twitter¥

Attila Szegedi, Software Engineer
@asz

Everything I ever
learned about JVM
performance tuning

@twitter

Everything More

than I ever wanted
to learned about
JVM performance
tuning
@twitter

® Memory tuning
® CPU usage tuning
® | ock contention tuning

® |/O tuning

Twitter’s biggest enemy

Latency

CC licensed image from http://www.flickr.com/photos/dunechaser/213255210/

http://www.flickr.com/photos/dunechaser/213255210/
http://www.flickr.com/photos/dunechaser/213255210/

Latency contributors

® By far the biggest contributor is garbage collector
® others are, in no particular order:
® in-process locking and thread scheduling,

e |/O,

® application algorithmic inefficiencies.

Areas of performance
tuning

® Memory tuning

® | ock contention tuning
® CPU usage tuning

® |/O tuning

Areas of memory
performance tuning

® Memory footprint tuning
® Allocation rate tuning

® Garbage collection tuning

Memory footprint tuning

® 50 you got an OutOfMemoryError...
® Maybe you just have too much data!
® Maybe your data representation is fat!

® You can also have a genuine memory leak...

Too much data

® Run with -verbosegc

® Observe numbers in “Full GC” messages
[Full GC $before->%$after($total), $time secs]

® Can you give the JVM more memory!

® Do you need all that data in memory? Consider
using:

® 3 | RU cache, or...

® soft references™

Fat data

® Can be a problem when you want to do wacky
things, like

® |oad the full Twitter social graph in a single
JVM

® |oad all user metadata in a single VM

® Slimming internal data representation works at
these economies of scale

Fat data: object header

® |VM object header is normally two machine
words.

® That’s |6 bytes, or 128 bits on a 64-bit JVM!

® new java.lang.Object() takes |6 bytes.

* new byte[@] takes 24 bytes.

Fat data: padding

® new A() takes 24 bytes.

® new B() takes 32 bytes.

Fat data: no inline structs

® new C() takes 40 bytes.

® similarly, no inline array elements.

Slimming taken to
extreme

® A research project had to load the full follower
graph in memory

® Each vertex’s edges ended up being represented
as int arrays

o |f it grows further, we can consider variable-
length differential encoding in a byte array

Compressed object
pointers

® Pointers become 4 bytes long
® Usable below 32 GB of max heap size

® Automatically used below 30 GB of max heap

Compressed object
pointers

Uncompressed Ceompiressed

Pointer 8 4 4
Obiject header |6 b 8
Array header 24 |6 Wi
Superclass pad 8 4 4

* Object can have 4 bytes of fields and still only take up 16 bytes

Avoid instances ot
primitive wrappers

® Hard won experience with Scala 2.7.7:
® 3 Seq[Int] stores java.lang.Integer
® an Array[Int] stores int

® first needs (24 + 32 * length) bytes

® second needs (24 + 4 * length) bytes

Avoid instances ot
primitive wrappers

® This was fixed in Scala 2.8, but it shows that;

® you often don’t know the performance
characteristics of your libraries,

® and won'’t ever know them until you run your
application under a profiler.

Map footprints

® Guava MapMaker .makeMap() takes 2272 bytes!

® MapMaker.concurrencylLevel (1) .makeMap()

takes 352 bytes!

® ConcurrentMap with level | makes sense
sometimes (i.e. you don’t want a
ConcurrentModificationException)

Thrift can be heavy

® Thrift generated classes are used to encapsulate a
wire tranfer format.

® Using them as your domain objects: almost never
a good idea.

Thrift can be heavy

® Every Thrift class with a primitive field has a
java.util.BitSet __isset_bit_vector field.

® |t adds between 52 and 72 bytes of overhead per
object.

Thrift can be heavy

Thrift-generated object

__isset_bit_vector - o
java.util. BitSet

wordsIinUse

The one bit
actually used

Thrift can be heavy

® Thrift does not support 32-bit floats.
® Coupling domain model with transport:
® resistance to change domain model

® You also miss oportunities for interning and N-to-|
normalization.

- class Location {
String city;

String region;
String countryCode;
Lnt metro,
L1ist<String> placelds;

pub
pub
pub
pub
pub
pub
pub
pub

1C
l1c
l1ic
l1ic
l1c
11c
lic
l1ic

doub
doubl
doubl

le lat;

e lon;
e confldence

- class SharedLocation {

public String city;

public String region;

public String countryCode;
public int metro;

public List<String> placelds;

-~ class Uniqguelocation {

private SharedlLocation sharedLocatlon
public double lat;

public double 1on,
public double confidence;

Careful with thread locals

® [hread locals stick around.

® Particularly problematic in thread pools with mxn
resource association.

® 200 pooled threads using 50 connections: you end
up with 10 000 connection buffers.

® Consider using synchronized objects, or

® just create new objects all the time.

- bar 1k
fighting latency

Performance tradeoft

Memory

Time

Convenient, but oversimplified view.

Performance triangle

v Memory footprint

i

4 Throughput - ~¥ Latency

Performance triangle

4 Compactness

i

4 Throughput <« > 4 Responsiveness

C vl «R=12a
® Tuning: vary C, T, R for fixed a

® Optimization: increase a

Performance triangle

® Compactness: inverse of memory footprint

® Responsiveness: longest pause the application will
experience

® Throughput: amount of useful application CPU work
over time

® Can trade one for the other, within limits.

® |f you have spare CPU, can be pure win.

Responsiveness vs.
throughput

Biggest threat to
responsiveness in the JVM
1s the garbage collector

Memory pools

This is entirely HotSpot specific!

How does young gen
work?

Eden S1 | S2

® All new allocation happens in eden.
® [t only costs a pointer bump.

® When eden fills up, stop-the-world copy-collection
into the survivor space.

® Dead objects cost zero to collect.

® Aftr several collections, survivors get tenured into
old generation.

Ideal young gen operation

® Big enough to hold more than one set of all
concurrent request-response cycle objects.

® Each survivor space big enough to hold active
request objects + tenuring ones.

® [enuring threshold such that long-lived objects
tenure fast.

Old generation collectors

® Throughput collectors
o -XX:+UseSer1alGC
e -XX:+UseParallelGC
o -XX:+UseParallelOLdGC

® | ow-pause collectors

o -XX:+UseConcMarkSweepGC

® -XX:+UseG1GC (can’t discuss it here)

Adaptive sizing policy

® Throughput collectors can automatically tune
themselves:

o -XX:+UseAdaptiveSizePolicy
® -XX:MaxGCPauseMillis=.. (i.e. |00)

® _XX:GCTimeRatio=.. (i.e. 19)

Adaptive sizing policy at
work

Choose a collector

® Bulk service: throughput collector, no adaptive sizing
policy.

® Everything else: try throughput collector with
adaptive sizing policy. If it didn’t work, use
concurrent mark-and-sweep (CMS).

Always start with tuning
the young generation

® Enable -XX:+PrintGCDetails, -XX:+PrintHeapAtGC,
and -XX:+PrintTenuringDistribution.

® \Watch survivor sizes! You’ll need to determine
“desired survivor size’.

® There’s no such thing as a “desired eden size”, mind
you. T he bigger, the better, with some
responsiveness caveats.

® Watch the tenuring threshold; might need to tune it
to tenure long lived objects faster.

-XX:+PrintHeapAtGC

Heap after GC invocations=7000 (full 87):
par new generation total 4608000K, used 398455K
eden space 4096000K, 0% used
from space 512000K, 77% used
to space 512000K, 0% used
concurrent mark-sweep generation total 3072000K, used 1565157K
concurrent-mark-sweep perm gen total 53256K, used 31889K

¥

-XX:+PrintTenuringDistribution

Desired survivor size 262144000 bytes, new threshold 4 (max 4)
- age 1: 137474336 bytes, 137474336 total
- age 2: 37725496 bytes, 175199832 total
- age 3: 23551752 bytes, 198751584 total
- age 4. 14772272 bytes, 213523856 total

® Things of interest:
® Number of ages
® Size distribution in ages

® You want strongly declining.

Tuning the CMS

® Give your app as much memory as possible.

® CMS is speculative. More memory, less punitive
miscalculations.

® Try using CMS without tuning. Use -verbosegc and
-XX:+PrintGCDetatls.

® Didn’t get any “Full GC” messages?! You're done!

® Otherwise, tune the young generation first.

Tuning the old generation

® (Goals:

® Keep the fragmentation low.
® Avoid full GC stops.

® Fortunately, the two goals are not conflicting.

Tuning the old generation

® Find the minimum and maximum working set size
(observe “Full GC” numbers under stable state and
under load).

® Overprovision the numbers by 25-33%.

® This gives CMS a cushion to concurrently clean
memory as it’'s used.

Tuning the old generation

® Set -XX:InitiatingOccupancyFraction to
between 80-75, respectively.

® corresponds to overprovisioned heap ratio.

® You can lower initiating occupancy fraction to O if
you have CPU to spare.

Responsiveness still not
good enough?

® Too many live objects during young gen GC:

® Reduce NewsSize, reduce survivor spaces, reduce
tenuring threshold.

® oo many threads:
® Find the minimal concurrency level, or

® split the service into several JVMs.

Responsiveness still not
good enough?

® Does the CMS abortable preclean phase, well,
abort!

® |t is sensitive to number of objects in the new
generation, so

® oo for smaller new generation

® try to reduce the amount of short-lived garbage
your app creates.

Part 111:
let’s take a break tfrom GC

Thread coordination
optimization

® You don’t have to always go for synchronized.

® Synchronization is a read barrier on entry; write
barrier on exit.

® Sometimes you only need a half-barrier;i.e.in a
producer-observer pattern.

® Volatiles can be used as half-barriers.

Thread coordination
optimization

® For atomic update of a single value, you only need
Atomic{Integer|Long}.compareAndSet().

® You can use AtomicReference.compareAndSet() for

atomic update of composite values represented by
immutable obijects.

Fight CMS fragmentation
with slab allocators

® CMS doesn’t compact, so it’s prone to fragmentation,
which will lead to a stop-the-world pause.

® Apache Cassandra uses a slab allocator internally.

Cassandra slab allocator

® 2MB slab sizes
® copy byte[] into them using compare-and-set
® GC before: 30-60 seconds every hour

® GC after: 5 seconds once in 3 days and |0 hours

Slab allocator constraints

® Works for limited usage:

® Buffers are written to linearly, flushed to disk and
recycled when they fill up.

® The objects need to be converted to binary
representation anyway.

® |f you need random freeing and compaction, you're
heading down the wrong direction.

® |f you find yourself writing a full memory manager
on top of byte buffers, stop!

Soft reterences revisited

® Soft reference clearing is based on the amount of
free memory available when GC encounters the
reference.

® By definition, throughput collectors always clear
them.

® Can use them with CMS, but they increase memory
pressure and make the behavior less predictable.

® Need two GC cycles to get rid of referenced objects.

Everything More

than I ever wanted
to learned about
JVM performance
tuning
@twitter

Questions?

twitter¥

Attila Szegedi, Software Engineer
@asz

T g

Fiey EAT i

CONFERENCE

http://www.qconbeijing.com/
http://qconhangzhou.com/

