
 Spring Cloud微服务开发实践 / 12-2 32 Zipkin 实践

32 Zipkin 实践
更新时间：2019-07-30 09:30:32

Zipkin 实践

上篇文章带领大家了解了 Zipkin 的基本概念，以及 Zipkin 中环境的搭建，现在是万事俱备只欠东风了，本文就来和

大家聊一下这搭好的环境要如何使用。

创建 provider

天才免不了有障碍，因为障碍会创造天才。
——罗曼·罗兰

file:///read
file:///read/37
file:///read/37/article/548
file:///read/37/article/550

要演示链路追踪，我需要提前准备好两个微服务，两个服务之间互相调用，然后我们来观察链路追踪情况。因此需

要首先创建一个名为 zipkin 的 maven 父工程，然后在 zipkin 项目中创建一个名为 provider 的 module ，创建时分

别添加 Web、Sleuth、RabbitMQ、Spring Cloud Stream 以及 Zipkin 依赖，如下：

工程创建完成后，pom.xml 文件核心依赖如下：

创建完成后，我们首先在 application.properties 中添加 stream、zipkin 以及 rabbitmq 相关的配置：

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>
</dependency>

spring.application.name=provider
spring.sleuth.web.client.enabled=true
spring.sleuth.sampler.probability=1
spring.zipkin.base-url=http://localhost:9411
spring.zipkin.enabled=true
spring.zipkin.sender.type=rabbit
spring.rabbitmq.addresses=localhost
spring.rabbitmq.port=5672
spring.rabbitmq.username=guest
spring.rabbitmq.password=guest
server.port=8080

这些配置有一些是大家面熟的，也有一些可能是第一次接触到的，主要是 sleuth 和 zipkin 的配置可能第一次接触，

我这里就主要来介绍一下这两个相关的配置的含义吧：

spring.sleuth.web.client.enabled 表示开启链路追踪；

spring.sleuth.sampler.probability 表示追踪信息导出到 zipkin 的比例，这里默认是 0.1 ，即 10% 的追踪信息导出

到 zipkin ，我们这里将之配置为 1 ；

spring.zipkin.base-url 表示指定 zipkin server 的地址；

spring.zipkin.base-url 表示开启 zipkin ；

spring.zipkin.sender.type 表示设置追踪信息的发送类型。

配置完成后，我们再添加一个 HelloController ，提供一个测试接口，如下：

接下来我们就可以启动 provider 了。provider 启动成功之后，先放着，我们再来看 consumer 的创建。

创建 consumer

consumer 的创建和 provider 的步骤基本一致，需要添加的依赖以及 application.properties 中的配置都是一样的

（除了项目启动端口不一致），因此这个步骤我就不再赘述，当 application.properties 配置完成后，我们在

consumer 中首先配置一个 RestTemplate 的 Bean ，如下：

注意，这里的 RestTemplate 的实例我没有开启负载均衡功能，所以这里主要是给大家展示链路追踪的用法，没有

引入服务注册中心，因此也没有引入负载均衡的注解。最后再添加一个 Controller 去消费 provider 中提供的接口，

如下：

这段代码也很简单，配置完成之后，我们再来启动 consumer 工程。consumer 启动成功之后，我们先尝试在浏览

器中发送请求调用 /sayhello 接口： http://localhost:8081/sayhello。

@RestController
public class HelloController {
 @GetMapping("/hello")
 public String hello(String name) {
 return "hello " + name + " !";
 }
}

@SpringBootApplication
public class ConsumerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ConsumerApplication.class, args);
 }

 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

@RestController
public class UseHelloController {
 @Autowired
 RestTemplate restTemplate;
 @GetMapping("/sayhello")
 public void hello() {
 String s = restTemplate.getForObject("http://localhost:8080/hello?name={1}", String.class, "javaboy");
 System.out.println(s);
 }

}

查看链路追踪

当 consumer 中的请求发送完成之后，接下来我们刷新 zipkin 的调用页面，发现已经有了一条调用记录，如下：

如果服务比较多，可以使用该页面提供的搜索功能进行搜索，就能快速定位到自己需要的服务。

点开这条调用记录，如下：

可以看到整个调用链以及请求分别在 /sayhello 和 /hello 接口上所花费的时间。点击某一个接口，还可以看到具体

的数据：

这里可以看到每一个步骤的详细信息，包括请求方法、对应的 method 、相关的 Controller 以及客户端的地址等。

由于这里是 /sayhello 接口，因此没有 parentId ，下一个请求开始就有 parentId 了。

也可以点击右上角的 Try Lens UI 按钮，换一个 UI 风格：

然后我们打开 Elasticsearch-head ，可以看到数据已经存储到 Elasticsearch-head 上了，如下：

最后我们再打开 RabbitMQ 的管理面板，也可以看到有一个名为 zipkin 的队列，如下：

精选留言 0

欢迎在这里发表留言，作者筛选后可公开显示


目前暂无任何讨论

 31 Zipkin 入门介绍 33 Spring Boot Admin 介绍

小结

经过上面的步骤之后，一个分布式的服务链路追踪系统就算完成了，我们平时只需要通过 zipkin 的 WebUI 界面就

能快速查看每一个请求的状况，包括在每一个微服务上花费的时间，就能快速定位出性能瓶颈。

	Zipkin 实践
	创建 provider
	创建 consumer
	查看链路追踪
	小结

