
更新时间：2019-09-10 15:07:23

02 绝对不仅仅是为了面试—我们为什么需要学习多线程

此时此刻，是何种原因促使你打开了本篇关于 Java 并发的专栏？实事求是地讲，对于绝大多数研发人员，平时用

到多线程的场景并不多。但多线程在我们的日常开发中却无处不在，只不过很多时候，框架已经帮你实现了。比如

web 开发，容器已经帮你实现了多线程；再比如大数据开发，框架也已帮你实现了多线程，甚至分布式计算。那促

使你学习多线程的原因是什么呢？我想很大可能你是为了面试打基础、做准备。没错，这真的很现实！从我最近换

工作的经历来看，多线程在面试题中出现的概率几乎是 100%。如果你想升职加薪！加入一线大厂！成为互联网精

英！多线程的知识储备是必备的。但你想过吗，为什么面试官热衷于问一个平时用到并不多的技术问题？

1. 面试官考查多线程的原因

我想除了工作确实需要之外，面试官考察多线程可能有如下原因：

1. 考察你的工作技术深度。

多线程虽然很少用到。但是如果你做底层开发，或者负责基础设施（例如消息队列）研发，肯定会用到多线程。

通过面试多线程，可以考察你的工作在技术方面的深度。

2. 考察你的学习、理解能力。

面试大概率会考多线程问题，这已经是公开的秘密了。这其实是一个开卷考试，对所有候选人是公平的。比拼的

是候选人的学习能力、理解能力、做事的态度。你可以没用过，但你要有快速掌握的能力，和稳扎稳打的学习态

度。

智慧，不是死的默念，而是生的沉思。

——斯宾诺莎

file:///read/49/article/936
file:///read/49/article/938


我认为第二点是主要原因。求职者都知道面试官会考查多线程，但为什么还是有的人答非所问，有的人却对答如

流，有的人甚至可以深入底层原理？这无外乎两个原因：

1. 对面试的准备和态度。明知道要考察多线程，候选人却不认真准备，这种态度带到工作中是何其的可怕？

2. 学习的能力。短时间内掌握平时不常用到的多线程并不容易。彻底理解多线程，还需要 JVM 的知识。这除了自

身的学习能力外，如果配合一本好的教材、几篇好的博客，能够大大加快你的学习速度、提升你的学习深度。

生活在知识爆炸的时代，怕的不是没有选择，而是不知道怎么选。其实市面上关于多线程编程的书籍太多了，那为

什么我还要花时间写这个专栏呢？我在准备这个专栏前，买了 7 本多线程相关书籍。全部通读下来后，感觉质量参

差不齐。有的讲得比较浅，有的讲得够深入却晦涩难懂，而且每本书的写法和侧重点都不一样。我写这个专栏的目

的，是想站在巨人的肩膀上，以更为通俗易懂的方式，把多线程的知识讲出来。让从来没接触过多线程的开发人员

也能有兴趣读、能够读懂。并且能够深入到底层原理，而不是蜻蜓点水。

2. 软件世界即现实世界

再回到题目上，虽然可能绝大多数读者是抱着提升自身实力，为面试做准备的初衷来学习多线程。但我想告诉大

家，多线程真的很强大，有很多使用场景，能帮你解决很多问题。在学习完多线程后，你手中便多了一样武器，你

解决问题的思路也更为宽广。在你以后漫漫的编程生涯中，从此多了一种选择。所以学习多线程，绝对不是仅仅为

了面试。

其实多线程并不复杂，其实和现实世界中多人协作是一样的。编程初学者，会觉得软件是无形的，看不见、摸不

到，只有冰冷冷的逻辑，学习起来晦涩难懂。其实从面向对象出现开始，软件已经成为现实世界的对等映射。这不

光体现在语言本身，其实在软件领域无处不在，例如：

1. 设计模式

23 种经典设计模式，没有哪一种不是从现实世界得来的灵感。如果你看过设计模式的文章，你一定对设计模式

中生动有趣的例子所吸引。

2. 软件设计

绝大多数软件的设计，都参考了工业设计或者参考了生活中解决问题的方式，汲取其中的设计思想。其实不管软

件还是硬件或者生活中遇到的难题，在解决问题的思路上是一致的。无形的软件设计，可以借助有形世界里的案

例来帮助你思考。我最近在看 kafka 的源代码，其中 producer 的设计思想和快递公司发快递的过程很类似。还

有 Java NIO，也是类似的原理。可以说软件设计的思想都发源于现实世界。

3. 软件架构

我做个类比，软件架构可以看作现实世界工厂里的机器设计和布置。我们需要考虑很多，比如需要哪些机器，不

同机器如何配比、不同工序之间如何衔接、机器出问题如何应对、机器操作日志如何记录、安全如何保障。工厂

里遇到的问题在软件架构上也都会遇到。

以上举例，足以说明软件和现实世界之间的相似程度。软件其实就是现实世界的映射。我们在学习软件的过程中，

要善于找到生活中常见的例子类比，这样理解起来就没有困难了，而且便于记忆。

3. 多线程典型应用场景



啰嗦了这么多，主要是为了介绍我在编程上面的学习心得，希望能对大家有些帮助。下面我们就来看看多线程的几

种典型应用场景，以下例子都由现实世界的场景切入讲解。在现实世界中，我们可以认为每个人都是一个线程，当

多个人一起完成一项工作，这其实就是多线程。我们来看下面的多线程场景：

1. 工作量太大，需要多人一块干，以缩短工期

这种场景在现实生活中比比皆是，比如要完成书稿校对工作。显然一个人校对太慢了，那就多叫几个人吧！每个

人分一个章节，同时进行校对，速度一下就上来了。如下图所示：

编程上，如果程序需要重复执行一段逻辑，每次执行又互不影响，那么你可以考虑采用多线程，每个线程执行任

务总量的一部分，最后再把每个线程执行的结果合并。通过并行处理，能够大大减少执行时间。Java 8 开始出现

的 lambda 并行流，就是采用的这种思想，只不过它是 JVM 去实现，而不需要我们做额外的处理。另外在大数

据领域，对于海量数据的处理，也可以采用多线程，缩短执行时间。

2. 实现分工



这个场景的例子也很多，而且很贴近我们的生活。例如，我们每天中午都会去吃工作餐，饭馆的工作流程大同小

异，如下图所示：

饭店会有这么几类员工，收银员、厨师、传菜员、清洁员。每个人各司其职，大家配合工作。饭店的工作流程如

下：

1、顾客在收款台点单；

2、后厨接到系统传过来的订单后开始加工；

3、做好饭菜后传菜员取饭菜；

4、传菜员找到客户所在位置上菜；

5、顾客用餐后，清洁员进行打扫。

每种角色的员工只关心自己的输入和输出。比如厨师的输入就是客户的点菜单，输出就是饭菜。而厨师的输入则

是上个环节收银员的输出。这样做的好处是每个人专注于自己的工作，有助于效率的提升。其实好处还很多，我

总结如下：

每种角色对应一个环节，每个环节在执行上独立分开。这样每个环节的工作就解耦了；

每个环节之间有了缓冲。收银员一直在收银，她不需要知道厨师是否空闲，她在不停输出订单。而厨师接到订

单就去加工，而不关心积累了多少订单，只要一份菜接一份菜的去加工。订单的列表就是一个缓冲，调节两个

环节速率的不匹配及不稳定。如果一个人干所有的事情，那么问题就来了。举个反面的例子，某著名连锁便利

店，在早餐时段，收银员即收银又负责做咖啡并配餐，结果导致整个收银的队伍相当的长。我即使只买个面

包，也要排队很久；

每种角色只做自己的事情，省去了上下文切换的时间。如果你一个人干所有的事情，当你为顾客下单完成后，

要跑去后厨炒菜，再端给客户，然后再回到收银台为下一位顾客下单。单单是浪费在路上的时间就会有多少

啊！而且每次切换工作，你都要在脑海里想一下接下来的这个工作需要怎么做；

我们看下清洁员这个角色。他看到有人吃完饭离开就会去收拾桌子。假如没有分工，而是一个人干所有的工

作，那么餐厅员工给客人端上饭菜后，还要一直等到客户吃完饭，才能收拾桌子，效率何其低下。我想没有老

板傻到会让自己的员工如此工作；



便于对原有流程进行改变。假如老板想在点餐前，增加向客户推销关注店铺公众号，并注册会员的环节。如果

没有分工，老板要向所有员工通知这个事情，并且组织所有人学习。但是有了分工后，只有收银员需要进行学

习。而其他角色的员工完全不需要知道这件事情。老板是不是轻松多了？

通过分工，多人协作，餐厅的工作才能高效运转起来。我们开发的程序也是如此，如果你所有的工作都在一个线

程里，那么首先这段主逻辑会相当复杂，而且难于维护和扩展，另外相信效率也会相对低下。如果我们的程序通

过多线程 + 缓冲的方式，把不同步骤解耦，那么将大大提高效率。

还是拿 kafka 举例，Kafka 的 producer 发送消息的机制就是如此，首先不同的发消息线程会往缓存中累积消

息，此时消息没有被真正发送出去，只是累积在本地缓存中。Kafka 有专门负责网络 IO 的 sender 线程，当缓存

满了，sender 线程被唤醒，它真正把消息发送出去，而此时新的消息还会被累积进来。

Kafka 的这种多线程设计，使得收集消息和 IO 发送消息解耦。sender 线程可以根据消息发往主机的不同，把消

息分类打包，一次网络 IO 可以发送出多条消息，从而大大减少了网络 IO 的消耗。

我们再想想清洁员所做的工作，是不是很熟悉？没错，其实 JVM 中的 GC 线程就相当于清洁员。

3. 分头行动，最后汇合

这也是分工协作的一种，只不过是分头行动后，大家要把行动的结果汇总，才能执行接下来的任务。接下来这个

例子，作为研发同学再熟悉不过了。现在 BS 软件开发，前后端分离已经成为了趋势，在这种开发方式下，一般

分为三步：

1、前、后端研发定义接口；

2、前、后端开发分头开发；

3、前、后端联调。

第 3 步的前提是第 2 步。在第 2 步中，前后端程序员分头进行开发，谁先开发完都没有用，只有二者都开发完

了，才能进入第三步。

在微服务大行其道的时代，类似上面这种场景的多线程应用很常见。例如，你的一个业务接口中，可能会调用数

个微服务接口获取数据。如果你没有采用多线程，那么每次请求时，主线程都会被阻塞。但是假如你采用了多线

程开发，对微服务的几个请求可以同时发出，主线程阻塞时间只取决于几个请求中最长的那个，而不是所有请求

阻塞时间之和，这样会极大地提高响应速度。

4. 排队的同时，不耽误做其他事情

我平时很讨厌排队，所以看到做什么事情要排队，我就放弃了，因为排队给我的感觉就是在浪费时间，什么都做

不了。当然，在移动互联网时代，排队时刷刷手机还是可以的。有没有一种方式，能让我把队排了，但不耽误我

做别的事情呢？当然有，我举个例子。我们都应该做过体检，检查项目中最慢的就是 B 超。我说过我最不爱排

队，所以我都是最后才去做 B 超，但每次还是要排队半个小时以上。近几年我去体检时，发现流程优化了。你先

去 B 超排个号，然后可以先去做其他项目的检查，当你听到叫号你所在的区间时，再去做 B 超。这个流程改进

只需要添加一个要素，就是发你一个号码。拿到你的序号牌后，你可以去做其他事情。等叫到你的号，你可以凭

号进行 B 超检查。




01 开篇词-多线程为什么是你必需
要掌握的知识 

03 多线程开发如此简单—Java中
如何编写多线程程序

这其实就是 java 多线程中的 Future 模式。这种模式下，主线程不会因为一个耗时的业务操作而被阻塞住，主线

程可以单起一个线程去处理耗时的操作，主线程逻辑继续执行，等用到另外线程返回的数据时，再通过 Futrue

对象获取。Future 就是你的一张旧船票，你凭借这张旧船票，还能登上那艘客船。

4. 总结

本节我们了解了多线程的应用场景。其实除了文中列举的，还有许多其它使用多线程的场景。现实世界中几乎所有

的工作都需要多人协作，而计算机的世界亦是如此。了解完多线程各种应用场景，下面就让我们开启 Java 多线程

的学习之旅吧！

}


	1. 面试官考查多线程的原因
	2. 软件世界即现实世界
	3. 多线程典型应用场景
	4. 总结

