HBase on Beam



Apache Beam

» Apache Beam is an open source, unified programming model for defining both
batch and streaming data-parallel processing pipelines.

» It was initialized and contributed by Google.

» Published the first stable release on May 17, 2017.




Apache Beam

Choose your language...

B Beam Model

— N

...and your runtime.

https://beam.apache.org/images/beam_architecture.png




Apache Beam

» A unified model for batch and streaming applications.

Runners for famous open-source batch and streaming engines, for instance
Spark and Flink.

» Multi-languages are available for end users to build their own pipelines, now
Java and Python are supported.

» Implement once, run almost everywhere.




Apache Beam

» Pipeline: The processing pipeline which includes data input, transform and
output.

» PCollection: The representation for both bounded and unbounded data
» Transform

» ParDo
GroupByKey

>

» Combine
» Flatten
>




Data Sources

In-memory data: Array, Collection, Map
Text

HDFS

Kafka

HBase

vV v v v v Vv




Windowing

» Fixed time windows

» Sliding time windows
» Session windows
>

Single global window




Serialization

» Every Transform must be serializable!

» CustomCoder
» Register coder for classes

» Register coder for the output of transform

» Serializable




Example: Count the Words

Input Data
File

TextlO.Read
Transform

TextlO.Write
Transform

Outpt{t Data
https://beam.apache.org/images/wordcount-pipeline.png e




Examples: Count the Words

Pipeline pipeline = Pipeline.create(options);
PCollection<String> inputs = pipeline.apply(TextIO.read().from("A local file"));
inputs.apply("ExtractWords", ParDo.of(new DoFn<String, String>() {
@ProcessElement
public void processElement(ProcessContext c, BoundedWindow window) throws Exception {
for (String e : c.element().split(" ")) {
c.output(e);
3

3
})).apply(Count.<String> perElement())

.apply("FormatResults", ParDo.of(new DoFn<KV<String, Long>, String>() {
@ProcessElement
public void processElement(ProcessContext c, BoundedWindow window) throws Exception {
KV<String, Long> kv = c.element();
c.outputCkv.getKey() + ":" + kv.getValue());
3
3)).apply(TextIO.write().to("Another local file"));
pipeline.run().waitUntilFinish();




Beam Google Apache Apache Apache Apache
Model Cloud Flink Spark Apex Gearpump
Dataflow

ParDo
GroupByKey
Flatten

Combine

Composite Transforms

Side Inputs
Source API
Splittable DoFn

Metrics

Stateful Processing

https://beam.apache.org/documentation/runners/capability-matrix/



HBase + Beam

Unified Model/>01

» Inspired by HBase + Spark

» Similar functions, Beam SQL is not supported
yet. Beam

» Use HBase as a bounded data source, and a
target data store in both batch and
streaming applications Y

» Customized Transforms for HBase bulk Spark Flink
operations, and HBasePipelineFunctions as
the entry to start the pipeline.

Read/Write Execute SQL |

- -
D

HBase




Operations

» Operations for both batch and streaming manners
» Scan (Already implemented in Beam)

BulkGet

BulkPut

BulkDelete

MapPartitions

ForeachPartition

BulkLoad

BulkLoadThinRows

vV v v v v v Y




Examples: Scan

» Read data from HBase table by scan

Read read = HBaselO.read().withConfiguration(conf).withTableId(tableName).withKeyRange(startRow,
stopRow);
PCollection<Result> results = p.apply("Read", read);




Examples: BulkGet

» Implement MakeFunctions to convert input to Get, and convert Result to output

PColieétion<by£é[j> results = HBasePipelineFunctions.bulkGet(cbnf; tableNameAsString, 10,
inputs, new MakeFunction<byte[], Get>() {

@0verride
public Get make(byte[] input) {
return new Get(input);

}
}, null, new MakeFunction<Result, byte[]>() {

@0verride
public byte[] make(Result input) {
return input.getRow();

}
}, ByteArrayCoder.of());




Examples: BulkPut

» Implement MakeFunction to convert input to Put.

PCollection<String> inputs =
pipeline.apply("createDataset"”, Create.of(cellStrings));
HBasePipelineFunctions.bulkPut(conf, tableNameAsString, inputs,
new MakeFunction<String, Mutation>() {

@0verride
public Mutation make(String input) {
String[] strs = input.split(" ");
if (strs.length == 2) {
Put put = new Put(Bytes. toBytes(strs[0]));
put.addColumn(FAMILY, QUALIFIER, Bytes.toBytes(strs[1]));
return put;
} else {
return null;
3
3
3);




Examples: BulkDelete

» Implement MakeFunction to convert input to Delete.

PCollection<byte[]> inputs =
pipeline.apply("createDataset"”, Create.of(deleteRows));
HBasePipelineFunctions.bulkDelete(conf, tableNameAsString, inputs,
new MakeFunction<byte[], Mutation>() {

@0verride
public Mutation make(byte[] input) {
return new Delete(input);

}
s




Examples: MapPartitions

PCollection<String> inputs =
pipeline.apply("createDataset” + UUID.randomUUID().toString(), Create.of(cellStrings));
Configuration tempConf = new Configuration(conf);
tempConf.set("beam.test.tablename", tableNameAsString);
HBasePipelineFunctions.mapPartitions(tempConf, inputs, null,
new MapPartitionsFunc<String, Result>() {

@0verride
public Iterable<Result> execute(Configuration conf, Connection conn,
Iterable<String> partition) throws IOException {
String tableName = conf.get("beam.test.tablename");
List<Get> gets = new ArraylList<>();
// pass the rows in the partition to the gets
return gets.iskEmpty() ? Collections.emptylist()
: Arrays.aslList(conn.getTable(TableName. valueOf(tableName)).get(gets));

}
}, HBaseResultCoder.of());




Examples: MapPartitions

A PCollection
as input

ParDo: Partition data into
different partitions

GroupByKey

ParDo: mapPartitions

PCollection
(KV<byte[], Iterable<Output>)

PCollection
(KV<byte[], Iterable<input>>)

PCollection
(KV<byte[],Input>)

Transform

Another
PCollection or
persistence




Examples: ForeachPartition

PCollection<String> inputs =
pipeline.apply("createDataset" + UUID.randomUUID().toString(), Create.of(cellStrings));
Configuration tempConf = new Configuration(conf);
tempConf.set("beam.test.tablename", tableNameAsString);
HBasePipelineFunctions. foreachPartition(tempConf, inputs, null,
new ForeachPartitionFunc<String>() {

@0verride
public void execute(Configuration conf, Connection conn, Iterable<String> partition)
throws IOException {
String tableName = conf.get("beam.test.tablename");
BufferedMutator mutator = conn.getBufferedMutator(TableName.valueOf(tableName));
try {
// extract data from the partition and do the mutation
mutator.flush();
} finally {
mutator.close();
}
3
s




Examples: BulkLoad

» Implement MakeFunction to convert each input into a Cell.

HBasePipelineFunctions.bulkLoad(conf, tableNameAsString, inputs, stagingPath.toUri(),
tmpPath.toUri(), new MakeFunction<String, Cell>() {

@0verride
public Cell make(String input) {
String[] strs = input.split(" ");
if (strs.length == 4) {
return new KeyValue(Bytes. toBytes(strs[@]), Bytes. toBytes(strs[1]),
Bytes. toBytes(strs[2]), EnvironmentEdgeManager.currentTime(),
Bytes. toBytes(strs[3]));
}

return null;

P




Examples: BulkLoad

A PCollection
as input

ParDo: Partition data into
different partitions

GroupByKey ParDo: foreachPartiti

PCollection PCollection
(KV<startKey,Cell>) (KV<startKey, Iterable<Cell>>)




Example: BulkLoadThinRows

» Implement MakeFunctions to convert each input into row keys and cells.

HBasePipelineFunctions.bulkLoadThinRows(conf, tableNameAsString, inputs, stagingPath.toUri(),
tmpPath.toUri(), new MakeFunction<String, byte[]>() {
@0verride
public byte[] make(String input) {
byte[] rowKey = null;
// steps to extract input into row key
return rowKey;
3
}, new MakeFunction<String, Iterable<Cell>>() {
@0verride
public Iterable<Cell> make(String input) {
List<Cell> cells = new ArraylList<>();
// steps to extract input into cells
return cells;

3
}, StringUtf8Coder.of());




Example: BulkLoadThinRows

A PCollection
as input

ParDo: Partition data into
different partitions

GroupByKey
PCollection PCollection
(KV<startKey,Input>) (KV<startKey, Input>)

ParDo: foreachPartition




Future

» Contribute the code to Apache Beam

» Support Beam SQL in HBase




Thank You!




