HITACHI

Inspire the Next

10 Million Smart Meter Data with Apache HBase

5/31/2017
0SS Solution Center
Hitachi, Ltd.

Masahiro lto
Open Source Summit Japan 2017

© Hitachi, Ltd. 2017. All rights reserved.

Who am |? HITACHI

Inspire the Next

« Masahiro Ito
» Software Engineer at Hitachi, Ltd.

» Focus on development of Big Data Solution with
Apache Hadoop and its related OSS.

» Mail: masahiro.ito.ph@hitachi.com

o e
Apache Spark
BV —I HERET

» Book and Web-articles (in Japanese)

- Apache Spark Ew/J 7T —42 4 RERRET
(Think IT Books)

o A—RT—RATHRUEHREE !
HBaseTloTHRDEYS T—4EBISREL R T
— https://thinkit.co.jp/series/6465

mailto:masahiro.ito.ph@hitachi.com
https://thinkit.co.jp/series/6465
https://thinkit.co.jp/series/6465
https://thinkit.co.jp/series/6465
https://thinkit.co.jp/series/6465

Agenda ﬂ,!lﬁ?ﬂ!f

Motivation
What is NoSQL?
Overview of HBase architecture

Performance evaluation with 10 million smart meter data

a M W b F

Summary

© Hitachi, Ltd. 2017. All rights reserved. 2

HITACHI

Inspire the Next

1. Motivation

© Hitachi, Ltd. 2017. All rights reserved. 3

Motivation ﬂ,!lﬁ?ﬂ!&

« The internet of things (IoT) and NoSQL
» Various sensor devices generate large amounts of data.
» NoSQL has higher performance and scalability than RDB.
» HBase is one of NoSQL.

« |s HBase suitable for sensor data management?

» HBase seems to be suitable for managing time series data such as sensor
data.

» | will introduce the result of performance evaluation of HBase with 10
million smart meter data.

© Hitachi, Ltd. 2017. All rights reserved. 4

HITACHI

Inspire the Next

2. What is NoSQL?

© Hitachi, Ltd. 2017. All rights reserved. 5

NoSQL (Not only SQL) HITACHI

Inspire the Next

 NOSQL refers to databases other than RDB (Relational DataBase).

* Motivations of NoSQL include:
» More flexible data model (not tabular relations).

» High performance and large disk capacity.
» With simpler "horizontal" scaling to clusters of machines.
» etc.

 NoSQL databases are increasingly used in big data and real-time
web applications.

© Hitachi, Ltd. 2017. All rights reserved. 6

Features of RDB ﬂ,!lﬁ?ﬂ!&

Relational model ACID Transaction
Date | Product ! User ID
§ Update
Date | Product User Name
User ID | User Name
Update
Update
« Table format (tabular relations) « Atomicity
« SQL interface « (Gonsistency
> Supports complex queries « Isolation

Durability

© Hitachi, Ltd. 2017. All rights reserved. 7

3 Vs of Big Data: Challenges of RDB for big data HITACHI

Volume Velogity Variety
Need to manage large Need to process large number Need to manage data of
amount of distributed data. of requests in real time. various structures.
Log Pictures
GB PB Sensor
SNS data
—~ — —~
RDB Transaction control over Exclusive control of It is incompatible with the
distributed data is difficult. | | transaction is overhead. predefined table.

© Hitachi, Ltd. 2017. All rights reserved. 8

3 Vs of Big Data: Challenges of RDB for big data HITACHI

Volume Velogity Variety
Need to manage large Need to process large number Need to manage data of
amount of distributed data. of requests in real time. various structures.
Log Pictures
GB PB Sensor
SNS data
—~ — —~
RDB Transaction control over Exclusive control of It is incompatible with the
distributed data is difficult. | | transaction is overhead. predefined table.
—— ——

N SQL Limiting the scope of transaction control makes it possible
0 to improve performance and disk capacity with scale out.

© Hitachi, Ltd. 2017. All rights reserved. 9

3 Vs of Big Data: Challenges of RDB for big data HITACHI

Volume Velogity Variety
Need to manage large Need to process large number Need to manage data of
amount of distributed data. of requests in real time. various structures.
Log Pictures
GB PB Sensor
SNS data
—~ — —~
RDB Transaction control over Exclusive control of It is incompatible with the
distributed data is difficult. | | transaction is overhead. predefined table.
—— —— ——

N SQL Limiting the scope of transaction control makes it possible Adopted flexible data
0 to improve performance and disk capacity with scale out. structure other than table.

© Hitachi, Ltd. 2017. All rights reserved.]_O

There are lots of NoSQL in the world (many others) ﬂﬂ‘%ﬂ.—!&

~
—
N j

m

~

e [

~
MongoD?‘J
N TS

|

© Hitachi, Ltd. 2017. All rights reserved. 11

NoSQL is generally classified by data model],';'p'l‘%,?{.'!!f

Key value store Wide column store
=]

~_____
Cassandra
\\
~

m:_j

Graph database

© Hitachi, Ltd. 2017. All rights reserved. 12

Couchba

Document store

NoSQL is generally classified by data model

Key value store

Low latency access with simple data structure.

Key Value

HITACHI

Inspire the Next

Wide column store

Each row has different number of columns.

Store structure data such as JSON.

Key Document

ID: 001

User: {
001 Name: “Engineer”

}

Document store

Represent relationship between data as graph
structure.

Graph database

© Hitachi, Ltd. 2017. All rights reserved. 13

HITACHI

Inspire the Next

3. Overview of HBase architecture

© Hitachi, Ltd. 2017. All rights reserved. 14

HBase overview lﬂglﬁ?ﬂ!f

« HBase is distributed, scalable, versioned, and non-relational
(wide column type) big data store.

« A Google Bigtable clone.
» Implemented in Java based on the paper of Bigtable.

* One of the OSS in Apache Hadoop eco-system.

© Hitachi, Ltd. 2017. All rights reserved.]_5

Relationship between HBase and Hadoop (HDFS) lﬂglﬁ?ﬂ!f

 HBase build on HDFS (Hadoop Distributed File System).

HBase
[Distributed database]

Commodity servers

Jo U J

© Hitachi, Ltd. 2017. All rights reserved.]_6

Relationship between HBase and Hadoop (HDFS) lﬂglﬁ?ﬂ!f

 HBase build on HDFS (Hadoop Distributed File System).

HBase
[Distributed database]

HDFS (Hadoop Distributed File System)

[Distributed File System]

Commodity servers « HDFS can read/write large files with high throughput.
However, it is not suitable for read/write small data.

JIoU J

© Hitachi, Ltd. 2017. All rights reserved. 17

Relationship between HBase and Hadoop (HDFS) lﬂglﬁ?ﬂ!f

 HBase build on HDFS (Hadoop Distributed File System).

with low latency.

HBase can read/write many small data
= HBase is a complement to HDFS.

HBase
[Distributed database]

HDFS (Hadoop Distributed File System)
[Distributed File System]

Commodity servers « HDFS can read/write large files with high throughput.
« However, it is not suitable for read/write small data.

~ <

© Hitachi, Ltd. 2017. All rights reserved.]_8

HBase architecture: Master/Slave model

HITACHI

Inspire the Next

« HBase processes the request and HDFS saves the data.

[Managing RegionServers J5

Master Node

HDFS NameNode

[Managing data]>

Data is stored in HDFS -
and data is replicated
between nodes.

HBase RegionServer

o*
.
.
.
.
.
.
.*
3

Slave Node e

HDFS DataNode

Slave Node’

HBase RegionServer

HDFS DataNode

5 Slave Node

HBase RegionServer

HDFS DataNode

© Hitachi, Ltd. 2017. All rights reserved. 19

Data model: Conceptual view

Sy,

[

HITACHI

Inspire the Next

Rows in a table are |
sorted by RowKey

» This table looks like a RDB’s table.

_] ----- _

[Each row can have a different number of columns.

Namespace (Grouping tables.)
Table
ColumnFamily ColumnFamily
RowKey ” ” ” "
Qualifier | Qualifier | Qualifier | Qualifier
) Row1 Cell Cell cell |/©°°
|

Row 2 Cell Cell \/

Row N Cell Cell Cell

N
\
——————————————————————————————— /

Table

00O

Namespace

-------_I

/

Value is stored in Cell.

The past values are stored
together with Timestamp.

Timestamp | Value
20170310 CCC
20170124 BBB
20160930 AAA

<=

J

© Hitachi, Ltd. 2017. All rights reserved.

20

Data model: Physical view

Data is stored as key value.
» The keys are sorted in the order of RowKey, Column (ColumnFamily:qualifier), Timestamp.
> ltis a “multi-dimensional sorted map”.

SortedMap<RowKey, SortedMap<Column, SortedMap<Timestamp, Value>>>

Conceptual view of Table

faml fam?2
RowKey
Coll Col2 Col3 Col4
Row 1 Val_03 Val_04
Row 2 Val_05 Val_06 -

»

HITACHI

Inspire the Next

Physical view of Table

Kfy Value
f
RowKey Colur_nn. o Timestamp Type Value
(ColumnFamily:qualifier)

Row 1 fam1:Coll 20170310 Delete
Row 1 fam1:Coll 20170310 Put Val 01
Row 1 fam2:Col3 20170215 Put Val_03
Row 1 fam2:Col4 20170309 Put Val_04
Row 2 fam1:Coll 20170310 Put Val_05
Row 2 fam1:Col2 20160104 Put Val_06

Row 2 fam2:Col3 20170221 Delete
Row 2 fam?2:Col3 20170204 Put Val_07

© Hitachi, Ltd. 2017. All rights reserved.

21

Operations and functions

« Operations

> Put, Get, Scan, Delete, etc.

|

* Functions

> Index

HITACHI

Inspire the Next

» Only be set to RowKey and Column.

> Transaction

* Only within one Row.

Put a row Get a row with
— random access

Scan multiple rows
with sequential access

5
!

| -

- Delete a value by

Ladding tombstones J

RowKey Column Timestamp Type Value
Row 1 fam1:Coll 20170310 Delete -
Row 1 fam1:Coll 20170310 Put Val 01
Row 2 fam2:Col3 20170215 Put Val 03
Row 2 fam2:Col4 20170309 Put Val 04
Row 3 fam1:Coll 20170310 Put Val_05
Row 3 fam1:Col2 20160104 Put Val_06
Row 4 fam2:Col3 20170221 Delete
Row 4 fam2:Col3 20170204 Put Val_07

© Hitachi, Ltd. 2017. All rights reserved.

22

Distributed data management ﬂ,!lﬁ?ﬂ!f

 How is a table physically divided?

Table RowKey Column Value
Row 1 fam1:Coll wes Val 01
Row 1 fam1:Col2 wes Val_02
Row 1 fam1:Col3 " Val_03
Row 1 fam2:Coll nes Val_04
Row 2 fam1:Coll nes Val_05
Row 2 fam2:Col2 nes Val_06
Row 2 fam2:Col3 nes Val_07
Row 3 fam1:Coll nes Val_08
Row 3 fam2:Coll nes Val_09
Row 4 fam1:Col2 nes Val_10
Row 4 fam1:Col4 nes Val_11
Row 4 fam2:Col3 nes Val_12
Row 4 fam2:Col5 nes Val_13

© Hitachi, Ltd. 2017. All rights reserved. 23

Table is divided into Region with the range of RowKey

=1] (= (N ":
: Region RowKey [Column Value i
1 Row 1 fam1:Coll wes Val_01 :
I
: Row 1 fam1:Col2 val_02 i
I
! Rowl | faml:Col3 | === val_03 I
1 1
I Row 1 fam2:Coll ren Val_04 :
I
: Row2 | faml:Coll | == val_05 '
I
i Row2 | fam2:Col2 | «-- Val_06 :
I
1 Row 2 fam2:Col3 o val_07 i
lﬁ ______________________________________ -
o B
: ?§g|°3n a) Row 3 fam1:Coll e Val_08 !
OoOwWosS- 1
! Row 3 fam2:Col1l e Val_09 :
: Row 4 fam1:Col2 .- Val_10 :
I
: Row4 | fam1:Cold | === val_11 -
I
: Row 4 fam2:Col3 .- Val_12 :
I
: Row 4 fam2:Col5 res Val_13 :
I
| e ———— -

© Hitachi, Ltd. 2017. All rights reserved. 24

Data is distributed on the cluster via Regions lﬂpllﬁ?mf

« Automatic sharding
» Regions are automatically split and re-distributed as data grows.

« Simple horizontal scaling
» Adding slave nodes improves performance and expands disk capacity.

HDFS

.,..... HBase C||ent B Y
Slave Ndde Slave Ndide
HBase Rfegion Server HBase Region Server :
bt N Sl IS === ==Ig ===
Region holds data_ across I Region . Region I I Region . Region I
HBase (as cache in memory) | MemStore([| | I [MemStore||| | I [MemStore|[| | | [MemStorel||| |
§(KeyValue ||\ KeyValue | P IRCRCRCRI I KeyValue ||\ KeyValue|[{{
| —J 11 —J | | —J 11 —J |
i H | i |
| | | |
| | | |

© Hitachi, Ltd. 2017. All rights reserved. 25

Summary of HBase architecture ﬂ,!lﬁ?ﬂ!f

« Simple horizontal scaling
» Adding slave nodes improves performance and expands disk capacity

« Data is stored as sorted key value
» Like multi-dimensional sorted map.

» By designing RowKey carefully, data that are accessed together are
physically co-located.

« Limited the index and transaction
» Index : Only be set to RowKey and Column.
» Transaction: Only within one Row.

© Hitachi, Ltd. 2017. All rights reserved. 26

HITACHI

Inspire the Next

4. Performance evaluation with 10 million smart meter data

© Hitachi, Ltd. 2017. All rights reserved. 27

HITACHI

Inspire the Next

i. Evaluation scenario

© Hitachi, Ltd. 2017. All rights reserved. 28

Smart meter data management HITACHI

Inspire the Next

We assumed the Meter Data Management System for 10 million smart meters.
» Smart meters collect consumption of electric energy from customers.

» Send the collected data to the Meter Data Management System every 30 minutes.

» The collected data is used for power charge calculation and demand forecast analysis, etc.
Power plants

Power Grid
B
i iVLL "" & . JUPPTLL Ly ‘
Al Total
10 million
meters

Data Analysis Meter Data

System

VEYEREN BB IR Data from smart meters (every 30min.)

© Hitachi, Ltd. 2017. All rights reserved. 29

System overview lﬂpllﬁ?mf

* Write 10 million records every 30 minutes in HBase.
 Read to analyze records stored in HBase.

Data from smart meters | e
(every 30min.) Meter Data Management System ; Data Analysis System !
I Analyst
10 million (Gateway servers HBase Cluster Analysis server /T
smart meters i (with HBase clients) ; (with HBase client)| ==

0000

P
/)

0000

-i
% Read data

[Queueing data from smart meters and |
{| send data to HBase RegionServers '

1
1 1
e © Aftachi; [id. 2017. All rights reserved. 30

Contents of performance evaluation IEJ;';‘??,?HL

® Read performance
Measure read time and throughput in
two kinds of analysis use cases.

@ Write performance
Measure write time and throughput
of 10 million records.

Analyst
Analysis server /T
(with HBase client)| =)

10 million Gateway servers HBase Cluster
smart meters (with HBase clients)

@ Data compression performance
Measure data compression ratio and
compression / decompression time.

© Hitachi, Ltd. 2017. All rights reserved. 31

HITACHI

Evaluation environment

Software version

| Inspire the Next

CDH5.9 (HBasel.2.0 + Hadoop2.6.0)

{
'
i
'
'
i

1 Client Node
i1 Master Node
;(Virtual Machine)

10Gbps SW

10Gbps LAN

14 Slave Nodes x
| (Physical Machines)

LS
* .
* -
. 3
. *
o ‘e
* 3

..

< CPU Core 16 2
Memory 12 GB 16 GB
1 of disk 1 1
Capacity of disk 80 GB 160 GB

| Client Node

[Perslavenode | Total

CPU Core 32 128
Memory 128 GB 512 GB
1 of disk 6 24
Capacity of disk 900 GB -
Total capacity 5.4 TB 216 TB
of disks (5,400 GB) (21,600 GB)

32

© Hitachi, Ltd. 2017. All rights reserved.

Table design lﬂglﬁ?ﬂ!f

« Divided the table into 400 Regions in advance.
» 100 Regions per RegionServer
» Region split key: 0001, 0002, ..., 0399

Region Region Region 000 Region
(~0001) (0001~0002) (0002~0003) (0399~)

To distribute data among Regions, add 0000 to 0399 (meter ID modulo 400)
to the head of RowKey. This technique is called “Salt”.

\/RowKey : Colur_nn. ” Timestamp | Type Value
(<Salt>-<Meter ID>-<Date>-<Time>) | (ColumnFamily:qualifier)
0000-0000000001-20170310-1100 CF: Put 3.241
0000-0000000001-20170310-1030 CF: Put 0.863
Put 0.430
0000-0000000001-20160910-1100 CF: Put 0.044
0001-0000000002-20170310-1100 CF: Put 2.390
Put 1.432

© Hitachi, Ltd. 2017. All rights reserved. 33

HITACHI

Inspire the Next

ii. Evaluation of write performance

© Hitachi, Ltd. 2017. All rights reserved. 34

Evaluation of write performance lﬂglﬁ?ﬂ!f

« Generate 10 million records with HBase clients.
« Send put request using multi clients.
« Measured the write time and throughput of 10 million records.

Gateway servers HBa.se Cluster
(with HBase clients) (RegionServers)

J

[Tuning parameters

HBase
client |t

Tuning parameters
@ # of clients
@ # of send records per request

® # of Regions

© Hitachi, Ltd. 2017. All rights reserved.

35

Write performance lﬂﬂﬁ?ﬂi

« Write time and throughput of 10 million records.

Records per

time Write time second ThrOUghpUt

4,500 sec # of records 350,000 # of records
4,000 sec per request 327,869 or request
300,000 perreq
3,500 sec / \
——1

3,000 sec 250,000 \ =-100,000

OutOfMemoryError Rpamtil ==10,000
2,500 sec

\ ; i 200,000
0 with HBase client =100 y =>=1,000
1,500 " . o // / —t—100
, sec
\
——

1,000 sec - —e—100,000 ‘, X em:
500 sec - 50,000 - ; —&
0 sec - 0 - 526 T . . .)
of clients 1 4 8 16 32 64 128 # of clients

« Stored multiple records by one request:
> Records per request: 1 to 10,000 = Throughput: 526 to 46,729 records/sec (89x)

* Increased the number of clients:
> # of Clients: 1 to 64 = Throughput: 46,729 to 327,869 records/sec (7x)

© Hitachi, Ltd. 2017. All rights reserved. 36

HITACHI

Inspire the Next

iii. Evaluation of Compression performance

© Hitachi, Ltd. 2017. All rights reserved. 37

Compressor and data block encoding lﬂglﬁ?ﬂ!f

« HBase tends to increase data size for the following reasons.
» The number of records increases because data is stored in key value format.
» Each record length is long because a key is composed of many fields.

« Compress data with a combination of compressor and data block encoding.

PREFIX SNAPPY

DIFF

FAST_DIFF N

« Measured the file size, write time, and read time of 10 million records.

Data Block Encoding Compressors
Limit duplication of Combress block
information in keys. of HI?iIes

© Hitachi, Ltd. 2017. All rights reserved. 38

Data block encoding performance with 10 million records],';'p';';‘%,?{.'!!i

HFile size Write time Read time
NONE 586 MB 31 sec 45 sec
> PREFIX B 55 sec 45 sec
c
3 PREFIX_TREE 47 sec 50 sec
g
FAST_DIFF 50 sec 46 sec
DIFF 46 sec 43 sec

OMB 200 MB 400 MB 600 MB 800 MB 0 sec 20 sec 40 sec 60 sec 0 sec 20 sec 40 sec 60 sec

HFile size Write time Read time
Reduced to 53% Increased 48% Reduced 4%
by DIFF encoding by DIFF encoding by DIFF encoding

© Hitachi, Ltd. 2017. All rights reserved. 39

HITACHI

Compressor performance with 10 million records Inspire the Next
HFile size Write time Read time
§ L e e I o™
§ snappy L 162 w3 I 51 sec I 46 sec
Gz _ 126 MB H 45 sec H 52 sec

OMB 200 MB 400 MB 600 MB 800 MB Osec 20sec 40sec 60sec 80sec 0Osec 20sec 40sec 60sec 80sec

HFile size Write time Read time
Reduced to 22% Increased 68% Increased 15%
by GZip algorithm by GZip algorithm by GZip algorithm

© Hitachi, Ltd. 2017. All rights reserved. 40

Compressor and data block encoding performance with 10 million records

HFile size Write time Read time

NONE + NONE 586 MB

NONE + PREFIX 425 MB 5 sec

NONE + PREFIX_TREE 3
NONE + FAST_DIFF
NONE + DIFF

LZ4 + PREFIX_TREE
SNAPPY + PREFIX_TREE
LZ4 + NONE

LZ4 + PREFIX

SNAPPY + NONE

LZ4 + FAST_DIFF
SNAPPY + PREFIX
SNAPPY + FAST DIFF
GZ + PREFIX_TREE
LZ4 + DIFF

SNAPPY + DIFF

GZ + NONE

GZ + PREFIX

sec

sec

63 se
sec

sec

5ec

%4

Compressor + Encoding

O0MB 200 MB 400 MB 600 MB 800 MB 0Osec 20sec 40sec 60sec 80 sec Osec 20sec 40sec 60sec 80 sec

HFile size Write time Read time

Reduced to 19% Increased 33% Increased 14%
by GZip + FAST_DIFF by GZip + FAST_DIFF by GZip + FAST_DIFF

© Hitachi, Ltd. 2017. All rights reserved. 41

HITACHI

Inspire the Next

iv. Evaluation of read performance

© Hitachi, Ltd. 2017. All rights reserved. 42

Evaluation of read performance lﬂglﬁ?ﬂ!f

« Measure the read time and throughput in two kinds of analysis use cases.

» Use case A: Scan time series data of a few meters.
« To display the transition of power consumption per meter in the line chart.

» Use case B: Get the latest data of many meters.
« To calculate the average and total value of the latest power consumption.

» Evaluation settings
« Dataset: 10 million meter * 180 days records (Compressed by FAST DIFF + GZ)
« Disabled caches and make sure to read data from disk.

HBase Cluster Analysis server

(RegionServers) (with HBase client) Analyst
Read =800 1 -AuoRns
T ‘
HBase D) A
client = n i
"L V]
-' Tuning parameters - ,
% @ # of request threads J

© Hitachi, Ltd. 2017. All rights reserved. 43

Use case A: Scan time series data of a few meters lﬂglﬁ?ﬂ!f

« Scan meter data for 1-180 days of 1-100 meters.
» Scan time series data of one meter by one scan.

; : Records per

Read time Read time second Throughput
18 sec
16 sec M 16.9 sec 4 of 60,000 51,128
14 coc 7 of meters 50,000 / # of meters
12 sec / == 100 meters 40,000 =100 meters
10 sec B w /

8 coc =0—10 meters 30,000 / =¢—10 meters

6 sec =1 meter 20.000 // =i=1 meter

4 sec 10,000 /{/

2 sec)= = :: ’ ZW‘

0 sec . T) 0 . T

1 day 30 days 180 days 1 day 30 days 180 days
(48 records (1,440 records (8,640 records Term (48 records (1,440 records (8,640 records Term
/meter) /meter) /meter) /meter) /meter) /meter)

Since read multiple data with one Scan, the throughput improves as the term was longer.

> Term: 1 to 180 days = Throughput: 247 to 51,128 records/sec (207x)

© Hitachi, Ltd. 2017. All rights reserved. 44

Use case A: Scan time series data of a few meters (with multi thread)

« Scan meter data for 180 days of 1-100 meters.
» Scan request was executed in multi thread. (Maximum 1 Scan 1 thread)

Records per

Read time Read time second Throughput
18 sec 400,000
16 sec | _16.9 sec #of metersand term 5.y 10 356,387 4 of meters and term
14 sec \ =100 meters x 180 days 300 ogo —#-—100 meters x 180 days
12 sec \ (864,000 record) ' " (864,000 record)
250,000
10 sec \ —o—10 meters x 180 days / =¢—10 meters x 180 days
\ 200,000 (8,640 record)
8 sec (8,640 record) / ,
\ 150,000 1 meterx 180 d
6 sec \ —#—1 meterx 180 days / —#—1 meter ays
4 sec (8,640 record) 100,000 £1 128 (8,640 record)
2.4 sec '
I — ‘\i _%
2 sec A — 50,000
0 sec . . . 0 A , , ,
1 thread 10 threads 100 threads # of threads 1thread 10 threads 100 threads # of threads

Throughput was improved by running Scan requests in parallel.

> # of threads: 1 to 100 = Throughput: 51,128 to 356,387 records/sec (7x)

© Hitachi, Ltd. 2017. All rights reserved. 45

Use case B: Get the latest data of many meters (with multi thread)

HITACHI

Inspire the Next

« Get the latest time (30 minutes) data of 10,000 to 10 million meters.
» Scan request can not be applied to these data.

» Requests are executed in multi thread.
» Batch execution of multiple “Get” request by one “batch” request.

Read time

12,000 sec

10,000 sec -

8,000 sec
6,000 sec
4,000 sec
2,000 sec

0 sec

Throughput was improved by running Get requests in parallel.

Read Time

of meters
=—10,000,000 meters

=¢-71,000,000 meters
==100,000 meters
=®-10,000 meters

L

of threads

Records per
second

8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

0

Throughput

i 1j002{

100 # of threads

of meters

=i—10,000,000 meters
\ =¢-1,000,000 meters
==100,000 meters

10,000 meters

> # of threads: 1 to 100 = Throughput: 1,002 to 7,574 records/sec (7.5x)

© Hitachi, Ltd. 2017. All rights reserved. 46

Comparison of Scan request with Get request

(Use case A:

Scan 180 days time series data of

100 meters with 100 thread.

L= Throughput 356,387 records/second

(Use case B:

Get the latest 30 min. data of
10,000,000 meters with 100 thread.
L= Throughput 7,574 records /second

\ ¢

HITACHI

Inspire the Next

RowKey Value
(<Salt>-<Meter ID>-<Date>-<Time>)
0000-0000000001-20170310-1100 3.241
0000-0000000001-20170310-1030 0.863
0000-0000000001-20160910-1100 0.044
0200-0000000201-20170310-1100 10.390
0200-0000000201-20170310-1030 14.325
0200-0000000201-20160910-1100 9.32

« Scan request’ s throughput was about 47x higher than the Get request.

« (Careful RowKey design is important.

> Place the data that are accessed together physically co-located.

© Hitachi, Ltd. 2017. All rights reserved. 47

HITACHI

Inspire the Next

5. Summary

© Hitachi, Ltd. 2017. All rights reserved. 48

Summary ﬂ,!lﬁ?ﬂ!&

« HBase is suitable for storing time series data generated by
sensor devices.

» Lessons from performance evaluation:

» Careful RowKey design to be able to scan data is important.
« Scan request's throughput was more than 47x that of Get request.

» HBase has high multi-client / multi-thread concurrency.

» Throughput of the Put / Scan / Get request with multi-client / multi-thread is 7x
faster than single-client / single-thread.

» Choosing the appropriate compression setting.
» The storage size of time series data could be reduced to 19%.

© Hitachi, Ltd. 2017. All rights reserved. 49

Trademarks lﬂpllﬁ?mf

. Apache HBase and Apache Hadoop are either a registered trademark or a trademark of Apache Software Foundation in the United States
and/or other countries.
. Other company and product names mentioned in this document may be the trademarks of their respective owners.

© Hitachi, Ltd. 2017. All rights reserved. 50

