
更新时间：2019-10-17 10:45:37

15 原子性轻量级实现—深入理解Atomic与CAS

在上一章介绍了并发的三大特性，即原子性、可见性和有序性。从本节起，我们将学习如何在多线程开发中确保这

三大特性。首先，最简单的方式就是使用 synchronized 关键字或者其它加锁。这种方式最大的好处是–简单！是

的，无需动脑子，在需要的地方加锁就好了。同步方式在并发时包治百病，但治病的手段却是让多线程程序转为串

行执行，这相当于自毁武功。如果滥用同步，那么程序就是去了多线程的意义。因此，只有在必要的时候才使用同

步。比如对共享资源的访问。而且尽量控制同步代码块的范围，不需要使用同步的代码，尽量不要放入同步代码

块。

那么除了使用 synchronized 实现同步，还有其它手段保证三大特性吗？答案是肯定的，Java 还提供了轻量级的实

现，来解决特定的问题。这些实现方式不像 synchronized 能够包治百病，但是对症下药，疗效更好。对于程序来

说，在解决问题的同时，还能保证代码的效率。所以我们需要掌握好 synchronized 同步之外的这些方法，遇到并发

问题时，采用更为合适的手段解决问题，而不是一股脑的都用 synchronized 或者其它显式锁的方式实现同步。这样

才是一位合格的攻城狮！

本节我们来看看原子性的轻量级实现–Atomic。

1. Atomic 简介

构成我们学习最大障碍的是已知的东西，而不是未知的东西。

—— 贝尔纳

file:///read/49/article/949
file:///read/49/article/951

Atomic 相关类在 java.util.concurrent.atomic 包中。针对不同的原生类型及引用类型，有 AtomicInteger、

AtomicLong、AtomicBoolean、AtomicReference 等。另外还有数组对应类型 AtomicIntegerArray、

AtomicLongArray、AtomicReferenceArray。由于 Atomic 提供的功能类似，就不一个个过了。我们以

AtomicInteger 为例，看看 Atomic 类型变量所能提供的功能。

我们先看一个简单的例子，运算逻辑是对变量 count 的累加。假如 count 为 int 类型，多个线程并发时，可能各自

读取到了同样的值，也可能 A 线程读到 2，但由于某种原因更新晚了，count 已经被其它线程更新为了 4，但是线

程 A 还是继续执行了 count+1 的操作，count 反而被更新为更小的值 3。现在的多线程程序是不安全的。要处理此

问题，按照我们已经学习过的知识，需要把 count=count+1 放入 synchronized 代码块中。这样做肯定能够解决问

题。但是这种同步操作是悲观锁的方式，每次都认为有其它线程在和它并发操作，所以每次都要对资源进行锁定，

而加锁这个操作自身就有很大消耗。而且不是每一次 count+1 时都有并发发生，无并发发生时的加锁并无必要。直

接用 synchronized 进行同步，效率并不高。

下面我们看看怎么用 AtomicInteger 解决这个问题。使用 AtomicInteger 很简单，我们在声明 count 的时候，将其

声明为 AtomicInteger 即可，然后把 count=count+1 的语句改为 count.incrementAndGet ()。问题就完美解决了。

接下来我们看看 Atomic 实现原子操作的原理。我们首先看看 AtomicInteger 的 incrementAndGet 方法注释：

可以看到此方法以原子操作在当前 value 上加 1。count=count+1 这行语句其实隐含了两步操作，第一步取得 count

的值，第二步为 count 加 1 。而在这两步操作中间，count 的值可能已经改变了。而 AtomicInteger 提供的

incrementAndGet () 方法，则把这两步操作作为一个原子性操作来完成，则不会出现线程安全问题。

Atomic 变量的操作是如何保证原子性的呢？其实是使用了 CAS 算法。

2. CAS 算法分析

CAS 是 Compare and swap 的缩写，翻译过来就是比较替换。其实 CAS 是乐观锁的一种实现。而 Synchronized

则是悲观锁。这里的乐观和悲观指的是当前线程对是否有并发的判断。

悲观锁–认为每一次自己的操作大概率会有其它线程在并发，所以自己在操作前都要对资源进行锁定，这种锁定是

排他的。悲观锁的缺点是不但把多线程并行转化为了串行，而且加锁和释放锁都会有额外的开支。

乐观锁–认为每一次操作时大概率不会有其它线程并发，所以操作时并不加锁，而是在对数据操作时比较数据的版

本，和自己更新前取得的版本一致才进行更新。乐观锁省掉了加锁、释放锁的资源消耗，而且在并发量并不是很大

的时候，很少会发生版本不一致的情况，此时乐观锁效率会更高。

Atomic 变量在做原子性操作时，会从内存中取得要被更新的变量值，并且和你期望的值进行比较，期望的值则是你

要更新操作的值。如果两个值相等，那么说明没有其它线程对其更新，本线程可以继续执行。如果不等，说明有线

程已经先于此线程进行了更新操作。那么则继续取得该变量的最新值，重复之前的逻辑，直至操作成功。这保证了

每个线程对 Atomic 变量操作是线程安全的。

/**
 * Atomically increments by one the current value.
 *
 * @return the updated value
 */

这里举个例子，我们每天都会向代码库提交代码，不知道你是否遇到过如下场景。你发现代码中有个 bug，只需要

修改一行代码就可以修复，于是你先 pull，改好这行代码后立刻 push，但是 git 告诉你由于落后远程代码库的版

本，push 失败了。很不巧，就在你 pull 和 push 之间这短短的几秒钟，有其它开发 push 了代码。那你只能再次

pull，和你这次修改做合并，然后再次 push。仔细想想，这不就是 CAS 吗？只不过除了数据提交前的版本比较 git

帮你做外，pull、merge、push 需要你手动执行。

3. Atomic 源代码分析

下面我们看看 AtomicInteger 的源代码。首先，AtomicInteger 中有 3 个重要的成员变量：

第一个 Unsafe 对象，Atomic 中的原子操作都是借助 unsafe 对象所实现的；

第二个是 AtomicInteger 包装的变量在内存中的地址；

第三个是 AtomicInteger 包装的变量值，并且用 volatile 修饰，以确保变量的变化能被其它线程看到。

其实 valueOffset 就是 value 的内存地址。

AtomicInteger 中有一段静态代码块如下：

private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
private volatile int value;

static {
 try {
 valueOffset = unsafe.objectFieldOffset
 (AtomicInteger.class.getDeclaredField("value"));
 } catch (Exception ex) { throw new Error(ex); }
}

这段代码中 unsafe 对象获取了 AtomicInteger 类中 value 这个字段的 offset。unsafe.objectFieldOffset () 是一个

native 的方法。

AtomicInteger 有一个构造函数如下：

可以看到对它所包装的 int 变量 value 进行了赋值。

通过以上分析，我们来总结一下目前对 AtomicInteger 的了解：

1. AtomicInteger 对象包装了通过构造函数传入的一个初始 int 值；

2. AtomicInteger 持有这个 int 变量的内存地址；

3. AtomicInteger 还有一个用来做原子性操作的 unsafe 对象。

接下来我们以文章前面提到的 incrementAndGet 方法为例，来看看 Atomic 原子性的实现。代码如下：

代码很简单，调用了 unsafe.getAndAddInt(this, valueOffset, 1) 后，对其返回 +1，然后 return。

那么原子性实现的秘密就全在 unsafe.getAndAddInt () 这个方法中了。随便翻看一下 AtomicInteger 的源代码，这

个方法被各种调用，其实我们搞清楚 unsafe.getAndAddInt () 的实现，谜底也就揭晓了。我们继续看

unsafe.getAndAddInt () 的实现：

为了帮助理解，我加了一些注释。三个入参，第一个 obj 传入的是 AtomicInteger 对象自己，第二个是 value 变量

的内存地址，第三个则是要增加的值。

程序体中是一个循环，循环中通过 AtomicInteger 对象和 value 属性的 offset，取得到当前的 value 值，接下来调用

this.compareAndSwapInt (obj, valueOffset, expect, expect + var)。这个方法名仔细看下，是不是很熟悉？是的，

就是 CAS。调用前我们已经获取到了期望值，所以在这个方法中会把期望值和你要替换掉的值做比较，如果一直则

替换，否则重复 while 循环，也就是再此获取最新的期望值，然后再比较替换，直至替换成功。

你现在一定很好奇 compareAndSwapInt 的方法是如何实现的。我们点开此方法后，可以看到是一个 native 方

法，native 方法使用 C 语言编写。由于 JDK 并未开源，我们只能下载开源版本的 OpenJDK。

public AtomicInteger(int initialValue) {
 value = initialValue;
}

public final int incrementAndGet() {
 return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}

public final int getAndAddInt(Object obj, long valueOffset, int var) {
 int expect;
 // 利用循环，直到更新成功才跳出循环。
 do {
 // 获取value的最新值
 expect = this.getIntVolatile(obj, valueOffset);
 // expect + var表示需要更新的值，如果compareAndSwapInt返回false，说明value值被其他线程更改了。
 // 那么就循环重试，再次获取value最新值expect，然后再计算需要更新的值expect + var。直到更新成功
 } while(!this.compareAndSwapInt(obj, valueOffset, expect, expect + var));

 // 返回当前线程在更改value成功后的，value变量原先值。并不是更改后的值
 return expect;
 }

 14 僵持不下—死锁详解 16 让你眼见为实—volatile详解

可以看到在 compareAndSwapInt 源代码的最后，调用了 Atomic::cmpxchg (x,addr,e)。这个方法在不同的平台会有

不同的实现。不过总的思想如下：

1. 判断当前系统是否为多核处理器；

2. 执行 CPU 指令 cmpxchg，如果为多核则在 cmpxchg 加 lock 前缀。

可以看到最终是通过 CPU 指令 cmpxchg 来实现比较交换。那么 Lock 前缀起到什么作用呢？加了 Lock 前缀的操

作，在执行期间，所使用的缓存会被锁定，其他处理器无法读写该指令要访问的内存区域，由此保证了比较替换的

原子性。而这个操作过程称之为缓存锁定。

4. CAS 的缺点

CAS 最终通过 CPU 指令实现，把无谓的同步消耗降到最低，但是没有银弹，CAS 也有着几个致命的缺点：

1. 比较替换如果失败，则会一直循环，直至成功。这在并发量很大的情况下对 CPU 的消耗将会非常大；

2. 只能保证一个变量自身操作的原子性，但多个变量操作要实现原子性，是无法实现的；

3. ABA 问题。

前两个问题比较简单，我们重点看一下第三个 ABA 问题。

假如本线程更新前取得期望值为 A，和更新操作之间的这段时间内，其它线程可能把 value 改为了 B 又改回了 A。

而本线程更新时发现 value 和期望值一样还是 A，认为其没有变化，则执行了更新操作。但其实此时的 A 已经不是

彼时的 A 了。

大多数情况下 ABA 不会造成业务上的问题。但是如果你认为 ABA 问题对你的程序业务有问题，那么就需要解决。

JDK 提供了 AtomicStampedReference 类，通过对 Atomic 包装的变量增加版本号，来解决 ABA 问题，即使 value

还是 A，但如果版本变化了，也认为比较失败。

5. 总结

本节我们学习了轻量级的原子性实现–Atomic。并且以 AtomicInteger 为例进行了源代码的讲解，Atomic 的类很

多，但是大同小异，感兴趣的话，可以自己读一下其它 Atomic 类的源代码。本节最后介绍了 CAS，一定要深入理

解，这也是面试中经常会问到的问题之一。我们经过本节的学习，了解了 Atomic 的优点，也知道了它的局限性。

在以后的多线程开发中，可以有选择的使用 Atomic 变量，以使程序达到更好的效率。

}

	1. Atomic 简介
	2. CAS 算法分析
	3. Atomic 源代码分析
	4. CAS 的缺点
	5. 总结

