
 Spring Cloud微服务开发实践 / 7-2 20 Spring Cloud Gateway 快速实践

20 Spring Cloud Gateway 快速实践
更新时间：2019-07-04 18:14:00

本节内给大家介绍如何在项目中使用 Spring Cloud Gateway ，学习如何使用 Spring Cloud Gateway 转发单个项目

的请求，实践 Spring Cloud Gateway 和注册中心的配合使用。

快速入手

我们先来快速实现一个 Spring Cloud Gateway 的 hello world，让大家了解一下 Gateway 整体工作流程。

Spring Cloud Gateway 支持两种方式配置路由的使用：

编码方式，通过 @Bean 自定义 RouteLocator，在启动主类 Application 中配置。

配置方式，在配置文件 yml 中配置。

两种方式是等价的，我们先来使用第一种方式：

编码方式

首先添加 Spring Cloud Gateway 的依赖包 spring-cloud-starter-gateway

添加依赖

对自己不满是任何真正有才能的人的根本特征之一。
——契诃夫

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-gateway</artifactId>
 </dependency>
</dependencies>

file:///read
file:///read/37
file:///read/37/article/449
file:///read/37/article/451

添加启动类

上面这段配置的意思是，配置了一个 id 为 path_route 的路由规则，当访问地址 http://localhost:8080/get 时会

自动转发到地址： http://httpbin.org/get。配置完成启动项目即可在浏览器访问进行测试，当我们访问地址 htt

p://localhost:8080/get时页面展示如下信息：

这样访问地址 http://localhost:8080/get就和访问 http://httpbin.org/get的效果是一致的，从而验证了路由转

发的成功。

配置方式

上面给大家演示了使用编码方式实现路由转发。下面介绍使用配置方式实现路由转发。配置文件推荐使用 YML 格

式来配置，YML 风格更简洁清晰。

application.yml

配置中的参数：

id：我们自定义的路由 ID，保持唯一，代码中就是 route() 方法的第一个参数。

public class GatewayApplication {
 public static void main(String[] args) {
 SpringApplication.run(GatewayApplication.class, args);
 }

 @Bean
 public RouteLocator customRouteLocator(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("path_route", r -> r.path("/get")
 .uri("http://httpbin.org"))
 .build();
 }
}

{
 "args": {},
 "headers": {
 "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exc
hange;v=b3",
 "Accept-Encoding": "gzip, deflate, br",
 "Accept-Language": "zh-CN,zh;q=0.9",
 "Cookie": "Hm_lvt_f0cfcccd7b1393990c78efdeebff3968=1555735735; Hm_lpvt_f0cfcccd7b1393990c78efdeebff3968=1555740301",
 "Forwarded": "proto=http;host=\"localhost:8080\";for=\"0:0:0:0:0:0:0:1:64367\"",
 "Host": "httpbin.org",
 "Upgrade-Insecure-Requests": "1",
 "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Sa
fari/537.36",
 "X-Forwarded-Host": "localhost:8080"
 },
 "origin": "0:0:0:0:0:0:0:1, 221.178.127.44, ::1",
 "url": "https://localhost:8080/get"
}

server:
 port: 8080
spring:
 cloud:
 gateway:
 routes:
 - id: path_route
 uri: http://httpbin.org
 predicates:
 - Path=/get

uri：需要转发的目标服务地址， r -> r.path("/get").uri("http://httpbin.org") 代码使用了函数时编程简化

代码。

predicates：路由条件，Predicate 接受一个输入参数，返回一个布尔值结果。该接口包含多种默认方法来将

Predicate 组合成其他复杂的逻辑（比如：与，或，非）。

filters：过滤规则，本示例暂时没用。

配置完成之后我们把上启动类中的 customRouteLocator()注释掉：

再重新启动项目，再次访问地址 http://localhost:8080/get ，返回信息和上述返回的结果一致，这说明了通过

配置的方式也可以到达路由转发的功能。在实际项目中为了方便维护，推荐使用配置文件的方式来配置。

两个 hello world 版的示例都体验完之后，基本可以了解 Spring Cloud GateWay 的工作机制，在日常项目中我们可

根据不同的需求，配置不同的路由转发策略，大部分使用场景只需要调整不同的配置信息即可实现。

网关和注册中心

上面两种转发方式只适合在单一的项目中使用，如果在微服务架构中就会存在一个致命的问题，微服务架构中服务

提供者是动态变化的，所以不能直接将目标服务器地址写在配置文件中。那么在微服务架构中如何解决这个问题

呢，这个时候就需要和注册中心来配置使用，本文以 Eureka 和 Spring Cloud Gateway 为例给大家讲解。

当网关和注册中心结合起来使用时，把网关当作一个客户端注册到注册中心，然后网关从注册中心获取所有服务，

并自动为这些服务提供路由转发功能。Spring Cloud Gateway 提供了此功能，在项目中只需要简单配置即可达到这

样的效果，接下来进行演示。

我们将 5-1 课程的示例项目拿过来，复制 provider 为两个项目 provider-1 和 provider-2，将 provider-2 的端口修改

为 4002 ，依次启动 eureka、consumer、 provider-1 和 provider-2 项目。

全部启动完毕后，多次访问地址： http://localhost:4003/hello?name=neo，页面展示结果如下：

说明服务启动成功，并且请求时被均衡地分发到后端的两个服务。

接下来将上一节的项目复制一份，修改项目名称为 gateway ，将网关项目也注册到注册中心的，修改配置文件的

内容如下：

application.yml

/* @Bean
public RouteLocator customRouteLocator(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("path_route", r -> r.path("/get")
 .uri("http://httpbin.org"))
 .build();
}*/

hello neo ; 4001
hello neo ; 4002
...

配置说明：

spring.cloud.gateway.discovery.locator.enabled：是否开启通过注册中心进行路由转发的功能，通过

serviceId 转发到服务，默认为 false。

eureka.client.service-url.defaultZone设置注册中心的地址，使网关项目注册到注册中心。

logging.level.org.springframework.cloud.gateway 调整 gateway 包的 log 级别，以便排查问题。

修改完成后启动 gateway 项目，访问注册中心地址 http://localhost:1111/页面效果如下图：

将 Gateway 注册到服务中心之后，网关会自动代理所有的在注册中心的服务，访问这些服务的语法为：

比如我们的 provider 项目有一个 /hello 的服务，访问此服务的时候会返回：hello 参数 name；端口。

按照上面的语法我们通过网关来访问，浏览器输入： http://localhost:8888/CONSUMER/hello?name=neo。多次访

问后页面依次出现如下结果：

说明我们通过路由转发功能调用了 CONSUMER 的 hello 服务，并且我们在配置文件中只是配置了注册中心的地

址，并没有配置具体的服务提供者信息。

通过上面的实验说明 Spring Cloud Gateway 和 Eureka 已经深度融合，只需要在 Gateway 中配置好注册中心的地

址，即可代理注册中心的所有服务提供者，省掉了中间繁琐的配置。

小结

server:
 port: 8888
spring:
 application:
 name: gateway
 cloud:
 gateway:
 discovery:
 locator:
 enabled: true
eureka:
 client:
 service-url:
 defaultZone: http://localhost:1111/eureka/
logging:
 level:
 org.springframework.cloud.gateway: debug

http://网关地址：端口/服务中心注册 serviceId/具体的 url

hello neo ; 4001
hello neo ; 4002
...


19 服务网关 Zuul 和 Spring
Cloud Gateway 

21 Gateway 中 Predicate 和
Filter 的用法

本节课为大家演示了如何使用 Spring Cloud Gateway。Spring Cloud Gateway 默认有两种使用方式，一种是通过

编码的方式来实现，一种是通过配置文件的方式来实现，推荐使用配置文件的方式来使用，便于后期修改维护。

Spring Cloud Gateway 支持和注册中心结合起来使用，只要将 Spring Cloud Gateway 注册到注册中心，即可自动

代理注册中心中的所有服务，简化路由配置和使用方式。

本文作者：纯洁的微笑、江南一点雨

	快速入手
	编码方式
	配置方式

	网关和注册中心
	小结

