Table of Contents

Introduction 1.1
Array 1.2
Remove Element 1.2.1
Remove Duplicates from Sorted Array 1.2.2
Plus One 1.2.3
Pascal's Triangle 1.2.4
Merge Sorted Array 1.2.5
Sum 1.2.6
Find Minimum in Rotated Sorted Array 1.2.7
Largest Rectangle in Histogram 1.2.8
Maximal Rectangle 1.2.9
Palindrome Number 1.2.10
Search a 2D Matrix 1.2.11
Search for a Range 1.2.12
Search Insert Position 1.2.13
Find Peak Element 1.2.14
Bit Manipulation 1.3
Missing Number 1.3.1
Power of Two 1.3.2
Number of 1 Bits 1.3.3
Tree 1.4
Depth of Binary Tree 1.4.1
Construct Binary Tree 1.4.2
Binary Tree Level Order Traversal 1.4.3
Symmetric Tree 144
Same Tree 1.4.5

Balanced Binary Tree 1.4.6

Path Sum 1.4.7

Binary Tree Depth Order Traversal 1.4.8
Populating Next Right Pointers in Each Node 1.4.9
Convert Sorted List/Array to Binary Search Tree 1.4.10
Path Sum I 1.4.11
Flatten Binary Tree to Linked List 1.4.12
Validate Binary Search Tree 1.4.13
Recover Binary Search Tree 1.4.14
Binary Tree Path 1.4.15
Sum Root to Leaf Numbers 1.4.16
Dynamic Programming 1.5
Best Time To Buy And Sell Stock 1.5.1
Unique Paths 1.5.2
Maximum Subarray 1.5.3
Climbing Stairs 1.5.4
Triangle 1.5.5
Unique Binary Search Trees 1.5.6
Perfect Squares 1.5.7
Backtracking 1.6
Combination 1.6.1
Subsets 1.6.2
Permutation 1.6.3
Greedy 1.7
Jump Game 1.71
Gas Station 1.7.2
Candy 1.7.3
Word Break 1.7.4
Linked List 1.8
Linked List Cycle 1.8.1
Remove Duplicates from Sorted List 1.8.2

Merge Sorted Lists

Reverse Linked List

Swap Nodes in Pairs

Sort List

Rotate List

Reorder List

Partition List

Add Two Numbers

Copy List with Random Pointer
Math

Reverse Integer
String

Add Binary

Basic Calculator Il

1.8.3
1.8.4
1.8.5
1.8.6
1.8.7
1.8.8
1.8.9
1.8.10
1.8.11
1.9
1.9.1
1.10
1.10.1
1.10.2

GhFEP > KRR R EEEF A B R AT EZGTINR > 1 a—
Ao FTAEAMNA THRIFFEEZN KR » AT T —i#lLeetCodetg A B » X H F 2 3
TRSEE - 5RLYTTH T Googled B A% T B A KA o

MA—® TR RAZN > REZMAZARRT » BRAB XA Lol wfTTF 0 &
TR ARBEG LA LR TIEE o ﬁ)’rvlé&{l‘] R L gAFAF M B TR 8 B
RETk > — Mo & BTRFE > FHREREXANAEG » FIHREEIE—K
= mRE G RA E“&ﬁfi@iﬁmﬁ%%ﬁ 0

TARATALEEEGFEGZIARS © (LeetCode fiF) - k12 F &RA1A]
LeetCode# B B 4% 69 OB % o RATRUE > HPIRB—TALT H HﬂLLeetCode
BMaX 0 B RG LT RE A A LeetCodeM X &89 T SR L LM L AAT » 124
14 92 0 69 3R %

%ﬁ%nﬁmCH’K&ﬂ%L@%&ﬁﬁ%%mmﬁ RAL TG s EFRE LR
Ao REZRAFW HERTIAT o

A &4 BLeetCodety M A - £ kAR F ¥ » EdwArray » Hash Table%r » 2t
&4ﬁ%£@%@5’k%mmawﬁﬁ%fﬂkﬁm% KA Z A7 X, 0 fEIEHK
AR ik] LR ELE —X5m > B TR T HAALHA -

%K 5 BT LeetCode LA 898 B » AN AZEHANEF il X9y Fsoir » &
%%&ﬂ]?’?‘%k%%ﬁ%ﬁ%%% "Pﬂ—‘/\/\%ij]ﬂ‘f]é];ﬁ]zﬁ’ g‘l‘ #T/ﬁ\fﬁ/i\

(e}

s

WG BMFEFTREREGRS (MREZHAARABINGERT) o o RIRFETHF
WD » RWIEGithub®Yissue Z @I » REAHES HRAB A o

Thanks Contributor

e [%:3F collectchen@gmail.com
o KBF xczhang07@gmail.com

Maintainer

Introduction

e SiddonTang siddontang@gmail.com

Array

Remove Element

Given an array and a value, remove all instances of that > value in place and
return the new length.

The order of elements can be changed. It doesn't matter what you leave
beyond the new length.

BAFBR RERBBRTREHH—EHAE » £—NAZ @M% Tvalue » F
BREHGKAKRE c BAE—FRIEZNHATLET in place * FRIHEH—A
4 o

kAR AR AR o B wwRAEF] Tvalue > £ AR FALE > F
B3> EE T —/NJEvalue st I o J bzt 2 6944 5 41 3]j94c B L > hej> T8
LA AR B SR o RIRR A RAKE o

R AL 4 T

class Solution {
public:
int removeElement(int A[], int n, int elem) {
int i = 0;

int j = 0;
for(i = 0; i < n; i++) {
if(A[1] == elem) {
continue;
}
A[J] = A[1];
J++;
}
return j;

iy

B ARE LB T > i B A1:2°22322 4 RNEEM%2 4
LifejH0 - FEF—MLE > RAF—MTEAN1 > PTAA[0] = A[0] » iA=j#T et > @
BoAAEA2 KB AFEEF3 > FA[M] = A[3] > LA > #Hifej > X
BHE T — AU E X820 %38 B A4 sbitA[2] = A[5] » wah A4 » FoRE I
Foj o RANBERATRBN T - &R o IIZIOMEA3 RIEFHAH OBk
}3_*{ o

Remove Duplicates from Sorted Array

Given a sorted array, remove the duplicates in place such that > each element
appear only once and return the new length.

Do not allocate extra space for another array, you must do this in place with
constant memory.

For example, Given input array A =[1,1,2],
Your function should return length = 2, and Ais now [1,2].

X B A H 53— Remove Elementitig R 4L o 122 £ —ANBE 545 69 240 2 @ | 14
FTEMLE o

BREMNE Rl > T —APIFFOEARTE > A[N + 1] >= A[N] * &RAA
RAE R A FARiIF R s BRIAI =]+ 1 o RA] == A[j] > B2 &KA1#E3E »
BEIAf] 1= Aj] > REHERMN B XBEA[+1]=A[i] > At#EEifej 5 Lilldf24E
Bl R o

RAL Ha T

class Solution {

public:
int removeDuplicates(int int {
if(n == 0) {
return 0;
b
int j = 0;
for(int 1 = 1; 1 < n; i++) {
if(A[3] '= A[1]) {
A[++]] = A[1];
}
¥
return j + 1;
}
i

Bho—ABAA11°2° 3 BRi=1j=0> ZHRA[] = Al]] > TRA%NEi - 45
20 RETFA 0 hBE BA[+ 1] = Ali] » it 2A[] = A[2] » i 3idej A 3401 » LR
A[3]!=A[1]° L EA[j + 1] = Ali] > Wt AA[2] = A[3] » A R#%EIE » B4 R o ZETE
%ﬁéﬁiigﬂk}iﬁﬁjﬁz +1° ‘&AE}L%B o

Remove Duplicates from Sorted Array li

Follow up for "Remove Duplicates": What if duplicates are allowed at most
twice?

For example, Given sorted array A = [1,1,1,2,2,3],
Your function should return length = 5, and Ais now [1,1,2,2,3].
REHEAELE—M AIRZBRETENAL ERXRTUAAFRESEAREELELRL -

MAREF - CHE X ENFEA M RERECREREORE PREER
BRTHFT2 &MNaxRE AN FALE > wRFIZZEAZXT » KNK T

AW

class Solution {
public:
int removeDuplicates(int A[], int n) {
if(n == 0) {
return 0;

int j = 0;
int num = 0;
for(int 1 = 1; 1 < n; i++) {
if(A[J] == A[1]) {
num++;
if(num < 2) {
A[++3] = A[1i];
}
} else {
A[++]] = A[1];
num = 0;

}

return j + 1;

iy

Plus One

Given a non-negative number represented as an array of digits, plus one to
the number.

The digits are stored such that the most significant digit is at the head of the
list.

XA B ARG E > KA kAL E R o B EARA

class Solution {
public:
vector<int> plusOne(vector<int> &digits) {
vector<int> res(digits.size(), 0);
int sum = 0;
int one = 1;

for(int 1 = digits.size() - 1; 1 >= 0; 1i--) {
sum = one + digits[i];
one = sum / 10;

res[i] = sum % 10;

if(one > 0) {
res.insert(res.begin(), one);

}

return res;

iy

Pascal's Triangle

Given numRows, generate the first numRows of Pascal's triangle.

For example, given numRows = 5, Return

[1],
[1,1],
[1,2,1],

[1,3,3,1],
[1,4,6,4,1]

ZRE— AR A BNRFZRINAART o

o FKEAKMNLE

o HRH—ANVURFBE—NAEMEH

o T Hk (k>2) B%n (n>18&&n<k) MTLEALK]IN] * AKIIN] = Alk-1][n-1]
+ Alk-1][n]

i 7 EmagIAE > sRARFT 0 BAVERA A HARGHRENZA > R de
T

class Solution {

public:
< <int> > generate(int numRows) {
< <int> > vals;
vals.resize(numRows);
for(int 1 = 0; 1 < numRows; i++) {
vals[i].resize(i + 1);
vals[i][0] = 1;
vals[i][vals[i].size() - 1] = 1;
for(int j = 1; j < vals[i].size() - 1; j++) {
vals[i][j] = vals[i - 1][]J - 1] + vals[i
- 110315
}
¥
return vals;
}
I¥

Pascal's Triangle Il

Given an index K, return the kth row of the Pascal's triangle.
For example, given k = 3, Return [1,3,3,1].

TRFTE—R » XERNRREZFIGZREGES > BRRERNOK)E E R o
PTVAT e R AT & — 2 4 B89 77 X, > RAAR Al — AL B R Fh it 5 o

EH—ME @ £ o 2 A0 EA X RHA Y » AN = Ak-1]0-1]
+ Alk-1][n] °

BRI B LB A B3R 5B 5 [1,3,3, 1] WwREMNTEIHF4E 0938 -
4o R EAVNATE G THE - 2 Al4][2]= AI3][1] + A[3][2] ° &3t 24 » 22 R4 A A —
AHL > FTAE B4R AEE H B2 AL E - A 2 BATH FAM][B]8 B R34 B
AT > AAZEEARB|2)F A3 AT o

AT BRZANFA s KRN ARBABE T AL L@ARANF T » KN FEATH
A[4][3] = AI3][2] + A[3][3] * &3k %6 » AN1H6 AR L F3EAMLE » 2R L HH
AN IEA][2] 0 BAAM]R2] = A1) + A[B][2] * B4 T4 FAEZEAMMEET o

FARET dofHH s REHBEEET -

class Solution {

public:

+i

<int> getRow(int rowIndex) {
<int> vals;

vals.resize(rowIndex + 1, 1);
for(int 1 = 0; 1 < rowIndex + 1; ++1i) {

for(int j =1 - 1; j >=1; --3) {
vals[j] = vals[j] + vals[]j - 1];

return vals;

Merge Sorted Array

Given two sorted integer arrays A and B, merge B into A as one sorted array.

Note: You may assume that A has enough space (size that is greater or equal
to m + n) to hold additional elements from B. The number of elements
initialized in A and B are m and n respectively.

AfBAR 2 R PTG F04R » BATR FRING A A LRI T AT o

B AR Eab 6 Z R ZMA+ B RAMER FARidE@m +n- 10 LR L R K EE A 2
37 o IR R AA B o i RRLA B Z » FIo# i

AWALE = N

class Solution {

public:
void merge(int int int
int i =m+n - 1;
int j =m - 1;
int k =n - 1;

iy

while(i >= 0) {
if(j >= 0 && k >= 0) {
if(A[J] > B[K]) {

A[i] = A[3];
J--;

} else {
A[i] = B[K];
K--;

}

} else if(j >= 0) {
A[i] = A[3];
J--;

} else if(k >= 0) {
A[i] = B[Kk];
k--;

int

2Sum

Given an array of intergers, find two numbers such that they add up to a
specific target number. The function twoSum should return indices of the two
numbers such that they add up to the target, where index1 must be less than
index2 Please note that your returned answers (both index1 and index2) are
not zero-based.

You may assume that each input would have exactly one solution.
Input: numbers={2, 7, 11, 15}, target=9 Output: index1=1, index2=2

B FF XiE @ B8 g&E% g — M At —AME o B R F R AMER
Ao F T RXAB R AL L7 o %'Q‘/T\ﬁﬁ 11 ABARECD R ERN @ 0 B KA
ElE@ o2 XMHEIETE f]/‘é\ °

AMEAGH & D RMNESMAE AP A AAR4EE

1. Ribkoy LA AR IFHET o
2. EAANLAFTENEALE o
3. RAMAMRARA —AEZHEEL > THBRT RN MA

RIEA B RN TAFE AT L

1. RAVFR) L AR 0 0T42 > FARIE KD AR 52 A 4048 o
2. BARARBEREGEAE > FTARAIIF R 69 RAFARE+1 o

3. AAFBLAE—MARKEAER » Fulix K KOG MAR T X 420 B 695 /F » d3k
Rt BINR BRI G LM AAK BARRE A LEEF BEEAZ

S

AR G . REA AR Eleetcodek A4 B » B RRA#H > REE > 4o
REATR A Aforfa IR » O(n2)8g et Ia] § 4 B X RgegE » REHHHE Bk » 12X
ERZ@RE FRGEZ © brute forceR%J‘ft LR Fe il e TR AL AR B G BHE 5 sk
B B — AR o o ARAKRATAERREAO(N) A BT IR § 2 X MR XA ? REA
AT ARy s i o k’F?x%‘é?”"’ﬁ%? Mo o BRAARAL T 0 1A B 2 2 > R AT3E £ 4w
PE R R o 21X R4 4 %R ? stack ? queue ? vector ? 3% s&hash_map?

2t Fstack#queue * & T popsh » E®E A B 2 A ZO(n) ° A R FERMATE
209 WAH 2FIE MG ERE R F FE R ? R EAE hash_map, K695
B B 2 E AN LT AO(1) o ATAKAT %% Bhash_map > & Ahash_map &2 £
CEYNCE R

EAT R e de XA B BT A U E 4 2lhashmap ™ » —RIEF#HAT » BRE L EH
O(n),Z 5 * PT b A e 4T 7 > 4t 2t B F 89 71 & &A1 R & Aanother_number =
target-numbers[i],Z. /& fl hashmap#Jfind function sk XX M » Ww R B L6 > £
#ATR S (FRARE) o wRFEEGE S REER - FE o TRLEEAR
2T 0 FLARAGE o

class Solution {
public:
<int> twoSum(<int> &numbers, int target)

[/ AR AV RE E G A R AR L
<int> ret;

if(numbers.size() <= 1)

return ret;
//#FHZE—"map<key,value> Xk FEnumbers L@y L&

Frindex °
//& Z8junordered_map#a % Fhash_map
<int,int> myMap;

for(int 1 = 0; 1 < numbers.size(); ++1i)
myMap[numbers[i]] = 1i;

for(int 1 = 0; 1 < numbers.size(); ++1i)

{

int rest_val = target - numbers[i];
if(myMap.find(rest_val)!=myMap.end())

{
int index = myMap[rest_val];
if(index == 1)
continue; [/ RER — AN F o &ATE

pass * &R 2R A hY

if(index < 1)

ret.push_back(index+1); //& Z+120
A B A E T Enon-zero based index

ret.push_back(i+1);

return ret;

}

else

{
ret.push_back(i+1);
ret.push_back(index+1);
return ret;

¥

iy

AR R EN A ERERAA LA TR 0 BRI RE LA
W .

3Sum

Given an array S of n integers, are there elements a, b, cin S such thata + b
+ ¢ = 07 Find all unique triplets in the array which gives the sum of zero.

Note: Elements in a triplet (a,b,c) must be in non-descending order. (ie,a<b
< c¢) The solution set must not contain duplicate triplets.

A H EF

S

E —ANEAAnum » KB ZANRAFHCIAMEHOITA KT
num[il+num[jJ+num[k] = 0. # AT A 69 5 £ 2 B e LA R 69 » sk L0 M A48 F
ERETHEZ -

RLE AR EER

1. BABZZWMEMYGAKFTZENRI D HED| A K0 o

2. BEANERRT LAY L ZHME o

1. H—ANEZ &K Atriplet ¥ 89 L& &£ & RA 537 89 o
2. THEAAFTRNEEHKA -

CRBIEF—BR2R RAZREENEREAPHTLERFHED G » BTl EF X
BATV R S BB ATHES ©

2. RIEF = ARL: AATRESERENEZRA » FIARMNZERS L dHK—
AR ER R A TRAE » BEGRELAFE o &IT4 K leetcode sy
AR AT A A A R R ABAR » L5 A Amap#t T4 L » AL
KT » AR RSB EZZELREZHINER G -

iR B A& AT

s FREM AARRZREAAE FFRERAROMN)M M E X E » BATRE
A A RO(n)B Al B 4 B 69 ik o

J2 AR 4 K 0 F 52 1 Ztwo pointers#9 8 ik o AL L T AAE4 0 RABF 8 KD kA
HIb—=A o @@‘?Fﬁi‘l R —m R o 4FT 0 EARAGE o

class Solution {

public:
//constant space version
< <int> > threeSum(<int> &num) {
< <int>> ret;

//corner case invalid check
if(num.size() <= 2)
return ret;

//first we need to sort the array because we need
the non-descending order

sort(num.begin(), num.end());

for(int 1 = 0; 1 < num.size()-2; ++1i)

int j = i+1;

int k = num.size()-1;
while(j < k)

{

vector<int> curr; //create a tmp vector
to store each triplet which satisfy the solution.
if(num[i]+num[j]+num[k] == 0)
{
curr.push_back(num[i]);
curr.push_back(num[j]);
curr.push_back(num[k]);
ret.push_back(curr);
++3;
--k;
//this two while loop is used to skip
the duplication solution
while(j < k& &num[j-1] == num[j])
++3;
while(j < k&&num[k] == num[k+1])
--k;
}
else if(num[i]+num[j]+num[k] < ©) //if
the sum is less than the target value, we need to move j
to forward
++];
else
--k;
}
//this while loop also is used to skip the
duplication solution
while(i < num.size()-1&&num[i] == num[i+1])

++1;

}

return ret;

I

B A EARAD > AT REZ T A T A EE 698 = while loop © — ¥ 4m 3 4]
A Hadefor loop F 891 < num.size()-2; A A jFek AR £ iJE @ > PT VARSI AAL o B R4 R
B Ai< num.size(); 4.8 7T A MR 0 A2 R B TR RRFH o A Ih— B 0 3T
% %12 T corner case check®f °

3Sum Closest

Given an array S of n integers, find three integers in S such that the sum is
closest to a given number, target. Return the sum of the three integers. You
man assume that each input would have exactly one solution.

A B EiF

U —MNEHRASF — N ARG » ZRERBAEZIRAFEAAFN T EIANS
B o input R A — AN A REE o

MEER:
XA B WEHA 2 BRG R o

s
m
i?-
=

-_—

REWEE ANEROREEEA)R A TREMLKRETE > 7| A% o
2. XA A3Sum/LF R th—#k > BT FAE T AR » RAVE A A K 2t fms
THEF 0 B AR FECALIS4H A o

3. A9 ZEAF M E TINT_MAXZAME » ZAfEA INT_MINAAR 2 2 69 0 fe
BeZ IR RERBERDENFR 2FAZANEE o

ﬁn

B

N

&

R EY AR 7y % Fe3SumJL-FA Bl 0 R EZAEE 0 Bl A 0 RIEFEG K
zz’Ji'y Iph— A~ o B TXEM B B TH) A B3t Ldistance bix Xk IL » B 2 —Atmp
distance##min distance }t 4k -

iR B A AT

3 i A H F23SumILF A — A B BEAI B 2 E A O(n2) °

AW

class Solution {
public:

int threeSumClosest(vector<int> &num, int target) {
//invalid corner case check
if(num.size() <= 2)
return -1,

int ret = 0,

//first we suspect the distance between the sum
and the target is the largest number in int

int distance = INT_MAX;

sort(num.begin(),num.end()); //sort 1is needed

for(int 1 = 0; 1 < num.size()-2; ++1i)

{
int j = i+1;
int kK = num.size()-1;
while(j < k)
{

int tmp_val = num[i]+num[j]+num[Kk];
int tmp_distance;
if(tmp_val < target)

{
tmp_distance = target - tmp_val;
if(tmp_distance < distance)
{
distance = tmp_distance;
ret = num[i]+num[j]+num[Kk];
}
++];
}

else if(tmp_val > target)
{

Sum

tmp_distance = tmp_val-target;
if(tmp_distance < distance)

{

distance = tmp_distance;
ret= num[i]+num[j]+num[k];

__k;
}

else //note: in this case, the sum is 0,
O means the shortest distance from the sum to the target

{
ret = num[i]+num[j]+num[k];
return ret;

}

return ret;
I¥

Gtk RAMWB Ry FEIRLREZATILL

1. BB HAAITHS
2. 0& AL TR IEH o

4Sum

Given an array S of n integers, are there elements a, b, cand d in S such that
a+b+c+d = target? Find all unique quadruplets in the array which gives the
sume of target.

Note:

1. Elements in quadruplets (a, b, ¢, d) must be in non-descending order. (ie,
a<=b<=c<=d)

2. The solution must not contain duplicates quadruplets.

25

A E EE

% —MNERDRF R Anumbe— B irfitarget ° KRB KA F AT A G AEH LK
' num[a]+num[b]+num[c]+num[d] = target.

FHERRFHE

1. num[a] <= num[b] <= num[c] <= num[d]
2. BRI AERAEZEY.

R E 9

ZEMAISUMLF R — 8 0 AR AR ROANF T4 > AR & E LRI
3SuMa— MK EZR - st TR EAZRGLE :

1. BB EANFAAITHF > BEFHGEZAARATHFGFY.
2. W TFTEERXRYNIEF3SumAL —H —H 4G o

R 3% F3Sum.
B IR B BT

BOEA AR > KRR E R L RE A B B A A O(n3). 5 F A 8
A s de R B T KSum(K>=5), & 943 T vA Alhash_map k4B 4% % 7] § 7% & # BT — 2
By I R B2 R

RAL 4= T

class Solution {
public:
< <int> > fourSum(<int> &num, int
target) {
< <int>> ret;
if(num.size() <= 3) //invalid corner case check
return ret;
sort(num.begin(), num.end()); //cause we need the
result in quadruplets should be non-descending
for(int 1 = 0; 1 < num.size()-3; ++1)
{
if(1 > && num[i] == num[i-1])
continue;

for(int j = 1i+1; j < num.size()-2; ++j)
{

if(j > i+l && num[j] == num[j-1])

continue;

int k = j+1;

int 1 num.size()-1;

while(k < 1)

{

int sum =
num[i]+num[j]+num[Kk]+num[1];
if(sum == target)
{
vector<int> curr; //create a
temporary vector to store the each quadruplets
curr.push_back(num[i]);
curr.push_back(num[j]);
curr.push_back(num[k]);
curr.push_back(num[1]);
ret.push_back(curr);
//the two while loops are used to
skip the duplication solutions
do{++k;}
while(k<l && num[k] == num[k-1]);
do{--1;}
while(k<l && num[l] == num[l+1]);
}
else if(sum < target)
++k; //we can do this operation
because of we sort the array at the beginning
else
--1;

}

return ret;

I

e Bl AR > R TAFETLA | 8 — 2L

. & A dof{iwhile kXA Twhile#t 47 E B 5 F 094 » AT RAREAHR? AR A4
%éﬁﬁk?whlle ’ Ieetcodeéﬁtest sampleid F&k » WEG4IRTAB L T B R 69 IR

v RINA e R R Awhile » %A % #AT T ++K B A -893R o R T
dO{}WhI|e:‘?JLL.T A3l 1§ BT A #gtest case.

B Ay R

KSum

HAE VA E892Sum, 3Sum, 3Sum Cloest * &£ A4Sum *» &£4812 R &I E A R4
ARG ETH - RN — TR R XFIELSHF AR » o BT R
KSum PPl RE » &A1 %A fT KAR ? X AANRAFOG L > Tdw» RIVKAH A
k.

B - T2Sum » BV AR X R E R B & E kAR R B & B » 2Sum
KMTATAinplace kB2 A B R EXELS F? ZLASTRTL &ﬂ]T’TV/{fn
sort—i# » X H4a— % > sortdy if A] B 4 F £ O(nlogn) » 42 —i&£0(n), At » X
A ARk g8t 1A B 2 B £ O(nlogn), % & » 4= R xt-T#HKindex » leetcode £ #9714

R ZA 77k B A EAsort—i#kZ)G » indexa X A — R T o 22 KA TAR LT
& Mfunction sk 1 A — A Helper function*f TK Sum(# /& 2|4 &K > 2, sort—i& & 4
EORE LI o7 NI 38 <85 R g - AN O

void twoSum int int int
int int int {
if(begin >= numbers.size()-1)
return;
int b = begin;
int e = numbers.size()-1;
while(b < e)
{
int rest = numbers[b]+numbers[e];
if(rest == target)
{
<int> tmp_ret;
tmp_ret.push_back(first);
tmp_ret.push_back(second);
tmp_ret.push_back(numbers[b]);
tmp_ret.push_back(numbers[e]);
ret.push_back(tmp_ret);
do{b++;}
while(b<e && numbers[b] == numbers[b-1]);
do{e--;}
while(b<e && numbers[e] == numbers[e+1]);
}
else if(rest < target)
++b;
else
--e;

45415 F o 2 F4Sum 0 & AT A A 3X AMfunction 0 XA e T

class Solution {
public:

void twoSum int int int

int int int

{
if(begin >= numbers.size()-1)
return;
int b = begin;
int e = numbers.size()-1;
while(b < e)
{
int rest = numbers[b]+numbers[e];
if(rest == target)
{
<int> tmp_ret;
tmp_ret.push_back(first);
tmp_ret.push_back(second);
tmp_ret.push_back(numbers[b]);
tmp_ret.push_back(numbers[e]);
ret.push_back(tmp_ret);
do{b++;}
while(b<e && numbers[b] == numbers[b-1]);
do{e--;}
while(b<e && numbers[e] == numbers[e+1]);
}
else if(rest < target)
++b;
else
--e;
by
b
< <int> > fourSum(<int> &num, int
target) {
< <int>> ret;

if(num.size() <= 3) //invalid corner case check
return ret;
sort(num.begin(), num.end()); //cause we need the
result in quadruplets should be non-descending
for(int 1 = 0; 1 < num.size()-3; ++1i)

if(i > && num[i] == num[i-1])
continue;
for(int j = 1i+1; j < num.size()-2; ++J)
{
if(j > i+1 && num[j] == num[j-1])
continue;
twoSum(num, j+1, num[i], num[j], target-
(num[i]+num[j]), ret);
}
b

return ret,

iy

VA_E R R T VAREAR B]KSum. 7 i & 48 4 T2t Tn-24 3tk £H83F - XX 5 & ki
15 S35 M 0 G IR BT KL T v AfR ko

Find Minimum in Rotated Sorted Array

Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i,e., 012456 7 might become 456701 2).
Find the minimum element.
You may assume no duplicate exists in the array.
RAAZRE - T OB R R E T @R B M 0 BRATT AR =57k R o

BhREMNEEmiE > s T—AREA > wRA[start] < A[stop] * L2 %R A — % ZH
FHT e

B — AN 4855 987 FAA » RATE BRI T B L& 8948 > Almid] ° mid = (start +
stop) /2 AAFMEA TR LKL » AMARA AAFIL

o A[mid] > A[start] * R 2 & ME— R A A E R > #42[4,56,7,01,2] > FRAE
HTT>4 Bl AE—RAT01,2i 1 » FRKINBEGE LR AEH

o A[mid] < A[start] * R 2 & ME— R A £ FRIH > #42[7,0,1,2,4,5,6] > EHAE
H202<7 0 RATBEAE7,0,120EAR A EH o

AX AL 4o T

class Solution {
public:
int int {
int size = num.size();

if(size == 0) {
return 0;
} else if(size == 1) {
return num[0];
} else if(size == 2) {
return min(num[0], num[1]);

int start = 0;
int stop = size - 1;

while(start < stop - 1) {
if(num[start] < num[stop]) {
return num[start];

int mid = start + (stop - start) / 2;
if(num[mid] > num[start]) {
start = mid;
} else if(num[mid] < num[start]) {
stop = mid;

return min(num[start], num[stop]);

Iy

Find Minimum in Rotated Sorted Array

Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i,e.,012456 7 might become 456701 2).

Find the minimum element.

The array may contain duplicates.

LA LR ETAEZTRAETE KNMARA L@ y% > AZLER
2 ¥ mid 5 start4a & X #2201 9MF O o

e A[mid] > A[start] » & ¥ R 7] &4, ©

o Almid] < A[start] » £F R g & -

e Almid] = MWMP&&‘ﬁf%’ﬁM%*§MM§%ﬁﬁ’ﬁ%222ﬂ’
Almid] = A[start]#F 42 » X B 4% KA1 Bk start - 12 A[2,2, 1|4 5% E4K -

KA 4 T

class Solution {
public:
int findMin int {

int size = num.size();

if(size == 0) {
return 0;
} else if(size == 1) {
return num[0];
} else if(size == 2) {
return min(num[©], num[1]);

int start = 0;
int stop = size - 1;

while(start < stop - 1) {
if(num[start] < num[stop]) {
return num[start];

int mid = start + (stop - start) / 2;
if(num[mid] > num[start]) {
start = mid;
} else if(num[mid] < num[start]) {
stop = mid;
} else {
start++;

return min(num[start], num[stop]);

Iy

BAERLEZE » WwREZALZRS » MLARL LB R EAN A AL
ERT -

Largest Rectangle in Histogram

Given n non-negative integers representing the histogram's bar height where
the width of each bar is 1, find the area of largest rectangle in the histogram.

6

Above is a histogram where width of each bar is 1, given height =
[2,1,5,6,2,3].

",
S
™,

The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example, Given height = [2,1,5,6,2,3], return 10.
AR FANREAEF—ERE T > BAREEGMIERAEN THEE—bar> &
EwA @ o BH AT bar > EIHE TR KRS KK @R o o T —

fwm,ﬁmw&¢ikﬂ,ﬁéﬁﬁuﬁﬁﬁkﬁ7 5 KA BOR RO(N2) 0 %
BT KBS MK o

M E@mEAEEF » st TIEZE—/barn» RA14F2] 89 &4 %bar nt9 4% R 3% 2 @bar
nA& N8 o £A14E A InFernk & Tbar n® £ WA R @ 4 % — 41 Fbar n#barty & 7]

L& o

B 4e i B ¥ bar 209 5 A A5 €8InA1 > A4 o Gdbar 2694 R IR @A A (4 -
1-1)*5=10°

RAVT VAL B & 38 5 Pr A bar » 354 Fpush®] —A~stack ¥ » 4= R % wTbarty & & s
T A Tbar » &A41popE &M &bar » Fl Bt vAkbartt H4eH @A o A8 LA KA1 L f n il
ZbartInfrrn ? sk T A S AT Bl 89bartd & 5]+ @minll & B A7 69 A Tbarky
5] 0 R A LI R TMbarty 5 B — & s Tpop i k#9barty & B o

AT B IERE —AbartIF L 0 BNNEFEERFLEA—NFZE H08bar > &
sk ftpop st G —barF AT o

AWALE = N

class Solution {

public:
int largestRectangleArea int {
<int> s;
//EAN T A0 Dbar
height.push_back(©);
int sum = 0,
int i = 0,
while(i < height.size()) {
if(s.empty() || height[i] > height[s.back()])
{
s.push_back(1);
i++;
} else {

int t = s.back();
S.pop_back();
[/ ExFEE Estack A = I
sum = max(sum, height[t] * (s.empty() ? 1
: 1 - s.back() - 1));
}

return sum;

+

Maximal Rectangle

Given a 2D binary matrix filled with O's and 1's, find the largest rectangle
containing all ones and return its area.

AT — B FRKRGBE » B YRR IZ T A R P8 & L 0 & Zgoogle
Tt Hmid e

TAAERE—NEGE TR E A LS 100 KEN @R » E4wiX

© 000
1111
1110
©100

KAVT A%l » RROGLEH @A A6 o LWIEALTE P E X EG R o A LA K40
FTHF 2] 3Z S R R 7

T L@ —A s BN EEFR T @ —AT » RBERT AR > BT AR —A
BB FEA2,2,2,0]° B AATKAEZE » wRE20 e L@RbsD
MBZEAH0 MHEZXANAEFBRKREH ORKREH T » KM L2 %L Largest
Rectangle in Histogram#t 2 7 o

PTAZRATT A B RAFEH— 478 B 7 B > 25 KRB s 7 B e R KR R Al
FEHERT o

KA o

class Solution {

public:
int maximalRectangle char
if(matrix.empty() || matrix[0].empty()) {
return 0;
b
int m = matrix.size();
int n = matrix[0].size();
< <int> > height(m, <int>(n,
)7
for(int 1 = 0; 1 < m; i++) {
for(int j = 0; j < n; j++) {
if(matrix[1][j] == '0") {
height[i][]j] = ©;
} else {
height[i][]j] = (1 == 0) ?
height[i - 1][j] + 1;
¥
}
by
int maxArea = 0;
for(int 1 = 0; 1 < m; i++) {

maxArea = max(maxArea,
largestRectangleArea(height[i]));
b

return maxArea;

int largestRectangleArea int {
<int> s;
height.push_back(©);

int sum = 0,
int i = 0,
while(i < height.size()) {
if(s.empty() || height[i] > height[s.back()])

s.push_back(1);
i++;
} else {
int t = s.back();
S.pop_back();

sum = max(sum, height[t] * (s.empty() ? 1

: 1 - s.back() - 1));

Iy

}

return sum;

Palindrome Number

Determine whether an integer is a palindrome. Do this without extra space.

RLEFE AT —AMRTF > BRAMBIANRFZEAD LT, A 12138 2 & LK
F 0 1223 & W LH T

AR REMRAR A —BRFRATH A ETAEAD LT » BN L FE3%
AR BZAFFHRIA0 > RGO RE > TREREZRVA0 0 w EZAFTHHRIA10
B R4

FEIE TN A

1. AT LS T F.
2. 02 & L F,

it 1A B 2 & logN

AX AL 4o

Palindrome Number

class Solution {

public:
bool isP
if(x
else
else
{
}
}
15

alindrome(int x) {
< 0)
return false;
if(x == 0)
return true,

int tmp = Xx;

int y = 0;
while(x !'= 0)
{
y = y*10 + x%10;
X = X/10;
}
if(y == tmp)
return true;
else

return false;

44

Search a 2D Matrix

Write an efficient algorithm that searches for a value in an m x n matrix. This

matrix has the following properties:

Integers in each row are sorted from left to right. The first integer of each row
is greater than the last integer of the previous row. For example,

Consider the following matrix:

[
[11 3[5/ 7]/
[10, 11, 16, 20],
[23, 30, 34, 50]
1
A EIE AR —NEREf— Nl FREEAFZRNE R EZI N EE TR

ﬁ%&mm A T B G 2R XA F VAT 45 4E,

1. A TH—47 > BAEANEE LN B KRBT 8.
2. AT H—F] > KA ER T IAE] KPE7] 49,

R E AT T RAS TR - £A14 R Abrute forcefd ik » Al mAS R £EIL
OM2IZ T AMFEI B Z 22 KN FREFN TR EMCEL T T XA 09 R AN
PE s AN TRSGEMNFFZGEEEREARRER » AARMNEHE -4
O(n) 8 f2 ik » kA RENTAB (a4 LA TE » ARAE B IERF# ARG E >
BT AP BT ZIANL R RE LG HLETRANER S F,

class Solution {
public:
bool searchMatrix(vector<vector<int> > &matrix, int
target) {
/* we set the corner case as below:
1, if the row number of input matrix is 0, we
set it false
2, if the colomun number of input matrix is 0,
we set it false*/
if(matrix.size() == 0)
return false;
if(matrix[0].size() == 0)
return false;
9
matrix[0].size()-1;
while(rowNumber < matrix.size() && colNumber >=

int rowNumber

int colNumber

0)

if(target < matrix[rowNumber][colNumber])
--colNumber;
else if(target > matrix[rowNumber]
[colNumber])
++rowNumber ;
else
return true;

}

return false;

+i

Search for a Range

Given a sorted array of integers, find the starting and ending position of a
given target value.

Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].

For example,

Given [5,7, 7, 8, 8, 10] and target value 8,

return [3, 4].

BARZRE—ANPFFTRAZEAZORALORINOEXMAGRECHE - &
KA A O(log n)tgat] » BTARANIRA AR=9EK - =9 KA F—DZEE
MEGILE » Bdem o REE[M N)REAASE = R=45KI TG — N RMEEAGILE -
R AL 4 T

class Solution {
public:
vector<int> searchRange(int A[], int n, int target) {
if(n == 0) {
return vector<int>({-1, -1});

vector<int> v;
int low = 0;
int high = n - 1;
[/ F—R=GERFE— ML E
while(low <= high) {
int mid = low + (high - low) / 2;
if(A[mid] >= target) {
high = mid - 1;
} else {
low = mid + 1;

iy

if(low < n & A[low] == target) {
v.push_back(low);

} else {
return <int>({-1, 1),

low = low;
high = n - 1;
[/KG =AML BEABRATE =R R — ML E
while(low <= high) {
int mid = low + (high - low) / 2;
if(A[mid] <= target) {
low = mid + 1;
} else {
high = mid - 1;

v.push_back(high);
return v;

Search Insert Position

Given a sorted array and a target value, return the index if the target is found.
If not, return the index where it would be if it were inserted in order.

You may assume no duplicates in the array.
Here are few examples.

[1,3,5,6],5— 2

[1,3,5,6],2 —> 1

[1,3,5,6], 7 — 4

[1,3,5,6],0 -0

XA T R — NPT 0 Fo A R S fAvalue © o R A 2 W3R E 2t Rindex » R
M 3%] 4846 A B 22 F Bgindex (FRIEZEAF) o

tFRGAEGER » RNV EEAEHE T @RKD &1 89— 4ME K Fvaluetyindex °
EANNdex#t A KT T AFEANGGILE - Z4e[1, 3,5, 6] * £k2» KA1AEI LR
— KR TF289 %48 » m3tgindex A1 > FTARAN & ZAIZ ML BIEA2 o o KRB E
& & A 48K Fvalue » MIEAFI A KK °

EATVRA =5 Bk

class Solution {

public:
int searchInsert(int int int
int low = 0;
int high = n - 1;
while(low <= high) {
int mid = low + (high - low) /
if(A[mid] == target) {
return mid,;
} else if(A[mid] < target) {
low = mid + 1;
} else {
high = mid - 1;
b
¥
return low;
}

+i

4

Find Peak Element

A peak element is an element that is greater than its neighbors.

Given an input array where num[i] # num[i+1], find a peak element and return
its index.

The array may contain multiple peaks, in that case return the index to any one
of the peaks is fine.

You may imagine that num[-1] = num[n] = -eo.

For example, in array [1, 2, 3, 1], 3 is a peak element and your function
should return the index number 2.

B RENE—ANEF %A E@mIRE] — MpeakLFE » Frifpeak » #h21E
ARERKFKATT o

T R ERMAER LRI E) RERIFE —ANAE K TR TA
T o B A AON) o A2 IE T AR it =2 kM o

BAERMNKBFEF amid® wR KT ALEE S ATindexhT LT » R AL F
BbmidK » B2 RN T AL L FRAER > REBD—F A& — 4 peak * A1t
2% AL 2 RAE I 89 K L E A [0, mid - 1] » B A num[mid - 1]— % AT
num[mid] 7 * %= &num[mid - 2] <= num[mid - 1] * 8 Znum[mid - 1]3L &£ — 4
peak ° %= &Enum[mid - 2] > num[mid - 1] » A8 2 KAV 4 22 £[0, mid - 2] R 7] & 3%, »
Anuml[-1]4 R £ 5 > FT kg &A1 2t i fe £ F R A 3R 3] — peak ° Bl A& F
X Ja] —# o

XA e T o

class Solution {

public:
int findPeakElement(const int {
int n = num.size();
if(n == 1) {
return 0,
b
int start = 0;
int end = n - 1;
int mid = 0;
while(start <= end) {
mid = start + (end - start) / 2;
if((mid == || num[mid] >= num[mid - 1]) &&
(mid == n - | | num[mid] >= num[mid +
) o
return mid;
telse if(mid > 0 & & num[mid-1] > num[mid]) {
end = mid - 1;
} else {
start = mid + 1;
}
by
return mid;
}

iy

Bit Manipulation

Missing Number

Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the
one that is missing from the array.

For example, Givennums = [0, 1, 3] return 2 .

Note: Your algorithm should run in linear runtime complexity. Could you
implement it using only constant extra space complexity?

A E#F AOFInZ BB ENM TR 694 » BRI o & RO FER S
BB ELE - REEAREATRFIETRE LEGF X ?

AR AT R B AL EE A IR RATHE T 0 RBIRRB R AR BRI
Fo e AT AR &EE Y E nlog(n) *» T#HAMAZR -

— A TMATE BRI R EGAZEZ LS o H0BInKfe > RBExtbBagfaR
fooo Z A ERARIBORT - 2R EMF EZFER TORRBORFHHERL > B
A LB B A AR Rl 8 o (R AAE B LA RIEES ST R0)

JCPUE 4 PTe R 69 it 42 B Ik B » ik & F R 0B H 2 A H(XOR)EH - &
AR E B E R > R AR T 42 B 6 7 R ARk o

FREFLG—ANERMR A A FGRFHAF0 > TR GERARTA0 » Bk =T
AT B % N RF REGEH o KB RHLT o “5%4%0@ niXT L #ITHFREH -
RGN R ARITARER » REBFANERATFRER » ERIEZFRITY
T o Eﬁﬁ—%#{%ﬁrlf)"iﬂﬂ‘?fﬁ‘ﬁmﬁkﬁﬁ%% FREHSAFE]0 -

BHE E &K 1 O(n) 2R A &E 1 O(1)

ARAG 4o T

Missing Number

class Solution {
public:
int missingNumber (vector<int>& nums) {
int x = 0,
for (int 1 = 0; 1 <= nums.size(); it++) X A= 1,
for (auto n : nums) x A= n;
return x;

1s

95

Power of Two

Given an integer, write a function to determine if it is a power of two.
AR EE SRR FIHTE AT R209F o

BE 5 20 B RR T) —# B RS HONRE1MN 0 FTARAT 28 352
FIBT A R0 — R B R A N EETHERX—5% o A —Arcorner cased £z
T B A R IE > — T RAE209F o

Bt B 2% 0 O(n) R A 4 O(1)

AX G o

class Solution {
public:
bool isPowerOfTwo(int {
if (n < 0) return ;
bool hasOne = ;
while (n > 0) {
if (n & 1) {
if (hasOne) {
return ;
}
else {
hasOne = ;

}

n >>=

}

return hasOne;

Iy

Power of Two

o7

Number of 1 Bits

Write a function that takes an unsigned integer and returns the number of ’1'

bits it has (also known as the Hamming weight). For example, the 32-bit

integer 11 has binary representation
00000000AENNAENNENNAENNAENAA1011 , so the function should return 3.

B FF A —ANEH REeas A 189424 o Blde » 3242 % 11 9= 4]
X XA 00000000000000000000000000001011 * AP A R F N %K E3 o

),

A B S A E AN fenG 1 =2 4] 69 5 (AND)E J » Bp 7T | BT © 69 A& AL
ALGA e WwR AT TR T Ew— c Refena s —1z » T8 ElH4E o
BN AOnt o Kb F ik B4

\=

A 2 E 1 O(n) FR A & 1 O(1)

AX AL 4o T

class Solution {
public:
int hammingWeight(uint32_t n) {
int count = 0;
while (n > 0) {
count +=n & 1;
n >>= 1;
}

return count;

iy

Tree
ME—FrERERBLIIELEN » T2 A THEMNERGE AR o RAMT
AE— 53 ERE % Bl efdBE AL P ARG ERF o

BT LA)0 > AR 5 3 R B\ #6g F AR 5 AR T A R 3)3 69 7 X ok
oo R v Fk A FUE F AR R AR AR ARAK » AR W 2% a2 B A ik R
% o

FHREMEME TR OIEMGR - FH=IH > ER IR F o

Maximum Depth of Binary Tree

Given a binary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the

root node down to the farthest leaf node.
RAEREMNRKE AN IR REE » LMY LB RTF7 2695
3 o
TR s RANARERB iR —IH » ZF—AvtF 9 B90E > 2R RE » &
I REIF R IR IRE T o

AWALE = N

class Solution {

public:
int num;
int {
if(!root) {
return 0;
b
num = numeric_limits<int>::min();
travel(root, 1);
return num;
b
void int
if(!'node->left && !'node->right) {
num = max(num, level);
return,
b
if(node->left) {
travel(node->left, level + 1);
by
if(node->right) {
travel(node->right, level + 1);
b
}
i¥

Minimum Depth of Binary Tree

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path from the
root node down to the nearest leaf node.

BB EBILF—H > RAAETERZRERT 2B KL TTF RGRE > KO
KAL) 8 7 89 77 K e

AWALE - N

class Solution {
public:
int n;
int minDepth(TreeNode *root) {
if('root) {
return 0;

/ /¥ A iR K AR
n = numeric_limits<int>::max();
int d = 1;

depth(root, d);
return n;

void depth(TreeNode* node, int& d) {
/T R iR
if(!'node->left && !'node->right) {
n = min(n, d);
return;

if(node->left) {
d++;

depth(node->left, d);
d--;

iy

if(node->right) {
(0RFF

depth(node->right, d);
d--;

Construct Binary Tree from Inorder and
Postorder Traversal

Given inorder and postorder traversal of a tree, construct the binary tree.

LB THE I 0 BEERNE Rl = IR IR 7 X B h L TH
= I H

1
________ |_______
2 3
____| ________ I____
4 5 6 7
o A 1245367
o /7R 4251637
o S4B 4526731
PR E @R — R KAV T — A= U B BRI ARG BB SR X

S AT A 3 = AR P

17 R VL b @ ARAR = A A4 48] o ﬁMﬁuﬁﬂ’ﬁifﬁL%%%’%F*Ai?*
TART B LA e RABERINEFTFRPOEREORIMITEGILE » BA
B EFHEyEAERLETH AFHSRAELETH -

BNV ¥ i £ ¥ 394255t > FIIF RILG i 4 4 R AR 2 #4942 8 b
&0 RGO —H o LhAZ452 o BATT AL » B3 m F 69235 & % F#
BIART R e

L@ILE T ETFH 0 T AT KNTBK637 0 FIN RILE 78 i F 2 69 348
s T —46 > St BIFEL TR —H# > A673 ° MBHAZHA THORT 2

TR LM AR EERHRINBRT A REAEFF8HEIEPRIERT Xy
RAAER S > B IG 2t 2 695 8 h 6 B LI mBmAE S » T E %2 » KL
AFRBEANAZIMT o

KA o

class Solution {
public:
<int, int> m;
TreeNode *buildTree int int
{
if(postorder.empty()) {
return ;

for(int 1 = 0; 1 < inorder.size(); i++) {
m[inorder[1]] = 1;

return build(inorder, ©, inorder.size() - 1,
postorder, ©, postorder.size() - 1);

TreeNode* build int int int
int int int {
1if(s@ > e0 || s1 > el) {
return ;

TreeNode* root = new TreeNode(postorder[el]);

int mid m[postorder[el]];

mid - sO;

int num

root->left = build(inorder, s0, mid - 1,
postorder, s1, s1 + num - 1);

root->right = build(inorder, mid + 1, e0,
postorder, s1 + num, el - 1);

return root;

I

REXMNFRLEZZ ATRERROEFTFRAEREOKIRYT &> KIEAT
hash map °

Construct Binary Tree from Preorder and
Inorder Traversal

Given preorder and inorder traversal of a tree, construct the binary tree.

““ﬁﬂﬁJ:ébﬂﬁxijtﬁi’ BRAFRD AR iR %R g = I s BATRE B s
AT RN OB —MEHART & > AR ZMATUARA L@k 2 6977 AL E .

o AL A] 7 REIRT A
o WMIMRT R Fp ik BBV R AR
o NTEANIS TR Ll 4R

RAG 4= T

class Solution {
public:
<int, int> m;
TreeNode * int
int {
if(preorder.empty()) {
return ;

for(int 1 = 0; 1 < inorder.size(); i++) {
m[inorder[i]] = 1i;

return build(preorder, 0, preorder.size() - 1,
inorder, 0, inorder.size() - 1);

}

TreeNode* int int int

int int int {
if(sO® > ed || s1 > el) {
return ;

int mid = m[preorder[s0]];

TreeNode* root = new TreeNode(preorder[s0O]);

int num = mid - si;

root->left = build(preorder, sO0 + 1, sO + num,
inorder, si1, mid - 1);

root->right = build(preorder, s@ + num + 1, €0,
inorder, mid + 1, el);

return root;

+i

TAFE > XAREMRE > REZRFRE T MO EL T X > AR Lo fTRIARF
Ao FRLPFBAVBRAANTH KRR EHORET » EF—FREZENLSE
R 8 B AR 5 % 51 AL B &5 o

Binary Tree Level Order Traversal

Given a binary tree, return the level order traversal of its nodes' values. (ie,

from left to right, level by level).

For example: Given binary tree {3,9,20,#,#,15,7},

/ \

/ N\

return its level order traversal as:

[31,
[9,20],
[15,7]

A EEE R MM BE AN AR AN E—ANTEN

RE I — B LE BT RAHLE.

A B AT T = IR 0 KA R — BB 83k EDFS XA BFS, DFS £ 4 T3 #

ARAL > o R EHIEERARKGE N TRIXAEG DR » KIELFADFS K KA.
FEREENRA;

1. T —8H# > ﬁa%ﬁﬂ‘]%—ﬂi&" Voo FAAE—NZHEAE > AR
MNER—A =24 > 2R f—/fi%iéﬂ%y KEGEER ? KA HE R M

AEGRE » RIERE 7?\3%,1— 2 .
2. MAZRAMEZEE R FTABANN LA AR A LD T B » BAELNT
-8

3. st FRHEM > KM 4L AELFDFSE KB XF &% - X5 AADFSH T

Binary Tree Level Order Traversal

F—RBF o BHTETER LA
%9

B A B B oA - TRIRDFSAE A7 8 » FHEAHRE FTARNG R E L EH

O(n).
R 4
/**

* Definition for binary tree
* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

* TreeNode(int x) : val(x), left(NULL), right(NULL)
{}

*

*/
class Solution {
public:

/* for this question, we need to construct the ret vector
first
thus, we need to know the depth of this tree, we write
a simple
function to calculate the height of this tree */
vector<vector<int> > levelOrder(TreeNode *root) {
int depth = getHeight(root);
vector<vector<int>> ret(depth);
if(depth == 0) //invalid check
return ret;
getSolution(ret,root,0);
return ret;

volid getSolution(vector<vector<int>>& ret, TreeNode*
root, int level)

{
if(root == NULL)

69

return;
ret[level].push_back(root->val);
getSolution(ret,root->left, level+1);
getSolution(ret,root->right, level+1);

}
int getHeight
{
if(root ==)
return 0,
int left = getHeight(root->left);
int right = getHeight(root->right);
int height = (left > right?left:right)+1;
return height;
b

iy

Binary Tree Level Order Traversal Il

Given a binary tree, return the bottom-up level order traversal of its nodes'
values. (from left to right, level by level from leaf to root)

For example: Given binary tree {3,9,20,#,#,15,7},

/ \

/\
15 7

return its level order traversal as:

[15,7],
[9,20],
[3]

MBAE#EF AT —F I > RE— A INGRBEHRE XN
SR ANE N RARTRXT AMYRTE—E » LG EE - BRIEL
LB F s B R 54 o

A B A && MR B ¥ X 18 A fBinary Tree Level Order Traversal JL-F & —#—
AEEY > E— R M E A Y R 8 B R R 0 F AT ARAD

B Ia] B 7% & O(n)-#t 69dfs39 % O(n)

AX AL 4o

/**
* Definition for binary tree
* struct TreeNode {

* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL)
{}
3
*/
class Solution {
public:
< <int> > levelOrderBottom(TreeNode *root)
{
int depth = height(root);
< <int>> ret(depth);
if(depth == 0)

return ret;

DFS(ret,ret.size()-1, root);
return ret,

}
void int int
{
if(root ==)
return;
ret[level].push_back(root->val);
DFS(ret,level-1,root->left);
DFS(ret,level-1,root->right);
b
int
{
if(root ==)
return 0;

int left_side = height(root->left);

int right_side = height(root->right);

int height = (left_side > right_side?
left_side:right_side)+1;

return height;

iy

Binary Tree Zigzag Level Order Traversal

Binary Tree Level Order Traversal

Given a binary tree, return the zigzag level order traversal of its nodes'
values. (ie, from left to right, then right to left for the next level and alternate
between).

For example: Given binary tree {3,9,20,#,#,15,7},

/ \

/ N\
15 7

return its zigzag level order traversal as:

[3],
[20, 97},
[15,7]

o R T T L AR o XA AR R A 0 RATR F BT B 69 $3E 4% R zigzag
By N#sE—T » KT :

class Solution {
public:
vector<vector<int> > vals;
vector<vector<int> > zigzaglLevelOrder(TreeNode *root)

build(root, 1);
//#¥%%

for(int 1 = 1; i < vals.size(); i+=2) {
reverse(vals[i].begin(), vals[i].end());

73

iy

void

return vals;

int {
if(!node) {
return;

if(vals.size() <= level - 1) {
vals.push_back(<int>());

vals[level - 1].push_back(node->val);
if(node->left) {

build(node->left, level + 1);

if(node->right) {
build(node->right, level + 1);

Symmetric Tree

Given a binary tree, check whether it is a mirror of itself(ie, symmetric around

its center)

For example, this tree is symmetric:

/ \

/ N\ / \
3 44 3

But the following tree is not.

A B EIE D A —RHERER THRE 0 RI\BAEERAANG T > HAKKA
MR EMgEEERT > HEAT.

fRAR T3)a AR ZAT 24P M o AR LM EG M —T AL > X
RFEET » RATZH BT =A% 4.

1. EAERANT R RDAFHE,
2. AV ROEBTREAAET R84 5% T4
3. EVRMAERTREMET RN ELFZ TR,

.‘E}

9

CESEE LYY S ¥ B I S E S S R P E AR BN OReY
EAATEH AR THEMR - KNBAS P2 RE2A? ZAMH2HH 5
A E A ?

B a KA > Ao A L Z A AR T — AR+ KA T X BARM RS A

B B 2 B 3 AR L Lk ADFS, M A £ & E AO(n), E A & & EO(1) a8 A
8.2 0(n),E 1A & 4 E0(n)

%)2 KAG 4 T
/**

* Definition for binary tree
* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

* TreeNode(int x) : val(x), left(NULL), right(NULL)
{3

*

*/
class Solution {
public:

bool isSymmetric(TreeNode *root) {
if(root == NULL)
return true;
return Helper(root->left, root->right);

}
bool Helper(TreeNode* left, TreeNode* right)
{
if(left == NULL&&right == NULL)
return true;
else if(left == NULL]||right == NULL)
return false;
bool condl = left->val == right->val;
bool cond2 = Helper(left->left,right->right);
bool cond3 = Helper(left->right, right->left);
return condil&&cond2&&cond3;
}

iy

PRk BN EZEEN B —TRXEMOEIREEL > TR RNFBHAAATH
— B #47check » KA T k)2 » —fxm 89 EIRm)7 - RAVAR A A FIFO®queue k1F
Al B 2 B A R 28 0 BT A R AT AL T queue 0 12 & &RATA A A
queue * A RN Z T AL RN #ITHRE » REAX—Iqueue® R4 69 » EAKE
Mmoo vAN]E L F KA > > KA KA FAEARRE 77 k.

VB3I ARAG %o F

/**
* Definition for binary tree
* struct TreeNode {

* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL)
{}
3
*/
class Solution {
public:
bool isSymmetric {
if(root ==)
return ;

TreeNode* nil root->left;
TreeNode* n2 = root->right;

if(!'nl&&!'n2)

return ;
if((!'n1&&n2) || (n1&&!n2))
return ;

<TreeNode*> Q1;
<TreeNode*> Q2;
Q1.push(nl);
Q2.push(n2);
while('!'Ql.empty() && 'Q2.empty())
{

TreeNode* tmpl = Q1.front();

TreeNode* tmp2 = Q2.front();

Q1.pop();

Q2.pop();

if((!'tmpl&&tmp2) || (tmpl&&!'tmp2))
return ;

1if(tmpl&&tmp2)

{
if(tmpl->val != tmp2->val)

return ;
Ql.push(tmpl->left);
Ql1l.push(tmpl->right); //note: this line
we should put the mirror sequence in two queues

Q2.push(tmp2->right);
Q2.push(tmp2->left);

}

return ;

+i

Same Tree

Given two binary trees, write a function to check if they are equal or not. Two
binary trees are considered equal if they are structurally identical and the

nodes have the same values.

A B EE S ARK 0 B A HECRAIWT L ARM L EAR L RATH K —RH LA
Fl 6 & A X RARM B LE AR] > FF L&A & 694848 R,

=

FRAR B3 AR PP LE o R E o KA1 AIEFADFSH Fi8H X BARM T IAT .
it 1A B 2 & o4 B EDFS, B vAR] £ 2% 4 O(n)

AX G o

Same Tree

/**
* Definition for binary tree
* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

* TreeNode(int x) : val(x), left(NULL), right(NULL)
{3

* 3

*/

class Solution {
public:
bool isSameTree(TreeNode *p, TreeNode *q) {
if(p == NULL && g == NULL)
return true;
else if(p == NULL || g == NULL)
return false;
if(p->val == g->val)

{
bool left = isSameTree(p->left, qg->left);
bool right = isSameTree(p->right,g->right);
return left&&right;

}

return false;

i

80

Balanced Binary Tree

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in
which the depth of the two subtrees of every node never differ by more than
1.

MA R SR B — /AR ECRA M EARR AT R R U, TR A
A, — TR R SR L PR R AL TR &K ERKT.

AL RS A ARG FIDFS » 3 F — M= Uit 1 S 69 5 B # 7H O £
> Hat it B RO E— A A HEHEETHOGEL L REBRT X
HEE > W RFATFT NTFEERRRN.

W R A T2 FIDFS o BF oL AL 4 A 0(n).

AX AL 4o T

/**
* Definition for binary tree
* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

* TreeNode(int x) : val(x), left(NULL), right(NULL)
{;

1

*/
class Solution {
public:

bool isBalanced(TreeNode *root) {
//corner case check
if(root == NULL)
return true;

int

int isBalanced = getHeight(root);

if(isBalanced !=)
return ;
else
return ;
if(root ==)
return 0;
int leftHeight = getHeight(root->left);
if(leftHeight ==)

return ;
int rightHeight = getHeight(root->right);
if(rightHeight ==)

return ;
int diffHeight

rightHeight > leftHeight?

rightHeight-leftHeight:leftHeight-rightHeight;

if(diffHeight > 1)
return ;
else
return diffHeight = (rightHeight>leftHeight?

rightHeight:leftHeight)+1;

}
iy

Path Sum

Path Sum

Given a binary tree and a sum, determine if the tree has a root-to-leaf path
such that adding up all the values along the path equals the given sum.

For example: Given the below binary tree and sum = 22,

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

B #E AT I fe— MR B AF AR EIRMEST A AR

— Ak &A4F 0 4E4F rootF| T —AetF ¥ R 098842 8950 F T4 F 69sumii.
AR B s X HE AR F N 0 B4 ADFSHHT A KA,
ot 19 £ % & O(n)
ARAL 4 T
/* *

* Definition for binary tree
* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

* TreeNode(int x) : val(x), left(NULL), right(NULL)
{3

* 3

*/

#

83

class Solution {
public:
bool hasPathSum(TreeNode *root, int sum) {
if(root == NULL)
return false;
return DFS(sum, 0O, root);

bool DFS(int target, int sum, TreeNode* root)

{
if(root == NULL)
return false;
sum += root->val;
if(root->left == NULL && root->right == NULL)

{
if(sum == target)
return true,
else
return false;
}

bool leftPart = DFS(target, sum, root->left);
bool rightPart = DFS(target, sum, root->right);
return leftPart||rightPart;

iy

Binary Tree Depth Order Traversal

@& A1AR R T treeflevel orderia 7 PR 0 X B RATF & k4 FEireefydepth
order > Wk AR T » T FHFeE T o

Binary Tree Preorder Traversal

Given a binary tree, return the preorder traversal of its nodes' values.

For example: Given binary tree {1,#,2,3},

return [1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?
%X — B = H s 4 R ARG RBATAT PRI o
AT ER#) > BTARAT R G4 Al stack R RG%EARRE o

SRR AR A ARG 0 RERLETH » BB AL TH o %515
W B EAE » BA1E BA A TR AR R ETHZE 4 i EHEE
B 85 FH o

AW AT R S

class Solution {

public:
<int> preorderTraversal(TreeNode *root)
<int> vals;

if(root ==) {
return vals;

}

<TreeNode*> nodes;

nodes.push_back(root);

while(!nodes.empty()) {
TreeNode* n = nodes.back();
vals.push_back(n->val);
nodes.pop_back();
if(n->right) {

nodes.push_back(n->right);
}
if(n->left) {
nodes.push_back(n->left);

}

¥

return vals;

}

iy

Binary Tree Inorder Traversal

Uk — = A > AR AR RBATF F B o

MNTFF&RMN > BRBHETH REARY R > REFTZETH > AIAXMNER
FstackiZ AR B EART & > B ETHBH TRZIE > Mstack#® BAR T & - 4
B EAETH AHFHGRS

R4 T e

class Solution {
public:
<int> inorderTraversal(TreeNode *root)
<int> vals;
if(root ==) {
return vals;

<TreeNode*> nodes;
TreeNode* p = root;
while(p || !'nodes.empty()) {

while(p) {

nodes.push_back(p);
p = p—>left;

if(!nodes.empty()) {
p = nodes.back();
vals.push_back(p->val);

nodes.pop_back();
p = p->right;

return vals;

+i

Binary Tree Postorder Traversal

o — = U 0 AR R AR AT AR o

TG RRA » FRBELETH REALTH REA AR & o BB E—
FAMIE ERANEETHER » REHAETHER - REFREE—T HM
GAN > 3 Fob T AR EETARB LR TRY KL ANFEE—4
TRILRE—REROT A wRE—RBEOTALRRT RO AT HALET
B AR AR AT > FRRAART SRH G T R A TR A
EA

RAL 4 T

class Solution {
public:
<int> postorderTraversal(TreeNode *root) {
<int> vals;
if(root ==) {
return vals;

<TreeNode*> nodes;
TreeNode* pre = ;

nodes.push_back(root);

while(!nodes.empty()) {
TreeNode* p = nodes.back();

if((p->left == && p->right ==) ||
(pre != && (pre == p->left || pre ==
p->right))) {
vals.push_back(p->val);
nodes.pop_back();

pre = p;
} else {
if(p->right !=) {

nodes.push_back(p->right);

if(p->left !=) {
nodes.push_back(p->left);

}
}
}
return vals;
}
i
Bk

TRAEER » MR HALHEPFRFERO T AMRZRRREHE » M LT H FF6 71
ARG FTE» RERZEMR s kAT ZHAT o

Populating Next Right Pointers in Each
Node

Populating Next Right Pointers in Each Node

Given a binary tree

struct TreeLinkNode {
TreeLinkNode *left;
TreeLinkNode *right;
TreeLinkNode *next;

Populate each next pointer to point to its next right node. If there is no next
right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.
Note:

You may only use constant extra space. You may assume that it is a perfect
binary tree (ie, all leaves are at the same level, and every parent has two
children). For example, Given the following perfect binary tree,

1
/ \
2 3
/' N/ \
4 5 6 7

After calling your function, the tree should look like:

1 -> NULL
/ \
2 -> 3 -> NULL
/' \ / \
4->5->6->7 -> NULL

RBEEE—RAAEIH TR Fnextid s EHF R T & > RATARIL— LN

o

o WR—ATFF RAMRT ROLFH » R CHnextL X HZRT R85 TH » £

92

4o b @) F P a4 0 € dnextsh L2809 & FH5 o
o WR—-ANFFELRT LGETH » AL Chinextib L %R T Snextd &894
Fat o o F@Eg5 5 ¥ nextih A269next (L AEI) 9L FH o

BT VARG 4 T ¢

class Solution {
public:
void connect {
if('root) {
return;

TreeLinkNode* p = root;
TreeLinkNode* first = ;
while(p) {
//RET B H—AETH
if(!first) {
first = p->left;
}
/ /4o A TR AR Znext A LT A
if(p->left) {
p->left->next = p->right;

} else {
[/ TFRRT cwmh s
break;

b

//te FE A next o AR L& B & T next
if(p->next) {
p->right->next = p->next->left;
p = p->next;
continue;
} else {
[/ BT — &
p = first;

first

4

¥

Populating Next Right Pointers in Each
Node i

What if the given tree could be any binary tree? Would your previous solution
still work?

Note:

You may only use constant extra space. For example, Given the following
binary tree,

After calling your function, the tree should look like:

1 -> NULL
/\
2 -> 3 -> NULL
/ \ \
4-> 5 -> 7 -> NULL

TRETE—A » I IMHTE L= IH » KA1 E LR oirstds 41 A %
EAT—EBEWHE— /N E o RANLERER S —Mstis4t A T2 LE— k& m 6L
o MRAKMN A F B4 B 4F4ofT% B lasttinexti& 4L T T o

KA 4w T

class Solution {
public:
void connect {
if(!root) {
return;

TreeLinkNode* p = root;
TreeLinkNode* first = ;
TreeLinkNode* last = ;

while(p) {
[/EETRE—MNLE
if(!first) {
if(p->left) {
first = p->left;
} else if(p->right) {
first = p->right;

if(p->left) {
//% R A last » M]% & lasté9next
if(last) {
last->next = p->left;
}
//last A left
last = p->left;

if(p->right) {
//% %A last » M% & lastfnext
if(last) {
last->next = p->right;

3
//last Aright

last = p->right;

/ /= F A next » M4 next
if(p->next) {
p = p->next,;

} else {
//3% BT — &
p = first;
last = ;
first = :
}

+i

AR EMNTAEE > H—AAES A FTH A MRk R AR A T 5

o

!

=

—_—

Convert Sorted List to Binary Search Tree

Given a singly linked list where elements are sorted in ascending order,

convert it to a height balanced BST.

AR F B — NPT 7 09 R A — A= i R o T A Uk
W EFH—Z P TRIT & AATHRTRT & o AR EZRIE &R0 F 1
PR BAARART R BERGEFRPRELTH » RAFRIMNAELTH » &
M4k)asb AR 09 A ARG > SRAEHB M E R st) = I T o

XA B TR T4 B 48 & 609 P 1R 7 & 0 &RA1T A8 Hfast > slowds 4tk &k »
fastfE R A B Y > slowdFRA—F > fastE B 2L E > IR Lslowsk £ PR F & T o

AWALE 2 N

class Solution {
public:

TreeNode *sortedListToBST {
return build(head,);

TreeNode* build {
if(start == end) {
return ;

ListNode* fast
ListNode* slow

start;

start;

while(fast != end && fast->next !'= end) {
slow
fast

slow->next;

fast->next->next;

TreeNode* node = new TreeNode(slow->val);
node->left = build(start, slow);
node->right = build(slow->next, end);

return node;

iy

Convert Sorted Array to Binary Search
Tree

Given an array where elements are sorted in ascending order, convert it to a
height balanced BST.

ZAARME@ARR > R T X > TRARW > REFTROFE T HF A
AXAG 4 T

class Solution {

public:
TreeNode *sortedArrayToBST int {
return build(num, ©, num.size());
}
TreeNode* build int int int
{
if(start >= end) {
return ;
¥
int mid = start + (end - start) / 2;
TreeNode* node = new TreeNode(num[mid]);
node->left = build(num, start, mid);
node->right = build(num, mid + 1, end);
return node;
}

iy

Path Sum li

Given a binary tree and a sum, find all root-to-leaf paths where each path's
sum equals the given sum.

For example: Given the below binary tree and sum = 22.

5
/ \
4 8
/ / \
11 13 4
/ N\ \
7 2 1

return
[

[5,4,11,2],

[5,8,4,5]
]

MEAIE: AT —AN=IH > FRLT—AME > WEPTAMBYT B3 HTF afE
FRAL TG L @egE F T VARG R 2 MBI A A G E Y,

fif R B3 X AR B AePath Sum &g #f ik JUF = — R —#F > AR E MAdfsk AT KA > R
HRAAFLFOIEALERRT » BAME R RLLF.

it 1 8 4 : O(n)

RAG 4o T

/**
* Definition for binary tree

* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

* TreeNode(int x) : val(x), left(NULL), right(NULL)
{3

)

*/

class Solution {
public:
vector<vector<int> > pathSum(TreeNode *root, int sum)

vector<vector<int>> ret;
if(root == NULL)

return ret;
vector<int> curr;
DFS(ret,curr,sum, 0, root);
return ret;

void DFS(vector<vector<int>>& ret, vector<int> curr,
int sum, int tmpsum, TreeNode* root)
{
if(root == NULL)
return;
tmpsum+=root->val;
curr.push_back(root->val);

if(tmpsum == sum)
{
if(root->left == NULL&&root->right == NULL)
{
ret.push_back(curr);
return;
}

}

DFS(ret, curr, sum, tmpsum, root->left);

I

DFS(ret, curr,sum, tmpsum, root->right);

Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place.

For example, Given

/ \

/ \ \

The flattened tree should look like:

BE—F= B KRR TR s RINTRAERLIEZ)G SR F L R 5
WHR=IMEG— > FTABRINTAEZAFRD = IA B A EHTIAT o K4
T :

class Solution {
public:
void flatten(TreeNode *root) {
if(!root) {

Y

return;

vector<TreeNode*> ns;
TreeNode dummy(0);

TreeNode* n = &dummy;

ns.push_back(root);

while(!ns.empty()) {
TreeNode* p = ns.back();
ns.pop_back();

/ /BB & T
n->right = p;

n=p;

/1% TR

if(p->right) {
ns.push_back(p->right);
p->right = NULL;

/TR

if(p->left) {
ns.push_back(p->left);
p->left = NULL;

Flatten Binary Tree to Linked List

105

Validate Binary Search Tree

Validate Binary Search Tree

Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:

e The left subtree of a node contains only nodes with keys less than the
node's key.

e The right subtree of a node contains only nodes with keys greater than
the node's key.

e Both the left and right subtrees must also be binary search trees.

BAFRFI AL —MNEHYG = L FH > R L H— B o

AV L% EARM R AR R R Le T

106

class Solution {
public:
bool isValidBST {
return valid(root, numeric_limits<int>::min(),
numeric_limits<int>::max());

b
bool valid int int {
if('node) {
return ;
}
if(node->val <= minVal || node->val >= maxVal) {
return ;
}
return valid(node->left, minVal, node->val) &&
valid(node->right, node->val, maxVval);
}

+i

Recover Binary Search Tree

Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
Note:

A solution using O(n) space is pretty straight forward. Could you devise a
constant space solution?

BAERSE =L EZMOAANR ST BEIE » Rl st T —H= L 20t
kW wREB PR > L EH ﬁﬁﬁfﬁiﬁi“f’ﬁf?ﬁﬁ FTARATR & Bz R F
Fimhimd » EMBEEREIDRINANFFIE (Ee@MEBELRR) » J#pRX
AT RBRIEBRTIAT o

W%Lﬁgiﬁmqnﬁﬁm,@%%M‘*%*%L%(”ﬁ&%&)%ﬁﬂ’
A5 F FO(N)EY 2 7] » AT A3 2 &A1 F Morris Traversal#y 77 X k#4744 69 F 7807 o

Morris Traversal ¥ /& 5 69 J& 32 iz fa %

o WREWMTENEZTAE MMESHTEABEIARTFHEA LA & o
o WRLEWMFTANEBTIAZT ELSWT AOETFTHRIRINSATY LT F&
JHTRRERT & WL LA T B EFHRGRAELGIRAT & o
o WRABY BN EHZFAE s MECHEZTFTREANSAY & ZATT A
FHARLEZT -
o W RAIEY L ERTASH T A MNEHNRT ANEZTRAE HE
BATY B B Y AEHARLLEZT -

TR ERIHE AR BATT AT > BGERINIF N FRIERBIRGT & o A

&M%ﬁﬁ&*4?é%ﬁ%£$%ﬁﬂﬁ%?ﬁf??@%%%’ﬁ&%ﬁ?
B Acur CEATIEY & Apre o e Fcurtg i Tpretyfh » AR Zcurfepre L@ 9 %%
EHARKET o

Ko T

class Solution {
public:

volid {
TreeNode* cur = 0,
TreeNode* pre = 0;
TreeNode* pl = 0;
TreeNode* p2 = 0;
TreeNode* preCur = 0;

bool found = ;

if(!root) {
return;

cur = root;
while(cur) {
if('cur->left) {

if(preCur && preCur->val > cur->val) {
if(!found) {
pl = preCur,
found = ;

p2 cur;

preCur = cur,
cur = cur->right;
} else {
pre = cur->left;
while(pre->right && pre->right '= cur) {
pre = pre->right;

if(!pre->right) {
pre->right = cur;
cur = cur->left;

iy

} else {

if(preCur->val > cur->val) {
if(!found) {
pl = preCur;

found = ;
}
p2 = cur,
}
preCur = cur;
pre->right = ;

cur = cur->right;

if(pl && p2) {
int t = pl->val;
pl->val = p2->val;
p2->val = t;

Binary Tree Path

Given a binary tree, return all root-to-leaf paths.

For example, given the following binary tree:

All root-to-leaf paths are:

[||1_>2_>5||’ I|1_>3||]

B EE D AT R A REFTH MR BT RE9542 -
BB RKBBT = IAR7FIA o TR RER I B R R o
AR FRDIRFFEILNT & o B)G RENT EOTT 8> wwRiB 3

v & M HIe FHH%E c RE E—EZ AR BEARTAE o C++iJvectors £ 4
BB S 2 Sl o PTOATT @ 69 XA F & A 4% F std::stack K k £ 3L o

& R 69 F A5 B B 0 ST g A std:stringstream £ k Tk 0 2T JavaFeC#F 89
StringBuilder °

/**
* Definition for a binary tree node.
* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

* TreeNode(int x) : val(x), left(NULL), right(NULL)

{}

iy
*/
class Solution {

public:
< > binaryTreePaths(TreeNode* root)
< > result;
if (root ==) return result;
<int> path;
bfs(root, path, result);
return result;
}
private:
// #BERE o FREKEE R
void bfs int
{
if (node ==) return;
path.push_back(node->val);
if (node->left == && node->right ==
)
result.push_back(generatePath(path));
else {
if (node->left !=) {
bfs(node->left, path, result);
path.pop_back();
}
if (node->right !=) {
bfs(node->right, path, result);
path.pop_back();
}
¥
b

// EHBhERE > RTAERBETIH S
generatePath int {
SS;

int i,
for (i = 0; i < path.size() -

path[i] << n_>n;

I

ss << path[i];
return ss.str();

; 1t+) ss <<

Sum Root to Leaf Numbers

Given a binary tree containing digits from 0-9 only, each root-to-leaf path
could represent a number. An example is the root-to-leaf path 1->2->3
which represents the number 123 . Find the total sum of all root-to-leaf
numbers. For example,

/ \

The root-to-leaf path 1->2 represents the number 12 . The root-to-leaf
path 1->3 represents the number 13 . Return the sum =12 + 13 = 25.

AE#IE: SR —RIM 0 RES0PI9ZX LT » F—FMRT LBtV g%
BERT—AEK o fldo > BIE 1->2->3 RFKAE123 o KB ATA BAZ R T FALY
Amoo LMGIFF o B2 1-52 RFAMEN12 0 HBE 1->3 RREKMEZ o AR
25 °

B G AR BB R 7 kAR AL R(DFS) o R ABAE g
AR F I RIEAR T R RTF 0 B R AR AR K T R 69 £ T 5% o BUA
Ao B Fn L@ PP T o

it 1A B 2 & O(n)

ARAL 4 T
/**

* Definition for a binary tree node.
* struct TreeNode {

* int val;

* TreeNode *left;

* TreeNode *right;

” TreeNode(int x) : val(x), left(NULL), right(NULL)
{;

L

*/
class Solution {

public:
int sumNumbers {
<int> arr;
int sum = 0,
dfs(root, arr, sum);
return sum;
b
int vec2num int {
int num = 0;
for (auto n : vec) {
num = num * + n;
b
return num;
b
void dfs int int
{
if (node ==) return;
arr.push_back(node->val);
if (node->left == && node->right ==
) {
sum += vec2num(arr);
} else {
if (node->left !=) dfs(node->left,

arr, sum);
if (node->right !=) dfs(node->right,
arr, sum);

}
arr.pop_back();

hy

Sum Root to Leaf Numbers

116

Dynamic Programming

Best Time to Buy and Sell Stock

Say you have an array for which the ith element is the price of a given stock
on day i.

If you were only permitted to complete at most one transaction (ie, buy one
and sell one share of the stock), design an algorithm to find the maximum
profit.

HARMENF—AME » RELAEEN P ERERIT—KZ S RERRERA
A s AR BB A RSN EA » REANTE > SRARA—RBEEHBZH -

TR R S8 KA R GRS — R R —AEFITR S
RASHAS > FIEE I bk B HI > 45 5 AT RA M AR TIT

KAL) 4 T

class Solution {
public:
int maxProfit(vector<int> &prices) {
if(prices.size() <= 1) {
return 0;

int minP = prices[0];
int profit = prices[1] - prices[0];
for(int 1 = 2; 1 < prices.size(); i++) {

minP = min(prices[i - 1], minP);
profit = max(profit, prices[i] - minP);

if(profit < 0) {
return 0;

return profit;

iy

Best Time to Buy and Sell Stock Il

Say you have an array for which the ith element is the price of a given stock
on day .

Design an algorithm to find the maximum profit. You may complete as many
transactions as you like (ie, buy one and sell one share of the stock multiple
times). However, you may not engage in multiple transactions at the same
time (ie, you must sell the stock before you buy again).

AT E—RRFEE TS (T FRFEH2EN) » BAFRRBZH R &K
MEFIREN » L REZMi+ 1R IIZ > BLAKT AR B F)H L@ o

RAG 4 T

class Solution {
public:
int maxProfit(vector<int> &prices) {
int len = (int)prices.size();
if(len <= 1) {
return 0;

int sum = 0;
for(int 1 = 1; i < len; i++) {
if(prices[i] - prices[i - 1] > 0) {
sum += prices[i] - prices[i - 1];

return sum;

+i

Best Time to Buy and Sell Stock Il

Say you have an array for which the ith element is the price of a given stock
on day i.

Design an algorithm to find the maximum profit. You may complete at most
two transactions.

Note: You may not engage in multiple transactions at the same time (ie, you
must sell the stock before you buy again).

RMAZEAGAPREN—F o AAFARRELY » R ALK —K AALHA
BB —RAT o ARIEH A FE 0 RATT AAFE[0,1,...,1] R 1] 69 5 KA >

Fl B 2 A JG A2 AT 42 2643 3 [ii+1,...,n-1]89 S KA 18 > @ A48 e sk =T LAST B % 40 04 Af

T o

ARAG 4 T

class Solution {
public:
int int {
int len = (int)prices.size();
if(len <= 1) {
return 0;

<int> profits;
profits.resize(len);

int minP = prices[0];
int sum = numeric_limits<int>::min();
for(int 1 = 1; i < len; i++) {
minP = min(minP, prices[i - 1]);
profits[i] = max(sum, prices[i] - minP);

sum = profits[i];

by

int maxP = prices[len - 1];

int sum2 = numeric_limits<int>::min();
for(int 1 = len - 2; 1 >= 0; 1i--) {

maxP = max(maxP, prices[i + 1]);
sum2 = max(sum2, maxP - prices[i]);

if(sumz > 0) {
//ZERAT AN L e xprofits L@ o
[/ FHZHIMRA
profits[i] = profits[i] + sum2;
sum = max(sum, profits[i]);

return sum > ? sum : 0O,
I¥

EREGI1FICEFTRBTHAEANR RELZRX T EOLEARA KRS IR E » TR
BRI P AR EH AR TR BREL B FEE IR » B4 E o

Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the
diagram below).

The robot can only move either down or right at any point in time. The robot is
trying to reach the bottom-right corner of the grid (marked 'Finish' in the
diagram below).

How many possible unique paths are there?

ﬁ@%*@é@’ﬂﬁﬁdplﬂ%@ ’ ‘ﬁﬁ%#f(‘g/\%é](l,j)ﬁﬁ\ﬁ\ ’ /[&T:]‘yl(lij%;t‘élj(l _ 1,j)§§4
0 (1]~ 1) 7 IR B,)8 — 42 BOE T (- 1, Ak] -)8 2 BT
ENARE 543 didp A 2

dp['][j];&ﬂ?}\k/é\(o, 0)§IJ (|, J)U/fi"l?g*fi—#(% o

RAG 4 T

class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
//#%Akdp o m x 1FEAAE AL
for(int 1 = 0; 1 < m; i++) {
dp[i][0] = 1;

//wm¥Atdp e 1 x ntFRLAAL
for(int j = 0; j < n; j++) {
dp[0][3] = 1;

for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
dp[i][]j] = dp[i - 1][J] + dp[i][] - 11;

return dp[m - 1][n - 1];

iy

Unique Paths Il

Now consider if some obstacles are added to the grids. How many unique
paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

HARE— AR A ETS TR e RE—A AR MLIEAK
@it .

KA 4 T

class Solution {
public:
int uniquePathswWithObstacles int
{
if(obstacleGrid.empty() ||
obstacleGrid[0].empty()) {

return 0;
}
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();

int dp[m][n];

// T @#idpty it iz F Z Ak EobstacleGrid sy 1a k # €
dp[0][©] = (obstacleGrid[0][0] == 0O ? : 0);

J/BAEZEEN x 1K1 X ntginiit

for(int i = 1; i < m; i++) {
dp[1][0] = ((dp[1 - 1][0] == 1 &&
obstacleGrid[i][0] == 0) ? : 0);
¥
for(int j = 1; j < n; j++) {
dp[0][J] = ((dp[O][] - == 1 &&
obstacleGrid[0][j] == 0) ? : 0);
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
if(obstacleGrid[i][]j] == 1) {
dp[1][3] = ©;
} else {

dp[i][]J] = dp[i - 1][j] + dp[i][] -
1;

return dp[m - 1][n - 1];

¥

Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left
to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

AR @A AET S 0 AT KRB B T o A1 A dp[il[] & YA, 0)E1(i,)
FN A o AR ZdpHAEY:

dp[i][J] = min(dp[i][]j-1], dp[i - 1][3]) + grid[i][]]

ARAL 4= T

class Solution {

public:
int int {
if(grid.empty() || grid[0].empty()) {
return 0;
}
int row = grid.size();
int col = grid[0].size();
int dp[row][col];
dp[0][0] = grid[0][0];
for(int 1 = 1; i < row; i++) {
dp[1][0] = dp[i1 - 1][0] + grid[i][0];
¥
for(int j = 1; j < col; j++) {
dp[0][J] = dp[O][] - 1] + grid[O][]];
}
for(int i = 1; i < row; i++) {
for(int j = 1; j < col; j++) {
dp[1][j] = min(dp[i - 1][j], dp[i][] -
1) + grid[i][]];
}
}
return dp[row - 1][col - 1];
}

Iy

Maximum Subarray

Find the contiguous subarray within an array (containing at least one number)
which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4], the contiguous subarray
[4,-1,2,1] has the largest sum = 6.

AT —B 2B FIAR » RATT AR K 5 6945 2] Ldp A 42 » Bkdpli] &£ 4 4a [0,
iR 8 %K 4E AR 4

dp[i + 1] = max(dp[i], dp[i] + a[i + 1])

AX G o

class Solution {
public:
int maxSubArray(int A[], int n) {
int sum = 0,
int m = INT_MIN;

for(int 1 = 0; 1 < n; i++) {
sum += A[1];
m = max(m, sum);
[/ Rsum - FOT o BsumEE A i + 1B RALITH
if(sum < 0) {
sum = 0;

return m;
18

& RIX A B FdpffAe kAR M2 > EAMB T » B &A1 48K 48 X A divide and
conquerfy 7 ik AR A » ALt A =4k o

18.4% LA Alleft, right] % £ % X X 1 » mid = (left + right) / 2 » 78 2 . JE 32 = ¥ 1%

D)

1. B ARAMEAlleft, mid - 1]Z &

2. S KALAAIMId + 1, right] £ &

3. RAMIER Tmid » 3L KM E S Hleft, mid - 1] 1 89 & A4E > LA [mid
+ 1, right]#9 5k K44 » R J& Ae Emid » = Fesh T & 69 & KA

EAVTAEE > 34 F 1402 » KAVB it 2 T AR F R KA > KGR E30 LR
Pk > 3ERAFE] 8 R KA o

ARG o T

class Solution {

public:
int

int

maxSubArray(int int {
return divide(A, ©, n - 1, INT_MIN);
divide(int int int int {

if(left > right) {
return INT_MIN,

int mid = left + (right - left) / 2;

//FFE FRIE[left, mid - 1]k K44

int lmax = divide(A, left, mid - 1, tmax);
//AFEFRIE[mid + 1, right]& kK&

int rmax = divide(A, mid + 1, right, tmax);

tmax = max(tmax, lmax);

tmax max(tmax, rmax);

int sum = 0;

int mlmax = 0;

//#E [left, mid - 1]&KfA

for(int i = mid - 1; i >= left; i--) {

sum += A[1];

mlmax = max(mlmax, sum);
sum = 0O;
int mrmax = 0;

//%FF [mid + 1, right]s& X{A

for(int 1 = mid + 1; i <= right; i++) {
sum += A[1];
mrmax = max(mrmax, sum);

tmax = max(tmax, A[mid] + mlmax + mrmax);
return tmax;

iy

Maxmimum Product Subarray

Find the contiguous subarray within an array (containing at least one number)
which has the largest product.

For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the
largest product = 6.

AR R FRAGEARR > AT Rk RNELEZ > AREANE 2
TAREH ORI R R E B B AT E o AR RAAL » AR
0 BAMET A R E AT T —F A R B TR T AR
o @RI ERRKRIT -

X

E A8 & F AL LA

maxDP[1 + 1] = max(maxDP[i] * A[1 + 1], A[1 + 1],
minDP[i] * A[i + 1])

minDP[1i + 1] = min(minDP[i] * A[i + 1], A[i + 1],
maxDP[1i] * A[i + 1]

dp[i + 1] = max(dp[i], maxDP[i + 1])

BRE s RNTFZEEALTHOYER » wRA[[]H0 » A8 ZmaxDPF#minDP#AF 40 »
EAEZIA[+ 1] EFH AL -

AX AL o T

class Solution {
public:
int int int {
if(n == 0){
return 0;
} else if(n == 1) {
return A[0];

int p = A[0];
int maxP = A[0O];
int minP = A[O];
for(int 1 = 1; 1 < n; i++) {
int t = maxP;
maxP = max(max(maxP * A[i], A[i]), minP *
A[i]);
minP = min(min(t * A[i], A[i]), minP * A[i]);
p = max(maxP, p);

return p;

iy

Maximum Subarray

132

Climbing Stairs

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can
you climb to the top?

KA A LA ERAREL| FA o BB i RINRE ST HdpHr £
dp[n] = dp[n - 1] + dp[n - 2]
¥ & 4Hdp[1] =1, dp[2] = 2 °

AWALE = N

class Solution {

public:
int climbStairs(int n) {
int f1 = 2;
int f2 = 1;
if(n == 1) {

return f2;
} else if(n == 2) {
return f1;

by

int fn;

for(int 1 = 3; 1 <= n; i++) {
fn = f1 + f2;
f2 = f1;
f1 = fn;

b

return fn;

+

Climbing Stairs

134

Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step
you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottomis 11 (i.e.,2+3+5+ 1 =11).

EAERENRE—AZ AT FURE KRS H 0 LB R RO
] o

XA mARRE ATMEA TARE K& Lo

BARABNMAT > RELE KMNE > FHT—E > KINARERERERTRAT
R B L@ FZATHETI 0 €T —ATAA BT H A5 o

EAVBZdp[m][N]* B T EmiTHnAS T 26 B2 Fe » KA A= Tdpr#2

e dp[m + 1][n]
if n>0
e dp[m + 1][0]

min(dp[m][n], dp[m][n - 1]) + triangle[m + 1][n]

dp[m][0] + triangle[m + 1][0]

B35 R AR FO(N) Y I » AT A BAT & Bk hTH I o 42— A — {2 AR A 42 8
N AE A 0 % FEPascal's Triangle » &A14=38 » 4 T Bkt F 69 B6H1% B % w4 AT
B4 s PTOARAT & RINB AT o

KA 4o

class Solution {
public:
int minimumTotal int {
int row = triangle.size();
if(row == 0) {
return 0,

/ /#1440 A s R AA

<int> total(row, INT_MAX);
total[0] = triangle[0][0O];
int minTotal = INT_MAX;

for(int 1 = 1; 1 < row; 1i++) {
for(int j =1; j >= 0; j--) {
if(3 == 0) {
total[j] = total[j] + triangle[i][]j];
} else {

//E—Etotal[i] A INT_MAX > T &% Rk i
total[j] = min(total[j - 1],
total[j]) + triangle[i][j];

}
}
by
for(int 1 = 0; 1 < row; i++) {
minTotal = min(minTotal, total[i]);
by

return minTotal;

+i

RATEMET » A—FERHENBERZAERALT - dpH A
dp[m][n] = min(dp[m + 1][n], dp[m + 1][n + 1]) + triangle[m][n]

EAV KT AAE]l — A2 g 2R st 5 o

KA 4o

class Solution {

public:
int minimumTotal int {
if(triangle.empty()) {
return 0,
¥
int row = triangle.size();
<int> dp;
dp.resize(row);
/ /R 0 B A 4s 4L
for(int 1 = 0; 1 < dp.size(); i++) {
dp[i] = triangle[row-1][1];
b
for(int 1 = row - 2; 1 >= 0; 1i--) {
for(int j = 0; j <= 1; j++) {
dp[j] = triangle[i][]j] + min(dp[]j], dp[]
+ 11);
}
¥
return dp[0];
}

iy

Unique Binary Search Trees

Given n, how many structurally unique BST's (binary search trees) that store

values 1...n7?

For example, Given n = 3, there are a total of 5 unique BST's.

BREMAERERL —ANFn A S S IHBEF 7 X > ARG 0H1250n -

Rl 46 £ 5| XA 1E » TA T BfTTF o 25 B3 = IR » TR
A S = A AT — R T IR0, - 1]R A > @ T
B fE— 2 KTis sk A + 1, n] e R EFHAMMEED 7 X » A FHANME 1
FFiART B8 = I EGPET] 7 XL Amxn o

F4148 A dp[i] & RiIANF & T = A HEF| A% » AR 2dpF LA
dp[i] = sum(dp[k] * dp[i - k -1]) @ <= k < 1

RAL 4= T

class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1, 0);

//dpin#sit,
dp[0] = 1;
dp[1] = 1;

for(int i = 2; i <= n; i++) {
for(int j = 0; j < i; j++) {
[/ REFHO AT MAETHAL - § - 1
dp[i] += dp[j] * dp[i - J - 1];

return dp[n];

+i

Unique Binary Search Trees Il

Given n, generate all structurally unique BST's (binary search trees) that store
values 1...n.

For example, Given n = 3, your program should return all 5 unique BST's
shown below.

AT @ — TR > & B35 HT A B 5] 8 R o

RIE AT @ ARATFo 8 T n D@ agE & €32 & A £ T M0, i - 118937 4L x
& TH[+ 1, n8 B2 &0 PTARAN R F T80 £ T WAl THOPTA D] > 3t
ARATENIB A BED T o MEAMMER B Asatin g » R4 T -

class Solution {

public:

6T @

iy

<TreeNode *> generateTrees(int n) {
return generate(l, n);

<TreeNode*> generate(int start, int stop){
<TreeNode*> vs;
if(start > stop) {
//EATFHT > BEnull
vs.push_back();
return vs;

for(int i = start; 1 <= stop; i++) {
auto 1 = generate(start, i - 1);
auto r = generate(i + 1, stop);

/R E T A TR A BEDZ G » A Flroot A189 T &

for(int j = 0; j < l.size(); j++) {
for(int k = 0; k < r.size(); k++) {
TreeNode* n = new TreeNode(1i);
n->left = 1[j];
n->right = r[k];
vs.push_back(n);

return vs;

Unique Binary Search Trees

142

Perfect Squares

Given a positive integer n, find the least number of perfect square numbers

(for example, 1, 4, 9, 16, ...) which sum to n. For example, given n = 12 ,

return 3 because 12 = 4 + 4 + 4 ;given n = 13 ,return 2 because 13
=4+ 9 .

MEEFE: AE—AEEH n » REVEFZLIANAZATFFTH (Ble1°4°9
16......) A fEAFEIn e Blde o b n =12 ERE3 AH 12 =4 + 4 + 4 o
b n =13 *KAE2 AH 13 =4 + 9 o

MEASH : F—AMH » WBRXREGHE XL AMFRTnI KR8 24T 7 $#It
WRES R PRI TN Ak —2NZETFFTHRK - ERAL REWLRAETRF
b1 > RAgRmik %1 R LR FTEZRIGT o Bl4e12 > BB FLE96]F 2
4+4+4 > FEINZETFH I o WwRINFR KRG EE > B2 RLIH1+1+1 0 F 24N
e a2

WF—AAER A5 R R RERLRTA T TG AT 5 RN A
SHEHE RERBPANG AL THERYOMAAL - wERK T T o T
R MA I > EA K R B RO(MAM) B A F KR A
X RRTITHF ik o WRE > LREGIEY » F—RB0BRTERMLEY »
TR 1248 R A28 o BN > 4o R AN HSBIT R CBRE MRS LMK
— MR EEE RS ERETFARATFFRET - R L EREET 5 ARL
by A8 o

IANINIINN

AR RATA—AMNRARERCAGER > i ILAELR 5 (INT_MAX) ° 4
BHFETZE 1 k0 Bl n > REBITE j £ 1 09488 BRI EHEANELE
RAEFT M n OFRFE AL i+ j*j] BIMKFRGRIGTAETF 7K
T ORARAFT LA o 1 BRI E— > ZAER R AGRF o
o R B AT HARMNCERI L F RN T 2T 7 KGN (RMARAE
F%) o FMEE S AL 1 B EmE § OTFFFEEB TEHRTA TS
BT 1 FEGN I E— o

KA 4o T

class Solution {

public:
int numSquares(int {
<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) {
for (int j = 1; i + j * j <= n; j++) {
dp[i + J * j] = min(dp[i + J * j], dp[i]
+ 1);
}
b
return dp[n];
}

iy

Backtracking

Combination

12X section @ 0 &A1 E &k id— T #%leetcode £ @ % filcombinationiX — £ 71| &9
AR s X KR 2 1%)2 %5 A DFS+Backtracking © £ T KIKEHA > ZE—TU AL ER
o e AL o

% %1t — T % — R Combination.

Combination

Given two integers n and k, return all possible combinations of k numbers out
of 1,2,...,n

R #iE o mMAERf AnFek o F KR b kA4 R B9 combination » H 52 R 1%
w48 4. X 4~combination 2 % A& 5 P Mg a4 o KA A AN IEZKAE
WA E T Z k%D T RF T A& FREE T #validation check™k).

B S RAAFRZEA T Y R &4 X Zcombination » 3% 2 &A1 54— A
Frtden=3 > k=209 &4 F » BT T4 combinationt=F : [1,2], [1,3], [2,3]. i&
& [231[3,2] AR By 0 RATAZRA L F — AT AT . PTRARRR GG B 4Z > &
Bt A8 R 69 405 B 3L

AL BB A B 2 IV/‘@ » BhB—BERZARE)R RB eREARAET KR
AR IANMREREL GARKEWRT FHL I @ ET—E—BERERLE£H
FTIART s RAT—ANEIF 0 & S RAF A 46 69 F A F b9 combination » & K vA
274569 o VAL KA 5 BT A4S A xin N2 DFS, n-1 N2 DFS... BT VA % A& ¢
n(n-1)..*1#DFS. £ 5 F » KA1T WU e — L 5T B K4k #2581 1)

BR) B R AAE M P KA1IRE T T tn,n-1,..., 14%DFS » FivARt R B & &
£0(n!)

RAG 4o T

class Solution {
public:

vector<vector<int> > combine(int n, int k) {
vector<vector<int>> ret;
if(n <= 0) //corner case invalid check
return ret;

vector<int> curr;

DFS(ret,curr, n, k, 1); //we pass ret as
reference at here

return ret,

void DFS(vector<vector<int>>& ret, vector<int> curr,
int n, int k, int level)
{
if(curr.size() == k)
{
ret.push_back(curr);
return;
}
if(curr.size() > k) // consider this check to
save run time
return;

for(int 1 = level; i <= n; ++1)

{
curr.push_back(1i);
DFS(ret,curr,n,k,i+1);
curr.pop_back();

}

iy

Combination Sum

Given a set of candidate numbers (C) and a target number (T), find all unique
combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of
times.

Note:

1. All numbers (including target) will be positive integers.
2. Elements in a combination (a1, a2, ... , ak) must be in non-descending order.
(ie,a1 <a2<... <ak).

3. The solution set must not contain duplicate combinations.

OB EE A — N ACH — /B ARET, REFTANFHEE LG AL $FA62 @
MR FZ A FETFT AL R FTUMNCE FLiLF -

o =,
e

1. PTA 4R 8 T3 A ¥4 (X &%k A& &A1 4mcorner case invalid check & i &
Bhm—% o R RTAAELERK » RATRKRELEAETHAITT)

2. FTH A ZWP BRI FHED.
3. MEMAZHRARKOLLSTERE.
A E oA XA KIK &I Frcombination 248 Bl 8 » R E &3 £ T — AN F T

VIAE R %R » AL R T KA1 AT £ I function d B2 F- 02 Z 69 R AR > A o
15 X 3%)2 89 % 2 R F) -T combination.

IR B 2% B A 24459769 » Ancombination) Bt 18] £ 4 & & A48 Rl 69.0(n!)

ARAL 4 T

class Solution {
public:
< <int> > combinationSum(<int>
&candidates, int target) {
< <int>> ret;
//corner case invalid check

if(candidates.size() == | | target < 0)
return ret;

vector<int> curr;

sort(candidates.begin(), candidates.end());
//because the requirments need the elements should be in
non-descending order

BackTracking(ret, curr,candidates, target,0);

return ret;

/* we use reference at here because the function
return type is 0, make the code understand easily */

void BackTracking(vector<vector<int>>& ret,
vector<int> curr, vector<int> candidates, int target, int
level)

{
if(target == 0)
{
ret.push_back(curr);
return;
b

else if(target < 0) //save time
return;

for(int 1 = level; 1 < candidates.size(); ++1i)
{
target -= candidates[i];
curr.push_back(candidates[i]);
BackTracking(ret, curr,candidates, target,i);
//unlike combination, we do not use i+1 because we can
use the same number multiple times.
curr.pop_back();
target += candidates[i];

I

Combination Sum Il

Given a collection of candidate numbers (C) and a target number (T), find all
unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.
Note:
1. All numbers (including target) will be positive integers.

2. Elements in a combination (a1, a2, ... , ak) must be in non-descending order.
(ie,a1 <a2<... <ak).

3. The solution set must not contain duplicate combinations.

B AT AN RUACH —NMEFT AT 2 RRE X T @A AT &H AR

Z I RATHFOME AR FTHEMGEE,
b HA g R AR — k. (Flthree sumA=four sum#) 2%)
E R KA

1. 6% B R 6y BT A AL LT E R . (& A &A1 ecorner case invalid check 9
AR ZAAET)

0. KR I B LA AR HER (F A0 xR A AT

3. RABZETROASEL Ha

ARAL 4 T

class Solution {
public:
< <int> > combinationSum2(<int>
&num, int target) {
< <int>> ret;
if(num.size() == | | target < 0) //invalid
corner case check

return ret;
<int> curr;
sort(num.begin(), num.end());
BackTracking(ret, curr,num, target, 0);
return ret,

}
void int
int int int int
{
if(target == 0)
{
ret.push_back(curr);
return;
¥
else if(target < 0)
return,
for(int 1 = level; i < num.size(); ++1)
{
target -= num[i];
curr.push_back(num[i]);
BackTracking(ret, curr,num, target,i+1);
curr.pop_back();
target += num[i];
while(i < num.size() && num[i] == num[i+1])
++1;
}
}

Iy

Letter Combinations of a Phone Number

Given a digit string, return all possible letter combinations that the number
could represent. A mapping of digit to letters (just like on the telephone

buttons) is given as below:

Input:Digit string "23"
Output: [IladH, |Iae||’ llaflll llbdlI’ llbell’ |lbf||, "Cd", "Ce",
IIC.FII] .

AEAE ST —NFHERF > BEINFHERFARERLETARY
combination > —Amap#) wE4E L A FR 2% %

B 5 XA B % E o AR A B L focombination £ 48 Bl &9 » R F] 693k
7 A& AV S Z —A~dictionary, A 7 1& & 4.2 & il combination 848 F] 7 i% » 2t T4
— AT 0 fdictionary F & & € P72 09 TR 89 F T

fRRR B3 KA FAF $ A kM Z X ANdictionary®) o AT TiaREKF > #ld= o
TARA2 > RO FHRK LA XAt 269 % A :dic[2] = "abc". A R b TR FFH &8
F—ANEFEHEANER s KT UAREFRER B IANRF A2 GTA T8, 5
Ko BAEFRGNE > KN F B &dic[0] =", dic[1] = ".3X & MEFk 9 case »
A IEAE R A R AT R 8 T

i 7] B 4 B O(3"n)

(AR T

class Solution {
public:
vector<string> letterCombinations(string digits) {
vector<string> ret;
/* for this question, we need to create a look-up

dictionary */

iy

dic.
dic.
dic.
dic.
dic.
dic.
dic.
dic.
dic.
dic.

< > dic;
tmp;

push_back(" ");
push_back(" ");
push_back("abc");
push_back("def");
push_back("ghi™);
push_back("jk1l");
push_back("mno");
push_back("pqgrs");
push_back("tuv");
push_back("wxyz");

combinations(ret, tmp,digits,dic,0);

return ret;

}
volid
int
{
if(level == digits.size())
{
ret.push_back(tmp);
return;
¥
int index = digits[level]-'0"';
for(int 1 = 0; 1 < dic[index].size(); ++1i)
{
tmp.push_back(dic[index][1i]);
combinations(ret, tmp,digits,dic, level+1);
tmp.pop_back();
b
b

Combination

154

Subsets

Given a set of distinct integers, S, return all possible subsets.

Note: Elements in a subset must be in non-descending order. The solution set
must not contain duplicate subsets. For example, If S = [1,2,3], a solution is:

[31,
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]

>

RAELERZINEESELONTAETFES AINERTFESAETEEZHFHET -
BARENEEAELF > T —AnAENELS > BLEENBE—NTE > oA
FELEF BN -1IANAETRRAREZ—NMLENTF LA BAVRKR®H » &
toiR BB AN EEAE » BN -2MNLEXRBZALENTT 5 BRER
WHAIE S BRI RE—ANTLE > REEH > BELE AT EHE—NTLEZE R
MNiBRAEGZ XLEE AT E -

B e L @A9[1,2,3] AABRET WwATFES B @23 A1GTF & 0 AR
20 fe[1, 2w AT EE 0 BEAIHA28 T F & 0 B30 21, 2, 3w AT E
Ao REEIH » B3 B[, 3w ATFES -

1R RRZIE » BATT AR HE AL 2 » AR3 o

AW AT R N

class Solution {
public:
< <int> > res;
< <int> > subsets(<int> &S) {
if(S.empty()) {

return res;

sort(S.begin(), S.end());

//RET ZEE

res.push_back(<int>());

<int> v;

generate(0, v, S);

return res;

void generate(int int int

{
if(start == S.size()) {
return;

for(int 1 = start; 1 < S.size(); it++) {

v.push_back(S[i]);

res.push_back(v);

generate(i + 1, v, S);

v.pop_back();

I

Subsets Il

Given a collection of integers that might contain duplicates, S, return all
possible subsets.

Note: Elements in a subset must be in non-descending order. The solution set
must not contain duplicate subsets. For example, If S = [1,2,2], a solution is:

[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]

>

TR EAE—RAINETHEEAL EERNFRANTEEXTRAARLY
—;E't-;’ﬂ:'ﬁ),(li‘égﬁﬁﬁ‘ , {H?&jf%ﬁ‘a_t@éﬁﬁiﬂ ’ R;%}EJ_))TJ%A’]# ,ﬁéﬁﬂﬂ»'ﬁ%'ﬁa%ifﬂhﬁ#a%
B0 Rl — o G 5skit o R4 T

class Solution {
public:
vector<vector<int> > res;

vector<vector<int> > subsetsWithDup(vector<int> &S) {

if(S.empty()) {
return res;

sort(S.begin(), S.end());

res.push_back(<int>());

<int> v;

generate(0, v, S);

return res;

void generate(int int int

{
if(start == S.size()) {
return;

for(int i = start; i < S.size(); i++) {
v.push_back(S[i]);
res.push_back(v);
generate(i + 1, v, S);
v.pop_back();
/ /& Z T AR] B

while(i < S.size() - && S[i] == S[i + 1]) {
i++;

14

iy

Subsets

159

Permutation

PermutationiZ /~ %~ % & /£ backtracking T 49
—ANF o 0 R BARE) B 77 ik A
Combination /L& F| & —#t » — &5 » 2t
T THMRADFSHT x—E—2®AH » L£i&XA
section Z F » & A14 2t Tleetcode L & I &Y
permutation [°] & 3 4732 N9 AT 5 R 4.

Permutations

given a collection of numbers, return all posibile permutations.

For example, [1,2,3] have the following permutations: [1,2,3], [1,3,2], [2,1,3],
[2,3,1], [3,1,2], and [3,2,1].

A B EIE R —ANER R R E IR IT A R BRG] TR L
26 i 89 4] T 3R T VA,

ME M RAEMRAE) LFERZAR MERXEHRTAERA R 9 F K.
Permutation) ###1 7 % #»Combination JL-F-Z A0 Bl 49 » " —F Zx & 69 & »
Permutation® & v — /~bool £ & 65 B R #ATIE XN ALEZFT » WARE » K
BEI AR HEZ LA H LR F-TCombinationt — & 5% » Permutation &~ % 23k
5.

fRAL s BB AR REK 0 B —NEERN A L@ XA I DFS,#)2 KAg »
st FTRAFHHE—ANTE » KRB AMEA BT L H9Permutations, X3t & R E#)2 »
FRARENIAG F—ANUETS®/T » ZHE > > K3 ANT AI—ANFA» i1
HFR—AEHRE R AP ARNBEOEZLT » FIAEANTII AT —Abool £
Aag g > AREFMATERBS TR TARER). £ THE—4
Permutation# 47 KRB P » w R 5 R T XATE, KNG E 2t T & 9boolF 4 4
18 B Atrue, % F14& £ 5 » £/ E Hfalse.

B8 B 4% B 4 A7 X 18 A] Combination, AT vA st T X i@ AL 69 AR A » B 18 B 4 B Bl 4%
Z0(n!)

AR o T

class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
vector<vector<int>> permutations;
if(num.size() == 0) //invalid corner case check
return permutations;
vector<int> curr;
vector<bool> isVisited(num.size(), false);
//using this bool type array to check whether or not the
elments has been visited
backTracking(permutations, curr,isVisited, num);
return permutations;

volid backTracking(vector<vector<int>>& ret,
vector<int> curr, vector<bool> isVisited, vector<int>
num)

{

if(curr.size() == num.size())

{

ret.push_back(curr);
return;

for(int 1 = 0; i < num.size(); ++i)
{
if(isVisited[i] == false)
{
isVisited[i] = true;
curr.push_back(num[i]);

backTracking(ret,curr,isVisited, num);
isVisited[i] = ;
curr.pop_back();

iy

Permutations Il

Given a collection of numbers that might contain duplicates, return all possible
unique permutations.

For example, [1,1,2] have the following unique permutations: [1,1,2], [1,2,1],
and [2,1,1].

A AT —ANEBEA BN RAFTREOSETENRT » ZLRMNERY
b9 5T 3 N $% 48 7 F] B9 Permutations, H 34 Z 5L — #F °T A8 69 permutation /2 & /& 9 %
KPR HA—R. ETB]FEEFH LT3R5 TR 637,

B A T REA o 42 E Kpermutation, K Ik L 89 A7 # & 2% F2 Permutations &
AEE o B RETRE BAEMER? FREA

1. ARG FIAFT T RS A4 F 83T,
2. REERETBEXERAAR M)A LA,

2t F ik R 2R - Permutations#y ## 7% & £ kR R » FTARM K EZH R EAH L
AL AAE R, AT AT E ANinputde A3 AT » £ RMAZHE » RE—A

L& Hpermutation Rk T » ERZIAMAEZEOFZIATEME G LE » RIZTAA
T YApassdt » 5 & A7 ik £ sumArcombination 2.8 & 42 & B X R R T .

FRAL G R T e bt T B AL > £ T &3 B Permutation— & —#% o
Bt 1A B 4 O(n!)

KD 4 T

class Solution {
public:
vector<vector<int> > permuteUnique(vector<int> &num)

vector<vector<int>> permutations;
if(num.size() == 0)
return permutations;
vector<int> curr;
vector<bool> isVisited(num.size(), false);
/* we need to sort the input array here because
of this array
contains the duplication value, then we need
to skip the duplication
value for the final result */
sort(num.begin(), num.end());
DFS(permutations, curr,num,isVisited);
return permutations;

void DFS(vector<vector<int>>& ret, vector<int> curr,
vector<int> num, vector<bool> isVisited)

{

if(curr.size() == num.size())
{
ret.push_back(curr);
return;

for(int 1 = 0; 1 < num.size(); ++1i)
{
if(isVisited[i] == false)
{
isVisited[i] = true;
curr.push_back(num[i]);
DFS(ret,curr,num,isVisited);

Permutation

isVisited[i] = false;

curr.pop_back();

while(i < num.size()-1 && num[i] ==
num[i+1]) //we use this while loop to skip the
duplication value in the input array.

++1;

1s

164

Greedy

Jump Game
Given an array of non-negative integers, you are initially positioned at the first

index of the array.

Each element in the array represents your maximum jump length at that
position.

Determine if you are able to reach the last index.
For example: A =[2,3,1,1,4], return true.
A =[3,2,1,0,4], return false.

HA IR $ 0 SR — AR LREATERFRTAGE IR T - KN F
g LT AL B G — ALK E o

R RQIEEPT 0 Bde Ed@A9[2,3,1,1,4] 0 BAMEE—MLEH2 » EA LI
FoRTIFTT > BEATELE » WK AIEIANNE » AA3IK » FTARANT
A @mekik3y o HIERR4LT o

ARIE L @meg M 0 R F 0 RAT T T R > wRBH BT HR KR TH 4
TR AL H TR BT > R TIIRRE D TOHF AL EZI RE—NTE
AR 2 KL o

ARAL 4 T

class Solution {
public:
bool canJump(int int {
if(n == 0) {
return ;

b
int v = A[0];

for(int 1 = 1; 1 < n; i++) {
V--;
if(v < 0) {
return ;

}

if(v < A[i]) {
v = A[1];
}
}

return ;

+i

Jump Game I

Jump Game

Given an array of non-negative integers, you are initially positioned at the first
index of the array.

Each element in the array represents your maximum jump length at that
position.

Your goal is to reach the last index in the minimum number of jumps.
For example: Given array A =[2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from
index 0 to 1, then 3 steps to the last index.)

BALRETLE—R > RERRIFE RV » IR TR AR & 500 &
47 RAe s ik o

S

BAVLEF AT E > BATAEK B0k T ApAR T —RAEK B 693k 3T B q 2 £phI i
AR HEq REEH T AR RAOqQEEAp - TERXNM L Ribpkd| 4
\%\ °

d

RAG 4o T

168

class Solution {
public:
int jump(int A[], int n) {
int step = 0;
int cur = 0,
int next = 0;

int 1 = 0;
while(i < n){
if(cur >=n - 1) {
break;

while(i <= cur) {
// E AR Lk B A
next = max(next, A[1i]
i++;

step++;
cur = next;

return step,

+i

+ 1),

Gas Station

There are N gas stations along a circular route, where the amount of gas at
station i is gasi].

You have a car with an unlimited gas tank and it costs cost[i] of gas to travel
from station i to its next station (i+1). You begin the journey with an empty
tank at one of the gas stations.

Return the starting gas station's index if you can travel around the circuit
once, otherwise return -1.

Note: The solution is guaranteed to be unique.

i o

BRI AT B AT A sk 690k ZtotalGas » A AR R FRIHG M E

totalCost * 4= RtotalCost Xk TtotalGas * AN 2%k & T e 4% A T EANEHL o

4= RtotalGas k TtotalCostT * A AFLAE AT EANERLT » MAAAKRINBET Zi
Al sh o AR L R R 690 Z Asum ¢ 4R sum + gasli] - cost[i]/)»T0 » KA1 E*
ABT—/ st s TUARE—ZIREFINMNUARZ AT msE L@ (M T ERD B+
15msk) » AR AfEi+1E4 5@ -

RAG 4= T

class Solution {
public:
int canCompleteCircuit(vector<int> &gas, vector<int>
&cost) {
int sum = 0,
int total = 0;
int k = 0;
for(int 1 = 0; 1 < (int)gas.size(); i++) {
sum += gas[i] - cost[i];
// P TORMATARAEL + 1XAZXET
if(sum < 0) {
k =1+ 1;
sum = 0O;
b

total += gas[i] - cost[i];

if(total < 0) {
return -1,
} else {
return k;

+i

Candy

There are N children standing in a line. Each child is assigned a rating value.

You are giving candies to these children subjected to the following
requirements:

Each child must have at least one candy. Children with a higher rating get
more candies than their neighbors. What is the minimum candies you must
give?

BT ATET IER BFABRGIET » &A1 AR

RABZRENVNBEETZRB —HBER 2R ZH R D FEEWE F 8093 TAF3]
MERS (DNBEHERLELFFT) » AR EZRZIHER?

' aRil4 %\&4\1 AR —FBAER » RENER A » BEXBINDZOFRILE -1
NIFHF o LB D FZGBERZERLZR - 1IN EREREELE— o BRI
EEB A wRBFINDFZGFRRT R+ 11328 BRIkt 69 R & F
DT HI+189D0F o RLAFZFINPIHGBERZERLZRI + INDZOERELE — o

RAG 4= T

class Solution {

public:
int candy int {
<int> candys;
// B IBEAR B
candys.resize(ratings.size(), 1);
[/ BENMETRIET AL HRINGHZE T IEL G THEREE S
for(int 1 = 1; 1 < (int)ratings.size(); i++) {
if(ratings[i] > ratings[i - 1]) {
candys[i] = candys[i - 1] + 1;
}
¥
[/ BEMNETFRIET 2R HRINGHZE T — T IAEL YR THEREEZ S
for(int 1 = (int)ratings.size() - 2; 1 >= 0; 1i--)
{

if(ratings[i] > ratings[i + 1] && candys[i]
<= candys[i + 1]) {
candys[i] = candys[i + 1] + 1;

b

b

int n = 0;

for(int 1 = 0; 1 < (int)candys.size(); i++) {
n += candys[i];

by

return n;

+i

Word Break

Given a string s and a dictionary of words dict, determine if s can be
segmented into a space-separated sequence of one or more dictionary
words.

For example, given s = "leetcode", dict = ["leet", "code"].

Return true because "leetcode" can be segmented as "leet code".

RN EEALH AP RAR—AFTHE » REPBEATH R RN T S AR
EFRIBEE o

Baxdp()R T KREAINT BREHN 5 » dpFr B4 T
dp(i) = dp(j) && s[j, i) in dict, © <= j < i

RAG 4

class Solution {

public:
bool wordBreak(string s, unordered_set<string> &dict)
{
int len = (int)s.size();
vector<bool> dp(len + 1, false);
dp[0] = true;
for(int 1 = 1; i <= len; i++) {
for(int j =1 - 1; j >=0; j--) {
if(dp[j] && dict.find(s.substr(j, 1 - j))
I= dict.end()) {
dp[i] = true;
break;
b
}
}
return dp[len];
}
i

World Break Il

Given a string s and a dictionary of words dict, add spaces in s to construct a
sentence where each word is a valid dictionary word.

Return all such possible sentences.

For example, given s = "catsanddog", dict = ["cat", "cats", "and", "sand",
lldog"]-

A solution is ["cats and dog", "cat sand dog"].

FEBAARARTLE—R o ER2RNIFBTA e bR o XERAGEEIRK » &ﬂ]wﬁvg‘
KA dp + dfsty 7 X KA > "E?i’fﬁ’dl%dpﬁé'h??—%$ LWy 0 Flet Edpty i
Pie kBT FRET B8 B SdfstE A -

B AERMNE Adplill &R TA4 K3 A KEANTEESHIIS > €F ZAARE:

1. dplillj] = true && dp[i][j] in dict > & A+ 4F L AZAF & Bk TP
Zdwm=Uw&&mwmmnmma’ BAHAEAREINTEREAFTEY 22E

ISR E T H s I T B TR
3.dMMﬂ=mBe’%$waﬁwﬂ

RIBAZE » RN FEZREPTA G > PTVAL #ATdp) IR F R4 14223 A A+
hs; S BA T2k dplij[] £ B4 LB 6 0 ALK R FRZXEZ 14
HoLeyF & o

Ldp R RZ G » BNV E B4E R dfs RAF B EA AR o Edp[il[l=189HFRATE@ » &
MR E Fdfsib 2L TS @i + [FH6 69 FBHTIAT o

KA o T

class Solution {

public:
< <char> >dp;
> vals;
val;
< > wordBreak(S,
< > &dict) {

int len = (int)s.size();

dp.resize(len);

for(int i = 0; i < len; i++) {
dp[i].resize(len + 1, 0);

for(int 1 = 1; 1 <= len; i++) {
for(int j = 0; j < len -i + 1; j++) {

if(dict.find(s.substr(j, 1)) !=
dict.end()) {
dp[J1[i] = 1;
continue;

}
[/ R GE NATEEATEERE Y » XAER2F
R

for(int k = 1; k <1 & k < len -j; k++)

if(dp[j][k] && dp[]j + k][1 - k]) {
dp[j][i] = 2;
break;

// R 0 ARAdfs T

if(dpfo][1len] == 0) {
return vals;

dfs(s, 0);
return vals;

void dfs(const int {
int len = (int)s.size();
if(start == len) {
vals.push_back(val);

return;
by
for(int 1 = 1; 1 <= len - start;i++) {
if(dp[start][i] == 1) {
int oldLen = (int)val.size();
if(oldLen !'= 0) {

val.append(" ");
3

val.append(s.substr(start, 1)),

+

// &AM Astart + 1AL % %dfs

dfs(s, start + 1);
val.erase(oldLen,

string::npos);

Linked List

bR E B B RE A 0 B RIS e B R R A O(1)M I B A o 122
AT AR MALE B8RS » L — A LS RT YR - 39 20k
Bk BB RAIEY A RRM AN — KA o MABAXPNET AT ERA
BRI 0 OISR A~ M~ BRE o Ak ER L IR
SHFRIE

LA 4t 7 ik

R PR P — AT R T IERIE 4 K o R LAANES) — A RBEH > F -2
W Hedg 4t o MFREHFERGUHEH DT A RRBAERGWNHFHZE T
Moo IAZHFBFER T FRERFHCHLE o thlo KB ERF & > T Ak tedd
SHERBH AT A o M S HRIFA 2| A4k R KA » 1RG4 RIAF 48 & F 7] 6942
Z

Linked List Cycle

Given a linked list, determine if it has a cycle in it.
Follow up: Can you solve it without using extra space?

MR AF G — AR TEAETR O — AR - RAOVEA RIS -
R AR KA do R— B MG R AAAGA TS - T Ak
RHEERT o

AWALE = N

class Solution {

public:
bool hasCycle {
if(head == | | head->next ==) {
return ;
¥
ListNode* fast = head;
ListNode* slow = head;
while(fast->next != && fast->next->next !=
) {
fast = fast->next->next;
slow = slow->next;
if(slow == fast) {
return ;
}
¥
return ;
b

iy

Linked List Cycle Il

Given a linked list, return the node where the cycle begins. If there is no cycle,

return null.
Follow up: Can you solve it without using extra space?

BRESZH - > IATAEREZSTAHAILR s mALEEFRZXANILALEG T & o &
Yo T @A o AL ELAN2 o

nl--- n2---n3--- n4|

AV KT vAE R & /35 4HastAeslow » fast& A% > slowA—F » FIBTEEAIF
YHFEEIE > Bt @ANSEST » A LI lTIFEIN2% ?

B &A1 4miE o fastE R slow % & — 3 > BTAE & 890 1% > fastds 5h 9 3E & A slot
b9 4% > RAVBEN12In23E & Aa > n23In5%E & Ab > n53|n23E & A » fastA 3 3E
%X a+b+c+b wslow’ a+b > HAZE a+b+c+b=2x(a+
b) » Tdwik a = ¢ » FAKIREEEESZE » —ME4INT» @ 5% — A

4 MNn5 0 FFRA—F » AR ZAKTUAENEST o

RAG 4= T

class Solution {

public:
ListNode * {
if(head == | | head->next ==) {
return ;
}
ListNode* fast = head;
ListNode* slow = head;
while(fast->next != && fast->next->next !=
) {
fast = fast->next->next;
slow = slow->next;
if(fast == slow) {
slow = head;
while(slow != fast) {
fast = fast->next;
slow = slow->next;
b
return slow;
}
¥
return ;
}
i

Intersection of Two Linked Lists

Linked List Cycle

Write a program to find the node at which the intersection of two singly linked
lists begins.

For example, the following two linked lists:

A: al - a2
N
cl - c2 - c3

2

B: bl - b2 - b3

begin to intersect at node c1.
Notes:

e [f the two linked lists have no intersection at all, return null.

e The linked lists must retain their original structure after the function
returns.

e You may assume there are no cycles anywhere in the entire linked
structure.

e Your code should preferably run in O(n) time and use only O(1) memory.

AR FHBATR R AR R 0 T 0 R—AALARFE o

wWHA B ERIG » ARG T 2iEHERBYA K » 3L ¢c3 -> bl
1% 7 P /~45 4Hfastdeslow » Mal -4 » FI W72 54 I

Yo R I > EREZATIEFE c3 -> bl B

o WwRAIL NIRBEH A REFE 1 REBIF c3 -> bl

XA e T e

class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA,
ListNode *headB) {
if(!'headA) {
return NULL;
} else if (!headB) {

183

return ;

ListNode* p = headA;
while(p->next) {
p = p->next,;

p->next = headB;

ListNode* tail = p;
p = headA;

headB = headA;

while(headB->next && headB->next->next) {
headA = headA->next;
headB = headB->next->next;
if(headA == headB) {

break;

}
by
if('headA->next || !'headB->next || 'headB->next-

>next) {

tail->next = ;

return ;
by
headA = p;

while(headA != headB) {
headA = headA->next;
headB = headB->next;

Linked List Cycle

/ /W PR AR R
tail->next = NULL;
return headA;

1s

185

Remove Duplicates from Sorted List
Given a sorted linked list, delete all duplicates such that each element appear
only once.
For example,
Given 1->1->2, return 1->2.
Given 1->1->2->3->3, return 1->2->3.

BAARERE—NAFOELEOMBREZGLE ARE - LAWK £ 09—
MR RNAFRABEWNBEHAAEAT —MEHEER > R A2 WMBT—
NIEEHTAT o

AX AL 4o

class Solution {

public:
ListNode *deleteDuplicates(ListNode *head) {
if('head) {
return head;
b
int val = head->val;
ListNode* p = head;
while(p && p->next) {
if(p->next->val !'= val) {
val = p->next->val;
p = p->next,
} else {
/ /M rnext
ListNode* n = p->next->next;
p->next = n;
}
¥
return head;
}
i

Remove Duplicates from Sorted List |l

Given a sorted linked list, delete all nodes that have duplicate numbers,
leaving only distinct numbers from the original list.

For example,
Given 1->2->3->3->4->4->5, return 1->2->5.

Given 1->1->1->2->3, return 2->3.

RABFERELE—NAFHERLOMBRTAGEEALEZNT R c BARET BT
RE—A > ZRFZ MR > FTARN &7 09 1E F ZT &k —prevy & » H %k
Sb IR R ARG RE AT E A E A o

RAL 4 T

class Solution {
public:
ListNode *deleteDuplicates {
if('head) {
return head;

// A —Adummy ¥ & %k % #head®prev

ListNode dummy ;

dummy.next = head;

ListNode* prev = &dummy;

ListNode* p = head;

while(p && p->next) {
// R RAEEE > MprevAp next Ap->next
if(p->val !'= p->next->val) {

prev = p;
p = p->next;
} else {

[/ RAEER > MNgkGimy o BRI RERNGT A
int val = p->val;
ListNode* n = p->next->next;

while(n) {
if(n->val '= val) {
break;
}
n = n->next;
3

//RRERT A
prev->next = n;

I

return dummy.next;

Merge Two Sorted Lists

Merge two sorted linked lists and return it as a new list. The new list should be

made by splicing together the nodes of the first two lists.

BREREGARANCEIATFo95E & > R EQEE > B3 LR -

class Solution {
public:
ListNode *mergeTwolLists
ListNode dummy ;
ListNode* p = &dummy;

while(1l1l && 12) {
int vall = 11->val;
int val2 = 12->val;
J/AT B R RINEHET—AF &
if(vall < val2) {
p->next = 11,

p = 11;

11 = 11->next;
} else {

p->next = 12;

p = 12;

12 = 12->next;

//EERTETRE R T R
if(11) {
p->next = 11;
} else if(12) {
p->next = 12;

return dummy.next;

Iy

Merge k Sorted Lists

Merge k sorted linked lists and return it as one sorted list. Analyze and

describe its complexity.

LA E RS FRANPT 70945 % 0 RATRA divide and conquer #97 % » %M
AmeIt s RERG AT %S mm S o 6FR B & & A O(NIgN) °

RAL 4 F

class Solution {
public:
ListNode *mergeKLists(vector<ListNode *> &lists) {
if(lists.empty()) {
return NULL,

int n = lists.size();
while(n > 1) {
int k = (n + 1) / 2,
for(int 1 = 0; 1 < n / 2; i++) {
//EFHifel + kE9RE R 0 FABiMx B
lists[i] = merge2List(lists[i], lists[i +

k1);
}
/I TR T B EATKNERT
n = Kk;
}
return lists[0];
}

ListNode* merge2List(ListNode* ni1, ListNode* n2) {
ListNode dummy(0);
ListNode* p = &dummy;
while(nl && n2) {
if(ni1->val < n2->val) {
p->next = nl;
nl = nl->next;
} else {

iy

p->next = n2;
n2 = n2->next;

= p->next;
if(n1) {
p->next = nl;

} else if(n2) {
p->next = n2,

return dummy.next;

Reverse Linked List Il

Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example: Given 1->2->3->4->5->NULL, m =2 and n = 4,

return 1->4->3->2->5->NULL.

Note: Given m, n satisfy the following condition: 1 < m < n < length of list.

AR R KAV IS [m, N R 8] 8] 694 & o 2 THRE R ENGE R UL 0 JU-FAR A A R A9
% Bde p1 -> p2 -> p3 -> p4 > WREMNBIMHEP24p3 0 X LR AKPIHE K
Hp169 /6 @ > FTAKAT & B4o Ep2ed W3R Ap1 ot RAG 4T :

/ /& 5p3

n = p2->next,
//¥p3tnextiE K 2| p2is @
p2->next = p3->next;
//¥p3E R B playic @
pl->next = p3;

// K p2E R 3 p3fFE @
p3->next = p2;

FF LA > K418 LB AAFE Fm - 11node » LI ApmMEGATIR T & o RBIRRE
oo A BB FEIARLTAT o

XA 4 T o

class Solution {

public:
ListNode * int int
{

if('head) {
return head;

b

ListNode ;

dummy.next = head;

ListNode* p = &dummy;

for(int 1 = 1; 1 < m; i++) {
p = p->next;

by

ListNode* pm = p->next;

for(int 1 =m; 1 < n; i++) {
ListNode* n = pm->next;
pm->next = n->next;
n->next = p->next;
p->next = n;

¥

return dummy.next;

}
i¥

Reverse Nodes in k-Group

Reverse Linked List

Given a linked list, reverse the nodes of a linked list k at a time and return its
modified list.

If the number of nodes is not a multiple of k then left-out nodes in the end
should remain as it is.

You may not alter the values in the nodes, only nodes itself may be changed.
Only constant memory is allowed.

For example, Given this linked list: 1->2->3->4->5

For k = 2, you should return: 2->1->4->3->5

For k = 3, you should return: 3->2->1->4->5

A E R EA e R 2 L7804 iﬁﬁ??&%«ﬁaﬁ%ﬂ%iF?&ﬁ%%
B - FREZORLFRNBBRZIE » — R PEARE AT R BHRZ
WOABE T ANATRY AT o

ListNode *reverseKGroup(ListNode *head, int k) {
if(k <= 1 || 'head) {
return head;

ListNode dummy(0);
dummy.next = head;
ListNode* p = &dummy;
ListNode* prev = &dummy;

while(p) {
prev = p;
for(int 1 = 0; 1 < k; i++){
p = p->next;
if(tp) {
/7B X ECETBRANREEET
return dummy.next;

196

p = reverse(prev, p->next);

return dummy.next;

ListNode* reverse
ListNode* p = prev->next;

while(p->next != end) {
ListNode* n = p->next;

p->next = n->next;

n->next = prev->next;

prev->next = n;

J/EERNABERE AT L EAT—AHFIRY &
return p;

Swap Nodes in Pairs

Given a linked list, swap every two adjacent nodes and return its head.
For example, Given 1->2->3->4, you should return the list as 2->1->4->3.

Your algorithm should use only constant space. You may not modify the
values in the list, only nodes itself can be changed.

BAER @R > AR WEL—HERAG2GHE » ENAFTEELHNTR
R ATIR T B TIAT o B EARAD ¢

class Solution {
public:
ListNode *swapPairs(ListNode *head) {
if('head || !'head->next) {
return head;

ListNode dummy(0);
ListNode* p = &dummy;
dummy.next = head;

while(p && p->next && p->next->next) {
ListNode* n = p->next;
ListNode* nn = p->next->next;
p->next = nn,
n->next = nn->next;
nn->next = n;
p = p->next->next;

return dummy.next;

iy

Swap Nodes in Pairs

199

Sort List

Sort a linked list in O(n log n) time using constant space complexity.

XA REA 2R R #ATHER » &A1 ¥A4% A divide and conquer®) 7 &, » &R R
V2 by atbk R A AR FHATHEFRTIAT o KA T :

class Solution {

public:
ListNode *sortList {
if(head == | | head->next ==) {
return head;
}
ListNode* fast = head;
ListNode* slow = head;

[/ BNR 3G AHAF B F A

while(fast->next && fast->next->next) {
fast = fast->next->next;
slow = slow->next;

/ /¥ B R A
fast = slow->next;
slow->next = ;

// 7= B
ListNode* pl1 = sortList(head);
ListNode* p2 = sortList(fast);

/ /&
return merge(pl, p2);

Y

ListNode *merge
if(!11) {
return 12;
} else if ('12) {
return 11;
} else if (111 && !'12) {
return ;

ListNode dummy ;
ListNode* p = &dummy;

while(1l1l && 12) {
if(1l1->val < 12->val) {
p->next = 11;
11 = 11->next;
} else {
p->next = 12;
12 = 12->next;

}

p = p->next;
}
if(11) {

p->next = 11;
} else if(12){
p->next = 12;

return dummy.next;

Insertion Sort List

Sort a linked list using insertion sort.

XA F REAVE A AEANBE 09 7 A\at 4 R #ATHEF » B — RN T 224
Fo dn+ 10 F R ERmBanA o AR SELERTIRT o

RALG 4 T

class Solution {

public:
ListNode *insertionSortList {
if(head == | | head->next ==) {
return head,;
by

+i

ListNode dummy ;
ListNode* p = &dummy;
ListNode* cur = head;
while(cur) {
p = &dummy;
while(p->next && p->next->val <= cur->val) {
p = p->next;
ListNode* n = p->next;
p->next = cur,
cur = cur->next;

p->next->next = n;

return dummy.next;

Rotate List

Given a list, rotate the list to the right by k places, where k is non-negative.
For example:
Given 1->2->3->4->5->NULL and k = 2,
return 4->5->1->2->3->NULL.
AR RIest ke MK T R4S B4 R AT @ o

st F AN E T LR R > AR R KN BAKTiA T FAKINE
BRARTE » RBHEA SRR R— e £BF n - k % n ¥ & B
HART o B L@RAMT kE T2 RNBAABRLERZS » 81 KBk
B 5 - 2%5 ANFV 0 BN T—ATARAHGHAKT o

RAG 4= T

class Solution {

public:

ListNode *rotateRight(ListNode *head,
if('head || k == 0) {

+i

return head;

int n = 1;

ListNode* p = head;

/TR R R
while(p->next) {
p = p->next;

n++;

Kk =n - Kk % n;

/ /& 3 IR
p->next = head;

for(int 1 = 0; 1 < k; i++) {

p = p->next,;

/1 B 6 8 k3T A 2R

head = p->next;
p->next = NULL;
return head;

int k) {

Reorder List

Given a singly linked list L: LO—L1—...—Ln-1—-Ln,
reorder it to: LO—Ln—L1—-Ln-1-L2—-Ln-2—...

You must do this in-place without altering the nodes' values.
For example,

Given {1,2,3,4}, reorder it to {1,4,2,3}.

TR E s EERZERREANELERDLEF » AZESHELE RS T8
¥—TF o
3

o RIZIEAKEI o HE KR

o &I 4

o RRA&H

AWALE = N

class Solution {
public:
void reorderList(ListNode *head) {
if(head == NULL || head->next == NULL) {

return;
3
ListNode* fast = head;
ListNode* slow = head;
VL3 EEARZE 3
while(fast->next !'= NULL && fast->next->next !=

NULL){
fast = fast->next->next;

slow = slow->next;

}

fast = slow->next;
slow->next = ;
ListNode ;

while(fast) {
ListNode* n = dummy.next;
dummy.next = fast;
ListNode* nn = fast->next;
fast->next = n;

fast = nn;
b
slow = head;
fast = dummy.next;

while(slow) {
if(fast !=) {
ListNode* n = slow->next;
slow->next = fast;
ListNode* nn = fast->next;
fast->next = n;

fast = nn;

slow = n;
} else {

break;

Reorder List

208

Partition List

Given a linked list and a value x, partition it such that all nodes less than x
come before nodes greater than or equal to x.

You should preserve the original relative order of the nodes in each of the two
partitions.

For example,
Given 1->4->3->2->5->2 and x = 3,
return 1->2->2->4->3->5,

AR REAITS R #AT IS BT EF AT RGE D Tx o mAEFHEH K
THTxe

KAVT AL A& > p1Aep2 » WAskie s Rk R » e R ¥ BE9ME - Tx o bk &
Fp1T@E » RINAEp2T@ > KEHp2EHEpI TEHKRT °

RAG 4 T

class Solution {

public:

+i

ListNode *partition(ListNode *head,
ListNode dummy1(0), dummy2(0);
ListNode* p1 = &dummyl;
ListNode* p2 = &dummy2;

ListNode* p = head;
while(p) {
if(p->val < x) {
pl->next = p,
pl = pl->next;
} else {
p2->next = p,
p2 = p2->next;

}

p = p->next;
}
p2->next = NULL;
pl->next = dummy2.next;

return dummyl.next;

int x)

Add Two Numbers

Add Two Numbers

You are given two linked lists representing two non-negative numbers. The
digits are stored in reverse order and each of their nodes contain a single
digit. Add the two numbers and return it as a linked list.

Input: (2->4->3)+(5->6->4)
Output: 7->0->8

P AEE R AR A b F] AR > F R AT AR T 0 LR E 0 A ERE

211

class Solution {
public:
ListNode *addTwoNumbers
ListNode dummy ;
ListNode* p = &dummy;

int cn = 0;

while(11 || 12) {

int val = ¢cn + (11 ? 1l1->val :

>val : 0);
cn = val / ;
val = val % ;
p->next = new ListNode(val);
p = p->next;
if(11) {
11 = 11->next;
}
if(l2) {
12 = 12->next;
}
by
if(en = 0) {
p->next = new ListNode(cn);
p = p->next;
by

return dummy.next;

Iy

) + (12 ? 12-

Copy List with Random Pointer

A linked list is given such that each node contains an additional random

pointer which could point to any node in the list or null.

Return a deep copy of the list.

XA F REH N — A% A randomis 4+ 19 4% Zrandom = fe 48 @) & » 7T fE 48 w4k &

F e FE— AT A o

Tl w ey EE R > KA1)RR MIRT AT > Bl B Al —A~hash &2 & #7 |

B4t % & A4 Erandom 9] & o

KA 4o T

class Solution {

public:
RandomListNode *copyRandomList
{
if(head ==) {
return ;
¥
RandomListNode dummy ;
RandomListNode* n = &dummy;
RandomListNode* h = head;
<RandomListNode*, RandomListNode*> m;
while(h) {
RandomListNode* node = new RandomListNode(h-
>label);

n->next = node;
n = node;

node->random = h->random;

m[h] = node;

TR A

}
h = dummy.next;
while(h) {
if(h->random !=) {

h->random = m[h->random];

3
h

= h->next;

return dummy.next;
i

X BAE FEH E5eER o BRA e TaEA :

1 -->2 -->3 -->4

¥ E18randomiE® T3 B ABRMN T RiBdnextiR A& » RRFEN Y & FBHL
ANmBR P EE®E » 42T :

1 -->1'" =-=>2 -->2'" -->3 -->3" --> 4 -->4'

A A BATR L2658 % Trandomds 4t » BT 89 ¥ & 9randomis & 6913 R & &
W R Bl F @11 A AT @693 o

P8 & HrandomAs 4t 0 2 T L @e] T k% 0 KA1E 241" % randomds ¥ 3'
H szt 2R Jerandoms 4 #next ¥ & o

1 -->1' --> 2 -->2'" --> 3 --> 3" --> 4 -->4'

WG Wb R ST AGBEH N AR T o

XA e T e

class Solution {
public:
RandomListNode *

if(head ==) {
return ;

RandomListNode* n = ;
RandomListNode* h = head;
while(h) {
RandomListNode* node = new RandomListNode(h-
>label);
node->random = h->random;

n = h->next;
h->next = node;

node->next = n;
h = n;

iy

// A% random

h = head->next;

while(h) {
if(h->random !=

h->random =
}
if('h->next) {
break;
b
h = h->next->nex
b
/ /BT R &
h = head;

RandomListNode dummy

RandomListNode* p =

while(h) {
n = h->next;
p->next = n;,
p=n;
RandomListNode*
h->next = n->nex
h = n->next;

return dummy.next;

) {

h->random->next;

t;

4

&dummy ;

nn = n->next;
t;

Math

Math

X —F » A1 2242t —Lleetcode P i I 89 25 2 17 A 45 s fR AT I AY IP] AL —
RLAR Pudx B3 122 Kby 28 — R F k.

217

Reverse Integer

Reverse Integer

Reverse Integer: Reverse digits of an integer.
Example1: x = 123, return 321. Example: x = -123, return -321.
A B EE R — AT ke 1238 104 4321 0 12348 4 -321.

R B BT XL — e F A RA1E# 8 Blcorner case) & » st &
do R XA F L0 E BAVEAERBEIZIANLFHRTAT AHEGEA > &
E R ee:

class Solution {
public:
int reverse(int x) {
if(x == 0)
return x;
int ret = 0;
while(x!=0)
{
if(ret > 2147483647/10 || ret <
-2147483647/10)
return 0;
ret = ret*10 + x%10;
X = X/10;
}

return ret;

i

218

String

String

IR —% > EA1H 2B Zleetcode EikstringH X B 6941 B

219

Add Binary

Given two binary strings, return their sum (also a binary string).
For example, a = "11" b = "1" Return "100".

AR EF N TAETOAN SR RFHARIGFAE » &RATR LA 0 AT 1T 2
BgE R 0 ARIE LHUE TR 5 K.

BB M ROANA XA R IEF T & & AT JUA 7 @

1. A FAF a9 4RA4E.

2. dTheik » BANRGEL AR LA > R AL
3. RIMNZEZXEANFRE LR TRKELEH.

4. int A AecharX A 6948 Z 4% 3%

B IR B A R 5 X RE A A A FAT B At R —#& 0 O(n) nREAKEIAR & 5
FeRE.

AX AL 4o T

class Solution {
public:
string addBinary(string a, string b) {
int lenl = a.size();
int len2 = b.size();
if(lenl == 0)
return b;
if(len2 == 0)
return a;

string ret;

int carry = 0;

int index1 = leni1-1;
int index2 = len2-1;

while(index1l >=0 && index2 >= 0)

int num = (a[index1]-'0")+(b[index2]-

‘0")+carry;

carry = num/2;

num = num%~;

index1--;

index2--;

ret.insert(ret.begin(),num+'0");

3
if(index1l < 0&& index2 < 0)
{

if(carry == 1)

{
ret.insert(ret.begin(),carry+'0"');
return ret;

}

by
while(index1l >= 0)
{

int num = (a[index1]-'0')+carry;

carry = num/2;

num = num%2;

index1--;

ret.insert(ret.begin(),num+'0");

by
while(index2 >= 0)
{

int num = (b[index2]-'0")+carry;

carry = num/2;

num = num%Z2;

index2--;

ret.insert(ret.begin(),num+'0");

b

if(carry == 1)

I

ret.insert(ret.begin(),carry+'0");
return ret,

Basic Calculator Il

Implement a basic calculator to evaluate a simple expression string. The
expression string contains only non-negative integers, +, -, *, /
operators and empty spaces . The integer division should truncate toward
zero. You may assume that the given expression is always valid. Some
examples:

||3+2*2|| — 7
n 3/2 n
"3+5 / 2 " =5

Note: Do not use the eval built-in library function.

MEEFE: TR ARMHIOTERERARENFHEREINRKME o FH S RE KX
ROESENERE »+ -0 * [OFFBEF > AR TR o BREMILGERLE o 48
EIX A AF K o REAFA B Heval Kk o

A B oA A AR R X CRAEAR R AR LI o 2R E T AR E AR
B0 FTATATRAARER o EFRERZ RRBEAFHB LT BB FFH
MR #AITER - R ERGE R ERBATRATE » R T FERIeE R
BARGEGER o

FC++E A 1% » TTAEPEIRFAL A string £89 find_first_not_of 7 k%
BhF B o EERFE 0 BEEEE BAFARTFONFR > IFBEFHERE
Ak o

RAL 4 T

class Solution {
public:
int calculate(string s) {
int result = 0, inter_res = 0, num = 0;
char op = '+';
char ch;
for (int pos = s.find_first_not_of(' '); pos <

s.size(); pos = s.find_first_not_of(' ', pos)) {

ch = s[pos];
if (ch >= '0' & ch <= '9") {
int num = ch - '0";

while (++pos < s.size() && s[pos] >= '0O'
&& s[pos] <= '9")
num = num * + s[pos] - '0';
switch (op) {
case '+':
inter_res += num;
break;
case '-':
inter_res -= num;
break;
case '*':
inter_res *= num;

break;
case '/':
inter_res /= num;
break;
b
}
else {
if (ch == "+" || ch == "-") {
result += inter_res;
inter_res = 0;
¥
op = s[pos++];
}

}

return result + inter_res;

Y

Basic Calculator Il

225

	Introduction
	Array
	Remove Element
	Remove Duplicates from Sorted Array
	Plus One
	Pascal's Triangle
	Merge Sorted Array
	Sum
	Find Minimum in Rotated Sorted Array
	Largest Rectangle in Histogram
	Maximal Rectangle
	Palindrome Number
	Search a 2D Matrix
	Search for a Range
	Search Insert Position
	Find Peak Element

	Bit Manipulation
	Missing Number
	Power of Two
	Number of 1 Bits

	Tree
	Depth of Binary Tree
	Construct Binary Tree
	Binary Tree Level Order Traversal
	Symmetric Tree
	Same Tree
	Balanced Binary Tree
	Path Sum
	Binary Tree Depth Order Traversal
	Populating Next Right Pointers in Each Node
	Convert Sorted List/Array to Binary Search Tree
	Path Sum II
	Flatten Binary Tree to Linked List
	Validate Binary Search Tree
	Recover Binary Search Tree
	Binary Tree Path
	Sum Root to Leaf Numbers

	Dynamic Programming
	Best Time To Buy And Sell Stock
	Unique Paths
	Maximum Subarray
	Climbing Stairs
	Triangle
	Unique Binary Search Trees
	Perfect Squares

	Backtracking
	Combination
	Subsets
	Permutation

	Greedy
	Jump Game
	Gas Station
	Candy
	Word Break

	Linked List
	Linked List Cycle
	Remove Duplicates from Sorted List
	Merge Sorted Lists
	Reverse Linked List
	Swap Nodes in Pairs
	Sort List
	Rotate List
	Reorder List
	Partition List
	Add Two Numbers
	Copy List with Random Pointer

	Math
	Reverse Integer

	String
	Add Binary
	Basic Calculator II

