eBay Architecture

Tony Ng
Director, Systems Architecture

October 2011
e —

d]\

About Me DRAFT
— e

e eBay — Systems Architecture and Engineering
e Yahoo! — Social, Developer Platforms, YQL

e Sun Microsystems —J2EE, GlassFish, JSRs

e Author of books on J2EE, SOA

eBay Stats

e
* 94 million active users
e 200 million items for sale in 50,000 categories
e A cell phone is sold every 5 seconds in US
e An iPad sold every 2.2 minutes in US
e A pair of shoes sold every 9 seconds in US
e A passenger vehicle sold every 2 minutes

A motorcycle sold every 6 minutes

http://www.ebayinc.com/factsheets

DRAFT

ehY

eBay Scale
e

e 9 Petabytes of data storage
e 10,000 application servers
e 44 million lines of code

e 2 billion pictures

e 99.94% site availability

e A typical day
— 75B database calls
— 4B page views
— 250B search queries
— Billions of service calls
— 100s of millions of internal asynchronous events

DRAFT

History of Technology
e I

DRAFT

Architecture Maturity

Agility / TTM

Innovation Potential

Java
XSL
Layered
Horizontal Scale
Some APIs

Perl/C++

Inline HTML
Monolithic
Vertical Scale
Walled Garden

1995
1999
2001

2005

Java

V4 Components

Services
Internal Cloud
Platform

2009+

d)‘

Qualities Attributes Concerns
— =

e Scalability

e Availability

* Latency

e Security

e Manageability

e Cost

DRAFT

eBay Scalable Architecture
—

e Partition everything
— Databases, application tier, search engine

e Stateless preference
— No session state in app tier

e Asynchronous processing
— Event streams, batch

 Manage failures
— Central application logging
— Mark downs

DRAFT

ehY

Next Challenges DRAFT
e I

 Maintain site stability but deliver quality features
and innovations at accelerating paces

e Complexity as our codebase grows

e Build on our architecture maturity to enable faster
time-to-market

e Developer productivity

Scalability with Agility

e I

e Strategy 1: Automation with Cloud
e Strategy 2: Next Gen Service orientation
e Strategy 3: Modularity

e ... and more ...

DRAFT

DRAFT

Automation with Cloud

Improving Automation DRAFT
e I I

8 Before

request order receive & deliver
{nb servers, rack & wire
model, } Label (app)
-
______ Vvav Y ... Cseveral
" : weeks
2-3w '
repurpose
After
request order Receive deliver to request deliver
{nb servers, pre-racked cache {nb servers, :
model } Pre-wired model, app }
quarterly f
M M minutes

repurpose d) \

11

DRAFT

Improving Utilization

2000

1800

1600

1400

1200

1000 |

800

600

400 +

200

12:60/LT/TT
Z1:60/LT/TT
€60/LT/11
8T:60/9T/TT
6:60/9T/1T
0:60/9T/11
ST:60/ST/TT
9:60/ST/TT
12:60/¥T/11T
Z1:60/¥T/TT
€60/VT/11T
8T:60/€T/TT
6:60/€T/TT
0'60/€T/TT
ST:60/TT/1T
9:60/ZT/1T
1Z:60/TT/TT
Z1:60/TT/TT
€60/TT/TT
8T:60/0T/TT
6:60/0T/TT
0:60/0T/TT
ST1:60/60/TT
9:60/60/1T
12:60/80/TT
Z1:60/80/TT
€:60/80/11
8T:60/L0/1T
6:60/L0/1T
0:60/L0/1T
ST:60/90/TT
9:60/90/11
12:60/S0/1T
Z1:60/S0/TT
€:60/S0/11
8T:60/¥0/TT
6:60/¥0/1T
0:60/70/1T
ST:60/€0/TT
9:60/€0/1T
12:60/20/11
Z1:60/20/1T
€:60/20/11
8T:60/T0/TT
6:60/10/1T
0:60/10/TT

ehY

Number of servers required based on utilization for 8 pools

12

Infrastructure Virtualization

Application I
|9 -4 kL

Application

DRAFT

App

I'____________-I

Global resource pool

Shared infrastructure

ehY

eBay Cloud DRAFT

Automation

Self Service

Capacity Management

| |
| |
Portal [[
| | — >

=} Cloud Management Platform : :
| |
I |
l |

| Virualization

: , | Spare Capacily
| |
I |
| |
- — : pool :
| provisioning I

iIn minutes

Improved Time to Market
-

Design Principles DRAFT
e .

e Network isolation to enable mobility and isolation at
scale

e Capability to automate reliably
e Standardization

 Private vs. Public
— Start with Private, option to go Hybrid

e Buy vs. Build
— Build + OSS

Infrastructure & Platform as a senvice

T e

Higher developer
productivity

Full application level
automation

Enables innovation \/
on new platforms Platform As A Service

Infrastructure Automated Life Cycle Management
level automation

\/ Front End, Search Back End, Generic Platform

Infrastructure As A Service
Automated Operations

Virtualized & Common Infrastructure

16

DRAFT

Q@

DNS
Name

Organization

& *

Access .
Point
% Account
@ sy 4y @ Some
Compute networks . Compute st networks |
Nodes Storage o Nodes orage ; cm“rm%
_

Virtual Cluster Virtual Pool Class of

J Service
S
kS
@ — |

Compute networks {

. . Storage
Virtual Environment Nodes Access

| Lists

configurations

Reserved Instances

E . . “ e ﬁ Storage Mail N Proxy

o | Load Bal . . . | SerVIce As a Service Service Service Service
i oad Balancers | networks irewalls
Data Centers Racks Virtual ysica

Network Storage
machines machines

(SAN/NAS)
Physical Infrastructure
aRav Canfidantial v

Infrastructure Services

Paa$S DRAFT

@

DNS
Name

£\

Organization

* \2 -
G A Account
(| ccess
'_? point
Builds & % groups Contract R
Service Up date

packages groups Application Services Instances Strategy —

|

%— Profiles - Class of
configurations @ : : : s
Generic Front End Search SOA —_
Virtual Environment Access

| | Lists
s B o0} Nt p— B @
= @lg % Q) i B B
BollskE & 500 ¢

Login Identity Catalog Search List Pricing Offer
y g 8 ADs Coupons Logging Analytics Monitoring DB as Storage

r A Service As a Service
g

Payment Shipping eCommerce Services Messages Cart Platform Services

Model Driven Automation for Reliabitityr

LB

Server

Server

Expected

State

Reconciliation
Comparison

Orchestration

LB Pool
Server Server Server
D
Current

State

Desired configuration is
specified in the expected state
and persisted in CMS

Upon approval, the
orchestration will configure the
site to reflect the desired
configuration.

Updated site configuration is
discovered based on
detection of configuration
events

Reconciliation between the
expected and current state
allows to verify the proper
configuration.

On going validation allows the
detection of out of band
changes.

d)‘

19

Open Source Integration DRAFT
e s——

laaS/PaaS API laaS/PaaS API

orchestrat Resource D'St:;bUte orchestrat Resource Dlst:;bute
ion Allocation ion Allocation
State State

icati Applicatio Access
AuthN/ Applicatio Access AuthN/

) Point
n Point AuthZ .
p—— Controller Controller Controller Controller

Compute Cluster Pool Compute Cluster Pool
Controller Controller Controller Controller Controller Controller
Mgt. Mat. Mat. ing

Network Image/Pkg Software Solution
Prov Repo Dist. (openstack / Cloudstack)

ehY

Application Architecture

Ongoing
“Cloud
Friendly”

DRAFT

Future
‘Cloud

ready’ ebyY

Next Gen Service Orientation

DRAFT

Services @ eBay DRAFT

e I
* |It's a journey !

 History

One of the first to expose APls /Services

In early 2007, embarked on service orienting our entire
ecommerce platform, whether the functionality is internal
or external

Support REST style as well as SOA style
Have close to 300 services now and more on the way

Early adopters of SOA governance automation
(Discovery focus rather than control)

ehY

23

Architecture Vision

Ap lication Platform Services

BB Wiy 5@ 28 2P

Login Identity Catalog Search List Prlcmg Offer ADs Messages Cart CouponsPayment Shipping CS

B imiee ©

App Data Access Dev Tools Presenta Messaging SOA

—Stack rayer

Operatlons Infrastructure Layer

4 B X

Power Data Center Hardware Network Database Tools

Operations

ehY

eBay SOA Stack Overview DRAFT

>
8 Dev/Arch Life cycle/dependency mgmt
= Develop
= Services, consumers, Registry/
@ Eclipse Repository
o Dev tools
Testtools | «— Assertions
SvC
Registry O Q O O Q Q
OE, clients <:> services
= SOA/REST client SOA/REST Server
S Framework _| Framework
Z |2 — o
"S //, ———————————— ’,,”
e ,/ ———————————— ”’/’
s | - S JPtads @
==~ /
[0] // ,”’
Authentication Authorization RL Monitoring Logging
o /// ””’,f \ /‘/ \
£ / -7
S Admin console | «— Policy service
(EU ” Monitoring console
0
- \
w o
25 el d)

Challenge 1: Multiple Data Formatsrr

e I

26

2005: Mix of user preferences
— SOAP
— REST-like: HTTP GET with all request information in the URI
— Plain Old XML (POX): HTTP POST with XML data but no SOAP envelope
— JSON

Shopping APl was our first “XML Unified Field” web service
— Input formats: Name-value encoded in URI; XML; JSON; SOAP
— Output formats: XML, JSON, SOAP

Key concepts:
— Users ask for whatever data format they want.

— When using our frameworks, developers don’t have to change any code to get a different data
format.

— Anything you can express in XIVIL, you can express in other formats
— Complete mapping from XML structures to NV and JSON

Service developers don’t want to write extra code to do conversions; too much
maintenance impact

d)‘

Solution: Pluggable Data Formats Using JAXB\ 1
e

I

XML | |

I

JSON |

I

NV

Other L=
formats

27

Uniform interface

Pluggable formats

wet
.
.
-""‘
.t
.

v A single
Instance of

ofl XML Service Impl
o
2 NV

<} X

2 2 JAXB Passedto

% 2 |JSON Java

e 2| _others |- objects

ol L~

SOA framework

v

No intermediate format, \
Avoids extra conversion d)

Challenge 2: Latency DRAFT

e —

e JAXB unification of XML, JSON, Name-Value, and Fast Infoset works well!

e BUT: for large datasets, there can be nasty latencies.

— Not fixed by compressing or using Fast Infoset

2MB structured response payload, dev to prod

0 Wire Time (msec)

ehY
28

Solution: Binary Formats DRAFT
e e

* What about using:

Binary formats: Google Protocol Buffers, Avro,Thrift, etc.?

 Numbers look promising (serialization, deserialization)

* New challenges with these:

29

Each has its own schema (type definition language) to model types and
messages

Each has its own code generation for language bindings
* NOT directly compatible with JAXB beans

Turmeric SOA platform uses WSDL/XML Schema (XSD) data modeling,
and JAXB language bindings

ehY

Compare Popular non-XML FormatsprarT

Own IDL/schema

Sequence numbers for each
element

Compact binary representation on
the wire

Most XML schema elements are
mappable to equivalents, except
polymorphic constructs

Versioning is similar to XML, a bit
more complex in implementing due
to sequence numbers

JSON based Schema

Schema prepended to the message
on the wire

Compact binary representation on
the wire

Most XML schema elements are
mappable to equivalent, except
polymorphic constructs

Versioning is easier

Self-
Complex Unions References
Types (Choice Type) (Trees) Enums
Protobuf Yes No Yes Yes
Yes (with
Avro Yes Yes workaround) Yes
Thrift Yes No No No
XML Yes Yes Yes Yes

* Own IDL/schema

+ Sequence numbers for each
element

+ Compact binary representation on
the wire

* Most XML schema elements are
mappable to equivalents, except
polymorphic constructs

* Versioning is similar to XML, a bit
more complex in implementing due
to sequence numbers

Inheritance

/

Polymorph

ism Inline Attachment
No No

No No

No No

Yes Yes (MIME-TYPE)

Early In-JVM Test, 80 percentile prart
—— —
Response data: 500 items x 75 fields
2000
1800
1600
1400
1200
1000 Size (KB)
800 Wire Time (msec)
600
400
200

XML Fl Protobuf

QA network test, 90% timings prarT

——
Response data: 50 items x 75 fields (about 8000 objects)

200
180
160
140
120
100
80
60
40
20

32

JSON

XML

Fast Infoset

Protobuf

Size (KB)
Wire time (msec)

ehY

Production tests — progressive

_Jimprovements

200
180
160
140
120
100
80
60
40
20

XML

XML no XML flat
poly

PB no
poly

PB flat

DRAFT

Wire Time(msec)

Challenge 3: Service Consumer ProductivityrFr
B —

e Large, complex requests and responses

e Get exactly what they want in data returned from services

e Lack of consistency in service interface conventions and data
access patterns

e Real client applications make calls to multiple services at a
time
— Serial calls increase latency. Managing parallel calls is complex

* Impedance mismatch between service interface and client
needs

— Too much data is returned
— 1+ n calls to get detailed data

ehY
34

Sneak Preview: gl.io DRAFT
e e

* New technology from eBay

* Plan to open source soon

e SQL + JSON based scripting language for aggregation
and orchestration of service calls

e Filtering and projections of responses

e Async orchestration engine

— Automatic parallelization, fork / join

What gl.io Enables

e I —

e Create consumer-controlled interfaces
— fix/patch APIs on the fly

* Filter and project responses
— use a declarative language

* Bring in consistency
— offer RESTful shims with simpler syntax

e Aggregate multiple APIs
— such as batching

e Orchestrate requests
— without worrying about async forks and joins

36

DRAFT

ehY

ql.io Demo
e I

DRAFT

Modularity

DRAFT

Key modularity concepts for software
e I s

Granularity

¢ Building bIOCkS Services Modules Packages Classes
L) 88
e Re-use JL) J) B8
50 &

e Granularit —
Y D0 B8
e Dependencies — ——WDODD E»

Unit of Deployment Unit of State

e Encapsulation

Unit of Composition

¢ CO m pOS |t| on Unit of Inter-Process Reuse

Unit of Intra-Process Reuse

* Versioning

Source: http://techdistrict.kirkk.com/2010/04/22/granularity-architectures-nemesis/
Author: Kirk Knoernschild

ehY
39

Challenges for Large Enterprisesprart
e P

e Some stats on the eBay code base
— ~ 44 million of lines of code and growing
— Hundreds of thousands of classes

— Tens of thousands of packages
—~ 4,000+ jars

 We have too many dependencies and tight coupling
in our code
— Everyone sees everyone else

— Everyone affects everyone else

ehY
40

Challenges for Large Enterprises prarT
e —

* Developer productivity/agility suffers as the knowledge goes down
— Changes ripple throughout the system
— Fallouts from changes/features are difficult to resolve

— Developers slow down and become risk averse

complexity

knowledge

code size ﬁ\)
41

Our Goals with Modularity EffortsarT

e
e Tame complexity

e Organize our code base in loose coupling fashion
— Coarse-grained modules: number matters!
— Declarative coupling contract
— Ability to hide internals

e Establish clear code ownership, boundaries and
dependencies

e Allow different components (and teams) evolve at
different speeds

* Increase development agility

o e

Considerations on Modularity Solutions prafrT
e —

e Scalability: enterprise software tends to be large scale

e We need to consider a large group of developers with varying skill levels

* End-to-end development lifecycle is crucial

e Conversion/migration of existing code base is crucial
— We rarely start from vacuum
— We want to move over and modularize bulk of existing code

— It is imperative that we chart a realistic migration course that can be
achieved within a reasonable amount of time

— We cannot afford disruption to business meanwhile: “change parts
while the car is running”

ehY
43

End-to-End Development DRAFT
e I e

e IDE, command line build, repository, server runtime, etc.
— Complete and mature tooling

— Integration and fidelity of tools across phases

pull/push SCM pull

Command line
build (ClI)

consume publish/consume

S ——
5 : Deployment L——» Server runtime

ehY
44

Modularity Solution Evaluation prarT
e [

e Evaluated OSGi, Maven, Jigsaw and JBoss Module

e Criteria include:
— Modularity enforcement
— End-to-end development
— Migration concerns
— Adoption
— Maturity

e Selected OSGi

0SGi
e I

META-INF/MANIFEST.MF:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.bar

Bundle-Version: 1.2.1

Import-Package: org.foo.other;version=“[1.1,2.0)",
javax.xml.parsers

Export-Package: org.foo.bar;version=“1.2.3”,
org.foo.bar.sub;uses=“org.foo.bar”;version=%1.2.1”

46

DRAFT

ehY

OSGi Pros DRAFT
o mee——————— —

e Enforces modularity strongly: it will let you know if you
violate it

e Mature and comprehensive: covers pretty much all use cases
regarding modularity

e Open standard
e Services: the ultimate decoupling force

e Can run two versions of the same class easily

ehY
47

0OSGi Cons DRAFT
— e

e Can run two versions of the same class easily, and run into
trouble

e Some problems are nasty to troubleshoot (uses conflict
anyone?)

e Still not many well-integrated tools across all phases:
impedance mismatches

e Compared to strong runtime model, build side story is weak
e Migration can be quite painful

e Learning curve is still fairly steep

ehY
48

eBay 0pen Source Initiative ’{},eBayOpenSource

N

e I

49

» eBay has been a strong supporter of Open Source model
and community

» Check out http://eBayOpenSource.org

>

>
>
>

Mission is to open source some of the best of breed
technologies that were developed originally within eBay Inc.
For the benefit of the community

Under a liberal open source license.

These projects are generic technology projects and several
years of development effort has gone into them to mature them.
Most parts of our services platform, code named Turmeric, is
open sourced on this site.

Summary DRAFT
e e

e Systems quality & architecture as key foundation

e Complexity management becomes important over
time

e Strike balance between agility and stability

T g

Fiey EAT i

CONFERENCE

http://www.qconbeijing.com/
http://qconhangzhou.com/

