
2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 5/31

分享到： 微博 微信 Facebook Twitter 有道云笔记 邮件分享

AWS
AICon
APICloud
PTC

全部话题
您目前处于： InfoQ首页 文章 理解本真的REST架构风格

理解本真的REST架构风格

 | 作者 发布于 2013年8月26日. 估计阅读时间: 29 分钟 | QCon北京2018全面起航：

开启与Netflix、微软、ThoughtWorks等公司的技术创新之路！ 30 讨论

"稍后阅读"
"我的阅读清单"

亲爱的读者：我们最近添加了一些个人消息定制功能，您只需选择感兴趣的技术主题，即可获取重
要资讯的邮件和网页通知。

本文是“深入探索REST”专栏系列深度内容中的第二篇，它将带您领略REST架构的起源、与Web的
关系、REST架构的本质及特性，以及REST架构与其他架构风格之间的比较。

引子

在移动互联网、云计算迅猛发展的今天，作为一名Web开发者，如果您还没听说过“REST”这个
buzzword，显然已经落伍了。夸张点说，甚至“出了门都不好意思跟别人打招呼”。尽管如此，对
于REST这个泊来品的理解，大多数人（包括一些资深的架构师）仍然停留在“盲人摸象”的阶段。
常常听到各种各样关于REST的说法，例如：有人说：“我们这套新的API决定不用Web
Service（SOAP+WSDL），而是直接使用HTTP+JSON，也就是用RESTful的方式来开发。” 不用
SOAP，甚至也不用XML，就自动变成了RESTful了。还有人认为：REST与传统的Web Service其实
没有本质区别，只是对于URI的构造方式提出了更多要求，而这些要求Web Service完全都可以实
现。潜台词是：既生瑜，何生亮。Web Service已经足够好了，干嘛还要再折腾什么REST。这些对
于REST的不同说法，果真如此吗？REST究竟是什么？是一种新的技术、一种新的架构、还是一种新
的规范？

对于这些问题笔者先不解答，为了深入理解REST是什么，我们需要回顾一下Web发展的最初年代，
从源头上讲讲REST是怎么得来的。

Web技术发展与REST的由来

李锟 喜欢

http://www.infoq.com/cn/zones/aws?utm_source=infoq&utm_medium=header_graybar&utm_campaign=topic_clk
https://aicon.geekbang.org/?utm_source=InfoQ&utm_medium=graybar?utm_source=infoq&utm_medium=header_graybar&utm_campaign=topic_clk
https://www.bagevent.com/event/1004907?bag_track=daohanglan?utm_source=infoq&utm_medium=header_graybar&utm_campaign=APICloud
https://www.geekbang.org/page/ptc.html?utm_source=infoq&utm_medium=header_graybar&utm_campaign=PTC
http://www.infoq.com/cn/topics
http://www.infoq.com/cn?utm_source=infoq&utm_medium=breadcrumbs_feature&utm_campaign=breadcrumbs
http://www.infoq.com/cn/articles?utm_source=infoq&utm_medium=breadcrumbs_feature&utm_campaign=breadcrumbs
http://2018.qconbeijing.com/?utm_source=infoq&utm_campaign=7&utm_medium=notices&utm_term=1205
http://www.infoq.com/cn/articles/understanding-restful-style
http://www.infoq.com/cn/showbookmarks.action
http://www.infoq.com/cn/rest-deep-dive
http://www.infoq.com/cn/profile/%E6%9D%8E%E9%94%9F
javascript:void(0);

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 6/31

Web（万维网World Wide Web的简称）是个包罗万象的万花筒，不同的人从不同的角度观察，对
于Web究竟是什么会得出大不相同的观点。作为Web开发者，我们需要从技术上来理解Web。从技
术架构层面上看，Web的技术架构包括了四个基石：

URI
HTTP
HyperText（除了HTML外，也可以是带有超链接的XML或JSON）
MIME

这四个基石相互支撑，促使Web这座宏伟的大厦以几何级数的速度发展了起来。在这四个基石之
上，Web开发技术的发展可以粗略划分成以下几个阶段：

1. 静态内容阶段：在这个最初的阶段，使用Web的主要是一些研究机构。Web由大量的静态
HTML文档组成，其中大多是一些学术论文。Web服务器可以被看作是支持超文本的共享文件
服务器。

2. CGI程序阶段：在这个阶段，Web服务器增加了一些编程API。通过这些API编写的应用程序，
可以向客户端提供一些动态变化的内容。Web服务器与应用程序之间的通信，通过
CGI（Common Gateway Interface）协议完成，应用程序被称作CGI程序。

3. 脚本语言阶段：在这个阶段，服务器端出现了ASP、PHP、JSP、ColdFusion等支持session的
脚本语言技术，浏览器端出现了Java Applet、JavaScript等技术。使用这些技术，可以提供更
加丰富的动态内容。

4. 瘦客户端应用阶段：在这个阶段，在服务器端出现了独立于Web服务器的应用服务器。同时出
现了Web MVC开发模式，各种Web MVC开发框架逐渐流行，并且占据了统治地位。基于这
些框架开发的Web应用，通常都是瘦客户端应用，因为它们是在服务器端生成全部的动态内
容。

5. RIA应用阶段：在这个阶段，出现了多种RIA（Rich Internet Application）技术，大幅改善了
Web应用的用户体验。应用最为广泛的RIA技术是DHTML+Ajax。Ajax技术支持在不刷新页面
的情况下动态更新页面中的局部内容。同时诞生了大量的Web前端DHTML开发库，例如
Prototype、Dojo、ExtJS、jQuery/jQuery UI等等，很多开发库都支持单页面应用（Single
Page Application）的开发。其他的RIA技术还有Adobe公司的Flex、微软公司的Silverlight、
Sun公司的JavaFX（现在为Oracle公司所有）等等。

6. 移动Web应用阶段：在这个阶段，出现了大量面向移动设备的Web应用开发技术。除了
Android、iOS、Windows Phone等操作系统平台原生的开发技术之外，基于HTML5的开发
技术也变得非常流行。

从上述Web开发技术的发展过程看，Web从最初其设计者所构思的主要支持静态文档的阶段，逐渐
变得越来越动态化。Web应用的交互模式，变得越来越复杂：从静态文档发展到以内容为主的门户
网站、电子商务网站、搜索引擎、社交网站，再到以娱乐为主的大型多人在线游戏、手机游戏。

在互联网行业，实践总是走在理论的前面。Web发展到了1995年，在CGI、ASP等技术出现之后，
沿用了多年、主要面向静态文档的HTTP/1.0协议已经无法满足Web应用的开发需求，因此需要设计
新版本的HTTP协议。在HTTP/1.0协议专家组之中，有一位年轻人脱颖而出，显示出了不凡的洞察
力，后来他成为了HTTP/1.1协议专家组的负责人。这位年轻人就是Apache HTTP服务器的核心开发
者Roy Fielding，他还是Apache软件基金会的合作创始人。

Roy Fielding和他的同事们在HTTP/1.1协议的设计工作中，对于Web之所以取得巨大成功，在技术
架构方面的因素做了一番深入的总结。Fielding将这些总结纳入到了一套理论框架之中，然后使用这
套理论框架中的指导原则，来指导HTTP/1.1协议的设计方向。HTTP/1.1协议的第一个草稿是在
1996年1月发布的，经过了三年多时间的修订，于1999年6月成为了IETF的正式规范（包括了RFC
2616以及用于对客户端做身份认证的RFC 2617）。HTTP/1.1协议设计的极为成功，以至于发布之
后整整10年时间里，都没有多少人认为有修订的必要。用来指导HTTP/1.1协议设计的这套理论框

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 7/31

架，最初是以备忘录的形式在专家组成员之间交流，除了IETF/W3C的专家圈子，并没有在外界广泛
流传。Fielding在完成HTTP/1.1协议的设计工作之后，回到了加州大学欧文分校继续攻读自己的博
士学位。第二年（2000年）在他的博士学位论文Architectural Styles and the Design of
Network-based Software Architectures中，Fielding更为系统、严谨地阐述了这套理论框架，并
且使用这套理论框架推导出了一种新的架构风格，并且为这种架构风格取了一个令人轻松愉快的名
字“REST”——Representational State Transfer（表述性状态转移）的缩写。

在笔者看来，Fielding这篇博士论文在Web发展史上的价值，不亚于Web之父Tim Berners-Lee关于
超文本的那篇经典论文。然而遗憾的是，这篇博士论文在诞生之后的将近5年时间里，一直没有得到
足够的重视。例如Web Service相关规范SOAP/WSDL的设计者们，显然不大理解REST是什么，
HTTP/1.1究竟是一个什么样的协议、为何要设计成这个样子。

这种情况在2005年之后有了很大的改善，随着Ajax、Ruby on Rails等新的Web开发技术的兴起，在
Web开发技术社区掀起了一场重归Web架构设计本源的运动，REST架构风格得到了越来越多的关
注。在2007年1月，支持REST开发的Ruby on Rails 1.2版正式发布，并且将支持REST开发作为Rails
未来发展中的优先内容。Ruby on Rails的创始人DHH做了一个名为“World of Resources”的精
彩演讲，DHH在Web开发技术社区中的强大影响力，使得REST一下子处在Web开发技术舞台的聚
光灯之下。

今天，各种流行的Web开发框架，几乎没有不支持REST开发的了。大多数Web开发者都是通过阅读
某种REST开发框架的文档，以及通过一些例子代码来学习REST开发的。然而，通过例子代码来学习
REST有非常大的局限性。因为REST并不是一种具体的技术，也不是一种具体的规范，REST其实是
一种内涵非常丰富的架构风格。通过例子代码来学习REST，除了学习到一种有趣的Web开发技术之
外，并不能全面深入的理解REST究竟是什么。甚至还会误以为这些简单的例子代码就是REST本身，
REST不过是一种简单的Web开发技术而已。就像盲人摸象一样，有的人摸到了象鼻子、有的人摸到
了象耳朵、有的人摸到了象腿、有的人摸到了象尾巴。他们都坚信自己感觉到的大象，才是最真实
的大象，而其他人的感觉都是错误的。

对于不理解REST的Web开发者，人们习惯于展示一些例子代码来让他们理解REST，笔者不赞同上述
做法。如果Web开发者想要深入理解REST是什么，就很难避开Fielding的这篇博士论文。笔者在本
文中对于REST是什么的介绍，也是基于Fielding的博士论文的。尽管如此，笔者强烈建议本文的读
者亲自去通读一下Fielding的博士论文，就像想要了解孔子的思想应该直接去读《论语》等著作，而
不是首先去读其他人的转述一样。笔者在本文中也仅仅是努力不做一个把经书念错了的歪嘴和尚而
已。那么，下面我们言归正传。

在Fielding的这篇名为Architectural Styles and the Design of Network-based Software
Architectures的博士论文（中文版名为《架构风格与基于网络的软件架构设计》）中，提出了一整
套基于网络的软件（即所谓的“分布式应用”）的设计方法，值得所有分布式应用的开发者仔细阅
读、深入体会。

在论文的前三章中，Fielding在批判性继承前人研究成果的基础上，建立起来一整套研究和评价软件
架构的方法论。这套方法论的核心是“架构风格”这个概念。架构风格是一种研究和评价软件架构
设计的方法，它是比架构更加抽象的概念。一种架构风格是由一组相互协作的架构约束来定义的。
架构约束是指软件的运行环境施加在架构设计之上的约束。

在论文的第四章中，Fielding研究了Web这样一个分布式系统对于软件架构设计提出了哪些需求。
在第五章中，Fielding将第四章Web提出的需求具体化为一些架构约束，通过逐步添加各种架构约
束，推导出来了REST这种新的架构风格。

REST架构风格的推导过程如下图所示：

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 8/31

图1：REST所继承的架构风格约束（原图可在这里下载）

在图1中，每一个椭圆形里面的缩写词代表了一种架构风格，而每一个箭头边的单词代表了一种架构
约束。

REST架构风格最重要的架构约束有6个：

客户-服务器（Client-Server）

通信只能由客户端单方面发起，表现为请求-响应的形式。

无状态（Stateless）

通信的会话状态（Session State）应该全部由客户端负责维护。

缓存（Cache）

响应内容可以在通信链的某处被缓存，以改善网络效率。

统一接口（Uniform Interface）

通信链的组件之间通过统一的接口相互通信，以提高交互的可见性。

分层系统（Layered System）

通过限制组件的行为（即，每个组件只能“看到”与其交互的紧邻层），将架构分解为若干等级的
层。

按需代码（Code-On-Demand，可选）

支持通过下载并执行一些代码（例如Java Applet、Flash或JavaScript），对客户端的功能进行扩
展。

在论文中推导出的REST架构风格如下图所示：

图2：REST架构风格（原图可在这里下载）

http://infoqstatic.com/resource/articles/understanding-restful-style/zh/resources/restrest.zip
http://infoqstatic.com/resource/articles/understanding-restful-style/zh/resources/restrest.zip

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 9/31

而HTTP/1.1协议作为一种REST架构风格的架构实例，其架构如下图所示：

图3：一个基于REST的架构的过程视图（原图可在这里下载）

用户代理处在三个并行交互（a、b和c）的中间。用户代理的客户端连接器缓存无法满足请求，因此
它根据每个资源标识符的属性和客户端连接器的配置，将每个请求路由到资源的来源。请求（a）被
发送到一个本地代理，代理随后访问一个通过DNS查找发现的缓存网关，该网关将这个请求转发到
一个能够满足该请求的来源服务器，服务器的内部资源由一个封装过的对象请求代理（object
request broker）架构来定义。请求（b）直接发送到一个来源服务器，它能够通过自己的缓存来满
足这个请求。请求（c）被发送到一个代理，它能够直接访问WAIS（一种与Web架构分离的信息服
务），并将WAIS的响应翻译为一种通用的连接器接口能够识别的格式。每一个组件只知道与它们自
己的客户端或服务器连接器的交互；整个过程拓扑是我们的视图的产物。

通过比较图2和图3，读者不难发现这两张图中的架构是高度一致的。对于HTTP/1.1协议为何要设计
成这个样子，读者想必已经有所领悟。

在论文的第六章中，Fielding对于到2000年为止在Web基础架构协议的设计和开发方面的一些经验
教训进行了深入的分析。其中，“HTTP不是RPC”、“HTTP不是一种传输协议”两部分值得读者
反复阅读。时至13年之后的今日，对于HTTP协议的误解仍然广泛存在。

以上简要介绍了Fielding博士论文中的内容。为了帮助读者仔细阅读Fielding的博士论文，笔者整理
了一套Fielding博士论文的导读，将在本专栏后续文章中载出。

REST详解

REST究竟是什么？因为REST的内涵非常丰富，所以很难用一两句话解释清楚这个问题。

首先，REST是Web自身的架构风格。REST也是Web之所以取得成功的技术架构方面因素的总结。
REST是世界上最成功的分布式应用架构风格（成功案例：Web，还不够吗？）。它是为 运行在互联

http://infoqstatic.com/resource/articles/understanding-restful-style/zh/resources/restrest.zip
http://www.infoq.com/cn/rest-deep-dive

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 10/31

网环境 的 分布式 超媒体系统量身定制的。互联网环境与企业内网环境有非常大的差别，最主要的
差别是两个方面：

可伸缩性需求无法控制：并发访问量可能会暴涨，也可能会暴跌。

安全性需求无法控制：无法控制客户端发来的请求的格式，很可能会是恶意的请求。

而所谓的“超媒体系统”，即，使用了超文本的系统。可以把“超媒体”理解为超文本+媒体内容。

REST是HTTP/1.1协议等Web规范的设计指导原则，HTTP/1.1协议正是为实现REST风格的架构而设
计的。新的Web规范，其设计必须符合REST的要求，否则整个Web的体系架构会因为引入严重矛盾
而崩溃。这句话不是危言耸听，做个类比，假如苏州市政府同意在市区著名园林的附近大型土木，
建造大量具有后现代风格的摩天大楼，那么不久之后世界闻名的苏州园林美景将不复存在。

上述这些关于“REST是什么”的描述，可以总结为一句话：REST是所有Web应用都应该遵守的架构
设计指导原则。当然，REST并不是法律，违反了REST的指导原则，仍然能够实现应用的功能。但是
违反了REST的指导原则，会付出很多代价，特别是对于大流量的网站而言。

要深入理解REST，需要理解REST的五个关键词：

1. 资源（Resource）
2. 资源的表述（Representation）
3. 状态转移（State Transfer）
4. 统一接口（Uniform Interface）
5. 超文本驱动（Hypertext Driven）

什么是资源？

资源是一种看待服务器的方式，即，将服务器看作是由很多离散的资源组成。每个资源是服务器上
一个可命名的抽象概念。因为资源是一个抽象的概念，所以它不仅仅能代表服务器文件系统中的一
个文件、数据库中的一张表等等具体的东西，可以将资源设计的要多抽象有多抽象，只要想象力允
许而且客户端应用开发者能够理解。与面向对象设计类似，资源是以名词为核心来组织的，首先关
注的是名词。一个资源可以由一个或多个URI来标识。URI既是资源的名称，也是资源在Web上的地
址。对某个资源感兴趣的客户端应用，可以通过资源的URI与其进行交互。

什么是资源的表述？

资源的表述是一段对于资源在某个特定时刻的状态的描述。可以在客户端-服务器端之间转移（交
换）。资源的表述可以有多种格式，例如HTML/XML/JSON/纯文本/图片/视频/音频等等。资源的
表述格式可以通过协商机制来确定。请求-响应方向的表述通常使用不同的格式。

什么是状态转移？

状态转移（state transfer）与状态机中的状态迁移（state transition）的含义是不同的。状态转移
说的是：在客户端和服务器端之间转移（transfer）代表资源状态的表述。通过转移和操作资源的表
述，来间接实现操作资源的目的。

什么是统一接口？

REST要求，必须通过统一的接口来对资源执行各种操作。对于每个资源只能执行一组有限的操作。
以HTTP/1.1协议为例，HTTP/1.1协议定义了一个操作资源的统一接口，主要包括以下内容：

7个HTTP方法：GET/POST/PUT/DELETE/PATCH/HEAD/OPTIONS

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 11/31

HTTP头信息（可自定义）

HTTP响应状态代码（可自定义）

一套标准的内容协商机制

一套标准的缓存机制

一套标准的客户端身份认证机制

REST还要求，对于资源执行的操作，其操作语义必须由HTTP消息体之前的部分完全表达，不能将操
作语义封装在HTTP消息体内部。这样做是为了提高交互的可见性，以便于通信链的中间组件实现缓
存、安全审计等等功能。

什么是超文本驱动？

“超文本驱动”又名“将超媒体作为应用状态的引擎”（Hypermedia As The Engine Of
Application State，来自Fielding博士论文中的一句话，缩写为HATEOAS）。将Web应用看作是一
个由很多状态（应用状态）组成的有限状态机。资源之间通过超链接相互关联，超链接既代表资源
之间的关系，也代表可执行的状态迁移。在超媒体之中不仅仅包含数据，还包含了状态迁移的语
义。以超媒体作为引擎，驱动Web应用的状态迁移。通过超媒体暴露出服务器所提供的资源，服务
器提供了哪些资源是在运行时通过解析超媒体发现的，而不是事先定义的。从面向服务的角度看，
超媒体定义了服务器所提供服务的协议。客户端应该依赖的是超媒体的状态迁移语义，而不应该对
于是否存在某个URI或URI的某种特殊构造方式作出假设。一切都有可能变化，只有超媒体的状态迁
移语义能够长期保持稳定。

一旦读者理解了上述REST的五个关键词，就很容易理解REST风格的架构所具有的6个的主要特征：

面向资源（Resource Oriented）

可寻址（Addressability）

连通性（Connectedness）

无状态（Statelessness）

统一接口（Uniform Interface）

超文本驱动（Hypertext Driven）

这6个特征是REST架构设计优秀程度的判断标准。其中，面向资源是REST最明显的特征，即，REST
架构设计是以资源抽象为核心展开的。可寻址说的是：每一个资源在Web之上都有自己的地址。连
通性说的是：应该尽量避免设计孤立的资源，除了设计资源本身，还需要设计资源之间的关联关
系，并且通过超链接将资源关联起来。无状态、统一接口是REST的两种架构约束，超文本驱动是
REST的一个关键词，在前面都已经解释过，就不再赘述了。

从架构风格的抽象高度来看，常见的分布式应用架构风格有三种：

分布式对象（Distributed Objects，简称DO）

架构实例有CORBA/RMI/EJB/DCOM/.NET Remoting等等

远程过程调用（Remote Procedure Call，简称RPC）

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 12/31

架构实例有SOAP/XML-RPC/Hessian/Flash AMF/DWR等等

表述性状态转移（Representational State Transfer，简称REST）

架构实例有HTTP/WebDAV

DO和RPC这两种架构风格在企业应用中非常普遍，而REST则是Web应用的架构风格，它们之间有
非常大的差别。

REST与DO的差别在于：

REST支持抽象（即建模）的工具是资源，DO支持抽象的工具是对象。在不同的编程语言中，
对象的定义有很大差别，所以DO风格的架构通常都是与某种编程语言绑定的。跨语言交互即
使能实现，实现起来也会非常复杂。而REST中的资源，则完全中立于开发平台和编程语言，可
以使用任何编程语言来实现。

DO中没有统一接口的概念。不同的API，接口设计风格可以完全不同。DO也不支持操作语义
对于中间组件的可见性。

DO中没有使用超文本，响应的内容中只包含对象本身。REST使用了超文本，可以实现更大粒
度的交互，交互的效率比DO更高。

REST支持数据流和管道，DO不支持数据流和管道。

DO风格通常会带来客户端与服务器端的紧耦合。在三种架构风格之中，DO风格的耦合度是最
大的，而REST的风格耦合度是最小的。REST松耦合的源泉来自于统一接口+超文本驱动。

REST与RPC的差别在于：

REST支持抽象的工具是资源，RPC支持抽象的工具是过程。REST风格的架构建模是以名词为
核心的，RPC风格的架构建模是以动词为核心的。简单类比一下，REST是面向对象编程，RPC
则是面向过程编程。

RPC中没有统一接口的概念。不同的API，接口设计风格可以完全不同。RPC也不支持操作语
义对于中间组件的可见性。

RPC中没有使用超文本，响应的内容中只包含消息本身。REST使用了超文本，可以实现更大粒
度的交互，交互的效率比RPC更高。

REST支持数据流和管道，RPC不支持数据流和管道。

因为使用了平台中立的消息，RPC风格的耦合度比DO风格要小一些，但是RPC风格也常常会
带来客户端与服务器端的紧耦合。支持统一接口+超文本驱动的REST风格，可以达到最小的耦
合度。

比较了三种架构风格之间的差别之后，从面向实用的角度来看，REST架构风格可以为Web开发者带
来三方面的利益：

简单性

采用REST架构风格，对于开发、测试、运维人员来说，都会更简单。可以充分利用大量HTTP服务器
端和客户端开发库、Web功能测试/性能测试工具、HTTP缓存、HTTP代理服务器、防火墙。这些开
发库和基础设施早已成为了日常用品，不需要什么火箭科技（例如神奇昂贵的应用服务器、中间
件）就能解决大多数可伸缩性方面的问题。

2017/12/27 理解本真的REST架构风格

http://www.infoq.com/cn/articles/understanding-restful-style 13/31

相关主题:

可伸缩性

充分利用好通信链各个位置的HTTP缓存组件，可以带来更好的可伸缩性。其实很多时候，在Web前
端做性能优化，产生的效果不亚于仅仅在服务器端做性能优化，但是HTTP协议层面的缓存常常被一
些资深的架构师完全忽略掉。

松耦合

统一接口+超文本驱动，带来了最大限度的松耦合。允许服务器端和客户端程序在很大范围内，相对
独立地进化。对于设计面向企业内网的API来说，松耦合并不是一个很重要的设计关注点。但是对于
设计面向互联网的API来说，松耦合变成了一个必选项，不仅在设计时应该关注，而且应该放在最优
先位置。

有的读者可能会问：“你说了这么多，REST难道就没有任何缺点了吗？”当然不是，正如Fielding
在博士论文中阐述的那样，评价一种软件架构的优劣，不能脱离开软件的具体运行环境。永远不存
在适用于任何运行环境的、包治百病的银弹式架构。笔者在前面强调过REST是一种为运行在互联网
环境中的Web应用量身定制的架构风格。REST在互联网这个运行环境之中已经占据了统治地位，然
而，在企业内网运行环境之中，REST还会面临DO、RPC的巨大挑战。特别是一些对实时性要求很高
的应用，REST的表现不如DO和RPC。所以需要针对具体的运行环境来具体问题具体分析。但是，
REST可以带来的上述三方面的利益即使在开发企业应用时，仍然是非常有价值的。所以REST在企业
应用开发，特别是在SOA架构的开发中，已经得到了越来越大的重视。本专栏将有一篇文章专门介
绍REST在企业级应用中与SOA的结合。

到了这里，“REST究竟是什么”这个问题笔者就解答完了。本文开头那些说法是否正确，笔者还是
笑而不语，读者此时应该已经有了自己的判断。在接下来的REST系列文章中，我将会为读者澄清一
些关于HTTP协议和REST的常见误解。

参考资料：

Roy Fielding博士论文英文版

Roy Fielding博士论文中文版

HTTP/1.1协议RFC2616、RFC2617

感谢马国耀对本文的策划和审校。

关注IT趋势，承载前沿、深入、有温度的内容。感兴趣的读者可以搜索ID：laocuixiabian，或者扫
描下方二维码加关注。

告诉我们您的想法

架构 & 设计 深入探索REST 架构 Web API Web服务 企业架构 API SOA REST

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.infoq.com/cn/minibooks/dissertation-rest-cn
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.infoq.com/cn/author/%E9%A9%AC%E5%9B%BD%E8%80%80
http://www.infoq.com/cn/architecture-design
http://www.infoq.com/cn/rest-deep-dive
http://www.infoq.com/cn/architecture
http://www.infoq.com/cn/WebAPI
http://www.infoq.com/cn/webservices
http://www.infoq.com/cn/enterprise-architecture
http://www.infoq.com/cn/API
http://www.infoq.com/cn/soa
http://www.infoq.com/cn/rest

