
eBay	
 Architecture	

Tony	
 Ng	

Director,	
 Systems	
 Architecture	

October	
 2011	

DRAFT About	
 Me	

•  eBay	
 –	
 Systems	
 Architecture	
 and	
 Engineering	

•  Yahoo!	
 –	
 Social,	
 Developer	
 PlaEorms,	
 YQL	

•  Sun	
 Microsystems	
 –	
 J2EE,	
 GlassFish,	
 JSRs	

• Author	
 of	
 books	
 on	
 J2EE,	
 SOA	

	

	

2	

DRAFT eBay	
 Stats	

•  94	
 million	
 acQve	
 users	

•  200	
 million	
 items	
 for	
 sale	
 in	
 50,000	
 categories	

•  A	
 cell	
 phone	
 is	
 sold	
 every	
 5	
 seconds	
 in	
 US	

•  An	
 iPad	
 sold	
 every	
 2.2	
 minutes	
 in	
 US	

•  A	
 pair	
 of	
 shoes	
 sold	
 every	
 9	
 seconds	
 in	
 US	

•  A	
 passenger	
 vehicle	
 sold	
 every	
 2	
 minutes	

•  A	
 motorcycle	
 sold	
 every	
 6	
 minutes	

3	

http://www.ebayinc.com/factsheets

DRAFT eBay	
 Scale	

•  9	
 Petabytes	
 of	
 data	
 storage	

•  10,000	
 applicaQon	
 servers	

•  44	
 million	
 lines	
 of	
 code	

•  2	
 billion	
 pictures	

•  99.94%	
 site	
 availability	

•  A	
 typical	
 day	

–  75B	
 database	
 calls	

–  4B	
 page	
 views	

–  250B	
 search	
 queries	

–  Billions	
 of	
 service	
 calls	

–  100s	
 of	
 millions	
 of	
 internal	
 asynchronous	
 events	

4	

DRAFT History	
 of	
 Technology	

In
no

va
tio

n
Po

te
nt

ia
l

A
gi

lit
y

/ T
TM

A
rc

hi
te

ct
ur

e
M

at
ur

ity

19
95

·∙ Perl/C++
·∙ Inline HTML
·∙ Monolithic
·∙ Vertical Scale
·∙ Walled Garden

19
99

20
01

·∙ Java
·∙ XSL
·∙ Layered
·∙ Horizontal Scale
·∙ Some APIs

20
05

20
09
+

·∙ Java
·∙ V4 Components
·∙ Services
·∙ Internal Cloud
·∙ Platform

DRAFT Quali9es	
 A:ributes	
 Concerns	

•  Scalability	

• Availability	

•  Latency	

•  Security	

• Manageability	

• Cost	

	

6	

DRAFT eBay	
 Scalable	
 Architecture	

•  ParQQon	
 everything	

– Databases,	
 applicaQon	
 Qer,	
 search	
 engine	

•  Stateless	
 preference	

– No	
 session	
 state	
 in	
 app	
 Qer	

• Asynchronous	
 processing	

– Event	
 streams,	
 batch	

• Manage	
 failures	

– Central	
 applicaQon	
 logging	

– Mark	
 downs	

7	

DRAFT Next	
 Challenges	

• Maintain	
 site	
 stability	
 but	
 deliver	
 quality	
 features	

and	
 innovaQons	
 at	
 acceleraQng	
 paces	

• Complexity	
 as	
 our	
 codebase	
 grows	

• Build	
 on	
 our	
 architecture	
 maturity	
 to	
 enable	
 faster	

Qme-­‐to-­‐market	

• Developer	
 producQvity	

8	

DRAFT Scalability	
 with	
 Agility	

•  Strategy	
 1:	
 AutomaQon	
 with	
 Cloud	

•  Strategy	
 2:	
 Next	
 Gen	
 Service	
 orientaQon	

•  Strategy	
 3:	
 Modularity	

• …	
 and	
 more	
 …	

9	

DRAFT

Automa9on	
 with	
 Cloud	

10	

DRAFT Improving	
 Automa9on	

11	

request
{nb servers,
model, app }

order receive &
rack & wire
Label (app)

deliver

1 w 2-3 w

repurpose

“several”
weeks

request
{nb servers,

model }

order Receive
pre-racked
Pre-wired

deliver to
cache

1 day 2-3 w

repurpose

minutes

request
{nb servers,
model, app }

deliver

quarterly

DRAFT Improving	
 U9liza9on	

12	

Number of servers required based on utilization for 8 pools

DR

DRAFT Infrastructure	
 Virtualiza9on	

Infra Infra Infra Infra

Spare spare spare spare

Application App App App

Shared infrastructure

Global resource pool

Application App App App

DRAFT eBay	
 Cloud	

Self Service
Portal

Automation

pool
provisioning
in minutes

Hardware Acquisition

Resource Allocation

Virtualization

Spare Capacity

Capacity Management

Improved Time to Market

DRAFT Design	
 Principles	

• Network	
 isolaQon	
 to	
 enable	
 mobility	
 and	
 isolaQon	
 at	

scale	

• Capability	
 to	
 automate	
 reliably	

•  StandardizaQon	

•  Private	
 vs.	
 Public	

– Start	
 with	
 Private,	
 opQon	
 to	
 go	
 Hybrid	
 	

• Buy	
 vs.	
 Build	

– Build	
 +	
 OSS	

15	

DRAFT Infrastructure	
 &	
 PlaJorm	
 as	
 a	
 service	

16	

Virtualized & Common Infrastructure

Automated Operations

Infrastructure As A Service

Front End, Search Back End, Generic Platform

Automated Life Cycle Management

Platform As A Service

Enables innovation
on new platforms

Infrastructure

level automation

Higher developer
productivity

Full application level

automation

DRAFT IaaS	

eBay Confidential 17	

Virtual Environment
Compute

Nodes Storage
networks

Virtual Cluster

Compute
Nodes

Storage
networks

Virtual Pool

Access !
Point!

DNS!
Name!

DNS	

Service	

Mail	

Service	

Storage	
 	

As	
 a	
 Service	

NTP	

Service	

Infrastructure Services

Compute
Nodes

Storage
networks

Physical Infrastructure

Virtual	

machines	

Physical	

machines	

Network	
 Storage	

(SAN/NAS)	

Firewalls	
 Load	
 Balancers	
 networks	

Racks	
 Data	
 Centers	

Class of!
Service!

Access!
Lists!

Account!

1

*

OS!
Images!

*

configurations!

Organization!

Reserved Instances

Proxy	

Service	

DRAFT PaaS	

18	

Virtual Environment

Application Services

Platform Services eCommerce Services

Class of!
Service!

Access!
Lists!

Account!

1

*

Builds &!
packages!

*

configurations!

Login	
 Iden9ty	
 Catalog	
 Search	
 List	
 Pricing	
 Offer	
 ADs	

Payment	
 Shipping	
 CS	

Coupons	

Messages	
 Cart	

DB	
 as	

A	
 Service	

Logging	
 Analy9cs	
 Monitoring	

Front	
 End	
 Search	
 SOA	

Storage	
 	

As	
 a	
 Service	

Generic	

Update
Strategy

*

DNS!
Name! Organization!

Service
Instances

Profiles

Access!
point!

groups!

groups!

DRAFT Model	
 Driven	
 Automa9on	
 for	
 Reliability	

19	

•  Desired configuration is
specified in the expected state
and persisted in CMS

•  Upon approval, the
orchestration will configure the
site to reflect the desired
configuration.

•  Updated site configuration is
discovered based on
detection of configuration
events

•  Reconciliation between the
expected and current state
allows to verify the proper
configuration.

•  On going validation allows the
detection of out of band
changes.

LB Pool

Server Server Server

Current
State

Site

Discovery

Comparison

Expected
State

Reconciliation

Orchestration

LB Pool

Server Server Server

DRAFT Open	
 Source	
 Integra9on	

IaaS/PaaS API
orchestrat

ion
Resource
Allocation

Distribute
d

State

Compute
Controller

Cluster
Controller

Pool
Controller

Compute
Mgt.

DNS
Mgt.

LB
Mgt.

Network
Prov

Image/Pkg
Repo

Software
Dist.

AuthN/
AuthZ

Applicatio
n

Controller

Access
Point

Controller

IaaS/PaaS API

Open	
 Source	

SoluQon	

(openstack	
 /	
 Cloudstack)	

orchestrat
ion

Resource
Allocation

Distribute
d

State

Compute
Controller

Cluster
Controller

Pool
Controller

AuthN/
AuthZ

Applicatio
n

Controller

Access
Point

Controller

Monitor
ing

DRAFT Applica9on	
 Architecture	

Ongoing
“Cloud

Friendly”

Future
‘Cloud
ready’

Before

DRAFT

Next	
 Gen	
 Service	
 Orienta9on	

22	

DRAFT Services	
 @	
 eBay	

•  It’s a journey !

•  History
•  One of the first to expose APIs /Services
•  In early 2007, embarked on service orienting our entire

ecommerce platform, whether the functionality is internal
or external

•  Support REST style as well as SOA style
•  Have close to 300 services now and more on the way
•  Early adopters of SOA governance automation

(Discovery focus rather than control)

23

DRAFT Architecture	
 Vision	

Application Platform Services

Login	
 Iden9ty	
 Catalog	
 Search	
 List	
 Pricing	
 Offer	
 ADs	
 Messages	
 Cart	
 Coupons	
 Payment	
 Shipping	
 CS	

Customer Experience

Core	
 Experience	
 Custom	
 Experiences	
 Channels	

Technology Platform

App	

Stack	

Data	
 Access	

Layer	

Dev	
 Tools	
 Presenta
9on	

Messaging	
 SOA	
 Cloud	

Operations Infrastructure Layer

Power	
 Data	
 Center	
 Hardware	
 Network	
 Database	
 Opera9ons	
 Tools	

DRAFT

SOA/REST Server
Framework

services

SOA/REST client
Framework

clients

Authentication Authorization RL Monitoring Logging

Policy service Admin console
Monitoring console

D
es

ig
n/

D
ev

R

un
tim

e

Registry/
Repository

Life cycle/dependency mgmt

Registry

E
xt

er
na

l r
ou

tin
g

(E
S

B
)

Eclipse
Dev tools

Dev/Arch

Test tools

eBay	
 SOA	
 Stack	
 Overview	

Develop
Services, consumers,

Assertions
svc

R
E

S
T

M
ap

pi
ng

Ti

er

25

DRAFT Challenge	
 1:	
 Mul9ple	
 Data	
 Formats	

•  2005:	
 Mix	
 of	
 user	
 preferences	

–  SOAP	

–  REST-­‐like:	
 HTTP	
 GET	
 with	
 all	
 request	
 informaQon	
 in	
 the	
 URI	

–  Plain	
 Old	
 XML	
 (POX):	
 HTTP	
 POST	
 with	
 XML	
 data	
 but	
 no	
 SOAP	
 envelope	

–  JSON	

•  Shopping	
 API	
 was	
 our	
 first	
 “XML	
 Unified	
 Field”	
 web	
 service	

–  Input	
 formats:	
 Name-­‐value	
 encoded	
 in	
 URI;	
 XML;	
 JSON;	
 SOAP	

–  Output	
 formats:	
 XML,	
 JSON,	
 SOAP	

•  Key	
 concepts:	

–  Users	
 ask	
 for	
 whatever	
 data	
 format	
 they	
 want.	

–  When	
 using	
 our	
 frameworks,	
 developers	
 don’t	
 have	
 to	
 change	
 any	
 code	
 to	
 get	
 a	
 different	
 data	

format.	

–  Anything	
 you	
 can	
 express	
 in	
 XML,	
 you	
 can	
 express	
 in	
 other	
 formats	

–  Complete	
 mapping	
 from	
 XML	
 structures	
 to	
 NV	
 and	
 JSON	

•  Service	
 developers	
 don’t	
 want	
 to	
 write	
 extra	
 code	
 to	
 do	
 conversions;	
 too	
 much	

maintenance	
 impact	

26	

DRAFT

27	

Solu9on:	
 Pluggable	
 Data	
 Formats	
 Using	
 JAXB	

XML

Other
formats

JSON

NV

A single
Instance of
Service Impl

JAXB
Java
objects

Passed to
pi

pe
lin

e
XML
NV

JSON

Directly
deserialized
into

SOA framework

others S
er

/D
es

er
 m

od
ul

e

Uniform interface
XML-based
serialization

No intermediate format,
Avoids extra conversion

Pluggable formats

DRAFT Challenge	
 2:	
 Latency	

•  JAXB	
 unificaQon	
 of	
 XML,	
 JSON,	
 Name-­‐Value,	
 and	
 Fast	
 Infoset	
 works	
 well!	

•  BUT:	
 for	
 large	
 datasets,	
 there	
 can	
 be	
 nasty	
 latencies.	

–  Not	
 fixed	
 by	
 compressing	
 or	
 using	
 Fast	
 Infoset	

28	

0
50

100
150
200
250
300
350

2MB structured response payload, dev to prod

Wire Time (msec)

DRAFT Solu9on:	
 Binary	
 Formats	

•  What	
 about	
 using:	

•  Binary	
 formats:	
 Google	
 Protocol	
 Buffers,	
 Avro,Thri^,	
 etc.?	

•  Numbers	
 look	
 promising	
 (serializaQon,	
 deserializaQon)	

•  New	
 challenges	
 with	
 these:	

•  Each	
 has	
 its	
 own	
 schema	
 (type	
 definiQon	
 language)	
 to	
 model	
 types	
 and	

messages	

•  Each	
 has	
 its	
 own	
 code	
 genera9on	
 for	
 language	
 bindings	

•  NOT	
 directly	
 compaQble	
 with	
 JAXB	
 beans	

•  Turmeric	
 SOA	
 plaEorm	
 uses	
 WSDL/XML	
 Schema	
 (XSD)	
 data	
 modeling,	

and	
 JAXB	
 language	
 bindings	

29	

DRAFT Compare	
 Popular	
 non-­‐XML	
 Formats	

30	

Protobuf Avro Thrift
•  Own IDL/schema
•  Sequence numbers for each

element
•  Compact binary representation on

the wire
•  Most XML schema elements are

mappable to equivalents, except
polymorphic constructs

•  Versioning is similar to XML, a bit
more complex in implementing due
to sequence numbers

•  JSON based Schema
•  Schema prepended to the message

on the wire
•  Compact binary representation on

the wire
•  Most XML schema elements are

mappable to equivalent, except
polymorphic constructs

•  Versioning is easier

•  Own IDL/schema
•  Sequence numbers for each

element
•  Compact binary representation on

the wire
•  Most XML schema elements are

mappable to equivalents, except
polymorphic constructs

•  Versioning is similar to XML, a bit
more complex in implementing due
to sequence numbers

Complex	

Types	

Unions	

(Choice	
 Type)	

Self-­‐
References	

(Trees)	
 Enums	

Inheritance
/
Polymorph
ism	
 Inline	
 A:achment	

Protobuf	
 Yes	
 No	
 Yes	
 Yes	
 No	
 No	

Avro	
 Yes	
 Yes	

Yes	
 (with	

workaround)	
 Yes	
 No	
 No	

Thri^	
 Yes	
 No	
 No	
 No	
 No	
 No	

XML	
 Yes	
 Yes	
 Yes	
 Yes	
 Yes	
 Yes	
 (MIME-­‐TYPE)	

DRAFT Early	
 In-­‐JVM	
 Test,	
 80	
 percen9le	

0

200

400

600

800

1000

1200

1400

1600

1800

2000

XML FI Protobuf

Size (KB)
Wire Time (msec)

31	

Response data: 500 items x 75 fields

DRAFT QA	
 network	
 test,	
 90%	
 9mings	

0

20

40

60

80

100

120

140

160

180

200

JSON XML Fast Infoset Protobuf

Size (KB)
Wire time (msec)

32	

Response data: 50 items x 75 fields (about 8000 objects)

DRAFT
Produc9on	
 tests	
 –	
 progressive	

improvements	

0
20
40
60
80

100
120
140
160
180
200

XML XML no
poly

XML flat PB no
poly

PB flat

Wire Time(msec)

33	

DRAFT Challenge	
 3:	
 	
 Service	
 Consumer	
 Produc9vity	

•  Large,	
 complex	
 requests	
 and	
 responses	

•  Get	
 exactly	
 what	
 they	
 want	
 in	
 data	
 returned	
 from	
 services	

•  Lack	
 of	
 consistency	
 in	
 service	
 interface	
 convenQons	
 and	
 data	

access	
 paserns	

•  Real	
 client	
 applicaQons	
 make	
 calls	
 to	
 mulQple	
 services	
 at	
 a	

Qme	

–  Serial	
 calls	
 increase	
 latency.	
 Managing	
 parallel	
 calls	
 is	
 complex	

•  Impedance	
 mismatch	
 between	
 service	
 interface	
 and	
 client	

needs	

–  Too	
 much	
 data	
 is	
 returned	

–  1	
 +	
 n	
 calls	
 to	
 get	
 detailed	
 data	

34	

DRAFT Sneak	
 Preview:	
 ql.io	

• New	
 technology	
 from	
 eBay	

•  Plan	
 to	
 open	
 source	
 soon	

•  SQL	
 +	
 JSON	
 based	
 scripQng	
 language	
 for	
 aggregaQon	

and	
 orchestraQon	
 of	
 service	
 calls	

•  Filtering	
 and	
 projecQons	
 of	
 responses	

• Async	
 orchestraQon	
 engine	

– AutomaQc	
 parallelizaQon,	
 fork	
 /	
 join	

35	

DRAFT What	
 ql.io	
 Enables	

•  Create	
 consumer-­‐controlled	
 interfaces	
 	

-  fix/patch	
 APIs	
 on	
 the	
 fly	

•  Filter	
 and	
 project	
 responses	
 	

-  use	
 a	
 declaraQve	
 language	

•  Bring	
 in	
 consistency	
 	

-  offer	
 RESTful	
 shims	
 with	
 simpler	
 syntax	

•  Aggregate	
 mul9ple	
 APIs	

-  such	
 as	
 batching	

•  Orchestrate	
 requests	

-  without	
 worrying	
 about	
 async	
 forks	
 and	
 joins	

36	

DRAFT ql.io	
 Demo	

37	

DRAFT

Modularity	

38	

DRAFT Key	
 modularity	
 concepts	
 for	
 so^ware	

• Building	
 blocks	

• Re-­‐use	

• Granularity	

• Dependencies	

•  EncapsulaQon	

• ComposiQon	

• Versioning	

39

Source: http://techdistrict.kirkk.com/2010/04/22/granularity-architectures-nemesis/
Author: Kirk Knoernschild

DRAFT Challenges	
 for	
 Large	
 Enterprises	

•  Some	
 stats	
 on	
 the	
 eBay	
 code	
 base	

– ~	
 44	
 million	
 of	
 lines	
 of	
 code	
 and	
 growing	

– Hundreds	
 of	
 thousands	
 of	
 classes	

– Tens	
 of	
 thousands	
 of	
 packages	

– ~	
 4,000+	
 jars	

• We	
 have	
 too	
 many	
 dependencies	
 and	
 Qght	
 coupling	

in	
 our	
 code	

– Everyone	
 sees	
 everyone	
 else	

– Everyone	
 affects	
 everyone	
 else	

	

40

DRAFT Challenges	
 for	
 Large	
 Enterprises	

•  Developer	
 producQvity/agility	
 suffers	
 as	
 the	
 knowledge	
 goes	
 down	

–  Changes	
 ripple	
 throughout	
 the	
 system	

–  Fallouts	
 from	
 changes/features	
 are	
 difficult	
 to	
 resolve	

–  Developers	
 slow	
 down	
 and	
 become	
 risk	
 averse	

41	

code size

knowledge complexity

DRAFT Our	
 Goals	
 with	
 Modularity	
 Efforts	

•  Tame	
 complexity	
 	

•  Organize	
 our	
 code	
 base	
 in	
 loose	
 coupling	
 fashion	

– Coarse-­‐grained	
 modules:	
 number	
 masers!	

– DeclaraQve	
 coupling	
 contract	

– Ability	
 to	
 hide	
 internals	

•  Establish	
 clear	
 code	
 ownership,	
 boundaries	
 and	

dependencies	

•  Allow	
 different	
 components	
 (and	
 teams)	
 evolve	
 at	

different	
 speeds	

•  Increase	
 development	
 agility	

42

DRAFT Considera9ons	
 on	
 Modularity	
 Solu9ons	

•  Scalability:	
 enterprise	
 soxware	
 tends	
 to	
 be	
 large	
 scale	

•  We	
 need	
 to	
 consider	
 a	
 large	
 group	
 of	
 developers	
 with	
 varying	
 skill	
 levels	

•  End-­‐to-­‐end	
 development	
 lifecycle	
 is	
 crucial	

•  Conversion/migraQon	
 of	
 exisQng	
 code	
 base	
 is	
 crucial	

– We	
 rarely	
 start	
 from	
 vacuum	

– We	
 want	
 to	
 move	
 over	
 and	
 modularize	
 bulk	
 of	
 exisQng	
 code	

–  It	
 is	
 imperaQve	
 that	
 we	
 chart	
 a	
 realisQc	
 migraQon	
 course	
 that	
 can	
 be	

achieved	
 within	
 a	
 reasonable	
 amount	
 of	
 Qme	

– We	
 cannot	
 afford	
 disrupQon	
 to	
 business	
 meanwhile:	
 “change	
 parts	

while	
 the	
 car	
 is	
 running”	

	

	

43

DRAFT End-­‐to-­‐End	
 Development	

•  IDE,	
 command	
 line	
 build,	
 repository,	
 server	
 runQme,	
 etc.	

– Complete	
 and	
 mature	
 tooling	

–  IntegraQon	
 and	
 fidelity	
 of	
 tools	
 across	
 phases	

44

Repository

IDE

SCM

Server runtimeDeployment

publish/consumeconsume

packaging deploy

Command line

build (CI)

pull/push pull

DRAFT Modularity	
 Solu9on	
 Evalua9on	

•  Evaluated	
 OSGi,	
 Maven,	
 Jigsaw	
 and	
 JBoss	
 Module	

• Criteria	
 include:	

– Modularity	
 enforcement	

– End-­‐to-­‐end	
 development	

– MigraQon	
 concerns	

– AdopQon	

– Maturity	

•  Selected	
 OSGi	

45	

DRAFT OSGi	

META-INF/MANIFEST.MF:
	
Bundle-ManifestVersion: 2	
Bundle-SymbolicName: org.foo.bar	
Bundle-Version: 1.2.1	
Import-Package: org.foo.other;version=“[1.1,2.0)”,	
 javax.xml.parsers	
Export-Package: org.foo.bar;version=“1.2.3”,	
 org.foo.bar.sub;uses=“org.foo.bar”;version=“1.2.1”	

46

DRAFT OSGi	
 Pros	

•  Enforces	
 modularity	
 strongly:	
 it	
 will	
 let	
 you	
 know	
 if	
 you	

violate	
 it	

•  Mature	
 and	
 comprehensive:	
 covers	
 presy	
 much	
 all	
 use	
 cases	

regarding	
 modularity	

•  Open	
 standard	

•  Services:	
 the	
 ulQmate	
 decoupling	
 force	

•  Can	
 run	
 two	
 versions	
 of	
 the	
 same	
 class	
 easily	

	

47

DRAFT OSGi	
 Cons	

•  Can	
 run	
 two	
 versions	
 of	
 the	
 same	
 class	
 easily,	
 and	
 run	
 into	

trouble	

•  Some	
 problems	
 are	
 nasty	
 to	
 troubleshoot	
 (uses	
 conflict	

anyone?)	

•  SQll	
 not	
 many	
 well-­‐integrated	
 tools	
 across	
 all	
 phases:	

impedance	
 mismatches	

•  Compared	
 to	
 strong	
 runQme	
 model,	
 build	
 side	
 story	
 is	
 weak	

•  MigraQon	
 can	
 be	
 quite	
 painful	

•  Learning	
 curve	
 is	
 sQll	
 fairly	
 steep	

	

48

DRAFT

Ø  eBay has been a strong supporter of Open Source model
and community

Ø  Check out http://eBayOpenSource.org
Ø  Mission is to open source some of the best of breed

technologies that were developed originally within eBay Inc.
Ø  For the benefit of the community
Ø  Under a liberal open source license.
Ø  These projects are generic technology projects and several

years of development effort has gone into them to mature them.
Ø  Most parts of our services platform, code named Turmeric, is

open sourced on this site.

eBay Open Source Initiative

49

DRAFT Summary	

•  Systems	
 quality	
 &	
 architecture	
 as	
 key	
 foundaQon	

• Complexity	
 management	
 becomes	
 important	
 over	

Qme	

•  Strike	
 balance	
 between	
 agility	
 and	
 stability	

50	

http://www.qconbeijing.com/
http://qconhangzhou.com/

