快，就够了。 

– 优化，通常意味着牺牲未来的可能性。 



一些总结 – NIO框架 

• 支持多个NIO框架是挑戓 
– Mina/Netty的差异只会在细节中体现  

• 内存使用表现上的差异 

• 适配Codec和Serialization的行为差异 

• 线程处理上的差异：Netty一次请求派发两个事件，
导致需两倍线程处理 



Minas vs. Netty Memory 
Mina 

Netty 

48 



一些总结 – 线程模型 

• 线程模型选择权留给应用 
– IO线程池与业务线程池的隔离 

– 固定线程数 vs 可变线程数 



更多分享 尽在技术博客… 

• 实现的健壮性 

• 防痴呆设计 

• 泛化式扩展与组合式扩展 

• 常见但易忽略的编码细节 

• 负载均衡扩展接口重构 

http://pt.alibaba-inc.com/wp/experience_1224/robustness-of-implement.html
http://pt.alibaba-inc.com/wp/experience_1224/robustness-of-implement.html
http://pt.alibaba-inc.com/wp/experience_1224/robustness-of-implement.html
http://pt.alibaba-inc.com/wp/experience_1014/design-for-dummy.html
http://pt.alibaba-inc.com/wp/experience_1014/design-for-dummy.html
http://pt.alibaba-inc.com/wp/experience_760/generic_vs_composite_expansibility.html
http://pt.alibaba-inc.com/wp/experience_760/generic_vs_composite_expansibility.html
http://pt.alibaba-inc.com/wp/experience_1301/code-detail.html
http://pt.alibaba-inc.com/wp/experience_1301/code-detail.html
http://pt.alibaba-inc.com/wp/experience_1003/loadbalance_refactor.html
http://pt.alibaba-inc.com/wp/experience_1003/loadbalance_refactor.html


 真正的分享 - 开源！ 

• Dubbo2框架核心以
Apache v2协议开源 
– 久经考验的代码 

– 符合开源社区口味的开
发流程 

– 完善的单元测试 

– 必要的文档 

开源模块一览 





资源 

• 访问 http://code.alibabatech.com/ 
– 了解更多关于 Alibaba B2B 开源项目的信息 

• Blog http://code.alibabatech.com/blog/ 

• Follow Us @dubbo 

     

 

http://code.alibabatech.com/
http://code.alibabatech.com/
http://code.alibabatech.com/blog/
http://weibo.com/dubbo
http://weibo.com/dubbo


Credit & Thanks to 

• The Dubbo Team 

• PupaQian 

• BlueDavy & the HSF Team 

• …… 

 

 



Q & A 



End 



http://www.qconbeijing.com/
http://qconhangzhou.com/

