
JS is JS

编写JavaScript独有风格的高质量代码

About

ß  My influences were awk, C, HyperTalk, and
Self, combined with management orders to
"make it look like Java."

——Brendan Eich

Agenda

ß  抽象
ß  面向对象
ß  函数式
ß  过程式

抽象

抽象的方法

1.  简化
Þ  将复杂物体的一个或几个特性抽出去，而只注

意其他特性的行动或过程

2.  归纳
Þ  将几个有区别的物体的共同性质或特性，形象

地抽取出来或孤立地进行考虑的行动或过程。

抽象的方法——简化

function calculate() {
 return 3*Math.pow(1.3,10)-3;
}

抽象的方法——归纳

同⼀一事物的抽象可能不同

对问题抽象

ß  教师分苹果问题：
Þ  有一个老师分苹果给3个小朋友，每个小朋友
分3个苹果，请问小朋友们一共有多少个苹果？

 function totleApples(kidsCount,appleCount) {
 return kidsCount*appleCount;
}

对问题错误的抽象

ß 
function totalApples(count) {
 return count*count;
}

过于具体的抽象
function Apple() {
}
function Kid() {
 this.apples = [];
 this.receiveApple = function (apple) {
 apples.push(apple);
 }
}
function Teacher() {
 this.dispatchApple = function(kid) {
 kid.receiveApple(new Apple());
 kid.receiveApple(new Apple());
 kid.receiveApple(new Apple());
 }
}

function totalApples() {
 var kids = [new Kid(), new Kid(), new Kid()];
 var teacher = new Teacher();
 kids.forEach(function(kid){
 teacher.dispatchApple(kid);
 })
 return kids.reduce(function(sum,e,i){
 return sum+e.apples.length;
 });
}

面向过程抽象

过程式

ß  过程是一种最常见的抽象
ß  过程式不是一种落后的编程范式
ß  程序 = 数据 + 过程

过程式
var data1,data2,data3;
function process_main() {
 data1 = ……
 process1();
 process2();
 function process1(){
 data2 = ……
 }
 function process2(){
 data3 = ……
 }
}

面向对象抽象

面向对象

ß  对象是一个朴素的概念，大约在人2-3岁时
产生

描述每⼀一个对象
ß  长方形

Þ  四条边、四个角都是直角
Þ  有长、宽

ß  平行四边形
Þ  四条边、对边平行
Þ  有两个边长、倾斜角

ß  圆形
Þ  没有边，所有点到原点距离相等
Þ  有半径

ß  三角形
Þ  三条边
Þ  有三条边长

JS中描述独立对象

var object = {
 width:100,
 height:200,
};

分类描述对象

几何图形

多边形

三角形

四边形
平行四边

形
圆形

JS中分类描述对象
function Parent()
{
}

function Child(x)
{
 Parent.call(this);
 this.x = x;
}

面向对象——原型

原型方式描述对象

四边形

三角形
多了一条边

平行四边形

对边平行
等腰三角形

两边相等

JS中原型方式描述对象
function Cat()
{
}

function Tiger()
{

 this.draw(“王”)
}

Tiger.prototype = new Cat;

函数式抽象

Lambda演算

ß  λ演算
Þ  其实就是替换
Þ  λx.x + 2 表示把x换成x+2
Þ  λx.(λx.x + 2)表示把x换成λx.x + 2
Þ  函数式编程以λ演算为理论基础

函数是“第⼀一型”

ß  能做参数
ß  能作为返回值
ß  能赋值给变量
ß  能被存储到数据结构中
ß  有直接量
ß  能运行时产生

函数式
function add(a, b) {
 return a + b;
}

function mul(a,b,add) {
 var r = a;
 for(var i = 1; i<b; i++) {
 add(r,a);
 }
}

闭包(Closure)

ß  闭包(Closure) ——Lexical Closure

var a, b;
function dosth() {
 return a+b;
}

function createClosure() {
 var a, b;
 function dosth() {
 return a+b;
 }
}

函数式

ß  Currying(柯里化)

f(a,b,c);
f(a); //抛出异常？

f(a,b,c);
f2 = f(a); //f2接受剩余参数
f2(b,c);

设计函数式API

ß  俗话说 “OO is poor man's closure”

function Node() {
 this. addEventListener = function(type,listener){…};
 this. removeEventListener = function(type,listener)
{…};
}
var node = new Node();
node. addEventListener (type,listener);
node. addEventListener (type,listener);

function addEventListener = function(node,type,listener){…};
function removeEventListener = function(node,type,listener){…};
var node = new Node();
var addEventListenerToNode=addEventListener(node);
addEventListenerToNode(type,listener)
addEventListenerToNode(type,listener)

理解函数式范式

ß  函数式是一种只关注输入输出的
抽象风格

ß  函数式就是用函数编程

JS中应用函数式

ß  在设计中引入函数式特性
ß  纯粹函数式编程

创建独有风格

ß  Jquery
Þ  面向对象
Þ  函数式
Þ  过程式
Þ  链式表达 √
Þ  声明式编程 √

脱离语言束缚

 var connection = DB.connect(
 {
 host:”……”,
 port:”……”,
 name:”……”
 })

这不是对象，这是命名空间

这也不是对象，这是数据

这是对象

灵活运用语言特性

ß  Closure
ß  Object
ß  Function
ß  Eval
ß  Prototype
ß  Arguments
ß  Property

Q&A

ß  网名：winter
ß  真名：程劭非
ß  csf178@163.com
ß  weibo.com/wintercn @寒冬winter

http://www.qconbeijing.com/
http://qconhangzhou.com/

