
 Spring Cloud微服务开发实践 / 5-2 15 Feign 中的继承、日志与数据压缩

15 Feign 中的继承、日志与数据压缩
更新时间：2019-06-21 09:37:43

上篇文章和大家分享了声明式微服务调用组件 Feign 的基本用法，相信大家已经了解到使用 Feign 的好处了，使用

Feign 有效地解决了使用 RestTemplate 时的代码模板化的问题，使服务之间的调用更加简单方便，同时也不易出

错。不过，细心的读者可能也发现，上篇文章中我们学的 Feign 还是有一些明显的缺陷，例如，当我们在 provider

中定义接口时，可能是下面这样：

然后在 feign-consumer 中定义接口的调用，又是下面这样：

这两段代码其实也有部分重复了，例如接口的定义、请求参数绑定、方法返回值等，都是一样的，只是一个有接口

的具体实现，一个没有具体实现而已。这些相同的代码如果写错了，还有可能导致调用失败，例如 provider 中写了

@GetMapping("/hello") ，而 feign-consumer 中写了 @GetMapping("/hello2") ，此时就会调用失败，那么如何避免

这些问题呢？这就要使用到我们本文介绍到的 Feign 的继承特性。另外，Feign 中的操作日志可以帮助我们快速定

位问题，数据压缩特性又能够提高数据传输效率，这些知识点，我将在本文和大家分享。

理想的书籍是智慧的钥匙。
——列夫·托尔斯泰

@RestController
public class HelloController {
 @GetMapping("/hello")
 public String hello(String name) {
 return "hello " + name + " !";
 }
}

@FeignClient("provider")
public interface HelloService {
 @GetMapping("/hello")
 String hello(@RequestParam("name") String name);
}

file:///read
file:///read/37
file:///read/37/article/444
file:///read/37/article/446

准备工作

和前面的文章一样，我们需要先做一些准备工作。首先创建一个名为 FeignAdvanced 的父工程，然后在父工程中创

建一个子模块 eureka 服务注册中心并启动，具体的操作步骤我这里就不再赘述，大家要是忘记了，可以参考上一

章的第一小节。

然后再在 FeignAdvanced 工程中创建一个子模块 commons。注意，这个子模块是一个 Maven 工程，而不是

Spring Boot 工程，因为这个模块我只是用它来提供公共接口。

commons 模块创建成功后，因为要在 commons 模块中使用 SpringMVC 的一整套东西，方便起见，在 commons

模块的 pom.xml 文件中添加如下依赖：

添加成功后，再在 commons 中添加一个 HelloService 接口：

在这个 HelloService 接口中，我们会将前面提到的 provider 和 feign-consumer 中公共的部分抽取出来定义在这

里，然后在 provider 中调用这个接口，在 feign-consumer 中实现这个接口。

好了， HelloService 接口定义完成后，我们的准备工作就算是OK啦，接下来我们就来看看具体的继承特性要如何

去实现。

继承特性

Feign 中继承，我们整体可以分两步来实现：

1. 在 provider 中实现公共接口；

2. 在 feign-consumer 中去调用接口。

我们分别来看。

在 provider 中实现接口

首先创建一个 provider 微服务项目，创建成功后，将刚刚创建的 commons 项目的依赖添加进来，完整的 pom.xml

文件如下：

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <version>2.1.3.RELEASE</version>
</dependency>

public interface HelloService {
 @GetMapping("/hello")
 String hello(@RequestParam("name") String name);
}

然后修改 provider 的配置文件，将 provider 微服务注册到 eureka 服务注册中心上，这一步也比较简单，不赘述。

接下来，我们在 provider 中定义一个 HelloController 来实现 commons 模块中的 HelloService 接口，如下：

做完这一切之后，就可以启动 provider 啦！ provider 启动成功后，我们来继续开发 feign-consumer 。

在 feign-consumer 中调用接口

接下来我们在 FeignAdvanced 工程中再创建一个子模块 feign-consumer ，注意创建时候除了选择 Eureka

Discovering 依赖之外，还需要选择 Feign 的依赖，具体步骤和上文一致，如下图：

项目创建成功后，也将 commons 模块加入到 pom.xml 文件中，如下：

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
 <groupId>com.justdojava</groupId>
 <artifactId>commons</artifactId>
 <version>1.0-SNAPSHOT</version>
</dependency>

@RestController
public class HelloController implements HelloService {
 @Override
 public String hello(String name) {
 return "hello " + name + " !";
 }
}

然后修改 feign-consumer 的配置文件 application.properties ，将 feign-consumer 注册到 eureka 服务注册中心上，

这一步就比较简单，我这里就不再赘述。

接下来，和前面的步骤一样，在项目的启动类上添加 @EnableFeignClients 注解，开启 Feign 的使用：

再接下来创建的 FeignHelloService 接口继承自 HelloSerivce 接口，如下：

注意，不同于上篇文章中的 HelloService 接口，这里的 FeignHelloService 接口直接继承自 HelloSerivce ，继承之

后， FeignHelloService 自动具备了 HelloService 中的接口，因此可以在使用 @FeignClient(“PROVIDER”) 注解绑

定服务之后就可以直接使用了。

最后，我们来创建一个 UseHelloController，在 UseHelloController 中来使用 FeignHelloService，如下：

配置完成后，启动 feign-consumer ，在浏览器中就可以访问 feign-consumer 了，通过 feign-consumer 就能调用

provider 的服务了。

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
<dependency>
 <groupId>com.justdojava</groupId>
 <artifactId>commons</artifactId>
 <version>1.0-SNAPSHOT</version>
</dependency>

@SpringBootApplication
@EnableFeignClients
public class FeignConsumerApplication {

 public static void main(String[] args) {
 SpringApplication.run(FeignConsumerApplication.class, args);
 }

}

@FeignClient("PROVIDER")
public interface FeignHelloService extends HelloService {
}

@RestController
public class UseHelloController {
 @Autowired
 FeignHelloService feignHelloService;
 @GetMapping("/hello")
 public String hello(String name) {
 return feignHelloService.hello(name);
 }
}

优缺点分析

通过上面案例的搭建，相信大家对 Feign 的继承特性已经有了一个大致的了解，那么这种写法和上篇文章我们的写

法各自有什么优缺点呢？我们来分析下：

1. 使用继承特性，代码简洁明了，不易出错，不必担心接口返回值是否写对，接口地址是否写对。如果接口地址有

变化，也不用 provider 和 feign-consumer 大动干戈，只需要修改 commons 模块即可，provider 和 feign-

consumer 就自然变了；

2. 前面提到的在 feign-consumer 中绑定接口时，如果是 key/value 形式的参数或者放在 header 中的参数，就必须

要使用 @RequestParam 注解或者 @RequestHeader 注解，这个规则在这里一样适用。即在 commons 中定义

接口时，如果涉及到相关参数，该加的@RequestParam 注解或者 @RequestHeader 注解一个都不能少；

3. 当然，使用了继承特性也不是没有缺点。继承的方式将 provider 和 feign-consumer 绑定在一起，代码耦合度变

高，一变俱变，此时就需要严格的设计规范，否则会牵一发而动全身，增加项目维护的难度。

好了，通过上面这样一个简单的案例，相信大家对 Feign 的继承特性已经有所了解。

日志配置

使用了 Feign 之后，如果希望能够查看微服务之间调用的日志，则可以通过开启 Feign 的日志功能实现， Feign 中

的日志级别一共分为四种：

1. NONE ，不开启日志记录，默认即此；

2. BASIC ，记录请求方法和请求 URL ，以及响应的状态码以及执行时间；

3. HEADERS ，在第2条的基础上，再增加请求头和响应头；

4. FULL ，在第3条的基础上再增加 body 以及元数据。

那么具体的配置是怎样的呢？很简单，首先在配置类中配置一个日志级别的 Bean ，我这里直接放在系统启动类

中，如下：

然后在 application.properties 中开启日志级别。注意， Feign 中的日志只对 DEBUG 级别的日志输出进行响应：

这里 logging.level 是指日志级别的前缀，com.justdojava.feignconsumer.FeignHelloService 表示该 class 以 debug

级别输出日志。当然，类路径也可以是一个 package ，这样就表示该 package 下的所有 class 以 debug 级别输出

日志。配置完成后，重启 feign-consumer 项目，访问其中任意一个接口，就可以看到请求日志，如下：

@SpringBootApplication
@EnableFeignClients
public class FeignConsumerApplication {

 public static void main(String[] args) {
 SpringApplication.run(FeignConsumerApplication.class, args);
 }

 @Bean
 Logger.Level loggerLevel() {
 return Logger.Level.FULL;
 }
}

logging.level.com.justdojava.feignconsumer.FeignHelloService=debug

 14 声明式服务调用 Feign 16 Resilience4j 基本用法详解

数据压缩

使用 Feign 执行请求时，也可以对请求数据执行 GZIP 压缩，提高数据传输效率。具体配置如下：

前两行表示开启请求和响应压缩，第三行表示压缩的数据类型，默认是 text/html,application/json,application/xml ，

第四行表示压缩数据的下限，即当要传输的数据大于2048时才需要对请求进行压缩。

请求重试

Feign 中默认也自带请求重试功能，即这里不需要添加 spring-retry 依赖，直接配置即可使用：

这样的配置，请求失败重试适用于所有的请求，也可以配置专门针对某一个微服务的请求失败重试，例如专门配置

针对 provider 微服务的请求失败重试，如下：

这样，就可以针对不同的微服务配置不同的请求失败重试策略。

也可以不配置 application.properties ，而是通过提供如下一个 Bean 来实现请求重试：

小结

本文主要向大家介绍了声明式微服务调用工具 Feign 的一些高级特性，例如继承机制、日志配置、请求压缩、请求

重试等，并对继承特性的优缺点进行了分析。在实际开发中，灵活地使用这些属性，可以使我们的微服务以一个更

高的效率运行。通过对这些特性的学习，相信大家对 Feign 将会有一个更深刻的认识。

本文作者：纯洁的微笑、江南一点雨

feign.compression.request.enabled=true
feign.compression.response.enabled=true
feign.compression.request.mime-types=text/html,application/json
feign.compression.request.min-request-size=2048

最大的重试次数，不包括第一次请求
ribbon.MaxAutoRetries=3
最大重试server的个数，不包括第一个 server
ribbon.MaxAutoRetriesNextServer=1
是否开启任何异常都重试
ribbon.OkToRetryOnAllOperations=false

#最大的重试次数
provider.ribbon.MaxAutoRetries=3
#最大重试server的个数
provider.ribbon.MaxAutoRetriesNextServer=1
#是否开启任何异常都重试
provider.ribbon.OkToRetryOnAllOperations=false

@Bean
public Retryer feignRetryer() {
 Retryer.Default retryer = new Retryer.Default();
 return retryer;
}

	准备工作
	继承特性
	在 provider 中实现接口
	在 feign-consumer 中调用接口
	优缺点分析

	日志配置
	数据压缩
	请求重试
	小结

