
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.2.13

1.2.14

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

Table	of	Contents
Introduction

Array

Remove	Element

Remove	Duplicates	from	Sorted	Array

Plus	One

Pascal's	Triangle

Merge	Sorted	Array

Sum

Find	Minimum	in	Rotated	Sorted	Array

Largest	Rectangle	in	Histogram

Maximal	Rectangle

Palindrome	Number

Search	a	2D	Matrix

Search	for	a	Range

Search	Insert	Position

Find	Peak	Element

Bit	Manipulation

Missing	Number

Power	of	Two

Number	of	1	Bits

Tree

Depth	of	Binary	Tree

Construct	Binary	Tree

Binary	Tree	Level	Order	Traversal

Symmetric	Tree

Same	Tree

Balanced	Binary	Tree

1

1.4.7

1.4.8

1.4.9

1.4.10

1.4.11

1.4.12

1.4.13

1.4.14

1.4.15

1.4.16

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.8

1.8.1

1.8.2

Path	Sum

Binary	Tree	Depth	Order	Traversal

Populating	Next	Right	Pointers	in	Each	Node

Convert	Sorted	List/Array	to	Binary	Search	Tree

Path	Sum	II

Flatten	Binary	Tree	to	Linked	List

Validate	Binary	Search	Tree

Recover	Binary	Search	Tree

Binary	Tree	Path

Sum	Root	to	Leaf	Numbers

Dynamic	Programming

Best	Time	To	Buy	And	Sell	Stock

Unique	Paths

Maximum	Subarray

Climbing	Stairs

Triangle

Unique	Binary	Search	Trees

Perfect	Squares

Backtracking

Combination

Subsets

Permutation

Greedy

Jump	Game

Gas	Station

Candy

Word	Break

Linked	List

Linked	List	Cycle

Remove	Duplicates	from	Sorted	List

2

1.8.3

1.8.4

1.8.5

1.8.6

1.8.7

1.8.8

1.8.9

1.8.10

1.8.11

1.9

1.9.1

1.10

1.10.1

1.10.2

Merge	Sorted	Lists

Reverse	Linked	List

Swap	Nodes	in	Pairs

Sort	List

Rotate	List

Reorder	List

Partition	List

Add	Two	Numbers

Copy	List	with	Random	Pointer

Math

Reverse	Integer

String

Add	Binary

Basic	Calculator	II

3

前言

首先声明，我和张晓翀都不是算法牛人，确切的说应该是算法的门外汉，小白一

个。所以我们为了撬开算法的大门，各自刷完了一遍LeetCode的题目，这其中碰到

了很多困难，当然也少不了用了Google以及参考了别人的代码。

做完一遍下来，陡然发现，很多题目还是忘记了，再次碰到又不知道如何下手，其

实这就是典型的没有理解，掌握透。所以我们决定，应该好好的将自己做题的思路

记录下来，一个知识点，自己能弄懂，写出来让大家都明白，同时能做到举一反

三，触类旁通，那么在一定程度上面才算是真的掌握了。

于是就有了现在准备开始的这本书：《LeetCode题解》，用来记录我们刷

LeetCode题目时候的心酸历史。我们保证，书中的代码一定通过了当时LeetCode
的测试，虽然后续可能因为LeetCode测试条件的改变导致某些解题无法通过，但我

们会实时的跟进。

编程语言使用C++，代码风格上面并没有强制的采用什么编码规范，毕竟是算法解

题，只需要代码清晰易懂就可以了。

我们准备按照LeetCode的题型分类来组织章节，譬如Array，Hash	Table等，而对

每个章节里面的题目，通常采用由易到难的方式进行说明。采用这种方式，能让我

们在短时间内快速学习掌握某一类知识，同时也便于讲解说明。

当然，除了LeetCode现有的题目，我们也希望在每个章节加入相关的扩展知识，这

需要我们参考大量现有的算法书籍，鉴于个人精力时间有限，可能并不会完全实

施。

最后，我们非常欢迎大家的反馈（前提是有人看我们的东西）。如果你有任何的意

见建议，欢迎在Github的issue里面提出，或者直接与我们联系。

Thanks	Contributor
陈心宇	collectchen@gmail.com
张晓翀	xczhang07@gmail.com

Maintainer

Introduction

4

SiddonTang	siddontang@gmail.com

Introduction

5

Array

Array

6

Remove	Element
Given	an	array	and	a	value,	remove	all	instances	of	that	>	value	in	place	and
return	the	new	length.

The	order	of	elements	can	be	changed.	It	doesn't	matter	what	you	leave
beyond	the	new	length.

作为开胃菜，我当然选取了最容易的一道题目，在一个数组里面移除指定value，并

且返回新的数组长度。这题唯一需要注意的地方在于 	in	place	，不能新建另一个

数组。

方法很简单，使用两个游标i，j，遍历数组，如果碰到了value，使用j记录位置，同

时递增i，直到下一个非value出现，将此时i对应的值复制到j的位置上，增加j，重复

上述过程直到遍历结束。这时候j就是新的数组长度。

代码如下：

class	Solution	{

public:

				int	removeElement(int	A[],	int	n,	int	elem)	{

								int	i	=	0;

								int	j	=	0;

								for(i	=	0;	i	<	n;	i++)	{

												if(A[i]	==	elem)	{

																continue;

												}

												A[j]	=	A[i];

												j++;

								}

								return	j;

				}

};

Remove	Element

7

举一个最简单的例子，譬如数组为1，2，2，3，2，4，我们需要删除2，首先初始

化i和j为0，指向第一个位置，因为第一个元素为1，所以A[0]	=	A[0]，i和j都加1，而

第二个元素为2，我们递增i，直到碰到3，此时A[1]	=	A[3]，也就是3，递增i和j，这

时候下一个元素又是2，递增i，直到碰到4，此时A[2]	=	A[5]，也就是4，再次递增i
和j，这时候数组已经遍历完毕，结束。这时候j的值为3，刚好就是新的数组的长

度。

Remove	Element

8

Remove	Duplicates	from	Sorted	Array
Given	a	sorted	array,	remove	the	duplicates	in	place	such	that	>	each	element
appear	only	once	and	return	the	new	length.

Do	not	allocate	extra	space	for	another	array,	you	must	do	this	in	place	with
constant	memory.

For	example,	Given	input	array	A	=	[1,1,2],

Your	function	should	return	length	=	2,	and	A	is	now	[1,2].

这道题目与前一题Remove	Element比较类似。但是在一个排序好的数组里面删除

重复的元素。

首先我们需要知道，对于一个排好序的数组来说， 	A[N	+	1]	>=	A[N]	，我们仍

然使用两个游标i和j来处理，假设现在i	=	j	+	1，如果A[i]	==	A[j]，那么我们递增i，
直到A[i]	!=	A[j]，这时候我们再设置A[j	+	1]	=	A[i]，同时递增i和j，重复上述过程直

到遍历结束。

代码如下：

Remove	Duplicates	from	Sorted	Array

9

class	Solution	{

public:

				int	removeDuplicates(int	A[],	int	n)	{

								if(n	==	0)	{

												return	0;

								}

								int	j	=	0;

								for(int	i	=	1;	i	<	n;	i++)	{

												if(A[j]	!=	A[i])	{

																A[++j]	=	A[i];

												}

								}

								return	j	+	1;

				}

};

譬如一个数组为1，1，2，3，首先i	=	1，j	=	0，这时候A[i]	=	A[j]，于是递增i，碰到

2，不等于1，此时设置A[j	+	1]	=	A[i]，也就是A[1]	=	A[2]，递增i和j为3和1，这时候

A[3]	!=	A[1]，设置A[j	+	1]	=	A[i]，也就是A[2]	=	A[3]，再次递增，遍历结束。这时候

新的数组长度就为2	+	1，也就是3。

Remove	Duplicates	from	Sorted	Array	II
Follow	up	for	"Remove	Duplicates":	What	if	duplicates	are	allowed	at	most
twice?

For	example,	Given	sorted	array	A	=	[1,1,1,2,2,3],

Your	function	should	return	length	=	5,	and	A	is	now	[1,1,2,2,3].

紧接着上一题，同样是移除重复的元素，但是可以允许最多两次重复元素存在。

仍然是第一题的思路，但是我们需要用一个计数器来记录重复的次数，如果重复次

数大于等于2，我们会按照第一题的方式处理，如果不是重复元素了，我们将计数

器清零。

Remove	Duplicates	from	Sorted	Array

10

代码如下：

class	Solution	{

public:

				int	removeDuplicates(int	A[],	int	n)	{

								if(n	==	0)	{

												return	0;

								}

								int	j	=	0;

								int	num	=	0;

								for(int	i	=	1;	i	<	n;	i++)	{

												if(A[j]	==	A[i])	{

																num++;

																if(num	<	2)	{

																				A[++j]	=	A[i];

																}

												}	else	{

																A[++j]	=	A[i];

																num	=	0;

												}

								}

								return	j	+	1;

				}

};

Remove	Duplicates	from	Sorted	Array

11

Plus	One
Given	a	non-negative	number	represented	as	an	array	of	digits,	plus	one	to
the	number.

The	digits	are	stored	such	that	the	most	significant	digit	is	at	the	head	of	the
list.

这道题目很简单，就是考的加法进位问题。直接上代码：

class	Solution	{

public:

				vector<int>	plusOne(vector<int>	&digits)	{

								vector<int>	res(digits.size(),	0);

								int	sum	=	0;

								int	one	=	1;

								for(int	i	=		digits.size()	-	1;	i	>=	0;	i--)	{

												sum	=	one	+	digits[i];

												one	=	sum	/	10;

												res[i]	=	sum	%	10;

								}

								if(one	>	0)	{

												res.insert(res.begin(),	one);

								}

								return	res;

				}

};

Plus	One

12

Pascal's	Triangle
Given	numRows,	generate	the	first	numRows	of	Pascal's	triangle.

For	example,	given	numRows	=	5,	Return

[

					[1],

				[1,1],

			[1,2,1],

		[1,3,3,1],

	[1,4,6,4,1]

]

要得到一个帕斯卡三角，我们只需要找到规律即可。

第k层有k个元素

每层第一个以及最后一个元素值为1
对于第k（k	>	2）层第n（n	>	1	&&	n	<	k）个元素A[k][n]，A[k][n]	=	A[k-1][n-1]
+	A[k-1][n]

知道了上面的规律，就很好做了，我们使用一个二维数组来存储整个三角，代码如

下：

Pascal's	Triangle

13

class	Solution	{

public:

				vector<vector<int>	>	generate(int	numRows)	{

								vector<vector<int>	>	vals;

								vals.resize(numRows);

								for(int	i	=	0;	i	<	numRows;	i++)	{

												vals[i].resize(i	+	1);

												vals[i][0]	=	1;

												vals[i][vals[i].size()	-	1]	=	1;

												for(int	j	=	1;	j	<	vals[i].size()	-	1;	j++)	{

																vals[i][j]	=	vals[i	-	1][j	-	1]	+	vals[i	

-	1][j];

												}

								}

								return	vals;

				}

};

Pascal's	Triangle	II
Given	an	index	k,	return	the	kth	row	of	the	Pascal's	triangle.

For	example,	given	k	=	3,	Return	[1,3,3,1].

不同于上一题，这里我们仅仅需要得到的第k层的集合，但只能使用O(k)的空间。

所以不能用前面二维数组的方式，只能使用一位数组滚动计算。

在第一题里面，我们知道，帕斯卡三角的计算公式是这样的，A[k][n]	=	A[k-1][n-1]
+	A[k-1][n]。

假设现在数组存放的第3层的数据，[1,	3,	3,	1]，如果我们需要计算第4层的数据，

如果我们从前往后计算，譬如A[4][2]=	A[3][1]	+	A[3][2]，也就是4，但是因为只有一

个数组，所以需要将4这个值覆盖到2这个位置，那么我们计算A[4][3]的时候就会出

现问题了，因为这时候A[3][2]不是3，而是4了。

Pascal's	Triangle

14

为了解决这个问题，我们只能从后往前计算，仍然是上面那个例子，我们实现计算

A[4][3]	=	A[3][2]	+	A[3][3]，也就是6，我们将6直接覆盖到3这个位置，但不会影响

我们计算A[4][2]，因为A[4][2]	=	A[3][1]	+	A[3][2]，已经不会涉及到3这个位置了。

理解了如何计算，代码就很简单了：

class	Solution	{

public:

				vector<int>	getRow(int	rowIndex)	{

								vector<int>	vals;

								vals.resize(rowIndex	+	1,	1);

								for(int	i	=	0;	i	<	rowIndex	+	1;	++i)	{

												for(int	j	=	i	-	1;	j	>=	1;	--j)	{

																vals[j]	=	vals[j]	+	vals[j	-	1];

												}

								}

								return	vals;

				}

};

Pascal's	Triangle

15

Merge	Sorted	Array
Given	two	sorted	integer	arrays	A	and	B,	merge	B	into	A	as	one	sorted	array.

Note:	You	may	assume	that	A	has	enough	space	(size	that	is	greater	or	equal
to	m	+	n)	to	hold	additional	elements	from	B.	The	number	of	elements
initialized	in	A	and	B	are	m	and	n	respectively.

A和B都已经是排好序的数组，我们只需要从后往前比较就可以了。

因为A有足够的空间容纳A	+	B，我们使用游标i指向m	+	n	-	1，也就是最大数值存放

的地方，从后往前遍历A，B，谁大就放到i这里，同时递减i。

代码如下：

Merge	Sorted	Array

16

class	Solution	{

public:

				void	merge(int	A[],	int	m,	int	B[],	int	n)	{

								int	i	=	m	+	n	-	1;

								int	j	=	m	-	1;

								int	k	=	n	-	1;

								while(i	>=	0)	{

												if(j	>=	0	&&	k	>=	0)	{

																if(A[j]	>	B[k])	{

																				A[i]	=	A[j];

																				j--;

																}	else	{

																				A[i]	=	B[k];

																				k--;

																}

												}	else	if(j	>=	0)	{

																A[i]	=	A[j];

																j--;

												}	else	if(k	>=	0)	{

																A[i]	=	B[k];

																k--;

												}

												i--;

								}

				}

};

Merge	Sorted	Array

17

2Sum
Given	an	array	of	intergers,	find	two	numbers	such	that	they	add	up	to	a
specific	target	number.	The	function	twoSum	should	return	indices	of	the	two
numbers	such	that	they	add	up	to	the	target,	where	index1	must	be	less	than
index2	Please	note	that	your	returned	answers	(both	index1	and	index2)	are
not	zero-based.

You	may	assume	that	each	input	would	have	exactly	one	solution.

Input:	numbers={2,	7,	11,	15},	target=9	Output:	index1=1,	index2=2

题目翻译：	这道题目的意思是给定一个数组和一个值，让求出这个数组中两个值的

和等于这个给定值的坐标。输出是有要求的，1，	坐标较小的放在前面，较大的放

在后面。2，	这俩坐标不能为零。

题目分析：	第一步：	我们要分析题意，其中有三个关键点：

1.	 求出来的坐标值要按序排列。

2.	 这两个坐标不能从零开始。

3.	 这道题目假设是只有一组答案符合要求，这样降低了我们解题的难度。

根据题目我们可以得到以下信息：

1.	 我们得到坐标的时候，要根据大小的顺序放入数组。

2.	 因为坐标值不能为零，所以我们得到的坐标都要+1。
3.	 因为有且只有一组答案符合要求，所以这大大的降低了这道题目的难度，也就

是说，我们只要找到符合条件的两个数，存入结果，直接终止程序，返回答案

即可。

解题思路：	这道题不是很难，是leetcode最开始的题目，要求很明确，很直接，如

果我们用两个for循环，O(n2)的时间复杂度去求解的话，很容易计算出来，但这明

显不是面试官需要的答案。brute	force只有在你不知道如何优化题目的时候，将就

的给出的一个解法。。那么我们能不能用O(n)的时间复杂度去解这道题呢？很显然

是可以的，不过，天下没有掉馅饼的事情啦，既然优化了时间复杂度，我们就要牺

牲空间复杂度啦。在这里用什么呢？stack？queue？vector？还是hash_map?

Sum

18

对于stack和queue，除了pop外，查找的时间复杂度也是O(n)。明显不是我们所需

要的，那么什么数据结构的查找时间复杂度小呢？很显然是	hash_map,	查找的时

间复杂度理想情况下是O(1)。所以我们先来考虑hash_map，看看hash_map怎么求

解这个问题。

我们可以先把这个数组的所有元素存到hashmap中，一次循环就行，	时间复杂度为

O(n),之后对所给数组在进行遍历，针对其中的元素我们只要用another_number	=
target-numbers[i],之后用hashmap的find	function来查找这个值，如果存在的话，在

进行后续比较（详见代码），如果不存在的话，继续查找，好啦，思路已经摆在这

里了，详见代码吧。

class	Solution	{

public:

				vector<int>	twoSum(vector<int>	&numbers,	int	target)	

{

								//边角问题，我们要考虑边角问题的处理

								vector<int>	ret;

								if(numbers.size()	<=	1)

												return	ret;

								//新建一个map<key,value>	模式的来存储numbers里面的元素

和index，

								//这里的unordered_map相当于hash_map

								unordered_map<int,int>	myMap;

								for(int	i	=	0;	i	<	numbers.size();	++i)

												myMap[numbers[i]]	=	i;

								for(int	i	=	0;	i	<	numbers.size();	++i)

								{

												int	rest_val	=	target	-	numbers[i];

												if(myMap.find(rest_val)!=myMap.end())

												{

																int	index	=	myMap[rest_val];

																if(index	==	i)

																				continue;					//如果是同一个数字，我们就

pass，是不会取这个值的

																if(index	<	i)

Sum

19

																{

																				ret.push_back(index+1);		//这里+1是因

为题目说明白了要non-zero	based	index

																				ret.push_back(i+1);

																				return	ret;

																}

																else

																{

																				ret.push_back(i+1);

																				ret.push_back(index+1);

																				return	ret;

																}

												}

								}

				}

};

以上解法的要注意的是记得要检查这两个坐标是不是相同的，因为我们并不需要同

样的数字。

3Sum
Given	an	array	S	of	n	integers,	are	there	elements	a,	b,	c	in	S	such	that	a	+	b
+	c	=	0?	Find	all	unique	triplets	in	the	array	which	gives	the	sum	of	zero.

Note:	Elements	in	a	triplet	(a,b,c)	must	be	in	non-descending	order.	(ie,	a	≤	b
≤	c)	The	solution	set	must	not	contain	duplicate	triplets.

题目翻译：

给定一个整型数组num，找出这个数组中满足这个条件的所有数字：

num[i]+num[j]+num[k]	=	0.	并且所有的答案是要和其他不同的，也就是说两个相同

的答案是不被接受的。

题目的两点要求：

1.	 每个答案组里面的三个数字是要从大到小排列起来的。

Sum

20

2.	 每个答案不可以和其他的答案相同。

题目分析：

1.	 每一个答案数组triplet中的元素是要求升序排列的。

2.	 不能包含重复的答案数组。

解题思路：

1.	 根据第一点要求：	因为要求每个答案数组中的元素是升序排列的，所以在开头

我们要对数组进行排序。

2.	 根据第二点要求：	因为不能包含重复的答案数组，所以我们要在代码里面做一

切去掉重复的操作，对于数组，这样的操作是相同的。最开始我做leetcode的
时候是把所有满足条件的答案数组存起来，之后再用map进行处理，感觉那样

太麻烦了，所以这次给出的答案是不需要额外空间的。

时间复杂度分析：

对于这道题，因为是要找三个元素，所以怎样都要O(n2)的时间复杂度，目前我没

有想出来O(n)时间复杂度的解法。

归根结底，其实这是two	pointers的想法，定位其中两个指针，根据和的大小来移动

另外一个。解题中所要注意的就是一些细节问题。好了，上代码吧。

class	Solution	{

public:

//constant	space	version

				vector<vector<int>	>	threeSum(vector<int>	&num)	{

								vector<vector<int>>	ret;

								//corner	case	invalid	check

								if(num.size()	<=	2)

												return	ret;

								//first	we	need	to	sort	the	array	because	we	need	

the	non-descending	order

								sort(num.begin(),	num.end());

								for(int	i	=	0;	i	<	num.size()-2;	++i)

Sum

21

								{

												int	j	=	i+1;

												int	k	=	num.size()-1;

												while(j	<	k)

												{

																vector<int>	curr;			//create	a	tmp	vector	

to	store	each	triplet	which	satisfy	the	solution.

																if(num[i]+num[j]+num[k]	==	0)

																{

																				curr.push_back(num[i]);

																				curr.push_back(num[j]);

																				curr.push_back(num[k]);

																				ret.push_back(curr);

																				++j;

																				--k;

																				//this	two	while	loop	is	used	to	skip	

the	duplication	solution

																				while(j	<	k&&num[j-1]	==	num[j])

																								++j;

																				while(j	<	k&&num[k]	==	num[k+1])

																								--k;

																}

																else	if(num[i]+num[j]+num[k]	<	0)		//if	

the	sum	is	less	than	the	target	value,	we	need	to	move	j	

to	forward

																				++j;

																else

																				--k;

												}

												//this	while	loop	also	is	used	to	skip	the	

duplication	solution

												while(i	<	num.size()-1&&num[i]	==	num[i+1])

																++i;

								}

								return	ret;

				}

Sum

22

};

根据以上代码，我们要注意的就是用于去除重复的那三个while	loop。一些细节问

题比如for	loop中的i	<	num.size()-2;因为j和k都在i后面，所以减掉两位。当然如果

写成i<	num.size();	也是可以通过测试的，但感觉思路不是很清晰。另外一点，就是

不要忘记了corner	case	check呀。

3Sum	Closest
Given	an	array	S	of	n	integers,	find	three	integers	in	S	such	that	the	sum	is
closest	to	a	given	number,	target.	Return	the	sum	of	the	three	integers.	You
man	assume	that	each	input	would	have	exactly	one	solution.

题目翻译：

给定一个整形数组S和一个具体的值，要求找出在这数组中三个元素的和和这个给

定的值最小。input只有一个有效答案。

题目要求：

这道题比较直接，也没有什么具体的要求。

题目分析：

1.	 最短距离：两个整数的最短距离是0.这点对于这道题比较重要，别忽略。

2.	 这道题和3Sum几乎同出一辙，所以方便于解题，我们还是在开头要对数组进

行排序，要么没法定位指针移动。

3.	 另外，这道题中用到了INT_MAX这个值，这个值和	INT_MIN是相对应的，在

很多比较求最大值最小值的情况，经常用这两个变量。

解题思路：

这道题的解题方法和3Sum几乎相同，设定三个指针，固定两个，根据和的大小移

动另外一个。属于这道题目自己的东西就是distance比较这块儿，建立一个tmp
distance和min	distance比较。

时间复杂度分析：

这道题目和3Sum几乎是一个思路，所以时间复杂度为O(n2)。

Sum

23

代码如下：

class	Solution	{

public:

				int	threeSumClosest(vector<int>	&num,	int	target)	{

								//invalid	corner	case	check

								if(num.size()	<=	2)

												return	-1;

								int	ret	=	0;

								//first	we	suspect	the	distance	between	the	sum	

and	the	target	is	the	largest	number	in	int

								int	distance	=	INT_MAX;

								sort(num.begin(),num.end());		//sort	is	needed

								for(int	i	=	0;	i	<	num.size()-2;	++i)

								{

												int	j	=	i+1;

												int	k	=	num.size()-1;

												while(j	<	k)

												{

																int	tmp_val	=	num[i]+num[j]+num[k];

																int	tmp_distance;

																if(tmp_val	<	target)

																{

																				tmp_distance	=	target	-	tmp_val;

																				if(tmp_distance	<	distance)

																				{

																								distance	=	tmp_distance;

																								ret	=	num[i]+num[j]+num[k];

																				}

																				++j;

																}

																else	if(tmp_val	>	target)

																{

Sum

24

																				tmp_distance	=	tmp_val-target;

																				if(tmp_distance	<	distance)

																				{

																								distance	=	tmp_distance;

																								ret=	num[i]+num[j]+num[k];

																				}

																				--k;

																}

																else	//note:	in	this	case,	the	sum	is	0,	

0	means	the	shortest	distance	from	the	sum	to	the	target

																{

																				ret	=	num[i]+num[j]+num[k];

																				return	ret;

																}

												}

								}

								return	ret;

				}

};

总结：	这道题的解决方法主要要注意以下几点：

1.	 首先要对数组进行排序。

2.	 0是两个数组间最小的距离。

4Sum
Given	an	array	S	of	n	integers,	are	there	elements	a,	b,	c	and	d	in	S	such	that
a+b+c+d	=	target?	Find	all	unique	quadruplets	in	the	array	which	gives	the
sume	of	target.

Note:

1.	 Elements	in	quadruplets	(a,	b,	c,	d)	must	be	in	non-descending	order.	(ie,
a<=b<=c<=d)

2.	 The	solution	must	not	contain	duplicates	quadruplets.

Sum

25

题目翻译：

给定一个整型数字数组num和一个目标值target，求出数组中所有的组合满足条

件：	num[a]+num[b]+num[c]+num[d]	=	target.

并且要满足的条件是：

1.	 num[a]	<=	num[b]	<=	num[c]	<=	num[d]
2.	 答案中的组合没有重复的.

题目分析：

这道题和3Sum几乎同出一辙，只不过是要求四个数字的和，在时间复杂度上要比

3Sum高一个数量级。对于两点要求的处理：

1.	 首先要对整个数组进行排序，这样得到的答案自然是排序好的.
2.	 对于重复答案的处理和3Sum是一摸一样的。

解题思路：	同3Sum.

时间复杂度分析：

这道题的解法，我选择的是空间复杂度为1，	时间复杂度为O(n3).对于这样的问

题，如果到了KSum(K>=5),	我觉得可以用hash_map来牺牲空间复杂度换取好一些

的时间复杂度.

代码如下：

class	Solution	{

public:

				vector<vector<int>	>	fourSum(vector<int>	&num,	int	

target)	{

								vector<vector<int>>	ret;

								if(num.size()	<=	3)	//invalid	corner	case	check

												return	ret;

								sort(num.begin(),	num.end());	//cause	we	need	the	

result	in	quadruplets	should	be	non-descending

								for(int	i	=	0;	i	<	num.size()-3;	++i)

								{

												if(i	>	0	&&	num[i]	==	num[i-1])

																continue;

Sum

26

												for(int	j	=	i+1;	j	<	num.size()-2;	++j)

												{

																if(j	>	i+1	&&	num[j]	==	num[j-1])

																				continue;

																int	k	=	j+1;

																int	l	=	num.size()-1;

																while(k	<	l)

																{

																				int	sum	=	

num[i]+num[j]+num[k]+num[l];

																				if(sum	==	target)

																				{

																								vector<int>	curr;	//create	a	

temporary	vector	to	store	the	each	quadruplets

																								curr.push_back(num[i]);

																								curr.push_back(num[j]);

																								curr.push_back(num[k]);

																								curr.push_back(num[l]);

																								ret.push_back(curr);

																								//the	two	while	loops	are	used	to	

skip	the	duplication	solutions

																								do{++k;}

																								while(k<l	&&	num[k]	==	num[k-1]);

																								do{--l;}

																								while(k<l	&&	num[l]	==	num[l+1]);

																				}

																				else	if(sum	<	target)

																								++k;		//we	can	do	this	operation	

because	of	we	sort	the	array	at	the	beginning

																				else

																								--l;

																}

												}

								}

								return	ret;

				}

Sum

27

};

根据上述代码，我觉得要说明白的一点是:

1.	 我用do{}while来代替了while进行重复答案的处理，为什么要这样呢？是因为如

果换成了while，leetcode的test	sample过不去，报的错误是超出了时间的限

制，我认为如果要用while，应该是多进行了++k	还有--l的操作吧。换成了

do{}while就可以通过所有的test	case.

问题扩展

KSum
根据以上的2Sum,	3Sum,	3Sum	Cloest，	还有4Sum，我相信只要认真看完每

道题的解法的童鞋，都会发现一定的规律，相信这时候会有人想，如果变成

KSum问题，我们应该如何求解？这是个很好的想法，下面，我们来看看问题

扩展.

首先，对于2Sum，我们用的解法是以空间复杂度来换取时间复杂度，那么，2Sum
我们可不可以in	place来解？时间复杂度又是多少？	答案是当然可以，我们可以先

sort一遍，之后再扫一变，sort的时间复杂度是O(nlogn)，扫一遍是O(n),因此，这

种解法的时间复杂度是O(nlogn),	当然，如果对于要找index，leetcode上的题不能

用这个方法，因为我们sort一遍之后，index会发生一些变化。但是我们可以用以下

这个function来作为一个Helper	function对于K	Sum(考虑到如果K	>	2,	sort一遍数组

的时间开销不算是主要的时间开销了):

Sum

28

void	twoSum(vector<int>	&numbers,	int	begin,	int	first,	

int	second,	int	target,	vector<vector<int>>&	ret)	{

							if(begin	>=	numbers.size()-1)

												return;

								int	b	=	begin;

								int	e	=	numbers.size()-1;

								while(b	<	e)

								{

												int	rest	=	numbers[b]+numbers[e];

												if(rest	==	target)

												{

																vector<int>	tmp_ret;

																tmp_ret.push_back(first);

																tmp_ret.push_back(second);

																tmp_ret.push_back(numbers[b]);

																tmp_ret.push_back(numbers[e]);

																ret.push_back(tmp_ret);

																do{b++;}

																while(b<e	&&	numbers[b]	==	numbers[b-1]);

																do{e--;}

																while(b<e	&&	numbers[e]	==	numbers[e+1]);

												}

												else	if(rest	<	target)

																++b;

												else

																--e;

								}

				}

给个例子，对于4Sum，我们可以调用这个function，代码如下:

class	Solution	{

public:

				void	twoSum(vector<int>	&numbers,	int	begin,	int	

Sum

29

first,	int	second,	int	target,	vector<vector<int>>&	ret)	

{

							if(begin	>=	numbers.size()-1)

												return;

								int	b	=	begin;

								int	e	=	numbers.size()-1;

								while(b	<	e)

								{

												int	rest	=	numbers[b]+numbers[e];

												if(rest	==	target)

												{

																vector<int>	tmp_ret;

																tmp_ret.push_back(first);

																tmp_ret.push_back(second);

																tmp_ret.push_back(numbers[b]);

																tmp_ret.push_back(numbers[e]);

																ret.push_back(tmp_ret);

																do{b++;}

																while(b<e	&&	numbers[b]	==	numbers[b-1]);

																do{e--;}

																while(b<e	&&	numbers[e]	==	numbers[e+1]);

												}

												else	if(rest	<	target)

																++b;

												else

																--e;

								}

				}

				vector<vector<int>	>	fourSum(vector<int>	&num,	int	

target)	{

								vector<vector<int>>	ret;

								if(num.size()	<=	3)	//invalid	corner	case	check

												return	ret;

								sort(num.begin(),	num.end());	//cause	we	need	the	

result	in	quadruplets	should	be	non-descending

								for(int	i	=	0;	i	<	num.size()-3;	++i)

Sum

30

								{

												if(i	>	0	&&	num[i]	==	num[i-1])

																continue;

												for(int	j	=	i+1;	j	<	num.size()-2;	++j)

												{

																if(j	>	i+1	&&	num[j]	==	num[j-1])

																				continue;

																twoSum(num,	j+1,	num[i],	num[j],	target-

(num[i]+num[j]),	ret);

												}

								}

								return	ret;

				}

};

以上解法可以延伸到KSum.不过是相当于对于n-2个数做嵌套循环。这么写出来使

得思路清晰，以后遇到了类似问题可以解决。

Sum

31

Find	Minimum	in	Rotated	Sorted	Array
Suppose	a	sorted	array	is	rotated	at	some	pivot	unknown	to	you	beforehand.

(i.e.,	0	1	2	4	5	6	7	might	become	4	5	6	7	0	1	2).

Find	the	minimum	element.

You	may	assume	no	duplicate	exists	in	the	array.

这题要求在一个轮转了的排序数组里面找到最小值，我们可以用二分法来做。

首先我们需要知道，对于一个区间A，如果A[start]	<	A[stop]，那么该区间一定是有

序的了。

假设在一个轮转的排序数组A，我们首先获取中间元素的值，A[mid]，mid	=	(start	+
stop)	/	2。因为数组没有重复元素，那么就有两种情况：

A[mid]	>	A[start]，那么最小值一定在右半区间，譬如[4,5,6,7,0,1,2]，中间元素

为7，7	>	4，最小元素一定在[7,0,1,2]这边，于是我们继续在这个区间查找。

A[mid]	<	A[start]，那么最小值一定在左半区间，譬如[7,0,1,2,4,5,6]，这件元素

为2，2	<	7，我们继续在[7,0,1,2]这个区间查找。

代码如下:

Find	Minimum	in	Rotated	Sorted	Array

32

class	Solution	{

public:

				int	findMin(vector<int>	&num)	{

								int	size	=	num.size();

								if(size	==	0)	{

												return	0;

								}	else	if(size	==	1)	{

												return	num[0];

								}	else	if(size	==	2)	{

												return	min(num[0],	num[1]);

								}

								int	start	=	0;

								int	stop	=	size	-	1;

								while(start	<	stop	-	1)	{

												if(num[start]	<	num[stop])	{

																return	num[start];

												}

												int	mid	=	start	+	(stop	-	start)	/	2;

												if(num[mid]	>	num[start])	{

																start	=	mid;

												}	else	if(num[mid]	<	num[start])	{

																stop	=	mid;

												}

								}

								return	min(num[start],	num[stop]);

				}

};

Find	Minimum	in	Rotated	Sorted	Array

Find	Minimum	in	Rotated	Sorted	Array

33

Suppose	a	sorted	array	is	rotated	at	some	pivot	unknown	to	you	beforehand.

(i.e.,	0	1	2	4	5	6	7	might	become	4	5	6	7	0	1	2).

Find	the	minimum	element.

The	array	may	contain	duplicates.

这题跟上题唯一的区别在于元素可能有重复，我们仍然采用上面的方法，只是需要

处理mid与start相等这种额外情况。

A[mid]	>	A[start]，右半区间查找。

A[mid]	<	A[start]，左半区间查找。

A[mid]	=	A[start]，出现这种情况，我们跳过start，重新查找，譬如[2,2,2,1]，
A[mid]	=	A[start]都为2，这时候我们跳过start，使用[2,2,1]继续查找。

代码如下:

Find	Minimum	in	Rotated	Sorted	Array

34

class	Solution	{

public:

				int	findMin(vector<int>	&num)	{

								int	size	=	num.size();

								if(size	==	0)	{

												return	0;

								}	else	if(size	==	1)	{

												return	num[0];

								}	else	if(size	==	2)	{

												return	min(num[0],	num[1]);

								}

								int	start	=	0;

								int	stop	=	size	-	1;

								while(start	<	stop	-	1)	{

												if(num[start]	<	num[stop])	{

																return	num[start];

												}

												int	mid	=	start	+	(stop	-	start)	/	2;

												if(num[mid]	>	num[start])	{

																start	=	mid;

												}	else	if(num[mid]	<	num[start])	{

																stop	=	mid;

												}	else	{

																start++;

												}

								}

								return	min(num[start],	num[stop]);

				}

};

Find	Minimum	in	Rotated	Sorted	Array

35

这题需要注意，如果重复元素很多，那么最终会退化到遍历整个数组，而不是二分

查找了。

Find	Minimum	in	Rotated	Sorted	Array

36

Largest	Rectangle	in	Histogram
Given	n	non-negative	integers	representing	the	histogram's	bar	height	where
the	width	of	each	bar	is	1,	find	the	area	of	largest	rectangle	in	the	histogram.

Above	is	a	histogram	where	width	of	each	bar	is	1,	given	height	=
[2,1,5,6,2,3].

The	largest	rectangle	is	shown	in	the	shaded	area,	which	has	area	=	10	unit.

For	example,	Given	height	=	[2,1,5,6,2,3],	return	10.

这道题目算是比较难得一道题目了，首先最简单的做法就是对于任意一个bar，向

左向右遍历，直到高度小于该bar，这时候计算该区域的矩形区域面积。对于每一

个bar，我们都做如上处理，最后就可以得到最大值了。当然这种做法是O(n2)，铁

定过不了大数据集合测试的。

从上面我们直到，对于任意一个bar	n，我们得到的包含该bar	n的矩形区域里面bar
n是最小的。我们使用ln和rn来表示bar	n向左以及向右第一个小于bar	n的bar的索引

位置。

Largest	Rectangle	in	Histogram

37

譬如题目中的bar	2的高度为5，它的ln为1，rn为4。包含bar	2的矩形区域面积为(4	-
1	-	1)	*	5	=	10。

我们可以从左到右遍历所有bar，并将其push到一个stack中，如果当前bar的高度小

于栈顶bar，我们pop出栈顶的bar，同时以该bar计算矩形面积。那么我们如何知道

该bar的ln和rn呢？rn铁定就是当前遍历到的bar的索引，而ln则是当前的栈顶bar的
索引，因为此时栈顶bar的高度一定小于pop出来的bar的高度。

为了更好的处理最后一个bar的情况，我们在实际中会插入一个高度为0的bar，这

样就能pop出最后一个bar并计算了。

代码如下：

Largest	Rectangle	in	Histogram

38

class	Solution	{

public:

				int	largestRectangleArea(vector<int>	&height)	{

								vector<int>	s;

								//插入高度为0的bar

								height.push_back(0);

								int	sum	=	0;

								int	i	=	0;

								while(i	<	height.size())	{

												if(s.empty()	||	height[i]	>	height[s.back()])	

{

																s.push_back(i);

																i++;

												}	else	{

																int	t	=	s.back();

																s.pop_back();

																//这里还需要考虑stack为空的情况

																sum	=	max(sum,	height[t]	*	(s.empty()	?	i	

:	i	-	s.back()	-	1));

												}

								}

								return	sum;

				}

};

Largest	Rectangle	in	Histogram

39

Maximal	Rectangle
Given	a	2D	binary	matrix	filled	with	0's	and	1's,	find	the	largest	rectangle
containing	all	ones	and	return	its	area.

这题是一道难度很大的题目，至少我刚开始的时候完全不知道怎么做，也是google
了才知道的。

这题要求在一个矩阵里面求出全部包含1的最大矩形面积，譬如这个：

				0	0	0	0

				1	1	1	1

				1	1	1	0

				0	1	0	0

我们可以知道，最大的矩形面积为6。也就是下图中虚线包围的区域。那么我们如

何得到这个区域呢？

				0		0		0		0

			|--------|

			|1		1		1	|1

			|1		1		1	|0

			|--------|

				0		1		0		0

对于上面哪一题，我们先去掉最下面的一行，然后就可以发现，它可以转化成一个

直方图，数据为[2,	2,	2,	0]，我们认为1就是高度，如果碰到0，譬如上面最右列，

则高度为0，而计算这个直方图最大矩形面积就很容易了，我们已经在Largest
Rectangle	in	Histogram处理了。

所以我们可以首先得到每一行的直方图，分别求出改直方图的最大区域，最后就能

得到结果了。

代码如下：

Maximal	Rectangle

40

class	Solution	{

public:

				int	maximalRectangle(vector<vector<char>	>	&matrix)	{

								if(matrix.empty()	||	matrix[0].empty())	{

												return	0;

								}

								int	m	=	matrix.size();

								int	n	=	matrix[0].size();

								vector<vector<int>	>	height(m,	vector<int>(n,	

0));

								for(int	i	=	0;	i	<	m;	i++)	{

												for(int	j	=	0;	j	<	n;	j++)	{

																if(matrix[i][j]	==	'0')	{

																				height[i][j]	=	0;

																}	else	{

																				height[i][j]	=	(i	==	0)	?	1	:	

height[i	-	1][j]	+	1;

																}

												}

								}

								int	maxArea	=	0;

								for(int	i	=	0;	i	<	m;	i++)	{

												maxArea	=	max(maxArea,	

largestRectangleArea(height[i]));

								}

								return	maxArea;

				}

				int	largestRectangleArea(vector<int>	&height)	{

								vector<int>	s;

								height.push_back(0);

Maximal	Rectangle

41

								int	sum	=	0;

								int	i	=	0;

								while(i	<	height.size())	{

												if(s.empty()	||	height[i]	>	height[s.back()])	

{

																s.push_back(i);

																i++;

												}	else	{

																int	t	=	s.back();

																s.pop_back();

																sum	=	max(sum,	height[t]	*	(s.empty()	?	i	

:	i	-	s.back()	-	1));

												}

								}

								return	sum;

				}

};

Maximal	Rectangle

42

Palindrome	Number
Determine	whether	an	integer	is	a	palindrome.	Do	this	without	extra	space.

题目翻译:	给定一个数字，要求判断这个数字是否为回文数字.	比如121就是回文数

字，122就不是回文数字.

解题思路:	这道题很明显是一道数学题,计算一个数字是否是回文数字，我们其实就

是将这个数字除以10，保留他的余数，下次将余数乘以10，加上这个数字再除以10
的余数.

需要注意的点:

1.	 负数不是回文数字.
2.	 0是回文数字.

时间复杂度:	logN

代码如下:

Palindrome	Number

43

class	Solution	{

public:

				bool	isPalindrome(int	x)	{

								if(x	<	0)

												return	false;

								else	if(x	==	0)

												return	true;

								else

								{

												int	tmp	=	x;

												int	y	=	0;

												while(x	!=	0)

												{

																y	=	y*10	+	x%10;

																x	=	x/10;

												}

												if(y	==	tmp)

																return	true;

												else

																return	false;

								}

				}

};

Palindrome	Number

44

Search	a	2D	Matrix
Write	an	efficient	algorithm	that	searches	for	a	value	in	an	m	x	n	matrix.	This
matrix	has	the	following	properties:

Integers	in	each	row	are	sorted	from	left	to	right.	The	first	integer	of	each	row
is	greater	than	the	last	integer	of	the	previous	row.	For	example,

Consider	the	following	matrix:

[

		[1,			3,		5,		7],

		[10,	11,	16,	20],

		[23,	30,	34,	50]

]

题目翻译:	给定一个矩阵和一个特定值，要求写出一个高效的算法在这个矩阵中快

速的找出是否这个给定的值存在.	但是这个矩阵有以下特征.

1.	 对于每一行，数值是从左到右从小到大排列的.
2.	 对于每一列，数值是从上到下从小到大排列的.

题目解析:	对于这个给定的矩阵，我们如果用brute	force解法，用两个嵌套循环，

O(n2)便可以得到答案.但是我们需要注意的是这道题已经给定了这个矩阵的两个特

性，这两个特性对于提高我们算法的时间复杂度有很大帮助，首先我们给出一个

O(n)的解法，也就是说我们可以固定住右上角的元素，根据递增或者递减的规律，

我们可以判断这个给定的数值是否存在于这个矩阵当中.

Search	a	2D	Matrix

45

class	Solution	{

public:

				bool	searchMatrix(vector<vector<int>	>	&matrix,	int	

target)	{

								/*	we	set	the	corner	case	as	below:

											1,	if	the	row	number	of	input	matrix	is	0,	we	

set	it	false

											2,	if	the	colomun	number	of	input	matrix	is	0,	

we	set	it	false*/

								if(matrix.size()	==	0)

												return	false;

								if(matrix[0].size()	==	0)

												return	false;

								int	rowNumber	=	0;

								int	colNumber	=	matrix[0].size()-1;

								while(rowNumber	<	matrix.size()	&&	colNumber	>=	

0)

								{

												if(target	<	matrix[rowNumber][colNumber])

																--colNumber;

												else	if(target	>	matrix[rowNumber]

[colNumber])

																++rowNumber;

												else

																return	true;

								}

								return	false;

				}

};

Search	a	2D	Matrix

46

Search	for	a	Range
Given	a	sorted	array	of	integers,	find	the	starting	and	ending	position	of	a
given	target	value.

Your	algorithm's	runtime	complexity	must	be	in	the	order	of	O(log	n).

If	the	target	is	not	found	in	the	array,	return	[-1,	-1].

For	example,

Given	[5,	7,	7,	8,	8,	10]	and	target	value	8,

return	[3,	4].

这题要求在一个排好序可能有重复元素的数组里面找到包含某个值的区间范围。要

求使用O(log	n)的时间，所以我们采用两次二分查找。首先二分找到第一个该值出

现的位置，譬如m，然后在[m,	n)区间内第二次二分找到最后一个该值出现的位置。

代码如下：

class	Solution	{

public:

				vector<int>	searchRange(int	A[],	int	n,	int	target)	{

							if(n	==	0)	{

												return	vector<int>({-1,	-1});

								}

								vector<int>	v;

								int	low	=	0;

								int	high	=	n	-	1;

								//第一次二分找第一个位置

								while(low	<=	high)	{

												int	mid	=	low	+	(high	-	low)	/	2;

												if(A[mid]	>=	target)	{

																high	=	mid	-	1;

												}	else	{

																low	=	mid	+	1;

Search	for	a	Range

47

												}

								}

								if(low	<	n	&&	A[low]	==	target)	{

												v.push_back(low);

								}	else	{

												return	vector<int>({-1,	-1});

								}

								low	=	low;

								high	=	n	-	1;

								//从第一个位置开始进行第二次二分，找最后一个位置

								while(low	<=	high)	{

												int	mid	=	low	+	(high	-	low)	/	2;

												if(A[mid]	<=	target)	{

																low	=	mid	+	1;

												}	else	{

																high	=	mid	-	1;

												}

								}

								v.push_back(high);

								return	v;

				}

};

Search	for	a	Range

48

Search	Insert	Position
Given	a	sorted	array	and	a	target	value,	return	the	index	if	the	target	is	found.
If	not,	return	the	index	where	it	would	be	if	it	were	inserted	in	order.

You	may	assume	no	duplicates	in	the	array.

Here	are	few	examples.

[1,3,5,6],	5	→	2

[1,3,5,6],	2	→	1

[1,3,5,6],	7	→	4

[1,3,5,6],	0	→	0

这题要求在一个排好序的数组查找某值value，如果存在则返回对应index，不存在

则返回能插入到数组中的index（保证数组有序）。

对于不存在的情况，我们只需要在数组里面找到最小的一个值大于value的index，
这个index就是我们可以插入的位置。譬如[1,	3,	5,	6]，查找2，我们知道3是最小的

一个大于2的数值，而3的index为1，所以我们需要在1这个位置插入2。如果数组里

面没有值大于value，则插入到数组末尾。

我们采用二分法解决：

Search	Insert	Position

49

class	Solution	{

public:

				int	searchInsert(int	A[],	int	n,	int	target)	{

								int	low	=	0;

								int	high	=	n	-	1;

								while(low	<=	high)	{

												int	mid	=	low	+	(high	-	low)	/	2;

												if(A[mid]	==	target)	{

																return	mid;

												}	else	if(A[mid]	<	target)	{

																low	=	mid	+	1;

												}	else	{

																high	=	mid	-	1;

												}

								}

								return	low;

				}

};

Search	Insert	Position

50

Find	Peak	Element
A	peak	element	is	an	element	that	is	greater	than	its	neighbors.

Given	an	input	array	where	num[i]	≠	num[i+1],	find	a	peak	element	and	return
its	index.

The	array	may	contain	multiple	peaks,	in	that	case	return	the	index	to	any	one
of	the	peaks	is	fine.

You	may	imagine	that	num[-1]	=	num[n]	=	-∞.

For	example,	in	array	[1,	2,	3,	1],	3	is	a	peak	element	and	your	function
should	return	the	index	number	2.

这题要求我们在一个无序的数组里面找到一个peak元素，所谓peak，就是值比两边

邻居大就行了。

对于这题，最简单地解法就是遍历数组，只要找到第一个元素，大于两边就可以

了，复杂度为O(N)。但这题还可以通过二分来做。

首先我们找到中间节点mid，如果大于两边返回当前index就可以了，如果左边的节

点比mid大，那么我们可以继续在左半区间查找，这里面一定存在一个peak，为什

么这么说呢？假设此时的区间范围为[0,	mid	-	1]，	因为num[mid	-	1]一定大于

num[mid]了，如果num[mid	-	2]	<=	num[mid	-	1]，那么num[mid	-	1]就是一个

peak。如果num[mid	-	2]	>	num[mid	-	1]，那么我们就继续在[0,	mid	-	2]区间查找，

因为num[-1]为负无穷，所以最终我们绝对能在左半区间找到一个peak。同理右半

区间一样。

代码如下：

Find	Peak	Element

51

class	Solution	{

public:

				int	findPeakElement(const	vector<int>	&num)	{

								int	n	=	num.size();

								if(n	==	1)	{

												return	0;

								}

								int	start	=	0;

								int	end	=	n	-	1;

								int	mid	=	0;

								while(start	<=	end)	{

												mid	=	start	+	(end	-	start)	/	2;

												if((mid	==	0	||	num[mid]	>=	num[mid	-	1])	&&

															(mid	==	n	-	1	||	num[mid]	>=	num[mid	+	

1]))	{

																				return	mid;

												}else	if(mid	>	0	&&	num[mid-1]	>	num[mid])	{

																end	=	mid	-	1;

												}	else	{

																start	=	mid	+	1;

												}

								}

								return	mid;

				}

};

Find	Peak	Element

52

Bit	Manipulation

Bit	Manipulation

53

Missing	Number
Given	an	array	containing	n	distinct	numbers	taken	from	0,	1,	2,	...,	n,	find	the
one	that	is	missing	from	the	array.

For	example,	Given	nums	=	 	[0,	1,	3]		return	 	2	.

Note:	Your	algorithm	should	run	in	linear	runtime	complexity.	Could	you
implement	it	using	only	constant	extra	space	complexity?

题目翻译:	从0到n之间取出n个不同的数，找出漏掉的那个。	注意：你的算法应当

具有线性的时间复杂度。你能实现只占用常数额外空间复杂度的算法吗？

题目分析:	最直观的思路是对数据进行排序，然后依次扫描，便能找出漏掉的数

字，但是基于比较的排序算法的时间复杂度至少是 	nlog(n)	，不满足题目要求。

一种可行的具有线性时间复杂度的算法是求和。对0到n求和，然后对给出的数组求

和，二者之差即为漏掉的数字。但是这种方法不适用于0是漏掉的数字的情况，因

为此时两个和是相同的。（或者也能由此得出漏掉的数字是0）

从CPU指令所耗费的时钟周期来看，比加法更高效率的运算是异或(XOR)运算。本

题的标签里有位运算，暗示本题可以用位运算的方法解决。

异或运算的一个重要性质是，相同的数异或得0，不同的数异或不为0，且此性质可

以推广到多个数异或的情形。本题的解法如下，首先将0到n这些数进行异或运算，

然后对输入的数组进行异或运算，最后将两个结果进行异或运算，结果便是漏掉的

数字，因为其他数字在两个数组中都是成对出现的，异或运算会得到0。

时间复杂度：O(n)	空间复杂度：O(1)

代码如下:

Missing	Number

54

class	Solution	{

public:

				int	missingNumber(vector<int>&	nums)	{

								int	x	=	0;

								for	(int	i	=	0;	i	<=	nums.size();	i++)	x	^=	i;

								for	(auto	n	:	nums)	x	^=	n;

								return	x;

				}

};

Missing	Number

55

Power	of	Two
Given	an	integer,	write	a	function	to	determine	if	it	is	a	power	of	two.

题目翻译:	给出一个整数，判断它是否是2的幂。

题目分析:	2的整数次幂对应的二进制数只含有0个或者1个1，所以我们要做的就是

判断输入的数的二进制表达形式里是否符合这一条件。	有一种corner	case需要注

意，当输入的数为负数的时候，一定不是2的幂。

时间复杂度：O(n)	空间复杂度：O(1)

代码如下:

class	Solution	{

public:

				bool	isPowerOfTwo(int	n)	{

							if	(n	<	0)	return	false;

							bool	hasOne	=	false;

							while	(n	>	0)	{

											if	(n	&	1)	{

															if	(hasOne)	{

																			return	false;

															}

															else	{

																			hasOne	=	true;

															}

											}

											n	>>=	1;

							}

							return	hasOne;

				}

};

Power	of	Two

56

Power	of	Two

57

Number	of	1	Bits
Write	a	function	that	takes	an	unsigned	integer	and	returns	the	number	of	’1'
bits	it	has	(also	known	as	the	Hamming	weight).	For	example,	the	32-bit
integer	 	11		has	binary	representation
	00000000000000000000000000001011	,	so	the	function	should	return	3.

题目翻译:	给出一个整数，求它包含二进制1的位数。例如，32位整数 	11	的二进制

表达形式是 	00000000000000000000000000001011	，那么函数应该返回3。

题目分析:	设输入的数为n，把n与1做二进制的与(AND)运算，即可判断它的最低位

是否为1。如果是的话，把计数变量加一。然后把n向右移动一位，重复上述操作。

当n变为0时，终止算法，输出结果。

时间复杂度：O(n)	空间复杂度：O(1)

代码如下:

class	Solution	{

public:

				int	hammingWeight(uint32_t	n)	{

								int	count	=	0;

								while	(n	>	0)	{

												count	+=	n	&	1;

												n	>>=	1;

								}

								return	count;

				}

};

Number	of	1	Bits

58

Tree
树是一种重要的非线性数据结构，广泛地应用于计算机技术的各个领域。采用树可

以实现一些高效地查找算法，例如数据库系统中用到的红黑树等。

树本身的定义是递归的，因此很多涉及到树的算法通常都可以用递归的方式来实

现。然而递归算法在数据量较大的时候效率很低，所以通常会将递归改写成迭代算

法。

涉及到树的题目主要包括树的遍历，平衡二叉树，查找二叉树等。

Tree

59

Maximum	Depth	of	Binary	Tree
Given	a	binary	tree,	find	its	maximum	depth.

The	maximum	depth	is	the	number	of	nodes	along	the	longest	path	from	the
root	node	down	to	the	farthest	leaf	node.

这题要求我们求出一个二叉树最大深度，也就是从根节点到最远的叶子节点的距

离。

对于这题，我们只需要递归遍历二叉树，达到一个叶子节点的时候，记录深度，我

们就能得到最深的深度了。

代码如下：

Depth	of	Binary	Tree

60

class	Solution	{

public:

				int	num;

				int	maxDepth(TreeNode	*root)	{

								if(!root)	{

												return	0;

								}

								//首先初始化num为最小值

								num	=	numeric_limits<int>::min();

								travel(root,	1);

								return	num;

				}

				void	travel(TreeNode*	node,	int	level)	{

								//如果没有左子树以及右子树了，就到了叶子节点

								if(!node->left	&&	!node->right)	{

												num	=	max(num,	level);

												return;

								}

								if(node->left)	{

												travel(node->left,	level	+	1);

								}

								if(node->right)	{

												travel(node->right,	level	+	1);

								}

				}

};

Minimum	Depth	of	Binary	Tree

Depth	of	Binary	Tree

61

Given	a	binary	tree,	find	its	minimum	depth.

The	minimum	depth	is	the	number	of	nodes	along	the	shortest	path	from	the
root	node	down	to	the	nearest	leaf	node.

这题跟上题几乎一样，区别在于需要求出根节点到最近的叶子节点的深度，我们仍

然使用遍历的方式。

代码如下：

class	Solution	{

public:

				int	n;

				int	minDepth(TreeNode	*root)	{

								if(!root)	{

												return	0;

								}

								//初始化成最大值

								n	=	numeric_limits<int>::max();

								int	d	=	1;

								depth(root,	d);

								return	n;

				}

				void	depth(TreeNode*	node,	int&	d)	{

								//叶子节点，比较

								if(!node->left	&&	!node->right)	{

												n	=	min(n,	d);

												return;

								}

								if(node->left)	{

												d++;

												depth(node->left,	d);

												d--;

Depth	of	Binary	Tree

62

								}

								if(node->right)	{

												d++;

												depth(node->right,	d);

												d--;

								}

				}

};

Depth	of	Binary	Tree

63

Construct	Binary	Tree	from	Inorder	and
Postorder	Traversal
Given	inorder	and	postorder	traversal	of	a	tree,	construct	the	binary	tree.

要知道如何构建二叉树，首先我们需要知道二叉树的几种遍历方式，譬如有如下的

二叉树：

																1

								--------|-------

								2															3

				----|----							----|----

				4							5							6							7

前序遍历	1245367
中序遍历	4251637
后续遍历	4526731

具体到上面这一题，我们知道了一个二叉树的中序遍历以及后序遍历的结果，那么

如何构建这颗二叉树呢？

仍然以上面那棵二叉树为例，我们可以发现，对于后序遍历来说，最后一个元素一

定是根节点，也就是1。然后我们在中序遍历的结果里面找到1所在的位置，那么它

的左半部分就是其左子树，有半部分就是其右子树。

我们将中序遍历左半部分425取出，同时发现后序遍历的结果也在相应的位置上

面，只是顺序稍微不一样，也就是452。我们可以发现，后序遍历中的2就是该子树

的根节点。

上面说到了左子树，对于右子树，我们取出637，同时发现后序遍历中对应的数据

偏移了一格，并且顺序也不一样，为673。而3就是这颗右子树的根节点。

重复上述过程，通过后续遍历找到根节点，然后在中序遍历数据中根据根节点拆分

成两个部分，同时将对应的后序遍历的数据也拆分成两个部分，重复递归，就可以

得到整个二叉树了。

代码如下：

Construct	Binary	Tree

64

class	Solution	{

public:

				unordered_map<int,	int>	m;

				TreeNode	*buildTree(vector<int>	&inorder,	vector<int>	

&postorder)	{

								if(postorder.empty())	{

												return	NULL;

								}

								for(int	i	=	0;	i	<	inorder.size();	i++)	{

												m[inorder[i]]	=	i;

								}

								return	build(inorder,	0,	inorder.size()	-	1,

												postorder,	0,	postorder.size()	-	1);

				}

				TreeNode*	build(vector<int>&	inorder,	int	s0,	int	e0,

								vector<int>&	postorder,	int	s1,	int	e1)	{

								if(s0	>	e0	||	s1	>	e1)	{

												return	NULL;

								}

								TreeNode*	root	=	new	TreeNode(postorder[e1]);

								int	mid	=	m[postorder[e1]];

								int	num	=	mid	-	s0;

								root->left	=	build(inorder,	s0,	mid	-	1,	

postorder,	s1,	s1	+	num	-	1);

								root->right	=	build(inorder,	mid	+	1,	e0,	

postorder,	s1	+	num,	e1	-	1);

								return	root;

				}

Construct	Binary	Tree

65

};

这里我们需要注意，为了保证快速的在中序遍历结果里面找到根节点，我们使用了

hash	map。

Construct	Binary	Tree	from	Preorder	and
Inorder	Traversal
Given	preorder	and	inorder	traversal	of	a	tree,	construct	the	binary	tree.

这题跟上面那题类似，通过前序遍历和中序遍历的结果构造二叉树，我们只需要知

道前序遍历的第一个值就是根节点，那么仍然可以采用上面提到的方式处理：

通过前序遍历找到根节点

通过根节点将中序遍历数据拆分成两部分

对于各个部分重复上述操作

代码如下：

class	Solution	{

public:

					unordered_map<int,	int>	m;

				TreeNode	*buildTree(vector<int>	&preorder,	

vector<int>	&inorder)	{

								if(preorder.empty())	{

												return	NULL;

								}

								for(int	i	=	0;	i	<	inorder.size();	i++)	{

												m[inorder[i]]	=	i;

								}

								return	build(preorder,	0,	preorder.size()	-	1,	

inorder,	0,	inorder.size()	-	1);

				}

Construct	Binary	Tree

66

				TreeNode*	build(vector<int>&	preorder,	int	s0,	int	

e0,	vector<int>	&inorder,	int	s1,	int	e1)	{

								if(s0	>	e0	||	s1	>	e1)	{

												return	NULL;

								}

								int	mid	=	m[preorder[s0]];

								TreeNode*	root	=	new	TreeNode(preorder[s0]);

								int	num	=	mid	-	s1;

								root->left	=	build(preorder,	s0	+	1,	s0	+	num,	

inorder,	s1,	mid	-	1);

								root->right	=	build(preorder,	s0	+	num	+	1,	e0,	

inorder,	mid	+	1,	e1);

								return	root;

				}

};

可以看到，这两道题目，只要能清楚了树的几种遍历方式，以及找到如何找到根节

点，并通过中序遍历拆分成两个子树，就能很容易的搞定了，唯一需要注意的是写

代码的时候拆分索引位置要弄对。

Construct	Binary	Tree

67

Binary	Tree	Level	Order	Traversal
Given	a	binary	tree,	return	the	level	order	traversal	of	its	nodes'	values.	(ie,
from	left	to	right,	level	by	level).

For	example:	Given	binary	tree	{3,9,20,#,#,15,7},

				3

			/	\

		9		20

				/		\

			15			7

return	its	level	order	traversal	as:

[

		[3],

		[9,20],

		[15,7]

]

题目翻译:	给定一颗二叉树，返回一个二维数组，使这个二维数组的每一个元素代

表着二叉树的一层的元素.例子已经明确给出.

题目分析:	对于二叉树的问题，我们第一想到的就是DFS或者BFS,	DFS更易于理解

代码，如果处理数据量不是很大的话.对于这样的面试题，我建议用DFS来求解.

需要注意的点为:

1.	 对于一棵树，如果我们要求每一层的节点，并且存在一个二维数组里，首先我

们要建一个二维数组，但是这个二维数组建多大的合适呢？我们就要求出这颗

树的深度，根据深度来建立二维数组.
2.	 题目要求为从左往右添加,所以我们也就是要先放左边的节点，再放右边的节

点.
3.	 对于这道题，我们首先就是要用DFS来求出这颗树的高度，之后再用DFS对于

Binary	Tree	Level	Order	Traversal

68

每一层遍历，这样节省了空间复杂度.

时间复杂度分析:	由于两次DFS是并列的，并没有嵌套，所以我们的时间复杂度为

O(n).

代码如下:

/**

	*	Definition	for	binary	tree

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

class	Solution	{

public:

/*	for	this	question,	we	need	to	construct	the	ret	vector	

first

			thus,	we	need	to	know	the	depth	of	this	tree,	we	write	

a	simple

			function	to	calculate	the	height	of	this	tree	*/

				vector<vector<int>	>	levelOrder(TreeNode	*root)	{

							int	depth	=	getHeight(root);

							vector<vector<int>>	ret(depth);

							if(depth	==	0)	//invalid	check

												return	ret;

								getSolution(ret,root,0);

								return	ret;

				}

				void	getSolution(vector<vector<int>>&	ret,	TreeNode*	

root,	int	level)

				{

								if(root	==	NULL)

Binary	Tree	Level	Order	Traversal

69

												return;

								ret[level].push_back(root->val);

								getSolution(ret,root->left,level+1);

								getSolution(ret,root->right,level+1);

				}

				int	getHeight(TreeNode*	root)

				{

								if(root	==	NULL)

												return	0;

								int	left	=	getHeight(root->left);

								int	right	=	getHeight(root->right);

								int	height	=	(left	>	right?left:right)+1;

								return	height;

				}

};

Binary	Tree	Level	Order	Traversal	II
Given	a	binary	tree,	return	the	bottom-up	level	order	traversal	of	its	nodes'
values.	(from	left	to	right,	level	by	level	from	leaf	to	root)

For	example:	Given	binary	tree	{3,9,20,#,#,15,7},

				3

			/	\

		9		20

				/		\

			15			7

return	its	level	order	traversal	as:

Binary	Tree	Level	Order	Traversal

70

[

		[15,7],

		[9,20],

		[3]

]

题目翻译:	给定一颗二叉树，	返回一个二维数组，这个二维数组要满足这个条件，

二维数组的第一个一维数组要是这可二叉树的最下面一层，之后以此类推，根据以

上例子应该知道要求的条件。

题目分析	&&	解题思路:	这道题和Binary	Tree	Level	Order	Traversal	几乎是一摸一

样的，唯一不同的就是二维数组的存储顺序，详见以下代码.

时间复杂度:	O(n)-树的dfs均为O(n)

代码如下:

/**

	*	Definition	for	binary	tree

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

class	Solution	{

public:

				vector<vector<int>	>	levelOrderBottom(TreeNode	*root)	

{

								int	depth	=	height(root);

								vector<vector<int>>	ret(depth);

								if(depth	==	0)

												return	ret;

Binary	Tree	Level	Order	Traversal

71

								DFS(ret,ret.size()-1,	root);

								return	ret;

				}

				void	DFS(vector<vector<int>>&	ret,	int	level,	

TreeNode*	root)

				{

								if(root	==	NULL)

												return;

								ret[level].push_back(root->val);

								DFS(ret,level-1,root->left);

								DFS(ret,level-1,root->right);

				}

				/*	get	the	height	first	of	all	*/

				int	height(TreeNode*	root)

				{

								if(root	==	NULL)

												return	0;

								int	left_side	=	height(root->left);

								int	right_side	=	height(root->right);

								int	height	=	(left_side	>	right_side?

left_side:right_side)+1;

								return	height;

				}

};

Binary	Tree	Zigzag	Level	Order	Traversal

Binary	Tree	Level	Order	Traversal

72

Given	a	binary	tree,	return	the	zigzag	level	order	traversal	of	its	nodes'
values.	(ie,	from	left	to	right,	then	right	to	left	for	the	next	level	and	alternate
between).

For	example:	Given	binary	tree	{3,9,20,#,#,15,7},

				3

			/	\

		9		20

				/		\

			15			7

return	its	zigzag	level	order	traversal	as:

[

		[3],

		[20,9],

		[15,7]

]

如果完成了上面两题，这题应该是很简单的，我们只需要将得到的数据按照zigzag
的方式翻转一下，代码如下：

class	Solution	{

public:

vector<vector<int>	>	vals;

				vector<vector<int>	>	zigzagLevelOrder(TreeNode	*root)	

{

								build(root,	1);

								//翻转

								for(int	i	=	1;	i	<	vals.size();	i+=2)	{

												reverse(vals[i].begin(),	vals[i].end());

								}

Binary	Tree	Level	Order	Traversal

73

								return	vals;

				}

				void	build(TreeNode*	node,	int	level)	{

								if(!node)	{

												return;

								}

								if(vals.size()	<=	level	-	1)	{

												vals.push_back(vector<int>());

								}

								vals[level	-	1].push_back(node->val);

								if(node->left)	{

												build(node->left,	level	+	1);

								}

								if(node->right)	{

												build(node->right,	level	+	1);

								}

				}

};

Binary	Tree	Level	Order	Traversal

74

Symmetric	Tree
Given	a	binary	tree,	check	whether	it	is	a	mirror	of	itself(ie,	symmetric	around
its	center)

For	example,	this	tree	is	symmetric:

				1

			/	\

		2			2

	/	\	/	\

3		4	4		3

But	the	following	tree	is	not.

				1

			/	\

		2			2

			\			\

			3				3

题目翻译：	判断一棵树是不是自己的镜像，	根据以上正反两个例子，我想大家都

明白这道题的题目要求了，简单明了.

解题思路:	递归:	这道题没什么特别的地方，现在这里简单的分析一下解题思路，从

根节点往下，我们要判断三个条件.

1.	 左右两个节点的大小是否相同.
2.	 左节点的左孩子是否和右节点的右孩子相同.
3.	 左节点的右孩子是否和右节点的左孩子相同.

循环:	这道题的难点在于循环解法，	如果是循环解法，我们必须要用到额外的存储

空间用于回溯，关键是对于这道题目，	我们要用多少？要怎么用？要用什么样的存

储空间？

递归求解，如果以上三个条件对于每一层都满足，我们就可以认为这棵树是镜像树.

Symmetric	Tree

75

时间复杂度:	递归:本质其实就是DFS,时间复杂度为O(n),空间复杂度O(1)	递归:时间

复杂度O(n),空间复杂度O(n)

递归代码如下:

/**

	*	Definition	for	binary	tree

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

class	Solution	{

public:

				bool	isSymmetric(TreeNode	*root)	{

								if(root	==	NULL)

												return	true;

								return	Helper(root->left,root->right);

				}

				bool	Helper(TreeNode*	left,	TreeNode*	right)

				{

								if(left	==	NULL&&right	==	NULL)

												return	true;

								else	if(left	==	NULL||right	==	NULL)

												return	false;

								bool	cond1	=	left->val	==	right->val;

								bool	cond2	=	Helper(left->left,right->right);

								bool	cond3	=	Helper(left->right,	right->left);

								return	cond1&&cond2&&cond3;

				}

};

Symmetric	Tree

76

循环解法:	我们主要想介绍一下这道题的循环解法，对于循环，我们要满足对于每

一层进行check，代替了递归，一般树的循环遍历，我们都是用FIFO的queue来作

为临时空间存储变量的，所以这道题我们也选取了queue，但是我们用两个

queue，因为我们要对于左右同时进行检查，很显然一个queue是不够的，具体实

现细节，咱们还是看代码吧，，我相信代码更能解释方法.

循环代码如下:

/**

	*	Definition	for	binary	tree

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

class	Solution	{

public:

				bool	isSymmetric(TreeNode	*root)	{

							if(root	==	NULL)

												return	true;

								TreeNode*	n1	=	root->left;

								TreeNode*	n2	=	root->right;

								if(!n1&&!n2)

												return	true;

								if((!n1&&n2)||(n1&&!n2))

												return	false;

								queue<TreeNode*>	Q1;

								queue<TreeNode*>	Q2;

								Q1.push(n1);

								Q2.push(n2);

								while(!Q1.empty()	&&	!Q2.empty())

								{

Symmetric	Tree

77

												TreeNode*	tmp1	=	Q1.front();

												TreeNode*	tmp2	=	Q2.front();

												Q1.pop();

												Q2.pop();

												if((!tmp1&&tmp2)	||	(tmp1&&!tmp2))

																return	false;

												if(tmp1&&tmp2)

												{

																if(tmp1->val	!=	tmp2->val)

																				return	false;

																Q1.push(tmp1->left);

																Q1.push(tmp1->right);	//note:	this	line	

we	should	put	the	mirror	sequence	in	two	queues

																Q2.push(tmp2->right);

																Q2.push(tmp2->left);

												}

								}

								return	true;

				}

};

Symmetric	Tree

78

Same	Tree
Given	two	binary	trees,	write	a	function	to	check	if	they	are	equal	or	not.	Two
binary	trees	are	considered	equal	if	they	are	structurally	identical	and	the
nodes	have	the	same	values.

题目翻译:	给两棵树，写一个函数来判断这两棵树是否相同.	我们判定一棵树是否相

同的条件为这两棵树的结构相同，并且每个节点的值相同.

解题思路:	这道题中规中矩，很简单，我们直接用DFS前序遍历这两棵树就可以了.

时间复杂度分析:	因为是DFS,	所以时间复杂度为O(n)

代码如下:

Same	Tree

79

/**

	*	Definition	for	binary	tree

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

class	Solution	{

public:

				bool	isSameTree(TreeNode	*p,	TreeNode	*q)	{

								if(p	==	NULL	&&	q	==	NULL)

												return	true;

								else	if(p	==	NULL	||	q	==	NULL)

												return	false;

								if(p->val	==	q->val)

								{

												bool	left	=	isSameTree(p->left,	q->left);

												bool	right	=	isSameTree(p->right,q->right);

												return	left&&right;

								}

								return	false;

				}

};

Same	Tree

80

Balanced	Binary	Tree
Given	a	binary	tree,	determine	if	it	is	height-balanced.

For	this	problem,	a	height-balanced	binary	tree	is	defined	as	a	binary	tree	in
which	the	depth	of	the	two	subtrees	of	every	node	never	differ	by	more	than
1.

题目翻译:	给定一颗二叉树，	写一个函数来检测这棵树是否是平衡二叉树.	对于这个

问题,	一颗平衡树的定义是其中任意节点的左右子树的高度差不大于1.

解题思路:	这道题其实就是应用DFS，对于一颗二叉树边计算树的高度边计算差

值，针对树里面的每一个节点计算它的左右子树的高度差，如果差值大于1，那么

就返回-1，如果不大于1，从下往上再次检测.

时间复杂度:	由于是运用DFS，所以时间复杂度为O(n).

代码如下:

/**

	*	Definition	for	binary	tree

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

class	Solution	{

public:

				bool	isBalanced(TreeNode	*root)	{

								//corner	case	check

								if(root	==	NULL)

												return	true;

Balanced	Binary	Tree

81

								int	isBalanced	=	getHeight(root);

								if(isBalanced	!=	-1)

												return	true;

								else

												return	false;

				}

				int	getHeight(TreeNode*	root)

				{

								if(root	==	NULL)

												return	0;

								int	leftHeight	=	getHeight(root->left);

								if(leftHeight	==	-1)

												return	-1;

								int	rightHeight	=	getHeight(root->right);

								if(rightHeight	==	-1)

												return	-1;

								int	diffHeight	=	rightHeight	>	leftHeight?	

rightHeight-leftHeight:leftHeight-rightHeight;

								if(diffHeight	>	1)

												return	-1;

								else

												return	diffHeight	=	(rightHeight>leftHeight?

rightHeight:leftHeight)+1;

				}

};

Balanced	Binary	Tree

82

Path	Sum
Given	a	binary	tree	and	a	sum,	determine	if	the	tree	has	a	root-to-leaf	path
such	that	adding	up	all	the	values	along	the	path	equals	the	given	sum.

For	example:	Given	the	below	binary	tree	and	sum	=	22,

														5

													/	\

												4			8

											/			/	\

										11		13		4

									/		\						\

								7				2						1

return	true,	as	there	exist	a	root-to-leaf	path	5->4->11->2	which	sum	is	22.

题目翻译:	给定一颗二叉树和一个特定值，写一个方法来判定这棵树是否存在这样

一种条件，使得从root到其中一个叶子节点的路径的和等于给定的sum值.

解题思路:	这道题很常规，直接用DFS就可以求解.

时间复杂度:	O(n)

代码如下:

/**

	*	Definition	for	binary	tree

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

Path	Sum

83

class	Solution	{

public:

				bool	hasPathSum(TreeNode	*root,	int	sum)	{

								if(root	==	NULL)

												return	false;

								return	DFS(sum,	0,	root);

				}

				bool	DFS(int	target,	int	sum,	TreeNode*	root)

				{

								if(root	==	NULL)

												return	false;

								sum	+=	root->val;

								if(root->left	==	NULL	&&	root->right	==	NULL)

								{

												if(sum	==	target)

																return	true;

												else

																return	false;

								}

								bool	leftPart	=	DFS(target,	sum,	root->left);

								bool	rightPart	=	DFS(target,	sum,	root->right);

								return	leftPart||rightPart;

				}

};

Path	Sum

84

Binary	Tree	Depth	Order	Traversal
前面我们解决了tree的level	order遍历问题，这里我们需要来处理tree的depth
order，也就是前序，中序和后序遍历。

Binary	Tree	Preorder	Traversal
Given	a	binary	tree,	return	the	preorder	traversal	of	its	nodes'	values.

For	example:	Given	binary	tree	{1,#,2,3},

			1

				\

					2

				/

			3

return	[1,2,3].

Note:	Recursive	solution	is	trivial,	could	you	do	it	iteratively?

给定一颗二叉树，使用迭代的方式进行前序遍历。

因为不能递归，所以我们只能使用stack来保存迭代状态。

对于前序遍历，根节点是最先访问的，然后是左子树，最后才是右子树。当访问到

根节点的时候，我们需要将右子树压栈，这样访问左子树之后，才能正确地找到对

应的右子树。

代码如下：

Binary	Tree	Depth	Order	Traversal

85

class	Solution	{

public:

				vector<int>	preorderTraversal(TreeNode	*root)	{

								vector<int>	vals;

								if(root	==	NULL)	{

												return	vals;

								}

								vector<TreeNode*>	nodes;

								//首先将root压栈

								nodes.push_back(root);

								while(!nodes.empty())	{

												TreeNode*	n	=	nodes.back();

												vals.push_back(n->val);

												//访问了该节点，出栈

												nodes.pop_back();

												//如果有右子树，压栈保存

												if(n->right)	{

																nodes.push_back(n->right);

												}

												//如果有左子树，压栈保存

												if(n->left)	{

																nodes.push_back(n->left);

												}

								}

								return	vals;

				}

};

Binary	Tree	Depth	Order	Traversal

86

Binary	Tree	Inorder	Traversal
给定一颗二叉树，使用迭代的方式进行中序遍历。

对于中序遍历，首先遍历左子树，然后是根节点，最后才是右子树，所以我们需要

用stack记录每次遍历的根节点，当左子树遍历完成之后，从stack弹出根节点，得

到其右子树，开始新的遍历。

代码如下：

Binary	Tree	Depth	Order	Traversal

87

class	Solution	{

public:

				vector<int>	inorderTraversal(TreeNode	*root)	{

								vector<int>	vals;

								if(root	==	NULL)	{

												return	vals;

								}

								vector<TreeNode*>	nodes;

								TreeNode*	p	=	root;

								while(p	||	!nodes.empty())	{

												//这里一直遍历左子树，将根节点压栈

												while(p)	{

																nodes.push_back(p);

																p	=	p->left;

												}

												if(!nodes.empty())	{

																p	=	nodes.back();

																vals.push_back(p->val);

																//将根节点弹出，获取右子树

																nodes.pop_back();

																p	=	p->right;

												}

								}

								return	vals;

				}

};

Binary	Tree	Postorder	Traversal
给定一颗二叉树，使用迭代的方式进行后序遍历。

Binary	Tree	Depth	Order	Traversal

88

对于后序遍历，首先遍历左子树，然后是右子树，最后才是根节点。当遍历到一个

节点的时候，首先我们将右子树压栈，然后将左子树压栈。这里需要注意一下出栈

的规则，对于叶子节点来说，直接可以出栈，但是对于根节点来说，我们需要一个

变量记录上一次出栈的节点，如果上一次出栈的节点是该根节点的左子树或者右子

树，那么该根节点可以出栈，否则这个根节点是新访问的节点，将右和左子树分别

压栈。

代码如下：

class	Solution	{

public:

				vector<int>	postorderTraversal(TreeNode	*root)	{

								vector<int>	vals;

								if(root	==	NULL)	{

												return	vals;

								}

								vector<TreeNode*>	nodes;

								TreeNode*	pre	=	NULL;

								nodes.push_back(root);

								while(!nodes.empty())	{

												TreeNode*	p	=	nodes.back();

												//如果不判断pre，我们就没法正确地出栈了

												if((p->left	==	NULL	&&	p->right	==	NULL)	||

																(pre	!=	NULL	&&	(pre	==	p->left	||	pre	==	

p->right)))	{

																vals.push_back(p->val);

																nodes.pop_back();

																pre	=	p;

												}	else	{

																//右子树压栈

																if(p->right	!=	NULL)	{

																				nodes.push_back(p->right);

																}

Binary	Tree	Depth	Order	Traversal

89

																//左子树压栈

																if(p->left	!=	NULL)	{

																				nodes.push_back(p->left);

																}

												}

								}

								return	vals;

				}

};

总结

可以看到，树的遍历通过递归或者堆栈的方式都是比较容易的，网上还有更牛的不

用栈的方法，只是我没理解，就不做过多说明了。

Binary	Tree	Depth	Order	Traversal

90

Populating	Next	Right	Pointers	in	Each
Node

Populating	Next	Right	Pointers	in	Each	Node

91

Given	a	binary	tree

				struct	TreeLinkNode	{

						TreeLinkNode	*left;

						TreeLinkNode	*right;

						TreeLinkNode	*next;

				}

Populate	each	next	pointer	to	point	to	its	next	right	node.	If	there	is	no	next
right	node,	the	next	pointer	should	be	set	to	NULL.

Initially,	all	next	pointers	are	set	to	NULL.

Note:

You	may	only	use	constant	extra	space.	You	may	assume	that	it	is	a	perfect
binary	tree	(ie,	all	leaves	are	at	the	same	level,	and	every	parent	has	two
children).	For	example,	Given	the	following	perfect	binary	tree,

									1

							/		\

						2				3

					/	\		/	\

				4		5		6		7

After	calling	your	function,	the	tree	should	look	like:

									1	->	NULL

							/		\

						2	->	3	->	NULL

					/	\		/	\

				4->5->6->7	->	NULL

这题需要在一棵完全二叉树中使用next指针连接旁边的节点，我们可以发现一些规

律。

如果一个子节点是根节点的左子树，那么它的next就是该根节点的右子树，譬

Populating	Next	Right	Pointers	in	Each	Node

92

如上面例子中的4，它的next就是2的右子树5。
如果一个子节点是根节点的右子树，那么它的next就是该根节点next节点的左

子树。譬如上面的5，它的next就是2的next（也就是3）的左子树。

所以代码如下：

class	Solution	{

public:

				void	connect(TreeLinkNode	*root)	{

								if(!root)	{

												return;

								}

								TreeLinkNode*	p	=	root;

								TreeLinkNode*	first	=	NULL;

								while(p)	{

												//记录下层第一个左子树

												if(!first)	{

																first	=	p->left;

												}

												//如果有左子树，那么next就是父节点

												if(p->left)	{

																p->left->next	=	p->right;

												}	else	{

																//叶子节点了，遍历结束

																break;

												}

												//如果有next，那么设置右子树的next

												if(p->next)	{

																p->right->next	=	p->next->left;

																p	=	p->next;

																continue;

												}	else	{

																//转到下一层

																p	=	first;

Populating	Next	Right	Pointers	in	Each	Node

93

																first	=	NULL;

												}

								}

				}

};

Populating	Next	Right	Pointers	in	Each
Node	II
What	if	the	given	tree	could	be	any	binary	tree?	Would	your	previous	solution
still	work?

Note:

You	may	only	use	constant	extra	space.	For	example,	Given	the	following
binary	tree,

									1

							/		\

						2				3

					/	\				\

				4			5				7

After	calling	your	function,	the	tree	should	look	like:

									1	->	NULL

							/		\

						2	->	3	->	NULL

					/	\				\

				4->	5	->	7	->	NULL

不同于上一题，这题的二叉树并不是完全二叉树，我们不光需要提供first指针用来

表示一层的第一个元素，同时也需要使用另一个lst指针表示该层上一次遍历的元

素。那么我们只需要处理好如何设置last的next指针就可以了。

Populating	Next	Right	Pointers	in	Each	Node

94

代码如下:

class	Solution	{

public:

				void	connect(TreeLinkNode	*root)	{

								if(!root)	{

												return;

								}

								TreeLinkNode*	p	=	root;

								TreeLinkNode*	first	=	NULL;

								TreeLinkNode*	last	=	NULL;

								while(p)	{

												//设置下层第一个元素

												if(!first)	{

																if(p->left)	{

																				first	=	p->left;

																}	else	if(p->right)	{

																				first	=	p->right;

																}

												}

												if(p->left)	{

																//如果有last，则设置last的next

																if(last)	{

																				last->next	=	p->left;

																}

																//last为left

																last	=	p->left;

												}

												if(p->right)	{

																//如果有last，则设置last的next

																if(last)	{

																				last->next	=	p->right;

Populating	Next	Right	Pointers	in	Each	Node

95

																}

																//last为right

																last	=	p->right;

												}

												//如果有next，则转到next

												if(p->next)	{

																p	=	p->next;

												}	else	{

																//转到下一层

																p	=	first;

																last	=	NULL;

																first	=	NULL;

												}

								}

				}

};

其实我们可以看到，第一题只是第二题的特例，所以第二题的解法也同样适用于第

一题。

Populating	Next	Right	Pointers	in	Each	Node

96

Convert	Sorted	List	to	Binary	Search	Tree
Given	a	singly	linked	list	where	elements	are	sorted	in	ascending	order,
convert	it	to	a	height	balanced	BST.

这题需要将一个排好序的链表转成一个平衡二叉树，我们知道，对于一个二叉树来

说，左子树一定小于根节点，而右子树大于根节点。所以我们需要找到链表的中间

节点，这个就是根节点，链表的左半部分就是左子树，而右半部分则是右子树，我

们继续递归处理相应的左右部分，就能够构造出对应的二叉树了。

这题的难点在于如何找到链表的中间节点，我们可以通过fast，slow指针来解决，

fast每次走两步，slow每次走一步，fast走到结尾，那么slow就是中间节点了。

代码如下：

Convert	Sorted	List/Array	to	Binary	Search	Tree

97

class	Solution	{

public:

				TreeNode	*sortedListToBST(ListNode	*head)	{

								return	build(head,	NULL);

				}

				TreeNode*	build(ListNode*	start,	ListNode*	end)	{

								if(start	==	end)	{

												return	NULL;

								}

								ListNode*	fast	=	start;

								ListNode*	slow	=	start;

								while(fast	!=	end	&&	fast->next	!=	end)	{

												slow	=	slow->next;

												fast	=	fast->next->next;

								}

								TreeNode*	node	=	new	TreeNode(slow->val);

								node->left	=	build(start,	slow);

								node->right	=	build(slow->next,	end);

								return	node;

				}

};

Convert	Sorted	Array	to	Binary	Search
Tree
Given	an	array	where	elements	are	sorted	in	ascending	order,	convert	it	to	a
height	balanced	BST.

Convert	Sorted	List/Array	to	Binary	Search	Tree

98

这题类似上面那题，同样地解题方式，对于数组来说，能更方便的得到中间节点，

代码如下：

class	Solution	{

public:

				TreeNode	*sortedArrayToBST(vector<int>	&num)	{

								return	build(num,	0,	num.size());

				}

				TreeNode*	build(vector<int>&	num,	int	start,	int	end)	

{

								if(start	>=	end)	{

												return	NULL;

								}

								int	mid	=	start	+	(end	-	start)	/	2;

								TreeNode*	node	=	new	TreeNode(num[mid]);

								node->left	=	build(num,	start,	mid);

								node->right	=	build(num,	mid	+	1,	end);

								return	node;

				}

};

Convert	Sorted	List/Array	to	Binary	Search	Tree

99

Path	Sum	II
Given	a	binary	tree	and	a	sum,	find	all	root-to-leaf	paths	where	each	path's
sum	equals	the	given	sum.

For	example:	Given	the	below	binary	tree	and	sum	=	22.

														5

													/	\

												4			8

											/			/	\

										11		13		4

									/		\						\

								7				2						1

return

[

			[5,4,11,2],

			[5,8,4,5]

]

题目翻译：	给定一个二叉树，并且给定一个值，找出所有从根节点到叶子节点和等

于这个给定值的路径.上面的例子可以很好地让读者理解这个题目的目的.

解题思路:	这个题目和Path	Sum的解法几乎是一模一样，都是用dfs来进行求解，不

过就是在传参数的时候有些不同了，因为题目的要求也不同.

时间复杂度:	O(n)

代码如下:

/**

	*	Definition	for	binary	tree

Path	Sum	II

100

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

	*/

class	Solution	{

public:

				vector<vector<int>	>	pathSum(TreeNode	*root,	int	sum)	

{

								vector<vector<int>>	ret;

								if(root	==	NULL)

												return	ret;

								vector<int>	curr;

								DFS(ret,curr,sum,0,root);

								return	ret;

				}

				void	DFS(vector<vector<int>>&	ret,	vector<int>	curr,	

int	sum,	int	tmpsum,	TreeNode*	root)

				{

								if(root	==	NULL)

												return;

								tmpsum+=root->val;

								curr.push_back(root->val);

								if(tmpsum	==	sum)

								{

												if(root->left	==	NULL&&root->right	==	NULL)

												{

																ret.push_back(curr);

																return;

												}

								}

								DFS(ret,curr,sum,tmpsum,root->left);

Path	Sum	II

101

								DFS(ret,curr,sum,tmpsum,root->right);

				}

};

Path	Sum	II

102

Flatten	Binary	Tree	to	Linked	List
Given	a	binary	tree,	flatten	it	to	a	linked	list	in-place.

For	example,	Given

									1

								/	\

							2			5

						/	\			\

					3			4			6

The	flattened	tree	should	look	like:

			1

				\

					2

						\

							3

								\

									4

										\

											5

												\

													6

给定一颗二叉树，将其扁平化处理，我们可以看到处理之后的节点顺序其实跟前序

遍历原二叉树的一致，所以我们只需要前序遍历二叉树同时处理就可以了。代码如

下：

class	Solution	{

public:

				void	flatten(TreeNode	*root)	{

																if(!root)	{

Flatten	Binary	Tree	to	Linked	List

103

												return;

								}

								vector<TreeNode*>	ns;

								TreeNode	dummy(0);

								TreeNode*	n	=	&dummy;

								ns.push_back(root);

								while(!ns.empty())	{

												TreeNode*	p	=	ns.back();

												ns.pop_back();

												//挂载到右子树

												n->right	=	p;

												n	=	p;

												//右子树压栈

												if(p->right)	{

																ns.push_back(p->right);

																p->right	=	NULL;

												}

												//左子树压栈

												if(p->left)	{

																ns.push_back(p->left);

																p->left	=	NULL;

												}

								}

				}

};

Flatten	Binary	Tree	to	Linked	List

104

Flatten	Binary	Tree	to	Linked	List

105

Validate	Binary	Search	Tree
Given	a	binary	tree,	determine	if	it	is	a	valid	binary	search	tree	(BST).

Assume	a	BST	is	defined	as	follows:

The	left	subtree	of	a	node	contains	only	nodes	with	keys	less	than	the
node's	key.
The	right	subtree	of	a	node	contains	only	nodes	with	keys	greater	than
the	node's	key.
Both	the	left	and	right	subtrees	must	also	be	binary	search	trees.

这题需要判断是不是一个正确的二叉搜索树，比较简单地一道题。

我们通过递归整棵树来解决，代码如下：

Validate	Binary	Search	Tree

106

class	Solution	{

public:

				bool	isValidBST(TreeNode	*root)	{

								return	valid(root,	numeric_limits<int>::min(),	

numeric_limits<int>::max());

				}

				bool	valid(TreeNode*	node,	int	minVal,	int	maxVal)	{

								if(!node)	{

												return	true;

								}

								if(node->val	<=	minVal	||	node->val	>=	maxVal)	{

												return	false;

								}

								return	valid(node->left,	minVal,	node->val)	&&

								valid(node->right,	node->val,	maxVal);

				}

};

Validate	Binary	Search	Tree

107

Recover	Binary	Search	Tree
Two	elements	of	a	binary	search	tree	(BST)	are	swapped	by	mistake.

Recover	the	tree	without	changing	its	structure.

Note:

A	solution	using	O(n)	space	is	pretty	straight	forward.	Could	you	devise	a
constant	space	solution?

这题需要修复一颗二叉搜索树的两个交换节点数据，我们知道对于一颗二叉搜索树

来说，如果按照中序遍历，那么它输出的值是递增有序的，所以我们只需要按照中

序遍历输出，在输出结果里面找到两个异常数据（比它后面输出结果大），交换这

两个节点的数据就可以了。

但是这题要求使用O(1)的空间，如果采用通常的中序遍历（递归或者栈）的方式，

都需要O(N)的空间，所以这里我们用Morris	Traversal的方式来进行树的中序遍历。

Morris	Traversal中序遍历的原理比较简单：

如果当前节点的左孩子为空，则输出当前节点并将其有孩子作为当前节点。

如果当前节点的左孩子不为空，在当前节点的左子树中找到当前节点在中序遍

历下的前驱节点，也就是当前节点左子树的最右边的那个节点。

如果前驱节点的右孩子为空，则将它的右孩子设置为当前节点，当前节点

更新为其左孩子。

如果前驱节点的右孩子为当前节点，则将前驱节点的右孩子设为空，输出

当前节点，当前节点更新为其右孩子。

重复上述过程，直到当前节点为空，递归的时候我们同时需要记录错误的节点。那

么我们如何知道一个节点的数据是不是有问题呢？对于中序遍历来说，假设当前节

点为cur，它的前驱节点为pre，如果cur的值小于pre的值，那么cur和pre里面的数

据就是交换的了。

代码如下：

class	Solution	{

public:

Recover	Binary	Search	Tree

108

				void	recoverTree(TreeNode	*root)	{

								TreeNode*	cur	=	0;

								TreeNode*	pre	=	0;

								TreeNode*	p1	=	0;

								TreeNode*	p2	=	0;

								TreeNode*	preCur	=	0;

								bool	found	=	false;

								if(!root)	{

												return;

								}

								cur	=	root;

								while(cur)	{

												if(!cur->left)	{

																//记录p1和p2

																if(preCur	&&	preCur->val	>	cur->val)	{

																				if(!found)	{

																								p1	=	preCur;

																								found	=	true;

																				}

																				p2	=	cur;

																}

																preCur	=	cur;

																cur	=	cur->right;

												}	else	{

																pre	=	cur->left;

																while(pre->right	&&	pre->right	!=	cur)	{

																				pre	=	pre->right;

																}

																if(!pre->right)	{

																				pre->right	=	cur;

																				cur	=	cur->left;

Recover	Binary	Search	Tree

109

																}	else	{

																				//记录p1和p2

																				if(preCur->val	>	cur->val)	{

																								if(!found)	{

																												p1	=	preCur;

																												found	=	true;

																								}

																								p2	=	cur;

																				}

																				preCur	=	cur;

																				pre->right	=	NULL;

																				cur	=	cur->right;

																}

												}

								}

								if(p1	&&	p2)	{

												int	t	=	p1->val;

												p1->val	=	p2->val;

												p2->val	=	t;

								}

				}

};

Recover	Binary	Search	Tree

110

Binary	Tree	Path
Given	a	binary	tree,	return	all	root-to-leaf	paths.

For	example,	given	the	following	binary	tree:

			1

	/			\

2					3

	\

		5

All	root-to-leaf	paths	are:

["1->2->5",	"1->3"]

题目翻译：	给定一棵二叉树，返回所有从根节点到叶节点的路径。

题目分析：	本题属于二叉树的遍历问题，可以用深度优先搜索来解决。

使用栈来记录遍历过程中访问过的节点。递归地访问每个节点的子节点，如果遇到

叶节点，则输出记录的路径。返回上一层之前弹出栈顶元素。	C++的vector容器也

能做到后进先出，所以下面的代码并没有使用std::stack类来实现。

生成输出的字符串时，可以使用std::stringstream类来完成，类似于Java和C#中的

StringBuilder。

/**

	*	Definition	for	a	binary	tree	node.

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

Binary	Tree	Path

111

	*	};

	*/

class	Solution	{

public:

				vector<string>	binaryTreePaths(TreeNode*	root)	{

								vector<string>	result;

								if	(root	==	nullptr)	return	result;

								vector<int>	path;

								bfs(root,	path,	result);

								return	result;

				}

private:

				//	递归函数，深度优先搜索

				void	bfs(TreeNode*	node,	vector<int>&	path,	

vector<string>&	result)	{

								if	(node	==	nullptr)	return;

								path.push_back(node->val);

								if	(node->left	==	nullptr	&&	node->right	==	

nullptr)

												result.push_back(generatePath(path));

								else	{

												if	(node->left	!=	nullptr)	{

																bfs(node->left,	path,	result);

																path.pop_back();

												}

												if	(node->right	!=	nullptr)	{

																bfs(node->right,	path,	result);

																path.pop_back();

												}

								}

				}

				//	辅助函数，用于生成路径字符串

				string	generatePath(vector<int>	path)	{

								stringstream	ss;

Binary	Tree	Path

112

								int	i;

								for	(i	=	0;	i	<	path.size()	-	1;	i++)	ss	<<	

path[i]	<<	"->";

								ss	<<	path[i];

								return	ss.str();

				}

};

Binary	Tree	Path

113

Sum	Root	to	Leaf	Numbers
Given	a	binary	tree	containing	digits	from	0-9	only,	each	root-to-leaf	path
could	represent	a	number.	An	example	is	the	root-to-leaf	path	 	1->2->3	
which	represents	the	number	 	123	.	Find	the	total	sum	of	all	root-to-leaf
numbers.	For	example,

				1

			/	\

		2			3

The	root-to-leaf	path	 	1->2		represents	the	number	 	12	.	The	root-to-leaf
path	 	1->3		represents	the	number	 	13	.	Return	the	sum	=	12	+	13	=	25.

题目翻译：	给定一棵二叉树，仅包含0到9这些数字，每一条从根节点到叶节点的路

径表示一个数。例如，路径 	1->2->3	表示数值123。求出所有路径表示的数值的

和。	上述例子中，路径 	1->2	表示数值12，路径 	1->3	表示数值13。它们的和是

25。

题目分析:	从根节点到叶节点的遍历方法是深度优先搜索(DFS)。解决本题只需在遍

历过程中记录路径中的数字，在到达叶节点的时候把记录下来的数字转换成数值，

加到和里面即可。

时间复杂度:	O(n)

代码如下:

/**

	*	Definition	for	a	binary	tree	node.

	*	struct	TreeNode	{

	*					int	val;

	*					TreeNode	*left;

	*					TreeNode	*right;

	*					TreeNode(int	x)	:	val(x),	left(NULL),	right(NULL)	

{}

	*	};

Sum	Root	to	Leaf	Numbers

114

	*/

class	Solution	{

public:

				int	sumNumbers(TreeNode*	root)	{

								vector<int>	arr;

								int	sum	=	0;

								dfs(root,	arr,	sum);

								return	sum;

				}

				int	vec2num(vector<int>&	vec)	{

								int	num	=	0;

								for	(auto	n	:	vec)	{

												num	=	num	*	10	+	n;

								}

								return	num;

				}

				void	dfs(TreeNode*	node,	vector<int>&	arr,	int&	sum)	

{

								if	(node	==	nullptr)	return;

								arr.push_back(node->val);

								if	(node->left	==	nullptr	&&	node->right	==	

nullptr)	{

												sum	+=	vec2num(arr);

								}	else	{

												if	(node->left	!=	nullptr)	dfs(node->left,	

arr,	sum);

												if	(node->right	!=	nullptr)	dfs(node->right,	

arr,	sum);

								}

								arr.pop_back();

				}

};

Sum	Root	to	Leaf	Numbers

115

Sum	Root	to	Leaf	Numbers

116

Dynamic	Programming

Dynamic	Programming

117

Best	Time	to	Buy	and	Sell	Stock
Say	you	have	an	array	for	which	the	ith	element	is	the	price	of	a	given	stock
on	day	i.

If	you	were	only	permitted	to	complete	at	most	one	transaction	(ie,	buy	one
and	sell	one	share	of	the	stock),	design	an	algorithm	to	find	the	maximum
profit.

这是卖股票的第一个题目，根据题意我们知道只能进行一次交易，但需要获得最大

的利润，所以我们需要在最低价买入，最高价卖出，当然买入一定要在卖出之前。

对于这一题，还是比较简单的，我们只需要遍历一次数组，通过一个变量记录当前

最低价格，同时算出此次交易利润，并与当前最大值比较就可以了。

代码如下：

Best	Time	To	Buy	And	Sell	Stock

118

class	Solution	{

public:

				int	maxProfit(vector<int>	&prices)	{

								if(prices.size()	<=	1)	{

												return	0;

								}

								int	minP	=	prices[0];

								int	profit	=	prices[1]	-	prices[0];

								for(int	i	=	2;	i	<	prices.size();	i++)	{

												minP	=	min(prices[i	-	1],	minP);

												profit	=	max(profit,	prices[i]	-	minP);

								}

								if(profit	<	0)	{

												return	0;

								}

								return	profit;

				}

};

Best	Time	to	Buy	and	Sell	Stock	II
Say	you	have	an	array	for	which	the	ith	element	is	the	price	of	a	given	stock
on	day	i.

Design	an	algorithm	to	find	the	maximum	profit.	You	may	complete	as	many
transactions	as	you	like	(ie,	buy	one	and	sell	one	share	of	the	stock	multiple
times).	However,	you	may	not	engage	in	multiple	transactions	at	the	same
time	(ie,	you	must	sell	the	stock	before	you	buy	again).

Best	Time	To	Buy	And	Sell	Stock

119

这题相对于上一题来说更加容易（这不知道为啥是II），因为不限制交易次数，我

们在第i天买入，如果发现i	+	1天比i高，那么就可以累加到利润里面。

代码如下：

class	Solution	{

public:

				int	maxProfit(vector<int>	&prices)	{

								int	len	=	(int)prices.size();

								if(len	<=	1)	{

												return	0;

								}

								int	sum	=	0;

								for(int	i	=	1;	i	<	len;	i++)	{

												if(prices[i]	-	prices[i	-	1]	>	0)	{

																sum	+=	prices[i]	-	prices[i	-	1];

												}

								}

								return	sum;

				}

};

Best	Time	to	Buy	and	Sell	Stock	III
Say	you	have	an	array	for	which	the	ith	element	is	the	price	of	a	given	stock
on	day	i.

Design	an	algorithm	to	find	the	maximum	profit.	You	may	complete	at	most
two	transactions.

Note:	You	may	not	engage	in	multiple	transactions	at	the	same	time	(ie,	you
must	sell	the	stock	before	you	buy	again).

Best	Time	To	Buy	And	Sell	Stock

120

这题是三道题目中最难的一题，只允许两次股票交易，如果只允许一次，那么题目

就退化到第一题了，根据第一题的算法，我们可以得到[0,1,...,i]区间的最大利润，

同时在从后往前扫描得到[i,i+1,...,n-1]的最大利润，两个相加就可以得到该题的解

了。

代码如下：

class	Solution	{

public:

				int	maxProfit(vector<int>	&prices)	{

								int	len	=	(int)prices.size();

								if(len	<=	1)	{

												return	0;

								}

								vector<int>	profits;

								profits.resize(len);

								//首先我们正向遍历得到每天一次交易的最大收益

								//并保存到profits里面

								int	minP	=	prices[0];

								int	sum	=	numeric_limits<int>::min();

								for(int	i	=	1;	i	<	len;	i++)	{

												minP	=	min(minP,	prices[i	-	1]);

												profits[i]	=	max(sum,	prices[i]	-	minP);

												sum	=	profits[i];

								}

								int	maxP	=	prices[len	-	1];

								int	sum2	=	numeric_limits<int>::min();

								//逆向遍历

								for(int	i	=	len	-	2;	i	>=	0;	i--)	{

												maxP	=	max(maxP,	prices[i	+	1]);

												sum2	=	max(sum2,	maxP	-	prices[i]);

Best	Time	To	Buy	And	Sell	Stock

121

												if(sum2	>	0)	{

																//这里我们直接将其加入profits里面，

																//不需要额外保存

																profits[i]	=	profits[i]	+	sum2;

																sum	=	max(sum,	profits[i]);

												}

								}

								return	sum	>	0	?	sum	:	0;

				}

};

卖股票的1和3已经涉及到了动态规划，但笔者这方面还未有太多知识积累，所以不

能很好的列举出动态规划方程，这是笔者后续需要努力提升的，后续补上。

Best	Time	To	Buy	And	Sell	Stock

122

Unique	Paths
A	robot	is	located	at	the	top-left	corner	of	a	m	x	n	grid	(marked	'Start'	in	the
diagram	below).

The	robot	can	only	move	either	down	or	right	at	any	point	in	time.	The	robot	is
trying	to	reach	the	bottom-right	corner	of	the	grid	(marked	'Finish'	in	the
diagram	below).

How	many	possible	unique	paths	are	there?

这题是一道典型的dp问题，如果机器人要到(i,	j)这个点，他可以选择先到(i	-	1,	j)或
者，(i,	j	-	1)，也就是说，到(i,	j)的唯一路径数等于(i	-	1,	j)加上(i,	j	-	1)的个数，所以

我们很容易得出dp方程:

	dp[i][j]	=	dp[i	-	1][j]	+	dp[i][j	-	1]	

dp[i][j]表示从点(0,	0)到(i,	j)唯一路径数量。

代码如下：

Unique	Paths

123

class	Solution	{

public:

				int	uniquePaths(int	m,	int	n)	{

								int	dp[m][n];

								//初始化dp，m	x	1情况全为1

								for(int	i	=	0;	i	<	m;	i++)	{

												dp[i][0]	=	1;

								}

								//初始化dp，1	x	n情况全为1

								for(int	j	=	0;	j	<	n;	j++)	{

												dp[0][j]	=	1;

								}

								for(int	i	=	1;	i	<	m;	i++)	{

												for(int	j	=	1;	j	<	n;	j++)	{

																dp[i][j]	=	dp[i	-	1][j]	+	dp[i][j	-	1];

												}

								}

								return	dp[m	-	1][n	-	1];

				}

};

Unique	Paths	II
Now	consider	if	some	obstacles	are	added	to	the	grids.	How	many	unique
paths	would	there	be?

An	obstacle	and	empty	space	is	marked	as	1	and	0	respectively	in	the	grid.

这题跟上一题唯一的区别在于多了障碍物，如果某一个点有障碍，那么机器人无法

通过。

代码如下:

Unique	Paths

124

class	Solution	{

public:

				int	uniquePathsWithObstacles(vector<vector<int>	>	

&obstacleGrid)	{

								if(obstacleGrid.empty()	||	

obstacleGrid[0].empty())	{

												return	0;

								}

								int	m	=	obstacleGrid.size();

								int	n	=	obstacleGrid[0].size();

								int	dp[m][n];

								//下面初始dp的时候需要根据obstacleGrid的值来确定

								dp[0][0]	=	(obstacleGrid[0][0]	==	0	?	1	:	0);

								//我们需要注意m	x	1以及1	x	n的初始化

								for(int	i	=	1;	i	<	m;	i++)	{

												dp[i][0]	=	((dp[i	-	1][0]	==	1	&&	

obstacleGrid[i][0]	==	0)	?	1	:	0);

								}

								for(int	j	=	1;	j	<	n;	j++)	{

												dp[0][j]	=	((dp[0][j	-	1]	==	1	&&	

obstacleGrid[0][j]	==	0)	?	1	:	0);

								}

								for(int	i	=	1;	i	<	m;	i++)	{

												for(int	j	=	1;	j	<	n;	j++)	{

																if(obstacleGrid[i][j]	==	1)	{

																				dp[i][j]	=	0;

																}	else	{

																				dp[i][j]	=	dp[i	-	1][j]	+	dp[i][j	-	

1];

Unique	Paths

125

																}

												}

								}

								return	dp[m	-	1][n	-	1];

				}

};

Minimum	Path	Sum
Given	a	m	x	n	grid	filled	with	non-negative	numbers,	find	a	path	from	top	left
to	bottom	right	which	minimizes	the	sum	of	all	numbers	along	its	path.

Note:	You	can	only	move	either	down	or	right	at	any	point	in	time.

这题跟前面两题差不多，所以放到这里说明了。我们使用dp[i][j]表明从(0,	0)到(i,	j)
最小的路径和，那么dp方程为:

	dp[i][j]	=	min(dp[i][j-1],	dp[i	-	1][j])	+	grid[i][j]	

代码如下：

Unique	Paths

126

class	Solution	{

public:

				int	minPathSum(vector<vector<int>	>	&grid)	{

								if(grid.empty()	||	grid[0].empty())	{

												return	0;

								}

								int	row	=	grid.size();

								int	col	=	grid[0].size();

								int	dp[row][col];

								dp[0][0]	=	grid[0][0];

								for(int	i	=	1;	i	<	row;	i++)	{

												dp[i][0]	=	dp[i	-	1][0]	+	grid[i][0];

								}

								for(int	j	=	1;	j	<	col;	j++)	{

												dp[0][j]	=	dp[0][j	-	1]	+	grid[0][j];

								}

								for(int	i	=	1;	i	<	row;	i++)	{

												for(int	j	=	1;	j	<	col;	j++)	{

																dp[i][j]	=	min(dp[i	-	1][j],	dp[i][j	-	

1])	+	grid[i][j];

												}

								}

								return	dp[row	-	1][col	-	1];

				}

};

Unique	Paths

127

Maximum	Subarray
Find	the	contiguous	subarray	within	an	array	(containing	at	least	one	number)
which	has	the	largest	sum.

For	example,	given	the	array	[−2,1,−3,4,−1,2,1,−5,4],	the	contiguous	subarray
[4,−1,2,1]	has	the	largest	sum	=	6.

这题是一道经典的dp问题，我们可以很容易的得到其dp方程，假设dp[i]是数组a	[0,
i]区间最大的值，那么

	dp[i	+	1]	=	max(dp[i],	dp[i]	+	a[i	+	1])	

代码如下:

class	Solution	{

public:

				int	maxSubArray(int	A[],	int	n)	{

								int	sum	=	0;

								int	m	=	INT_MIN;

								for(int	i	=	0;	i	<	n;	i++)	{

												sum	+=	A[i];

												m	=	max(m,	sum);

												//如果sum小于0了，将sum重置为0，从i	+	1再次开始计算

												if(sum	<	0)	{

																sum	=	0;

												}

								}

								return	m;

				}

};

虽然这道题目用dp解起来很简单，但是题目说了，问我们能不能采用divide	and
conquer的方法解答，也就是二分法。

Maximum	Subarray

128

假设数组A[left,	right]存在最大区间，mid	=	(left	+	right)	/	2，那么无非就是三中情

况：

1.	 最大值在A[left,	mid	-	1]里面

2.	 最大值在A[mid	+	1,	right]里面

3.	 最大值跨过了mid，也就是我们需要计算[left,	mid	-	1]区间的最大值，以及[mid
+	1,	right]的最大值，然后加上mid，三者之和就是总的最大值

我们可以看到，对于1和2，我们通过递归可以很方便的求解，然后在同第3的结果

比较，就是得到的最大值。

代码如下:

class	Solution	{

public:

				int	maxSubArray(int	A[],	int	n)	{

								return	divide(A,	0,	n	-	1,	INT_MIN);

				}

				int	divide(int	A[],	int	left,	int	right,	int	tmax)	{

								if(left	>	right)	{

												return	INT_MIN;

								}

								int	mid	=	left	+	(right	-	left)	/	2;

								//得到子区间[left,	mid	-	1]最大值

								int	lmax	=	divide(A,	left,	mid	-	1,	tmax);

								//得到子区间[mid	+	1,	right]最大值

								int	rmax	=	divide(A,	mid	+	1,	right,	tmax);

								tmax	=	max(tmax,	lmax);

								tmax	=	max(tmax,	rmax);

								int	sum	=	0;

								int	mlmax	=	0;

								//得到[left,	mid	-	1]最大值

								for(int	i	=	mid	-	1;	i	>=	left;	i--)	{

Maximum	Subarray

129

												sum	+=	A[i];

												mlmax	=	max(mlmax,	sum);

								}

								sum	=	0;

								int	mrmax	=	0;

								//得到[mid	+	1,	right]最大值

								for(int	i	=	mid	+	1;	i	<=	right;	i++)	{

												sum	+=	A[i];

												mrmax	=	max(mrmax,	sum);

								}

								tmax	=	max(tmax,	A[mid]	+	mlmax	+	mrmax);

								return	tmax;

				}

};

Maxmimum	Product	Subarray
Find	the	contiguous	subarray	within	an	array	(containing	at	least	one	number)
which	has	the	largest	product.

For	example,	given	the	array	[2,3,-2,4],	the	contiguous	subarray	[2,3]	has	the
largest	product	=	6.

这题是求数组中子区间的最大乘积，对于乘法，我们需要注意，负数乘以负数，会

变成正数，所以解这题的时候我们需要维护两个变量，当前的最大值，以及最小

值，最小值可能为负数，但没准下一步乘以一个负数，当前的最大值就变成最小

值，而最小值则变成最大值了。

我们的动态方程可能这样：

Maximum	Subarray

130

maxDP[i	+	1]	=	max(maxDP[i]	*	A[i	+	1],	A[i	+	1],	

minDP[i]	*	A[i	+	1])

minDP[i	+	1]	=	min(minDP[i]	*	A[i	+	1],	A[i	+	1],	

maxDP[i]	*	A[i	+	1]

dp[i	+	1]	=	max(dp[i],	maxDP[i	+	1])

这里，我们还需要注意元素为0的情况，如果A[i]为0，那么maxDP和minDP都为0，
我们需要从A[i	+	1]重新开始。

代码如下:

class	Solution	{

public:

				int	maxProduct(int	A[],	int	n)	{

								if(n	==	0){

												return	0;

								}	else	if(n	==	1)	{

												return	A[0];

								}

								int	p	=	A[0];

								int	maxP	=	A[0];

								int	minP	=	A[0];

								for(int	i	=	1;	i	<	n;	i++)	{

												int	t	=	maxP;

												maxP	=	max(max(maxP	*	A[i],	A[i]),	minP	*	

A[i]);

												minP	=	min(min(t	*	A[i],	A[i]),	minP	*	A[i]);

												p	=	max(maxP,	p);

								}

								return	p;

				}

};

Maximum	Subarray

131

Maximum	Subarray

132

Climbing	Stairs
You	are	climbing	a	stair	case.	It	takes	n	steps	to	reach	to	the	top.

Each	time	you	can	either	climb	1	or	2	steps.	In	how	many	distinct	ways	can
you	climb	to	the	top?

这道题目其实就是斐波那契数列问题，题目比较简单，我们很容易就能列出dp方程

	dp[n]	=	dp[n	-	1]	+	dp[n	-	2]	

初始条件dp[1]	=	1,	dp[2]	=	2。

代码如下：

class	Solution	{

public:

				int	climbStairs(int	n)	{

								int	f1	=	2;

								int	f2	=	1;

								if(n	==	1)	{

												return	f2;

								}	else	if(n	==	2)	{

												return	f1;

								}

								int	fn;

								for(int	i	=	3;	i	<=	n;	i++)	{

												fn	=	f1	+	f2;

												f2	=	f1;

												f1	=	fn;

								}

								return	fn;

				}

};

Climbing	Stairs

133

Climbing	Stairs

134

Triangle
Given	a	triangle,	find	the	minimum	path	sum	from	top	to	bottom.	Each	step
you	may	move	to	adjacent	numbers	on	the	row	below.

For	example,	given	the	following	triangle

[

					[2],

				[3,4],

			[6,5,7],

		[4,1,8,3]

]

The	minimum	path	sum	from	top	to	bottom	is	11	(i.e.,	2	+	3	+	5	+	1	=	11).

这题要求我们求出一个三角形中从顶到底最小路径和，并且要求只能使用O(n)的空

间。

这题有两种解法，自顶向下以及自底向上。

首先来看自顶向下，根据题目我们知道，每向下一层，我们只能选择邻接数字进行

累加，譬如上面第1行的数字3，它的下一行邻接数字就是6和5。

我们假设dp[m][n]保存了第m行第n个节点的最小路径和，我们有如下dp方程

	dp[m	+	1][n]	=	min(dp[m][n],	dp[m][n	-	1])	+	triangle[m	+	1][n]

if	n	>	0	

	dp[m	+	1][0]	=	dp[m][0]	+	triangle[m	+	1][0]	

因为只能使用O(n)的空间，所以我们需要滚动计算，使用一个一位数组保存每层的

最小路径和，参考Pascal's	Triangle，我们知道，为了防止计算的时候不覆盖以前

的值，所以我们需要从后往前计算。

代码如下

Triangle

135

class	Solution	{

public:

				int	minimumTotal(vector<vector<int>	>	&triangle)	{

								int	row	=	triangle.size();

								if(row	==	0)	{

												return	0;

								}

								//初始化为最大值

								vector<int>	total(row,	INT_MAX);

								total[0]	=	triangle[0][0];

								int	minTotal	=	INT_MAX;

								for(int	i	=	1;	i	<	row;	i++)	{

												for(int	j	=	i;	j	>=	0;	j--)	{

																if(j	==	0)	{

																				total[j]	=	total[j]	+	triangle[i][j];

																}	else	{

																				//上一层total[i]为INT_MAX，不会影响最小值

																				total[j]	=	min(total[j	-	1],	

total[j])	+	triangle[i][j];

																}

												}

								}

								for(int	i	=	0;	i	<	row;	i++)	{

												minTotal	=	min(minTotal,	total[i]);

								}

								return	minTotal;

				}

};

区别于自顶向下，另一种更简单的做法就是自底向上了。dp方程为

	dp[m][n]	=	min(dp[m	+	1][n],	dp[m	+	1][n	+	1])	+	triangle[m][n]	

我们仍然可以使用一位数组滚动计算。

Triangle

136

代码如下

class	Solution	{

public:

				int	minimumTotal(vector<vector<int>	>	&triangle)	{

								if(triangle.empty())	{

												return	0;

								}

								int	row	=	triangle.size();

								vector<int>	dp;

								dp.resize(row);

								//用最底层的数据初始化

								for(int	i	=	0;	i	<	dp.size();	i++)	{

												dp[i]	=	triangle[row-1][i];

								}

								for(int	i	=	row	-	2;	i	>=	0;	i--)	{

												for(int	j	=	0;	j	<=	i;	j++)	{

																dp[j]	=	triangle[i][j]	+	min(dp[j],	dp[j	

+	1]);

												}

								}

								return	dp[0];

				}

};

Triangle

137

Unique	Binary	Search	Trees
Given	n,	how	many	structurally	unique	BST's	(binary	search	trees)	that	store
values	1...n?

For	example,	Given	n	=	3,	there	are	a	total	of	5	unique	BST's.

			1									3					3						2						1

				\							/					/						/	\						\

					3					2					1						1			3						2

				/					/							\																	\

			2					1									2																	3

这道题目要求给定一个数n，有多少种二叉树排列方式，用来存储1到n。

刚开始拿到这题的时候，完全不知道如何下手，但考虑到二叉树的性质，对于任意

以i为根节点的二叉树，它的左子树的值一定小于i，也就是[0,	i	-	1]区间，而右子树

的值一定大于i，也就是[i	+	1,	n]。假设左子树有m种排列方式，而右子树有n种，则

对于i为根节点的二叉树总的排列方式就是m	x	n。

我们使用dp[i]表示i个节点下面二叉树的排列个数，那么dp方程为:

	dp[i]	=	sum(dp[k]	*	dp[i	-	k	-1])	0	<=	k	<	i	

代码如下：

Unique	Binary	Search	Trees

138

class	Solution	{

public:

				int	numTrees(int	n)	{

								vector<int>	dp(n	+	1,	0);

								//dp初始化

								dp[0]	=	1;

								dp[1]	=	1;

								for(int	i	=	2;	i	<=	n;	i++)	{

												for(int	j	=	0;	j	<	i;	j++)	{

																//如果左子树的个数为j，那么右子树为i	-	j	-	1

																dp[i]	+=	dp[j]	*	dp[i	-	j	-	1];

												}

								}

								return	dp[n];

				}

};

Unique	Binary	Search	Trees	II
Given	n,	generate	all	structurally	unique	BST's	(binary	search	trees)	that	store
values	1...n.

For	example,	Given	n	=	3,	your	program	should	return	all	5	unique	BST's
shown	below.

			1									3					3						2						1

				\							/					/						/	\						\

					3					2					1						1			3						2

				/					/							\																	\

			2					1									2																	3

Unique	Binary	Search	Trees

139

这题跟前面一题不同，需要得到所有排列的解。

根据前面我们知道，对于在n里面的任意i，它的排列数为左子树[0,	i	-	1]的排列数	x
右子树[i	+	1,	n]的排列数，所以我们只需要得到i的左子树和右子树的所有排列，就

能得到i的所有排列了。而这个使用递归就能搞定，代码如下：

Unique	Binary	Search	Trees

140

class	Solution	{

public:

				vector<TreeNode	*>	generateTrees(int	n)	{

								return	generate(1,	n);

				}

				vector<TreeNode*>	generate(int	start,	int	stop){

								vector<TreeNode*>	vs;

								if(start	>	stop)	{

												//没有子树了，返回null

												vs.push_back(NULL);

												return	vs;

								}

								for(int	i	=	start;	i	<=	stop;	i++)	{

												auto	l	=	generate(start,	i	-	1);

												auto	r	=	generate(i	+	1,	stop);

												//获取左子树和右子树所有排列之后，放到root为i的节点

的下面

												for(int	j	=	0;	j	<	l.size();	j++)	{

																for(int	k	=	0;	k	<	r.size();	k++)	{

																				TreeNode*	n	=	new	TreeNode(i);

																				n->left	=	l[j];

																				n->right	=	r[k];

																				vs.push_back(n);

																}

												}

								}

								return	vs;

				}

};

Unique	Binary	Search	Trees

141

Unique	Binary	Search	Trees

142

Perfect	Squares
Given	a	positive	integer	n,	find	the	least	number	of	perfect	square	numbers
(for	example,	1,	4,	9,	16,	...)	which	sum	to	n.	For	example,	given	 	n	=	12	,
return	3	because	 	12	=	4	+	4	+	4	;	given	 	n	=	13	,	return	2	because	 	13
=	4	+	9	.

题目翻译：	给出一个正整数 	n	，求至少需要多少个完全平方数（例如1，4，9，
16……）相加能得到n。	例如，给出 	n	=	12	，返回3，因为 	12	=	4	+	4	+	4	。

给出 	n	=	13	，返回2，因为 	13	=	4	+	9	。

题目分析：	乍一看题目，比较天真的想法是，先从不大于n的最大的完全平方数开

始组合，如果和超过了n，就换小一点的完全平方数。但问题是，最后如果凑不齐

的话，只能添加很多1，总量上就不是最少的了。例如12，题目中给的例子是

4+4+4，需要3个完全平方数。如果从最大的开始组合，那么是9+1+1+1，需要4个
完全平方数。

从另一个角度来想，用穷举法来求解就是把不大于n的所有可能的完全平方数的组

合都算出来，然后找出和为n的组合中数量最少的那种组合。如果不大于n的完全平

方数有m个的话，这个方法的时间复杂度是O(m^m)。显然穷举法时间复杂度过

大，不是可行的方法。观察到，在枚举的过程中，有一些组合显然不是最优的，比

如把12拆成12个1相加。另外，如果我们能够记录已经找到的最小组合，那么稍大

一些的数只需要在此基础上添加若干个完全平方数即可。这里面就包含了动态规划

的思想。

具体来说，我们用一个数组来记录已有的结果，初始化为正无穷(INT_MAX)。外

层循环变量 	i	从 	0	到 	n	，内层循环变量 	j	在 	i	的基础上依次加上每个整数的

完全平方，超过 	n	的不算。那么 	i	+	j*j	这个数需要的最少的完全平方数的数

量，就是数组中当前的数值，和 	i	位置的数值加上一，这两者之间较小的数字。

如果当前的值较小，说明我们已经找到过它需要的完全平方数的个数（最初都是正

无穷）。否则的话，说明在 	i	的基础上加上 	j	的平方符合条件，所需的完全平方

数的个数就是 	i	需要的个数加上一。

代码如下

Perfect	Squares

143

class	Solution	{

public:

				int	numSquares(int	n)	{

								vector<int>	dp(n	+	1,	INT_MAX);

								dp[0]	=	0;

								for	(int	i	=	0;	i	<=	n;	i++)	{

												for	(int	j	=	1;	i	+	j	*	j	<=	n;	j++)	{

																dp[i	+	j	*	j]	=	min(dp[i	+	j	*	j],	dp[i]	

+	1);

												}

								}

								return	dp[n];

				}

};

Perfect	Squares

144

Backtracking

Backtracking

145

Combination
在这个section里面，我们主要来过一下像leetcode里面类似combination这一系列的

题，这类题应该归结为DFS+Backtracking。掌握了大体思想，注意一下边角处理就

好，比如剪枝。

先来讨论一下第一题Combination.

Combination
Given	two	integers	n	and	k,	return	all	possible	combinations	of	k	numbers	out
of	1,2,...,n.

题目翻译:	给定两个整型数组n和k，要求返由k个数组成的combination，其实应该

叫做组合.	这个combination应该是高中里面的组合。这k个数是在n中任选k个数，

由题意可得，这里的k应该小于或等于n(这个条件不要忘了做validation	check哦).

题目分析:	我觉得应该还有不少读者困惑什么是combination，这里我们先给一个例

子比如n=3，	k=2的条件下，	所有可能的combination如下：	[1,2],	[1,3],	[2,3].	注
意：[2,3]和[3,2]是相同的，我们只要求有其中一个就可以了.	所以解题的时候，我

们要避免相同的组合出现.

解题思路:	看到这道题，首先第一想法应该是用递归来求解.如果要是用循环来求

解，这个时间复杂度应该是比较恐怖了.并且，这个递归是一层一层往深处去走的，

打个比方，我们一个循环，首先求得以1开始的看个数的combination，之后再求以

2开始的，以此类推，所以开始是对n个数做DFS,	n-1个数做DFS...所以应该是对

n(n-1)...*1做DFS.	在程序中，我们可以加一些剪枝条件来减少程序时间.

时间复杂度:	在题目分析中，我们提到了对于对n,n-1,...,1做DFS，所以时间复杂度

是O(n!)

代码如下:

class	Solution	{

public:

Combination

146

				vector<vector<int>	>	combine(int	n,	int	k)	{

								vector<vector<int>>	ret;

								if(n	<=	0)	//corner	case	invalid	check

												return	ret;

								vector<int>	curr;

								DFS(ret,curr,	n,	k,	1);	//we	pass	ret	as	

reference	at	here

								return	ret;

				}

				void	DFS(vector<vector<int>>&	ret,	vector<int>	curr,	

int	n,	int	k,	int	level)

				{

								if(curr.size()	==	k)

								{

												ret.push_back(curr);

												return;

								}

								if(curr.size()	>	k)		//	consider	this	check	to	

save	run	time

												return;

								for(int	i	=	level;	i	<=	n;	++i)

								{

												curr.push_back(i);

												DFS(ret,curr,n,k,i+1);

												curr.pop_back();

								}

				}

};

Combination

147

Combination	Sum
Given	a	set	of	candidate	numbers	(C)	and	a	target	number	(T),	find	all	unique
combinations	in	C	where	the	candidate	numbers	sums	to	T.

The	same	repeated	number	may	be	chosen	from	C	unlimited	number	of
times.

Note:

1.	 All	numbers	(including	target)	will	be	positive	integers.
2.	 Elements	in	a	combination	(a1,	a2,	…	,	ak)	must	be	in	non-descending	order.

(ie,	a1	≤	a2	≤	…	≤	ak).
3.	 The	solution	set	must	not	contain	duplicate	combinations.

题目翻译:	给一个数组C和一个目标值T,	找出所有的满足条件的组合：使得组合里面

的数字之和等于T,并且一些数字可以从C中午先选择。

注意:

1.	 所有给定的数字均为正整数.(这意味着我们加corner	case	invalid	check的时候

要加一条，如果给定T不是正整数，我们就没必要在往下进行了)

2.	 所有的答案组中要满足升序排列.

3.	 最后的答案数组不能包含重复答案.

题目分析:	这道题的大体思路和combination是相同的，不同的地方在于一个数字可

以使用多次，这也造成了我们进行实现function的时候要注意的问题，也就是说，

传入递归的参数不同于combination.

时间复杂度:	没什么好说的，和combination的时间复杂度是相同的.O(n!)

代码如下:

class	Solution	{

public:

				vector<vector<int>	>	combinationSum(vector<int>	

&candidates,	int	target)	{

								vector<vector<int>>	ret;

								//corner	case	invalid	check

Combination

148

								if(candidates.size()	==	0	||	target	<	0)

												return	ret;

								vector<int>	curr;

								sort(candidates.begin(),candidates.end());	

//because	the	requirments	need	the	elements	should	be	in	

non-descending	order

								BackTracking(ret,curr,candidates,target,0);

								return	ret;

				}

				/*	we	use	reference	at	here	because	the	function	

return	type	is	0,	make	the	code	understand	easily	*/

				void	BackTracking(vector<vector<int>>&	ret,	

vector<int>	curr,	vector<int>	candidates,	int	target,	int	

level)

				{

								if(target	==	0)

								{

												ret.push_back(curr);

												return;

								}

								else	if(target	<	0)	//save	time

												return;

								for(int	i	=	level;	i	<	candidates.size();	++i)

								{

												target	-=	candidates[i];

												curr.push_back(candidates[i]);

												BackTracking(ret,curr,candidates,target,i);	

//unlike	combination,	we	do	not	use	i+1	because	we	can	

use	the	same	number	multiple	times.

												curr.pop_back();

												target	+=	candidates[i];

								}

				}

Combination

149

};

Combination	Sum	II
Given	a	collection	of	candidate	numbers	(C)	and	a	target	number	(T),	find	all
unique	combinations	in	C	where	the	candidate	numbers	sums	to	T.

Each	number	in	C	may	only	be	used	once	in	the	combination.

Note:

1.	 All	numbers	(including	target)	will	be	positive	integers.

2.	 Elements	in	a	combination	(a1,	a2,	…	,	ak)	must	be	in	non-descending	order.
(ie,	a1	≤	a2	≤	…	≤	ak).

3.	 The	solution	set	must	not	contain	duplicate	combinations.

题目翻译:	给定一个数组C和一个特定值T,要求找出这里面满足以下条件的所有答

案：数组中数字的值加起来等于特定和的答案.

数组中每个数字只能用一次.（同three	sum和four	sum的解法）

注意条件:

1.	 给定数组的所有值必须是正整数.（意味着我们加corner	case	invalid	check的
时候要检查T）

2.	 答案数组中的值必须为升序排列.(我们要对数组进行排序)
3.	 最终答案不能包含重复数组.

代码如下:

class	Solution	{

public:

				vector<vector<int>	>	combinationSum2(vector<int>	

&num,	int	target)	{

								vector<vector<int>>	ret;

								if(num.size()	==	0	||	target	<	0)	//invalid	

corner	case	check

Combination

150

												return	ret;

								vector<int>	curr;

								sort(num.begin(),	num.end());

								BackTracking(ret,curr,num,target,0);

								return	ret;

				}

				void	BackTracking(vector<vector<int>>&	ret,	

vector<int>	curr,	vector<int>	num,	int	target,	int	level)

				{

								if(target	==	0)

								{

												ret.push_back(curr);

												return;

								}

								else	if(target	<	0)

												return;

								for(int	i	=	level;	i	<	num.size();	++i)

								{

												target	-=	num[i];

												curr.push_back(num[i]);

												BackTracking(ret,curr,num,target,i+1);

												curr.pop_back();

												target	+=	num[i];

												while(i	<	num.size()-1	&&	num[i]	==	num[i+1])	

//we	add	this	while	loop	is	to	skip	the	duplication	

result

																++i;

								}

				}

};

Letter	Combinations	of	a	Phone	Number

Combination

151

Given	a	digit	string,	return	all	possible	letter	combinations	that	the	number
could	represent.	A	mapping	of	digit	to	letters	(just	like	on	the	telephone

buttons)	is	given	as	below:	

Input:Digit	string	"23"

Output:	["ad",	"ae",	"af",	"bd",	"be",	"bf",	"cd",	"ce",	

"cf"].

题目翻译:	给定一个字符串数字，返回这个字符串数字在电话表上可能的

combination，一个map的电话键盘在上图已经给出.

题目分析:	这道题目的给出，具体的解题思路是和combination是相同的，不同的地

方是我们要先建一个dictionary,以方便查找.之后用combination的相同方法，对于每

一个数字，在dictionary中查找它所对应的说有的数字.

解题思路:	我是用字符串数组来构建这个dictionary的，用于下标代表数字，例如，

下标为2，我的字典就会有这种对应的关系:dic[2]	=	"abc".只要把给定数字字符串的

每一个数字转换为int类型，就可以根据字典查找出这个数字所对应的所有字母.当
然，再构建字典的时候，我们需要注意dic[0]	=	"",	dic[1]	=	"".这两个特殊的case，
因为电话键盘并没有这两个数字相对应的字符串.

时间复杂度:	O(3^n)

代码如下:

class	Solution	{

public:

				vector<string>	letterCombinations(string	digits)	{

								vector<string>	ret;

								/*	for	this	question,	we	need	to	create	a	look-up	

dictionary	*/

Combination

152

								vector<string>	dic;

								string	tmp;

								dic.push_back("	");

								dic.push_back("	");

								dic.push_back("abc");

								dic.push_back("def");

								dic.push_back("ghi");

								dic.push_back("jkl");

								dic.push_back("mno");

								dic.push_back("pqrs");

								dic.push_back("tuv");

								dic.push_back("wxyz");

								combinations(ret,tmp,digits,dic,0);

								return	ret;

				}

				void	combinations(vector<string>&	ret,	string	tmp,	

string	digits,	vector<string>	dic,	int	level)

				{

								if(level	==	digits.size())

								{

												ret.push_back(tmp);

												return;

								}

								int	index	=	digits[level]-'0';

								for(int	i	=	0;	i	<	dic[index].size();	++i)

								{

												tmp.push_back(dic[index][i]);

												combinations(ret,tmp,digits,dic,level+1);

												tmp.pop_back();

								}

				}

};

Combination

153

Combination

154

Subsets
Given	a	set	of	distinct	integers,	S,	return	all	possible	subsets.

Note:	Elements	in	a	subset	must	be	in	non-descending	order.	The	solution	set
must	not	contain	duplicate	subsets.	For	example,	If	S	=	[1,2,3],	a	solution	is:

>

[

		[3],

		[1],

		[2],

		[1,2,3],

		[1,3],

		[2,3],

		[1,2],

		[]

]

>

这题其实就是列出集合里面的所有子集合，同时要求子集合元素需要升序排列。

首先我们需要对集合排序，对于一个n元素的集合，首先我们取第一个元素，加入

子集合中，后面的n	-	1个元素可以认为是第一个元素的子节点，我们依次遍历，譬

如遍历到第二个元素的时候，后续的n	-	2个元素又是第二个元素的子节点，再依次

遍历处理，直到最后一个元素，然后回溯，继续处理。处理完第一个元素之后，我

们按照同样的方式处理第二个元素。

譬如上面的[1,	2,	3]，首先取出1，加入子集合，后面的2和3就是1的子节点，先取

出2，把[1,	2]加入子集合，后面的3就是2的子节点，取出3，把[1,	2,	3]加入子集

合。然后回溯，取出3，将[1,	3]加入子集合。

1处理完成之后，我们可以同样方式处理2，以及3。

代码如下：

Subsets

155

class	Solution	{

public:

				vector<vector<int>	>	res;

				vector<vector<int>	>	subsets(vector<int>	&S)	{

								if(S.empty())	{

												return	res;

								}

								sort(S.begin(),	S.end());

								//别忘了空集合

								res.push_back(vector<int>());

								vector<int>	v;

								generate(0,	v,	S);

								return	res;

				}

				void	generate(int	start,	vector<int>&	v,	vector<int>	

&S)	{

								if(start	==	S.size())	{

												return;

								}

								for(int	i	=	start;	i	<	S.size();	i++)	{

												v.push_back(S[i]);

												res.push_back(v);

												generate(i	+	1,	v,	S);

												v.pop_back();

								}

Subsets

156

				}

};

Subsets	II
Given	a	collection	of	integers	that	might	contain	duplicates,	S,	return	all
possible	subsets.

Note:	Elements	in	a	subset	must	be	in	non-descending	order.	The	solution	set
must	not	contain	duplicate	subsets.	For	example,	If	S	=	[1,2,2],	a	solution	is:

>

[

		[2],

		[1],

		[1,2,2],

		[2,2],

		[1,2],

		[]

]

>

这题跟上题唯一的区别在于有重复元素，但是我们得到的子集合又不能有相同的，

其实做法很简单，仍然按照上面的处理，只是遍历子节点的时候如果发现有相等

的，只遍历一个，后续跳过。代码如下：

class	Solution	{

public:

				vector<vector<int>	>	res;

				vector<vector<int>	>	subsetsWithDup(vector<int>	&S)	{

								if(S.empty())	{

												return	res;

								}

Subsets

157

								sort(S.begin(),	S.end());

								res.push_back(vector<int>());

								vector<int>	v;

								generate(0,	v,	S);

								return	res;

				}

				void	generate(int	start,	vector<int>&	v,	vector<int>	

&S)	{

								if(start	==	S.size())	{

												return;

								}

								for(int	i	=	start;	i	<	S.size();	i++)	{

												v.push_back(S[i]);

												res.push_back(v);

												generate(i	+	1,	v,	S);

												v.pop_back();

												//这里跳过相同的

												while(i	<	S.size()	-	1	&&	S[i]	==	S[i	+	1])	{

																i++;

												}

								}

				}

};

Subsets

158

Subsets

159

Permutation

Permutation这个分支是在backtracking下的
一个子分支，其具体的解题方法和
Combination几乎是同出一辙，一个思路，对
于给定数组用DFS方法一层一层遍历，在这个
section当中，我们将对于leetcode上出现的
permutation问题进行逐个分析与解答.

Permutations
given	a	collection	of	numbers,	return	all	posibile	permutations.

For	example,	[1,2,3]	have	the	following	permutations:	[1,2,3],	[1,3,2],	[2,1,3],
[2,3,1],	[3,1,2],	and	[3,2,1].

题目翻译:	给定一个整形数组，要求求出这个数组的所有变形体，具体例子看上文

中给出的例子就可以.

题目分析:	这道题很直接，几乎算是没有坑，相信大家都可以理解题目的要求.
Permutation的解题方法和Combination几乎是相同的，唯一需要注意的是，

Permutation需要加一个bool类型的数组来进行记录哪个元素访问了，哪个没有，这

样才不会导致重复出现，并且不同于Combination的一点是，Permutation不需要排

序.

解题思路:	遇到这种问题，很显然，第一个想法我们首先回去想到DFS,递归求解，

对于数组中的每一个元素，找到以他为首节点的Permutations,这就要求在递归中，

每次都要从数组的第一个元素开始遍历，这样，，就引入了另外一个问题，我们会

对于同一元素访问多次，这就不是我们想要的答案了，所以我们引入了一个bool类
型的数组，用来记录哪个元素被遍历了(通过下标找出对应).在对于每一个

Permutation进行求解中，如果访问了这个元素,我们将它对应下表的bool数组中的

值置为true,访问结束后，我们再置为false.

Permutation

160

时间复杂度分析:	这道题同Combination,所以对于这道题的解答，时间复杂度同样

是O(n!)

代码如下:

class	Solution	{

public:

				vector<vector<int>	>	permute(vector<int>	&num)	{

								vector<vector<int>>	permutations;

								if(num.size()	==	0)	//invalid	corner	case	check

												return	permutations;

								vector<int>	curr;

								vector<bool>	isVisited(num.size(),	false);	

//using	this	bool	type	array	to	check	whether	or	not	the	

elments	has	been	visited

								backTracking(permutations,curr,isVisited,num);

								return	permutations;

				}

				void	backTracking(vector<vector<int>>&	ret,	

vector<int>	curr,	vector<bool>	isVisited,	vector<int>	

num)

				{

								if(curr.size()	==	num.size())

								{

												ret.push_back(curr);

												return;

								}

								for(int	i	=	0;	i	<	num.size();	++i)

								{

												if(isVisited[i]	==	false)

												{

																isVisited[i]	=	true;

																curr.push_back(num[i]);

Permutation

161

																backTracking(ret,curr,isVisited,num);

																isVisited[i]	=	false;

																curr.pop_back();

												}

								}

				}

};

Permutations	II
Given	a	collection	of	numbers	that	might	contain	duplicates,	return	all	possible
unique	permutations.

For	example,	[1,1,2]	have	the	following	unique	permutations:	[1,1,2],	[1,2,1],
and	[2,1,1].

题目翻译:	给定一个整形数组，这个数组中可能会包含重复的数字，要求我们返回

的是这个数组不同的Permutations,也就是说每一种可能的permutation在最后的答

案中只能出现一次.上文的例子能清晰的告诉读者不同的地方.

题目分析:	对于这道题。也是要求permutation,大体上的解题思路和Permutations是
相同的，但是不同点在哪里呢？	不同点为：

1.	 这个给定的数组中可能会含有相同的数字.
2.	 最后答案不接受重复相同的答案组.

对于这两点要求，Permutations的解法是无法解决的，所以我们就要考虑怎样满足

以上两个要求.	我们可以对整个input数组进行排序，在求解答案的时候，只要一个

元素的permutation求出来了，在这个元素后面和这个元素相同的元素，我们完全都

可以pass掉，其实这个方法在sum和combination里面已经是屡试不爽了.

解题思路:	除了加上对于重复答案的处理外，剩下思路同Permutation一模一样。

时间复杂度:	O(n!)

代码如下:

Permutation

162

class	Solution	{

public:

				vector<vector<int>	>	permuteUnique(vector<int>	&num)	

{

								vector<vector<int>>	permutations;

								if(num.size()	==	0)

												return	permutations;

								vector<int>	curr;

								vector<bool>	isVisited(num.size(),	false);

								/*	we	need	to	sort	the	input	array	here	because	

of	this	array

											contains	the	duplication	value,	then	we	need	

to	skip	the	duplication

											value	for	the	final	result	*/

								sort(num.begin(),num.end());

								DFS(permutations,curr,num,isVisited);

								return	permutations;

				}

				void	DFS(vector<vector<int>>&	ret,	vector<int>	curr,	

vector<int>	num,	vector<bool>	isVisited)

				{

								if(curr.size()	==	num.size())

								{

												ret.push_back(curr);

												return;

								}

								for(int	i	=	0;	i	<	num.size();	++i)

								{

												if(isVisited[i]	==	false)

												{

																isVisited[i]	=	true;

																curr.push_back(num[i]);

																DFS(ret,curr,num,isVisited);

Permutation

163

																isVisited[i]	=	false;

																curr.pop_back();

																while(i	<	num.size()-1	&&	num[i]	==	

num[i+1])	//we	use	this	while	loop	to	skip	the	

duplication	value	in	the	input	array.

																				++i;

												}

								}

				}

};

Permutation

164

Greedy

Greedy

165

Jump	Game
Given	an	array	of	non-negative	integers,	you	are	initially	positioned	at	the	first
index	of	the	array.

Each	element	in	the	array	represents	your	maximum	jump	length	at	that
position.

Determine	if	you	are	able	to	reach	the	last	index.

For	example:	A	=	[2,3,1,1,4],	return	true.

A	=	[3,2,1,0,4],	return	false.

这题比较简单，给你一个数组，里面每个元素表示你可以向后跳跃的步数，我们需

要知道能不能移动到最后一个元素位置。

采用贪心法即可，譬如上面的[2,	3,	1,	1,	4]，因为初始第一个位置为2，我们先跳1
步，剩下1步了，到第二个元素位置，也就是3这个地方，因为3比1大，所以我们可

以向后面跳跃3步，直接就到4了。

根据上面的规则，每次跳跃1步，我们可跳跃步数减1，如果新的位置步数大于剩余

步数，使用新的步数继续移动，如果可跳跃次数小于0并且还没到最后一个元素，

那么失败。

代码如下:

Jump	Game

166

class	Solution	{

public:

				bool	canJump(int	A[],	int	n)	{

								if(n	==	0)	{

												return	true;

								}

								int	v	=	A[0];

								for(int	i	=	1;	i	<	n;	i++)	{

												v--;

												if(v	<	0)	{

																return	false;

												}

												if(v	<	A[i])	{

																v	=	A[i];

												}

								}

								return	true;

				}

};

Jump	Game	II

Jump	Game

167

Given	an	array	of	non-negative	integers,	you	are	initially	positioned	at	the	first
index	of	the	array.

Each	element	in	the	array	represents	your	maximum	jump	length	at	that
position.

Your	goal	is	to	reach	the	last	index	in	the	minimum	number	of	jumps.

For	example:	Given	array	A	=	[2,3,1,1,4]

The	minimum	number	of	jumps	to	reach	the	last	index	is	2.	(Jump	1	step	from
index	0	to	1,	then	3	steps	to	the	last	index.)

这题不同于上一题，只要求我们得到最少的跳跃次数，所以铁定能走到终点的，我

们仍然使用贪心法，

我们维护两个变量，当前能达到的最远点p以及下一次能达到的最远点q，在p的范

围内迭代计算q，然后更新步数，并将最大的q设置为p。重复这个过程知道p达到终

点。

代码如下：

Jump	Game

168

class	Solution	{

public:

				int	jump(int	A[],	int	n)	{

								int	step	=	0;

								int	cur	=	0;

								int	next	=	0;

								int	i	=	0;

								while(i	<	n){

												if(cur	>=	n	-	1)	{

																break;

												}

												while(i	<=	cur)	{

																//更新最远达到点

																next	=	max(next,	A[i]	+	i);

																i++;

												}

												step++;

												cur	=	next;

								}

								return	step;

				}

};

Jump	Game

169

Gas	Station
There	are	N	gas	stations	along	a	circular	route,	where	the	amount	of	gas	at
station	i	is	gas[i].

You	have	a	car	with	an	unlimited	gas	tank	and	it	costs	cost[i]	of	gas	to	travel
from	station	i	to	its	next	station	(i+1).	You	begin	the	journey	with	an	empty
tank	at	one	of	the	gas	stations.

Return	the	starting	gas	station's	index	if	you	can	travel	around	the	circuit
once,	otherwise	return	-1.

Note:	The	solution	is	guaranteed	to	be	unique.

这题的意思就是求出从哪一个油站开始，能走完整个里程，并且这个结果是唯一

的。

首先我们可以得到所有油站的油量totalGas，以及总里程需要消耗的油量

totalCost，如果totalCost大于totalGas，那么铁定不能够走完整个里程。

如果totalGas大于totalCost了，那么就能走完整个里程了，假设现在我们到达了第i
个油站，这时候还剩余的油量为sum，如果	sum	+	gas[i]	-	cost[i]小于0，我们无法

走到下一个油站，所以起点一定不在第i个以及之前的油站里面（都铁定走不到第i	+
1号油站），起点只能在i	+	1后者后面。

代码如下：

Gas	Station

170

class	Solution	{

public:

				int	canCompleteCircuit(vector<int>	&gas,	vector<int>	

&cost)	{

								int	sum	=	0;

								int	total	=	0;

								int	k	=	0;

								for(int	i	=	0;	i	<	(int)gas.size();	i++)	{

												sum	+=	gas[i]	-	cost[i];

												//小于0就只可能在i	+	1或者之后了

												if(sum	<	0)	{

																k	=	i	+	1;

																sum	=	0;

												}

												total	+=	gas[i]	-	cost[i];

								}

								if(total	<	0)	{

												return	-1;

								}	else	{

												return	k;

								}

				}

};

Gas	Station

171

Candy
There	are	N	children	standing	in	a	line.	Each	child	is	assigned	a	rating	value.

You	are	giving	candies	to	these	children	subjected	to	the	following
requirements:

Each	child	must	have	at	least	one	candy.	Children	with	a	higher	rating	get
more	candies	than	their	neighbors.	What	is	the	minimum	candies	you	must
give?

好了，终于到了小盆友，排队领糖果的时候了，我们可是坏叔叔。

这题要求每个小孩至少要领到一颗糖果，但是高级别的小孩要比它旁边的孩子得到

的糖果多（小孩的世界也有不平等了），问最少需要发多少糖果？

首先我们会给每个小朋友一颗糖果，然后从左到右，假设第i个小孩的等级比第i	-	1
个小孩高，那么第i的小孩的糖果数量就是第i	-	1个小孩糖果数量在加一。再我们从

右到左，如果第i个小孩的等级大于第i	+	1个小孩的，同时第i个小孩此时的糖果数量

小于第i	+	1的小孩，那么第i个小孩的糖果数量就是第i	+	1个小孩的糖果数量加一。

代码如下：

Candy

172

class	Solution	{

public:

				int	candy(vector<int>	&ratings)	{

								vector<int>	candys;

								//首先每人发一颗糖

								candys.resize(ratings.size(),	1);

								//这个循环保证了右边高级别的孩子一定比左边的孩子糖果数量多

								for(int	i	=	1;	i	<	(int)ratings.size();	i++)	{

												if(ratings[i]	>	ratings[i	-	1])	{

																candys[i]	=	candys[i	-	1]	+	1;

												}

								}

								//这个循环保证了左边高级别的孩子一定比右边的孩子糖果数量多

								for(int	i	=	(int)ratings.size()	-	2;	i	>=	0;	i--)	

{

												if(ratings[i]	>	ratings[i	+	1]	&&	candys[i]	

<=	candys[i	+	1])	{

																candys[i]	=	candys[i	+	1]	+	1;

												}

								}

								int	n	=	0;

								for(int	i	=	0;	i	<	(int)candys.size();	i++)	{

												n	+=	candys[i];

								}

								return	n;

				}

};

Candy

173

Word	Break
Given	a	string	s	and	a	dictionary	of	words	dict,	determine	if	s	can	be
segmented	into	a	space-separated	sequence	of	one	or	more	dictionary
words.

For	example,	given	s	=	"leetcode",	dict	=	["leet",	"code"].

Return	true	because	"leetcode"	can	be	segmented	as	"leet	code".

这题的意思是给出一本词典以及一个字符串，能否切分这个字符串使得每个字串都

在字典里面存在。

假设dp(i)表示长度为i的字串能否别切分，dp方程如下:

	dp(i)	=	dp(j)	&&	s[j,	i)	in	dict,	0	<=	j	<	i	

代码如下

Word	Break

174

class	Solution	{

public:

				bool	wordBreak(string	s,	unordered_set<string>	&dict)	

{

								int	len	=	(int)s.size();

								vector<bool>	dp(len	+	1,	false);

								dp[0]	=	true;

								for(int	i	=	1;	i	<=	len;	i++)	{

												for(int	j	=	i	-	1;	j	>=	0;	j--)	{

																if(dp[j]	&&	dict.find(s.substr(j,	i	-	j))	

!=	dict.end())	{

																				dp[i]	=	true;

																				break;

																}

												}

								}

								return	dp[len];

				}

};

World	Break	II
Given	a	string	s	and	a	dictionary	of	words	dict,	add	spaces	in	s	to	construct	a
sentence	where	each	word	is	a	valid	dictionary	word.

Return	all	such	possible	sentences.

For	example,	given	s	=	"catsanddog",	dict	=	["cat",	"cats",	"and",	"sand",
"dog"].

A	solution	is	["cats	and	dog",	"cat	sand	dog"].

这道题不同于上一题，需要我们得到所有能切分的解。这道题难度很大，我们需要

采用dp	+	dfs的方式求解，首先根据dp得到该字符串能否被切分，同时在dp的过程

中记录属于字典的子串信息，供后续dfs使用。

Word	Break

175

首先我们使用dp[i][j]表示起始索引为i，长度为j的子串能否被切分，它有三种状态:

1.	 dp[i][j]	=	true	&&	dp[i][j]	in	dict，这种情况是这个子串直接在字典中

2.	 dp[i][j]	=	true	&&	dp[i][j]	not	in	dict，这种情况是这个子串不在字典中，但是它

能切分成更小的子串，而这些子串在字典中

3.	 dp[i][j]	=	false，子串不能被切分

根据题意，我们需要求出所有切分的解，所以在进行dp的时候需要处理1和2这两种

情况，因为对于2来说，dp[i][j]是要继续被切分的，也就是说我们只需要关注第1种
情况的子串。

当dp完成之后，我们就需要使用dfs来得到整个的解。在dp[i][j]	=	1的情况下面，我

们只需要dfs递归处理后面i	+	j开始的子串就可以了。

代码如下：

class	Solution	{

public:

				vector<vector<char>	>dp;

				vector<string>	vals;

				string	val;

				vector<string>	wordBreak(string	s,	

unordered_set<string>	&dict)	{

								int	len	=	(int)s.size();

								dp.resize(len);

								for(int	i	=	0;	i	<	len;	i++)	{

												dp[i].resize(len	+	1,	0);

								}

								for(int	i	=	1;	i	<=	len;	i++)	{

												for(int	j	=	0;	j	<	len	-i	+	1;	j++)	{

																//直接存在于字典中，是第1种情况

																if(dict.find(s.substr(j,	i))	!=	

dict.end())	{

																				dp[j][i]	=	1;

																				continue;

Word	Break

176

																}

																//如果不存在，则看子串是不是能被切分，这是第2中

情况

																for(int	k	=	1;	k	<	i	&&	k	<	len	-j;	k++)	

{

																				if(dp[j][k]	&&	dp[j	+	k][i	-	k])	{

																								dp[j][i]	=	2;

																								break;

																				}

																}

												}

								}

								//不能切分，不用dfs了

								if(dp[0][len]	==	0)	{

												return	vals;

								}

								dfs(s,	0);

								return	vals;

				}

				void	dfs(const	string&	s,	int	start)	{

								int	len	=	(int)s.size();

								if(start	==	len)	{

												vals.push_back(val);

												return;

								}

								for(int	i	=	1;	i	<=	len	-	start;i++)	{

												if(dp[start][i]	==	1)	{

																int	oldLen	=	(int)val.size();

																if(oldLen	!=	0)	{

																				val.append("	");

																}

																val.append(s.substr(start,	i));

Word	Break

177

																//我们从start	+	i开始继续dfs

																dfs(s,	start	+	i);

																val.erase(oldLen,	string::npos);

												}

								}

				}

};

Word	Break

178

Linked	List
链表是重要的线性数据结构，链表的插入和删除操作具有O(1)的时间复杂度。但是

链表不具有随机访问的能力，这一点给链表类问题带来了不少麻烦。另外，单向链

表无法直接访问前驱节点，这也是链表的一大难点。	解决链表类问题首先需要熟悉

链表的基本操作，包括创建、插入、删除、查找等。在此基础上实现链表的逆序，

合并等操作。

双指针方法

链表问题中的一个重要的方法叫双指针法。定义两个指针，一个叫慢指针，另一个

叫快指针。通常慢指针每次向前移动一个节点，而快指针每次向前移动若干个节

点。这个方法通常用于寻找链表中特定的位置。比如找到链表的中点，可以让快指

针每次移动两个节点。这样当快指针到达链表末尾时，慢指针刚好在链表中间的位

置。

Linked	List

179

Linked	List	Cycle
Given	a	linked	list,	determine	if	it	has	a	cycle	in	it.

Follow	up:	Can	you	solve	it	without	using	extra	space?

这道题就是判断一个链表是否存在环，非常简单的一道题目，我们使用两个指针，

一个每次走两步，一个每次走一步，如果一段时间之后这两个指针能重合，那么铁

定存在环了。

代码如下：

class	Solution	{

public:

				bool	hasCycle(ListNode	*head)	{

								if(head	==	NULL	||	head->next	==	NULL)	{

												return	false;

								}

								ListNode*	fast	=	head;

								ListNode*	slow	=	head;

								while(fast->next	!=	NULL	&&	fast->next->next	!=	

NULL)	{

												fast	=	fast->next->next;

												slow	=	slow->next;

												if(slow	==	fast)	{

																return	true;

												}

								}

								return	false;

				}

};

Linked	List	Cycle

180

Linked	List	Cycle	II
Given	a	linked	list,	return	the	node	where	the	cycle	begins.	If	there	is	no	cycle,
return	null.

Follow	up:	Can	you	solve	it	without	using	extra	space?

紧跟着第一题，这题不光要求出是否有环，而且还需要得到这个环开始的节点。譬

如下面这个，起点就是n2。

								n6-----------n5

								|												|

		n1---	n2---n3---	n4|

我们仍然可以使用两个指针fast和slow，fast走两步，slow走一步，判断是否有环，

当有环重合之后，譬如上面在n5重合了，那么如何得到n2呢？

首先我们知道，fast每次比slow多走一步，所以重合的时候，fast移动的距离是slot
的两倍，我们假设n1到n2距离为a，n2到n5距离为b，n5到n2距离为c，fast走动距

离为 	a	+	b	+	c	+	b	，而slow为 	a	+	b	，有方程 	a	+	b	+	c	+	b	=	2	x	(a	+

b)	，可以知道 	a	=	c	，所以我们只需要在重合之后，一个指针从n1，而另一个

指针从n5，都每次走一步，那么就可以在n2重合了。

代码如下：

Linked	List	Cycle

181

class	Solution	{

public:

				ListNode	*detectCycle(ListNode	*head)	{

									if(head	==	NULL	||	head->next	==	NULL)	{

												return	NULL;

								}

								ListNode*	fast	=	head;

								ListNode*	slow	=	head;

								while(fast->next	!=	NULL	&&	fast->next->next	!=	

NULL)	{

												fast	=	fast->next->next;

												slow	=	slow->next;

												if(fast	==	slow)	{

																slow	=	head;

																while(slow	!=	fast)	{

																				fast	=	fast->next;

																				slow	=	slow->next;

																}

																return	slow;

												}

								}

								return	NULL;

				}

};

Intersection	of	Two	Linked	Lists

Linked	List	Cycle

182

Write	a	program	to	find	the	node	at	which	the	intersection	of	two	singly	linked
lists	begins.

For	example,	the	following	two	linked	lists:

A:										a1	→	a2

																			↘
																					c1	→	c2	→	c3

																			↗
B:					b1	→	b2	→	b3

begin	to	intersect	at	node	c1.

Notes:

If	the	two	linked	lists	have	no	intersection	at	all,	return	null.
The	linked	lists	must	retain	their	original	structure	after	the	function
returns.
You	may	assume	there	are	no	cycles	anywhere	in	the	entire	linked
structure.
Your	code	should	preferably	run	in	O(n)	time	and	use	only	O(1)	memory.

这题需要得到两个链表的交接点，也就是c1，这一题也很简单。

遍历A，到结尾之后，将A最后的节点连接到B的开头，也就是 	c3	->	b1	

使用两个指针fast和slow，从a1开始，判断是否有环

如果没环，在返回之前记得将 	c3	->	b1	给断开

如果有环，则按照第二题的解法得到c1，然后断开 	c3	->	b1	

代码如下：

class	Solution	{

public:

				ListNode	*getIntersectionNode(ListNode	*headA,	

ListNode	*headB)	{

															if(!headA)	{

												return	NULL;

								}	else	if	(!headB)	{

Linked	List	Cycle

183

												return	NULL;

								}

								ListNode*	p	=	headA;

								while(p->next)	{

												p	=	p->next;

								}

								//将两个链表串起来

								p->next	=	headB;

								ListNode*	tail	=	p;

								p	=	headA;

								//fast和slow，判断是否有环

								headB	=	headA;

								while(headB->next	&&	headB->next->next)	{

												headA	=	headA->next;

												headB	=	headB->next->next;

												if(headA	==	headB)	{

																break;

												}

								}

								if(!headA->next	||	!headB->next	||	!headB->next-

>next)	{

												//没环，断开两个链表

												tail->next	=	NULL;

												return	NULL;

								}

								//有环，得到环的起点

								headA	=	p;

								while(headA	!=	headB)	{

												headA	=	headA->next;

												headB	=	headB->next;

Linked	List	Cycle

184

								}

								//断开两个链表

								tail->next	=	NULL;

								return	headA;

				}

};

Linked	List	Cycle

185

Remove	Duplicates	from	Sorted	List
Given	a	sorted	linked	list,	delete	all	duplicates	such	that	each	element	appear
only	once.

For	example,

Given	1->1->2,	return	1->2.

Given	1->1->2->3->3,	return	1->2->3.

这题要求在一个有序的链表里面删除重复的元素，只保留一个，也是比较简单的一

个题目，我们只需要判断当前指针以及下一个指针时候重复，如果是，则删除下一

个指针就可以了。

代码如下:

Remove	Duplicates	from	Sorted	List

186

class	Solution	{

public:

				ListNode	*deleteDuplicates(ListNode	*head)	{

																if(!head)	{

												return	head;

								}

								int	val	=	head->val;

								ListNode*	p	=	head;

								while(p	&&	p->next)	{

												if(p->next->val	!=	val)	{

																val	=	p->next->val;

																p	=	p->next;

												}	else	{

																//删除next

																ListNode*	n	=	p->next->next;

																p->next	=	n;

												}

								}

								return	head;

				}

};

Remove	Duplicates	from	Sorted	List	II
Given	a	sorted	linked	list,	delete	all	nodes	that	have	duplicate	numbers,
leaving	only	distinct	numbers	from	the	original	list.

For	example,

Given	1->2->3->3->4->4->5,	return	1->2->5.

Given	1->1->1->2->3,	return	2->3.

Remove	Duplicates	from	Sorted	List

187

这题需要在一个有序的链表里面删除所有的重复元素的节点。因为不同于上题可以

保留一个，这次需要全部删除，所以我们遍历的时候需要记录一个prev节点，用来

处理删除节点之后节点重新连接的问题。

代码如下：

class	Solution	{

public:

				ListNode	*deleteDuplicates(ListNode	*head)	{

																if(!head)	{

												return	head;

								}

								//用一个dummy节点来当做head的prev

								ListNode	dummy(0);

								dummy.next	=	head;

								ListNode*	prev	=	&dummy;

								ListNode*	p	=	head;

								while(p	&&	p->next)	{

												//如果没有重复，则prev为p，next为p->next

												if(p->val	!=	p->next->val)	{

																prev	=	p;

																p	=	p->next;

												}	else	{

																//如果有重复，则继续遍历，直到不重复的节点

																int	val	=	p->val;

																ListNode*	n	=	p->next->next;

																while(n)	{

																				if(n->val	!=	val)	{

																								break;

																				}

																				n	=	n->next;

																}

																//删除重复节点

																prev->next	=	n;

Remove	Duplicates	from	Sorted	List

188

																p	=	n;

												}

								}

								return	dummy.next;

				}

};

Remove	Duplicates	from	Sorted	List

189

Merge	Two	Sorted	Lists
Merge	two	sorted	linked	lists	and	return	it	as	a	new	list.	The	new	list	should	be
made	by	splicing	together	the	nodes	of	the	first	two	lists.

这题要求合并两个已经排好序的链表，很简单的题目，直接上代码：

Merge	Sorted	Lists

190

class	Solution	{

public:

				ListNode	*mergeTwoLists(ListNode	*l1,	ListNode	*l2)	{

								ListNode	dummy(0);

								ListNode*	p	=	&dummy;

								while(l1	&&	l2)	{

												int	val1	=	l1->val;

												int	val2	=	l2->val;

												//哪个节点小，就挂载，同时移动到下一个节点

												if(val1	<	val2)	{

																p->next	=	l1;

																p	=	l1;

																l1	=	l1->next;

												}	else	{

																p->next	=	l2;

																p	=	l2;

																l2	=	l2->next;

												}

								}

								//这里处理还未挂载的节点

								if(l1)	{

												p->next	=	l1;

								}	else	if(l2)	{

												p->next	=	l2;

								}

								return	dummy.next;

				}

};

Merge	k	Sorted	Lists

Merge	Sorted	Lists

191

Merge	k	sorted	linked	lists	and	return	it	as	one	sorted	list.	Analyze	and
describe	its	complexity.

这题需要合并k个排好序的链表，我们采用 	divide	and	conquer	的方法，首先两

两合并，然后再将先前合并的继续两两合并。时间复杂度为O(NlgN)。

代码如下：

class	Solution	{

public:

					ListNode	*mergeKLists(vector<ListNode	*>	&lists)	{

								if(lists.empty())	{

												return	NULL;

								}

								int	n	=	lists.size();

								while(n	>	1)	{

												int	k	=	(n	+	1)	/	2;

												for(int	i	=	0;	i	<	n	/	2;	i++)	{

																//合并i和i	+	k的链表，并放到i位置

																lists[i]	=	merge2List(lists[i],	lists[i	+	

k]);

												}

												//下个循环只需要处理前k个链表了

												n	=	k;

								}

								return	lists[0];

				}

				ListNode*	merge2List(ListNode*	n1,	ListNode*	n2)	{

								ListNode	dummy(0);

								ListNode*	p	=	&dummy;

								while(n1	&&	n2)	{

												if(n1->val	<	n2->val)	{

																p->next	=	n1;

																n1	=	n1->next;

												}	else	{

Merge	Sorted	Lists

192

																p->next	=	n2;

																n2	=	n2->next;

												}

												p	=	p->next;

								}

								if(n1)	{

												p->next	=	n1;

								}	else	if(n2)	{

												p->next	=	n2;

								}

								return	dummy.next;

				}

};

Merge	Sorted	Lists

193

Reverse	Linked	List	II
Reverse	a	linked	list	from	position	m	to	n.	Do	it	in-place	and	in	one-pass.

For	example:	Given	1->2->3->4->5->NULL,	m	=	2	and	n	=	4,

return	1->4->3->2->5->NULL.

Note:	Given	m,	n	satisfy	the	following	condition:	1	≤	m	≤	n	≤	length	of	list.

这题要求我们翻转[m,	n]区间之间的链表。对于链表翻转来说，几乎都是通用的做

法，譬如 	p1	->	p2	->	p3	->	p4	，如果我们要翻转p2和p3，其实就是将p3挂载

到p1的后面，所以我们需要知道p2的前驱节点p1。伪代码如下：

				//保存p3

				n	=	p2->next;

				//将p3的next挂载到p2后面

				p2->next	=	p3->next;

				//将p3挂载到p1的后面

				p1->next	=	p3;

				//将p2挂载到p3得后面

				p3->next	=	p2;

对于上题，我们首先遍历得到第m	-	1个node，也就是pm的前驱节点。然后依次遍

历，处理挂载问题就可以了。

代码如下：

Reverse	Linked	List

194

class	Solution	{

public:

				ListNode	*reverseBetween(ListNode	*head,	int	m,	int	

n)	{

								if(!head)	{

												return	head;

								}

								ListNode	dummy(0);

								dummy.next	=	head;

								ListNode*	p	=	&dummy;

								for(int	i	=	1;	i	<	m;	i++)	{

												p	=	p->next;

								}

								//p此时就是pm的前驱节点

								ListNode*	pm	=	p->next;

								for(int	i	=	m;	i	<	n;	i++)	{

												ListNode*	n	=	pm->next;

												pm->next	=	n->next;

												n->next	=	p->next;

												p->next	=	n;

								}

								return	dummy.next;

				}

};

Reverse	Nodes	in	k-Group

Reverse	Linked	List

195

Given	a	linked	list,	reverse	the	nodes	of	a	linked	list	k	at	a	time	and	return	its
modified	list.

If	the	number	of	nodes	is	not	a	multiple	of	k	then	left-out	nodes	in	the	end
should	remain	as	it	is.

You	may	not	alter	the	values	in	the	nodes,	only	nodes	itself	may	be	changed.

Only	constant	memory	is	allowed.

For	example,	Given	this	linked	list:	1->2->3->4->5

For	k	=	2,	you	should	return:	2->1->4->3->5

For	k	=	3,	you	should	return:	3->2->1->4->5

这题要求我们按照每k个节点对其进行翻转，理解了链表如何翻转之后很容易处

理，唯一需要注意的就是每次k个翻转之后，一定要知道最后一个节点，因为这个

节点就是下组的前驱节点了。

ListNode	*reverseKGroup(ListNode	*head,	int	k)	{

								if(k	<=	1	||	!head)	{

												return	head;

								}

								ListNode	dummy(0);

								dummy.next	=	head;

								ListNode*	p	=	&dummy;

								ListNode*	prev	=	&dummy;

								while(p)	{

												prev	=	p;

												for(int	i	=	0;	i	<	k;	i++){

																p	=	p->next;

																if(!p)	{

																				//到这里已经不够k个没法翻转了

																				return	dummy.next;

																}

												}

Reverse	Linked	List

196

												p	=	reverse(prev,	p->next);

								}

								return	dummy.next;

				}

				ListNode*	reverse(ListNode*	prev,	ListNode*	end)	{

								ListNode*	p	=	prev->next;

								while(p->next	!=	end)	{

												ListNode*	n	=	p->next;

												p->next	=	n->next;

												n->next	=	prev->next;

												prev->next	=	n;

								}

								//这里我们会返回最后一个节点，作为下一组的前驱节点

								return	p;

				}

Reverse	Linked	List

197

Swap	Nodes	in	Pairs
Given	a	linked	list,	swap	every	two	adjacent	nodes	and	return	its	head.

For	example,	Given	1->2->3->4,	you	should	return	the	list	as	2->1->4->3.

Your	algorithm	should	use	only	constant	space.	You	may	not	modify	the
values	in	the	list,	only	nodes	itself	can	be	changed.

这题要求遍历链表，两两交换，也算是一道比较简单的题目，我们只需要拿到需要

交换的前驱节点就可以了。直接上代码：

class	Solution	{

public:

				ListNode	*swapPairs(ListNode	*head)	{

								if(!head	||	!head->next)	{

												return	head;

								}

								ListNode	dummy(0);

								ListNode*	p	=	&dummy;

								dummy.next	=	head;

								while(p	&&	p->next	&&	p->next->next)	{

												ListNode*	n	=	p->next;

												ListNode*	nn	=	p->next->next;

												p->next	=	nn;

												n->next	=	nn->next;

												nn->next	=	n;

												p	=	p->next->next;

								}

								return	dummy.next;

				}

};

Swap	Nodes	in	Pairs

198

Swap	Nodes	in	Pairs

199

Sort	List
Sort	a	linked	list	in	O(n	log	n)	time	using	constant	space	complexity.

这题要求我们对链表进行排序，我们可以使用divide	and	conquer的方式，依次递

归的对链表左右两半进行排序就可以了。代码如下：

class	Solution	{

public:

			ListNode	*sortList(ListNode	*head)	{

								if(head	==	NULL	||	head->next	==	NULL)	{

												return	head;

								}

								ListNode*	fast	=	head;

								ListNode*	slow	=	head;

								//快慢指针得到中间点

								while(fast->next	&&	fast->next->next)	{

												fast	=	fast->next->next;

												slow	=	slow->next;

								}

								//将链表拆成两半

								fast	=	slow->next;

								slow->next	=	NULL;

								//左右两半分别排序

								ListNode*	p1	=	sortList(head);

								ListNode*	p2	=	sortList(fast);

								//合并

								return	merge(p1,	p2);

				}

Sort	List

200

				ListNode	*merge(ListNode*	l1,	ListNode*	l2)	{

								if(!l1)	{

												return	l2;

								}	else	if	(!l2)	{

												return	l1;

								}	else	if	(!l1	&&	!l2)	{

												return	NULL;

								}

								ListNode	dummy(0);

								ListNode*	p	=	&dummy;

								while(l1	&&	l2)	{

												if(l1->val	<	l2->val)	{

																p->next	=	l1;

																l1	=	l1->next;

												}	else	{

																p->next	=	l2;

																l2	=	l2->next;

												}

												p	=	p->next;

								}

								if(l1)	{

												p->next	=	l1;

								}	else	if(l2){

												p->next	=	l2;

								}

								return	dummy.next;

				}

};

Sort	List

201

Insertion	Sort	List
Sort	a	linked	list	using	insertion	sort.

这题要求我们使用插入排序的方式对链表进行排序，假设一个链表前n个节点是有

序，第n	+	1的节点需要遍历前n个，插入到合适位置就可以了。

代码如下：

Sort	List

202

class	Solution	{

public:

					ListNode	*insertionSortList(ListNode	*head)	{

								if(head	==	NULL	||	head->next	==	NULL)	{

												return	head;

								}

								ListNode	dummy(0);

								ListNode*	p	=	&dummy;

								ListNode*	cur	=	head;

								while(cur)	{

												p	=	&dummy;

												while(p->next	&&	p->next->val	<=	cur->val)	{

																p	=	p->next;

												}

												ListNode*	n	=	p->next;

												p->next	=	cur;

												cur	=	cur->next;

												p->next->next	=	n;

								}

								return	dummy.next;

				}

};

Sort	List

203

Rotate	List
Given	a	list,	rotate	the	list	to	the	right	by	k	places,	where	k	is	non-negative.

For	example:

Given	1->2->3->4->5->NULL	and	k	=	2,

return	4->5->1->2->3->NULL.

这题要求把链表后面k个节点轮转到链表前面。

对于这题我们首先需要遍历链表，得到链表长度n，因为k可能大于n，所以我们需

要取余处理，然后将链表串起来形成一个换，在遍历 	n	-	k	%	n	个节点，断开，

就成了。譬如上面这个例子，k等于2，我们遍历到链表结尾之后，连接1，然后遍

历	 	5	-	2	%	5	个字节，断开环，下一个节点就是新的链表头了。

代码如下：

Rotate	List

204

class	Solution	{

public:

				ListNode	*rotateRight(ListNode	*head,	int	k)	{

								if(!head	||	k	==	0)	{

												return	head;

								}

								int	n	=	1;

								ListNode*	p	=	head;

								//得到链表长度

								while(p->next)	{

												p	=	p->next;

												n++;

								}

								k	=	n	-	k	%	n;

								//连接成环

								p->next	=	head;

								for(int	i	=	0;	i	<	k;	i++)	{

												p	=	p->next;

								}

								//得到新的链表头并断开环

								head	=	p->next;

								p->next	=	NULL;

								return	head;

				}

};

Rotate	List

205

Reorder	List
Given	a	singly	linked	list	L:	L0→L1→…→Ln-1→Ln,

reorder	it	to:	L0→Ln→L1→Ln-1→L2→Ln-2→…

You	must	do	this	in-place	without	altering	the	nodes'	values.

For	example,

Given	{1,2,3,4},	reorder	it	to	{1,4,2,3}.

这题比较简单，其实就是将链表的左右两边合并，只是合并的时候右半部分需要翻

转一下。

主要有三步：

快慢指针找到切分链表

翻转右半部分

依次合并

代码如下：

class	Solution	{

public:

				void	reorderList(ListNode	*head)	{

								if(head	==	NULL	||	head->next	==	NULL)	{

												return;

								}

								ListNode*	fast	=	head;

								ListNode*	slow	=	head;

								//快慢指针切分链表

								while(fast->next	!=	NULL	&&	fast->next->next	!=	

NULL){

												fast	=	fast->next->next;

Reorder	List

206

												slow	=	slow->next;

								}

								fast	=	slow->next;

								slow->next	=	NULL;

								//翻转右半部分

								ListNode	dummy(0);

								while(fast)	{

												ListNode*	n	=	dummy.next;

												dummy.next	=	fast;

												ListNode*	nn	=	fast->next;

												fast->next	=	n;

												fast	=	nn;

								}

								slow	=	head;

								fast	=	dummy.next;

								//依次合并

								while(slow)	{

												if(fast	!=	NULL)	{

																ListNode*	n	=	slow->next;

																slow->next	=	fast;

																ListNode*	nn	=	fast->next;

																fast->next	=	n;

																fast	=	nn;

																slow	=	n;

												}	else	{

																break;

												}

								}

				}

};

Reorder	List

207

Reorder	List

208

Partition	List
Given	a	linked	list	and	a	value	x,	partition	it	such	that	all	nodes	less	than	x
come	before	nodes	greater	than	or	equal	to	x.

You	should	preserve	the	original	relative	order	of	the	nodes	in	each	of	the	two
partitions.

For	example,

Given	1->4->3->2->5->2	and	x	=	3,

return	1->2->2->4->3->5.

这题要求我们対链表进行切分，使得左半部分所有节点的值小于x，而右半部分大

于等于x。

我们可以使用两个链表，p1和p2，以此遍历原链表，如果节点的值小于x，就挂载

到p1下面，反之则放到p2下面，最后将p2挂载到p1下面就成了。

代码如下：

Partition	List

209

class	Solution	{

public:

				ListNode	*partition(ListNode	*head,	int	x)	{

								ListNode	dummy1(0),	dummy2(0);

								ListNode*	p1	=	&dummy1;

								ListNode*	p2	=	&dummy2;

								ListNode*	p	=	head;

								while(p)	{

												if(p->val	<	x)	{

																p1->next	=	p;

																p1	=	p1->next;

												}	else	{

																p2->next	=	p;

																p2	=	p2->next;

												}

												p	=	p->next;

								}

								p2->next	=	NULL;

								p1->next	=	dummy2.next;

								return	dummy1.next;

				}

};

Partition	List

210

Add	Two	Numbers
You	are	given	two	linked	lists	representing	two	non-negative	numbers.	The
digits	are	stored	in	reverse	order	and	each	of	their	nodes	contain	a	single
digit.	Add	the	two	numbers	and	return	it	as	a	linked	list.

Input:	(2	->	4	->	3)	+	(5	->	6	->	4)

Output:	7	->	0	->	8

两个链表相加的问题，需要处理好进位就成了，比较简单，直接上代码：

Add	Two	Numbers

211

class	Solution	{

public:

				ListNode	*addTwoNumbers(ListNode	*l1,	ListNode	*l2)	{

								ListNode	dummy(0);

								ListNode*	p	=	&dummy;

								int	cn	=	0;

								while(l1	||	l2)	{

												int	val	=	cn	+	(l1	?	l1->val	:	0)	+	(l2	?	l2-

>val	:	0);

												cn	=	val	/	10;

												val	=	val	%	10;

												p->next	=	new	ListNode(val);

												p	=	p->next;

												if(l1)	{

																l1	=	l1->next;

												}

												if(l2)	{

																l2	=	l2->next;

												}

								}

								if(cn	!=	0)	{

												p->next	=	new	ListNode(cn);

												p	=	p->next;

								}

								return	dummy.next;

				}

};

Add	Two	Numbers

212

Copy	List	with	Random	Pointer
A	linked	list	is	given	such	that	each	node	contains	an	additional	random
pointer	which	could	point	to	any	node	in	the	list	or	null.

Return	a	deep	copy	of	the	list.

这题要求深拷贝一个带有random指针的链表random可能指向空，也可能指向链表

中的任意一个节点。

对于通常的链表，我们递归依次拷贝就可以了，同时用一个hash表记录新旧节点的

映射关系用以处理random问题。

代码如下：

class	Solution	{

public:

				RandomListNode	*copyRandomList(RandomListNode	*head)	

{

								if(head	==	NULL)	{

												return	NULL;

								}

								RandomListNode	dummy(0);

								RandomListNode*	n	=	&dummy;

								RandomListNode*	h	=	head;

								map<RandomListNode*,	RandomListNode*>	m;

								while(h)	{

												RandomListNode*	node	=	new	RandomListNode(h-

>label);

												n->next	=	node;

												n	=	node;

												node->random	=	h->random;

												m[h]	=	node;

Copy	List	with	Random	Pointer

213

												h	=	h->next;

								}

								h	=	dummy.next;

								while(h)	{

												if(h->random	!=	NULL)	{

																h->random	=	m[h->random];

												}

												h	=	h->next;

								}

								return	dummy.next;

				}

};

但这题其实还有更巧妙的作法。假设有如下链表：

|------------|

|												v

1		-->	2	-->	3	-->	4

节点1的random指向了3。首先我们可以通过next遍历链表，依次拷贝节点，并将其

添加到原节点后面，如下：

|--------------------------|

|																										v

1		-->	1'	-->	2	-->	2'	-->	3	-->	3'	-->	4	-->	4'

							|																			^

							|-------------------|

因为我们只是简单的复制了random指针，所以新的节点的random指向的仍然是老

的节点，譬如上面的1和1'都是指向的3。

Copy	List	with	Random	Pointer

214

调整新的节点的random指针，对于上面例子来说，我们需要将1'的random指向3'，
其实也就是原先random指针的next节点。

|--------------------------|

|																										v

1		-->	1'	-->	2	-->	2'	-->	3	-->	3'	-->	4	-->	4'

							|																									^

							|-------------------------|

最后，拆分链表，就可以得到深拷贝的链表了。

代码如下：

class	Solution	{

public:

				RandomListNode	*copyRandomList(RandomListNode	*head)	

{

								if(head	==	NULL)	{

												return	NULL;

								}

								//遍历并插入新的节点

								RandomListNode*	n	=	NULL;

								RandomListNode*	h	=	head;

								while(h)	{

												RandomListNode*	node	=	new	RandomListNode(h-

>label);

												node->random	=	h->random;

												n	=	h->next;

												h->next	=	node;

												node->next	=	n;

												h	=	n;

								}

Copy	List	with	Random	Pointer

215

								//调整random

								h	=	head->next;

								while(h)	{

												if(h->random	!=	NULL)	{

																h->random	=	h->random->next;

												}

												if(!h->next)	{

																break;

												}

												h	=	h->next->next;

								}

								//断开链表

								h	=	head;

								RandomListNode	dummy(0);

								RandomListNode*	p	=	&dummy;

								while(h)	{

												n	=	h->next;

												p->next	=	n;

												p	=	n;

												RandomListNode*	nn	=	n->next;

												h->next	=	n->next;

												h	=	n->next;

								}

								return	dummy.next;

				}

};

Copy	List	with	Random	Pointer

216

Math
在这一章，我们主要针对一些leetcode中出现的数学问题给出解析.这种问题一

般都比较直接,但要求的是有一些数学功底.

Math

217

Reverse	Integer
Reverse	Integer:	Reverse	digits	of	an	integer.

Example1:	x	=	123,	return	321.	Example:	x	=	-123,	return	-321.

题目翻译:	反转一个数字，比如123要反转为321，-123反转为-321.

题目解析:	这是一个纯数学问题，我们要考虑到corner	case的条件，也就是说

如果这个数字是0的话，我们直接就返回这个数字就可以了.很简单的问题，直

接上代码吧:

class	Solution	{

public:

				int	reverse(int	x)	{

								if(x	==	0)

												return	x;

								int	ret	=	0;

								while(x!=0)

								{

												if(ret	>	2147483647/10	||	ret	<	

-2147483647/10)	

																return	0;

												ret	=	ret*10	+	x%10;

												x	=	x/10;

								}

								return	ret;

				}

};

Reverse	Integer

218

String
在这一章，我们将会覆盖leetcode上跟string有关联的题目.

String

219

Add	Binary
Given	two	binary	strings,	return	their	sum	(also	a	binary	string).

For	example,	a	=	"11"	b	=	"1"	Return	"100".

题目翻译:	对于给定的两个二进制数字所表达的字符串，我们求其相加所得到

的结果，	根据上例便可得到答案.

题目分析:	我认为这道题所要注意的地方涵盖以下几个方面:

1.	 对字符串的操作.
2.	 对于加法，我们应该建立一个进位单位，保存进位数值.
3.	 我们还要考虑两个字符串如果不同长度会怎样.
4.	 int	类型和char类型的相互转换.

时间复杂度:其实这就是针对两个字符串加起来跑一遍，O(n)	n代表长的那串字

符串长度.

代码如下:

class	Solution	{

public:

				string	addBinary(string	a,	string	b)	{

								int	len1	=	a.size();

								int	len2	=	b.size();

								if(len1	==	0)

												return	b;

								if(len2	==	0)

												return	a;

								string	ret;

								int	carry	=	0;

								int	index1	=	len1-1;

								int	index2	=	len2-1;

								while(index1	>=0	&&	index2	>=	0)

Add	Binary

220

								{

												int	num	=	(a[index1]-'0')+(b[index2]-

'0')+carry;

												carry	=	num/2;

												num	=	num%2;

												index1--;

												index2--;

												ret.insert(ret.begin(),num+'0');

								}

								if(index1	<	0&&	index2	<	0)

								{

												if(carry	==	1)

												{

																ret.insert(ret.begin(),carry+'0');

																return	ret;

												}

								}

								while(index1	>=	0)

								{

												int	num	=	(a[index1]-'0')+carry;

												carry	=	num/2;

												num	=	num%2;

												index1--;

												ret.insert(ret.begin(),num+'0');

								}

								while(index2	>=	0)

								{

												int	num	=	(b[index2]-'0')+carry;

												carry	=	num/2;

												num	=	num%2;

												index2--;

												ret.insert(ret.begin(),num+'0');

								}

								if(carry	==	1)

Add	Binary

221

												ret.insert(ret.begin(),carry+'0');

								return	ret;

				}

};

Add	Binary

222

Basic	Calculator	II
Implement	a	basic	calculator	to	evaluate	a	simple	expression	string.	The
expression	string	contains	only	non-negative	integers,	 	+,	-,	*,	/	
operators	and	empty	spaces	 				.	The	integer	division	should	truncate	toward
zero.	You	may	assume	that	the	given	expression	is	always	valid.	Some
examples:

"3+2*2"	=	7

"	3/2	"	=	1

"	3+5	/	2	"	=	5

Note:	Do	not	use	the	 	eval		built-in	library	function.

题目翻译：	实现一个简易的计算器来对简单的字符串表达式求值。	字符串表达式

只包含非负整数，+，-，*，/四种运算符，以及空格。整数除法向零取整。	给出的

表达式都是有效的。	不要使用内置的eval函数。

题目分析：	通常对算术表达式求值都是用栈来实现的，但是鉴于本题的情形比较简

单，所以可以不用栈来实现。	总体思路是，依次读入字符串里的字符，遇到符号的

时候就进行运算。如果是乘除法，就把结果存入中间变量，如果是加减法就把结果

存入最终结果。

用C++实现的时候，可以在循环中使用 	string	类的 	find_first_not_of	方法来

跳过空格。	读到数字时，继续向后读，直到不是数字的字符，或者超出字符串长度

为止。

代码如下：

class	Solution	{

public:

				int	calculate(string	s)	{

								int	result	=	0,	inter_res	=	0,	num	=	0;

								char	op	=	'+';

								char	ch;

								for	(int	pos	=	s.find_first_not_of('	');	pos	<	

Basic	Calculator	II

223

s.size();	pos	=	s.find_first_not_of('	',	pos))	{

												ch	=	s[pos];

												if	(ch	>=	'0'	&&	ch	<=	'9')	{

																int	num	=	ch	-	'0';

																while	(++pos	<	s.size()	&&	s[pos]	>=	'0'	

&&	s[pos]	<=	'9')

																				num	=	num	*	10	+	s[pos]	-	'0';

																switch	(op)	{

																case	'+':

																				inter_res	+=	num;

																				break;

																case	'-':

																				inter_res	-=	num;

																				break;

																case	'*':

																				inter_res	*=	num;

																				break;

																case	'/':

																				inter_res	/=	num;

																				break;

																}

												}				

												else	{

																if	(ch	==	'+'	||	ch	==	'-')	{

																				result	+=	inter_res;

																				inter_res	=	0;

																}

																op	=	s[pos++];

												}

								}

								return	result	+	inter_res;

				}

};

Basic	Calculator	II

224

Basic	Calculator	II

225

	Introduction
	Array
	Remove Element
	Remove Duplicates from Sorted Array
	Plus One
	Pascal's Triangle
	Merge Sorted Array
	Sum
	Find Minimum in Rotated Sorted Array
	Largest Rectangle in Histogram
	Maximal Rectangle
	Palindrome Number
	Search a 2D Matrix
	Search for a Range
	Search Insert Position
	Find Peak Element

	Bit Manipulation
	Missing Number
	Power of Two
	Number of 1 Bits

	Tree
	Depth of Binary Tree
	Construct Binary Tree
	Binary Tree Level Order Traversal
	Symmetric Tree
	Same Tree
	Balanced Binary Tree
	Path Sum
	Binary Tree Depth Order Traversal
	Populating Next Right Pointers in Each Node
	Convert Sorted List/Array to Binary Search Tree
	Path Sum II
	Flatten Binary Tree to Linked List
	Validate Binary Search Tree
	Recover Binary Search Tree
	Binary Tree Path
	Sum Root to Leaf Numbers

	Dynamic Programming
	Best Time To Buy And Sell Stock
	Unique Paths
	Maximum Subarray
	Climbing Stairs
	Triangle
	Unique Binary Search Trees
	Perfect Squares

	Backtracking
	Combination
	Subsets
	Permutation

	Greedy
	Jump Game
	Gas Station
	Candy
	Word Break

	Linked List
	Linked List Cycle
	Remove Duplicates from Sorted List
	Merge Sorted Lists
	Reverse Linked List
	Swap Nodes in Pairs
	Sort List
	Rotate List
	Reorder List
	Partition List
	Add Two Numbers
	Copy List with Random Pointer

	Math
	Reverse Integer

	String
	Add Binary
	Basic Calculator II

